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ABSTRACT 

CHARACTERIZATION OF 
LIGHTNING INDUCED VOLTAGES ON 

OVERHEAD POWER LINES 

by 
Wen-Ta Hsiao 

The transient voltage surge caused by lightning is the major source contributed to 

the disturbance on power systems. The calculation of induced voltages,which is the 

propagated voltage surge on overhead power lines due to indirect lightning strokes, has 

been the subject of theoretical and experimental studies. The objective of this research is 

to develop a comprehensive numerical method to study the induced voltages on an 

overhead power line caused by a lightning return stroke with arbitrary shapes, for 

examples inclined lightning, zigzag lightning, etc. 

A finite-length lightning channel of any direction in 3-D space has been modelled 

and closed-form expressions of the inducing potentials have been derived from image 

theory. The total inducing scalar potential and inducing vector potential caused by an 

arbitrarily shaped lightning stroke are evaluated by superposition. Because that the 

presented numerical model simulates the realistic state and takes into account the 

retarded-height difference between the original sources and the image sources, the bipolar 

characteristic of the inducing scalar potential as well as the bipolar induced voltage waves 

are observed. 

The final induced voltage is completely composed of two components, one is the 

traveling voltage wave created by the inducing scalar potential, and the other is the 

standing voltage wave created by the vertical component of the inducing vector potential.  

The induced voltage on the power line is calculated by solving the partial differential 



equations in which the horizontal component of the inducing vector potential is taken into 

consideration. A computer program has been developed to perform the comprehensive 

calculations with the use of the finite-difference time-domain method in which the 

differential equations are converted into difference equations. Through this numerical 

program, the induced voltage is evaluated as functions of time and space on the power 

line. The numerical algorithm has been validated by a simulation test on a Gaussian pulse 

propagation. 

With the use of the program, parametric effects on the induced voltage caused by a 

vertical lightning stroke are inspected systematically. The comparisons of the induced 

voltage caused by inclined lightning strokes are made under various conditions. The effect 

of the horizontal component of the inducing vector potential has been illustrated. The 

results show that the severity of the inclined return stroke on the overhead power line is 

considerably harmful, especially when the return-stroke velocity gets faster or the inclined 

angle increases. This high voltage surge should be taken into account in the lightning 

protection design of transmission lines as well as distribution lines. 
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CHAPTER 1 

LIGHTNING 

1.1 Introduction 

Lightning occurs when some region of the atmosphere contains electric charges 

sufficiently large such that the electric fields associated with the charges cause electrical 

breakdown of the air. Lightning can be defined as a transient, high-current electric 

discharge whose path length is generally measured in kilometers. The most common 

producer of lightning is the thundercloud. Such lightning can take place entirely within a 

cloud itself (intracloud or cloud discharges), between two clouds (cloud-to-cloud 

discharges), or between cloud and the earth (cloud-to-ground or ground discharges). 

Although the most frequently occurring form of lightning is the intracloud discharge, the 

major concern to the power system is the ground discharge, which is closer to the power 

lines. Cloud-to-ground lightning is sometimes referred to as streaked or forked lightning. 

A cloud-to-ground lightning discharge is made up of one or more intermittent partial 

discharges. The total discharge (whose time duration is of the order of 0.2 sec) is called a 

flash; and each component discharge is referred a stroke. In general, there are three or 

four strokes per flash, and the strokes are approximately separated by 40 millisecond. [1] 

1.2 Relation between Lightning and Overhead Power Lines 

The transient voltages generated either by external origins or by internally switching 

operations are of great concern to power systems. Among them, lightning is the largest 

single cause of faults. The transient high voltage caused by lightning is the major source of 

disturbance to overhead power lines. Such transient voltage can appear on an overhead 

line either by direct hit or by induction from a nearby lightning stroke. From statistic point 
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of view, indirect lightning strokes are as hazardous as direct strokes to the power system 

equipment because of their frequent occurrence. 

In general, the power lines pass through many miles of territory in which there is 

great likelihood of lightning activities. A lightning stroke, even at a distance of 1 km away 

from the line, would induce a voltage surge along the line. This induced voltage surge is 

large enough to cause damage. It is common practice to protect overhead power lines 

against lightning at least in the areas where they are considered to be vulnerable. The 

statement, "...lightning is the greatest single cause of outages..., accounting for about 26% 

of the outages on 230 kV circuits and about 65% of the outages on 345 kV.", in the 

report issued by a Joint IEEE-EEI Committee studying outages on EHV Lines [2], 

appropriately described the interaction between lightning and overhead power lines. 

1.3 The Return Stroke 

In Chowdhuri, et al. study [3], the induced voltages had broadly been classified as follows, 

(a) electrostatic effect of the cloud 

(b) electrostatic effect of the stepped leader 

(c) magnetic effect of the return stroke 

(d) electromagnetic effect of the return stroke 

It had been shown that only the electromagnetic effect of the return stroke is of 

any practical significance. 'What is a return stroke? When the stepped leader has lowered a 

charged column of high negative potential to near the ground, the resulting high electric 

field at the ground is sufficient to cause upward-moving discharges to be launched from 

the ground toward the leader tip. When one of these discharges contacts the leader, the 

bottom of the leader is effectively connected to ground potential while the remainder of 

the leader is at negative potential and is negatively charged. The situation is somewhat 

similar to a transmission line charged to a constant potential with a short circuit applied at 
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its end. The leader channel acts like a transmission line (nonlinear and lossy) supporting a 

very luminous return stroke. The return-stroke wavefront, an ionizing wavefront of high 

electric field intensity, carries ground potential up the path created previously by the 

stepped leader. The return-stroke wavefront propagates at a velocity of typically one-third 

to one-tenth the speed of light, making the trip between cloud base and ground in a time 

of the order of 50 µsec. The region between the return-stroke wavefront and ground is 

traversed by large currents. The excess negative charge deposited on the leader channel is 

effectively lowered to earth through the highly conducting channel beneath the return-

stroke wavefront. The current measured at the ground rises typically to 10 to 20 kA in a 

few microseconds and falls to one-half of peak value typically in 20 to 60 µsec.[1] 

1.4 Review of Published Studies 

Induced voltages on overhead power lines caused by lightning strokes have been the 

subject of theoretical and experimental studies for quite some time. The early fundamental 

theoretical paper was published by Wagner and McCann [4]. They assumed that, prior to 

the return stroke, an electric charge is uniformly distributed along the lightning channel. It 

is, then, instantaneously neutralized as the current in the return stroke propagated 

upwards along the lightning path with a constant velocity. Consequently, the current 

behaves as a step-function. The inducing electric field was computed by Maxwell's 

equations and retarded potentials. Finally, the induced voltage was calculated by a 

numerical integration method. 

