

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

A Graphical Tool for Timed Petri Nets
Using Object Oriented Programming

by
Baopu Liu

The objective of this effort is to develop a computer tool for drawing, editing and

simulating Timed Petri Nets using object oriented programming. The developed C++

based Timed Petri Net Simulation Tool, TimedPNT, is capable of simulating discrete

systems with both deterministic and stochastic delays. Preselection is used for conflict

resolution. Performance and utilization results are automatically collected. XViewTM

Toolkit is used for building the TimedPNT's interactive graphical interface in compliance

with AT&T's OPENLOOK® standard on a SunSparcTM IPX running SunOSTM 4.1.2.

Compliance with the X Window standard makes the developed tool portable to other X

Window based systems.

A GRAPHICAL TOOL FOR TIMED PETRI NETS
USING OBJECT ORIENTED PROGRAMMING

by
Baopu Liu

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

January 1994

APPROVAL PAGE

A GRAPHICAL TOOL FOR TIMED PETRI NETS
USING OBJECT ORIENTED PROGRAMMING

Baopu Liu

Dr. Anthony Robbi, Thesis Advisor 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Mengchu Zhou, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

Dr. David Wang, Committee Member 	 Date
Assistant Professor of Computer and Information Sciences, NJIT

BIOGRAPHICAL SKETCH

Author: 	Baopu Liu

Degree: 	Master of Science in Electrical Engineering

Date: 	January 1994

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, USA, 1994.

• Bachelor of Science in Physical Chemistry,
Beijing University of Science and Technology, Beijing, P.R. China, 1989

Major: 	Electrical Engineering

iv

To my father Bao Tong
who devotes his life
to a better China

ACKNOWLEDGEMENT

The author would like to express his sincere gratitude to his advisor, Professor

Anthony D. Robbi, for his guidance, support, kindness, encouragement and friendship

throughout the process of producing this thesis.

Thanks to Professor Mengchu Zhou for his invaluable support.

Thanks to Professor David Wang for serving as a member of the thesis

committee.

Special thanks to my companion, Renee Chiang, who has been a source of love

and indispensible support.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

1.1 Computer Tools for Petri Net Modeling 	1

1.2 Development of Petri Net Simulation Tool at NJIT 	1

1.3 Development of Timed Petri Net Tool (TimedPNT) 	 2

2 AN OVERVIEW OF PETRI NET 	 4

2.1 History of Petri Nets 	5

2.2 Basic Concepts and Definitions 	 6

2.3 Graphical Representation of Petri Net 	8

2.4 Simulation of the Dynamic Behavior of Systems 	9

2.5 Additional Petri Net Concepts 	9

2.6 Modeling with Petri Nets 	 10

2.7 Timed Petri Nets 	 11

2.8 Stochastic Petri Nets 	 12

3 A TIMED PETRI NET SIMULATION TOOL 	 14

3.1 TimedPNT Concepts 	 14

3.1.1 Graphical Objects 	 14

3.1.2 Property Objects 	 15

3.2 TimedPNT Characteristics and Policies 	 17

3.2.1 Transition Delay 	 17

3.2.2 Firing a Transition 	 18

vii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

3.2.3 Preselection 	 19

3.2.4 Time in TimedPNT Simulation 	 21

3.2.5 Simulation End Conditions 	 21

3.2.6 Step 	 22

3.2.7 Run 	 25

3.2.8 Utilization 	 25

4 DESIGN OF THE TimedPNT 	 27

4.1 XView' 	 27

4.1.1 XViewTM System Architecture 	 27

4.1.2 TimedPNT Architecture as an XView' Application 	 28

4.2 The Human Interface of the TimedPNT 	 29

4.2.1 TimedPNT Window Objects 	 29

4.2.2 Other Visual Objects 	 30

4.2.3 Functionalities of the TimedPNT interface 	 31

4.3 Controller Object 	 31

4.4 Net Object 	 33

4.5 Basic Object 	 34

4.6 Transition Object 	 35

4.7 Place Object 	 37

4.8 Arc and Related Objects 	 38

4.8.1 Arc Object 	 38

viii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

4.8.2 Segment Array Object 	 39

4.8.3 Segment Object 	 39

5 TimedPNT USER'S MANUAL 	 41

5.1 Preparation for Running TimedPNT 	 41

5.2 The Working Environment of The TimedPNT 	 42

5.3 Starting The TimedPNT 	 43

5.4 Drawing and Editing a Net 	 43

5.4.1 Using the Menus 	 45

5.4.2 Drawing A Net 	 45

5.4.3 Editing A Net 	 49

5.5 Adding Text Onto The Canvas 	 56

5.6 File Functions 	 56

5.7 Running a Simulation 	 57

5.7.1 Specifying Simulation End Conditions 	 57

5.7.2 Running the Simulation 	 59

5.7.3 Resetting Parameters 	 59

5.8 Reports 	 59

5.9 Other Functions 	 62

6 CONCLUSION 	 64

APPENDIX A - LIST OF TimedPNT FILES 	 66

APPENDIX B - VERIFY FILE SAMPLE 	 68

ix

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

APPENDIX C - LOG FILE SAMPLE 	 71

APPENDIX D - UTILIZATION REPORT FILE SAMPLE 	 74

REFERENCES 	 75

x

LIST OF TABLES

Table 	 Page

4.1 Controller Variables 	 32

5.1 Different Methods of Choosing Menu Item 	 46

xi

LIST OF FIGURES

Figure 	 Page

2.1 Graphical Representation of Petri Net Stnicture 	7

3.1 Preselection Chooses a Transition Regardless of Delay Time 	 20

3.2 Preselection Chooses a Transition Regardless of Transition Type 	 20

4.1 TimedPNT Running on a Network 	 28

5.1 The TimedPNT Window and Menu Sub-windows 	 44

5.2 Pinning Menu Sub-windows to the Side 	 47

5.3 Place Tag Pop-up Window 	 52

5.4 Immediate and Timed Transition Pop-up Windows 	 53

5.5 Arc Tag Pop-up Window 	 55

5.6 Simulation End Conditions Pop-up Window 	 58

5.7 Verify Report Pop-up Window 	 60

5.8 Utilization Report Pop-up Window 	 61

5.9 Log Report Pop-up Window 	 62

xii

CHAPTER 1

INTRODUCTION

1.1 Computer Tools for Petri Net Modeling

The computer tool is essentially a software tool that automates the Petri net creation and

simulation processes. A graphical user interface is often used to assist in the building

of the model, ease the editing of models, and visually represent the system states.

Simulation results are tracked and logged for use in analysis. A computer tool also

simplifies the process of modifying the model, and carries out simulations with large

numbers of steps to generate reliable performance results when there are stochastic

components in the model.

Modeling a system requires that the modeler understand extensively both the

system to be modeled and how to appropriately represent the system. The computer tool

is designed to assist the expert, and the automation process should only be used after the

Petri net model has been carefully implemented for the particular system.

1.2 Development of Petri Net Simulation Tool at NJIT

In 1989, Gilani implemented a Graphical Editor for Petri nets for his Masters Thesis at

NJIT.[1] Shukla continued the work in 1990 by integrating a simulator for Petri nets

with the graphical editor and called the tool PNS (Petri Net Simulator).[2] Both used the

C programming language under the UNIX operating system and the window-based

SunView environment on the SUN/3 workstation.

1

2

The Timed Petri Net Simulator (TPNS) was developed at NJIT in 1991 by

Siddiqi, who added to the work done previously by Gilani and Shukla by including the

capability of modeling systems with deterministic and stochastic delays.[3] The TPNS

collected performance and utilization parameters for use in analysis. Furthermore, the

TPNS resolved multiple transitions in conflict, while the PNS could only resolve conflicts

between two transitions.

The above work laid a foundation at NJIT for developing a useful Petri Net

simulation tool, but more work was necessary to avoid the bugs embedded in the

software. The modular programming technique (C programming language based) used

by Gilani and built upon by Shukla and Siddiqi presented difficulties in further

development and debugging of the existing source code.

As a result, Juneja used an object oriented approach to develop a new basic Petri

Net simulation tool.[4] The software was written using C++ programming language

under the UNIX operating system and the X-View environment on the SUN/3

workstation. This tool included the capabilities of drawing and editing a Petri net and

simulating any discrete event dynamic system. An important feature is the portability

achieved by using the XWindow standard, which permits the tool to run on any system

supporting it.

1.3 Development of Timed Petri Net Tool (TimedPNT)

The objective of this thesis is to continue work started by Juneja by extending his basic

Petri Net tool into a Timed Petri Net Tool. This object-oriented Timed Petri Net Tool

(TimedPNT) has the capability of modelling systems with deterministic and stochastic

3

delays, and resolving multiple transition conflicts. The TimedPNT can be used to model

concurrent and interlocked systems with time considerations. The OOP technology

employed in this tool allows for efficient debugging, and the future addition of features

can be accomplished without introducing bugs into the existing code.

CHAPTER 2

AN OVERVIEW OF PETRI NET

The Petri net is a discrete system model. The information gained from this mathematical

representation of the system can be used to assist in the design and/or modification of the

modeled system. Although initially created to model computer systems, Petri nets can

also be used to model other types of systems, such as flexible manufacturing systems or

traffic control systems.[5]

The advantage of using a Petri net as opposed to other modeling techniques (with

finite difference equations or queueing theory, for example) is the ability of a Petri net

to model systems which:

• have concurrent and parallel activities

• have both synchronous and asynchronous activities

• have conflicts for resources

• are event driven

• are distributed

Petri nets' mathematical functions can provide useful qualitative information about

systems with the above characteristics. Furthermore, the graphical representation of

Petri nets makes the model visually appealing and easy to understand and use. A

weakness of Petri net methodology is that it can become too complex to enumerate all

its states, a weakness shared with finite state machines.[3]

4

5

An example of a system with concurrent, parallel activities is a computer system

with many peripheral devices such as printers, modems, disk drives, or audio equipment,

which may be operating at the same time under the control of one operating system. An

example of a system that has many of the characteristics listed above, and would

therefore be a good candidate for modeling by Petri nets, is a manufacturing floor, where

different work stations are performing their respective tasks simultaneously, then

interacting by passing finished products to another station. [5]

2.1 History of Petri Nets

The basic theoretical concepts of Petri net are from Carl Adam Petri's 1962 doctoral

dissertation "Kommunikation mit Automaten," (Communication with Automata), in which

Petri formulated the basis for a theory of communication between asynchronous

components of a computer system.[5]

A.W. Holt and others of Applied Data Research (ADR) expanded on Petri's work

in their Information System Theory Project by developing notation and representation of

Petri nets and by showing how Petri nets could be applied to the modeling and analysis

of systems of concurrent components.

