Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT
 CALIBRATION OF PHOTOLUMINESCENCE EXPERIMENT

by
Chihchuan Daniel Lee

Photoluminescence in a semiconductor at room temperature is quite difficult to distinguish from the many nonlasing optical lines from the laser, therefore, a blank test is very important. In so doing, the noises of the detector has to be taken into account. The calibration, however, mainly depends on the detector and is less dependent on other components. Instead of using black-body radiation light source and pyroelectric detector, we use globar lamp and PbS detector; because of the difficulty in the former case in doing alignment of optical path (invisible) and operating at a lower signal level from the detector. The employment of a computer allows real time data acquisition, data averaging and real time displaying, plus, we can take the advantage if the scanning should terminate as the result is unexpected, better yet, store data and spectra for future need. The comparison between calibrated and uncalibrated spectrum shown that there are in fact significant deviations.

CALIBRATION OF PHOTOLUMINESCENCE EXPERIMENT

by
Chihchuan Danel Lee

A Thesis
Submitted to the Faculty of New Jersey Institute of Technology in Partial Fulfillment of the Requirements for the Degree of Masters of Science in Applied Physics
Department of Physics

APPROVAL PAGE

CALIBRATION OF PHOTOLUMINESCENCE EXPERIMENT

Chihchuan Daniel Lee

Dr. K. Ken Chin, Thesis Advisor
Date
Professor of Physics, NJIT
Dr. John C. Hensel, Committee Member , Date Distinguished Reserach Professor in Applied Physics
of the Department of Physics, NJIT
Dr. Halina Opyrchal, Committee Member
Date
Visiting Professor in Applied Physics
of the Department of Physics, NJIT

BIOGRAPHICAL SKETCH

Author: Chihchuan Daniel Lee

Degree: Master of Science in Applied Physics

Date: January 1994

Undergraduate and Graduate Education:

- Master of Science in Applied Physics, New Jersey Institute of Technology, Newark, New Jersey, 1994
- Bachelor of Science in Physics, Chung Yuan Christian University, Chung Li, Taiwan, 1989

Major: Applied Physics

This thesis is dedicated to
Dr. Chaoliang Lai and Miss Hsiuya Mao

TABLE OF CONTENTS

Chapter Page
1 THE PRINCIPLE OF PHOTOLUMINESCENCE EXPERIMENT 1
1.1 Nature of Light 1
1.2 Conceptual Ideas of Light Absorption and Emission 2
1.3 Modes of Excitation 6
1.3.1 By Light Absorption 6
1.3.2 By Electron Impact 7
1.3.3 By Heat 8
1.3.4 By Chemical Reaction 9
1.4 Modes of Emission 10
1.5 Photoluminescence 12
1.5.1 Direct Recombination of Electrons and Holes. 12
1.5.2 Indirect Recombination; Trapping 15
1.5.3 Intraband Transitions 16
1.6 Quantum Yields 18
1.7 Quantum Efficiency 19
2 SETUP OF PHOTOLUMINESCENCE EXPERIMENT 21
2.1 Apparatus and Principles 21
2.2 Light Sources 23
2.3 Monochromator 23
2.3.1 Working Principle 23
2.3.2 Light Gathering Power 27
2.4 Filters 28
2.5 Detector 29

TABLE OF CONTENTS
 (Continued)

Chapter Page
3 CALIBRATION OF PHOTOLUMINESCENCE EXPERIMENT 30
3.1 Calibration of Emission Spectra 30
3.2 The Radiation Laws of Stefan, Wien and Planck 33
3.3 Experiment 35
3.3.1 PbS Detector 37
3.3.2 Blank Test for Argon and Helium-Neon Laser 39
3.3.3 GaSb Sample. 40
3.3.4 InGaAs Sample. 43
4 DATA ACQUISITION 45
4.1 IEEE488 Communication With a Computer 45
4.2 Establishing GPIB Communication 48
4.2.1 Install GPIB and Setup 48
4.2.2 Test GPIB Communication 48
4.3 Data Acquisition 49
4.3.1 Devices' Address Setup 49
4.3.2 Several Precautions When Running the Program 49
APPENDIX A GPIB0 AND DEV1 SETUP REFERENCES 51
APPENDIX B GPIB CARD SETTINGS 52
APPENDIX C EG\&G (LOCK-IN AMPLIFIER) COMMANDS MODEL 5280 53
APPENDIX D MONOCHROMATOR TYPES 55
APPENDIX E SPECTRA 56

TABLE OF CONTENTS

 (Continued)Chapter Page
APPENDIX F NORMALIZED SPECTRA 63
APPENDIX G DATA ACQUISITION PROGRAM OF PL EXPERIMENT 66
REFERENCES 88

LIST OF TABLES

Table Page
2.1 Some Gas Lasers 23
B. 1 Factory Default Settings and Available Configurations for GPIB-PCII Mode 52

LIST OF FIGURES

Figure Page
1.1 Optical Absorption 4
1.2 Radiative Transition from Conduction Band to Valence Band 14
1.3 Valence Subband Structure and Intraband and Transitions 17
2.1 Experiment Setup 22
2.2 Working Principle of a Monochromator 25
3.1 Distribution Curves 31
3.2 Setup for the Experiment to Acquire the Spectrum of PbS Detector 37
3.3 PbS Detector with Globar Lamp 38
3.4 PbS Detector with Globar Lamp (normalized) 38
3.5 Argon Laser Spectrum 40
3.6 Helium-Neon Laser Spectrum 40
3.7 Sample : GaSb, Light Source : Ar Laser 41
3.8 Spectrum for GaSb and Blank Test of Ar Laser 42
3.9 Sample : GaSb, Light Source : He-Ne Laser 43
3.10 Spectrum for Blank Test of He-Ne Laser and GaSb 43
3.11 Sample : InGaAs, Light Source : He-Ne Laser 44
3.12 Spectrum for InGaAs and Blank Test of He-Ne Laser 44
4.1 IEEE488 Start Up Procedure 47
E. 1 Blank Test for Argon Laser 56
E. 2 Blank Test for Argon Laser 56
E. 3 Blank Test for Argon Laser 57
E. 4 Blank Test for Helium-Neon Laser 57
E. 5 Blank Test for Helium-Neon Laser 58
E. 6 Blank Test for Helium-Neon Laser 58

LIST OF FIGURES

(Continued)

Figure Page
E. 7 GaSb Spectrum 59
E. 8 GaSb Spectrum 59
E. 9 GaSb Spectrum 60
E. 10 GaSb Spectrum 60
E. 11 GaSb Spectrum 61
E. 12 InGaAs Spectrum 61
E. 13 InGaAs Spectrum 62
F. 1 Normalized PbS Detector Spectrum 63
F. 2 Blank Test Spectrum for Ar Laser (Normalized) 63
F. 3 Spectrum for GaSb with Normalized PbS Detector Spectrum Applied 64
F. 4 Blank Test Spectrum for He-Ne Laser (Normalized) 64
F. 5 Spectrum for GaSb with Normalized PbS Detector Spectrum Applied 65
F. 6 Spectrum for InGaAs with Normalized PbS Detector Spectrum Applied 65

CHAPTER 1

THE PRINCIPLE OR PHOTOLUMINESCENCE EXPERIMENT

An electron occupying a higher energy state than it would under equilibrium conditions makes a transition to an empty lower energy state and all or most of the energy difference between the two states can be emitted as electromagnetic radiation. Electromagnetic radiation, varying over enormous ranges of wavelength from radio waves to gamma radiation, carry energy through space at a fixed speed of about 3×10^{8} meters per second in vacuo. The narrow range perceived by the eye, together with a small extension into the ultraviolet (UV) and infrared (IR) region, is commonly called "light", and its main requirement for emission is that the system not be at thermal equilibrium with its ambient. This deviation from equilibrium requires some form of excitation. The light emission process is generally called "luminescence".

1.1 Nature of Light

The study of luminescence, those phenomena involving the interaction of light must be take into account. Throughout history, philosophers and scientists have tried to explain what light is; in so doing, they have tested their evolving knowledge of our physical world. Although many early ideas have been proven false, others have been repeatedly verified by experimental tests. It is necessary to use two complementary and apparently contradictory models, by regarding light sometimes as a collection of particles and sometimes as a succession of waves. The wave model explains well the phenomena of reflection, refraction and diffraction without dealing with the absorption of energy. While the particle model can explain the phenomena other than the wave model's, a combination to both models can provide a complete the explanation of light. According to the electromagnetic theory of Maxwell the displacements forming the waves are
varying electric and magnetic fields, the electric and magnetic oscillations taking place in directions at right angles to one another and to the direction of travel. The wave properties are characterized by a frequency v, and a wavelength, λ which are related by the equation,

$$
\begin{equation*}
\lambda \cdot v=c \tag{1-1}
\end{equation*}
$$

where c is the constant velocity of light in vacuo.

To describe the phenomena involving absorption and emission of light it is necessary to invoke the requirements of the Quantum Theory. The basic idea of which is that the energy can only be absorbed in definite units, or quanta. The energy E, carried by a quanta is proportion to the frequency, i.e.,

$$
\begin{equation*}
E=h \cdot v=h \cdot c / \lambda \tag{1-2}
\end{equation*}
$$

where h is Planck's constant (6.624×10^{-27} erg-sec $)$.

1.2 Conceptual Ideas of Light Absorption and Emission of Semiconductor

The electrons are bound to atoms and because of the Uncertainty Principle, we have to treat then electron as a wave as well as a particle. In semiconductor, the valence band contains many electrons and the conduction band has many empty states into which the electrons may be excited. The incident photons with energies greater than the band gap energy are absorbed while photons with energies less than the band gap are transmitted.

The excited electron, after absorbing a photon, may have more energy than energy band gap and resides in the conduction band. Thus, an EHP(electron-hole-pair) is created. The electron and hole created by this absorption process are "excess" nonequilibrium carriers. Due to scattering events, the excited electron loses energy to the lattice until its velocity reaches the thermal equilibrium velocity of other conduction band electrons. Since the hole and the electron are out of balance with their environment, they must eventually recombine. The recombination energy will be given up in the form of light emission. This is so called "photoluminescence". As Figure 1.1 indicates, optical absorption of a photon with $h \nu>\mathrm{E}_{\mathrm{g}}$ (energy gap) : (a) an EHP is created during photon absorption; (b) the excited electron gives up energy to the lattice by scattering events; (c) the electron recombines with a hole in the valence band and gives off a photon. Further, a photon with energy less than the energy gap is unable to excite an electron from the valence band to the conduction band, thus in pure semiconductor, there is negligible absorption of photons with $h \nu<\mathrm{E}_{\mathrm{g}}$. This well explains why some materials are transparent in certain wavelength ranges.[18]

Figure 1.1

Optical Absorption

If the material is sufficiently pure and the temperature is sufficiently low, the electrons and the holes may pair off into excitons which then recombine, emitting a narrow spectral line. In a direct band gap semiconductor, where momentum is conserved in a simple radiative transition, the energy of the emitted photon is simply,

$$
\begin{equation*}
h \nu=E_{g}-E_{X} \tag{1-3}
\end{equation*}
$$

where E_{X} is the binding energy of the exciton.

In an indirect gap semiconductor, since the momentum of the photon $p=E / c$ is negligible, and momentum conservation requires that a phonon be emitted or absorbed to complete the transition. The energy of the emitted or absorbed photon therefore is,

$$
h \nu=E_{g}-E_{X} \pm E_{p}
$$

where E_{p} is the energy of the emitted or absorbed phonon.

The narrow emission spectrum of the exciton can be replicated at several lower photon energies such that,

$$
h \nu=E_{g}-E_{x} \pm m E_{p}
$$

Eq. (1-5)
where m is the number of optical phonons emitted or absorbed per transition.

It should be noted that although the transition with phonon emission is less probable than the direct recombination, the resulting photon has a greater chance to escape because it occurs at a lower photon energy than the direct recombination, i.e., in a region of the spectrum where the semiconductor is more transparent. However, the reabsorption of exciton radiation is not necessarily a loss of energy because, in the process, a new exciton is formed which will provide another opportunity to emit.[5][7][11][17][18][23]

1.3 Modes of Excitation

1.3.1 By Light Absorption

The reciprocal relationships of absorption and emission of light quanta, and their connection with electronic energy levels, have been discussed above. For quantitative experimental work, or for clear thinking on the subject, one deals with the absorption of monochromatic light. The fundamental absorption refers to band-to-band or to exciton transition, i.e., to the excitation of an electron from the valence band to the conduction band. The fundamental absorption, which manifests itself by a rapid rise in absorption, can be used to determine the energy gap of the semiconductor. However, because the transitions are subject to certain selection rules, the estimation of the energy gap from the absorption edge is not a straightforward process -- even if competing absorption process can be accounted for.

If a beam of photons with $h \nu>\mathrm{E}_{\mathrm{g}}$ falls on a semiconductor, there will be some predictable amount of absorption, determined by the properties of material. Assume that a photon beam of intensity I (photons $/ \mathrm{cm}^{2}-\mathrm{s}$) is directed at a sample of thickness l. The beam contains only photons of wavelength λ, selected by a monochromator. As the beam passes through the sample, its intensity at a distance x from the surface can be calculated by considering the probability of absorption within any increment dx . Since a photon which has survived to x without absorption has no memory of how far it has traveled, its probability in any $d x$ is proportional to the intensity remaining at x,

$$
\begin{equation*}
-\mathrm{dI}(\mathrm{x}) / \mathrm{dx}=\alpha \mathrm{I}(\mathrm{x}) \tag{1-6}
\end{equation*}
$$

The solution to this equation is,

$$
\begin{equation*}
I(x)=I \cdot e^{-\alpha x} \tag{1-7}
\end{equation*}
$$

and the intensity of light transmitted through the sample thickness l is,

$$
\begin{equation*}
\mathrm{I}_{\mathrm{t}}=\mathrm{I} \cdot \mathrm{e}^{-\alpha l} \tag{1-8}
\end{equation*}
$$

The coefficient α is called the absorption coefficient and has units of cm^{-1}. This coefficient will of course vary with the photon wavelength and with the material. In a typical plot of a vs. wavelength, there is negligible absorption at long wavelengths (hv small) and considerable absorption of photons with energies larger than E_{g}. According to $\mathrm{Eq} .(1-2)$, the relation between photon energy and wavelength is $\mathrm{E}=\mathrm{hc} / \lambda$. If E is given in electron volts and λ in micrometers, this becomes $E=1.24 / \lambda(e v)$. When electron hole pairs are generated in a semiconductor, or when carriers are excited into higher impurity levels from which they fall to their equilibrium states, light can be given off by the material. Many of the semiconductors are well suited for light emission, particularly the compound semiconductors with direct band gap. For steady state excitation, the recombination of EHPs occurs at the same rate as the generation, and one photon is emitted for each photon absorbed. If carriers are excited by photon absorption, the radiation resulting from the recombination of the excited carrier is called "photoluminescence".[7][11][14][18]

1.3.2 By Electron Impact

This is the means by which the luminescence from mercury- and sodium-, vapour lamps, cathode-ray screens, etc., is excited. The electrons have energies very much larger than
the quantized levels of the outer electrons of atoms and molecules, and by their passage they detach bound electrons which enter the accelerated stream. In the plasma (ionelectron gas) so formed, recombination occurs, and by downward jumps between energy levels light quanta are emitted. Molecules exposed to electron impact, unless very stable, become chemically broken up. And any luminescence observed is due to those products, usually radicals, which have good radiative powers. The term "cathodeluminescence" has been used to describe the effect of electron impact, but has also been applied to several other phenomena of quite different nature. One is the glow at electrodes observed in some electrolyses, which is due to ion-radical recombination. Another is the luminescence excited by application of voltages to thin layers of specially prepared Zinc sulphide, where the light emission is probably due to electronic effects at points of local high potential gradient. Electroluminescence also describes the light produced when a current is passed across a p-n junction of a semiconductor such as gallium arsenide or phosphide; the effect is here due to "recombination" of the charge carriers". To sum up, a high electric field ($\mathrm{E}>2 \times 10^{5} \mathrm{~V} / \mathrm{cm}$) can cause across-the gap ionization of electron of electron-hole pairs. The carriers thus generated are accelerated by the electric field and interact with valence electrons via a collision process which causes an avalanche of electron-hole-pair generation. Some of the pairs recombine radiatively, but because of their high kinetic energy, the emission spectrum is quite broad. However, after the electric field is turned off, the carriers thermalize to the band edges and recombine in a narrow spectrum. [7]

1.3.3 By Heat

Temperature radiation from hot, totally absorbing substances is calculable by Planck's theory and is expressed by the well-known "black body" curves of intensity against wavelength. Imperfectly absorbing materials are equally imperfectly emitting, and their
temperature radiation -- called incandescence in the luminous region, never exceeds in intensity the contours of the corresponding "black body" curve. True luminescence is the emission of greater quantities of light than thermal radiation theory allows, and therefore always involves some momentary disturbance of the thermal equilibrium; in fact, it interferes with the concept of a true temperature. The ambiguous term "thermoluminescence" does not refer to normal temperature emission, but to a special effect found in some crystal phosphors. After these have been excited by light, radioactive exposure, etc., electrons liberated within the crystal become "trapped" (especially at low temperatures) in some way, as at lattice imperfections or foreign ion inclusions. Energy so stored may then sometimes be re-emitted as luminescence when heating drives electrons out of their trapped positions. Illumination by infrared radiation may produce a similar result; this is not due to heating but to the specific absorption of inferred by the traps. The phenomenon is complex because of the several imperfectly understood stages involved, some of which lead to energy degradation instead of emission.[7]

