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ABSTRACT 

Subthreshold Channel Leakage Current in GaAs MESFET's 

by 
WEI LONG 

In this thesis, a physical model including the subthreshold conpensation 

properties is presented. The Poisson equation is solved analytically in one 

dimension for GaAs MESFET's with undoped substrates in the subthreshold 

region. The solution is then used to derive expressions for subthreshold drain 

current and subshreshold swing in MESFET's with undoped substrates. Very good 

agreement between experimental and analytical results is achieved. 

Two key parameters (Nilo and Iso) that determine the subthreshold 

Characteristics have been analyzed as a function of residual 	acceptor 

concentration Na, deep level EL2 concentration Nt, channel doping concentration 

Nd and threshold voltage Vt. It is shown that Mo increases with Na and Nt 

increase, but decreases with Nd and Vt increase. For Iso, the results show it 

increase with Nd, Nt and Vt increase, but decreases with Na increases. The results 

also show that Nt has much smaller effect on subthreshold characteristics than Nd, 

Na and Vt. According to the results, very useful design rules are presented for the 

design of devices with good subthreshold leakage characteristics. 

In addition to providing quick evaluation expressions, the analytical model 

presented in this thesis also gives us simple explanation for the observed 

subthreshold characteristics and offering, a useful basis for accurate analysis, 

simulation and fabrication of GaAs FET's with ultra low leakage current. 



SUBTHRESHOLD CHANNEL LEAKAGE CURRENT 
IN GAAS MESFET'S 

by 
Wei Long 

A Thesis 
Submitted to the Faculty of 

New Jersey Institute of Technology 
in Partial Fulfillment of the Requirments of the Degree of 

Master of Science in Applied Physics 

Department of Physics 

October 1994 



APPROVAL PAGE 

SUBTHRESHOLD CHANNEL LEAKAGE CURRENT 
IN GaAs MESFET's 

Wei Long 

Dr. Ken K. Chin, Thesis Advisor 	 Date 
Professor of Physics, NJIT 

 
Dr. K. f. Farmer, Committee Member 	 Date 
Assistant Professor in Applied Physics, NJIT 

Dr. G. H. Feng, Committee Member 	 date 
Visiting Research Professor in Applied Physics, NJIT 
Senior Research Scientist, Applied Optronics, South Plainfield, NJ 



BIOGRAPHICAL SKETCH 

Author: 	Wei Long 

Degree: 	Master of Science in Applied Physics 

Date: 	October 1994 

Undergraduate and Graduate Education: 

• Master of Science in Applied Physics, 
New Jersey Institute of Technology, Newark, NJ, 1994 

• Master of Science in Electrical Engineering 
Shanghai Institute of Metallurgy, Academia Sinica, Shanghai, China 

• Bachelor of Engineering in Electrical Engineering 
Tsinghua University, Beijing, China, 1983 

Major: 	Applied Physics 

iv 



This thesis is dedicated to 
my mother 

V 



ACKNOWLEDGMENT 

The author wishes to express his sincere gratitude to his advisor, professor 

Ken K. Chin, for his valuable inspiration , encouragement , guidance and support 

throughout the whole period of this MS study, without which it would not have 

been completed. 

The author is grateful to Dr. K. R. Farmer and Dr. G. H. Feng for their 

resourceful suggestions and help. 

Further , the author appreciates the timely help and suggestions from the 

group members. 

Special thanks to his wife W. L. Yu who encourage him so much during his 

study in the United States. 

Finally , the author likes to thank all his friends in NJIT for their kindness 

and help. 

vi 



TABLE OF CONTENTS 

Chapter 	 Page 

1 INTRODUCTION 	  1 

1.1 Significance of Leakage Current Research 	 1 

1.2 The Objective of This Thesis 	 3 

2 PHYSICAL MODEL 	 4 

2.I Deep Energy Level EL2 	 4 

2.2 Basic Equations 	 6 

3 CHARACTERISTICS OF N-SI JUNCTION 	 8 

3.1 Physics in the n-SI Junction 	 8 

3.2 Comparison with Conventional P-N Junction 	  10 

3.3 The Quantity n(SI) and Built-in Potential 	  10 

3.4 Modeling of n-SI Junction 	  11 

4 DERIVATION OF ANALYTICAL MODELS 	 14 

4.1 Charge Densities 	  14 

4.2 Areal Charge Densities 	  14 

4.3 Moble Charge Density 	 19 

4.4 Subthreshold Drain Current 	 21 

5 RESULTS AND DISCUSSION 	 23 

5.1 Comparison of Analytical Model and Empirical Model 	 23 

5.2 Subthreshold Swing 	 24 

vii 



Chapter 	 Page 

5.3 Device Parameter Dependence on Subthreshold Characteristics 	24 

5.4 Gate Leakage Current 	 33 

5.5 Subthreshold Characteristics 	 35 

6 DESIGN RULES AND CONCLUSION 	 37 

6.1 Design Rules 	 37 

6.2 Conclusion 	 38 

viii 



LIST OF FIGURES 

Figure 	 Page 

1.1 Typical GaAs MESFET structure 	  

2.1 Deep energy level EL2 recombination process 	 5 

3.1 The band structure of an n-SI junction 	 9 

3.2 Comparison of calculated results of n-si and corresponding p-n junctions 	 12 

3.3 Comparison of the net charge distribution between the n-si junction and 
the equivalent forward-biased p-n junction 	  13 

