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ABSTRACT 

APPLICATIONS OF 
BINARY SEQUENCE OF ORDER k 

by 
Xulun Jiang 

The cumulative distribution of the finite sum of the binary sequence of order 

k is studied and some of its applications discussed. Certain properties of this 

sequence are studied and uniformly superior bounds for the cumulative distribution 

under minimal information on the "success" probabilities are derived. 

As an application, an optimal randomized response model to collect sensitive 

information with dependence in the sample is proposed. This dependence is caused 

by untruthful response to stigmatizing questions and has been ignored in the past 

procedures. 

The proposed method is useful in collecting reliable information in situations 

where the response is difficult to get, e.g., gathering data regarding the incidence 

of AIDS. 
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CHAPTER I 

INTRODUCTION 

The sum of independent, identically or non identically distributed binomial 

random variables is one of the oldest random variable in probability and statistics. 

Estimation of their cumulative distribution functions has been studied extensively 

by Kolmogorov (1956), Hoeffding (1956), Anderson and Samuels (1956), Hodges 

and Le Cam (1960) and Gastwirth (1977). Percus and Percus (1985) obtained 

uniformly superior bounds for the sum of independent, non identically distributed 

random variables with minimal information on the underlying "success" 

probabilities {p1,  p2,  • • }. In the present work, we study sum of a particular type 

of dependent, non identically distributed random variables. This sum is defined in 

terms of a binary distribution of order k, given by Aki (1985). We also obtain 

uniformly superior bounds for the cumulative distribution under minimal 

information on the "success" probabilities as in Percus and Percus (1985). 

However, the mathematical problem encountered in the present work, and hence 

the solution, turn out to be entirely different from theirs. 

It is also noted that the optimal upper bound for the distribution of this sum 

is independent of k. Further, if the p's are close to zero then the upper bound 

will be close to the true value. 

Further study in this paper shows the asymptotic results of the binary 

sequence of order k and these results can be applied to the procedure for 

collecting sensitive information. 

Definition 1.1 Let X.,= 0, 1, 2,• • • be a sequence of {0, 1} — valued 

random variables defined on a probability space (Ω, 	P). Then, this sequence 

{X.} is said to be a binary sequence of order k if there exist a positive integer k 
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and real numbers 0 ≤ p i , p2, • • • , Pk  < 1 such that 

is satisfied for any positive integer n, where j — 1 = (r-1) mod k, i.e., the 

remainder in the division of (r-1) by k and r is the smallest positive integer 

which satisfies xn—r 0. Here, the case k = 1 corresponds to the sequence of 

independent identically distributed Bernoulli random variables and k = ∞ to that 

of a renewal sequence. The latter follows from the fact that each time a failure 

occurs, the process starts again from the beginning and is independent of all the 

preceding events. 

In addition to the notations in Definition 1.1, q i  = 1 — pi, i = 1, 2, • • • , k, 

from here onwards. Also, we shall follow the convention that any product or sum 

over an empty set is one or zero, respectively. 

To introduce the practical background of this distribution, we repeat the 

Example 2.2 from Aki (1985) here. In chapter 3 we will show another application 

of the sum of first n terms of the binary sequence in the field of non evasive 

sample survey. 

Example An electric bulb is lighted and checked daily at a given time. 

Based on the result of the check on the ith  day X. takes the value 0 if the bulb 

has burnt out, or 1 if it is working. A burnt out bulb is replaced by a new one 

immediately. A new bulb is replaced after k consecutive days, even if it is still 

working. Here p. represents the probability of that the bulb will work on the i th  

day, given it has not failed for the past i — 1 days. Then {Xi} is a binary 

sequence of order k and the sum of its first n variables represents the total 

number of days, out of n, when the bulb was working. 



from the fact that 

CHAPTER 2 

PROBABILITY BOUNDS ON THE FINITE SUM 

2.1 Some Properties of the Sequence 

In this section we present certain conditional and joint distributions of a binary 

sequence. We also forward a new approach to the binary sequence of order k, 

which avoids the use of r and j of Definition 1.1. We begin by restricting 

ourselves to binary sequence of order k ≥ n ≥ 1. Here, n is the sample size, i.e., 

the first n realizations of the binary sequence of order k. Let 0 represent the 

failure of a light bulb and 1 be its state of functioning, i.e., not failure. Since pX  

vanishes as a factor in a product of terms when x = 0, and is p when x = 1, let 

x's be the state of working of the light bulbs in the following discussion. Thus, 

could be any one of the pi , 

or q1, 	qn  depending on whether xn  = 1 or 0, respectively. Let j be 

as in Definition 1.1, which satisfies 1 < j < n. In the case n < k, j equals r 

because r — 1 < k. This conditional probability, for a specific i = r, is equal to 

However, i need not be r and could be any integer in [1, n]. Hence, this 

conditional probability is equal to 

The joint density of (X1 , X9, • • • , Xn)  in the case n ≤ k can now be obtained 

pn 
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This gives the joint density as 

The above results for the conditional probability and joint density can be 

derived without the restriction k ≥ n ≥ 1 by defining a function Sk(t;n-1) as 

follows 

where 0 < t ≤ k and Sk  depends on the first n — 1 random variables of the 

binary sequence. In general, the conditional and the joint distributions in (2.1) 

and (2.2) can now be described by the following lemma and theorem, respectively. 