1.3.4 By Chemical Reaction

Radiative recombination of ground state atoms or small radical is rare and weak. The collision time for a bimolecular encounter, about $10^{-13} \mathrm{~s}$, is very short compared with radiative times of $10^{-8} \mathrm{~s}$ or more. Even if collisions are stabilized by a third body, interaction in pairs of, say, \mathbb{H}-atoms, give singlet ground state and triplet excited state molecules, between which radiation is forbidden. In cases where the potential energy curve cross -- come close together with interaction, inverse predissociation may lead to formation of an excited molecule, but the probability of its radiation becomes large only when a number of conditions are fulfilled. Higher energy states of atoms or small radicals, capable of forming excited molecules which radiationally combine with the
ground state, are needed for strong emission effects. For complex oxidation reactions or organic molecules in solution, potential energy surface considerations become less useful. Chemiluminescence reactions in this field are uncommon either because the reaction energy is insufficient of because the molecules present are incapable of radiation, i.e., "nonfluorescent".[7]

1.4 Modes of Emission

The terms "fluorescence" and "phosphorescence" have no strictly agreed meaning, and have been used variously at different times. Emission from atoms excited by light absorption is usually called "atomic fluorescence"; if the atoms start from and return to the ground state, the emission is termed resonance radiation. The atomic electron waves can be said to be in resonance with the absorbed or emitted light waves, of an identical sharp frequency. If light of a different, lower frequency is shone on the gas, the electrons are merely subjected to forced vibrations which slow up the light without real energy transfer -- reffactive index effect. With molecules effects of intermolecular atomic vibrations intrude into the picture. Under conditions of forced vibrations -- use longer wavelength non-absorbed light, the refractive index effect operates for the greater part of the light beam, but a few molecules behave differently. They abstract from the light a small quantity of energy to set their nuclei into vibration, leaving a few light quanta of diminished energy and therefore frequency, whose waves cannot combine with the incident beam, and so emerge in all directions. The spectrum of such light therefore shows a relatively strong line of the incident (monochromatic) light, scattered sideways by local density fluctuations, and having a weak line or lines on the longer wavelength side; the frequency differences give molecular vibration frequencies. This is the Raman Effect, and it is a common phenomenon for all molecules because the "lifetime" of the radiation-matter interaction is less than $10^{-15} \mathrm{~s}$-- too short for any degradatory
processes to occur. The simplest example of light emission from a semiconductor occurs for direct excitation and recombination of an EHP. If the recombination of EHPs occurs at the same rate as the generation, and one photon is emitted for each photon absorbed. Direct recombination is a fast process; the mean lifetime of the EHP is usually on the order of $10^{-8} \mathrm{~s}$ or less. Thus the emission of photons stops within approximately $10^{-8} \mathrm{~s}$ after the excitation is turned off. Such fast luminescent processes are often referred to as fluorescence. In some materials, however, emission continues for periods up to seconds or minutes after the excitation is removed. These slow processes are called phosphorescence, and the materials are called phosphors. An example of slow process is that a material contains a defect level -- perhaps due to an impurity, in the band gap which has a strong tendency to temporarily capture (trap) electrons from the conduction band. In such a material the emission of phosphorescent light persists for a relatively long time after the excitation is removed. In photoluminescence, there is a great deal of confusion concerning the definitions of terms used to discriminate between the different types of long-lived luminescence. Originally phosphorescence was used to describe any long-lived emission, and fluorescence for any short-lived emission. In order that this definition be useful, it was necessary to give a more precise interpretation of long-lived and this was usually done by considering any luminescence with a lifetime greater than $10^{-4} \mathrm{~s}$ as long-lived. However, this presupposes that all luminescence decay is exponential. Therefore, we can come to a conclusion that fluorescence is a luminescence which occurs only during excitation. Phosphorescence is a luminescence which continues for some time after the excitation is terminated.[7][17][18]

1.5 Photoluminescence

Optical excitation (via absorption) produces photoluminescence.

1.5.1 Direct Recombination of Electrons and Holes

Electrons in the conduction band of a semiconductor may make transitions to the valence band -- recombination, an excess population of electrons and holes decays by electrons falling from the conduction band to empty states (holes) in the valence band. Energy lost by an electron-hole-pair in making the transition is given up as a photon. Direct recombination occurs spontaneously; that is, the probability that an electron and a hole will recombine is constant in time. As in the case of carrier scattering, this constant probability leads us to expect an exponential solution for decay of the excess carriers. In this case the rate of decay of electrons at any time t is proportional to the number of electrons and the number of holes at t . The net rate of change in the conduction and electron concentration is the thermal generation rate $\alpha \cdot n_{i}^{2}$ (α is absorption coefficient) minus the recombination rate,

$$
\begin{equation*}
d n(t) / d t=\alpha n_{i}^{2}-\alpha n(t) p(t) \tag{1-9}
\end{equation*}
$$

Let us assume that the excess electron-hole population is created at $t=0$, for example, by a short flash of light, and the initial excess electron and hole concentrations δn and δp are equal. Then as the electrons and holes recombine in pairs, the instantaneous concentrations of excess carriers $\delta n(t)$ and $\delta p(t)$ are also equal. Thus we can write the total concentrations of Eq. (1-9) in terms of the equilibrium values n_{0} and p_{0} and the excess carrier concentrations $\delta n(t)=\delta p(t)$. And because for the intrinsic material at equilibrium, we have $n_{0} \cdot p_{0}=n_{1}^{2}$, therefore,

$$
\begin{align*}
d \delta n(t) / d t & =\alpha n_{1}^{2}-\alpha\left[n_{0}+\delta n(t)\right]\left[p_{0}+\delta p(t)\right] \\
& =-\alpha\left[\left(n_{0}+p_{0}\right) \delta n(t)+\delta n^{2}(t)\right] \tag{1-10}
\end{align*}
$$

This nonlinear equation would be difficult to solve in its present form. However, it can be simplified for the case of low-level injection. If the excess carrier concentrations are small, we can neglect the δn^{2} term. Furthermore, if the material is extrinsic, we can usually neglect the term representing the equilibrium minority carriers. For example, if the material is p-type $\left(p_{0} \gg n_{0}\right)$, Eq. $(1-10)$ becomes,

$$
\begin{equation*}
\mathrm{d} \delta \mathrm{n}(\mathrm{t}) / \mathrm{dt}=-\alpha \mathrm{p}_{0} \delta \mathrm{n}(\mathrm{t}) \tag{1-11-n}
\end{equation*}
$$

if the material is n type $\left(n_{0} \gg p_{0}\right)$ then,

$$
\mathrm{d} \delta \mathrm{p}(\mathrm{t}) / \mathrm{dt}=-\alpha \mathrm{n}_{0} \delta \mathrm{p}(\mathrm{t})
$$

Eq. (1-11-p)

The solution to Eq. (1-11-n) is an exponential decay from the original excess carrier concentration δn,

$$
\begin{align*}
\delta n(t) & =\delta n \cdot e^{-\alpha p_{o} t} \\
& =\delta n \cdot e^{-t / \tau_{n}} \tag{1-12-n}
\end{align*}
$$

And, the solution to Eq. $(1-11-p)$ is,

$$
\begin{aligned}
\delta p(t) & =\delta p \cdot e^{-\alpha n_{0} t} \\
& =\delta p \cdot e^{-t / \tau_{n}}
\end{aligned}
$$

Eq.(1-12-p)
(a) Direct Gap Transition

(b) Indirect Gap Transition

Figure 1.2
Radiative Transition from Conduction
Band to Valence Band

Excess electrons in a p-type semiconductor recombine with a decay constant $\tau_{\mathrm{n}}=\left(\alpha \mathrm{p}_{\mathrm{o}}\right)^{-1}$, called the recombination lifetime. Since the calculation is made in terms of the minority carriers, τ_{n} is often called the minority carrier lifetime. The decay of excess holes in n-type material occurs with $\tau_{\mathrm{p}}=\left(\alpha \mathrm{n}_{\mathrm{O}}\right)^{-1}$. In the case of direct recombination, the excess majority carriers decay at exactly the same rate as the minority carriers. [13][17][18][21]

Figure 1.2 is the diagram of direct and indirect transition in the semiconductor.

1.5.2 Indirect Recombination; Trapping

In column IV semiconductors and as well as some certain compound semiconductors, the probability of direct electron-hole recombination is very small. There are photons with energy equal to energy gap given off by materials such as Si and Ge during recombination, but this radiation is very weak and may be detected only by sensitive equipment. The vast majority of the recombination events in indirect materials occur via recombination levels within the band gap, and the resulting energy loss by recombining electrons is usually given up to the lattices as heat rather than by the emission of photons. Any impurity or lattice defect can serve as a recombination center if it is capable of receiving a carrier of one type and subsequently capturing the opposite type of carrier, thereby annihilating the pair. The carrier lifetime resulting from indirect recombination is somewhat more complicated than is the case for direct recombination, since it is necessary to account for unequal times required for capturing each type of carrier. In particular, recombination is often delayed by the tendency for a captured carrier to be thermally reexcited to its original band before capture of the opposite type of carrier can occur. When a carrier is trapped temporarily at a center and then is reexcited without recombination taking place, the process is often called "temporary
trapping". Although the nomenclature varies somewhat, it is common to refer to an impurity or defect center as a trapping center (or simply trap) if, after capture of one type of carrier, the most probable next event is re excitation. If the most probable next event is capture of the opposite type of carrier, the center is pre-dominantly a recombination center. The recombination can be slow or fast, depending on the average time the first carrier is held before the second carrier is captured. In general, trapping levels located deep in the band gap are slower in releasing trapped carriers than are the levels located near one of the bands. This results from the fact that more energy is required, for example, to reexcite a trapped electron from a center near the middle of the gap to the conduction band than is required to reexcited an electron from a level closer to the conduction band.[13][17][18][21]

1.5.3 Intraband Transitions

In addition to the conduction-to-valence band transition, electron transitions in a semiconductor may occur within the same energy band. As is shown in Figure 1.3.

Figure 1.3

Valence Subband Structure and
Intraband Transitions[11]

A. p-type semiconductors --

The valence band of most semiconductors consists of three subbands which are separated by spin-orbit interaction. In p-type semiconductors, when the top of the valence band is populated with holes, it is possible to make three types of photon absorbing transitions: (a) from the light-hole band to the heavy-hole band; (b) from the split-off band to the heavy-hole band; an (c) from the split-off band to the light-hole band. These transitions have been observed in a number of semiconductors, and their interpretation can be verified by changing the position of the Fermi level, i.e., by doping. This absorption is proportional to the hole density, and it disappears when the material is made n-type. Because of selection rules, the transition probabilities between the valence subbands vanish at $\mathrm{k}=0$ but increase with k^{2}.[11][17]

B. n-type semiconductors --

In an n-type semiconductor intraband transitions between the set of conduction subbands are conceivable. The basic idea is about the same as p-type semiconductors. The absorption peak has been observed in many experiments, this peak increases with the electron concentration. Indirect transitions between minima at different k of the same conduction subband have been proposed to explain a bump in the low-energy absorption edge of other n-type material.[11][17]

1.6 Quantum Yields

Because of the nonradiational ways in which excited electrons can return to the ground state, fewer quanta are usually emitted as luminescence than are absorbed; the ratio of τ / τ_{0} (τ is the measured lifetime and τ_{0} is the radiational lifetime) is called quantum yield. It is very difficult to measure the quantum yield directly because emission is in all directions (usually not equally), and for molecules is a wide band which has to be measured with detectors of unequal wavelength sensitivity. Once agreed values for certain standard substances are available, however, matters are simplified, and direct comparison of spectral intensities under equal conditions of illumination and light absorption gives the magnitudes sought. Quantum yields of emission depend on the relative rates of the processes; rates of emission depend on more complex factors which include the proximity of the levels. Theoretical treatment of degradation is very difficult. We can qualitatively explain facts about yields from a knowledge of the nature and relative positions of energy levels, which is obtained from absorption and emission spectral data, but quantitative prediction has yet to be developed. [6][10][13]

1.7 Quantum Efficiency

It was Einstein who emphasized the importance of determining the quantum efficiency when investigating the mechanism of photochemical reactions. The quantum efficiency may be defined in terms of the number of molecules of reactant that disappear, or the number of molecules of a particular product that are produced, per quantum of light absorbed, thus,
quantum efficiency of photoluminescence $=$ einsteins emitted / einsteins absorbed
where one einstein is equal to 6.023×10^{23} quanta (Nhv-erg).

For a given input excitation energy, the radiative recombination process is in direct competition with the nonradiative process. The quantum efficient is the fraction of the excited carriers that combine radiatively to the total recombination and may be written in terms of the lifetimes as,

$$
\begin{align*}
\text { quantum efficiency } & =\mathrm{Rr} / \mathrm{R} \\
& =\left(1 / \tau_{\mathrm{r}}\right) /\left(1 / \tau_{\mathrm{r}}+1 / \tau_{\mathrm{nr}}\right) \\
& =\tau_{\mathrm{nr}} /\left(\tau_{\mathrm{nr}}+\tau_{\mathrm{r}}\right) \tag{1-14}
\end{align*}
$$

where Rr and R are the radiative recombination rate and total recombination rate, respectively. Whereas τ_{nr} is the nonradiative lifetime and τ_{r} is the radiative lifetime.

The recombination rate and lifetime of minority carriers are related to p-type layers by,

$$
\begin{equation*}
\mathrm{R}=\left(\mathrm{n}-\mathrm{n}_{\mathrm{O}}\right) / \tau \tag{1-15}
\end{equation*}
$$

and to n-type layers by,

$$
\begin{equation*}
\mathrm{R}=\left(\mathrm{p}-\mathrm{p}_{0}\right) / \tau \tag{1-16}
\end{equation*}
$$

where n_{0} and p_{0} are electron and hole concentrations in thermal equilibrium, respectively, and n and p are electron and hole concentrations under optical excitations, respectively.

The minority carrier lifetime is given by,

$$
\tau=\tau_{\mathrm{r}} \cdot \tau_{\mathrm{nr}} /\left(\tau_{\mathrm{nr}}+\tau_{\mathrm{r}}\right)
$$

Eq.(1-17)

Eq. (1-14) shows that the radiative lifetime τ_{r} needs to be small to give high quantum efficiency.[6][10][13]

CHAPTER 2

SETUP OF PHOTOLUMINESCENCE EXPERIMENT

2.1 Apparatus and Principles

An interference band pass filter is used to guarantee that the exciting light source has a single wavelength, either 488 nm (blue) or 514.5 nm (green) for Ar ion Laser and 632.8 nm (red) for $\mathrm{He}-\mathrm{Ne}$ Laser.

Our experimental setup is shown in Figure 2.1. The laser beam (filtered), First, passes through an aperture, second, is chopped, and, lastly, is focused onto the sample. The photoluminescence by this excitation is focused by lens L2 onto the entrance slit of the monochromator. The PbS detector is employed here to detect the light emerging from the exit slit of the monochromator. The output from the PbS detector is fed to a lock-in amplifier to process the signal and to communicate with the computer via GPIB (General Purpose Instrument Bus) Card for the purpose of data acquisition. The computer also control the monochromator via JY488 interface equipped controller.

Figure 2.1

Experiment Setup

* PL might also include nonlasing optical lines from the laser beam.

2.2 Light Sources

The various gas lasers used as xciting light sources are listed in table 2.1.

Table 2.1 Some Gas Lasers *continuous wave, cw .

Gas or Gas Mixture	Active Species	Principal Laser Wavelengths (μ)	Remarks
$\mathrm{He}-\mathrm{Ne}$	Ne	$0.6328,1.15,3.39$	cw^{*}
Ne	Ne	$0.5401,0.6143,1.15$	pulsed high gain
Ne	Ne^{+}	$0.3323,0.3378,0.3392$	cw or pulsed
Ar	Ar^{+}	$0.4765,0.488,0.5145$	cw or pulsed
Kr	Kr^{+}	$0.5208,0.5309,0.5862,0.6471$	cw or pulsed
$\mathrm{Xe}-\mathrm{He}$	Xe^{+}	$3.506,5.574$	cw high gain
Xe	Xe^{+}	$0.4603,0.5419,0.5971$	cw or pulsed
$\mathrm{Ne}-\mathrm{O}_{2}, \mathrm{Ar}^{-} \mathrm{O}_{2}$	O	0.8446	cw
N_{2}	$\mathrm{~N}_{2}$	0.3371	pulsed high gain
$\mathrm{Air}, \mathrm{N}_{2}$	$\mathrm{~N}^{+}$	0.5679	pulsed
$\mathrm{He}-\mathrm{Cd}$	Cd^{+}	$0.3250,0.4416$	cw high efficiency

The argon ion laser, which we used in this experiment, generates visible light at several wavelengths in blue and green region ($488 \mathrm{~nm} \sim 514.5 \mathrm{~nm}$). And the helium-neon laser is chosen at 632.8 nm (red). Both of the lasers are cw (continuous wavelength).