4.1 Cross section of a self-aligned gate MESFET 	 15 

4.2 The calculated domain of gate-channel-substrate structure 	  16 

5.1 Subthreshold characteristics of GaAs MESFET's 	 25 

5.2 Subthreshold factor Mo plotted as a function of residual acceptor 
concentration Na and threshold voltage Vt 	 '26 

5.3 Threshold leakage current Iso plotted as a function of residual acceptor 
concentration Na and threshold voltage 	 77 

5.4 Subthreshold factor Mo calculated as a function of deep level EL2 
concentration Nt and threshold voltage 	 29 

5.5 Threshold leakage current Iso calculated as a function of deep level 
concentration Nt and threshold voltage Vt 	 30 

5.6 Subthreshold factor Mo calculated as a function of channel doping 
concentration Nd and threshold voltage Vt 	 31 

5.7 Threshold leakage current Iso plotted as a function of channel doping 
concentration Nd and threshold voltage Vt 	 32 

5.8 Comparison of measured and calculated Schottky-diode reverse-biased 
characteristics 	  34 

ix 



Figure 	 Page 

5.9 Comparison of measured and calculated voltage and current for a GaAs 
MESFET with W=14µm, L=1 µm and Vt=-.7 V 	 36 

x 



CHAPTER 1 

INTRODUCTION 

1.1 Significance of Leakage Current Research 

The 8-12µ atomspheric window Long Wavelength Infrared (LWIR) photodetection 

by intersubband absorption in multiple quantum wells (MQW) or superlattices has 

recently become the subject of extensive investigation utilizing the GaAs/AIGaAs 

system[1] and efforts have been made to realize the possibility of potential 

monolithic integration of GaAs/A1GaAs MQW photodetectors with GaAs 

MESFET's (Metal Semiconductor Field Effect Transistors) electronics. GaAs FET 

devices with subthreshold leakage currents lower than 10-12  A are required in 

order to operate very weak photo-currents, which are typically in the 

10-10  —10-12 A range. One of the main reasons for the lack of progress in the 

development of monolithically integrated GaAs/A1GaAs superlattice devices, such 

as 8-12µ image sensors or focal plane arrays (FPA), is the extremely stringent 

requirment on the GaAs FET devices incorporated in such an OEIC (Opto-

Electronics Integrated Circuit) 

Most present-day GaAs integrated circuits are fabricated by making active 

regions on semi-insulating (S1) substrates grown by the liquid encapsulated 

Czochralski (LEC) technique. Unlike silicon technologies, device isolation is 

achieved by utilizing the high resistivity (about 1017Ω*cm at 300°K ) of the bulk 

substrate material (Figure 1.1). Accompanying this structure is its special 

subthreshold characteristics. If the devices are not properly designed and carefully 

fabricated the subthreshold leakage current may become comparable with the weak 

signal current and hence cause serious problems. So accurate modeling of the 

1 
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Figure 1.1 Typical GaAs MESFET Structure 
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subthreshold region of operation becomes increasingly important for the device 

and circuit design of monolithic GaAs photodetector. 

1.2 The Objective of This Thesis 

The subthreshold leakage current may go through bulk and the surface. Since the 

surface leakage current is processing dependent, in a well-controlled device 

process, the surface leakage current is negligible. Thus the aim of this work is to 

investigate the properties of subthreshold characteristics of MESFET's, i.e., bulk 

leakage. The bulk leakage current I d  may have two main components, I ds  and I ds , 

as shown in Figure 1.1, where I ds  is the channel leakage current and I dg  is the gate 

Schottky diode reverse bias leakage current. In this thesis the main issue is about 

the subthreshold characteristics of I„ and the behavior of I d, is also discussed. 

Initially, A physical model is presented to derive the expressions for subthreshold 

leakage current. The Poisson equation is solved analytically in one dimension for 

MESFET's with undoped substrates. On the basis of these results, expressions for 

subthreshold drain current and subthreshold swing in MESFET's with undoped 

substrates are derived. These expressions are compared with practical MESFET 

data. The dependence of substrate properties and device parameters on the 

subthreshold channel leakage current is discussed. Simple explanations for 

observed data were provided. 