At the Massachusetts Institute of Technology (M.I.T.), the Computation

Structures Group under Professor Jack B. Dennis did much to further the development

of Petri net theory. Their research, publications, and conferences held in 1970 and 1975

helped to spread knowledge and application of Petri nets. Interest in Petri nets also

spread in Europe. Now, Petri net theory is taught to many electrical and computer

engineering students.

6

2.2 Basic Concepts and Definitions

Petri Net structure, as explained by Peterson, is based on bag theory, which is an

extension of set theory, where a bag is like a set, but contains elements which may

appear multiple times within the bag. [5]

A Petri net structure, C, has four components:

P - 	a set of places

T 	- 	a set of transitions

I 	- 	an input function

O an output function

The notation is as follows:

P and T are disjoint: P ∩ T = 0.

I maps transitions to bags of places: I: T P

O maps transitions to bags of places: 0: T → P

where 1(t,) is the bag of places that are inputs of the transition ti , and O(ti) is the bag of

places that are outputs of the transition

A Petri net structure can be described as in the example below:

C = {P, T, I, 0}.

P = {PI , P2. P3, P4}

T = {t 1 , t2, t 3)

= {p1, P2} 	 0(t1) = {p3, p4}

/(t2) = {p4} 	 0(t2) = {P2}

/(t3) = {p3} 	 0(t3) = {p1, P4}

This mathematical description is useful, but the actual structure is difficult to

understand without a graphical representation. Figure 2.1 illustrates clearly the structure

of the same net that is described by the notation above.

Figure 2.1 Graphical Representation of a Petri Net Structure

8

2.3 Graphical Representation of Petri Net

The graphical representation of Petri net provides a user-friendly interface to building the

model. The elements used are:

= a place

= an immediate transition (no firing time)

= a timed transition

= a timed transition holding token(s)

= a token

= an arc illustrating input and output mapping

= a number of tokens associated with a place

9

2.4 Simulation of the Dynamic Behavior of Systems

The state of a Petri net model is defined by its marking, µ. A marking assigns to each

place a non-negative integer representing the number of tokens in that place. µ is a

vector of dimension n, where n is the number of places in the model. µ(i) is the number

of tokens in pi.

The dynamic behavior of a system is simulated by the "firing" of transitions. The

changing states are described by the changing of markings.

A transition is said to be enabled if each of its input places contains at least as

many tokens as arcs from that place to the transition.

When an enabled transition is fired, one token per arc is removed from each input

place. and one token per arc is added to each output place.

To take the above Petri net as an example (see Figure 2.1), transition t i is enabled

when p1 and p2 both contain tokens. Upon firing t1, one token will be removed from p1

and one token from p2, while one token will be placed in each of the places p3 and p4.

In Figure 2.1 as shown, t3 is enabled.

2.5 Additional Petri Net Concepts

A Petri net is considered live if at least one transition is enabled, which ensures that the

system is still dynamic (has a new state). If a state is reached in which no transition is

enabled, the system has reached a deadlock, since no changes can occur. These are

useful descriptions of systems since most systems need to avoid deadlock situations.

Concurrency and conflict are used to describe a relationship between two events.

Two transitions are in conflict if either can fire by itself, but not both because they share

10

one or more input places. They are said to be in concurrence if the two transitions may

fire singly or simultaneously, in any order without competing for tokens.

2.6 Modeling with Petri Nets

The proper application of Petri nets is a field of study in itself. Inappropriately

representing a system would yield a model with meaningless results, no matter how

powerful the representation. It is important to understand the characteristics and meaning

of the Petri net model before applying it.

In the application of Petri net models, transition firings basically represent events,

while places represent states. The input place marking is the precondition, which if met

(represented by the existence of sufficient tokens), enables the transition. The output

place markings are the postconditions, which are met after an event occurs (transition is

fired).

Petri nets have been used to model a diversity of systems since the basic elements

are general. Application developments of Petri nets have yielded the creation of a variety

of subclasses of Petri nets.

One type of Petri net is the state machine, where every transition has exactly one

in-coming arc and one out-going arc. This type of model only allows for the

representation of decisions, but does not represent parallel activities. Another subclass

is the marked graph, where every place has exactly one in-coming arc and one out-going

arc. This type of Petri net represents concurrent parallel activities, but not decisions

(resolution of conflicts).

11

Different applications of Petri nets have their specific uses of these concepts. In

a manufacturing example, transitions may represent assembly, input place markings

represent component parts, and output place markings represent the finished product.

Tokens would represent the availability of parts or of a machine.

In a data computation model, the transition is the computation, the input place

markings are the input data, and the output places are the output data. Tokens represent

both the availability and value of data variables.

Petri net modeling is especially useful in modeling communication protocols for

their liveness and performance efficiency. The marking would represent the state of

readiness (e.g. ACK recv'd, READY received), and message or packet queues.

Transitions would represent events (e.g. Send Message, Receive Message).

2.7 Timed Petri Nets

A "pure" Petri net does not include the time factor, so transitions are fired immediately,

as soon as they are enabled. But, in reality, operations often need a finite amount of

time to be completed, and throughputs, cycle times, and delays are important properties

of systems which can not be measured without representing time in the model.[7]

Several different types of Timed Petri Nets Simulators (TPNS) have been developed.

• A deterministic delay (fixed firing time) can be associated with each transition.

In 1973, Ramachandani presented this concept and applied it to model the

performance of computer systems.[8] In his model, after the transition is

12

enabled, there is a fixed delay, before the instantaneous removal of tokens from

the input places and addition of tokens at the output places. Sifakis applied the

same concept to a delay associated with each place, so that a token is not

available for firing for a fixed time after it arrives at the place. This was later

determined to be equivalent to Ramachandani's concept.[9]

• A variable time within a fixed range can be assigned to each transition. Merlin's

Ph.D. dissertation in 1974 developed this concept which delayed the firing of a

transition for a time, within a fixed range, from the moment it was enabled.[10]

• Another deterministic delay concept used by Zuberek also assigned a fixed time

to transitions. The difference from Ramachandani's is that the tokens are

removed from the input tokens immediately when the transition is enabled, but

are withheld for the fixed period of time before tokens are added to the output

places.[I1] This implies that a decision to fire a timed transition is irreversible,

i.e. the tokens involved cannot be committed elsewhere while waiting for the

actual firing.

2.8 Stochastic Petri Nets

The Stochastic Petri Net (SPN) does not assign a fixed time to the firing of transitions,

but uses a stochastic delay, usually making the process equivalent to a Markov process.

There are a variety of types of Stochastic Petri nets as well.

13

• The common SPN, as described by Molloy, associates an exponentially distributed

random variable to the firing time of each transition.[12]

• Other distributions of time for firing are used in other models.[13]

• Generalized SPN (GSPN) includes two kinds of transitions: the conventional zero

firing time transition (drawn as a thin bar), as well as the transition with

exponentially distributed time delay (drawn as a box). [14]

• Other variations randomly select which tokens to remove from the input places

and which tokens to add to the output places. [15]

• Time can also be assigned to how long a token resides in a place.

• Combinations and extensions of the above have also been used, including an

extension of the GSPN, where a timed transition can be either a deterministic or

exponentially distributed random variable.

The resolution of conflicts in each of the above cases can be associated with the

time or independent of it. Preselection is the method that chooses which transition to fire

independently of the firing time. The selection of which transition to fire can also be

considered in parallel to the firing time, so the transition with the minimum firing time

is chosen.

CHAPTER 3

A TM-ED PETRI NET SIMULATION TOOL

3.1 TimedPNT Concepts

Before a complete description of the design of the TimedPNT is given, the following

concepts should be clarified.

3.1.1 Graphical Objects

NET:

A Net is a timed Petri net model of a particular system, and is named by the user. Its

graphical representation, properties, and system state are stored in a file by that name

plus an extension of ".net".

TRANSITION:

• Immediate Transitions, graphically represented by a solid thin bar, are the

classical transitions that fire without delay.

• Timed Transitions, graphically represented by a hollow bar, is a transition that

includes the property of delay, which may be deterministic or stochastic.

• Deterministic Delay is a fixed delay, designated by the user and associated with

a timed transition.

14

15

• Stochastic Delay can be chosen for a timed transition instead of a deterministic

delay. This property is a random delay with an average number which is

designated by the user. (See 3.2.1)

• Prioriry of each transition may be designated by the user in order to determine

firing sequence in the case of conflicts between transitions.

• Transition Numbers are associated with each transition of a particular net for

identity purposes.

PLACE, ARC and TOKEN.•

• Places, Arcs and Tokens are presented as per convention in traditional Petri Net.

Transitions, Places, Arcs and Tokens are basic objects that can be drawn by the

user to form the starting state (marking) of a net.

3.1.2 Property Objects

TAG:

Tags are pop-up windows used to display or modify the characteristics and parameters

of basic objects. In TimedPNT, there are four types of Tags: Immediate Transition Tag,

Timed Transition Tag, Place Tag and Arc Tag.