2.3 Monochromator

2.3.1 Working Principle

All monochromator systems contain the following components (see figure 2.2). An entrance slit, W_{1}, of adjustable width; a collimator, M_{1}, which may be a mirror or a lens; a dispersing element, G , which may be a grating or a prism; a mirror, M_{2}, or a lens, to focus the dispersed light; and an exit slit, W_{2}, also of adjustable width. We shall assume for the sake of simplicity that the heights of W_{1}, W_{2} and the focal length of mirror Ml
and M2 are equal. Light from the source S is passed via the lens, L_{1}, to the entrance slit, W_{1}, of the monochromator. The diverging light from $W 1$ is rendered parallel by the mirror or the collimator, M_{1}, and passed to the dispersing element, G. Different wavelengths of light leave G at slightly different angles and the dispersed light is focused by the mirror or lens, M_{2}, on the plane VR , so that each specific wavelength produces an image of the entrance slit at some point along VR. The images corresponding to the various wavelengths in the light from the source thus form a band of light varying in wavelength from one end of VR to the other, i.e. a spectrum of the source. The exit slit W_{2}, is situated at a suitable point along VR and thus selects a narrow band of wavelengths which are passed to the specimen (or the detector as the case may be), via another lens L_{2}, or other suitable optics. On rotating the dispersing element G, the spectrum VR moves laterally across the exit slit so that any particular wavelength region can be made to pass to the specimen or the detector. The wavelength may be selected by manual rotation of G, or more frequently in spectrometers, G may be rotated at a constant speed by a synchronous motor so that the complete spectrum can be scanned automatically and presented on the computer screen.

Grating

Figure 2.2
Working Principle of a Monochromator

Refer to Figure 2.2, let F be the aperture of the monochromator defined by,

$$
\begin{equation*}
F=d / f \tag{2-1}
\end{equation*}
$$

where f is the focal length of the collimating mirror M_{1}, and d is the effective width of the dispersing element.

The relationship between u and v is then given by the lens magnification formula as follows,

$$
\begin{equation*}
\mathrm{v} / \mathrm{u}=\mathrm{h} / \mathrm{s} \tag{2-2}
\end{equation*}
$$

where h is the height of the entrance slit and s the height of the source.

The cross section of the parallel beam of rays from M_{1} dispersed by the prism or grating, is assumed to be square, and hence its area is d^{2}. The solid angle, θ_{2}, subtended by the effective area of M_{1} at the entrance slit, W_{1}, is thus given approximately by,

$$
\theta_{2}=d^{2} / f^{2}=\mathrm{F}^{2}
$$

Eq. (2-3)

From Eq.(2-2):

$$
\begin{equation*}
\theta_{1} / \theta_{2}=v^{2} / u^{2}=h^{2} / s^{2} \tag{2-4}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\theta_{1}=F^{2} h^{2} / s^{2} \tag{2-5}
\end{equation*}
$$

If the area of the source is A_{u}, the area of the image of the source, A_{V}, on the plane of the entrance slit is given by,

$$
\begin{equation*}
A_{V} / A_{u}=h^{2} / \mathrm{s}^{2} \tag{2-6}
\end{equation*}
$$

Hence, the intensity of lumination on the plane of the entrance slit is given by,

$$
\begin{equation*}
\mathrm{I}_{\lambda} \theta_{1} / \mathrm{A}_{\mathrm{V}}=\mathrm{I}_{\lambda} \mathrm{F}^{2} / \mathrm{A}_{\mathrm{U}} \quad \text { einstein } \mathrm{mm}^{-2} \mathrm{sec}^{-1} \mathrm{~nm}^{-1} \tag{2-7}
\end{equation*}
$$

For low values of F, it is not possible to increase the intrinsic intensity from a source by focusing with a lens. What we have achieved with the lens is to ensure that the entrance slit is filled with light no matter how great its size in relation to the size of the source. If the entrance slit of the monochromator is opened to a width w_{1}, the amount of light passing through the slit and collected by the effective area of M_{1} is,

$$
\begin{equation*}
\left(I_{\lambda} / A_{u}\right) \mathrm{F}^{2} \mathrm{hw}_{1} \quad \text { einstein } \mathrm{sec}^{-1} \mathrm{~nm}^{-1} \tag{2-8}
\end{equation*}
$$

Thus to collect the greatest possible amount of light at the entrance slit we require a source with the greatest possible value of $I \lambda / A_{u}$, i.e. the greatest intrinsic brightness (einsteins $\mathrm{mm}^{-2} \mathrm{sec}^{-1}$). For a source of a given power, this implies the smallest area of source, and with a shape to match that of the fully opened entrance slit.

23.2 Light Gathering Power

To measure the amount of light within a given band width that the monochromator will pass from a source of given brightness, we have to define the light gathering power (LGP),

$$
\begin{equation*}
\mathbb{L G P}=\mathrm{F}^{2} \mathrm{hm}=\alpha \mathrm{hd}^{2} / \mathrm{f} \tag{2-9}
\end{equation*}
$$

where α is the angular dispersion, and m is linear dispersion of the monochromator usually is expressed in millimeters per nanometer.

The relationship between α and m is given as follows,

$$
\begin{equation*}
m=\alpha f \tag{2-10}
\end{equation*}
$$

where f is the focal length of the mirror, M_{2}, and let α is measured in radians, the distance, m, along VR occupied by the unit band of wavelengths is

From Eq.(2-9), therefore, the light gathering power depends on the slit height, h , the focal length, f , the angular dispersion, α, and the working height, d , of the prism or grating, and proportions to the square of the aperture (f^{2}), slit height, h and the linear dispersion (m).

The experiment use a grating monochromator. Therefore, to isolate high intensities of light of comparatively broad band width we use large LGP.

2.4 Filters

Filters may be used as an inexpensive substitute for a monochromator of large LGP value, or they may be used in conjunction with a monochromator to increase its efficiency. They may be used for isolating a band of wavelengths of exciting light when measuring a luminescence emission spectrum, or for isolating the required luminescence band when measuring an excitation spectrum. In our experiment filter is used for both purpose and monochromator is then dispensed with entire. It should be noted that when high intensities of exciting light are required it is sometimes an advantage to use a broad band pass filter to separate a combination of two or more spectrum lines. To obtain a sufficiently narrow band-pass, it is customary to combine a broad band-pass filter having the required long-wavelength cut-off with a suitable short-wavelength cut-off filter. If a
weak luminescence spectrum in one spectral region has to be measured in the presence of a very intense luminescence in another spectral region, it is often desirable to use a filter to prevent the intense luminescence from entering the analyzing monochromator. Because in this experiment we use a laser beam as a light source with a very narrow spectrum, or in fact, a line spectrum. Therefore, instead of using a monochromator to isolate the exciting light, we use a filter. Furthermore, for high accuracy measurement, we use long-pass cut-on filter, because in our experiment we expect to have photoluminescence in IR range.

2.5 Detector

There are three types of physical instruments that are generally used to detect or measure light in the visible and ultra-violet regions of the spectrum -- the thermopile, the various types of photo-cell, and the photo-electron multiplier tube (photomultiplier). For the measurement of photoluminescence, particularly at low intensity, the photomultiplier is used almost exclusively because of its extremely high sensitivity, but its sensitivity falls dramatically at the wavelength beyond 1.1 micrometer. Therefore in our experiment (IR range), we tried to use a pyroelectric detector as the standard detector because it is a very low noise, stable, (within 0.2μ to $5 \mu)$ detector.[20] Unfortunately, this experiment did not succeed because of undetectable signal. Next we turned to a PbS detector which is a photoconductive type of detector. Because the PbS detector does not have a flat response. We need to obtain the spectral dependence of the response of the PbS detector and normalize it.

CHAPTER 3

CALIBRATION OF PHOTOLUMINESCENCE EXPERIMENT

3.1 Calibration of Emission Spectra

When the monochromator is scanned at constant slit width and constant photomultiplier sensitivity, the curve obtained is the apparent or uncorrected emission spectrum. Each of the component will contribute signal which is undesired to the actual spectrum; we only consider three factors here, light source, monochromator and detector (PbS detector). To determine the true spectrum, the apparent curve has to be corrected under the consideration of those three factors by using Eq.(3-1).

$$
\begin{equation*}
I_{\text {normalized }}=I_{\text {read back }} / M_{n} \cdot D_{n} \tag{3-1}
\end{equation*}
$$

where I is the intensity, M_{n} is the normalization coefficient for the monochromator and so is D_{n} for the detector. All of them are wavelength-dependent.

(a). 500 K black body radiation light source (BBRLS).

(b). Read back PL spectrum (uncorrected) depends on the instruments we used to measure it.

(c). Real PL spectrum will be distorted by the gross noise.

Figure 3.1
Distribution Curves

Figure 3.1(a) illustrates the distribution curve of black body radiation at 500 K , it is a pretty good ideal light source because we can predict the behavior easily by Planck's

Law. The experiment was not feasible because the light source is in the invisible IR range, making the alignment very difficult. Therefore, we use globar to do the calibration of the detector. Figure 3.1(b) shows that the component might contribute noise to the real signal and end up with distorted spectrum. Calibration is very important in order to get a correct spectrum, especially when a flat-like part of the luminescence spectrum is distorted by gross noise with peaks which can seriously affect our results as shown in Figure 3.1(c).

The following is the block diagram for the three components that we are using in the experiment, and need to be take into account when we are trying to correct the spectrum.

We need to calibrate each component individually in any event. Block diagrams are shown as follows,

To calibrate monochromator -- M_{n} :
We use globar as light source and pyroelectric detector as standard detector to calibrate monochromator,

To calibrate detector $-\mathrm{D}_{\mathrm{n}}$:
Employ the calibrated monochromator that we have done from last procedure and black body radiation light source to calibrate detector (PbS detector).

To calibrate light source :
Since the monochromator and the detector have been calibrated, the light source thus can also be calibrated.

3.2 The Radiation Laws of Stefan, Wien and Planck

The total radiant flux per second from a black body (full) radiator maintained at a temperature TK (where T_{O} is the temperature of the surroundings) is given by Stefan's equation,

$$
\mathrm{M}=\sigma\left(\mathrm{T}^{4}-\mathrm{T}_{0}{ }^{4}\right)
$$

Eq.(3-2)
where M is radiant emittance in the unit of watt $/ \mathrm{m}^{-2}$, and $\sigma=5.67 \times 10^{-8} \mathrm{~W} \cdot \mathrm{~m}^{-2} \cdot \mathrm{k}^{-4}$.

Within the wavelength interval λ to $(\lambda+d \lambda)$, the energy per unit volume is,

$$
E_{\lambda} d \lambda=C_{1} \lambda^{-5} d \lambda / \exp \left(C_{2} / \lambda T\right)-1
$$

$$
\begin{gathered}
\mathrm{C}_{1}=8 \pi \mathrm{hc}, \mathrm{C}_{2}=\mathrm{hc} / \mathrm{k} \\
\mathrm{c}: \text { speed of light, } \mathrm{k}: \text { Boltzmann constant, } \mathrm{h}: \text { Planck's constant }
\end{gathered}
$$

For a given value of T, E_{λ} will be a maximum at a certain wavelength λ_{m}. By differentiating Eq.(3-3) with respect to λ and equating to zero gives the equation of Wien,

$$
\lambda_{\mathrm{m}} \mathrm{~T}=\mathrm{c} \cdot \mathrm{~h} / 4.965
$$

Eq.(3-3)

Eq.(3-4)
where $\lambda_{\mathrm{m}} \mathrm{T}$ is recognized as Wien's constant.

Therefore,

$$
\begin{equation*}
\lambda_{\mathrm{m}} \propto \mathrm{~T}^{-1} \tag{3-5}
\end{equation*}
$$

Eq.(3-2) the correction is needed because the thermal emissivities are not unit,

$$
M=\varepsilon \sigma\left(T^{4}-T_{0}^{4}\right)
$$

Eq.(3-6)
where ε is the emissivity.[5][16]

Planck's great contribution in the field of blackbody radiation was to treat the energy of the electromagnetic standing waves, oscillating sinusoidally in time, as a discrete instead of a contimous quantity. This resulted in a successful explanation of blackbody radiation. Planck's blackbody spectrum obtained from his theory is given in Eq.(3-7). The experimental results are in complete agreement with Planck's formula at all temperature. See Figure 3.1(a).

$$
\rho_{T}(v) d v=\frac{8 \pi v^{2}}{c^{3}} \frac{h v}{e^{\frac{h v}{k T}-1}} d v
$$

$$
E q(3-7)
$$

$$
v=c / \lambda,
$$

$$
\rho_{T}(\lambda) d \lambda=\frac{8 \pi h c}{\lambda^{5}} \frac{d \lambda}{e^{\frac{h k T}{\lambda k}-1}}
$$

$$
\operatorname{Eq}(3-8)
$$

It is convenient in analyzing experimental results to express the Planck blackbody spectrum in terms of wavelength λ rather than frequency v. See Eq. (3-8). [16]

3.3 Experiment

A. Use $\mathrm{Ar}+\operatorname{Laser}(\lambda=514.5 \mathrm{~nm})$ and $\mathrm{He}-\mathrm{Ne}$ Laser $(\lambda=632.8 \mathrm{~nm})$ as the light source.

A cw (continuous wavelength) laser beam differs from conventional sources is that it is highly monochromatic, extremely intense, and in some cases polarized.
B. Samples:

1. Material : InGaAs, GaAs as substract, wavelength of photoluminescence : 1.0μ
2. Material : $\mathrm{GaSb}, \mathrm{GaSb}$ as substract, wavelength of photoluminescence : $I_{\text {peak }}(1.56 \mu)$
C. Apparatus
3. Monochromator : Model \# HR320 (Instrument SA, Inc.). Grating change from $1200 \mathrm{l} / \mathrm{mm}$ to $300 \mathrm{l} / \mathrm{mm}$; actual wavelength thus should multiply by 4 .
4. JY488/SPEX488 Interface for Spectrometer Controller to communicate with computer via GPIB
5. Detector: PbS detector.
6. Lock-in Amplifier : Model \# 5208 (EG\&G Brookdeal Electronics).
7. (a) 400 mW Argon Ion Laser (457-514 nm); Laser Power--0.2 V/mW, tuned at the wavelength of 514 nm (green).
(b) 15 mW Helium-Neon Laser (632.8 nm).
(c) Globar (IR emitter).
8. Interference Filter : Removes any undesired wavelengths from the laser beam, guarantee that the wavelength passing through is unique.
9. Chopper : Model \# CTX-534 (Laser Precision Corp.); frequency -- 100~200 Hz.
10. Computer: IBM XT ${ }^{\text {m }}$ with GPIB interface card.
D. Temperature : Room temperature (293K).

3.3.1 PbS Detector

Figure 3.2
Setup for the experiment to Acquire the Spectrum of PbS Detector

To compare the photoluminescence spectra with or without applying the spectrum of PbS detector can help us to determine the influence of the detector to the photoluminescence spectra. As indicated in Figure 3.2, we use globar to get the spectrum of PbS detector from 960 nm to 3240 nm , assuming that the spectrum of the globar in the above range is flat (according to the manufacturer's catalog, the spectrum of the globar in the range of $1.5 \mu \mathrm{~m} \sim 4 \mu \mathrm{~m}$ is nearly flat). [20] Therefore, the normalized spectrum of the PbS detector can be obtained by dividing the intensity of each point of the curve by the maximum intensity. Figure 3.3 is the spectrum of PbS detector and, Figure 3.4 is the normalized spectrum.

Figure 3.3

PbS Detector with Globar Lamp

Figure 3.4
PbS Detector with Globar Lamp
Normalized spectrum

3.3.2 Blank Test for Argon Ion Laser and Helium-Neon Laser

We need to process blank test to find out the spectrum of the laser beams before we proceed the experiment with the sample. The spectra obtained from this procedure are used to compare with the photoluminescence spectra we are going to get later on for the purpose of finding the real photoluminescence spectrum. Setup the equipment as indicated in Figure 2.1, instead of using sample, we put aluminum plate to reflect laser beam, because we can't expect photoluminescence for aluminum in \mathbb{R} at room temperature (293 K).

a. Argon Ion Laser :

Process the test through the range of $1.0 \mu \mathrm{~m} \sim 2.7 \mu \mathrm{~m}$. The result is as follow,
There are four peaks found within this range,

$$
\begin{aligned}
& 1032-1072^{*} \mathrm{~nm}(\text { gain : } 5 \mathrm{mV} \text {) } \\
& 1520-1600^{*} \mathrm{~nm}(\text { gain : } 1 \mathrm{mV} \text {) } \\
& 2060-2100^{*} \mathrm{~nm}(\text { gain : } 20 \mathrm{mV} \text {) } \\
& 2560-2620^{*} \mathrm{~nm}(\text { gain : } 50 \mathrm{mV} \text {) }
\end{aligned}
$$

Figure 3.5 is one of the spectrum in the range of $1520-1600 \mathrm{~nm}$, and others are in appendix E .
b. Helium-Neon Laser :

Process the test through the range of $1.26 \mu \mathrm{~m} \sim 2.60 \mu \mathrm{~m}$, there are three peaks found,

$$
1260-1320^{*} \mathrm{~nm}(\text { gain : } 200 \mu \mathrm{~V})
$$

$$
1900-1960^{*} \mathrm{~nm}(\text { gain : } 500 \mu \mathrm{~V})
$$

$$
2520-2600 * \mathrm{~nm}(\text { gain : } 5 \mathrm{mV} \text {) }
$$

Figure 3.6 is one of the spectrum in the range of $1260-1320 \mathrm{~nm}$, and others are in appendix E .