CHAPTER 2 

PHYSICAL MODEL 

2.1 Deep Energy Level EL2 

The development of GaAs integrated circuits needs a reliable supply of semi-

insulating substrates with reproducible and thermally stable properties suitable for 

device fabrication. The liquid encapsulated Czochralski (LEC) technique is 

receiving considerable attention , because semi-insulating material can be grown 

without intentional doping and the technique offers the potential for producing 

round, large-area substrates with uniform properties at a reasonable cost. It has 

been well established that the semi-insulating properties of undoped bulk LEC 

GaAs result from the compensation of shallow acceptor impurities by deep EL2 

(Energy Level 2) donors[2]. To account for this phenomenon in the derivation, 

Shockley-Read-Hall statistics are applied to the deep EL2 level[3]. As a result, the 

ionized deep donor concentration N+t is given by (see figure 2.I) 
t 

where e n  is the electron emission coefficient of deep level 	, c n  the electron 

capture coefficient of deep level , e2  the hole emission coefficient of the deep 

level, cp  the hole capture coefficient of the deep level, N the conduction band 

effective density of states, n the electron concentration and p the hole 

concentration. 

Various experiments also show that the EL2 level is an electron trap, i.e. , the 

value of the hole capture cross section (about 2 .10-18 cm - 2 ) of this level is much 

smaller than the electron capture cross section (about 10-16' cm-2  )01. Hence the 

4 
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Figure 2.1 Deep energy level (EL2) recombination process 

above equation can be further simplified by neglecting the hole capture and 

emission terms. Furthermore, the hole capture coefficient is related to the emission 

coefficient by[3] 

where E t  is the EL2 energy-level related to the conduction band, Nc the effective 
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density states in conduction band, Ef the Fermi energy level and Ec  the 

conduction band energy level. 

By substituting this relation into (2.1), the ionized deep-trap concentration 

becomes 

2.2 Basic Equations 

For majority-carrier semiconductor devices in dc steady state, the basic equations 

that govern the behavior of devices are given by the following: 

Poisson's equation : 

Electron current continuity equation ignoring electron generation and 

recombination: 

Current density equation: 

Here is the potential corresponding to the conduction-band energy, p the charge 

density, ɛ  the GaAs dielectric constant, q the electron charge , J„ the electron 

current density, µn the electron mobility, E the electric field density and D„ the 

electron diffusion constant. 

Since a semi-insulating substrate contains shallow acceptors(residual carbon) 

and deep donors (EL2), in this model, the charge density in (I.4) is given by 
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With n and p are expressed as 

Where Nd+  is the concentration of ionized shallow donors in the active layer, N; 

and N+1  are the concentration of ionized shallow acceptors and deep donors in the 

semi-insulating substrate, n and p are the electron and hole concentrations and ψn  

and ψp  the hole quasi-Fermi potentials. 

In the above equations, it is assumed that the electron is the majority carrier. 

The electron mobility is modeled by the following expression: 

Where the low-field mobility µ0 = 4500cm2 /V•s, critical electric field 

Ec=4000 V/c m , and saturation velocity vs  =0.85 xI07  cm/s [5]. 



CHAPTER 3 

CHARACTERISTICS OF THE JUNCTION OF AN N-TYPE ACTIVE 
LAYER AND A SEMI-INSULATING SUBSTRATE 

3.1 Physics in the n - SI Junction 

In order to derive the expression for MESFET's drain current in the subthreshold 

region, we need to know the built-in potential and the corresponding depletion 

width and charge densities of an n-SI (semi-insulating) junction. We need also to 

know the behavior of the n-S1 junction. Consider an n-type GaAs layer found on 

top of a semi-insulating substrate. In thermal equilibrium, the Fermi level is 

constant throughout the system. Because of the impurity concentration gradient, 

there exists a potential barrier between the n-layer and the semi-insulating layer 

(see Figure 3.1). The positive charges needed to support the barrier come from 

ionized donor impurities (N d+ ) in the n-layer space-charge region near the 

junction. The negative charges, one might believe, arise from the mobile electrons 

on the semi-insulating side which shows n-  characteristics. (Similar to the 

situation in an n-n- junction). However , the situation here is different. As shown 

in Figure 3.1 , in the space-charge region on the semi-insulating side, the deep 

donor levels are well below the Fermi energy level, thus they are occupied by 

electrons and are in a charge-neutral state. As a result, negative charges of residual 

ionized shallow acceptor impurities (N„) are exposed and thus contribute to 

establishing the potential barrier. As the bulk substrate region is approached, the 

deep donor levels are closer to the Fermi level and part of them are ionized to 

EL2 +  and compensate the shallow acceptors. So the space charge region is very 

similar to the general depletion region. 