In 1958, Rusck [5] published a theory on the calculation of induced voltages, 

which was taking into consideration both the scalar and the vector potentials of the 

inducing field. He gave expressions for the scalar and vector potentials caused by a 

uniform current propagated upwards along a linear lightning channel over a perfectly 

conducting earth. The line integral of the electric field from the ground to the line was 
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considered by Rusck to be the voltage on the line. In addition, Rusck also pointed out that 

the voltage caused by any other current shape may be obtained through the application of 

the Duhamel integral. 

Chowdhuri et al. [3] realized that the induced voltage results not only from the 

directly radiated fields, but also from the fields from other points on the line and guided 

along the line. Accordingly, they solved the transmission line partial differential equations 

with Rusck's voltage expression for a step current as the forcing term. The method 

adopted by Chowdhuri and Gross for calculating the induced voltage caused by any other 

form of current was to apply Duhamel's theorem on the known solution for a step current 

propagating upwards the lightning channel. Since the publication of their analysis, several 

theoretical studies [6,7,8] have been successively reported to discuss this topic; and some 

suggestions have been made to improve the analysis. Despite of many discrepancies 

remained among these reported theoretical studies, there are two general assumptions 

were imposed on the analytic models. First, the lightning channel was assumed to be 

vertical. Secondly, the electric fields between the line and ground were assumed to be 

equal to the field at ground level because, in general, the height of the line is much smaller 

than that of the cloud. 

Experimental investigations have also been reported by Eriksson, et al.[9] and 

Yokoyama, et al. [10]. Both papers utilized an experimental distribution line and 

instruments for measuring the induced voltage to obtain records. They compared the 

measured peak values and waveforms of induced voltages with the calculated results by 

making use of theoretical analytic models. In other words, they still adopted the two 

general assumptions mentioned above. In 1989, Sakakibara [11] reported the study of the 

induced voltages caused by the unidirectionally inclined lightning strokes. In the 

conclusion of his study, he pointed out that "... The voltages induced by inclined strokes 

are considerably higher than those by vertical ones irrespective of the progress velocity. 
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Higher voltages will be induced by inclined return strokes not near the lightning struck 

point but at locations some distance away from such point...." 

1.5 Objective 

In the above review, it is evident that, in calculating lightning induced voltages, it has been 

generally assumed that the lightning channel is a straight line (mostly vertical). Therefore, 

the characteristics of the induced voltages on an overhead power line caused by lightning 

strokes with arbitrary configurations is an interesting topic and worthy of investigation. 

The objective of this research is presenting a comprehensive numerical method to study 

the induced voltages on an overhead power line caused by a lightning return stroke with 

arbitrary shapes. To avoid confusion, two terminologies need to be clarified beforehand. 

(1) Inducing potential: The electromagnetic fields produced by the charges and 

current in the lightning stroke will induce an electromagnetic potential on the 

power line. The value of this potential is relative to the ground potential (zero 

reference level). The electromagnetic potential is composed of two components. 

One is the inducing scalar potential created by the charges distributed along the 

lightning channel, and the other is the inducing vector potential created by the 

current of the return stroke. 

(2) Induced voltage: The inducing potential at different points along the power line 

will be different. These potentials at different points of the power line tend to be 

correlated by the transmission-line equations. Therefore, the actual voltage 

measured on the power line will be different from the inducing potential. The 

actually measured voltage is defined as the induced voltage. 

In a word, the inducing potential is the force function or the source of the induced 

voltage. The evaluation of the inducing potential will be presented in Chapter 2, and the 

evaluation of the induced voltage is demonstrated in Chapter 3. In Chapter 2, closed-form 
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expressions of the inducing potentials caused by a straight finite-length segment of a return 

stroke will be derived analytically. The total inducing potential caused by an arbitrary-

shape return stroke composed of many segments is computed through superposition. In 

Chapter 3, the induced voltage on the power line is evaluated by solving the partial 

differential equations. Here, the finite-difference time-domain numerical scheme is utilized 

to solve the partial differential equations. A computer program has been developed to 

perform the comprehensive calculations. In Chapter 4, the parametric effects on the 

induced voltage caused by a vertical return stroke will be examined systematically. The 

effects of the inclined angle and direction of an arbitrary return stroke on the induced 

voltage are also investigated. In Chapter 5, conclusions and future research areas will be 

presented. 



CHAPTER 2 

INDUCING POTENTIAL 

2.1 Introduction 

A lightning return stroke, which contains time-varying current and charges, induces 

electromagnetic fields. These induced fields propagate out from the sources (charge and 

current) with the velocity of light. It is this field which can induce unexpected voltages and 

currents in an overhead power line. If the conductivity of the earth is assumed to be 

infinite, the field can be calculated by the image theory, according to which currents and 

charges above the ground are reflected below it and the images have the same magnitude 

as above the ground but opposite direction and polarity, respectively. The electromagnetic 

fields are generally expressed by a scalar potential V and a vector potential Am  . The 

inducing potential on the power line is composed of the inducing scalar potential V., and 

the potential Vmz produced by the vertical component of the inducing vector potential Am . 

The inducing potential at different points along an overhead power line will be different. In 

Section 2.2, some symbols are defined and basic assumptions are made. In Section 2.3, a 

finite-length lightning channel in 3-D space is modelled and closed-form expressions of the 

inducing potentials are derived from image theory. In Section 2.4, an arbitrarily shaped 

lightning stroke is simulated and the total inducing potentials are evaluated by 

superposition. 

2,2 Symbols and Basic Assumptions 

2.2.1 Symbols 

V 	= voltage induced on the line 

I 	= current induced on the line 

V. 	= inducing potential caused by return stroke 

7 
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L 	= distributed inductance of the power line 

C 	= distributed capacitance of the power line Vs

	= inducing scalar potential caused by return stroke 

Am 	= inducing vector potential caused by return stroke 

q, 	= charge distributed in the lightning channel Im

	= return stroke current 

la 	= peak value of return stroke current 

Em 	= electric field intensity due to inducing vector potential 

Emx, Emy, Emz  = x, y, and z components of Em  

Vmz 	= potential on an overhead power line produced by Emz 

r 	= distance of source point from field point 

1 	= length of a lightning channel 

1 	= unit vector in the direction of a lightning return stroke 

a,b,c = x, y, and z components of 

P(x,y,z) 	= field point in the rectangular coordinate system 

S(x,y,z) 	= source point in the rectangular coordinate system 

t 	= time 

t f 	= front duration of the return stroke current 

h 	= height of the power line above ground 

hc 	= height of the thundercloud above ground 

v0 	= velocity of light in free space 

v 	= progress velocity of the return stroke current 

y0 	= least distance of the power line from the lightning struck point 

= ratio of velocity of the return stroke current to velocity of light in free space 

c0 	= permittivity of free space 

µ0 	= permeability of free space 



9 

2.2.2 Basic Assumptions 

Yokoyama [12] had proved that in untransposed lines, the induced voltages arising on a 

multiconductor line can essentially be handled in the manner used for single-conductor 

lines. In his paper, figures showed that the waveform of the middle phase in the parallel 

three-phase system was identical to the waveform arising in a single-conductor line at the 

same position. So throughout this research, just the case of a single-conductor line is 

considered and the basic assumptions are made as fellows, 

(a) The charge distribution along the leader stroke is uniform and the polarity is negative. 