Figure 3.5
Argon ion Laser

Figure 3.6
Helium-Neon Laser

3.3.3 GaSb Sample

Set up all the devices, components and peripherals as was shown in Figure 2.1. Then choose GaSb as the sample. We expect to have photoluminescence at the wavelength around 1.56μ, which is in the infrared region.
a. Use Argon Ion Laser as Light Source:

Scan from 1.0μ to 2.7μ, four peaks related to blank test were found,

$$
\begin{aligned}
& 1032-1112^{*} \mathrm{~nm}(\text { gain : } 1 \mathrm{mV}) \\
& 1544-1600^{*} \mathrm{~nm}(\text { gain } 200 \mu \mathrm{~V}) \\
& 2040-2120^{*} \mathrm{~nm}(\text { gain : } 10 \mathrm{mV}) \\
& 2548-2628^{*} \mathrm{~nm}(\text { gain : } 20 \mathrm{mV})
\end{aligned}
$$

$1544-1600 \mathrm{~nm}$ is the range that we expect to have photoluminescence. In comparison of the spectrum of blank test and the spectrum of sample GaSb in this range, it does contain deviation. Nonetheless, there are no differences between both in other ranges. Figure 3.7 is one of the spectra and others are in appendix E. Figure 3.8 is the comparison between the blank test of argon ion laser and GaSb spectrum.

Figure 3.7
Sample : GaSb, Light Source : Ar Ion Laser

Figure 3.8
(a) Spectrum for GaSb , (b) Spectrum for the Blank Test of Ar Ion Laser
b. Use Helium-Neon Laser :

Scan from $1.24 \mu \mathrm{~m}$ to $2.6 \mu \mathrm{~m}$, three peaks related to blank test were found,

$$
\begin{aligned}
& 1240-1320^{*} \mathrm{~nm}(\text { gain : } 10 \mathrm{mV} \text {) } \\
& 1900-1960^{*} \mathrm{~nm}(\text { gain : } 50 \mathrm{mV} \text {) } \\
& 2520-2600^{*} \mathrm{~nm} \text { (gain : } 2 \mathrm{mV} \text {) }
\end{aligned}
$$

Figure 3.9 is one of the spectra and others are in appendix E. Figure 3.10 is the comparison between the blank test of $\mathrm{He}-\mathrm{Ne}$ laser and GaSb spectrum in the same range.

Figure 3.9
Sample: GaSb, Light Source: He-Ne Laser

Figure 3.10
(a) Spectrum for the Blank Test of He-Ne Laser, (b) Spectrum for GaSb

3.3.4 InGaAs Sample

Scan from $1.0 \mu \mathrm{~m}$ to $2.6 \mu \mathrm{~m}$, with He-Ne Laser as light source,

$$
\begin{aligned}
& 1272-1312^{*} \mathrm{~nm}(\text { gain }: 2 \mathrm{mV}) \\
& 1900-1952^{*} \mathrm{~nm}(\text { gain }: 2 \mathrm{mV})
\end{aligned}
$$

2544-2620* nm (gain : 10mV)
Figure 3.11 is one of the spectra and others are in appendix E. Figure 3.12 is the comparison between the blank test of $\mathrm{He}-\mathrm{Ne}$ laser and InGaAs spectrum.

* The data was acquired via the application of BASIC program in appendix G.

Figure 3.11
Sample : InGaAs, Light Source : He-Ne Laser

Figure 3.12
(a) Spectrum for InGaAs, (b) Spectrum for the Blank Test of He-Ne Laser

CHAPTER 4

DATA ACQUISITION

Refer to Figure 2.1 The photoluminescence emitted from the sample is detected by the photomultiplier, then we can get read-out signal from the lock-in amplifier. While, the monochromator is controlled by the spectrometer. GPIB is the interface card to make communication between peripheral devices and the computer via IEEE488 interface bus (in the experiment, lock-in amplifier and spectrometer are the devices we need to make connection to). We use BASIC as the coding language to write the software to control all the devices and acquire data. We need to send command to the spectrometer about where to start scan, where to stop scan, and scan speed, then the spectrometer controls monochromator. Meanwhile, also read back the signal from the lock-in amplifier, plot the uncorrected spectrum on screen and stores it. The main task we are trying to do is to have real time data acquisition, data averaging and displaying. Thereafter, employ the spectrum and datum we obtained to calibrate and normalize all the components, eventually get the real spectrum.

4.1 IEEE488 Communication with a Computer

IEEE488 interface bus acts just like RS232 serial. Via GPIB we cad connect up to 32 devices. However, depending on the configuration of the interface board may limited to 16 devices. First thing after we install our GPIB card and softwares is to configure IEEE488 by running the software named install.exe. Just follow the instruction to setup all the configuration required to use $\mathbb{N E E 4 8 8}$ interface bus. The optional 488 interface is designed as an IEEE488 Talker/Listener. The primary IEEE488 address is set at the factory to 1 , however, it can be reconfigured with a command to set the address from 1
to 31 . DEE488 can take control of the instrument at any time by asserting the REM line. If IEEE488 is initializing the system, the entire auto-baud sequence used for serial communication is skipped. The system is automatically forced into "INDEPENDENT MODE", which means that all the parameters needed to perform the experiment are sent at one time. These parameters include the monochromator positions, integration time, and gains. Once the experiment is defined in this manner using the command SET SCAN PARAMETERS, the command START SCAN can be issued. The host program, at this point, is free to perform other tasks until the scan is finished. If desired, data can be read "on the fly" as the scan is progressing, or after the scan is completed. For TIME BASE scans, the results will be much better if the data is read after completion of the scan, removing the uncertain host communication time from the interval between data points. For less time critical experiments, however, data can easily be read as soon as it is acquired in hardware. When controlling the DataScan from a PC program, the "INDEPENDENT ID" character (which is ASCII character 248 in DECIMAL, F8 in HEX) would be sent to force the DataScan into "INDEPENDENT MODE". This is the mode where it expects to receive the commands as a string of parameters to set up the instrument to run autonomously without host intervention. After all these have been done, the DataScan receives this "INDEPENDENT ID" character, it responds with the EQUAL character ("="). At this point you must send the character string "O2000" (the letter ' O ', followed by the numbers ' $2 \prime^{\prime}, ~ 0 '^{\prime}, ~ 0 '^{\prime}, ~(0$ '), followed by the NULL character (which is 0 in DECIMAL, 0 in HEX). This transfers control to the main SPEX232/DataScan program, residing in Flash RAM or EPROM in the instrument. The instrument will respond with an ASTERISK character $\left({ }^{*}\right)$ to acknowledge that it is in the Independent Mode. At this point you are ready to send the more interesting commands. Fig. 4-1 is the flowchart of IEEE488 start up procedure. Also refer to appendix G, the

BASIC program for this experiment. At the first 100 lines, they are the communication establishing procedures.[3][19]

Figure 4.1
IEEE488 Start Up Procedure [19]

***** Notes on Figure 4.1 :

A: Send decimal value 222 . This will force a reboot if hung from a previous run.
B: Send WHERE AM I command <SPACE> response will be "B" (for BOOT) or "F" (for MAIN) depending on the previous state of the controller.

C: Send "O2000" + NULL. Transfers control from the BOOT to the MAIN program. You must send the NULL.[19]

4.2 Establishing GPIB Communications

4.2.1 Install GPIB and Setup

The driver must be installed via computer's config.sys file. Connect GPIB cable between the interface board in the computer and SPEX488 or DS488. If other devices are to be used on the same bus, it is recommended that they be disconnected temporarily, to reduce the possible sources of problems while establishing communication for the first time. Run the ibconf.exe file and set the configuration as shown in appendix A Assume that the first device name as DEV1.[3][19]

4.2.2 Test GPIB Communications

Run ibic.exe file, and issue these commands at the : prompt,
IBFIND GPIB0 Find the PCII board in the PC
IBFIND DEV1 Find the DS488 or SPEX488 at address 1
IBWRT " " Send one space character (must be enclosed in Quotation marks)

IBRD 1 Read 1 character.

If succeeded, should received a \mathbb{B} or an \mathbb{F}, otherwise, will received error message. To gain further assurance of communication to the instrument, run $h w c f g 488$. exe file by typing "hwcfg488 1" will read the configuration from the nonvolatile memory in the DS488 or SPEX488. Then will see hardware configuration screen on the monitor. Press [F8] key to print out the configuration for future need.

CAUTION : DO NOT PRESS THE [F3] KEY, AS THIS WILL CHANGE THE

 CONFIGURATION IN THE INSTRUMENT.[3][19]
4.3 Data Acquisition

Appendix E is the BASIC program for data acquisition, data averaging and real time displaying. A few operating parameters must be set before the data acquisition can take place :

1. The integration time must be set.
2. The gain must be set for the channel being used.
3. The high voltage may need to be turned on.

4.3.1 Devices' Address Setup

In the program we set GPIB0 at address 0, spectrometer controller (DS488 or SPEX488) as device 1 at address 1 and lock-in amplifier (mode 5208) as device 4 at address 4, on any other device connected to GPIB board.[3][8]

4.3.2 Several Precautions When Running the Program

Because of the restriction of the conventional memory (640 KB), we have to access SCAN at the very first time when we get into the main menu, otherwise, insufficient
memory error will occur (it depends on how many points we want to get). Also, for the resolution restriction, one horizontal line can has up to 640 dots. In other words, we can only have up to 640 scanning points at one time. There is an another problem has to be taken into account. Delay for response. Instrument delay is 0.5 sec ., in the program has to fix the delay time for specific computer. After scan finished, the data will be stored in the file named "DATA", it is necessary to print out the file right away or rename it, or will lost the data when second time we run the program and do the scan process. The program has to be "exit" back to DOS environment, otherwise the files have been called will cause errors later on when we try to run the program again for the reason that the files were improperly closed. We also need to make couple backups for the source program in case of error occurs.

APPENDIX A

GPIBO AND DEVI SETUP REFERENCES

GPIB0

Primary GPIB Address	0
Secondary GPIB Address	None
Timeout Setting	T3s
EOS Byte	00 H
Terminate Read on EOS	No
Set EOI With EOS on Write	No
Type of Compare on EOS	7 -Bit
Set EOI W/Last Byte of Write	Yes
System Controller	Yes
Assert REN When SC	No
Enable Auto Serial Polling	Yes
Timing	500 nanoseconds
CIC Protocols	Yes
Interrupt Setting	None
Base I/O Address	02 B 8 H
DMA Channel	1

DEV1

Primary GPIB Address 1
Secondary GPIB Address None
Timeout Setting Tl0s
EOS Byte 00H
Terminate Read on EOS No
Set EOI With EOS on Write No
Type of Compare on EOS 7-Bit
Set EOI W/Last Byte of Write Yes
Repeat Addressing No

* Other devices' setup are same as DEV1 shown above.[19]

APPENDIX B

GPIB CARD SETTINGS

GPIB-PCII	Default	Available
Base IIO Address (HEX)	288	000 to 3F8
DMA Channel	1	$1,2,3$, and Not Used
Interrupt Line (IRQ)	7	$2,3,4,5,6,7$, and Not Used
$7210 / 9914$ Mode	7210	7210 And 9914
Shield Ground	Connected	Connected, Disconnected

Table B-1
Factory Default Settings and Available Configurations for GPIB-PCII Mode [3]

APPENDIX C

EG\&G (LOCK-IN AMPLIFIER) COMMANDS MODEL 5208

PARAMETER RANGE

Aln [0]	Turns the AUTORANGE on or off.	(0 or 1)
$\mathrm{A} 2 \mathrm{n}[0]$	Turns the AUTOSET function on or off.	(0 or 1)
A3	Causes the AUTO-OFFSET routine to run.	
A4 n [0]	Turns AUTONORMALIZE function on or off.	(0 or 1)
A5	Controls RATIO function.	
A6	Reserved for future use.	
A7	Causes the AUTOPHASE routine to run.	
B n	Same as MSK command.	
Cn	Same as DD command.	
$\mathrm{CH} \mathrm{n}[0]$	Turns Crystal Het on or off.	(0 or 1)
D n [1]	Selects which data DPM will display	(0 to 5)
DD n	Defines delimiter to be used between numbers sent to host computer (any ASCII character)	
E	Same as ERR command.	
ERR	Causes ERROR NUMBER of previous command to be sent.	
$\mathrm{Fn}[1]$	Selects FREQUENCY BAND	(0 to 2)
$\mathrm{Gn}[1638]$	Sets output gain (both channels in 5208).	(0 to 4095)
Hn [1]	Selects mode of front-panel LED's.	(0 to 2)
ID	Reads model number.	
Jn1 n2 [400 6]	Selects frequency of Oscillator and Reference.	
	nl is the numerical frequency.	(100 to 1000)
	n 2 is the band.	(0 to 7)
K n	Causes the routine associated with the specified key to run exactly the same as if the key had been pressed at the front panel.	(0 to 13)
L n [20]	Selects the sensitivity LIMIT,	(0 to 20)
Mn [0]	Selects data indicated by panel meter(s).	(0 to 2)
MSK n	Specifies SRQ MASK byte.	(0 to 255)
N	Reads status of Overload Indicators	(1 to 7)
$0 \mathrm{n} 1 \mathrm{n} 2[00]$	Sets OFFSET	

COMMAND	FUNCTION	PARAMETER RANGE
	nl is offset	(0 to 1000)
	n 2 is the polarity	(0 to 2)
00 n [1]	Turns Oscillator on or off.	(0 to 1)
OPTION nl n2	Reads status of specified option	
	n1 (sent by host) specifies option.	(92 to 99)
	n2 (sent by 5207/8) specifies	
	presence of absence of option.	(0 to 1)
Pnl n2 [0 200]	Selects Phase Shift.	
	$\mathrm{n} 1 \mathrm{is} \mathrm{the} \mathrm{Quadrant}$.	(0 to 3)
	n 2 is the value.	(100 to 3900)
	(100 gives -2.5\%)	
	(3900 gives 92.5\%)	
Q1	Reads integer value of CH 1 output.	
Q2	Reads integer value of CH 2 output.	
Q3	Reads integer value of AUX output.	
Q5	Reads both CH 1 and CH 2 output values.	
Rn [2]	Selects RESERVE.	(0 to 2)
$\mathrm{Sn}[0]$	Selects the SENSITIVITY.	(0 to 20)
T	Causes STATUS byte to be sent.	
Tn1 n2 [61]	Selects TIME CONSTANT and dB/octave.	
	n 1 selects the Time Constant.	(0 to 10)
	n 2 selects the dB/octave	(0 or 1)
V	Same as VER command.	
VER	Turns EXPAND on or off	(0 or 1)
Z	Same as ST command	

APPENDRX D

MONOCHROMATOR TYPES

Type	Model	Steps/Unit	Min. Freq.	Max. Freq.	Ramp Time	Backlash	Base Grating
1	180 D	16	2560	2560	1000	320	1200
2	MSD2	400	1000	36000	3000	20000	1200
3	1269	500	1000	36000	2000	25000	1200
4	1403	400	1000	28000	2000	20000	1200
5	1404	400	1000	28000	2000	20000	1200
6	1680	50	400	400	1000	500	1200
7	1681	50	400	400	1000	500	1200
8	1870 B	50	400	400	1000	5000	1200
9	1870 C	400	1000	32000	2000	20000	1200
10	1877 A	50	400	400	1000	1000	1200
11	$1877 B$	4000	1000	40000	2000	40000	1200
12	340 E	50	400	400	1000	500	1200
13	220 M	32	2560	2560	1000	320	1200
14	H10	20	300	450	2000	200	1200
15	H20V	20	300	450	2000	200	1200
16	H25	20	300	450	2000	200	1200
17	HR250	20	300	450	2000	200	1200
18	$* * * *$	20	300	450	2000	200	600

Remarks:

- $500 \mathrm{M}, 500 \mathrm{X}, 750 \mathrm{M}, 1000 \mathrm{M}, 1250 \mathrm{M}, 1702,1704$ spectrometers when controlled via the MSD2 (Type 2)
- Model 1704 is also Type 7.
- Model 1877C is also Type 10.
- Model 1877D, 1877E are also Type 11, where Model 1877E is spectrograph stage.
- Model 1877E is also Type 12 and is prefilter stage.
- Model 270 M is also Type 13.
- Model HR320 is also Type 17.
- **** Type 18 is Model HR320D. [19]

APPENDIX E

SPECTRA

Figure E. 1
Blank Test for Argon Ion Laser

Figure E. 2
Blank Test for Argon Ion Laser

Figure E. 3
Blank Test for Argon Ion Laser

Figure E. 4
Blank Test for Helium-Neon Laser

Figure E. 5
Blank Test for Helium-Neon Laser

Figure E. 6
Blank Test for Helium-Neon Laser

Figure E. 7
GaSb Spectrum
Light Source : Ar Ion Laser

Figure E. 8
GaSb Spectrum
Light Source : Ar Ion Laser

Figure E. 9
GaSb Spectrum
Light Source : Ar Ion Laser

Figure E. 10
GaSb Spectrum
Light Source : Helium-Neon Laser

Figure E. 11
GaSb Spectrum
Light Source : Helium-Neon Laser

Figure E. 12
InGaAs Spectrum
Light Source : Helium-Neon Laser

FigureE. 13
InGaAs Spectrum
Light Source : Helium-Neon Laser

APPENDIX F

NORMALIZED SPECTRA

Figure F. 1
Normalized PbS Detector Spectrum
Light Source : Globar Lamp

Figure F. 2
Blank Test Spectrum for Ar Ion Laser with Normalized PbS Detector Spectrum Applied