8 
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Figure 3.1 The band structure of an n-SI junction. The dashed line indicates the 
junction plane 
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3.2 Comparison with Conventional n-p Junction 

From the above discussion. the behavior of an n-SI structure near the junction 

region is somewhat similar to that of an n-p junction with the p side doped with a 

concentration equal to that of the residual acceptor concentration in the SI-layer. 

However, there is a major difference between these two structures; the height of 

the potential barrier is different. In a semiconductor n-p junction, the built-in 

potential bander height is given by[6] 

On the other hand, the built-in potential in an n-SI junction is given by 

where Nd is donor concentration on the n side and n(SI) is the equilibrium 

electron concentration in the semi-insulating region. 

3.3 The Quantity n(Sl) and Built-in Potential 

The quantity n(Sl) can be evaluated from the charge neutrality requirement which 

prevails in the neutral semi-insulating region 

Where N1  represents the residual acceptor concentration and N +1 is given by 

equation (2.3). In writing this expression, we assume that the residual donor 

concentration is smaller than the residual acceptor concentration in the semi-

insulating material, which is a required condition for producing semi-insulating 

properties by involving deep donor levels [7]. Since the material is semi-insulating, 

the free carrier concentrations n and p are several orders of magnitude smaller than 

the other impurity quantities. By neglecting the free carrier concentration terms 



11 

and by substituting (2.3) for the ionized deep-donor concentration, the equilibrium 

electron concentration in the neutral semi-insulating substrate is estimated to be 

By substituting this equation into (3.2) , the built-in potential becomes 

Thus the potential barrier height in an n-SI junction is determined by the energy 

level of the deep donor and is smaller than that of the corresponding n-p junction. 

This is demonstrated in Figure 3.2. In all the calculations , the deep donor energy 

level in the SI material is assumed to be at an energy level of 0.69 eV below the 

conduction band and with a concentration of 1016  cm-3. The residual acceptor 

concentration on the semi-insulating side and the donor concentrations on the n 

side both are assumed to be equal to 1015  cm-3. The difference between the two 

barrier heights is seen to be about 0.58 eV. 

3.4 Modeling of n-Sl Junction 

With the n-p junction forward-biased by the amount 0.58 V which is equal to the 

difference of the barrier heights of the two junction types in thermal equilibrium, 

the net charge distributions are shown in Fig. 3.3. While in the n-p junction the 

negative charges come from the ionized acceptors (solid line in Fig.3.3), the 

difference in the shallow acceptor (Na)  and deep donor concentrations (N+1)  gives 

the same result for the n-SI junction. Although the origins of the charges are 

different , the net effects are the same in both cases. The resulting band diagrams 

are indistinguishable from each other. Therefore, if the tiny amount of the current 

flow in the slightly forward-biased n-p junction is neglected, the n-SI junction can 

be modeled by the equivalent forward-biased n-p junction with the doping 
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Figure 3.2 Comparison of calculated results of n-si (solid line) and corresponding 
n-p (thick dashed line) junctions. Both junctions are in thermal 

equilibrium. The junction plane is indicated by the vertical thin dash line at 2µm. 

concentration in the p-type material equal to that of the residual acceptor 

concentration(N a ) in the semi-insulating material and with the forward-biased 

voltage equal to the potential height difference. 	Therefore, the relationship 

between the depletion width and the potential barrier derived for n-p junction can 

be applied to n-SI junction by using the residual acceptor concentration on the 

semi-insulating layer and by taking into account of the built-in potential of the n-

SI junction. 
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Figure 3.3 Comparison of the net charge distribution between the n-SI junction 
and the equivalent forward-biased n-p junction. The solid line represents the net 
charges. The dashed line and dot-dashed line are the ionized deep donor and 
shallow acceptor concentrations in the SI-layer separately. 

By using the abrupt junction approximation, the space charge region width 

both in the semi-insulating layer (Wdi ) and n-type region (Wdn ) are related to 

built-in potential (Vbi ) by 



CHAPTER 4 

DERIVATION OF ANALYTICAL MODELS FOR MESFET's IN THE 
SUBTHRESHOLD REGION 

4.1 Charge Densities 

By utilizing the concepts of previous chapters, we can proceed to derive analytical 

expressions. Consider the one-dimensional Poison equation along the axis normal 

to the gate. Refer to Fig. 41 By including the exponential terms representing 

mobile majority carriers in the channel and substrate, we have 

in the n channel active region, and 

in the semi-insulating region. Where p is net charge density, y, the residual 

potential, ϕci is the electron quasi-Fermi level referenced to the Fermi level in the 

neutral bulk substrate, Vbi  the built-in potential of the substrate-channel junction, 

N a  is the substrate shallow acceptor concentration and Nd the channel doping 

concentration. All potentials are referenced to the neutral bulk substrate. 