(b) The waveshape of the return-stroke current is shown in Fig. 2.1, which rises rapidly 

before front time and falls with a drooping tail. 

(c) The return stroke progresses upwards. 

(d) The velocity of the return stroke is constant. 

(e) The power line is lossless and the earth is perfectly conductive. 

Figure 2.1 Waveshape of the return-stroke current with a 5µs front time. 
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2.3 Theory 

As shown in Fig. 2.2, the inducing scalar potential (Vs) at the point P(x,y,z) caused by 

one segment of charges distributed in the leader channel can be calculated as follows. 

Figure 2.2 Sketch plan of one segment of charges distributed in the leader 
channel. 



where the distance S'1P= 

,

 the distance IS,PI = r,' the distance S'cP = 	the distance 

A', the distance = B' , and S'cP 1 S'1S'2 S'2S'c 

11 

When the charge per unit length at dl is 	the inducing scalar potential 

produced by original charges is expressed by equation (2.1). 

where —q1  is negative due to electron accumulation, the distance S,P = r1, the distance 

S2P = r2 , the distance SC P = rc, the distance S1Sc = A, the distance S2Sc =B, and 

ScP S1S2. 

The inducing scalar potential produced by image charges is expressed by equation 

(2.2). 

The relationship among the charge q1 , the current Im, and the progress velocity of 

the return stroke is constrained by conservation of charges as 

From Fig. 2.2 , the following triangle relations are tenable. 

Substituting equations (2.3),(2.4) and (2.5), equations(2.1) and (2.2) can be rewritten as 

(2.6) and (2.7), respectively. 
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The location of point Sc(xc,yc,zc) and the choice of the proper sign from the 

double sign (±) in equation (2.6) are determined by the following observations. 

Since the point Sc(xc,yc,zc) lies on the line S1S2, it can be expressed by 

Because of Sc P 1 S1S2, the following equation is obtained. 

Substituting equations (2.8)~(2.10) into (2.11), the parameter 	is solved. 

yc  and zc  are obtained by substituting equation (2.12) into (2.8) ~ (2.10). The 

proper sign from the double sign (±) in equation (2 6) is chosen according to the 

following criteria, 

(1) If z2  > 	, then choose sign (+) for the numerator, otherwise choose sign (—). 

(2) If z, > z. , then choose sign (+) for the denominator, otherwise choose sign (—). 
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The location of point S'c(x'c,y'c,z'c) and the choice of the proper sign from the 

double sign (±) in equation (2.7) can be determined through the same way. 

As shown in Fig.2 3, the inducing vector potential (Am ) at the point P(x,y,z) 

caused by the return stroke current (Im) can be calculated as follows. 

The inducing vector potentials produced by the original current and the image current are 

expressed by equations (2.13) and (2.14), respectively. 

Figure 2.3 Sketch plan of one segment of the return-stroke current. 
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where  î is a unit vector in the progressing direction of the lightning return stroke 

where  i *̂ is the conjugate vector of the 1 relative to the ground surface. 

The electric field intensity due to the return stroke current is expressed by 

From equations (2.13), (2.14) and (2.17), E'm and 	are expressed as 
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Because of the retardation effect, the inducing scalar potential Vs and vector 

potential :4,n' at the field point P(x,y,z) and at time t must be originated at the source 

point S1(x1,y1,z1) at an earlier time t' = t - r1/v0 . The quantity of r1/v0  is called 

retardation time. For the image source, its retardation time is r'1/v0  . When the retardation 

time is taken into account, Vs  can be expressed as 

where u(t) : A step function, when t < 0, u(t) = 0; when t 0, u(t)= 1. 

Similarly, Em is obtained by 

The x, y and z components of Em, can be expressed as 

The potential Vmz at point P(x,y,z) derived from the vertical component of the inducing 

vector potential is given by 

When h is small, Emz  can be assumed to be a constant. Therefore 
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2.4 Numerical Simulations 

In practice, a lightning return stroke is composed of many inclined segments with different 

lengths and arbitrary orientations. As shown in Fig.2.4, the figuration of a realistic 

lightning return stroke is simulated by several continuous segments. For convenience, 

some symbols are defined as follows. 

P(x,y,z): a field point on the overhead power line 

S0(x0,y0 , 0): originating point of the lightning return stroke 

Si(xi,yi,zi), i = 1...n: turning points along the original leader channel 

i = 1...n: turning points along the image leader channel 

, i = 0...n : time when the disturbance of the original source at point Si is 

felt at the field point P t'i

 , I =1...n: time when the disturbance of the image source at point S'i is felt at 

the field point P 

I. , i = 1...n: length of each segment of the leader channel 

For a given time t , the progressing point of the return stroke can be determined 

by the following method. 

If ti < t < ti+1 that means the progressing point 5, has passed the turning point 

Si and lies on the segment i +1. As shown in Fig.2.5, the coordinate values of point 

St(xt,yt, zt) can be evaluated as follows, 

Assuming At = t -  ti , it can be expressed as 

The coordinate values of the progressing point S, are given by 
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Figure 2.4 Figuration of a realistic lightning return stroke. 
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Figure 2.5 Sketch plan of the progressing point along the leader channel. 

The length of segment SI P can be expressed by 

Substituting equation (2.28) into (2.25), it can be rewritten as 

Transform equation (2.29) and solve for A/ 
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When the plus sign is given between the first and the second terms in equation 

(2.29) , the minus sign should be chosen from the double sign (±) in equation (2.30). 

Substituting the calculated Al into equation (2.27), the coordinate values of the 

progressing point St can be obtained immediately. 

The numerical method to calculate the inducing potentials at the field point P at a 

given time t is described as follows, 

Step I Use the techniques presented in the previous paragraph to find the progressing 

points St(xt,yt,zt) and S't(x't,y't,-z't). Assume that the point St is located on segment i 

and the point S't is located on segment j' .  

Step 2 : Closed-form expressions of the inducing potentials have been analytically derived 

in Section 2.3 for the finite-length accumulated charges and the return stroke current. The 

potentials due to the original and image sources are listed below. 
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Step 3 : The total inducing potentials at the field point P are computed by superposition.  

The inducing potentials consist of direct components (V's, V'mz) and ground image 

components (V"s, V"mz). Thus, 

and 

2.5 Validation of the Numerical Method 

To validate the numerical method, calculations of the inducing potential were performed 

on two cases of return strokes. The results were compared with published results. The 

first case involves the calculation of the inducing potential caused by a vertical return 

stroke with rectangular current, and the second case with rapidly-rising current. For 

comparison purposes, identical conditions were applied. 