• Immediate Transition Tag includes a Comment item, which allows the user to

record a description of this immediate transition, a Number item, which displays

the transition number in that net for identity purposes, a Priority item, which

16

permits the user to define a level of priority for the transition when it is in

conflict with other transitions, a State item, which displays the transition state

(READY or NOT READY) when the Tag is called, and a Type item, which

shows the transition type is IMMEDIATE.

• Timed Transition Tag not only includes Comment item, Number item, Priority

item, State item and Type item, but also contain a Delay item, from which the

user can specify the delay type (DETERMINISTIC or STOCHASTIC), and a

Delay/Avg.Delay item, which allows the user to specify a delay time (in the case

of deterministic delay) or an average delay time (for stochastic delay).

• Place Tag contains a Comment item, a Number item, and a Stop Marking item,

which designates an end condition of a number of tokens (See 3.2.5 Simulation

End Conditions). In addition, there is a Tokens item, which shows how many

tokens are currently present in this place.

• Arc Tag contains a Comment item, a Weight item, which lets an arc represent

multiple identical arcs, a No. of Segments item, which gives information on how

many segments this arc is broken up into, and a Type item which shows if the arc

is an INPUT arc or an OUTPUT arc.

17

VERIFY:

Verify is a procedure which can be called upon by the user any time after the drawing

of a net is completed. This procedure gives the user a tabular structural description of

the current net. It is useful for ensuring the graphical drawing is correctly interpreted

by the tool for simulations.

LOG:

Log automatically creates a file containing a complete set of marking information during

simulation (unless the Log Mode is OFF, see 5.7.1). Other details of the simulation,

such as transitions enabled and conflict resolution are also contained in this file.

REPORT:

"Report" is a file automatically generated after simulation. This file contains utilization

parameters of all places and transitions. (See 3.2.8)

3.2 TimedPNT Characteristics and Policies

The TimedPNT inherits basic behaviors and characteristics of the conventional Petri Net.

As an extended Petri Net, some important characteristics and policy decisions have been

made during the development of the TimedPNT. The characteristics and policies which

differ from a conventional Petri Net are highlighted below.

3.2.1 Transition Delay

Besides the basic net objects (such as Places, Arcs, Transitions, and Tokens) in

conventional Petri Net, the TimedPNT contains two different types of transitions,

immediate and timed.

18

For immediate transitions, there is no associated delay. For timed transitions, the

user must specify the delay type as deterministic delay or stochastic delay. For

deterministic delays, a fixed delay time must be chosen. In the case of the stochastic

delay, an average delay time must be specified by the user; during simulation, an actual

delay is calculated based on this average, each time the transition is enabled.

In this process, for simulation consistency, a regenerative random number is

generated each time as the delay random variable.

The cumulative distribution function is:

where x is the average firing rate

The probability density function is:

The average delay is given by:

3.2.2 Firing a Transition

Firing an Immediate Transition -

The following steps occur simultaneously in the firing of an immediate transition:

• Remove tokens from all input places of enabled transition.

• Place tokens in all output places.

• Update the associated place or transition data structures.

19

Firing a Timed Transition -

When a timed transition is fired, the firing procedure occurs in three stages (all bulleted

items occur simultaneously):

1. 	Preparation

• Remove tokens from the transition's input places

• Set the transition "ticking," which means graphically the transition

becomes a thick solid bar (representing token being held for a period of

time)

• Set transition state to NOT READY.

2. 	Delay

• Continue to delay until transition ticking time is up.

3. 	Complete firing

• Transition releases tokens and becomes a hollow bar.

• Place tokens in appropriate output place(s).

3.2.3 Preselection

In TimedPNT, preselection has been chosen as the conflict handling policy. Preselection

means that the selection of a transition to fire in a conflict situation occurs independently

of the transition firing time (delay) or of transition type. Furthermore, in case of

conflict, all transitions with the same priority are chosen randomly based on an equal

opportunity rule, and only one transition can be chosen.

20

Figures 3-1 and 3-2 show two examples of conflict resolution by the preselection

scheme, illustrating that neither the transition type nor the delay time influences the

choice of transition. The modeler can assign priority levels to force a particular

transition to fire in conflict situations.

Figure 3.1 Preselection Chooses a Transition Regardless of Delay Time

Figure 3.2 Preselection Chooses a Transition Regardless of Transition Type

21

3.2.4 Time in TimedPNT Simulation

A system clock has been built into the TimedPNT. This system clock is only concerned

with the time during which tokens remain in timed transitions. In other words, an

assumption has been made that token removals (from input places to transitions) and

token deposits (to output places) occur immediately (i.e. system clock is not advanced).

For the sake of simulation efficiency, the system clock is advanced by the minimum

token remaining time of timed transitions, instead of by a single unit of time. No

computing time is ever involved.

3.2.5 Simulation End Conditions

A process of simulation can be terminated by End Conditions. There are two types of

end conditions:

1. System reaches a state of deadlock.

2. One of the following user pre-defined end conditions is reached:

a. A desired number of run steps have been finished (see STEP and

RUN).

b. A minimum simulated clock time has been reached.

c. A place marking has been reached (specified by user in the Stop

Marking item in the associated place tags):

1. In at least one place, or

2. For all places specified in the net.

22

Before simulation begins, the user can specify more than one end condition (a,

b, and/or c). However, if using place markings (c), the user must choose one of the two

types, place or net. At run time, the simulation will be terminated by the following end

conditions:

1. By place marking (c), if Stop Marking item in any place tag has been assigned

a value by the user greater than -1 (i.e. default = -1 means not specified).

2. By clock time (default = 0 means not specified), if no place marking has been

 assigned.

3. By step number (default = 100), if neither of the above has been assigned,

or if the step number is reached before the place marking (as a safeguard to

prevent the program from running indefinitely).

3.2.6 Step

In TimedPNT, net status is the classification of a particular net. If a net consists of

immediate transitions only, then the net status is defined as IM. If a net consists of both

immediate and timed transitions, the net status is MIX. Similarly, if a net consists of

timed transitions only, the net status is TI.

The simulation process can be carried out in either Step mode or Run mode. In

TimedPNT, a STEP is defined in three ways depending on net status:

1. 	Net Status = IM 	(Immediate Transitions only)

One STEP is:

1. 	Form a preliminary list of ready (enabled) transitions.

23

2. If there are any enabled transitions, continue;

otherwise, prompt Deadlock message and terminate STEP.

3. Resolve conflicts, if any, and form a final list of ready transitions.

4. Fire all transitions on the final list. 	(See 3.2.2 Firing an

Immediate Transitions)

5. Visually update the net.

6. Record the new net marking.

2. 	Net Status = TI 	(Timed Transitions only)

One STEP is:

1. Form a preliminary list of ready (enabled) transitions.

2. If there are any enabled or ticking transitions, continue;

otherwise, prompt Deadlock message and terminate STEP.

3. Resolve conflicts, if any, and form a final list of ready transitions.

4. Remove tokens from input places.

5. Set those transitions to "ticking" and form a list of remaining

ticking time of each ticking transition.

6. Sort the list by remaining time with the transition with the smallest

remaining time on top.

7. Visually update the net to show transitions ticking (filled in box)

and token removals.

8. Fire the timed transition(s) with the minimum remaining time. (See

3.2.2 Firing a Timed Transition)

24

9. Advance system clock by the minimum remaining time of step 8

above.

10. Visually update the net to show tokens deposited into output

places.

11. Record the new net marking.

3. 	Net Status = MIX (Immediate and Timed Transitions)

One STEP is:

1. Form a preliminary list of ready (enabled) transitions.

2. If there are any enabled transitions, continue;

otherwise, prompt Deadlock message and terminate STEP.

3. Resolve conflicts, if any, and form a final list of ready transitions.

4. Check if there are any immediate transitions in the final list. If so,

fire all of them and terminate this STEP;

otherwise, continue.

5. After exhausting all enabled immediate transitions, proceed with

enabled timed transitions as items 5 through 12 of Net Status = TI

above.

The system clock is not advanced in a STEP where Immediate transitions are

fired. Repeated STEPS may occur in order to exhaust all enabled immediate transitions,

while the system clock remains unchanged. Only after all immediate transitions have

25

been exhausted, and enabled timed transitions are fired will the system clock be

advanced.

3.2.7 Run

RUN is another simulation mode. In Run mode, STEP is called repeatedly according

to the net status. A Run procedure will terminate if either:

1. A user specified end condition, such as how many steps the user wants to

take, has been reached (see 3.2.5).

2. A deadlock occurs.

For simulation efficiency, the net is not visually updated in each step, until an end

condition is reached.

3.2.8 Utilization

Net utilization parameters are calculated and recorded in a Utilization Report.

Transition Utilization

All transitions are tabulated according to the following parameters:

• Number of times fired

If a transition is ticking when simulation ends, it is not considered to have

fired.

• % Busy

For immediate transitions:

% Busy = (# of times fired)/(# of total steps)

26

For timed transitions:

% Busy = (total clock time holding tokens)/(total run time)

Place Utilization

All places are tabulated according to the following parameters:

Total tokens entered

Initial markings are included.

Duration occupied

A place is either vacant or occupied. it is considered occupied if there is

at least one token in the place; or if at least one of the timed transitions

for which this place is an input place, is ticking.

CHAPTER 4

DESIGN OF THE TirnedPNT

4.1 XViewTM

Siddiqi's Timed Petri Net Simulator (TPNS) was a SunViewTM based application, while

the current TimedPNT is an XViewTM based application using XViewTM Toolkit.[16]

The XViewTM is an object-oriented user interface toolkit designed for)(Window

System' Version 11 (X11). As currently configured on workstations, the XView"

toolkit runs on the X side of the X11/NeWS' Server.

4.1.1 XViewTM System Architecture

The XViewTM system architecture differs significantly from the SunViewTM architecture.

The XViewTM toolkit is implemented for a server-based window system (X11), while the

SunViewTM toolkit was implemented for a kernel-based window system (SunWindowsTM).