4.2 Areal Charge Densities 

Referring to Figure 4.2. we can solve the Poisson equation in three regions, 

respectively. 

I) Channel depleted region in the Schottky junction side 

Begin with Poison equation, we have 

14 
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Figure 4.1 Cross section of a self-aligned gate MESFET. Poisson equation is 
along the y axis at an arbitrary position along the x axis. 
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Figure 4.2 The calculated domain of gate-channel-substrate structure 

Substituting for p from (4.I), we have 

or 
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Where ψcc is the channel potential maximum between the gate and the substrate, 

ψs the surface (gate-channel interface) potential, Es the surface potential. 

Then using Gauss's law to assume that the electric field at the metal- 

semiconductor interface supports the charges on the gate side, the areal density of 

the charge on the gate side in the channel Qcg  is obtained as 

2) Channel depleted region on the n-SI junction side 

The derivation of the areal density of the charge in region 2 is done in the 

same manner as for region I, and the areal charge density Qcn is obtained as 

Where ψi is the potential at n-SI interface. 

3) Semi-insulating region 

Performing a similar derivation as above, we can get the expression for areal 

charge density in the semi-insulating region Qin. This yields 

Assuming that charges on opposite sides of the substrate-channel n-SI 

junction balance, we have 
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Substitute (4.12) into (4.7) and (4.8), we have 

4.3 Mobile Charge Density 

By applying Kirchoffs voltage law from the gate to the substrate, a relationship 

between the surface potential and the gate bias Vgs is obtained as 
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where 	is the metal n-channel work function difference and Vis is the 

substrate bias. Furthermore, the sum total of the areal densities of the fixed charge 

and mobile carriers Qn in the channel is given by 

where a is the channel thickness. In the subthreshold region, the channel and semi-

insulating substrate are virtually depleted of mobile carriers. Then, neglecting the 

mobile carrier terms in (4.6), (4.13), (4.14), and using (4.15), the expression 

describing the variation of the channel potential with the gate bias in the 

subthreshold region is obtained as 

where 

where Cci  is the substrate-channel depletion capacitance/area, Cgc  is the .gate-

channel depletion capacitance/area, VI  is the threshold voltage, and Wdn and Wdi  

are the depletion region widths on the n and SI sides, respectively. 
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The threshold condition at some arbitrary point between the source and the drain is 

said to occur when, at some point in the channel, the volume density of mobile 

carriers equals the background doping concentration. This is implies that, at 

threshold voltage 	CC = Vbi + ψci • From (4.17), then, it follows that Visis the 

threshold voltage and that when Vgs  <Vis  , that is, in the subthreshold region ,ψcc 

<Vbi 	ci . Since the channel is virtually depleted in the subthreshold region, the 

expressions for Qcg, Qcn  and Qin  in (4.6) , (4.13) and (4.14) are expanded in 

Taylor's series about the exponential terms representing mobile carriers. Using the 

resulting expressions with (4.16), we have 



where 
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4.4 Subthreshold Drain Current 

The subthreshold drain current - voltage characteristics of a MESFET are derived 

by using (4.23) in the following relation for the drain current Ids prescribed by the 

classical gradual channel analysis. 

where W is the width of the channel, L the length of the channel and µn the 

average channel electron mobility. The characteristic equation in the subthreshold 

region of operation, thus obtained, is presented below: 
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where M 0 , V10 , Cgc0  and Cci0  are the corresponding quantities evaluated at 

= -Vis. 

The equation (4.25) is similar in form to the empirical subthreshold current 

equation [see equation (4.26) below] offered by Conger et al [8] which very 

accurately describes the observed dependence of subthreshold current on Vgs and 

Vt. 

Where Iso is the threshold leakage current. In equation (4.25), it can be expressed 

as 



CHAPTER 5 

RESULTS AND DISCUSSION 

5.1 Comparison of Analytical Model and Empirical Model 

Equations (4.25) and (4.26) are compared for an enhancement-mode MESFET and 

a depletion-mode MESFET, respectively. Table 1 shows the comparison. The 

experimental results were based on (4.26) where the subthreshold parameters were 

those extracted from a least-squares fitting program. The analytical results were 

based on (4.25). µn was evaluated by the calculation of channel electric field 

intensity in the subthreshold region and using equation (2.10). The agreement 

between the measured and calculated results is good. 