2.5.1 Inducing Potential Caused by a Vertical Return Stroke with Rectangular 
Current 

The conventional theory on the calculation of the inducing scalar and vector potential 

adopted by most studies is published by Rusck [5]. The calculation formulae 	are rewritten 

below. 
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where r is the distance of a point on the power line from the lightning return 

stroke measured along ground, 

In order to emphasize the significance of the height of a power line above ground 

in the calculation of the inducing potentials, two points were computed and their results 

are shown in Fig.2.6 and 2.7 (placed in Appendix), respectively. In Fig. 2.6, both 

waveshapes and peak values are completely identical. In Fig. 2.7, although the waveshapes 

still perfectly agree with each other, there exists a considerable difference in peak values 

between two scalar potentials. Such discrepancy derives from whether the height h is 

taken into account or not. In the published method, a basic assumption is imposed on the 

analytic model, which is stated as follows. 

As the height h of the line conductor is small compared with the height of the 

cloud, the inducing electromagnetic fields below the line conductor can be assumed to be 

constant and equal to those on the ground surface. 

When the distance of an overhead power line from the lightning return stroke is far 

enough, the variation of the field intensity with the height above the ground can be 

undoubtedly neglected, which is demonstrated in Fig. 2.6. However, if the lightning 

happens quite near to the power line, the diversity of the electromagnetic field intensity 

will no longer be ignored. Consequently the treatment of the published method [5] is not 

fully appropriate. Nonetheless, the theory is still very important and Rusck's contribution 

on induced voltages caused by lightning strokes is well recognized. 
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2.5.2 Inducing Potential Caused by a Vertical Return Stroke with 
Rapidly-Rising Current 

Also according to Rusck's study, the inducing potential due to any current shape in the 

lightning return stroke can be obtained through the application of the Duhamel's theorem 

(convolution integral) to the known potential due to a step-function current (rectangular) 

in the lightning return stroke. Because in the numerical method, the inducing potential at 

any point P at any time t is computed by superposition, the parametric effect of the 

current waveshape has been considered directly. In order to verify the legitimacy of such 

treatment, comparisons also were made between the numerical method and the published 

method. The waveshape of the return stroke current shown in Fig.2.8.(A) (placed in 

Appendix) is applied and the calculation results are shown in Fig.2.8.(B) (placed in 

Appendix). 

The curve obtained through the numerical method shows that the inducing scalar 

potential starts with a spike and diminishes with slowly approaching to zero. In fact, the 

curve reverses in polarity, passes through zero, rises to the reversed peak value and finally 

decays to zero again. Because the ratio of the positive peak value to the negative spike is 

too small, this phenomenon can not be seen distinctly. It is shown clearly in Fig.2.11.(B) 

(placed in Appendix). 

The curve obtained through the published method has the same waveshape at the 

beginning of the return stroke, but reverses in polarity, rises continuously to the reversed 

peak value and finally stays at the peak value. From the viewpoint of physics, this result is 

out of character of the lightning return stroke. As mentioned before, the primary causes of 

the inducing potentials are the electrostatic and the magnetic components of the inducing 

electromagnetic fields. The electrostatic component is the inducing scalar potential created 

by the distributed charges of the lightning channel, and the magnetic component is the 

inducing vector potential created by the current of the return stroke. Because the inducing 

scalar potential depends on the amount of charges, it is impossible that when the charges 
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diminish to slight and keep a long distance from the power line, the inducing scalar 

potential still rises continuously and finally stays at the peak value. In fact, the mathematic 

property of convolution integral is responsible for this impractical result. In order to 

explain more clearly, a rapidly-rising current with constant tail shown in Fig.2.9.(A) 

(placed in Appendix) is applied and the response results are shown in Fig.2.9.(B) (placed 

in Appendix). The inconsistency of the inducing scalar potential computed through 

convolution integral is evident if we compare Fig.2.8.(B) with Fig.2.9.(B). At the same 

point and time, the inducing scalar potential caused by large charges is irrationally less 

than that caused by little charges. These curves are rearranged in Fig.2.10 (placed in 

Appendix) to show the effect of the return-stroke current tail. 

From the above discussion, it is obvious that the bipolar characteristic of the 

inducing scalar potential is not due to the drooping tail of the return-stroke current. In 

fact, the bipolar phenomenon is due to the retardation height. The effect of the retardation 

height will be stated as follows. 

As shown in Fig.2.12 (placed in Appendix), the inducing scalar potential is 

composed of two components, one caused by original charges and the other caused by 

image charges. According to the image theory, the effect of the original component is 

direct but the effect of the image component is reflected. The through path of the image 

effect is longer than that of the original effect, i.e. the retardation time of the image 

charges will be longer than that of the original charges. Because the inducing scalar 

potential is calculated at the same field point and time, the interested affair is the position 

of the progressing point at time t . For a vertical return stroke, the retardation height is 

defined as the distance of the progressing point from the ground. For the original source, 

the retardation height Zi is calculated by 
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For the image source, the retardation height Z't is calculated by 

where r0  is the distance of the field point from the lightning return stroke measured along 

the ground, 

At anytime I , Zt is always longer than Z't So the following inequality is 

established. 

The inequality explicitly shows that the quantity of the image charges always 

outstrips that of the original charges. The effect of the difference in the charge quantity 

can be discussed separately in two stages. 

(1) In the earlier period of the lightning return stroke 

In this stage, the difference in amount of charges just occupies a very small 

proportion in the long leader channel. The effect of the difference in the charge 

quantity can be neglected. On the contrary, the distance of the sources from the 

power line plays a decisive role and the influence of the factor "h" is apparently 

important. Because the original charges are closer to the power line than the image 

charges, the inducing scalar potential caused by original charges dominates the 
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final value. Accordingly, the inducing scalar potential remains negative during the 

earlier period of the lightning return stroke. 

(2) In the later period of the lightning return stroke 

In the later stage, only a little residual charges exist in the leader channel. The 

difference in amount of charges will occupy an influential proportion and its effect 

is remarkable. On the other hand, the residual charges are quite far away from the 

power line in this stage. Namely, the influence of the difference in the charge 

quantity overcomes that of the distance. Because the image charges are more than 

the original charges, the inducing scalar potential changes into positive during the 

later period of the lightning return stroke. 

The inducing scalar potential in two different stages is illustrated in Fig.2.11 

(placed in Appendix). The difference in the retardation heights just causes the bipolar 

phenomenon of the inducing scalar potential. The other cause of the bipolar characteristic 

of the induced voltage is the potential Vmz produced by the vertical component of the 

inducing vector potential Am . According to equations (2.31)(2.36), Vs  and Vmz are of 

opposite polarity when the return stroke is initiated. Moreover, Vs  is in inverse proportion 

to the parameter ,β but Vmz is in direct proportion to it. Therefore, the higher the return-

stroke velocity the more evident is the bipolar phenomenon of the induced voltage. About 

this topic, more details will be illustrated in Chapter 4. 