The basic difference is that kernel-based systems are usually hardware and

operating system specific; on the contrary, server-based systems use a protocol that is

independent of hardware and operating systems. Server-based window systems can run

on one machine and display their output in windows on another machine anywhere on

the network, regardless of machine architecture, operating systems, display resolutions,

and color capabilities.

27

28

Figure 4-1 illustrates how a remote workstation could run the TimedPNT over a

network, using the XView Toolkit. This is quite an improvement over the kernel-based

system.

Figure 4.1 TimedPNT Running on a Network

4.1.2 TimedPNT Architecture as an XViewTM Application

The XView' Toolkit provides a framework for assembling pre-built user interface

components with application-specific code. 	In the XViewTM environment,

variable-length, attribute-value lists are used to specify various TimedPNT objects to be

created, such as windows, menus, and scrollbars. Since the usual behavior for each

object is already defined, only deviations from the default behavior needs to be specified.

After specifying objects, call-back procedures for each object are defined. From those

29

procedures, the toolkit calls to notify the application of events or user actions. Finally,

the TimedPNT's source code is compiled with the XView' library.

4.2 The Human Interface of the TimedPNT

The TimedPNT is an interactive graphics-based application. Its human interface is

formed by various XViewTM Visual Objects.

4.2.1 TimedPNT Window Objects

Window objects include frames and subwindows. Frames contain non-overlapping

subwindows within their borders. The following subwindows are used in TimedPNT:

Canvas Subwindows: The XViewTM Toolkit provides application programmers

with a drawing surface, called the paint window, on which the net can be drawn

in TimedPNT. The paint window is clipped to another window, the view window,

so only the part of the paint window underneath the view window shows through.

The view window appears, together with scrollbars, in the canvas subwindow.

As a result, a net can be drawn on an area larger than the visible window where

the drawing appears.

Panels and Menus: The panels or menus are used as notifiers to distribute events

to the individual panel and menu item objects. (See Panel item)

30

Text Subwindows and Scrollbars: The text subwindows are only used to display

information, such as log and verify files, in TimedPNT. (However, in the

XView' environment, the text subwindow is a full-featured text editor.) The

scrollbars are responsible for keeping the elevator and proportional indicator up

to date, but it is the responsibility of the window attached to the scrollbar to

update the window's contents.

4.2.2 Other Visual Objects

Other visual objects used in TimedPNT are Panel item, Notice, Cursors and Icons.

Panel items are objects in a control panel that allow interaction between the user

and the TimedPNT. Panel items can be moved, displayed and undisplayed.

There are several pre-defined types of items, including buttons, choice items, etc.

Notice is a box on the screen that informs the user of some condition that requires

attention, such as when deadlock is reached, or when an erroneous action has

been taken by the user. It usually has one or more buttons which the user can

press to confirm, deny, or continue.

Cursor is a mark on the screen representing the user's point of attention. It is

controlled by the mouse.

31

Icon is a small window representing the TimedPNT when its frame is in a closed

(idle) state.

4.2.3 Functionalities of the TimedPNT interface

The TimedPNT interface is designed to perform the following functions:

1. Drawing and editing a net.

2. Saving and loading a net.

3. Carrying out simulations either in STEP or RUN mode.

4. Viewing simulation results.

4.3 Controller Object

The controller is the most important object in a simulation. The user unknowingly calls

it to get the net information and to do the necessary computation during a simulation.

Some of the important procedures and functions are:

• Form List: It forms a list of enabled transitions in the net at the time it is

called. This list is known as the rdy_trans list (ready transitions list).

• Resolve Conflict: It resolves conflicts based on an equal opportunity rule when

transitions in conflict have the same priority, and forms a final list of ready

transitions, which is also called rdy_list.

32

• Sort List: 	It sorts the ticking transition list, list rm, according to each

transition's remaining time, in ascending order.

• Check_Condition: It is responsible for detecting if an end condition is reached.

• Is Conflict: It detects when conflicts occur.

• Execute Im: It calls the procedure to fire immediate transitions.

• Execute_ Ti _1 and Execute_Ti_2: They together fire timed transitions.

Some important variables are shown in the Table 4-1.

Table 4.1 Controller Variables

controller

Variable Description

clock system clock

fig flag for immediate transition ready

list_rdy array of ready (enabled) transitions

list _nn array of tick and ready transitions

mode log off/on

net _handle pointer to the current net

rdy_trans number of ready transitions

remain no _ number of transitions ticking

run run count during simulation

size_ list size of array

status current net status (IM/MIX/TI)

steps simulation mode

33

The following is the data structure of controller:

#include "net.h"
4 include <rand48.h>
include <math.h>

const int OFF = 1;
const int ON = 0;

// net status constants
const int IM = 1;
const int MIX = 2;
const int TI = 3;

class controller {
net *net_handle; // pointer to the current net
int size list; //size of array;
transition **list_rdy; // array of ready transitions
transition **list_rm; // array of ticking + ready transitions
public:
controller(char *);
int rdy trans; // no of rdy transitions
int steps; // simulation mode
int stopwatch; // user specified time to end simulation
int stop way; // stop simulation by PLACE/NET marking
int mode; // log off/on
int run; // run count during simulation
int status; //current net (im only/mixed/ti only)
int clock; // system clock
int remain no; // number of trans in ticking
int flg; /7 flag for immediate transition ready

void Stretch Array(void);
void Destroy_All(void);
net *Get_Net_Handle(void);
void Set_Net_Handle(net *);
void Form List(void);
void Resolve_Conflict(void);
void Sort_List(void);
int Check_Condition(void);
int Is_Conflict(transition *, transition *);
void Execute_Im(void);
void Execute_Ti_1(void);
void Execute_Ti_2(void);
};

4.4 Net Object

Net object is the manager of a net and its visual objects, such as places, transitions, input

and output arcs.

In the TimedPNT, different net models are managed by the Net object. It saves

a net with a user-given filename, and performs load operations as the user requests. In

34

a particular net, the Net object identifies each transition, place and arc, and manages the

addition or deletion of any of those objects.

The data structure of the net object is:

#include "transition.h"

const int PLACE = 1;
const int TRANSITION = 2;
const int ERROR_A = -2;
const int ERROR_B = -3;
const int ERROR C = -4;

class net {
public:
int place_no,transition_no,input_no,output_no;
int place_num, trans_num;
char file_name[100];
int size_place,size_transition;
transition **trans list;
place **place_list;

net () ;
net(char *);

int Add_Place(int,int);
int Add_Transition(char,char,int,int,int,int,int);
int Add_Arc(int,int,int,seg_array*);
int RemovePlace(int);
int Remove_Transition(int);
int RemoveArc(int,int,int);

char *GetFile(void);
int Set_File(char *);
void Stretch_Array(int);

place *Get_Place(int,int);
place *Get_User_Pl_No(int);

int GetP1_No(int,int);
transition *Get_Transition(int,int);
int Get_TransNo(int,int);
arc *Get_Arc(int,int,int);
};

4.5 Basic Object

The basic object manages the important attributes of both transitions and places. These

attributes are: ID number of the transition or place, its coordinates on the canvas, and

comments documented by the user.

35

The following is the data structure of the basic object:

#include <iostream.h>
#include <stdio.h>
#include <string.h>

class basic_object {
// attribute for the basic object
int no; // the number assigned to a place/transition
int loc_x,loc_y; // the x,y coordinates of the object on the canvas
char comment[50];

// member functions are public
public:

//constructor and destructor
basic_object();
-basic_object();

// member functions are public
int Get No(void);
void SetNo(int);

int Getloc_x(void);
void Setloc_x(int);

int Getloc_y(void);
void Setloc_y(int);

char *Get Comment();
void Set_Comment(char *);
};

4.6 Transition Object

The transition object is a class derived from the basic object. In C++ programming,

a derived class may inherit the attributes and functions of the base class. Including those

attributes contained in the basic object, the transition object contains a complete set of

information of each transition. The additional information includes:

• transition type (immediate or timed)

• state (ready to fire, or not ready)

6 orientation (vertical or horizontal)

• priority

36

• delay type (deterministic or stochastic)

• delay time (fixed delay for deterministic or average delay for stochastic)

• ticking remaining time

• ticking status (yes or no)

The transition object also determines if a transition is enabled and performs

transition data structure update when it is fired.

The data structure of transition object is as follows:

#include "arc.h"
include <rand48.h>
include <math.h>

const int READY = 1;
const int NOT_READY = 0;
const int YES = 1;
const int NO = 0;
const int FIXED=0;
const int STOCHASTIC=1;
const int NODELAY=2;

class transition : public basic object {
// attributes for class transition

int state; // state of transition ready/not ready
int priority; // priority of transition
int delaytype; //fixed/stochastic
int fixedelay; //fixed delay (d) or avg delay (s) of trans
int stochasticdelay; // calculated stochastic delay of trans
int ticking; // status of ticking yes/no
int tick remain; // tick remaining time
int total_fire; // total fire times
int total_delay_time; // total delay time for net utilization calculation
char orientation; // horizontal/vertical
char ttype; //immediate/timed

public:
int input_no, output_no; // number of input and output arc
int size_input,size_output; // size of arrays of pointers to input&output
arcs
arc **input;// arrays of pointers to input & output arcs
arc **output;

transition();
transition(char,char,int,int,int,int,int,int); //constructor for trans
class
char Get_Orientation(void); /7 returns the orientation
void Set_Orientation(char); 7/ sets the orientation
char Get_its_Type(void); /7 returns the transition type (immediate/timed)

37

void Set its_Type(char); // sets the type of transition (im/ti)
int Get

Set_
// return the type of delay(s/f) if it's timed

void Set_Delay_Type(int); //sets delay type
int Get Ticking(void); // return ticking status (YES/NO)
void Se Ticking(int); //sets ticking status (YES/NO)
int Get Fixed Delay(void); //returns fixed delay
void Set_ Fixed_ Delay(int); // sets fixed delay
int Get_Sto_Delay(void); // calculate and return stochastic delay of trans

int Get Remaining(void); //returns fixed delay
void Set_Remaining(int,- 	int); // sets fixed delay

int Get Total Fire(void); //returns total fired times
void Set_Total_Fire(void); // sets total fired times
void ResetTotalFire(void); // reset total fired times

int Get Total Time(void); //returns total delay time
void Set_Total_Time(int); // sets total delay time
void ResetTotalTime(void); // resets total delay time

int Get State(void); // returns the state of transtion
void Set State(int); // sets the state of transition
int Get Priority(void); // returns the priority of transition
void Set_Priority(int); // sets the priority of transition
void StretchArray(int); // stretches the input/output array
int Add_Arc(int,int,arc *); // adds an arc to the input/output array
void Remove Arc(int,int); // removes an arc from the input/output array
int Is Enabled(void); // returns whether the transition is enabled or not
void Fire_From(void); // fires the transition from its input places
void Fire_To(void); // fires the transition to its output places
};

4.7 Place Object

The place object is also a derived class of the basic object. In addition to information

in the basic object, the place object has the token information of a place, such as the

number of tokens currently being held, and the breakpoint attribute, which is the

execution end condition specified by the user. The place object performs operations to

add or remove tokens to/from a place.