Table 1 The comparison of experimental and analytical results 

Device Type 
Device 

Parameters 
Method Iso Mo 

Device 1 

Enhancement 

MESFET 

W=20 µ 

L=1 u 

Vt = .103V 

Measured 

Value 
7.69 uA 1.30 

Calculated 

Value 
7.55 uA 1.28 

Device 2 

Depletion 

MESFET 

W=14 u 

L = 1 u 

Vt = -0.74 v 

Measured 

Value 
2.46 uA 1.35 

Caculated Value 
2.55 uA 1.355 
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5.2 Subthreshold Swing 

Figure 5.1 shows the practical drain current, Id, versus gate voltage, Vgs. It is 

easily seen that the subthreshold drain currents varied exponentially (i.e. , linear in 

a semi-logarithmic plot) in the region of subthreshold. This exponential behavior 

was predicted by equations (4.25) and (4.26). 

In equation (4.25), we know the subthreshold slope factor 

which gives us a single expression for the subthreshold swing S 

5.3 Device Parameter Dependence on Subthreshold Characteristics 

Our analytical model is used to investigate the influences of device parameters on 

the subthreshold characteristics of MESFET's with undoped substrates. In this 

section the subthreshold factor, Mo, and threshold leakage current, Iso, are plotted 

as functions of the device threshold voltage (Vt), residual acceptor concentration 

(Na), deep level EL2 concentration (Nt) and channel doping (Nd). 

Figure 5.2 and Figure 5.3 show Mo and Iso versus residual shallow acceptor 

concentration Na with threshold voltage Vt=.1,-.3 and -.7 V. It is seen that as Na 

increases, Mo increases but Iso decreases. All the two curves are similarly 

characterized by a rapidly varying region followed by a slow increasing or 

decreasing region. At high shallow acceptor concentration , Mo(Na) and Iso(Na) 

curves have an almost linear dependence. Below some concentration, the two 

parameters vary sharply. For example, in the region shown in figure 5.2, 

subthreshold factor Mo increases about 30 % when the shallow acceptor 
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Figure 5.2 Subthreshold factor Mo plotted as a function of residual acceptor 

concentration Na (cm-3) and threshold voltage Vt 
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Figure 5.3 Threshold leakage current Iso (A) plotted as a function of residual 

acceptor concentration Na (cm-3) and threshold voltage (V). 
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concentration Na increases by one order of magnitude. These results are due to an 

decrease in depletion width of the channel substrate junction. 

Figure 5.4 and Figure 5.5 demonstrate the calculated Mo(Nt) and Iso(Nt) 

characteristics with different threshold voltage. In the calculation, the residual 

acceptor concentration Na is assumed to have a value of I x 1015 cm-3  and the 

channel doping concentration Nd is assumed to have a value of 1 x 1017 cm-3  . 

These values correspond to typical values found in MESFET's. It is clear from the 

figures that the Mo and Iso both increase as the deep level concentration Nt 

increases . Over the Nt region studied , the variations of Mo and Iso are very 

limited and are much smaller than those for Na dependence in Figure 5.2 and 

Figure 5.3 correspondingly. This can be easily understood since according to our 

model, Nt is only related to b i which can be changed in a very limited region. So 

the deep level concentration dependence on subthreshold characteristics is 

relatively weak as compared to other parameter dependencies. 

The subthreshold factor Mo decreases as the channel doping concentration 

Nd is increased, as seen in Figure 5.6. In this figure the decrease is more 

significant for smaller threshold voltage. This effect can be used to optimize the 

subthreshold characteristics in conventional processing of GaAs MESFET's since, 

in general , we cannot change the residual acceptor concentration for a given GaAs 

wafer, but we can easily adjust the channel doping concentration during 

processing. 

Figure 5.7 shows the iso variation with channel doping concentration. This 

figure has a special feature which is different from previous figures. The curves in 

this figure consist of two regions; region -I and region-2 . In region-1 at lower Nd 

values, the current decreases with channel doping concentration. In region-2 at 

higher Nd values , the current increases nearly linearly with channel doping 

concentration. There exists a minimum lso value for each threshold voltage. The 
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Figure 5.4 Subthreshold factor Mo calculated as a function of deep level EL2 

concentration Nt ( cm-3) and threshold voltage 
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Figure 5.5 Threshold leakage current Iso (A) calculated as a function of deep level 

concentration Nt (cm-3) and threshold voltage Vt 
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Figure 5.6 Subthreshold factor Mo calculated as a function of channel doping 

concentration Nd (cm-3) and threshold voltage Vt (V). 



32 

Figure 5.7 Threshold leakage current Iso (A) plotted as a function of channel 

doping concentration Nd (cm-3) and threshold voltage Vt (V) 
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Nd value corresponding to the minimum Iso is reduced as the threshold voltage 

decreases (becomes more negative). 