CHAPTER 3 

INDUCED VOLTAGE 

3.1 Introduction 

A lossless model is a good representation for most of the overhead power lines where ωL 

and ωC  become very large compared to R and G. For lightning surges on an overhead 

power line, the study of a lossless line is a simplification that enables us to understand the 

phenomena of the induced voltage propagated along the power line without becoming too 

involved in complicated theory. Besides, a doubly infinite single-conductor line can be 

represented in practice by a line whose terminals are sufficiently distant from the struck 

point of the lightning return stroke that reflections of the induced voltage at the terminals 

can be neglected. This system is relatively simple to analyze, and it gives an insight into the 

physical nature of the lightning surges on an overhead power line caused by an arbitrarily 

inclined stroke. 

3.2 Theory 

The coordinate system of a power line and a lightning return stroke is shown in Fig.3.1. 

The z axis is vertical, and the x axis is parallel to the line and lies on the ground surface. 

The origin is chosen as the starting point of the return stroke. The line is assumed to be 

located at a distance y0  meters from the origin and has a height h meters above the 

ground. 

A lossless power line can be represented as consisting of distributed series 

inductance and distributed shunt capacitance. The effect of the inducing potential will then 

be equivalent to connecting an electromotive force along each infinitesimal section of the 

power line. The distribution of the line current is illustrated in Fig.3.2. 
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According to Sakakibara's analysis [11], the basic equations for calculating the 

induced voltage are expressed as 

Where L is the distributed inductance of the power line and C is the distributed 

capacitance. Vi is the inducing potential, Vs  and Vmz are expressed in equations 

(2.31)~(2.36), and Emx  can be obtained by 

The equations (3.1)—(3.3) can be illustrated by the equivalent circuit shown in 

Fig.3.3. In this circuit, the electromotive force relating to V„,, does not initiate a traveling 

wave. However, it produces a standing wave which raises the line voltage by Vmz . The last 

term in equation (3.1) can be moved to the left-hand side. Let Vp  = V 	and defind Vp  

as a traveling wave (propagated voltage). Therefore the traveling wave Vp  can be 

calculated by using an equivalent circuit given in Fig.3.4 wherein the electromotive force 

relating to Vmz is eliminated. The induced voltage on the line can be obtained by adding Vp  

and V . Hence equations (3.1)—(3.3) can be transformed to the following equations. 
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Figure 3.1 Coordinate system of a power line and a lightning return stroke 
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Figure 3.2 Infinitesimal section of a power line and current distribution. 

Figure 3.3 Equivalent circuit of power line under a lightning stroke. 
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Figure 3.4 Equivalent circuit excluding V 

3.3 Numerical Method and Algorithm 

The numerical method, finite-difference time-domain method, used in this study for 

analyzing the induced voltages on an overhead power line is based on the work described 

in two reported papers [13,14]. This involves converting the differential equations into 

difference equations, then solving the difference equations by calculating the voltages and 

currents for infinitesimal time units and line lengths. 

By eliminating the term δx on both sides of equations (3.5) and (3.6), they can be 

rewritten as 



31 

The distributed series inductance L and shunt capacitance C are determined by 

where h is the height of the power line above the ground and d is the wire diameter of the 

power line. 

The center-difference equation is expressed by 

where O(v2) represents high order terms and can be neglected. 

By applying equation (3.11) on equations (3.8) and (3.9), their corresponding 

difference equations can be constructed respectively. 

For (3.8), 

For (3.9), 

(3.13) 

where Ar is the space increment, and At is the time increment. 

Both of equations (3.12) and (3.13) have recurrent characteristic and there is a 

reciprocal causation between them. Each time increment is called a iteration. 

For each iteration, from equation (3.12), I(n-1/2,t+1/2∆t) can be obtained by 
2 	2 



have been calculated in the preceding where 
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iteration. 

From equation (3.13), Vp(n, t + ∆t) can be given by 

and Vs(n,t) also can be computed through equations (2.31) and (2.32). 

Consequently the propagated voltage Vp  along the power line and the line current 

I are obtained step by step by applying equations (3.14) and (3.15) alternately. 

Theory and equations for calculating the inducing scalar and vector potentials 

caused by a realistic return stroke are presented in Chapter 2. Numerical method for 

evaluating the propagated voltage along the power line also has been introduced in this 

chapter. Now a computer program will be developed to calculate the induced voltage 

which actually appears on an overhead power line. The flow chart in Fig.3.5 shows the 

major steps performed in this numerical method. The individual steps are described as 

follows. 

(1) Read and store input data. 

number of segments of leader channel and their lengths and orientations 

line length, positions, height, and diameter of line conductor 

lightning flash position 

velocity of light in free space, v0  
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progress velocity of return-stroke current, v 

maximum value of return-stroke current, I0 

front time of return stroke current, tf 

(2) Treat input data. 

calculate space and time increment, ∆x,∆ t 

calculate min. and max. values of computing time, tmin,tmax 

(3) Calculate system constants. 

distributed series inductance and shunt capacitance of power line, L,C 

(4) Give initial values. 

set initial values of line current I , propagated voltage Vp and inducing scalar 

potential V5 to zero 

(5) Calculate inducing scalar potential Vs and potential Vmz by applying equations 

(2.3 1)(2.3 6). 

(6) Calculate electric field intensity 	by applying equation (3.4). 

(7) Calculate propagated voltage Vp along power line and line current I by using 

numerical method introduced in this section. 

(8) Calculate induced voltage V by adding V,, and Vmz directly. 

(9) Print out induced voltage V vs. time I for designated point. 

(10)Print out induced voltage V vs. space x for fixed time. 

(11)Once all the calculations have been completed for a given time t , increase the 

time by At, and repeat steps (5) through (10) until the required computing time 

t max 



Figure 3.5 Flow chart of numerical method for evaluating the induced 
voltage caused by a lightning stroke. 
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3.4 Validation of the Numerical Method 

To validate the numerical method and prove the feasibility of the developed computer 

program, the electromotive force in Fig.3.2 will be excluded temporarily and just consider 

a rather simple proposition—what happens when a uniform, isolated two-wire line is 

connected to a voltage source. The partial differential equations can be simplified as 

Now I can be eliminated from the pair of equations by simultaneously 

differentiating equation (3.16) with respect to x and equation (3.17) with respect to t : 

Eliminating  and rearranging the terms, 

Solving Equations (3.16) and (3.17) for I instead of V leads to an equation of 

identical form for the current : 

Equations (3.18) and (3.19) are the so-called traveling-wave equations of a 

lossless transmission line. Consider equation (3.18), it was satisfied by the general solution 
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1/√LC  
where   is the light velocity v0 , so that equation (3.20) can be written 

The current solution can be obtained from equation (3.17) 

Integrating both sides of equation (3.22) with respect to x, 

Comparing equations (3.21) and (3.23), there exists a proportionality between 

voltage and current, and the proportionality factor is called the characteristic impedance 

of the line. Solutions expressed as the function f, (x - v0t) represent waves traveling in 

the positive direction of x . Similarly, solutions expressed as the function f, (x + v0 t) can 

be interpreted as waves traveling in the negative direction of x . It is also observed that 

voltage and current waves traveling in the positive direction of x have the same sign, 

whereas those traveling the negative direction have opposite signs. 