Figure F. 3
Spectrum for GaSb with Normalized PbS Detector Spectrum Applied

Light Source : Ar Ion Laser

Figure F. 4
Blank Test Spectrum for He -Ne Laser with Normalized PbS Detector Spectrum Applied

Figure F. 5
Spectrum for GaSb with Normalized
PbS Detector Applied
Light Source : He-Ne Laser

Figure F. 6
Spectrum for InGaAs with Normalized
PbS Detector Spectrum Applied Light Source : He-Ne Laser

APPENDIX G

DATA ACQUISITION PROGRAM OF PL EXPERIMENT

1 CLEAR ,60000! : IBINIT1 $=60000!:$ IBINIT2 $=I B I N I T 1+3: I B I N I T 3=[B I N I T 1+6:$
IBINIT4=IBINIT1+9: BLOAD "bib.m", IBINIT1
2 CALL
IBINIT1 (IBFIND,IBTRG,IBCLR,IBPCT,IBSIC,IBLOC,IBPPC,IBBNA,IBONC,IBRSC,IBSRE,IBRSV,I BPAD,IBSAD,IBIST,IBNMA,IBEOS,IBTMO,IBEOT,IBRDF,IBWRTF,IBTRAP,IBDEV,IBLN,IBLINE S,IBCONFIG)
3 CALL IBINIT2(IBGTS, IBCAC, IBWAIT, IBPOKE, IBWRT, IBWRTA, IBCMD, IBCMDA, IBRD, IBRDA, IBSTOP, IBRPP, IBRSP, IBDIAG, IBXTRC, IBRDI, IBWRTI, IBRDIA, IBWRTIA, IBEVENT, IBSTA $\%$, IBERR $\%$, IBCNT $\%$)
4 CALL IBINIT3(SENDCMDS, SENDSETUP, SENDDATABYTES, SEND, SENDLIST, RECEIVESETUP, RCVRESPMSG, RECEIVE, SENDIFC, DEVCLEAR, DEVCLEARLIST, ENABLELOCAL, ENABLEREMOTE, SETRWLS, SENDLLO)
5 CALL IBINIT4(PASSCONTROL, READSTATUSBYTE, TRIGGER, TRIGGERLIST, PPOLLCONFIG, PPOLLUNCONFIG, PPOLL, RESETSYS, FINDRQS, ALLSPOLL, FINDLSTN, TESTSYS, IBRDKEY, IBWRTKEY, WAITSRQ, TESTSRQ)
6 REM
7 REM GPIB COMMAND
8 REM
$9 \quad \mathrm{UNL} \%=\& \mathrm{H} 3 \mathrm{~F}: \mathrm{UNT} \%=\& \mathrm{H} 5 \mathrm{~F}: \mathrm{GTL} \%=\& \mathrm{Hl}: \mathrm{SDC} \%=\& \mathrm{H} 4: \mathrm{PPC} \%=\& \mathrm{H} 5: \mathrm{GGET} \%$
$=\& \mathrm{H} 8: \mathrm{TCT} \%=\& \mathrm{H} 9$
$10 \quad \mathrm{LLO} \%=\& \mathrm{H} 11: \mathrm{DCL} \%=\& \mathrm{H} 14: \mathrm{PPU} \%=\& \mathrm{H} 15: \mathrm{SPE} \%=\& \mathrm{H} 18: \mathrm{SPD} \%=\& \mathrm{H} 19: \mathrm{PPE} \%$
$=\& H 60: \mathrm{PPD} \%=\& \mathrm{H} 70$
11 REM
12 REM GPIB STATUS BIT VECTOR
13 REM
14 EERR $=\& H 8000: \mathrm{TIMO}=\& H 4000: \mathrm{EEND}=\& H 2000: \mathrm{SRQI}=\& H 1000: \mathrm{RQS}=\& H 800$
$: \mathrm{SPOLL}=\& H 400:$ EEVENT $=\& H 200$
$15 \mathrm{CMPL}=\& H 100: \mathrm{LOK}=\& H 80: \mathrm{RREM}=\& H 40: \mathrm{CIC}=\& H 20: \mathrm{AATN}=\& \mathrm{H} 10: \mathrm{TACS}=$
$\& H 8:$ LACS $=\& H 4:$ DTAS $=\& H 2:$ DCAS $=\& H 1$
16 REM
17 REM ERROR MESSAGE RETURNED IN GLOBAL VARIABLE IBERR
18 REM
$19 \mathrm{EDVR}=0: \mathrm{ECIC}=1: \mathrm{ENOL}=2: \mathrm{EADR}=3: \mathrm{EARG}=4: \mathrm{ESAC}=5: \mathrm{EABO}=6:$
ENEB $=7$
$20 \quad \mathrm{EOIP}=10: \mathrm{ECAP}=11: \mathrm{EFSO}=12: \mathrm{EBUS}=14: \mathrm{ESTB}=15: \mathrm{ESRQ}=16: \mathrm{ETAB}=20$
21 REM
22 REM EOS MODE BITS
23 REM
24
25 REM
26 REM TIMEOUT VALUES AND MEANINGS
27 REM
$28 \mathrm{TNONE} \%=0: \mathrm{T} 10 \mathrm{US} \%=1: \mathrm{T} 30 \mathrm{US} \%=2: \mathrm{T} 100 \mathrm{US} \%=3: \mathrm{T} 300 \mathrm{US} \%=4: \mathrm{T} / \mathrm{MS} \%=5$
$: \mathrm{T} 3 \mathrm{MS} \%=6: \mathrm{T} 10 \mathrm{MS} \%=7$
$29 \mathrm{~T} 30 \mathrm{MS} \%=8: \mathrm{T} 100 \mathrm{MS} \%=9: \mathrm{T} 300 \mathrm{MS} \%=10: \mathrm{T} 1 \mathrm{~S} \%=11: \mathrm{T} 3 \mathrm{~S} \%=12: \mathrm{T} 10 \mathrm{~S} \%=13:$
$\mathrm{T} 30 \mathrm{~S} \%=14: \mathrm{T} 100 \mathrm{~S} \%=15$
$30 \quad \mathrm{~T} 300 \mathrm{~S} \%=16: \mathrm{T} 1000 \mathrm{~S} \%=17$

```
REM
    REM MISCELLANEOUS
    REM
    \(\mathrm{S} \%=8 \mathrm{H} 8: \mathrm{LF} \%=8 \mathrm{HA}\)
    REM
    REM IBLN CONSTANTS
    REM
    \(\mathrm{ALL} . \mathrm{SAD} \%=-1: \mathrm{NO} \cdot \mathrm{SAD} \%=0\)
    REM
    REM IBEVENT CONSTANTS
    REM
    EVENTDTAS \(\%=1:\) EVENTDCAS \(\%=2\)
REM
REM "OPTION" SELECTION CODES FOR IBCONFIG FUNCTION
REM
    \(\mathrm{IBCPAD} \%=\& \mathrm{HI}: \mathrm{IBCSAD} \%=\& \mathrm{H} 2: \mathrm{IBCTMO} \%=\& \mathrm{H} 3: \mathrm{IBCEOT} \%=\& \mathrm{H} 4:\)
\(\mathrm{IBCPPC} \%=\& \mathrm{H} 5: \mathrm{IBCREADDR} \%=\& \mathrm{H} 6\)
47 IBCAUTOPOLL \(\%=\& H 7:\) IBCCICPROT \(\%=\& H 8:\) IBCIRQ \(\%=\& H 9:\) IBCSC \(\&=\& \mathrm{HA}\)
\(: \mathrm{IBCSRE} \%=\& \mathrm{HB}: \mathrm{IBCEOSRD} \%=\& \mathrm{HC}\)
48 IBCEOSWRT \(\% \& H D:\) IBCEOSCMP \(\%=\& H E:\) IBCEOSCHAR \(\%=\& H F: I B C P P 2 \%=\)
\(\& \mathrm{H} 10: \mathrm{IBCTIMING} \%=\& \mathrm{H} 11: \mathrm{IBCDMA} \%=\& \mathrm{H} 12\)
49 IBCREADADJUST \(\%=\& H 13:\) IBCWRITEADJUST \(\%=\& H 14:\) IBCEVENTQUEUE \(\%=\)
\&H15 : 1 BCSPOLLBIT \(\%=\& H 16:\) IBCSENDLLO \(\%=\& H 17\)
50 IBCSPOLLTIME \(\%=\& H 18:\) IBCPPOLLTIME \(\%=\& H 19:\) IBCNOENDBITONEOS \(\%=\)
51 REM
52 REM These values are used by the Send 488.2 command:
53 REM
54 NULLEND \(\%=\& H O: \mathrm{NLEND} \%=\& \mathrm{H} 1: \mathrm{DABEND} \%=\& \mathrm{H} 2\)
55 REM
56 REM This value is used by the 488.2 Receive command:
57 REM
58 STOPEND \(\%=\& H 100\)
59 REM
VALIDIFC \(=\& H 8:\) VALIDNRFD \(=\& H 4:\) VALIDDAV \(=\& H 1\)
63 BUSEOI \(=\& H 8000:\) BUSATN \(=\& H 4000: B U S S R Q=\& H 2000: B U S R E N=\& H 1000:\)
\(\mathrm{BUSIFC}=\& H 800: B U S N R F D=\& H 400: B U S N D A C=\& H 200: B U S D A V=\& H 100\)
68 NOADDR \(\%=\& \mathrm{HFFFF}\)
70 REM \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
1 KEY OFF
72 REM **********************************
100 REM
200 REM
300 REM National Instruments IEEE-488 card and driver were loaded.
350 REM The driver device address [1..31] are referenced as
400 REM "DEV1".."DEV31". see the National Instruments Software Ref. Manual
```

\&H1A
60
61
62
64
65

```
REM for further details.
REM
REM Assign IEEE-488 address for Photomutiplier to 1, and Lock-in
Amplifier to 4.
REM
REM MUST merge this code with DECL.BAS and BIB.M MUST be in this
REM directory. These files are supplied by National Instruments.
REM---------------------------------------------------------------------
REM-------------------------------------------------------------------
    PRINT "Begin IEEE-488 Communications Setup"
REM
    BOARD$ = "GPIBO"
    DEVICE$ = "DEV"
    RBUF$ = SPACE$(132) : PBUF$ = SPACE$(132)
    OBUF$ = SPACE$(132)
    JNK$ = SPACE$(132)
    ICH$ = SPACE$(1)
    ACK$ = SPACE$(1)
    CR$ = CHR$(13)
    MINHARDWAREFREQ#=1#
REM.
    INPUT "Device Address [1..31]: ",DAS
    DA = VAL(DA$)
    IF (DA > 0) AND (DA < 32) GOTO 1650
    SOUND 350,3 : GOTO 1400
REM.
    DEVICE$ = DEVICE$ + DA$
    REM
    CALL IBFIND (DEVICE$, BD%)
    MSG$ = "IBFIND ERROR on " + BOARD$
    IF (DV%<0) THEN GOSUB 7250 : STOP
    REM
    CALL IBFIND (DEVICES, DV%)
    MSG$ = "IBFIND ERROR on " + DEVICE$
    IF (DV%<0) THEN GOSUB 7250 : STOP
    EOSV% = &HD
    V% = EOSV% + &H1400
    CALL IBEOS (DV%, V%)
    CALL IBTMO (DV%,TIS%)
    REM
    REM Flush anything in input buffer
    CALL IBRD(DV%,JUNK$) : SOUND 2000,1 : PRINT JUNK$
    REM May time out
    REM
    REM If auto bauded, these commands will put us in
    REM a know state without restarting the instrument.
    REM
    ICH$ = CHR$(222) : CALL IBWRT(DV%,ICH$)
    DELAY = .5: GOSUB 6950 'Wait for possible reset
    REM Flush anything in input buffer
    CALL IBRD (DV%,JUNK$) : SOUND 2000,1 : PRINT JUNK$
    REM May time out
```

```
REM
REM ..
    IICH$ = " ": CALLIBWRT(DV%, ICH$): SOUND 400,2
    MSG$ = "IBWRT ERROR"
    IF (IBSTA% AND EERR) THEN GOSUB 7250 : STOP
REM
    CALL IBRD (IV%, ICH$): SOUND 1000,2
    MSG$ = "IBWRT ERROR"
    IF (IBSTA% AND EERR) THEN GOSUB 7250 : STOP
REM
    PRINT "Received". ICH$
REM
    IF (ICH$ = "B") GOTO 3850 'Init Program O.K.
    IF (ICH$ = "F") GOTO 4450 'Main Program O.K.
    GOTO 2350
    'Bad Response. Try Again
REM..
REM
REM.. Jump to Main Program
    PRINT "Jump tto Main Program"
    OBUF$ = "02000" + CHR$(0)
    CALL IBWRT (DV%, OBUF$) : MSG$ = "IBWRT ERROR"
    IF (IBSTA% AND EERR) THEN GOSUB 7250 : STOP
REM
REM
    DELAY = .5: GOSUB 6950 'Wait for main to start up
    CALL IBRD(DV%, ICH$) : MSG$ ="IBRD ERROR"
    IF (IBSTA% AND EERR) THEN GOSUB 7250 : RESUME
REM May time out
    IF (ICH$ <>."*") GOTO 4150 'Wait for Main Program Response
REM
    SOUND 500, 5: SOUND 1000, SOUND 500,5
    PRINT "IEEE-488 Communications Established" : print""
    PRINT "Getting EPROM and FLASH Version Numbers"
    SAYOK = 0 'Turn OFF ACK sound and OK print out flag
REM 'Put up version number of BOOT and Flash
REM -----Boot Version
    ICH$ = "Y" : CALL IBWRT(DV%, ICH$) 'No comma or <CR> after command
    MSG$ = "IBWRT ERROR"
    IF (IBSTA% AND EERR) THEN GOSUB 7250 : STOP
    GOSUB 6200 'Wait For Confirmation'
REM
    GOSUB 14250 'Get RBUF$ from 488
REM
    PBUF$ = LEFT$(RBUF$, NSTR(RBUF$,CR$) -1)
    PRINT "Boot Version:", PBUF$
REM----Flash Version
    ICH$ = "z" : CALL IBWRT(DV%,ICH$) : MSG$ = "IBWRT ERROR"
    IF (IBSTA% AND EERR) THEN GOSUB 7250 : STOP
REM
    GOSUB 6200 'Wait For Confirmation'
    GOSUB 14250 'Get RBUF$ from 488
    REM
    PBUF$ = LEFT$(RBUF$, INSTR(RBUF$,CR$) -1)
```

 REM ***** Time Delay of Delay
 T0 = TIMER
 WHILE ((TIMER . T0) < DELAY)
 WEND
 RETURN
 REM
REM ***** IEEE-488 ERROR
REM THIS ROUTINE WILL NOTIFY YOU THAT AB IB CALL FAILED
REM AND PRINT THE STATUS VARIABLES.
REM
REM
PRINT MSG\$
REM
PRINT "ibsta=$H"; HEX$(IBSTA%); "<";
IF IBSTA% AND EERR THEN PRINT " ERR";
IF IBSTA% AND TIMO THEN PRINT " TIMO";
IF IBSTA% AND EEND THEN PRINT " END";
IF IBSTA% AND SRQI THEN PRINT " SRQI";
IF IBSTA% AND RQS THEN PRINT " RQS";
IF IBSTA% AND CMPL THEN PRINT " CMPL";
IF IBSTA% AND LOK THEN PRINT " LOK";
IF IBSTA% AND RREM THEN PRINT " REM";
IF IBSTA% AND CIC THEN PRINT " CIC";
IF IBSTA% AND AATN THEN PRINT " ATN";

```
```

8150 IF IBSTA% AND TACS THEN PRINT " TACS";
8200 IF IBSTA% AND LACS THEN PRINT "LACS";
8 2 5 0 ~ I F ~ I B S T A \% ~ A N D ~ D T A S ~ T H E N ~ P R I N T ~ " D T A S " ;
8300 IF IBSTA% AND DCAS THEN PRINT " DCAS";
8350 PRINT ">"
8400 REM
8450 PRINT "iberr= "; IBERR%;
8500 IF IBERR% = EDVR THEN PRINT " EDVR <DOS ERROR>"
8550 IF IBERR% = ECIC THEN PRINT " ECIC <NOT CIC>"
8600 IF IBERR% = ENOL THEN PRINT " ENOL <NO LISTENER>"
8650 IF IBERR% = EADR THEN PRINT " EADR <ADDRESS ERROR>"
8700 IF IBERR% = EARG THEN PRINT " EARG <INVALID ARGUMENT>"
8750 IF IBERR% = ESAC THEN PRINT " ESAC <NOT SYS Ctrlr>"
8800 IF IBERR% = EABO THEN PRINT " EABO <OP. ABORTED>"
8850 IF IBERR% = ENEB THEN PRINT " ENEB <NO GPIB BOARD>"
8900 IF IBERR% = EOIP THEN PRINT " EOIP < Asnc I/O in prg>"
8950 IF IBERR% = ECAP THEN PRINT " ECAP <NO CAPABILITY>"
9000 IF IBERR% = EFSO THEN PRINT " EFSO <FILE SYS. ERROR>"
9050 IF IBERR% = EBUS THEN PRINT " EBUS <COMMAND ERROR>"
9100 IF IBERR% = ESTB THEN PRINT " ESTB <STATUS BYTE LOST>"
9150 IF IBERR% = ESRQ THEN PRINT " ESRQ < SRQ STUCK ON>"
9200 IF IBERR% = ETAB THEN PRINT " ETAB <TABLE OVERFLOW>"
9250 REM
9300 PRINT "ibcnt = ";IBCNT%
9350 REM
9400 REM CALL THE IBCONL FUNCTION TO DISABLE THE HARDWARE AND
9450 REM SOFTWARE UNLESS ERROR WAS A TIME OUT.
9500 IF (IBSTA% AND TIMO) THEN RETURN
9550 REM
9600 V% = 0 : CALL IBCONL(BD%,V%)
9650 RETURN
9 7 0 0 ~ R E M ~
9750 REM * SHORT MOVE TO TARGET AND DISPLAY POSITION TILL DONE
9800 GOSUB 11650 'MOVE RELATIVE
9850 WHILE (MOTORBUSY = 1)
9900 GOSUB 17100 'GET AND DISPLAY POSITION
9950 GOSUB 12250 'TEST MOTOR BUSY
10000 WEND
10050 GOSUB 17100 'GET AND DISPLAY POSITION
10100 RETURN
10150 REM
10200 REM ***** BACKLASH MOVE TO TARGET AND DISPLAY POSITION TILL DONE