As indicated in Figure 5.2, 5.4, and 5.6, the subthreshold factor Mo is 

reduced as the threshold voltage Vts is increased for given values of Nd, Na and 

Nt. We know from equation (5.1) that the subthreshold swing S is the reciprocal of 

the subthreshold factor. To obtain good subthreshold characteristics or smaller S 

values, since enhancement-mode MESFET's have larger threshold voltage than 

depletion-mode MESFET's, we should increase the threshold voltage alternatively, 

we could use enhancement MESFET's which have higher threshold voltage values 

. Also we can learn from Figures 5.2,5.4 and 5.6 that the subthreshold swing is 

most strongly dependent on the residual acceptor concentration in the semi-

insulating substrate. For highly compensated SI substrate, the swing goes larger as 

the shallow acceptor concentration increases. Hence better subthreshold behavior 

will be expected for less compensated SI substrate. 

Consider the threshold voltage dependence on threshold current Iso. It is seen 

from Figures 5.3, 5.5 and 5.7 that Iso increases as the threshold voltage Vts 

increases for the same other parameters studied. This is consistent with 

experimental results observed by Chang and Conger et al., [8][9] that 

enhancement-mode MESFET's have higher Iso than depletion-mode MESFET's. 

5.4 Gate Leakage Current 

A second feature of the GaAs MESFET subthreshold characteristics is the gradual 

increase in Ids after rapid initial drop beyond Vt (see the region of Vgs< -1 V in 

Figure 5.1). It was found that the major portion of Ids in this slowly rising region 

was caused by gate conduction through the reverse-biased gate-to-drain diode. 

The solid curve in Figure 5.8 shows a reverse-biased I-V curve for a Schottky 

diode. In this case, the diode chosen is the gate-to-drain junction of the MESFET. 



Figure 5.8 Comparison of measured (solid line) and calculated (solid circles on 
dashed line) Schottky-diode reverse-biased characteristics. Calculation is based on 
equation (5.2) as shown in next page. 
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The reverse diode current Id increases rapidly in the beginning, and increases 

monotonically with a smaller slope for large Vd . This is contrary to the behavior 

found in a classical diode (for example a silicon p-n junction diode), where the 

reverse current remains constant for reversed applied voltage Vd, until a 

catastrophic breakdown occurs. The slower increase in current for larger |Vd| can 

be easily understood since the Schottky barrier is lowered when it is reverse biased 

. In contract, a definite explanation for the rapid initial reverse current increase is 

more difficult. The change of slope in the I-V curve show in Figure 5.8 implies 

that there could be a change in the dominant conduction mechanism. The relatively 

small Schottky- barrier height and the comparatively large low-field electronic 

mobility in GaAs suggest that this may be caused by electronic tunneling. 

A diode model was built to account for the reverse conduction of the gate-to-

drain junction. The reverse diode current is described by an expression given by 

Dunn[10]: 

for Vd<0 , where gds  is the diode reverse conductance per unit area , and 5 is a 

reverse-bias conduction parameter. 

5.5 Subthreshold Characteristics 

Equations (4.25) and (5.2) were implemented, and drain-current characteristics for-

a W/L= 14µ/1µ depletion-mode device were simulated for values of Vgs from -

2.0 V to 0.0V. The threshold voltage Vt for this device was approximately -0.73 

V. Figure 5.9 shows the simulated results and measured values. The agreement 

between the simulated and measured curves is very good. 



Figure 5.9 Comparison of measured (solid line) and calculated (solid circles on 
dashed line) voltage and current for a GaAs MESFET with W=14µm , L=1 µm 
and Vt= —0.7 V. Calculation is based on the analytical model (equation (4.25)). 
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CHAPTER 6 

DESIGN RULES AND CONCLUSION 

6.1 Design Rules 

The subthreshold characteristics for MESFET's with undoped substrates have been 

analyzed using an analytical model. It has been shown how the subthreshold 

leakage current depends on the device parameters. The derived simple analytical 

expressions is good for quick evaluation of the subthreshold swing and threshold 

leakage current for GaAs FET's with doped and undoped substrates. These 

analytical results can be used to develop the design rules for optimized 

subthreshould characteristics. 

In designing MESFET's , we should first determine the best device geometric 

structures. It is clear from equation (4.25) that the smaller the gate width or the 

larger the gate length we design , the smaller the leakage current will be. But 

according to equation (5.2) , the reverse Schottly diode leakage current will 

increase if we choose larger gate lengths. So there must be some trade off in the 

geometric size design. For example the use of minimum sized FET's (i.e., let 

W=L=minimum allowed size). 