If a forward traveling voltage wave is expressed as 

a wave of current will result from the moving charges and can be expressed as 

Similarly for a backward traveling voltage wave where 
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the corresponding current is 

Recalling that v0  is equal to 1/√LC, so 

Next, a simulation test on the developed computer program will be made. Assuming, 

and at I = 0+ imposing a voltage on the line, 

where V is a Gaussian distribution function. 

Then the voltage and current waves are calculated through the computer program. 

The results are shown in Fig.3.6. From Fig.3.6.(A), the forward traveling waves can be 

expressed as 

From Fig.3.6.(B), the backward traveling waves can be expressed as 
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Figure 3.6 Voltage and current waves traveling along a power line which 

have the waveform of function exp(— OM. 
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The calculated results completely coincide with the deduced conclusion that on the 

lossless power line, the voltage and current waves have the same shape, being related by 

the characteristic impedance of the line, and travel undistorted. A current wave in the 

positive direction of x has the same sign as the voltage wave with which it is associated. 

Current wave traveling in the negative direction of x has reversal sign with respect to its 

voltage wave. 

To ensure the accuracy of the calculated results, number N in equation (3.29) 

must be taken more than 20. Thus the values of V and I cannot change significantly over 

one space increment Ax. To ensure the stability of the time-stepping algorithm of the 

developed computer program, At is chosen to satisfy 



CHAPTER 4 

APPLICATIONS 

4.1 Introduction 

To provide optimal protection to an overhead power line against lightning strokes, it is 

necessary to predict the severity of the transient overvoltage generated by such strokes. 

Although the complex interaction among the various line and lightning parameters, 

predicting the worst possible severity of indirect lightning strokes on an overhead power 

line is difficult, the effects of the various line and lightning parameters on the severity of 

induced voltage are still inspected systematically. In Section 4.2, the effects of the various 

parameters on the induced voltage caused by a vertical lightning stroke are discussed. In 

Section 4.3, the influences of the inclined angle and direction of a arbitrary return stroke 

will be investigated. Finally, in Section 4.4, the effects of the inducing components 

V., , Vmz and Emx on the induced voltage V are examined. 

4.2 Parametric Effects on the Induced Voltage 
Caused by a Vertical Lightning Stroke 

The effects of the following parameters on the induced voltage caused by a vertical return 

stroke are discussed: 

(1) Lightning stroke parameters. 

(a)Progress velocity of return stroke. 

(b)Front time of return-stroke current. 

(c)Height of cloud charge center. 

(2) Power line parameters. 

(a)Least distance of the power line from the lightning struck point. 

(b)Height of the power line above ground. 
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4.2.1 Progress Velocity of Return Stroke 

Uman [1] proposed that the progress velocity of the return stroke varies between 

2.0 x 107  m/s to 1.4 x 108  m/s. Berger [15] suggested that it alters between 

2.0 x 107  m/s to 1.1 x 108  m/s. Although no definitive knowledge exits about the 

progress velocity of the return stroke, it is still important to assess its sensitivity to the 

severity of the induced voltage. In this study, three cases are discussed by assuming the 

return-stroke velocity to be 10, 30 and 50 percent that of light. Recalling equation (2.3), 

because the amount of charge distributed along the leader channel for the same lightning is 

unchanged, it is necessary to pay attention to that the return-stroke current need to be 

changed by following the varying-ratio of the return-stroke velocity when the effect of the 

return-stroke velocity is discussed. Otherwise, inappropriate results will be derived as 

shown in Fig.4.3 (placed in Appendix) where the induced voltage is almost only one-third 

of that in Figs.4.1.(B) and 4.2.(B) (placed in Appendix). 

In Figs.4.1 and 4.2 (placed in Appendix), although the induced voltage has the 

characteristic that the higher the return stroke velocity the lower is the induced voltage, 

the diversity of the wave form is not as apparent as anticipated. The diversity is caused by 

two components: 

(1) Inducing scalar potential Vs 

For a return stroke with higher progress velocity, its progressing point is farther 

away from the power line at a given time t and the retarded-height difference 

between original and image charges becomes larger. Therefore, when the return-

stroke velocity increases, the inducing scalar potential will decrease in the period 

of negative polarity but increase in the period of positive polarity. Because the 

propagated voltage is derived from the inducing scalar potential, Vp  has the same 

property as Vs. This is shown in Fig.4.4 (placed in Appendix). The pulsation shown 
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in the circle of Fig.4.4 is caused by the drop of the return-stroke current from its 

peak value. 

(2) Induced voltage V 

From equation (3.33), (3.34) and (3.36), the higher the return stroke velocity 

the higher is the induced voltage Vmz which is also shown in Fig.4.4. Moreover, 

the induced voltage V. is of positive polarity. 

The final induced voltage on the line is obtained by adding Vp  and Vmz Hence 

the curves (x = 0km) shown in Fig.4.1 are composed of two components shown in 

Fig.4.4. From the above discussions, a useful conclusion is that the higher the return 

stroke velocity the more obvious is the bipolar phenomenon of the induced voltage 

wave. The progress velocity of a return stroke can be predicted by analyzing the 

induced voltage waveshape. 

The induced voltages at various points along the overhead power line at various 

times are shown in Fig.4.2. It is noticed that the induced voltage at the point of least 

distance from the return stroke (x = Om) is the minimum. The voltage increases with 

increasing x up to a certain point along the power line where the sum of all contributions 

of propagated voltages from preceding points reaches the maximum value, then decreases 

slightly. If the power line is long enough, the induced voltage will be saturated a certain 

value. This is expectable since the line is lossless and the directly radiated fields of the 

lightning stroke become negligible. This conclusion is different from those presented by 

Liew, et al.[8] and Sakakibara [11]. According to Liew's study, it was found that the 

magnitude of the induced voltage increases continuously with increase in x along the 

power line even at x = 75 km . On the contrary, Sakakibara stated that the induced voltage 

at the line center (nearest point to the lightning struck point) is the maximum, then 

decreases with increase in distance from the line center. From the physics point of view, 

the decay of the induced voltage cannot occur on a lossless power line over a perfect 

conductive earth. 
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Although the difference in magnitude of the induced voltage at the line center 

(x = 0km) between the slowest and the fastest return stroke velocity is 60 kV , the 

difference at the point x = 5km diminishes to 20 kV . In other words, the higher the return 

stroke velocity the larger is the variation in the induced voltage between the line center 

and the point x = 5km. Recalling Fig.3.4, the flow of line current is due to the differences 

in inducing scalar potential at different points along the power line. For a lightning return 

stroke with higher velocity, in an infinitesimal section of the power line δx  the value of 

0 ∂Vs/∂x will be larger than that with lower velocity. This produces higher value of 

L∂I/∂t and ∂Vp/∂x. Because the induced voltage is composed of Vp  and 	higher 

∂V2/∂x means higher ∂V/∂x, namely, higher variation rate with space in the induced 

voltage. This is illustrated in Fig. 4.2. 