Its data structure is:

#include "basic_object.h"

const int SUCCESS = 0;
const int FAIL = -1;

38

class place : public basic_object {
// attributes of class place
int no of_tokens; // no of tokens in a place
int total_ tok_no; // total no of tokens entered in a place
int vacant_status; // YES (0) / NO (1)
int vacant time; // total vacant time of a place
int breakpt; // user defined token no to end simulation

public:
place();
place(int,int,int); // constructor for class place

void Add Tokens(int);
int Remove Tokens(int);
int Get Tokens(void);
void Se Tokens(int);
int Get Breakpt(void);
void Set_ Breakpt(int);
int Get Total Tokno(void);
void Set_Total_Tokno(int);
void Reset_TotalTokno(void);
int Get Vacant(void);
void Set_Vacant(int);
void Reset_Vacant(void);
int Is Break(void);
int 	V Status(void);
void Set_V_Status(int);
};

4.8 Arc and Related Objects

4.8.1 Arc Object

The attributes of arc object are: type of arc (input, output or inhibit), weight (the

multipicity of arcs between a place and transitions of a given type) and information about

places to which arcs are connected.

The data structures of arc object is:

#include "place.h"
#include "seg_array.h"
const int INHIBIT = 2;
const int INPUT = 1;
const int OUTPUT = 0;

class arc
// attribute of class arc
int type; // type of arc input/output
int place no; 7/ no of associated place
int wt; /7 weight of arc
place *place_handle; // pointer to the associated place
seg_array *seg handle;
char comment[50];

39

public:
arc();
arc(int,int,place *,seg_array *); // constructor with intialization

char *Get Comment();
void Set_Comment (char *) ;
int Get_Type(void); // returns type of arc
void Set_Type(int); // sets type of arc
int Get Place(void); // returns associated place no
void Se Place(int,place *); // sets place no
int Get_Wt(void); //returns wt of arc
void Se_Wt(int); // sets wt of arc
place *Get_Handle(void); // returns the place handle
seg_array *Get_Seg_Array(void); // returns pointer to segment array
void Set_Seg_Array(seg_array *); // sets the current segment array
);

4.8.2 Segment Array Object

An arc is comprised of an array of straight lines. These lines are called segments. The

segment array object is the object that manages those segments.

The data structure is:

#include "segment.h"
#include <stdio.h>

class seg_array {

public:
int size array;
int no of_segments;
segment **s array; // array of pointers to segment
seg_array();

void Stretch_Array(void);
void Add_Segment(int, int, int, int);
void Remove_Segment(void);
};

4.8.3 Segment Object

The segment object contains the coordinates of the starting and ending points of

segments.

The data structure is:

class segment {
public:

int xl;
int yl;
int x2;
int y2;

segment();
segment(int, int, int, int); // constructor for class segment

};

40

CHAPTER 5

TimedPNT USER'S MANUAL

5.1 Preparation for Running TimedPNT

Before running TimedPNT, the user must first:

• have thought thoroughly about how to accurately represent the system to be

modeled

• prepared a draft of the net to be run (recommended)

• have TimedPNT properly installed

• have OpenWindowsTM running

• if running TimedPNT locally, type at a command tool window prompt in the

TimedPNT working directory:

% tpnt

• if running TimedPNT on a network:

- "rlogin" or "telnet" to the remote host from the UNIX command prompt

- after establishing a connection with the host, type at the host command prompt:

telnet > setenv DISPLAY local name:0

- return to local command prompt (in a different window), and type:

% xhost +

- returning again to the host command prompt, type:

telnet> tpnt

41

42

5.2 The Working Environment of The TimedPNT

OpenWindowsTM is the user environment of the TimedPNT. It provides XViewTM

window pane management service, with a consistent screen layout. To a TimedPNT end

user, it offers an intuitive working environment. In order to run the TimedPNT, a

thorough working knowledge of OpenWindowsTM is recommended. 	(See

OpenWindows' User's Guide)

Using The Mouse

In the operation of the TimedPNT, the mouse is the most important device for the user

to control the program operation.

In this manual, the following terms are used to describe actions performed with

the mouse.

• Press a mouse button and hold it.

• Release a mouse button to initiate an action.

• Click a mouse button by pressing and releasing it before moving the

pointer.

• Double-click a mouse button by clicking twice quickly without moving the

pointer.

• Move the pointer by sliding the mouse with no buttons pressed.

• Drag the pointer by sliding the mouse with one button pressed.

In the TimedPNT, the Left Mouse Button (LMB), called SELECT, is always used

to select or manipulate controls in the operation. The Right Mouse Button (RMR), also

called MENU, is used consistently to display and choose from pull-down menus.

43

5.3 Starting The TimedPNT

After typing "tpnt", the TimedPNT base window will show on the OpenWindowTM

workspace. The title bar of the tool shows: "TimedPNT:", followed by the name of the

current working directory.

The basic controls for the TimedPNT are displayed in a control area, immediately

below the title, which consists of five standard menu buttons, File, Draw, Edit,

Simulate and Utilities; and a text field following the prompt "File:" which is filled in

with "no name" as a default, but should be changed by the user. In Figure 5-2, the

TimedPNT window is shown with all of its menu sub-windows pinned under their

respective menu buttons. All items will be explained in detail in the following text.

The large window under the control area is the TimedPNT canvas, on which a

paint window is clipped to a view window (see 3.2.1). The paint window, which is

where a net is drawn, is considerably larger than the view window, which reveals only

a portion of the paint window at any time. Two scrollbars are used to move the paint

window around the areas of the view window.

5.4 Drawing and Editing a Net

Before nmning a net simulation, the net has to be drawn or loaded onto the canvas. In

the process of drawing, the user may also need to edit. In TimedPNT, all net drawing

and editing features are incorporated in the pull down menus and invoked by the menu

buttons, Draw and Edit.

44

Figure 5.1 The TimedPNT Window and Menu Sub-windows

45

5.4.1 Using the Menus

To display the pull down menus, the user needs to point to the menu button and press

the RMB (MENU). This operation is consistent in the OpenWindowsTM application

environment. For the sake of simplicity, in the proceeding text, this operation will be

referred to as "display menu". Similarly, "choose menu item" will be used to describe

the actions shown in Table 5.1. There are actually four different ways to "choose menu

item", as shown in the table, but they perform the same function.

When the user chooses a pull down window item, the window is automatically

dismissed after one item selection. But when building a net, the user often needs to

repeatedly choose items from different windows. For convenience, it is suggested that

all TimedPNT sub-windows be pinned and moved to a different location on the pane.

Figure 5-4 shows the sub-windows for all the menus pinned outside the canvas area. By

pinning and relocating both the Draw and Edit sub-windows, the user has an open canvas

area in which to build a net. Also, the menu button does not need to be used repeatedly

to select the item: the item buttons can be selected directly.

5.4.2 Drawing A Net

Before drawing a net, it is necessary to first name the net. The user needs to move the

pointer to the text field after the prompt "File:" in the control area, click the LMB

(SELECT) and then change the default "no_name" by typing in an appropriate name.

Then display File Menu, and choose New item. This creates a new data structure under

the user specified name.

46

Table 5.1 Different Methods of Choosing Menu Item

Function Mouse Description of Action

choose default
menu item

click LMB move pointer over the menu button and
click the LMB (SELECT) to choose the
default item under this menu (i.e. the first
item button)

2

display menu press RMB move pointer over the menu button and

press the RMB (MENU)

choose menu item drag - release continue holding down RMB, drag the
pointer over the desired item in the
menu, then release the RMB.

3

display menu click RMB move pointer over the menu button and
click the RMB (MENU)

choose menu item move -
click LMB

move pointer over desired item in the
menu and click LMB (SELECT)

4

	

display menu click RMB move pointer over the menu button and
click the RMB (MENU)

pin sub-window click LMB -
press LMB -
drag - release

pin sub-window;
drag window to desired area in pane. ***

choose menu item
(repeatedly)

move -
click LMB

move pointer over the menu button and
click the LMB (SELECT).

To pin a sub-window, the user needs to point to the pushpin in the upper left corner
and click LMB (SELECT). To move any window, the user needs to press the LMB
(SELECT) on the title area of the window, drag to a new location, then release the
LMB. The window will then be relocated. To close the sub-window, un-pin it by

moving the point over the pin and clicking the LMB.

Drawing a net is simple. Once the Draw window is displayed, there are seven

object items that can be chosen from the window to draw the net: place, horizontal

immediate transition, vertical immediate transition, horizontal timed transition, vertical

timed transition, arc, inhibit arc and token.