For the proof of the lemma please see Appendix. 

Lemma 2.1 Let {X.} be a binary sequence of order k with p1,  p2, • • • , p1  

then 

The proof of the following theorem follows from Lemma 2.1 and (2.3). 

Theorem 2.1 The density function of the binary sequence of order k with 

In order to state and prove the following theorem we need the notation (a)k  



is known then so is q1  = Since, 
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to be the remainder in the division of a by k, i.e., 

integers. 

Theorem 2.2 Let {Xi, i ≥ 1} be a binary sequence of order k. Define b = ≥ 

2.2. Uniformly Tight Bounds 

Let {Xi, i > 1} be a binary sequence of order k with parameters p1,  p2,• • • , pk. 

n 
Denote Fn(a) = P( Ʃ  Xi ≤ a), where a is a nonnegative integer. In order to 

i=1 

present the results of this section need the following notation. When pm+1  = 

then denote it by Fn(a) or Fn
(a). Even though intuitively Fn(a) and Fn(a) 

seem to be the lower and upper bounds of Fn
(a), the proof of this is not so 

obvious. 

Theorem 2.3 For a binary sequence of order k with given p1,  p2, • • • , pm  

(m < k), Fn(a) reaches its maximum or minimum when pm+1 	+2 
= 

p m 

pk  = 0 or pm+1 
 = p

m+2 
	. • • = pk  = 1, respectively. 

For the proof of this theorem please see Appendix. 

Throughout the following work the definition of combinations [mn] is 

m(m-1)• • • (m—n+1)/ n!. 

Case (i) Fn(0) is given. 



we first compute the 

there are y number of random 

. If for some i > 0, X. = 0 

In order to compute Fn(a), 

variables in the set with value 1 

In the event 

If y is a multiple of k then 

The number of all outcomes in the event which are described above 

and are equally probable, is 

Thus, the lower bound of Fn(a) is 

Interestingly, in the case when 

function evaluated at a of the density function 

converges to the distribution 

Therefore, 

is equal to the disjoint union of and 

6 

as in Theorem 2.3., are 

the lower and upper bounds of Fn(a), respectively, when Fn(0) is known. 

and Xi+1 = 1 then Xi+2 = • • = X(i+k) A n 
= 1, where A represents 

minimum. This implies that these y ones must appear in groups of size k 

except for the last (y)k  ones. The probability of a typical outcome of the type 

[y/k] bunches of ones, each of size k, n — y zeros and (y)k  ones is 

For computing Fn(a), the condition p2  = 0 means that in the binary 

sequence no consecutive random variables will take the value 1. The event 
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However, in view of the preceding statement the events 

where 

respectively.  

We shall now compute the probability of 

Xn-1 = 0. In this joint event, 2(y-1) of X1, • • • ,  Xn are such that a zero 

follows one, except for 

Xn = 1 and the remaining X's take the value zero. Thus, 2(y-1) + 1 must be 

at the most n, which puts the constraint 1 < y ≤ [(n+1)/2] on y. Any outcome 

of this type must have its probability equal to 

However, (2.5) becomes pY1 q1n-2Y+1 since q2 = 1. Consider the one followed by 

a zero as a single piece of a special zero and ignore the last Xn  = 1. Now there are 

a total of y — 1 special zeros and (n—y) — (y-1) single zeros. Therefore, there 

[ 	
 

are n-y  distinct equally probable outcomes in this case. Thus, Y-1  

By adding up (2.6) and (2.7), we get the upper bound of Fn (a) to be 

where a*  = min (a, [(n+1)/2]) and a
** 
 = min (a, [n/2]). 

Case (ii) Both F (0) and n(1) are given. 

The bounds for F (a) are computed using Theorem 2.3 with m = 2 < k. 
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Assuming 0 < q1  < 1, we get 

Since, 

From Case (i) and (2.8), p1  and p2  are fixed because Fn(0) and Fn(1) 

are given. Thus, n must be at least 2 to compute the upper and lower bound for 

Fn(a). 