The return-stroke velocity affects not only the magnitude of the wavefront 

(negative polarity) but also the peak value and decay rate of the wavetail (positive 

polarity). It is observable that the higher the return-stroke velocity the larger is the peak 

value of the wavetail and the faster is the decay rate. This property is illustrated in Fig.4.1 

and 4.2. 

4.2.2 Front Time of Return-Stroke Current 

Fig. 4.5 and 4.6 (placed in Appendix) show the effect of the current front time t f  on the 

induced voltage. A shorter current front time induced higher voltages on the overhead 

line. Shorter front time indicates that the return-stroke current rises more quickly to its 

peak value and meanwhile the progressing point of return stroke is nearer to the power 

line. Consequently the inducing scalar potential is higher than that with longer front time. 

This is shown in Fig.4.7 (placed in Appendix). Moreover, from Fig.4.7, an important 

characteristic of the inducing scalar potential is that its peak value didn't happen at the 

time when the return-stroke current reached the maximum. This is reasonable because the 
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magnitude of the inducing scalar potential is dependent on the magnitude of the return 

stroke current and the distance of residual charges from the power line. These two 

parameters are conflicting in the period of rise time of the return-stroke current. Hence 

the optimal combination always happens before the return-stroke current reaches its peak 

value. 

The effect of the current front time on the induced voltage can be described by a 

statement that "The induced voltage is directly proportion to the rise rate of the return-

stroke current front time. In other words, a fast-rising return-stroke current will induce a 

fast-rising and fast-falling voltage on the overhead power line. 

4.2.3 Height of Cloud Charge Center 

Fig.4.8 and 4.9 (placed in Appendix) show the effect of the height of cloud charge center 

hc on the induced voltage on an overhead power line. The induced voltage increases with 

increase in hc but the higher the height of cloud charge center the less is the effect. 

Generally, the effect of the height of cloud charge center on the induced voltage is not 

significant. However, the waveshape of the induced voltage changes considerably for low 

hc. The bipolar characteristic of the induced voltage is evident for lower hc. The 

compositions of inducing scalar potential and the effect of the retardation height on the 

bipolar phenomenon have been introduced in Section 2.5. In the earlier period of the 

return stroke, the effect of the original charges outstrips that of the image charges, and 

lower hc means less charges distributed along the leader channel which cause lower 

induced voltage as shown in Fig.4.8 (wavefront of negative polarity). In the later period of 

the return stroke, because the image charges are more than the original charges and lower 

hc means the charges in this stage nearer to the power line, the induced voltage (wavetail 

of positive polarity) will be higher. Hence, the bipolar characteristic of the induced voltage 

is more apparent for lower h c. 
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4.2.4 Least Distance of the Power Line from the Lightning Struck Point 

Undoubtedly, the longer the least distance of the power line from the lightning struck 

point y0  the lower is the induced voltage. The induced voltage at a point along the line 

away from the power line center is decided by two components. One is the directly-

inducing scalar potential V,. caused by the electrostatic fields of the lightning return stroke. 

This induction process is delayed by the time required by the electrostatic fields to travel 

to the particular point from the lightning return stroke. The other is the propagated 

voltage Vp  which is composed of voltages which have traveled along the power line from 

other points where the induction effects of the lightning return stroke have already taken 

place. For y0 = 100m, because the difference in the retardation time between two points 

on the power line is very close to the traveling time of the propagated voltage from one 

point to the other, the effect of superposition is strong. Thus, the variation rate with space 

in the induced voltage is noticeable especially between x = 0km and x = 2.5km . This is 

observable from Fig.4.10.(A) and 4.11.(A) (placed in Appendix). But for y0  = 5km, the 

difference in the retardation time is less than the traveling time. For example, the 

difference in the retardation time between x = 0km and x = 2.5km is only 2µs, but the 

traveling time of the propagated voltage from x = Okm to x = 2.5km requires 8.33µs. 

Hence, the effect of superposition is insignificant and the variation rate with space almost 

approaches to zero. This is demonstrated by the unchanging magnitude of the induced 

voltage shown in Fig.4.10.(c) and 4.11.(c) (placed in Appendix). 

The bipolar characteristic of the induced voltage is obvious for longer distance y0 . 

For larger y0 , the influence of the difference in the charge quantity overcomes that of the 

distance of the charges from the power line. The bipolar characteristic of the inducing 

scalar potential will be more apparent which causes the evident bipolar phenomenon of Vp  

as shown in Fig.4.12 (placed in Appendix). Meanwhile, the induced voltage V occupies 
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an important proportion in the total induced voltage. This also increases the tendency of 

the bipolar characteristic. 

4.2.5 Height of the Power Line above Ground 

Figs.4.13 and 4.14 (placed in Appendix) show the effect of the height of the power line 

above ground on the induced voltage. Obviously, the induced voltage at any point along 

the power line is directly proportion to the height h of the line. The waveshapes of the 

induced voltage are identical under various h except their magnitudes. 

4.3 Effects of Inclined Angle and Direction of a Arbitrary 
Lightning Stroke on the Induced Voltage 

Thus far, the parametric effects of a vertical lightning stroke on the induced voltage have 

been dealt with. Now, the discussion scope will be developed over a lightning stroke in 

three-space. Effects of the inclined angle and direction of a arbitrary lightning stroke on 

the induced voltage are inspected. For convenience, some terminology about space 

concept need to be defined beforehand: 

• Progression vector: One way of efficiently describing the progressing 

direction of the return stroke is to define a vector as an ordered triple 

< x,y,z > of real numbers. It means that the return stroke progressed along 

the direction of vector x 	+z k. It should be noticed that the vector is 

not necessary to be unit vector, because the helpful information is its direction 

not its magnitude. 

• Inclined angle: The included angle between progression vector < x,y,z >and 

unit vector ̂ ĵ  (in the +y direction) is defined as inclined angle, 
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• Oblique angle: The quadrant angle of the projecting vector of progression 

vector on the xy -plane is defined as oblique angle, co= tan-V/4. The 

projecting vector is denoted as < x, y,0 >. 

• Length of lightning leader channel: In the following investigations, symbol 

Lc , length of the lightning leader channel, will be adopted to replace hc, 

height of the thundercloud above the ground. 

Comparisons will be made under various conditions which can be put into the 

following categories: 

(1) Comparison between vertical and inclined return strokes. 

(2) Effect of return-stroke oblique angle. 

(3) Effect of return-stroke inclined angle. 

(4) Recompare the effect of inclined angle by using multi-segment (zigzag) return 

stroke models. 

(5) Effect of progress velocity of inclined return stroke. 