10250 IF (TARGET\# > STEPS\#) THEN GOTO 10450
10300 TMP\# = TARGET\# : TARGET\# = TMP\# - BACKLASH\# : GOSUB 10600
10350 IF (HALTSCAN = 1) THEN RETURN
10400 TARGET\# =TMP\#
10450 REM ...
10500 GOSUB 10600
10550 RETURN
10600 REM
10650 REM *** MOVE TO TARGET AND DISPLAY POSITION TILL DONE ***
10700 GOSUB 11650 'MOVE RELATIVE

```
```

10750 HALTSCAN = 0
10800 WHILE (MOTORBUSY = 1)
10850 GOSUB 26050 'GET KEY
10900 IF (KEYVALUE = 0) THEN GOTO 11350 'NO KEY
10950 IF (KEYVALUE = F6KV) THEN GOSUB 30650: GOTO 11350 'SHUTTER
11000 IF (KEYVALUE = F8KV) THEN 11050 ELSE 11250 'HALT
11050 REM ... 'STOP SCAN
11100 GOSUB 12000 'STOP MOTOR
11150 HALTSCAN = 1 'FLAG TO OTHERS THAN SCAN WAS HALTED
11200 GOTO 11350
11250 REM ... INVALID KEY DURING SCAN
11300 SOUND 500,1
11350 REM ...
11400 GOSUB 17100 'GET AND DISPLAY POSITION
11450 GOSUB 12250 'TEST MOTOR BUSY
11500 WEND
11550 GOSUB 17100 'GET AND DISPLAY POSITION
11600 RETURN
11650 REM
11700 REM ***** MOVE MONO RELATIVE IN STEPS *****
11750 RELSTEPS\# = TARGET\# - STEPS\#
11800 OBUF\$ = "F" + "0" + "," + STR$(RELSTEPS#) + CR$
11850 GOSUB 13950 'PUT OBUF\$ TO 488 AND WAIT FOR CONFIRM
11900 MOTORBUSY = 1
11950 RETURN
12000 REM
12050 REM ***** MOTOR STOP *****
12100 ICH\$ = "L"
12150 GOSUB 14500 'PUT ICH\$ TO 488 AND WAIT FOR CONFIRM
12200 RETURN
12250 REM
12300 REM ****** MOTOR BUSY *****
12350 ICH\$ = "E"
12400 GOSUB 14500 'PUT ICH\$ TO 488 AND WAIT FOR CONFIRM
12450 REM
12500 CALL IBRD(DV%,ACK$)
12550 MSG$ = "IBRD ERROR"
12600 IF (IBSTA% AND EERR) THEN GOSUB 7250 : STOP
12650 IF (ACK\$ = "q") THEN 12700 ELSE }1275
12700 MOTORBUSY = 1 : GOTO 12800
12750 MOTORBUSY = 0 : GOTO 12800
12800 REM ...
12850 RETURN
12900 REM
12950 REM ***** SET MONO POSITION *****
13000 STEPS\# = WAVE\# * STEPSPERUNIT\#
13050 OBUF\$ = "G0," + STR$(STEPS#) + CR#
13100 GOSUB 13950 'PUT OBUF$ TO 488 AND WAIT FOR CONFIRM
13150 RETURN
13200 REM
13250 REM ***** READ MONO POSITION *****
13300 OBUF$= "H0" + CR$
13350 GOSUB 13950 'PUT OBUF\$ TO 488 AND WAIT FOR CONFIRM

```
```

13400 REM
13450 GOSUB 14250 'GET RBUF\$ FROM 488
13500 PBUF\$ = LEFT$(RBUF$, INSTR(RBUF$, CR$) -1)
13550 STEPS\# = VAL(PUBF$):WAVE# = EPS# / STEPSPERUNIT#
13600 RETURN
13650 REM
13700 REM ***** Set Motor Speed
13750 FREQMIN$ = STR$(F1#) : FREQMAXS = STR$(F2\#) ": RAMPTIME\$ = STR$(RT#)
13800 OBUF$ "B"+"0,"+ FREQMIN\$ +"," + FREQMAX\$ +"," + RAMPTIME\$ + CR\$
13850 GOSUB 13950 'Put OBUF\$ to 488 and wait for confirm
13900 RETRUN
13950 REM
14000 REM ***** Put OBUF$) : MSG$ = "IBWRT ERROR"
14050 CALL IBWRT(DV%, OBUF$) : MSG$ = "IBWRT ERROR"
14100 IF (IBSTA% AND EERR) THEN GOSUB 7250: STOP
14150 GOSUB 6200 'Wait For Confirmation'
14200 RETURN
14250 REM
14300 REM ***** Get rbuf\$ from 488*****
14350 CALL IBRD(DV%,RBUF$) : MSG$ = "IBRD ERROR"
14400 IF (IBSTA% AND EERR) THEN GOSUB 7250 : STOP
14450 RETURN
14500 REM
14550 REM ***** Put ICH\$ to 488***** and wait for confirm
14600 CALL IBWRT (DV%, ICH$) : MSG$ = "IBWRT ERROR"
14650 IF (IBSTA% AND EERR) THEN GOSUB 7250 : STOP
14700 GOSUB 6200 'Wait For Confirmation'
14750 RETURN
14800 REM
14850 REM ***** Accessory Busy *****
14900 ICH\$ = "1" : Gosub 14500 'Put ICH\$ to 4988 and confirm
14950 REM
15000 CALL IBRD(DV%, ACK$) : MSG$ = "IBRD ERROR"
15050 IF (IBSTA% AND EERR) THEN GOSUB 7250: STOP
15100 IF (ACK\$ + "q") THEN ACCESSORYBUSY = 1 ELSE ACCESSORYBUSY =0
15150 RETURN
15200 REM
15250 REM
15300 REM *** SHUTTER_OPEN else SHUTTER_CLOSE ***
15350 IF (SHUTTER + 1) THEN OBUF\$ = "WO"+ - CR\$ ELSE OBUF\$ = "XO" + CR\$
15400 GOSUB 13950 'Put OBUF\$ to 488 and wait for confirm
15450 GOSUB 19050 'Display Shutter Position
15452 ACCESSORYBUSY = 1
15500 RETURN
15550 REM
15600 REM *** TURRET_POSITION_1 else TURRET _POSITION_0 ***
15650 IF (TURRET+1) THEN OBUF\$ = "a0" + CR\$ ELSE OBUF\$ +"b0" +CR\$
15700 GOSUB 13950 'Put OBUF\$ to 488 and wait for confirm
15750 GOSUB 18600 'Display Accessories
15752 ACCCESSORYBUSY = 1
15800 RETURN
15850 REM
15900 REM *** ENTR_MIRROR_SIDE_POSITION else ENTR_MIRROR_FRONT_POSITION ***

```
```

15950 IF (ENTMIRROR + 1) THEN OBUF\$ ="C0" + CR$ELSE OBUF$ = "d0" + CR\$
16000 GOSUB 13950 'Put OBUFS to 488 and wait for confirm
16050 GOSUB 18600 'Display Accessories
16052 ACCESSORYBUSY = 1
16100 RETURN
16150 REM
16200 REM *** EXIT_MIRROR_SIDE_POSITION eIse EXIT_MIRROR_FRONT_POSITION ***
16250 IF (EXTMIRROR = 1) THEN OBUF\$ = "e0" +CR\$ ELSE OBUF\$ ="F0" + CR\$
16300 GOSUB 13950 'Put OBUF\$ to 488 and wait for confirm
16350 GOSUB 18600 'Display Accessories
16352 ACCESSORYBUSY = 1
16400 RETURN
16450 REM
16500 REM
16550 REM
16600 ON ERROR GOTO 16900
16650 REM--
16700 REM ...
16750 GOSUB 36350 'Input Last Set of User Parameters
16800 GOTO 19350 'Jump To Main
16850 REM
16900 REMERROR HANDLER
16950 PRINT "***** ERROR=", ERR, " on line number", ERL
17000 LASTERROR = ERR
17050 IF (LASTERROR = 62) THEN RESUME NEXT ELSE STOP
17100 REM
17150 REM ***** GET AND DISPLAY POSITION ******
17200 GOSUB 13200 'READ MONO POSITION
17210 GOSUB 12860 'Check limits
17250 LOCATE 1,40
17300 PRINT USING ": \#\#\#\#\#.\#\#\# \#\#\#\#\#\#\#\# \#\#"; WAVE\#, STEPS\#,LIMTT
17310 IF ((REPEAT >0) AND (FLAG=2)) THEN GOTO 38000 'JUMP TO EG\&G
17320 REM IF ((MESSAGE\$ = "F7") AND (FLAG = 2)) THEN GOTO 38000 'JUMP TO EG\&G
17340 REM
17350 RETURN
17400 REM
17450 REM ***** Display Scan *****
17500 LOCATE 3,40
17550 PRINT USING ": \#\#\#\#\#.\#\#\#"; STARTSCAN\#
17600 LOCATE 4,40
17650 PRINT USING ":\#\#\#\#\#.\#\#\#"; ENDSCAN\#
17700 LOCATE 5,40
17750 PRINT USING ":\#\#\#\#\#.\#\#\#\#\#\#\#"; SCANSPEED\#, SCANFREQ\#
17800 RETURN
17850 REM
17900 REM ***** Display Tweek Speed ******
17950 LOCATE 13,40
18000 IF (TWEEKSPEED<>1) THEN PRINT ": Fast Increment"
18050 IF (TWEEKSPEED= 1) THEN PRINT": Slow Increment"
18100 RETURN
18150 REM
18200 REM ***** Markers *****
18250 LOCATE 16,10

```
```

18300 PRINT USING ": \#\#\#\#\#.\#\#\#"; MARKERA\#
18350 LOCATE 17, 10
18400 PRINT USING ": \#\#\#\#\#.\#\#\#"; MARKERB\#
18450 LOCATE 18,10
18500 PRINT USING ": \#\#\#\#\#.\#\#\#"; MARKERC\#
18550 RETRUN
18600 REM
18650 REM ***** Display Accessories *****
18700 LOCATE 8,40
18750 PRINT ": ", TURRET
18800 LOCATE 9,40
18850 PRINT ": ", ENTMIRROR
18900 LOCATE 10,40
18950 PRINT ": ", EXTMIRROR
19000 RETURN
19050 REM
19100 REM ***** Display Shutter *****
19150 LOCATE 7, 40
19200 IF (SHUTTER = 0) THEN PRINT ": COLOSED" ELSE PRINT": OPEN "
19250 RETURN
19300 REM
19350 REM
19400 REM ***** Main ****
19450 F1KV = 187
19500 F2KV = 188
19550 F3KV = 189
19600 F4KV = 190
19650 F5KV = 191
19700 F6KV = 192
19750 F7KV = 193
19800 F8KV = 194
19850 F9KV = 195
19900 FlOKV = 196
19950 LEFTKV = 203
20000 RIGHTKV = 205
20020 RKV =70
20030 PKV = 80
20050 TKV =84
20100 EKV = 69
20150 XKV = 88
2 0 2 0 0 ~ C T R L A ~ = ~ 1 ~
20250 CTRLB = 2
20300 CTRLC = 3
20350 REM
2 0 4 0 0 ON KEY (1) GOSUB 21050
20450 ON KEY (2) GOSUB 21100
20500 ON KEY (3) GOSUB 21150
2 0 5 5 0 ON KEY (4) GOSUB 21200
20600 ON KEY (5) GOSUB 21250
2 0 6 5 0 ON KEY (6) GOSUB 21300
20700 ON KEY (7) GOSUB 21350
20750 ON KEY (8) GOSUB 21400
20800 ON KEY (9) GOSUB 21450

```
```

2 0 8 5 0 ~ O N ~ K E Y ~ (1 0) ~ G O S U B ~ 2 1 5 0 0 ~
2 0 9 0 0 ON KEY (11) GOSUB 21550
2 0 9 5 0 ON KEY (12) GOSUB 21600
21000 GOTO 21700
21050 HOTKEY = FIKV : RETURN
21100 HOTKEY = F2KV : RETURN
21150 HOTKEY = F3KV : RETURN
21200 HOTKEY = F4KV : RETURN
21250 HOTKEY = F5KV : RETURN
21300 HOTKEY = F6KV : RETURN
21350 HOTKEY = F7KV : RETURN
21400 HOTKEY = F8KV : RETURN
21450 HOTKEY = F9KV : RETURN
21500 HOTKEY = F10KV : RETURN
21550 HOTKEY = LEFTKV : RETURN
21600 HOTKEY = RIGHTKV : RETURN
21650 REM
21700 KEY(1) ON: KEY(2) ON: KEY(3) ON: KEY(4) ON: KEY(5) ON
21750 KEY(6) ON: KEY(7) ON: KEY(8) ON: KEY(9) ON: KEY(10) ON
21800 KET(12) ON: KEY(13) ON
21850 REM
2 1 9 0 0 ~ G O T O ~ 2 2 1 0 0 ~
2 1 9 5 0 ~ C L S ~
22000 LOCATE 15,20
22050 INPUT "Mono Type : ",MONOWANTED
22100 GOSUB 26700
22150 PRINT "": PRINT "HIT ANY KEY:"
22200 WHILE (INKEY\$ = "") : WEND
22250 REM
22300 CLS
22350 REM
22400 SAYOK = 0 'TURN OFF 488 ACK SOUND AND OK PRINT OUT FLAG
2450 MOTORBUSY =0: MOVEBUSY =0: HALTSCAN =0
22452 ACCESSORYBUSY =0:TUPDATE = TIMER
22500 WAVE\# = 0\#: TARGET\# = 0\#
22550 TWEEKINC = 1
22600 TWEEKSPEED = 1 : TWEEKMAX = STEPSPERUNIT\# + 1
22650 STEPS\# = 0
22700 SHUTTER = 0
22750 TURRET = 0
22800 ENTMIRROR = 0
22850 EXTMIRROR = 0
22900 SCANSPEED\# = SCANFREQ\# / STEPSERUNIT\#
22950 REM
23000 MENUROW = 1: MENUCOL = 15: GOSUB 25000 'PULL UP MAIN MENU
23050 ROW = 20:COL = 20:MESSAGE\$ = "Command: " : GOSUB 28100
23100 ROW =20:COL =20+9
23150 REM
23160 IF FRE(0) < 5000 THEN COLOR 26,0 : LOCATE 1,1:PRINT USING "\#\#\#\#\#";FRE(0) :
COLOR 7,0
23170 LOCATE 1,1: PRINT USING "\#\#\#\#\#";FRE(0)
23200 GOSUB 30150 'CALIBRATE
23250 GOSUB 17100 'DISPLAY POSITION

```
```