As in the previous section, for calculating the lower bound, we compute 

P( Ʃ  Xi 	y ) first. For pi  = 1, = 3, 4,•• • , k, if Xi  = 0 and Xj+i  = Xj+2  
i=1 

= 1 for some i > 1, then Xi+3 = • - = X(i+k) A n 

= • • • = Xii-jk+2 = 1 for some positive integer i and j, then 

1+jk+3 	=  Xi+jk+4 	= Xi-Fik+k 	1. Therefore, each realization of {X. 

i < n} in the event 	E Xi = y}  can be written as the union of four disjoint i=1 

distinct groups. Group 1 consists of M pieces of consecutive ones of size k, 

0 < M < [y/k]. Fixing the elements of Group 1, Group 2 is the set of consecutive 

ones of size / < (k-1) A (y—Mk)}, located near the nth  position and Group 3 

n 
consists of J pieces of a one followed by a zero, i.e., 10. Here, Ʃ  Xi  = y gives 

J in terms of M and / through Mk + J / = y. Having fixed Groups 1, 2, and 

3, Group 4 consists of all the remaining zeros. The number of zeros in Group 4 

must therefore be equal to n — y — J. When M and / are fixed, the probability 

of a typical outcome of this kind in the event { Ʃ  X. = y} is 
i=1 

Also, if Xi = 0 and 

X . 	= X 
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Substitute J by y — Mk — /, and take p0  = p3  = p4  = • • • = pk  = 1, this 

probability becomes 

y-Mk+M-l+{ l-1,/k] M+1+R 1-2)/k) y-Mk-1 n-2y+Mk+l 
P1 	 P 2 	 q2 	q1 	 

The number of distinct, equally probable outcomes of this type, with M and l 

fixed, is counted by ignoring the l fixed ones located near the nth  position. Thus, 

the number of all possible arrangements of n—y+M pieces with M of them 

alike, as described in Group 1, y—Mk-l in Group 3 and n-2y+Mk+l of the 

pieces are zeros of Group 4. This number is equal to 

where i=  min (k-1, y—Mk). Thus, the lower bound of Fn(a) is 

In this case, as k 	w, the limit of (2.9) is given by 

This limit can be obtained by just taking k > n and observing that M = [y/k] = 

[(1-1)/k] = [(1-2)/k] = 0. Also, it has been computationally seen that the above 

limit of (2.9) is again a distribution function. 

To compute the upper bound Fn(a), note that the condition p3  = 0 

imposes the restriction that no three consecutive random variables are each equal 

to 1. Therefore, each realization of {Xi, 0 < i < n} in the event 
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can be written as the union of three disjoint distinct groups. Fix j elements in a 

group of the type double ones followed by a zero, i.e., 110; the next group consists 

of M elements of the type single one followed by a zero, i.e., 10; and the final 

group contains all the remaining zeros. The number of these remaining zeros is 

n — y — M — j. Further, consider the set {X., 0 < i < n} as the union of three 

mutually disjoint sets with restrictions, one with Xn-1  = Xn  = 1, the second 

with Xn-1 = 0, Xn 	1, and the third with Xn = 0. In each of these three 

cases, M is equal to y — 2j — 2, y — 2j — 1, or y — 2j, and j satisfies the 

restriction 0 < j < (y-2) A [(n-2)/3] = ji, 0 < j < (y-1) A [(n-1)/3] = j2  or 0 ≤ j 

≤ y A [n/3] = j3, respectively. Also, y satisfies the restriction 0 ≤ y ≤ n — [n/3], 

0 < y ≤ n — [(n+1)/3] or 0 ≤ y ≤ n — [(n+2)/3], because the least number of zeros 

we must have under each case is [n/3], [(n+1)/3] or [(n+2)/3], respectively. To 

achieve this, count backwards and fill in as many ones as possible and imagine for 

the second and third case the n+1th  and/or n+2th  positions are each 1. Again 

for each of these three cases, the total number of all possible arrangements of the 

n — y zeros, which are of three types with sizes M, j and n — y — M — j, is 

(n—y)!/{MIAn—y--M—j)!}. The three types of zeros are 10, 110 and single zeros, as 

described above. Replacing M by y — 2j — 2, y — 2j — 1, or y — 2j, 

respectively, we get 

where y1  = min (a, n — [n/3]), y2  = min (a, n — [(n+1)/3]) and y3  = min (a, n — 

[(n+2)/3]). 

In both the cases (i) and (ii) above Fn(a) and F (a) are particular values 
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of Fn(a), implying that the bounds can not be improved. 

2.3 Numerical Examples 

Following are some examples comparing the upper and lower bounds with the true 

value of Fn(a), for the case when both Fn(0) and Fn(1) are known. In reality, 

the remaining p,s would be unknown. Under this minimal information one 

cannot use Theorem 2.2 directly. Even though we have assumed in Examples 2 

and 4 that all pi 's are same, this information may not be a priori known. Such an 

assumption is made only to get a feel for the difference between the estimated 

bounds versus the true values of the cumulative distribution function. 