47

Figure 5.2 Pinning Menu Sub-windows To The Side

Places and Transitions:

To draw a place or a transition, first choose the appropriate menu item; then, move the

pointer to the desired location on the canvas and click the LMB (SELECT) to place the

object.

Tokens:

Similar to drawing a place or a transition, the user must first choose the token object

from the menu, then move the pointer to the desired place and click the LMB

48

(SELECT). No token can be put outside of a place. The appearance of tokens present

in a place is represented by dots for up to four tokens. If the token number is greater

than four, the number will appear in the place instead of dots.

Arc:

In TimedPNT, an arc begins with an arrow (for a normal arc) pointing to an object (a

place or transition), and is followed by connected straight lines, called segments, to

connect it to the end object (a transition or place).

To draw an arc, the user needs to move the pointer to the desired location where

an arc arrow begins, click the LMB (SELECT) to "put down" the arrow on the canvas,

then move the pointer to the far end of the first segment and click the RMB (MENU),

and so on, until the end object is reached. Once an end object is reached, a notice

message will show on the canvas informing the user that the arc has been completed.

The following rules apply to drawing arcs:

For the same pair of place and transition, no multiple arcs of the same type (e.g.

INPUT, INHIBIT or OUTPUT) can be visually drawn. The multiplicity of the

same type of arc between the same pair of place and transition is represented by

Weight in the arc tag (See Weight item in arc tag).

• Arcs can not be drawn between two places or between two transitions; if the user

attempts this, the arc is declared as illegal by a warning message and

automatically removed.

49

• An arc can be drawn crossing places, transitions and other arcs if necessary.

• An inhibit arc is drawn in the same way as a normal arc.

A convenient characteristic of TimedPNT's drawing features is that the user can

draw many objects of a particular type without repeatedly choosing the object from the

Draw Menu. For example, after choosing the place object, the user need only press

LMB in different locations to draw numerous places. Therefore, a planned net can be

easily drawn, choosing only a few times from the menu items.

5.4.3 Editing A Net

Erasing elements

To erase a place or transition:

In the TimedPNT Edit Menu, the third item is the Eraser. To erase a place or a

transition, choose the Eraser item from the Edit Menu, move the pointer to a place or

a transition on the canvas and click the LMB (SELECT). As a consequence of the

removal action, all arcs connected to the removed place or transition are also removed.

To erase tokens:

The same Eraser item used for removing places and transitions is used to remove tokens

from a place. The operational difference is that the user must click on the RMB instead

of the LMB on the place from which the token is to be removed.

50

To delete an arc:

The fifth and the sixth items in the Edit Menu are Arc Delete and Segment Delete,

respectively. The Arc Delete is used to delete a completed arc (i.e. after the message

is displayed to inform the user that the arc is considered completed). To perform the

deletion task:

1. choose the Arc Delete item,

2. move the pointer to the head of the arc (arrow for a normal arc, or a

small box for an inhibit arc),

3. click the LMB (a message will inform you that this was done

successfully),

4. click the RMB (MENU) on the respective end object (a place or a

transition).

The Segment Delete item is used to delete unwanted segments while in the process

of drawing an arc (before the arc is completed). The last drawn segment is removed

when the LMB is clicked on the Segment Delete button. The clicking can be

successively repeated until all the segments of the incomplete arc are removed.

To Clear the Net

The Clear item in the Edit Menu is used to clear the canvas and start a new drawing.

A warning message will inform the user to save current work if it has not been saved.

All dynamically allocated data structures are destroyed in this action.

51

Assigning Porperties

Tags are used to designate the parameters for places, transitions and arcs. There are

four types of Tags in TimedPNT: Place Tag, Immediate Transition Tag, Timed

Transition Tag and Arc Tag. The first two items of the Edit Menu are used to invoke

these tags.

In TimedPNT, a Tag is a pop-up sub-window, which contains window items.

The following are the Tag window items which a Tag may have.

• Title: shows a tag identity.

• Editable Text Field: displays comments which the user can type in from

the keyboard.

• Non-Editable Tart Field: displays some properties of an object (which can

not be edited by the user.

• Numeric Field: displays the current value of a parameter which can be

changed by the user either by typing from the keyboad or clicking the

LMB on its increment or decrement button.

• Choice Button: gives the user a choice on a particular property. NO1E:

Cancelling (below) does NOT cancel choice button changes. To change

an unwanted choice, simply click the correct choice button again.

• Apply and Cancel Buttons: gives the user the editing choice of applying

or cancelling the editing which has been made. This does NOT apply to

choices made by Choice Buttons.

52

All place and transition Tags can be accessed through the Tag item in the Edit

Menu. Arc Tags are accessed by the Arc Tag item in the Edit Menu.

Figure 5.3 Place Tag Pop-up Window

Place Tag:

To access a Place Tag (See Figure 5.3), the user must choose the Tag item from

the Edit Menu. A Place Tag contains the following items: Comment, Number, Stop

Marking and Tokens. (See 3.1.2)

• Document the Comment field:

Properly documenting each object is useful in net analysis. It is strongly

recommended.

• Assigning The Place Number:

When a net is drawn, each place has automatically been assigned a Place

Number (ID Number) for its indentity. The numbering starts at 0 and is

incremented successively in the order in which each place is added. If the

user wants to rearrange this order, this number may be edited, but no two

places should be given the same number. Otherwise, an internal erorr

will occur during the net simulation without warning.

53

• Assigning The Stop Marking:

The default value of the Stop Marking field is "A", which means "DON'T

CARE". Zero can be assigned as Stop Marking for a place, which means

that an end condition has been reached as soon as the place is empty.

(This is true unless the simulation is running on the "STOP BY NET

MARKING" mode and the end condition(s) of other places have not yet

been met. See 3.2.5 Simulation End Conditions).

• Assigning Tokens:

The Tokens field offers a more efficient way to put in or take out tokens

than to use the Draw Menu item. For a large number of tokens, it is the

only way (unless you really want to click the LMB, say, 5000 times).

Figure 5.4 Immediate and Timed Transition Pop-up Windows

54

Immediate Transition Tag:

The Immediate Transition Tag, Figure 5.4 (upper), is accessed in the same way

as the Place Tag. The window items are: Comment, Number, Priority, State and

Type. (See 3.1.2)

Assigning The Transition number:

Like the Place Number, the Transition ID Number is also automatically

assigned for each transition from 0 to the maximum number of transitions,

regardless of transition type (Immediate or Timed). If the user assigns the

same number to more than one transition, errors will occur when running

the net simulation.

Assigning The Transition Priority:

The default priority is 0. There are four priority levels: 0, 1, 2, and 3;

where 0, the default value, is the highest, and 3 is the lowest.

6 	State and Type field:

The State and Type fields are non-editable text fields which display the

current state (READY or NOT READY) and the type of transition

(IMMEDIATE or TIMED).

Timed Transition Tag:

The difference between a Timed Transition Tag, Figure 5.4 (lower), and an

Immediate Transition Tag is that the Timed Transition Tag contains two more

items: Delay Type and Delay/Avg.Delay. The Delay Type item is a pair of

Choice Buttons and The Delay/Avg.Delay is a Numeric Field. (See 3.1.2)

55

• Setting up the Delay Type:

The default type for a Timed Transition is DETERMINISTIC. To change

it, the user can simply click the LMB (SELECT) on the STOCHASTIC

button. A notice message will be displayed. To change back, simply

click the LMB again on the DETERMINISTIC button.

• Assigning Delay or Average Delay:

The default value is 1. The value assigned to this field represents a fixed

delay if the transition type is DETERMINISTIC, and represents an

average delay if the transition type is STOCHASTIC.

Figure 5.5 Arc Tag Pop-up Window

Arc Tag:

The Arc Tag, Figure 5.5, is accessed through the Arc Tag item in the Edit Menu.

The user has to choose the Arc Tag item first, then click the LMB (SELECT) on

the beginning of the arc (i.e. the arrow of a normal arc), then is prompted to

click the RMB (MENU) on the end object of that arc. An Arc Tag contains

Comment, Weight, No of Segment and Type items. (See 3.1.2)

The Weight field is the only field in the Arc Tag that can be edited by the

user. (See 5.4.2, Arc)

56

5.5 Adding Text Onto The Canvas

After a net has been drawn, it is useful to add text on the canvas for the sake of

clarification (e.g. to mark a place as "p2" or "B Status"). To write text on the canvas:

• Choose the Type item from the 'Utilities Menu

• Click the LMB at the desired starting location on the canvas

• Start typing.

Since the canvas is a graphical editing area, it does not support text editing

features; therefore, no "Backspace" can be accepted. To edit existing text on canvas, the

user has to erase the text and re-type. The Text Eraser item from the Edit Menu is used

to erase text within a user defined rectangular region on the canvas. To perform this

task, choose the Text Eraser, then click the LMB on one of the corners of the

rectangular, then click again on the diagonally opposite corner, enclosing the text to be

erased.

The user also can clear all existing text from the canvas by choosing the Clear

Text item from the Edit Menu. WARNING: This clears ALL existing text.

5.6 File Functions

The File Menu is usually used at the beginning and end of sessions, to load previously

drawn nets, and to save current changes.

57

9 	Save File

Choose the Save item in the File Menu to save the current net, including its

properties and current marking. The net should be saved before running a

simulation, in order to save the initial marking.

Load File

Choose the Load item in the File Menu to load a previously drawn net, including

all assigned properties.

5.7 Running a Simulation

Once a net has been completed, simulation can begin.

5.7.1 Specifying Simulation End Conditions

To specify simulation end conditions, choose the Break Pt. item from the Simulate Menu.

This brings up a pop-up sub-window, Figure 5.6, which contains the following items:

Steps, Clock, Stop Marking, and Log. (See 3.2.5 for Simulation End Conditions)

Stop Marking:

When using place markings as an end condition for simulation, the user must specify the

place markings (token number) in the Stop Marking item(s) in the place tag(s), as well

as choose a mode from the Simulate Break Pt. sub-window (Simulation End Conditions).