23300 GOSUB 17400 'DISPLAY SCAN
23350 GOSUB 17850 'DISPLAY TWEEK SPEED
23400 GOSUB 18600 DISPALY ACCESSORIES
23450 GOSUB 15250 'DO AND DISPLAY SHUTTER
23500 GOSUB 18150 'DISPLAY MARKERS
23550 F1\# = MINFREQ\# : F2\# = MAXFREQ\# : RT\# = RAMPTIME\#
23600 GOSUB 13650 'SET MOTOR SPEED
23650 REM
23670 CHECKPT =0
23700 WHILE (1)
23750 GOSUB 26050 'GET KEY
23800 IF (KEYVALUE = 0) THEN GOTO 24850
23850 IF (KEYVALUE = 19) THEN GOTO 21950 '(Crl-s) CHANG MONO TYPE
23900 IF (KEYVALUE = F1KV) THEN GOSUB 28350: GOTO 24850
23950 IF (KEYVALUE = F2KV) THEN GOSUB 28800: GOTO 24850
24000 IF (KEYVALUE = F3KV) THEN GOSUB 29200 : GOTO 24850
24050 IF (KEYVALUE = F4KV) THEN GOSUB 29600: GOTO 24850
24100 IF (KEYVALUE = F5KV) THEN GOSUB 30150 : GOTO 24850
24150 IF (KEYVALUE = F6KV) THEN GOSUB 30650: GOTO 24850
24200 IF (KEYVALUE = F7KV) THEN GOSUB 30950: GOTO 24850
24250 IF (KEYVALUE = F8KV) THEN GOSUB 32550: GOTO 24850
24300 IF (KEYVALUE = F9KV) THEN GOSUB 32850 : GOTO 24850
24350 IF (KEYVALUE = F10KV) THEN GOSUB33150 : GOTO 24850
24400 IF (KEYVALUE = LEFTKV) THEN GOSUB 33400: GOTO 24850
24450 IF (KEYVALUE = RIGHTKV) THEN GOSUB 34100 : GOTO 24850
24460 IF ((AKEY\$ = "F") OR (AKEY\$ = "f")) THEN GOSUB 43000: GOTO 24850
24470 IF ((AKEY\$ = "P") OR (AKEY\$ = "p")) THEN GOSUB 57000: GOTO 24850
24500 IF ((AKEY\$ = "T") OR (AKEY\$ = "t")) THEN GOSUB 34750: GOTO 24850
24550 IF ((AKEY\$ = "E") OR (AKEY\$ = "e")) THEN GOSUB 35050: GOTO 24850
24600 IF ((AKEY\$ = "X") OR (AKEY\$ = "x")) THEN GOSUB 35350 : GOTO 24850
24650 IF ((AKEY\$ = "A") OR (AKEY\$ = "a")) THEN GOSUB 35650: GOTO 24850
24700 IF (KEYVALUE = CTRLA) THEN GOSUB 35950: GOTO 24850
24701 IF ((AKEY\$ = "B") OR (AKEY\$ = "b")) THEN GOSUB 36310 : GOTO 24850
24702 IF (KEYVALUE = CTRLB) THEN GOSUB 36316:GOTO 24850
24703 IF ((AKEY\$ = "C") OR (AKEY\$ = "c")) THEN GOSUB 36330: GOTO 24850
2 4 7 0 4 ~ I F ~ (K E Y V A L U E ~ = ~ C T R L C) ~ T H E N ~ G O S U B ~ 3 6 3 3 6 ~ : ~ G O T O ~ 2 4 8 5 0 ~
24750 LOCATE 23,1 : PRINT "Key Value: ",KEYVALUE: SOUND 1000,1
24800 IF (KEYVALUE = 26) THEN STOP
24850 REM ...
24852 IF (TMMER - TUPDATE < .2) THEN GOTO 24890
24853 TUPDATE = TIMER
24854 GOSUB 17100 'UPDATE POSITION AND LIMITS
24856 GOSUB 14800 'TEST ACCESSORY BUSY
24858 IF (ACCESSORYBUSY = 1) THEN LOCATE 23,20 : PRNNT "Accessory Busy"
24860 IF (ACCESSORYBUSY = 0) THEN LOCATE 23,1: PRINT SPACE\$(70)
24870 IF (CHECKPT = 1) THEN GOTO 22250 'PULL UP MAIN MENU AGAIN
24890 REM ...
24900 WEND
2 4 9 5 0 ~ S T O P ~
25000 REM
25050 REM
25100 REM ***** Main Menu *****
25150 LOCATE MENUROW+0,MENUCOL: PRINT "<- Arrow -> to Tweek Mono"

```
```

25200 LOCATE MENUROW+1,MENUCOL: PRINT "Fl - Set"
25250 LOCATE MENUROW+2,MENUCOL: PRINT "F2 - Start Position"
25300 LOCATE MENUROW+3,MENUCOL : PRINT "F3 - End Position"
25350 LOCATE MENUROW+4,MENUCOL : PRINT "F4 - Scan Speed"
25400 LOCATE MENUROW+5,MENUCOL: PRINT "F5 - Calibrate"
25450 LOCATE MENUROW+6,MENUCOL : PRINT "F6 - Shutter"
25500 LOCATE MENUROW+7,MENUCOL : PRINT " T - Turret"
25550 LOCATE MENUROW+8,MENUCOL : PRINT " E - Entrance Mirror"
25600 LOCATE MENUROW+9,MENUCOL : PRINT " X -Exit Mirror"
25650 LOCATE MENUROW+10,MENUCOL : PRINT "F7 - Scan"
25700 LOCATE MENUROW+11,MENUCOL : PRINT "F8 - Halt"
25750 LOCATE MENUROW+12,MENUCOL : PRINT "F9 - Tweek Speed"
25800 LOCATE MENUROW+13,MENUCOL: PRINT "F10 - EXIT"
25830 LOCATE MENUROW+14,MENUCOL : PRINT " P - PRINT OUT THE RESULT"
25850 LOCATE MENU+15,1: PRINT "Maker A"
25900 LOCATE MENUROW+16,1: PRINT "Maker B"
25950 LOCATE MENUROW+17,1 : PRINT "Maker C"
25980 LOCATE MENUROW+18,MENUCOL : PRINT " F -FLUSH"
26000 RETURN
26050 REM
26100 REM ***** GetKey *****
26150 IF (HOTKEY = 0) THEN GOTO 26350
26200 KEYVALUE = HOTKEY : HOTKEY = 0
26250 RETURN
26300 REM
26350 AKEY\$ = INKEY\$
26400 L = LEN(AKEY$) + }
26450 ON L GOTO 26500, 26550, 26600
26500 KEYVALUE = 0 : GOTO 26650
26550 KEYVALUE = ASC(AKEY$) : GOTO 26650
26600 KEYVALUE = ASC(MID$(AKEY$, 2)) + 128: GOTO 26650
26650 RETURN
26700 REM
26750 REM ***** Read Mono Parameter File *****
26800 OPEN "488_scan.ini" FOR INPUT AS \#2
26850 NRECSKIP = 7: LASTERROR =0
26900 REM ...
26950 INPUT \#2, MONOTYPE, COMMENT$: PRINT MONOTYPE, COMMENT$
27000 IF (LASTERROR > 62) THEN 27200
27050 CLOSE \#2
27100 PRINT "Parameters for Mono Type ",MONOTYPE, " NOT Found."
2 7 1 5 0 ~ G O T O ~ 2 2 0 0 0
27200 REM ...
27250 IF (MONOTYPE = MONOWANTED) THEN 27300 ELSE 27700
27300 INPUT \#2, STEPSPERUNIT\#, COMMENT$: PRINT STEPSERUNIT#, COMMENT$
27301 STEPERUNIT\# = 500/25
27350 INPUT \#2,MINFREQ\#,COMMENT$: PRINT MINFREQ#,COMMENT$
27400 INPUT \#2,MAXFREQ\#,COMMENT$: PRINT MAXFREQ#,COMMENT$
27450 INPUT \#2,RAMPTIME\#,COMMENT$: PRINT RAMPTIME#, COMMENT$
27500 INPUT \#2,BACKLASH\#,COMMENT$: PRINT BACKLASH#, COMMENT$
27550 INPUT \#2,JUNK\#,COMMENT\$: PRITN SCANFREQ\#,COMMENT\$
27600 INPUT \#2,COMMENT$: COMMENT$
2 7 6 5 0 GOTO 27950

```
```

27700 FOR I = 1 TO NRECSKIP
27750 INPUT \#2, COMMENTS
27800 NEXT I
2 7 8 5 0 ~ P R I N T ~ C O M M E N T \$
27900 GOTO 26900
27950 REM ...
28000 CLOSE \#2
28050 RETURN
28100 REM
28150 REM ***** Print Message *****
28200 LOCATE ROW,COL : PRINT SPACE$(50) : LOCATE ROW,COL
28250 PRINT MESSAGE$
28300 RETURN
28350 REM
28400 REM ***** Fl *****
28450 MESSAGE\$ = "F1" : GOSUB 28100
28500 LOCATE 22,20
28550 INPUT "Move to: ",W\#
28600 TARGET\# = W\# * STEPSPERUNIT\#
28650 LOCATE 21,1 : PRINT SPACE$(70)
28700 GOSUB 10150 'MOVE TO TARGET,DISPLAY AND WAIT TLLL DONE
28710 LOCATE 21,20 : INPUT :DO YOU WANT TO READ BACK THE INTENSITY (Y/N)?",YN$
28720 IF (YN\$ = "Y" OR YN\$ = "y") THEN GOTO 38000 ELSE GOTO 28745
28740 REM
28745 LOCATE 21,1 : PRINT SPACE$(70)
28750 RETURN
28800 REM
28850 REM ***** F2 *****
28900 MESSAGE$ = "F2" : GOSUB 28100
28950 LOCATE 22,20
29000 INPUT "Start of Scan: ",STARTSCAN\#
29050 LOCATE 22,1 : PRINT SPACE$(&)
29100 GOSUB 17400 'DISPLAY SCAN
29150 RETURN
29200 REM
29250 REM ***** F3 :*****
29300 MESSAGE$ = "F3" : GOSUB 28100
29350 LOCATE 22,20
29400 INPUT "End of Scan: ", endscan\#
29450 LOCATE 22,1 : PRINT SPACE$(70)
2 9 5 0 0 ~ G O S U B ~ 1 7 4 0 0 ~ D i s p l a y S c a n ~
29550 RETRUN
29600 REM
29650 REM ***** F4 *****
29700 MESSAGES = "F4" : GOSUB 28100
29750 LOCATE 22,20
29800 INPUT "Scan Speed: ", SCANSPEED#
29850 LOCATE 22,1:PRINT SPACE$(70)
29900 SCANFREQ\# = SCANSPEED\#* STEPSPERUNIT\#
29950 IF (SCANFREQ\# >= MINHARDWAREFREQ\#) THEN GOTO 30000
29962 SCANFREQ\# = MINHARDWAREFREQ\# : SCANSPEED\# = SCANFREQ\# /
STEPSPERUNIT\#
29964 GOSUB 17400 'DisplayScan

```
```

30100 RETURN
30150 REM
30200 REM ***** F5 *****
30250 MESSAGE\$ = "F5" : GOSUB 28100
30300 LOCATE 22,20
30350 INPUT "Where are you: ", WAVE\#
30400 LOCATE 22,1: PRINT SPACE$(70)
30450 REM
30500 GOSUB 12900 'Set Mono Position
30550 GOSUB 17100 'Display Position
30600 RETRUN
30650 REM
30700 REM ***** F6 *****
30750 MESSAGE$ = "F6" : GOSUB 28100
30800 SHUTTER = 1- SHUTTER
30850 GOSUB 15250
30900 RETURN
30950 REM
31000 REM ***** F7 *****
31050 MESSAGE\$ = "F7" : GOSUB 28100
31055 LOCATE 22,1 : PRINT SPACE$(70)
31060 LOCATE 22,10
31070 NNPUT "HOW MANY TMMES YOU WANT TO REPEAT?", REPEAT
31080 ON ERROR GOTO 32470
31090 LOCATE 22,1 : PRINT SPACE$(70)
31095 IF REPEAT = 0 THEN RETURN
31100 IF REPEAT > 0 THEN : LOCATE 22,10 : INPUT "PLEASE ENTER YOUR SCALE
?",SCAL:INPUT "PLEASE ENTER YOUR GRATING ?",GRATE : GOTO 46000 'MUTIPLE SCAN
AND GET SCALE FOR PLOTTING
31110 IF REPEAT < 1 THEN GOTO 32330
31120 GOTO 32500
31140 REM
32150 REM...
32200 HALTSCAN = 0
32250 LOCATE 11,40
32300 PRINT ": STOPPED "
3 2 3 2 0 ~ G O T O ~ 3 2 3 5 0
32330 LOCATE 22,20: : PRINT "YOU HAVE ENTERRED INVALID NUMBER !" : BEEP
32340 GOTO 31070
32350 REM 1OAD nORMAL Speed
32400 F1\# = MINFREQ\# : F2\# = MAXFREQ\# : RT\# = RAMPTIME\#
32450 GOSUB 13650 'Set Motor Speed
32460 GOTO 32485
32470 LOCATE 22,20 : PRINT "ERRORS OCCURS!"
32480 RESUME 31070
32485 FLAG =1
32490 GOSUB 55000 'STORE DATA INTO FILE
32495 COUNT\# = 0
32497 REPEEAT = 0
32500 RETURN
32550 REM
32600 REM ***** F8 ******
32650 MESSAGE\$ = "F8" : GOSUB 28100

```
```

32700 HALTSCAN = 1
32730 SENS = 0
32750 WHILE (INKEYS < "") : WEND 'Flush input buffer
32800 RETURN
32850 REM
32900 REM ***** F9 *****
32950 MESSAGE\$ = "F9" : GOSUB 28100
33000 TWEEKSPEED = TWEEKMAX - TWEEKSPEED
33050 GOSUB 36950 'Shut dowm
33350 RETURN
33400 REM
33450 REM ***** Left Arrow *****
33500 MESSAGE\$ = "Left" : GOSUB 28100
33550 IF (TWEEKSPEED > 1) THEN }3365
33600 IF ((TIMER-T1) > .1) THEN 33650 ELSE 33700
33650 F = 1: GOTO 33750
33700 F = F + 3:IF (F > 5*TWEEKMAX) THEN F = 5*TWEEKMAX
33750 TARGET\# = (STEPS\# - TWEEKINC * TWEEKSPEED * F)
33800 IF (TARGET\# < 0\#) THEN TARGET\# = 0\# : SOUND 1000,1
33850 REM
33900 GOSUB 9700 'Short Move to target, display and wait till done
33950 Tl = TIMER
34050 RETURN
34100 REM
34150 REM ***** Right Arrow *****
34200 MESSAGE\$ = " Right " : GOSUB 28100
34250 IF (TWEEKSPEED <> 1) THEN 34350
34300 IF ((TIMER-T2) > .1) THEN 34350 ELSE }3440
34350 F = 1: GOTO 34450
34400 F=F + 3: IF (F> 5*TWEEKMAX) THEN F = 5*TWEEKMAX
34450 TARGET\# = (STEPS\# + TWEEKINC * TWKKESPEED * F)
34500 REM
34550 GOSUB 9700 ' Shout Move to target, display and wait till done
34600 T2 = TIMER
34700 RETURN
34750 REM
34800 REM ***** "T" Turret *****
34850 MESSAGE\$ = "T" : GOSUB 28100
34900 TURRET = 1 - TURRET
34950 GOSUB 15550 'DO TURRET AND DISPLAY ACCESSORIS
35000 RETURN
35050 REM
35100 REM ***** "E" ENTmirror *****
35150 MESSAGE\$ = "E" : GOSUB 28100
35200 ENTMIRROR = 1- ENTMIRROR
35250 GOSUB 15850 'DO ENTRANCE MIRROR AND DISPLAY ACCESSORIES
35300 RETURN
35350 REM
35400 REM ***** "X" EXTmirror *****
35450 MESSAGE\$ = "X" : GOSUB 28100
35500 EXTMIRROR = 1 - EXTMIRROR
35550 GOSUB 16150 'DO EXIT MIRROR AND DISPLAY ACCESSORIES
35600 RETURN

```
```

35650 REM
35700 REM ***** "A" GOTO MARKER A *****
35750 MESSAGE\$ = "GO TO A": GOSUB 28100
35800 TARGET\# = MARKERA\# * STEPSPERUNIT\#
35850 GOSUB 10150 'MOVE TO TARGET, DISPLAY AND WAIT TLLL DONE
35900 RETURN
35950 REM
36000 REM ***** "Ctrl-A" SET MARKER A ******
36050 MESSAGE\$ = "SET A" : GOSUB 28100
36100 LOCATE 22,20
36150 NNPUT "MARKER A: ",MARKERA\#
36200 LOCATE 22,1 : PRINT SPACE$(70)
36250 GOSUB 18150 'DISPLAY MARKERS
36300 RETURN
36310 REM
36311 REM ***** "B" GO TO MARKER B *****
36312 MESSAGE$ = "GO TO B" : GOSUB }2810
36313 TARGET\# = MARKERB\# * STEPSPERUNIT\#
3 6 3 1 4 GOSUB 10150 'MOVE TO TARGET, DISPLAY AND WAIT TILL DONE
36315 RETURN
36316 REM
36317 REM ***** "Ctrl-B" SET MARKER B *****
36318 MESSAGE\$ = "SET B" : GOSUB 28100
36319 LOCATE 22,20
36320 INPUT "MARKER B: ",MARKERB\#
36321 LOCATE 22,1 : PRINT SPACE$(70)
36322 GOSUB 18150 'DISPLAY MARKERS
36323 RETURN
36330 REM
36331 REM ***** "C" GO TO MARKER C ******
36332 MESSAGE$ = "GO TO C" : GOSUB 28100
36339 LOCATE 22,20
36340 NNPUT "MARKER C: ",MARKERC\#
36341 LOCATE 22,1 : PRINT SPACE$(70)
36342 GOSUB 18150 'DISPLAY MARKERS
36343 RETURN
36350 REM
36400 REM ***** INPUT USER PARAMETERS *****
36450 OPEN "488_scan.usr" FOR INPUT AS #2
36500 INPUT #2, MONOWANTED, COMMENT$
36550 INPUT \#2, STARTSCAN\#, COMMENT\$
36600 INPUT \#2, ENDSCAN\#, COMMENT\$
36650 NNPUT \#2, SCANFREQ\#, COMMENT\$
36700 INPUT \#2, MARKERA\#, COMMENT\$
36750 INPUT \#2, MARKERB\#, COMIMENT\$
36800 INPUT \#2, MARKERC\#, COMMENT\$
36850 CLOSE \#2
36900 RETURN
36950 REM
37000 REM ***** EXIT *****
37050 REM SAVE USER PARAMETERS ON EXIT
37100 OPEN "488_scan.usr" FOR OUTPUT AS \#2
37150 PRINT \#2, MONOTYPE, " ;MONO TYPE"

```
```