FORTRAN program was used to compute these valuesi The true values of 

(a) were obtained from Theorem 2.2 and that of Fn(a) and Fn (a) from (2.9) 

and (2.10), respectively. A cross check was performed and it was noted that the 

upper and lower bounds matched the true value of the cumulative distribution 

function when all p3, p4, - • • , pk  were 0 and 1, respectively. 

Generally, the upper and lower bounds are close to each other when the given 

pi  and p2  are near zero. Besides, when pi, i ≥ 3, are closer to 1 (0), we 

notice, as expected, that the lower (upper) bound does better. 

Example 1 k = 4 , p, ≡  0.05i, 	 Example 2 k = 5, pi  ≡ 0.3, 
n =12 

y Fn(y) 
Upper 
bound 

Lower 
bound y F n (y) 

Upper 
bound 

Lower 
bound 

0 .54036 .5 4036 .540 36 0 .01384 .01384 .013 84 
1 .86517 .86517 .86517 1 .08503 .08503 .08503 
2 .96959 .97432 .94280 2 .25282 .26371 .22739 

3 .99404 .99664 .95547 3 .49252 .53034 .371 58 
4 .99905 .99971 .98722 4 .72365 .78369 .461 13 
5 .99988 .99998 .99807 5 .88215 .93541 .56821 
6 .99999 1.00000 .99944 6 .96140 .98956 .74575 

n = 12 
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Example 3. k =5, pi= 0.54, 0.19, 	Example .4 k..-.4, pi  ≡ 0.5, 

	

0.04, 0.64, 0 42, n = 12 	 n = 12 

Fn(y) 
Upper 
bound 

Lower 
bound y Fn(y)  

Upper 
bound 

Lower 
bound 

0 .00009 .00009 .00009 0 .00024 .00024 .00024 

1 .00224 .00224 .00224 1 .00317 .00317 .00317 

2 .02263 .02266 .02172 2 .01929 .02173 .01685 

3 .12075 .12136 .10543 3 .07300 .09277 .04883 

4 .37377 .37735 .27925 4 .19385 .27100 .09912 

5 .71478 .72420 .44623 5 .38721 .55640 .19409 

6 .93391 .94514 .56140 6 .61279 .83521 .35962 



CHAPTER 3 

MODIFIED RANDOMIZED RESPONSE MODEL 

3.1 Introduction and Summary 

A question like, "Do you have AIDS?" is offensive and does not guarantee a 

truthful answer. Collecting information of such sensitive and personal nature 

requires carefully thought out procedures. The techniques employed currently do 

address the sensitivity of the issue but do not take into account the basic instinct 

to hide the truth in such matters. 

Consider a community being surveyed by a government agency for the 

incidence of AIDS. Due to the very stigmatizing nature of the disease, the 

community may want to hide the truth to present a positive image. To get an 

accurate estimate in a situation like this, the proposed work assumes that k 

subjects in the sample collaborate to distort the truth, where k = 1 gives rise to 

the existing procedures. Further, people giving truthful answers are doing so 

independently. 

Warner (1965) proposed a randomized response procedure assuming that the 

yes and no reports on sensitive information are made independently and truthfully. 

Abul—Ela et al. (1967) generalized this idea to t disjoint categories of the 

population, of which at most t-1 categories are stigmatizing. Under the same 

assumptions of truthful reporting and independence among responses of different 

individuals as in Warner (1965), but with no direct replies needed from the 

respondents, Kuk (1990) designed a randomized response model with a more 

efficient estimator. To capture the bias due to the possibility of the truth being 

concealed in a specific manner, the binary sequence of order k, as defined in the 

Chapter 1, is introduced in the randomized response model of Kuk. This includes 
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dependence and changes the probability of an affirmative from person to person, 

due to negative implicationsi 

As in Kuk (1990), imagine an enclosed booth with two packs of cards, each 

with red and green colors. The percentages of red cards are 01  and 02, 01 1 02. 

Pack 1 relates to an affirmative for AIDS and pack 2 to its negation. Each 

respondent shuffles and draws a card from each pack and puts it back after noting 

its color. Depending on whether the person does or does not have AIDS he reports 

the color of the card from either pack 1 or 2, which ever relates to him. Let these 

responses be realizations from binary sequence of order k, X1, • - , Xn i Assuming 

that everyone tell the truth (k = 1) the probability of obtaining a red card is 

given by 

where n is the proportion of people in the population that have AIDS. Further, 

when p is estimated by X = n-1  E X., k = 1, the above equation gives 

maximum likelihood estimator of 7r which is also a moment estimator. The 

effects of using the binary sequence of order k are seen through the following 

facts. The probability of the first person saying "no" to having AIDS is p l . 