The Stop Marking item in the Simulation Mode sub-window gives the user a

choice between two modes:

58

1. Stop by Place Marking (default)

2. Stop by Net Marking

In case 1, the simulation will terminate as soon as any place has reached the user-

specified stop marking for it. In case 2, the simulation will terminate only after all

places have reached their user-specified stop markings.

If no place has been assigned a Stop Marking (other than -1), choosing the Net

Stop Marking mode will cause the simulation to reach its end condition the moment it

starts.

If no place has been assigned a Stop Marking (other than -1), and the Place Stop

Marking mode is chosen (as default), then a Clock or Steps end condition will be used

instead, according to Section 3.2.5.

Lot Mode:

The Log choice buttons give the user the choice of turning the log file generation ON or

OFF. This is a switch that remains ON or OFF until explicitly modified. This is true

for both STEP and RUN modes. (Turn OFF for quicker run times.)

Figure 5.6 Simulation End Conditions Pop-up Window

59

5.7.2 Running the Simulation

Running the simulation can be carried out in one of two modes: STEP or RUN. (See

3.2.6 and 3.2.7)

To STEP, the user may either click LMB on the Simulation Menu button (Step

is chosen as default), or choose the Step item from the Simulation Menu.

To RUN, choose the Run item from the Simulation Menu, after all end conditions

have been carefully chosen.

5.7.3 Resetting Parameters

In RUN mode, parameters are automatically reset before simulation begins. In STEP

mode, however, parameters are not reset, so it may be useful to manually reset. To do

this, choose the Reset item from the Simulation Menu to perform the following:

Reset System Clock to 0

Reset Utilization parameters

5.8 Reports

There are three types of reports generated by TimedPNT, as described below. These

reports are saved in ASCII text files, and can be printed or read while running

TimedPNT.

Verify Report 	 (filename.vrfy)

This report verifies the structural properties of the net (See 3.1.2). To see this

report, choose the Verify item under the Utilities Menu. Figure 5-11 shows a

Verify pop-up window.

60

Figure 5.7 Verify Report Pop-up Window

• Utilization Report 	(filename.rpt)

This report contains the utilization information of transitions and places after a

simulation has been completed. In RUN mode simulations, this report is

automatically generated and will appear in a pop-up window upon reaching the

end of a simulation. Before another RUN mode simulation is performed, this file

should be renamed; otherwise, it will automatically be deleted when a new report

is generated. In STEP mode simulation, the information is accumulated with

each step, and the user can generate an updated report at any point by choosing

the Report item under the Utilities Menu. (Old reports should be renamed.)

61

Figure 5.8 Utilization Report Pop-up Window

• Log Report 	 (filename. log)

The Log report keeps track of marking and transition firing information (see

3.1.2). This file is automatically created with RUN or STEP mode simulations,

and accumulates information with each step (unless Log Mode is OFF: see 5.7.1).

This file will not be deleted or rewritten unless the user does so by choosing the

Del Log item from the Utilities Menu. Simulations with large numbers of steps

will create large log files. Therefore, it is recommended that unnecessary log

files be deleted, and that Del Log be chosen before any new simulations are run.

62

Figure 5.9 Log Report Pop-up Window

5.9 Other Functions

• Redraw

Redraw is used to redisplay the net drawing if the screen develops temporary

display anomalies, for example, when erasing text or deleting arcs. This

command can be invoked by choosing the Redraw item under the Utilities Menu.

• Quit

To exit the TimedPNT, the user should always use the Quit item under the Files

Menu, instead of the Quit button in the OpenWindowsTM window menu. This

63

ensures that if the net has not been saved, the user will be prompted and given

a chance to do so.

CHAPTER 6

CONCLUSION

The TimedPNT is one step forward in the development of the Petri net modeling tool in

NJIT. As result of this effort:

• The TimedPNT is capable of simulating systems with both deterministic and

stochastic delays.

• Performance and utilization results are automatically collected.

• OOP is employeed to ease future modification without corrupting existing code.

• The XViewTM based interface makes it possible for the TimedPNT to run

remotely on a network.

• Compliance with the X11 standard makes the TimedPNT portable to other X11

based systems

For a more advanced Petri net simulation tool, future work might include the

following:

• The TimedPNT can also be further extended into a Colored Petri Net Simulation

Tool, to increase the modeling capabilities, considerably.

64

65

• Extension to conflict handling:

- 	Capablity for specifing a selection probability for a particular transition in

conflict.

- 	Rather than using preselection, the transition with the least delay is

selected to fire in a conflict situation.

• Extension to Stochastic Model:

- 	Other than having a exponential distribution, other cumulative distributions

can also be incorporated, for example, uniform distribution and bounded

distributions.[9]

APPENDIX. A

LIST OF TimedPNT FILES

(Total: 51 files, 268 Kbytes)

arc.0 940

arc.h 928

arc.image 1855

arctag.image 2190

arrow.image 1997

basic _object.C 572

basic _object.h 558

clear.image 1855

clear net.image 2190

clear_ text. image 2190

controller.C 14657

controller.h 1160

del arc.image 2190

del seg.image 2190

erase.image 2190

eraser.image 1855

htransition.image 1855
htransition1.image 1933

inh_arc.image 1855

makefile 1127

marker.image 1855

marker1.image 1933

net.0 6586

net.h 796

ootpns.0 140147

petri.image 1855

place.0 1576

place.h 816

66

67

place.image 1855

place1.image 1933

seg_array..0 852

seg_array.h 253
segment.C 135

segment.h 134

tag.image 2190
test1.text 20

text control.C 1832

text control.h 340

text_erase.image 2190

text string.C 149

text _string.h

timed ht.image

timed_ht_fill.image

timed_petri.image

timed _vt.image

timed vt fill.image _ 	_
tpnt

transition.0

transition.h

vtransition.image

vtransition1.image

102

1933

1933

1997

1933

1933

6498

2812

1855

1933

(Executable)

APPENDIX B

VERIFY FILE SAMPLE

**
* *

* TimedPNT 	 *
* *

* 	 NET VERIFY REPORT 	 *
* *
**

File Name : bao.vrfy

************************ 	Net 	Information 	*************************

	

No of Places = 	18 	 No of Transitions = 	1 1

	

No of Input arcs = 	18 	 No of Output Arcs = 	18

********************* 	TRANSITION Information 	*********************

-- Transition No. 	0 : 	
State: 0 Type: t Priority: 0 Orien: v Inarc: 	5 Outarc: 	5

Connected Arcs:
arc type: 1 	pl_no: 	2 	 weight: 1 	seg_no. : 	4
arc type: 1 	pl_no: 	7 	 weight: 1 	seg_no. : 	4
arc type: 1 	pl_no: 	11 	 weight: 1 	seg_no. : 	4
arc type: 1 	pl_no: 	14 	 weight: 1 	seg_no. : 	5
arc type: 1 	pl_no: 	17 	 weight: 1 	seg_no. : 	4

arc type: 0 	pl_no: 	0 	 weight: 2 	seg_no. : 	5
arc type: 0 	pl_no: 	8 	 weight: 1 	seg_no. : 	4
arc type: 0 	pl_no: 	9 	 weight: 1 	seg_no. : 	6
arc type: 0 	pl_no: 	12 	 weight: 1 	seg_no. : 	6
arc type: 0 	pl_no: 	15 	 weight: 1 	seg_no. : 	5

-- Transition No. 	1 : 	
State: 0 Type: t Priority: 0 Orien: v Inarc: 	2 Outarc: 	2
Connected Arcs:
arc type: 1 	pl_no: 	5 	 weight: 1 	seg_no. : 	4
arc type: 1 	pl_no: 	6 	 weight: 1 	seg_no. : 	4
arc type: 0 	pl_no: 	3 	 weight: 1 	seg_no. : 	4
arc type: 0 	pl_no: 	7 	 weight: 1 	seg_no. : 	4

-- Transition No. 	2 : 	
State: 0 Type: t Priority: 0 Orien: v Inarc: 	3 Outarc: 	3
Connected Arcs:

arc type: 1 	pl_no: 	0 	 weight: 1 	seg_no. : 	5
arc type: 1 	pl_no: 	4 	 weight: 1 	seg_no. : 	4
arc type: 1 	pl_no: 	9 	 weight: 1 	seg_no. : 	6
arc type: 0 	pl_no: 	1 	weight: 1 	seg_no. : 	4
arc type: 0 	pl_no: 	5 	 weight: 1 	seg_no. : 	4
arc type: 0 	pl_no: 	10 	 weight: 1 	seg_no. : 	4

68

69

-- Transition No. 	3 : 	
State: 0 Type: t Priority: 0 Orien: h Inarc: 	1 Outarc: 	1

Connected Arcs:
arc type: 1 	pl_no: 	3 	 weight: 1 	seg_no. : 	4
arc type: 0 	pl_no: 	4 	 weight: 1 	seg_no. : 	4

-- Transition No. 	4 : 	
State: 0 Type: t Priority: 0 Orien: h Inarc: 	1 Outarc: 	1

Connected Arcs:
arc type: 1 	pl_no: 	8 	 weight: 1 	seg_no. : 	4
arc type: 0 	pl_no: 	6 	 weight: 1 	seg_no. : 	4

-- Transition No. 	5 : 	
State: 0 Type: t Priority: 0 Orien: h Inarc: 	1 Outarc: 	2

Connected Arcs:
arc type: 1 	pl_no: 	1 	 weight: 1 	seg_no. : 	4
arc type: 0 	pl_no: 	2 	 weight: 1 	seg_no. : 	4
arc type: 0 	pl_no: 	14 	 weight: 1 	seg_no. : 	4