37200 PRINT \#2, STARTSCAN\#, ";START OF SCAN"
37250 PRINT \#2, ENDSCAN\#, ";END OF SCAN"
37300 PRINT \#2, SCANFREQ\#, ";SCAN FREQ"
37350 PRINT \#2, MARKERA\#, ";MARKER A"
37400 PRINT \#2,MARKERB\#, ":MARKER B"
37450 PRINT \#2, MARKERC\#, ";MARKER C"
37500 CLOSE \#2
37550 GOTO 60000 'TO END THE PROGRAM
37600 GOTO 60000 'TO END THE PROGRAM
38000 REM
38050 REM === SUBROUTINE FOR THE NTENSITY READS BACK --> Fl
38055 REM
38057 LOCATE 21,1 : PRINT SPACE$(70)
38060 ON ERROR GOTO 45000
38070 LOCATE 21,20 : PRINT "PLEASE WAIT FOR RESPONSE ..."
38100 GPIBO% = 0 : DEV4% = 4
38150 BDNAME$ = "DEV4"
38200 CALL IBFIND(BDNAME$, DEV4%) 'UNIT DESCRIPTOR RETURNED
38250 BDNAME$ = "GPIB0"
38300 CALL IBFIND(BDNAME$, GPIB0%) 'UNIT DESCRIPTIOR RETURNED
38450 A$ = "QI" : CALL IBWRT(DEV4%, A%)
38500 FOR I = 1 TO 200 : NEXT I 'WAIT FOR CONFIRM
38550 B\$ = SPACE$(30)
38600 CALL IBRD(DEV4%, B$)
38620 LOCATE 19,49 : PRINT " " 'CLEAR SPACE FOR DATA
38630 LOCATE 19,30 : PRINT "THE WAVELENGTH IS : ";WAVE\#
38650 LOCATE 21,20 : PRINT "THE INTENSITY READS BACK IS : ";B\$
38670 FOR I = 1 TO 1000 'DELAY FOR THE INTENSITY DISPLAY
3 8 6 8 0 NEXT I
38700 BDNAME\$ = "DEV1"
38750 LOCATE 19,30: PRINT SPACE\$(45) 'CLEAR UP THE SPACE
38800 GOTO 28740 'JMMP BACK FROM EG\&G TO GPIB
4 0 0 0 0 REM
40005 REM --.> INITIALIZING
40010 REM
40050 COUNT\# = COUNT\# + 1
40100 IF COUNT\# > 1 THEN GOTO 40500
4 0 1 3 0 IF (REPEAT > 0) THEN GOTO 40200
40150 LOCATE 21,20 : PRINT "PLEASE WAIT >> INITIALIZING !"
40200 ABC\# = (ENDSCAN\# - STARTSCAN\#)\ SCANSPEED\# +1
4 0 2 3 0 ~ I F ~ (S C A N C O ~ = ~ 1) ~ T H E N ~ G O T O ~ 4 0 2 7 0 ~
4 0 2 4 0 ON ERROR GOTO 42000
40250 DIM EGGW\#[ABC\#], EGGI[ABC\#]
40255 ARRDEC =99 'ARRAY DECLARATION CHECK
4 0 2 6 0 ~ S C A N C O ~ = ~ 1 ~
4 0 2 7 0 ON ERROR GOTO 4 5 0 0 0
40300 FOR I = 1 TO ABC\#
40350 EGGI\#[I] = 0
4 0 4 0 0 ~ E G G W H [[] ~ = ~ 0 ~ 0
4 0 4 5 0 ~ N E X T ~ I ~
40500 RETURN
41000 REM
41010 REM ---> STORE DATA ---> FROM LINE \#4860

```
```

41020 REM
41030 IF K > 1 THEN COUNT\# = COUNT\# + 1 : GOSUB 45500
41050 IF K = 1 THEN EGGI\#[COUNT\#] = VAL(B$)
41150 EGGW#[COUNT#] = WAVE#
41170 RETURN
42000 REM
42050 REM ---> OUT OF MEMORY HANDLING
42100 REM
42150 CLS
42170 COLOR 26,0 'HIGH WHITE BLINKING
42180 LOCATE 1,1 : PRINT USING "#####";FRE(0)
42200 LOCATE 13,5 : PRINT " ... NNSUFFICIENT MEMORY ! ..."
42230 COLOR 7,0 'RETURN TO DEFAULT
42250 LOCATE 15,5 : PRINT "PLEASE USE F COMMAND ON MAIN MENU TO FLUSH
MEMORY"
42260 LOCATE 16,5 : PRINT "BETTER YET, RESTART THE PROGRAM AND DO THE SCAN AT
THE VERY FIRST TIME."
42300 LOCATE 21,5 : PRINT "... PLEASE HIT ANY KEY ..."
42350 WHILE(NNKEY$ = "") : WEND
42400 GOTO 60000 'ABORT
43000 REM
43050 REM ---> MEMORY MANEGER
43100 REM
43130 MESSAGE\$ = "F" : GOSUB 28100
43150 IF (ARRDEC < 99) THEN GOTO 43250
43200 ERASE EGGI\#, EGGW\# : ARRDEC = 0
43250 LOCATE 1,1:PRINT USING "\#\#\#\#\#";FRE(0)
43300 LOCATE 22,20 : PRINT "DONE !"
43320 FOR I = 1 TO 500: NEXT I 'DELAY FOR DISPLAY
43350 LOCATE 22,1 : PRINT SPACE$(70)
43400 RETURN
45000 REM
45005 REM ---> ON-ERROR HANDLING
45010 REM
45030 NUMBER = NUMBER + 1
45050 LOCATE 21,55 : PRINT "ERRORS !";NUMBER;" TIMES"
4 5 0 7 0 ~ I F ~ N U M B E R ~ > ~ 5 0 ~ T H E N ~ G O T O ~ 6 0 0 0 0 ~
45100 IF (FRE (0) < 100) THEN GOTO 42000 ELSE RESUME
45500 REM
45505 REM ---> DATA AVERAGING
45510 REM
45550 BBB# = VAL(B$)
45600 AVEEGG\# = EGGI[COUNT\#]
45650 EGGI[COUNT\#] = (BBB\# + AVEEGG\#)*.5
45700 RETURN
46000 REM
46005 REM ---> SCANNING -.-> FROM F7
46010 REM
46020 GRATING = 1200/GRATE
46030 CHECKPT = 1 'REPEATED SCAN CHECK
46050 FORK = 1 TO REPEAT
46100 CLS
46200 HALTSCAN = 0

```
```

46220 FLAG = 1 'POSITION CHECK
46250 TARGET\# = STARTSCAN\#* STEPSPERUNIT\#
4 6 3 0 0 ~ G O S U B ~ 1 0 1 5 0 ~ ' M O V E ~ T O ~ T A R G E T , ~ D I S P L A Y ~ A N D ~ W A I T ~ T I L L ~ D O N E ~
46350 REM
46400 IF (HALTSCAN = 1) THEN GOTO 32150 'USER HALT
46450 REM
46500 DELAY = 1!: GOSUB 6950 'DELAY BEFORE START
46520 FLAG =2 'SCANNING CHECK
46550 TARGET\# = ENDSCAN\#* STEPSPERUNIT\#
4 6 6 0 0 ~ R E M
46650 F1\# = MINFREQ\#: F2\# = SCANFREQ\#: RT\# = RAMPTIME\#
46700 IF (SCANFREQ\# < MINFREQ\#) THEN F1\# = SCANFREQ\#
4 6 7 5 0 GOSUB 13650 'SET MOTOR SPEED
46800 REM
46850 GOSUB 10150 'MOVE TO TARGET, DISPLAY AND WAIT FOR INTENSITY READS
BACK
46900 REM
4 6 9 5 0 GOSUB 32550 'STOP SCAN AND RE-ENABLE HOT KEYS
47000 REM
47050 HALTSCAN = 0
47100 REM
47150 REM
47200 F1\# = MINFREQ\# : F2\# = MAXFREQ\# : RT\# = RAMPTIME\#
4 7 2 5 0 GOSUB 13650 'SET MOTOR SPEED
47300 COUNT\# = 0
47330 PRINT " ... PLEASE HIT ANY KEY ...' 'BREAK BETWEEN REPEATED SCREEN
47340 WHILE (INKEY\$ = "') : WEND
47350 NEXT K
47370 REPEAT = 0
47380 K = 0
47390 FLAG = 1
47400 GOTO 32490 'JUMP BACK TO GPIB
48000 REM
48005 REM ---> SUBROUTINE FOR REPEATED INTENSITY READS BACK ---> F7 (LINE\#46850)
48010 REM
4 8 0 3 0 ~ I F ~ (K ~ > ~ 1) ~ T H E N ~ G O T O ~ 4 8 1 0 0 ~
4 8 0 5 0 GOSUB 40000 'INITIALIZE
48100 GPIB0% = 0 : DEV4% = 4
48150 BDNAMES = "DEV4"
4 8 2 0 0 ~ C A L L ~ I B F I N D (B D N A M E S , ~ D E V 4 \%)
48250 BDNAMES = "GPIB0"
48300 CALL IBFIND(BDNAME$, GPIB0%)
48420 A$ = "Q1" : CALL IBWRT(DEV4%,A$)
48440 FOR I = 1 TO 100 : NEXT I
48450 B$ = SPACE$(30)
48500 CALL IBRD(DEV4%, B$)
48550 BDNAME\$ = "DEV1"
48600 GOSUB 41000 'STORE DATA
48650 GOSUB 49000 'ON-SCREEN DISPLAYTNG
48700 GOTO 17340 'JUMP BACK TO GPIB
49000 REM
49005 REM ---> ON-SCREEN DISPLAYING
49010 REM

```
```

49903 PP = 140 +(NNT((EGGI\#[1] - EGGI\#[COUNT\#])/SCAL +.5)) '140 IS THE GROUND
VALUE
4 9 0 0 4 ~ I F ~ (S E N S ~ = ~ 1 ~) ~ T H E N ~ G O T O ~ 4 9 9 3 0 ~
4 9 9 0 5 ~ R E M
4 9 9 0 6 ~ S E N S ~ = ~ 1 ~
49907 CLS : KEY OFF : SCREEN2
49908 STARTEV\# = 12400 / (STARTSCAN\#* GRATING) : ENDEV\# = 12400 / (ENDSCAN\#*
GRATING)
49909 LOCATE 4,5 : PRINT "EV" : LOCATE 4,26 : PRINT USING " FROM \#\#\#.\#\# TO
\#\#\#.\#\#";STARTEV\#;ENDEV\# : LOCATE 4,61:PRINT USING "SCALE : \#\#\#.\#";SCAL
49912 LOCATE 15,1: PRINT "I"
49915 LOCATE 25,5 : PRINT "A" : LOCATE 25,25: PRINT USING "FROM \#\#\#\#\#.\#\# TO
\#\#\#\#\#.\#\#";STARTSCAN\#* GRATING; ENDSCAN\#* GRATING
49918 LINE(1,15)-(640,15) 'EV SCALE LINE
49921 LINE(1,191)-(640,191) 'WAVELENGTH SCALE LINE
49924 LINE(17,15)-(17,191) 'INTENSITY SCALE LINE
49925 LINE(8,140)-(17,140) 'GROUND LINE
49927 X = 16:SBP = 2 'SBP STANDS FOR SPACE BETWEEN POINTS
49928 REM
49930 X = X + SBP
4 9 9 3 2 ~ I F ~ (P P ~ > ~ 1 9 0 ~ O R ~ P P ~ < ~ 1 6 ~) ~ T H E N ~ G O T O ~ 4 9 9 5 0 ~
49933 IF (X > 640) THEN LOCATE 25,8: PRINT "< STILL GOING WITHOUT PT. ON SCREEN
BECAUSE OF MORE THAN";624\SBP;"PT.S >" : GOTO 49950
49936 PSET(X,PP)
49950 RETURN
55000 REM
55001 REM ---> STORE DATA
55002 REM
55050 OPEN "DATA" FOR OUTPUT AS \#3
55100 FOR I = 1 TO ABC\#
55150 AA\# = EGGW\#[I] * GRATING
55200 BB\# = EGGI\#[I]
55250 WRITE \#3, AA\#, BB\#
55300 NEXT I
55350 CLOSE \#3
55400 RETURN
57000 REM
57001 REM ---> PRINT OUT DATA
57002 REM
57050 MESSAGE\$ ="P": GOSUB 28100
57055
CLS
57060 PRINT ".-.-..->> PLEASE ENTER 1 TO PRINT OUT ON SCREEN,
AND 2 TO THE PRINTER ..."
57065 INPUT STATUS
57070 IF (STATUS < 1 OR STATUS > 2) THEN GOTO 57075 ELSE GOTO 57100
57075 PRINT "<<< INVALID ENTRY! PLEASE TRY AGAIN!>>>" : GOTO 57060
57100 PRINT " WAVELENGTH (A) NNTENSITY "
57120 I = 0
57130 OPEN "DATA" FOR INPUT AS \#3
57140 IF (STATUS = 2) THEN LPRINT " WAVELENGTH (A) INTENSITY"
57150 IF EOF(3) THEN GOTO 57380
57170 I= I + 1

```
```

57200 INPUT \#3, AA\#, BB\#
57220 IF (AA\# = 0) THEN GOTO 57380
57240 IF (STATUS = 2) THEN GOTO 57320
57250 PRINT AA\#," >",BB\#
57300 IF (I MOD 18 = 0) THEN PRNNT " ... PLEASE HIT ANY KEY ...": WHILE (INKEY\$ = ""):
WEND
57310 GOTO 57350
57320 LPRINT AA\#\#" >",BB\#
57350 GOTO 57150
57380 PRINT " ... PLEASE HIT ANY KEY .." : WHILE (INKEY\$ = "') : WEND
57400 CLOSE \#3
57450 CHECHPT = 1
57500 RETURN
6 0 0 0 0 ~ R E M
6 0 0 5 0 CALL IBLOC(DV\%) 'PUT 488 OFF LINE
60100 SYSTEM 'EXIT BASIC

```

\section*{REFERENCES}
1. Bartee, Thomas C., BASIC Computer Programing, 2nd Ed., Cambridge[Mass.] : Harper \& Row, 1985.
2. BAISC Handbook - General Programing Information, 3rd Ed., Personal Computer Hardware Reference Labrorary, IBM Corp., 1984.
3. Getting Start With Your GPIB-PCII/IIA and the NI-488.2 for MS-DOS, National Instruments Corp., 1992.
4. Hsiu, Ching-Fang, IBM PC Introduction and BASIC, 7th Ed., Taipei : Song-Gan, Inc., 1985.
5. Kittle, Charles, Introduction to Solid State Physics, 6th Ed., John Wiley \& Sons, Inc., 1986
6. Verdeyen, Joseph T., Laser Electronics, 2nd Ed., New York : Prentice-Hall, Inc., 1989.
7. Bowen, E. J. and F.R.S., Luminescence In Chemistry, Princeton, N.J. : Van Nostrand, 1968.
8. Model 5207 \& 5208 Lock-in Amplifiers Instruction Manual, EG\&G Princeton Applied Research.
9. Klein, Miles V., Furtak, Thomas E., Optics, 2nd Ed., New York : John Wiley \& Sons, Inc., 1986.
10. Yariv, Amnon, Optical Electronics, 4th Ed., Standard College Publishing, a Division of Holt, Rinehart and Winston, Inc., 1991.
11. Pankove, Jacques I., Optical Processes In Semiconductors, New York: Dover Publications, Inc., 1971.
12. Yariv, Amnon and Yeh, Pochi, Optical Waves In Crystals, New York : John Wiley \& Sons, Inc., 1984
13. Parker, C. A., F. R. M. S. and F. R. I. C., Photoluminescence of Solutions, New York : Elsevier Publishing Co, 1968.
14. Sze, S. M., Physics of Semiconductor Devices, 2nd Ed., New York : John Wiley \& Sons, Inc., 1981.
15. Hammond III, H. K. and Mason, H. L., Editors, Precision Measurement and Calibration -- Selected NBS Papers on Radiometry \& Photometry, U.S. Department of Commerce, NBS Special Publication 300, Volume 7, 1971.

\section*{REFERENCES}
(Continued)
16. Eisberg, Robert and Resnick, Robert, Quantum Physics, 2nd Ed., John wiley \& Sons, Inc., 1985.
17. Sze, S. M., Semiconductor Devices Physics \& Technology, New York : McGraw-Hill, Inc.,
18. Streetman, Ben G., Solid State Electronic Devices, 3rd Ed., New York Prentice Hall, Inc., 1990.
19. Spectrometer Control Via JY232, JY488 And DataLink Interface Manual, JY Optical Systems Instruments., 1993.
20. The Oriel Catalog-Light Sources, Monochromators, Detection System Volume II, Oriel Corporation, 1989.
21. Pankove, J. I., Topics In Applied Physics --Eltroluminescence, Volume 17, New York: Springer-Verlag Berlin Heidelberg, 1977.
22. Sze, S.M., VLSI Technology, 2nd Ed., New York : McGraw-Hill, Inc., 1988.```