Influenced by the previous number of "no's", the probability that each of the next 

k-1 individuals will give the same answer is p2, • • • , pk , respectively. After k 

negations have been noted, k+1th  person saying "no" has the same probability as 

that of the first person with this answeri If a person says "yes" to the above 

question then the next set of answers will be independent of all the previous 

answers. These facts can be derived from Definition 1.1 in Section 2. Note that 

for a given problem there may be different k's involved which need to be 

estimatedi 

In view of the Chapter 2 of this paper the sum in the estimate of p can more 

generally be replaced by the finite sums of first few random variables of several 



In this section, 

order k if there exist weights Such that 

if not stated below, please see = 1, and for any 
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independent binary sequences, which needs to be investigated. 

Asymptotic results such as consistency and normality of the estimator taking 

the bias into account are determined. Reduction in bias strategies is investigated. 

3.2 Properties of the Estimator 

is shown to be a strongly consistent estimator of p.. 

The 	turns out to be the asymptotic mean of Xn , which is also computed in 

this section. 

These results are obtained by showing that E Xn  satisfies the following 

sequence property. A sequence {an} is said to be a weighted mean sequence of 

Appendix for the proofs of lemmas and theoremsi 

Lemma 3.1 If {µn} is a weighted mean sequence of order k, there exist 

real numbers µ, 0 < q < 1 and M > 0 such that An  — 	≤ qnM for all n. 

All  the results obtained here onwards will inherently assume that 0 < pi  < 1, i = 

1, 2, • - • , k. In the subsequent results Lemma 2.2 is repeatedly usedi 

Lemma 3.2 The binary sequence of order k satisfies the property that the 

Proof These properties automatically follow from the definition of binary 

sequence of order ki 

Here onwards, the condition 0 < p. < 1, 1 ≤ i ≤ k is assumed. 

Theorem 3.1 Suppose {X n} is a binary sequence of order k with 

parameters p1, p2, • • • , pk. Then there exist real numbers p., q and M as in 
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Lemma 2.1. such that 

Theorem 3.2 Let X1,  X2, X3 • • - be a binary sequence of order ki Then 

X = 	Xi/n converges to 	with probability 1 	as 	n→∞ 
n 	

i=1 

Since, from Theorem 3.1 EXn  converges as n →∞ m and Kronecker's Lemma 

give lim E Xn =µ exists. There is an asymptotic bias in estimating 71 when n→∞ 

using binary sequence, k > 1. Aki [2, Proposition 2.1] gives µ  satisfying 

In the special case when k = 1, µ=p= p1, i.e., no bias, where product over 

empty set is taken to be 1. 

3.3 Central Limet Theorem 

This section proves the limit distribution of 

Where µ  is given by (2.1) and σ2, the variance of the limit distribution, is equal 

to 

This is achieved by first showing n Var(Xn) 	a2  and then proving (Xn— 

AVIVar(Xn) converges in distribution to N(0, 1). The later is shown by using 

the central limit theorem of Philipp (1969, Section 3, Theorem 3, p. 164) given 

here for the sake of completeness. 

Let {96nn} be a double sequence of random variables centered at 

expectations and with finite variance σNn 
 

2 
= E Nn. Assume that a

2 
 

N 

c, where c is a constant not depending on N and that 

Moreover suppose that the following condition holds. 



To simplify the notation let n assume the values 1, 2, • • • , N and hence E 
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Denote by 	(N) Mab  the a—algebra generated by the events {%Nn < a}, 1 ≤ a 

≤

 n ≤ b ≤ N and any real number a. The mixing condition that is satisfied by the 

process {%Nn} n} is given by 

(3.2) 

with 

stands for E . Further, omit the index N in the random variables 	y n, Nn, 
n=1 zNn

 defined below. With this convention for fixed N write 

where 

Here, put pi  = E (hv+k), the integers hv and k being at our disposali 
v<i 

Theorem 3.3 Let {%Nn } be a stochastic process satisfying all the conditions 
Nn 

described above and that EN →1 (N 	co). Let (nn, Sn) be any admissible pair 

[Philipp 1969, Definition p. 164). Then Ʃ 	converges to N (0,1) in 

distribution and cN 	0 if and only if, for any E > 0, 

Let 	n = (Xn — E XnOVar(E X n ) in the above theorem. The following 

work shows all the conditions of the above theorem hold. 

Theorem 3A The variance of Xn multiplied by n converges to a2  as in 
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(3.1). 

Proof Rewrite n Var(Xn) as 

calculation in (3.5) again gives 

Consider EXj-i -µ as elements of an upper triangular matrix say A = (a..). In 

A, add all the elements along diagonals parallel to the major diagonal to give 

Thus (3.7) converges to — r  (µ — EXj). Substitute (3.4) in (3.3) and then apply 

to it (3.5) through (3.7) to get the desired result. 

Subsequent results need the following notation. Let A, B denote subsets of 

0-1 valued vectors of the vector space with dimensions t and N, respectively. 