Secondly, we must design the device physical parameter. There are three 

device parameters ( Na, Nd and Vt) which strongly influence the subthreshold 

characteristics. Consider the shallow acceptor concentration first. From the 

analytical results we know that best result comes from 	less compensated 

substrates. So we should choose the lowest residual acceptor concentration wafer 

to do the processing. Alternatively, we could use undoped or very low doped 

MBE buffer layers (Carbon free) between the channel layer and semi-insulating 

substrate. 
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The other two parameters we should carefully design are the channel doping 

concentration and threshold voltage. According to results of this thesis, we should 

choose higher channel doping concentration and larger threshold voltage (more 

positive). Because the threshold voltage is related to channel thickness, highly 

doped shallow channel-substrate junctions are required. 

In short , to get best subthreshold leakage characteristics , we should: 

1) use minimum size FET's. 

2) choose the lowest shallow acceptor concentration wafer, or 

use a low doped MBE buffer layer. 

3) use enhancement FET's. 

4) increase channel doping concentration. 

6.2 Conclusion 

In this thesis , a physical model for semi-insulating substrate including the 

substrate compensation properties is presented. The Poison equation is solved 

analytically in one dimension for GaAs MESFET's with undoped substrates in the 

subthreshold region. The solution is then used to derive expressions for 

subthreshold drain current and subshreshold swing in MESFET's with undoped 

substrates. Very good agreement between experimental and analytical results is 

achieved. 

From the analytical results, it has been shown how the subthreshold 

characteristics depend on the compensation property of the substrate layer and 

device parameters. Two key parameters (Mo and Iso) that determine the 

subthreshold characteristics have been analyzed as functions of residual acceptor 

concentration Na deep level EL2 concentration Nt, channel doping concentration 

Nt and threshold voltage Vt. It is shown that Mo increases with increasing Na and 

Nt, but decreases with increasing Nd and Vt . For iso , the results show it increases 
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with increasing Nd, Nt and Vt,  but decreases-with increasing Na. The results also 

show that Nt has negligible effect on subthreshold characteristics . The 

subthreshold leakage current is most strongly influenced by Na, Nd and Vt. 

According to these results, useful design rules are presented for the design of 

devices with good subthreshold leakage characteristics. 

In addition to providing expressions which are easy to evaluate, the 

analytical model presented in this thesis also gives us simple explanation for the 

observed subthreshold characteristics and offers a useful basis for accurate 

analysis, simulation and fabrication of GaAs FET's with ultra low leakage current. 

Although this analytical model is derived specially for GaAs MESFET's with 

undoped substrates , similar expressions can be derived for various III-V FET's 

which use leteroepitaxial structures. 



40 

REFERENCES 

1. B. F. Levin, "Quantum-well infrared photodetectors," J. App!. Phys., Vol. 74, 
pp. R1-R81, Oct. 1993. 

2. G. M. Martin, J. P. Farges, G. Jacob, J. P. Hallais, and G. Poibland, "The 
compensation mechanisms in GaAs," Appl. 	Vol.51, pp. 2840-2852, 
June 1980. 

3. W. Schockley and W.T. Read, "Statistics of the recombination of holes and 
electrons," Phys. Rev., Vol.87, pp. 835-851, Dec. 1952. 

4. V. Y. Prnz and S. N. Rechkunov, "Influence of a strong electric field on 
the carrier capture by nonradiative deep-level centers in GaAs," Phys. 
Status solidi(B), Vol. 118, pp. 159-166, Jan. 1983. 

5. M. Hirose, J. Yoshida, and N. Toyada, "An improved two dimensional 
simulation model for GaAs MESFET applicable to LSI design." IEEE  
Trans. Computer-Aided Des., Vol. 7, pp.225-230, Feb. 1988. 

6. S. M. Sze, Physics of Semiconductor Devices, 2nd ed., New York, NY: 
Wiley, 1981. 

7. D. E. Holmes, R. T. Chen, K. R. Elliot, C. G. Kirkpatrick, and P. W. Yu, 
"Compensated mechanism in liquid encapsulated Czochralski GaAs: 
importance of melt stoimetry," IEEE Trans. Electron Devices, Vol. 29, Sept. 
1982. 

8. J. Conger, A. Peczalski, and M. S. Shur, "Subthreshold current in GaAs 
MESFET's," IEEE Electron  Device Letters, Vol. 9, pp.128-129, Mar. 1988. 

9. C. T. Chang, T. Vrotsos, M. T. Frizzell, and R. Carroll, "A subthreshold 
current model for GaAs MESFET's," IEEE Electron Device Letters, 
Vol. 8, pp. 69-71, Feb. 1987. 

10. C. Dunn, The Microwave Semiconductor Devices and Their Circuit 
Applications, New York, NY: McGraw-Hill, 1969. 


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Physical Model
	Chapter 3: Characteristics of the Junction of an N-Type Active Layer and a Semi-Insulating Substrate
	Chapter 4: Derivation of Analytical Models for MESFET's in the Subthreshold Region
	Chapter 5: Results and Discussion
	Chapter 6: Design Rules and Conclusion
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)