-- Transition No. 	6 : 	
State: 0 Type: t Priority: 0 Orien: h Inarc: 	1 Outarc: 	1

Connected Arcs:
arc type: 1 	pl_no: 	10 	 weight: 1 	seg_no. : 	4
arc type: 0 	pl_no: 	11 	 weight: 1 	seg_no. : 	4

-- Transition No. 	7 : 	
State: 0 Type: t Priority: 0 Orien: h Inarc: 	1 Outarc: 	1
Connected Arcs:
arc type: 1 	pl_no: 	13 	 weight: 1 	seg_no. : 	4
arc type: 0 	pl_no: 	14 	 weight: 1 	seg_no. : 	4

-- Transition No. 	8 : 	
State: 0 Type: i Priority: 0 Orien: v Inarc: 	1 Outarc: 	1
Connected Arcs:

arc type: 1 	pl_no: 	12 	 weight: 1 	seg_no. : 	5
arc type: 0 	pl_no: 	13 	 weight: 1 	seg_no. : 	4

-- Transition No. 	9
State: 0 Type: t Priority: 0 Orien: v Inarc: 	1 Outarc: 	0
Connected Arcs:

arc type: 1 	pl_no: 	15 	 weight: 1 	seg_no. : 	5

-- Transition No. 	11 : 	
State: 0 Type: t Priority: 0 Orien: h Inarc: 	1 Outarc: 	1

Connected Arcs:
arc type: 1 	pl_no: 	16 	 weight: 1 	seg_no. : 	4
arc type: 0 	pl_no: 	17 	 weight: 1 	seg_no. : 	4

*********************** 	Place Information 	************************

Place No. 	 No. of Tokens

	

p 0 	 16
P 1 	 0
P 2 	 1
P 3 	 0

	

p 4 	 1
P 5 	 0

	

p 6 	 0

	

p 7 	 1
P 8 	 0

70

P 9 	 0
p 10 	 0
p 11 	 1
p 12 	 0
p 13 	 0
p 14 	 18
p 15 	 0
p 16 	 0
p 17 	 0

APPENDIX C

LOG FILE SAMPLE

**
*

TimedPNT
*

SIMULATION LOG
*
**

File Name : bao.log

************************* 	TimedPNT: 	******************************

NO. OF STEP: 1 of 100
BEGIN TIM: 0

Transition No. 4 ready
Transition No. 5 ready
Transition No. 6 ready
Transition No. 11 ready

Firing Timed Transition No. 6
Firing Timed Transition No. 11
Firing Timed Transition No. 5
Firing Timed Transition No. 4

System Clock Advanced by 1
System Clock Reached 1

Marking of Net is :
Place No. 	0 	1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 15

Marking: 15 0 0 0 0 1 0 0 0 0 0 1 0 0 16 0

**

************************* 	TimedPNT: 	******************************

NO. OF STEP: 2 of 100
BEGIN TIME: 1

Transition No. 4 ready
Transition No. 5 ready

Firing Timed Transition No. 5
Firing Timed Transition No. 4

System Clock Advanced by 1
System Clock Reached 2

Marking of Net is :
Place No. 	0 	1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 15

Marking: 15 0 1 0 0 1 0 0 0 0 0 1 0 0 17 0

71

72

*************************** TimedPNT: ******************************

NO. OF STEP: 3 of 100
BEGIN TIME: 2

Transition No. 4 ready
Firing Timed Transition No. 4

System Clock Advanced by 1
System Clock Reached 3

Marking of Net is :
Place No. 	0 	1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 15

Marking: 15 0 1 0 0 1 1 0 0 0 0 1 0 0 17 0

************************** TimedPNT: ******************************

NO. OF STEP: 4 of 100
BEGIN TIME: 3

Transition No. 1 ready
Firing Timed Transition No. 1

System Clock Advanced by 3
System Clock Reached 6

Marking of Net is :
Place No. 	0 	1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 15

Marking: 15 0 1 1 0 0 0 1 0 0 0 1 0 0 17 0

************************** TimedPNT: ******************************

NO. OF STEP: 5 of 100
BEGIN TIME: 6

Transition No. 0 ready
Transition No. 3 ready

Firing Timed Transition No. 0
Firing Timed Transition No. 3

System Clock Advanced by 3
System Clock Reached 9

Marking of Net is :
Place No. 	0 	1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 15

Marking: 17 0 0 0 1 0 0 0 1 1 0 0 1 0 16 1

************************** TimedPNT: ******************************

NO. OF STEP: 6 of 100
BEGIN TIME: 9

Transition No. 2 ready

73

Transition No. 4 ready
Transition No. 8 ready
Transition No. 9 ready

Firing Immediate Transition No. 8
Marking of Net is :
Place No. 	0 	1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 15

Marking: 17 0 0 0 1 0 0 0 1 1 0 0 0 1 16 1

************************** TimedPNT: ******************************

NO. OF STEP: 7 of 100
BEGIN TIME: 9

Transition No. 2 ready
Transition No. 4 ready
Transition No. 7 ready
Transition No. 9 ready

Firing Timed Transition No. 2
Firing Timed Transition No. 7
Firing Timed Transition No. 9
Firing Timed Transition No. 4

System Clock Advanced by 1
System Clock Reached 10

Marking of Net is :
Place No. 	0 	1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 15

Marking: 16 1 0 0 0 1 0 0 0 0 1 0 0 0 17 0

APPENDIX D

UTILIZATION REPORT FILE SAMPLE

* *

TimedPNT
* *

UTILIZATION REPORT
* *

File Name : bao.rpt

System Clock Reached = 141 	 Total Run Steps = 100

*********************** TRANSITION INFORMATION ***********************

Transition No. 	 Total Fired Times 	 Busy Time

t 0 	 14 	 29.79%
t 1 	 14 	 29.79%
t 2 	 15 	 10.64%
t 3 	 14 	 29.79%
t 4 	 14 	 40.42%
t 5 	 14 	 19.86%
t 6 	 14 	 9.93%
t 7 	 15 	 10.64%
t 8 	 15 	 15.00%

************************** PLACE INFORMATION *************************

Place No. 	 Total Tokens Entered 	 Occupied Time

	

p 0 	 30 	 100.00%

	

p 1 	 15 	 19.86%

	

p 2 	 14 	 69.51%
P 3 	 14 	 29.79%

	

p 4 	 15 	 10.64%
P 5 	 15 	 59.58%

	

p 6 	 14 	 29.79%
P 7 	 14 	 29.79%
P 8 	 15 	 40.43%
P 9 	 15 	 10.64%

	

p 10 	 15 	 9.93%

	

p 11 	 14 	 79.44%

	

p 12 	 15 	 0.00%

	

p 13 	 15 	 10.64%

	

p 14 	 30 	 100.00%

74

REFERENCES

	

1 	Gilani, A. 1989. "A Graphical Editor for Petri Nets." Master's Thesis, Electrical
and Computer Engineering Department, New Jersey Institute of Technology.

	

2 	Shukla, A. 1990. "A Petri Net Simulation Tool." Master's Thesis, Electrical and
Computer Engineering Department, New Jersey Institute of Technology.

	

3 	Siddiqi, J.A. 1991. "A Graphical Tool for the Simulation of Timed Petri Nets."
Master's Thesis, Electrical and Computer Engineering Department, New Jersey
Institute of Technology.

	

4 	Juneja, H. 1993. "Object Oriented Design of Petri Net Simulator." Master's
Thesis, Electrical and Computer Engineering Department, New Jersey Institute
of Technology.

	

5 	Peterson, J.L. 1981. Petri Net Theory and the Modeling of Systems. New Jersey:
Prentice-Hall.

	

6 	Molloy, M. 1989. "Petri net Modeling: The Past, the Present, and the Future."
Proceedings of the Third International Workshop on Petri Nets and Performance
Models. pp. 2-9.

	

7 	Ramachandani, C. 1973. "Analysis of Asynchronous Concurrent Systems by
Times Petri Nets." Dissertation, Massachusetts Institute of Technology.

	

8 	Sifakis, J. 1978. "Structural Properties of Petri Nets." Mathematical Foundations
of Computer Science. Springer-Verlag. pp. 474-483.

	

9 	Merlin, P. and D.J. Farber. 1976. "Implication of a Theoretical Study." IEEE
Transactions on Communications. COM-24:9: 1036-1043.

	

10 	Zubarek, W.M. 1980. "Timed Petri Net and Preliminary Performance
Evaluations." Proceedings of 7th Annual Symposium on Computer Architectures.

	

11 	Molloy, M. 1985. "Discrete Time Stochastic Petri Nets." IEEE Transactions on
Software Engineering. 11:4: 417-423.

	

12 	Chen, P.Z., S. Bruell, and G. Balbo. 1989. "Alternative Methods for
Incorporating Non-exponential Distributions into Stochastic Time Petri Nets."

	

13 	Marson, A.M., G. Balbo, and G. Conte. 1984. "A Class of Generalized Stochastic
Petri Net for the Performance Evaluation of Multiprocessor Systems." ACM
Transactions on Computer Systems. 2:2: 93-122.

75

76

REFERENCES
(Continued)

14 	Haas, P.J. and G.S. Shedler. 1986. "Regenerative Stochastic Petri Nets."
Performance Evaluation. 6:3: 189-204.

15 	. 1993. XViewTM Developer's Notes. Mountain View, CA: SunSoft.

16 	. 1991. OpenWindowsTM User's Guide. Mountain View, CA: SunSoft.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgement
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: An Overview of Petri Net
	Chapter 3: A Timed Petri Net Simulation Tool
	Chapter 4: Design of the TimedPNT
	Chapter 5: TimedPNT User's Manual
	Chapter 6: Conclusion
	Appendix A: List of TimedPNT Files
	Appendix B: Verify File Sample
	Appendix C: Log File Sample
	Appendix D: Utilization Report File Sample

	References (1 of 2)
	References (2 of 2)

	List of Tables
	List of Figures