Furthermore, let 
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and X. ., Yi,j the random vectors (Xi,Xi+1,• • • ,X.)j  and (Yi,Yi+1 	• • • Y.) Ni,j Ii,j 	i1 1+1" 3 

respectively. In particular, denote Xi,i+t-1and Yi,i+N 	as Xi and 	In this N  

section, the constants q and M are as in Theorem 3.1. 

Lemma 3.3 The inequality I P(Yn+1ϵ  B) — P(Ynϵ  B)| < C1qn holds for C1  

= M/(1—q), any B, and all integers n, N > 0. 

Lemma 3.4 The inequality I P(Yn+l ϵ  B) — P(Ynϵ  B)| ≤ C2qn holds for C2 

C1/(1—q), any B, and all positive integers n and 1. 

Lemma 3.5 The inequality 

holds for any B and all positive integers m, n, 1, where A is the subset of IR 

Lemma 3.6 There exists a constant C(t) depending only on t such that 

holds for all positive integers m, n, 1, t and N. 

Lemma 3.7 Let C(k) be as in Lemma 3.4, where k is the order of the binary 

sequence. Then I P(X1  E A, n+t E B) P(X1  E A)P(Yn+t  E B) I ≤ C(k)qn holds 

for any positive integer n, t, and N. 

Corollary 3.1 Let C(k) be as in Lemma 3.5, then for any integers 1 ≤ i1  < 

Theorem 3.5 (Central Limit Theorem) The limit distribution of (Xn  — 

µ)/(σ/√n ) is N(0, 1). Where µ is given by (2.1) and a by (3.1). 
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in 

the right hand 

Notice that these events get translated into X1 E E X1  + 

Since, Lemma 3.5 holds 

Proof Start with 

for any Borel measurable set A and B, (3.2) holds with 	a1/2  (n) < w. 
n=1 

Further, it is a fact that EN  ≡ 1. From Theorem 3.4 σN2  and c(N) are of the 

orders of 0(1)/N and 0(1)/N"2  because Var(Xn ) ≤ 1 and ||Xn — E Xn||∞  ≤ 1. 

In Philipp (1969, Definition, p. 159), let SN  = σN, kN  = σ1/2N. Then ζN. = 

by the same reasoning as in the preceding statement. Finally, the set [|yNj| > 

side of this inequality goes to ∞ as N 	w, whereas the left hand side is bounded 

by h.. Thus for a suitable choice of h. the Lindeberg type condition of Theorem 

3.3 is satisfied and hence the result. 



APPENDIX 

We start with the proof of Lemma 2.1. In order to do so we will first prove 

Lemma A.1. 

Lemma Al Let {X.} be a binary sequence of order ki Suppose x., i = 1' 

2,• 	n — 1' are given and j is defined by Definition 1.1, then for 1 ≤ t ≤ k, 

Proof This result holds true for the following two cases' (i) t > n and (ii) 

n > t. Under (i), the fact that n > r > j, with r and j as in Definition 1.1, gives 

t > j and from (2.3) both sides of (A.1) are equal to zero. In case (ii), let i = [(r 

— 1)/k], then r = i k + j. Again, from Definition 1.1, we get 

If t = j then the i*th  term in the summation (2.3) is the product of ones 

from (A.2). All terms i > i* and i < i* in (2.3) are zero because they include in 

their factors xn—i*k—j and 1 —n-ik-j' respectively. Therefore, Sk(t;n-1) = 1. 

If t ≠ j, then each term of the summation in (2.3) has at least one zero 

factor. Let us see this when (a) k ≥ t > j ≥ 1 and (b) 1 ≤ t < j ≤ k. In Case (a) 

the terms i < i* in (2.3) contain the factor 1 — x 	which is zero because 

n — ik — t ≥ n — i*k + k — t > n — i*k — ji Also, the terms with subscript i > i* 

contain the factor xn-i-k-j because n — i*k — j ≥ n — ik — t + 1. Hence, they are 

zero from (A.2). In Case (b) the terms i < i* in (2.3) contain the factor 

1 — xn-ik-t, which is zero because n — ik — t > n — i-k — j. Also, the terms with 

subscript i > i* contain the factor xn-i*k-j( = 0) because n — i*k — j > 

n — ik 	k — j > n — ik — t + 1. Hence the result. 

Proof of Lemma 2.1 From Definition 1.1 
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From Lemma A.1, Therefore, 

This completes the proof. 

of those Xi satisfying 

terms of the binary sequence. The probability of 

Proof of Theorem 2.2 When 

satisfying Xi = 1, and b number of Xi's satisfying Xi = 0. Fix the positions 

in the first n 

there are y number of Xi's 
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According to Definition 1.1, the mth factor on the right hand side of (A.3) is 

and the last factor is 

Adding all probabilities corresponding to the various positions of {jm}'s, we get 

the desired result. 

To prove Theorem 2.3 we shall first prove some lemmas. 
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Proof According to the definition of binary sequence of order k, the joint 

have the same cumulative distribution functions, respectively. 

Since Xn+j ≤ 1 the proof of Lemma A.3 below follows from the fact that 
  

Lemma A.3 For any integer m, 

Proof of Theorem 2.3 We shall use induction on n to give this proof. The 

hypothesis is true for n < m, because Fn(a) does not depend on pm+1, pm+2, 

• • • , pk  and is a known constant as a function of the remaining pi's. Suppose the 

statement is true for n — 1 or less, then: If m < n < k, 

The previous equality follows from the fact that the sample space is the 

union of mutually disjoint sets 
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Applying Lemma A.2, we have 

In this expression, take pm+1 	pm+2 	• • • = pk  = 1, i.e., also qm+1  = 

qm+2 = • • • = qk = 0, which gives all the last n — m terms, except the last, to 

be zero. The last term simplifies to F1(a—n+1)p1p2  • -pm  giving 

+ • • • +F  n-m(a—m+1)p1p2 • •pm-1qm  F1(a—n+1)p1p2  • •pm. 

Since Fn( • ) is an increasing function, using Lemma A.3 yields 

(A.7) 	F1(a—n+1) < F1(a—n+2) < F2(a—n+1) < • • • < Fn n-m-1(a—m). 

Applying these inequalities to the last n — m terms of (A.5) yields 

the factor in the last term on the right hand side of the above Since p. + qi  = 

inequality 

qm+1+ Pm+1qm+2+ . 

By induction hypothesis, F  

m+1Pm+2 • Pn-2qn-1+ Pm+1Pm+2 Pn-2-Pn-1  

≤

 F., 1 < j < n — 1. Applying these inequalities term 
j  

by term to the right hand side of (A.8) gives Fn(a) 
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Similarly, in (A.5), take pm+1  = pm+2  = • • • = pk — 0, i.e., also qm+1  

• • • 	qk  = 1. We have: 

From (A.5) and (A.7) we get, as above, 

Therefore, once again Fn(a) < Fn
(a), n < k, by induction hypothesis. 

Consider the case n > k. Use (A.4), with n replaced by k + 1, in the 

proof of (A.5) to give 

Hence, applying Lemma 5.3 to last k — m + 1, excluding the last one, of the 

terms on the right hand side of (A.9) and induction hypothesis give 

Also, as seen earlier, 



26 

Therefore the statement is also true for n bigger than ki This completes the 

proof. 

Proof of Lemma 3.1 Let Mn = max (µn , 	
1, 

• • •
n+k-1

) and m = min 

Similarly, we can show that {mn} is a increasing sequence. Both {Mn} and 

{mn} are convergent because {Mn 
and {m } are bounded according to 

m <mn  <Mn  M1. We shall now prove 1 im M
n = lim mn  by proving 

n-4 w 	 co 

1 i m (Mn — M
n 

) = 0. 
co 

The last step follows from the fact that {Mn  — mn} is a decreasing sequence. 

In the preceding inequality, replace n by n+1, - • • , n+k-1, gives 



Subtracting (A.10) from (A.11) yields 

exists. Finally, the relation Mn  ≥ µn > mn  gives the 
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Similarly, in the preceding paragraph, replace maximum by minimum and " 

convergence of the sequence {µn}. 

This completes the proof. 

Proof of Theorem 3.1 It suffices to consider the case when n > k. Thus, 

Using Lemma 2.2 and Definition 1.1, E(Xn) further reduces to 

Thus, {E(Xn)} is a weighted mean sequence of order k. Hence the result follows 

from Lemma 2.1. 

Proof of Theorem 3.2 First, let us prove that there exists a constant D and 
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an integer nn  > 0 such that 

In order to achieve this, consider the term inside the expectation of (A.13) 

and change the positions of its factors so as to satisfy i < j < l < mi Then, identify 

each term inside the summation of (A.13) with one of the following mutually 

i=exclusive and exhaustive sets C.,= 1, 2, 3, 4 with their subscript satisfying 

respectively, where N is any real numberi 

To determine the order of each term in group G1  or G2  consider a general term 

Simplify the preceding equation by using the fact that Xn = Xi, for any integer 

n, when one or more of the subscripts are equal to each other. Then by Corollary 

3.1, and the fact m — l > N, the expanded term above is observed to be of the 

order qN. Due to the symmetry of the subscripts in the above expansion 

interchange the role of m and i to note the same order holds for each term in 

G
2' 

The inequality (A.13) can now be proved by showing that there is only an 

order of N2n2  terms in G3 and G4 both combined and an appropriate choice of 

N. The number of different terms with subscripts i < j < / < m, is n2  for the 

different pairs of (m, j) and for each fixed pair of these there are N2  pair of 



Proof of Lemma 3.4 Note that 

To each term in this sum apply Lemma 3.1, with n 

replaced by n+j-1, which gives a bound of 

The absolute value of the preceding expression is dominated by 

which is obtained by applying Theorem 3.1. Using the inequality obtained so far 

iteratively yields 
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G3 or G4, respectively. To incorporate all the terms in the sum of (A.13) the 

condition i ≤ j < l ≤ m can be removed by taking the number of terms in each of 

groups G3  and 04  to be no more than 4! N2n2  terms. Thus, choosing N = 

1/3 n 	, gives (A.13). 

Therefore, 

by the Markov inequality. The result now 

follows from the Borel—Cantelli Theorem. 

Proof of Lemma 3.3 From the definition of the B,s and Lemma 2.2 

Proof of Lemma 3.5 Consider all possible choices of A of dimension 1. If 

A = 0, the statement is obviously true. If A = {0}, by Lemma 3.2, 
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by Lemma 2.2. The preceding expression is bounded by 

2C2qn, by Lemma 3.2. If A = {0, 1}, the hypothesis reduces to that of Lemma 

3.2. 

Proof of Lemma 3.6 Apply induction to this hypothesis as a function of t 

and note that it is true for t = 1 by Lemma 3.3. Assume that the statement is 

true for any integer t < t0, to show that it holds for t = t0  + 1. Consider the 

expression on the left hand side of (3.8). It can be rewritten as 

because A is the disjoint union of the sets A0  and A1. This expression using 

Lemma 2.2 can be rearranged as 

Notice that A0 and Al  are subset of the space with dimension t-1. By 

induction hypothesis each of the terms in the curly brackets is less than C(t-1)qn. 

Hence, take C(t) = 3C(t-1), i.e., C(t) = 2C23t-1' where C2 is as in Lemma 

3.2. The statement being true for t = t0  + 1 the proof is complete. 

Proof of Lemma 3.7 This result is derived by applying induction on t. The 

hypothesis is true for 1 ≤ t < k0, which follows from Lemma 3.4 and the fact that 
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t ≤ to, to show that C(k) = Max C(j). Assume that the statement is true for 
1 < j<k 

it is true for t = t0+1, t > k. Since A can be written as the union of mutually 

exclusive disjoint sets A0,  A 	... A 1 0, 	and A 	it gives  1 ... 

This in turn by Lemma 2.2 is equal to 

The last inequality follows from Lemma 3.5. 

Proof of Corollary 3.1 Since {X.} is a binary sequence, 

are equal to their corresponding joint "success" probabilities and therefore it is a 

special case of Lemma 3.5. 



REFERENCES 

Abvl—Ela, A. A., Greenberg, Bi G. and Horvitz, D. G. 1967. "A Multi 
Proportions Randomized Response Model." ASA J. Sept.: 990-1008. 

Aki S. 1985. "Discrete Distributions of Order k on a Binary Sequence." Ann.. 
Inst. Stat. Math. 37: 205-224. 

Anderson, T. W. and Samvels, S. M. 1956. "Some Inequalities Among Binomial 
and Poisson Probabilities." Fifth Berkeley Symposium 1: 1-12. 

Dhar, S. K. and Jiang, X. "Probability Bounds on the Finite Sum of the Binary 
Sequence of Order k." Appl. Probability (accepted). 

Gastwirth, J. L. 1977. "A Probability Model of a Pyramid Scheme." Amer. 
Statistician 31: 79-82. 

Hodges, Ji L. and Le Cam, L. 1960. "The Poisson Approximation to the Poisson 
Binomial Distribution." Ann. Math. Stat. 3: 737-740. 

Hoefeding, W. 1956. "On the Distribution of the Number of Successes in 
Independent Trials." Ann. Math. Stat. 27: 713-721. 

Kolmogorov, A. N. 1956. "Two Uniform Limit Theorems for Sums of 
Independent Random Variables." Theory Prob. Appl. 1: 384-394. 

Kuk, A. Y. C. 1990. "Asking Sensitive Questions Indirectly." Biometrics 77: 
436-438. 

Percus 0. E. and Percus, Ji K. 1985. "Probability Bounds on the Sum of 
Independent Nonindentically Distributed Binomial Random Variables." 
SIAM J. Appl. Math., 45: 621-640. 

Philipp, Wi 1969. "The Central Limit Problem for Mixing Sequences of Random 
Variables." Wahrscheinlichkeitstheorie verw. Geb. 12: 155-171. 

Warner, S. L. 1965. "Randomized Response: A Survey Technique for Eliminating 
Evasive Answer Bias." ASA Ji March: 63-69. 

32 


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Acknowledgment
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Probability Bounds on the Finite Sum
	Chapter 3: Modified Randomized Response Model
	Appendix
	References