4.3.1 Comparison between Vertical and Inclined Return Stroke 

At first, the induced voltage caused by inclined return strokes will be compared with that 

caused by a vertical one. There are three return strokes, as shown in Fig.4.15, one vertical 

and two inclined lying on yz-plane. Undoubtedly, the nearer to the return stroke the 

higher is the induced voltage on the power line. As shown in Fig.4.16, the induced voltage 

cause by the return stroke inclined close to the power line is the highest and the difference 

will increase when the inclined angle increases. Because all of three return strokes are 

perpendicular to the power line, their induced voltage waveshapes are symmetrical and 

similar to each other. 



Figure 4.15 Coordinate system of a power line and three return strokes 
lying on the yz-plane. 
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Figure 4.16 Comparison of induced voltages caused by vertical and 
inclined return strokes lying on the yz-plane. 
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4.3.2 Effect of Return-Stroke Oblique Angle 

In above subsection, inclined return strokes have been introduced but the imperfection is 

that the influence of the inclined angle on the induced voltage between both directions of 

the line can't be distinguished. In this subsection, the effect of return-stroke oblique angle 

on the induced voltage will be examined. To simplify the comparison, there are three 

inclined return strokes as shown in Fig.4.17, whose inclined angles are assumed to be the 

same (θi =  tan-1 0.2 ≅ 11.3°)but oblique angles are —45°, 0° and 45° respectively. Fig.4.18 

gives the calculation results of the induced voltages in three cases, and it shows an 

important information that the peak value of the voltage induced by the inclined return 

stroke will increases in the inclined direction but decreases in the other direction when the 

return-stroke oblique angle is not 90° or - 90°. This characteristic will be clearer by 

comparing the figures (A), (B) and (C) between Figs.4.16 and 4.18 respectively. 

Moreover, the difference in the peak value of the induced voltage between both directions 

of the power line will increase when the oblique angle diminishes to zero. This conclusion 

is different from that represented by Sakakibara [11], which stated that the peak value of 

the voltage induced by the inclined return stroke is higher than that produced by the 

vertical stroke at any point along the line. 

The crux of the problem can be examined by checking the induced voltage Vmz and 

propagated voltage Vp Fig.4.19 is the case of oblique angle ⱷ  = 0°. As mentioned before, 

the induced voltages V on the power line are standing waves and the propagated 

voltages VP  are traveling waves. From Fig.4.19, the effect of the induced component Vmz 

only happens at power line center and in the initial stage of the stroke process, besides, it 

is very small. Therefore, the difference in the peak value of the induced voltage is primarily 

caused by the inducing scalar potential V. Of course, as discussed in Chapter 3, the x 

component of the electric field intensity, 	is also a parameter affecting the induced 

voltage. Its effect will be discussed in Section 4.4. 
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The inducing scalar potentials at various points on both direction of the power line 

have been calculated and shown in Fig.4.20. The induced voltage at the power line center 

is also obtained simultaneously as reference. There are two factors affecting the peak 

values of the induced voltage at various points; one is the magnitude of the inducing scalar 

potential at the designated point, the other is the occurrence timing of the maximum 

inducing scalar potential. Especially, in some individual conditions, the significance of the 

latter is more than that of the former. From Fig.4.20, some useful informations can be 

observed. The initial effect of the lightning stroke reaches both sides of the power line 

simultaneously, because the lightning return stroke starts from the origin (x = 0). The 

difference in the induced voltages between both sides of the power line is exactly caused 

by the different inducing scalar potentials. 

Figure 4.17 Coordinate system of a power line and three return strokes 

with the same inclined angle, 	Effect of their oblique angles, ⱷ. 
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Figure 4.18 Comparison of induced voltages caused by return strokes 
with the same inclined angle. Effect of their oblique angles. 
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Figure 4.19 Induced voltage Vmz and propagated voltage Vp  as a function 

of space at increasing time on an overhead power line caused by an inclined 

return stroke. 
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Figure 4.20 Inducing scalar potential as a function of time at various 
points on an overhead power line caused by inclined return strokes and the 
induced voltage at the line center. 
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4.3.3 Effect of Return-Stroke Inclined Angle 

From above investigations, it is obvious that .  the worst severity of indirect lightning 

strokes on an overhead power line occurred in the inclined direction when the return-

stroke oblique angle is zero, i.e., the inclined plane is parallel to the power line. In this 

subsection, the investigations will concentrate on the effect of the return-stroke inclined 

angle on the induced voltages caused by return strokes with zero oblique angle. As shown 

in Fig.4.21, there are three return strokes lying on the xz-plane whose inclined angles are 

11.3°, 26.6° and 45° respectively. The induced voltages under various return-stroke 

inclined angles are calculated and shown in Fig.4.22. The peak value of the induced 

voltage will increase in the inclined direction but decrease in the other direction with 

increase in the inclined angle. In other words, the larger the inclined angle the worse is the 

severity of the return stroke on the overhead power line. 

The inducing scalar potentials at various points on both directions of the power 

line and the induced voltage at the power line center are shown in Fig.4.23. The inducing 

scalar potentials at points x = 0.1km and x = —0.1km are identical no matter what inclined 

angle, because the difference in the distance of the point from the return stroke is so small 

that the diversity cannot be distinguished. At θi = 11.3° and 8, = 26.6°, the magnitude of 

the inducing scalar potential decreases regularly with increase in the distance of the point 

from the power line center. But for 6. = 45°, the inducing scalar potential at point 

x = 0.5km is higher than that at point x = 0.1km . The cause is that the residual charges 

distributed along the leader channel is nearer to the point x = 0.5km when the maximum 

inducing scalar potential occurred (generally after the starting time about 2.8µs). The 

inducing scalar potential at a designated point increases in the inclined direction but 

decreases in the other direction with increase in the inclined angle except the points 

x = 0.1km and x = —0.1km . Besides, as mentioned in Section 4.2.4, if the difference in the 

retardation time between two points on the power line is very close to the traveling time 

of the propagated voltage from one point to the other, the effect of superposition will be 
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significant. The larger the return-stroke inclined angle the stronger is the effect of 

superposition for the points in the inclined direction, but the weaker for the points in the 

other direction. Now, both of two factors affecting the peak value of the induced voltage 

are favorable for the points in the inclined direction but adverse for the points in the other 

direction when the return-stroke inclined angle is larger. This is the reason which explains 

why the difference in the peak value of the induced voltage between both directions of the 

power line is so large when the return-stroke inclined angle reaches 45°. 

Figure 4.21 Coordinate system of a power line and three return strokes 

lying on the xz-plane. Effect of their inclined angles, θi. 
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Figure 4.22 Comparison of induced voltages caused by inclined return 
strokes whose inclined plane is parallel to the power line. Effect of their 
inclined angles. 
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Figure 4.23 Inducing scalar potential as a function of time at various 
points on an overhead power line caused by inclined return strokes and the 
induced voltage at the line center. 
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4.3.4 Recompare the Effect of Inclined Angle by Using Zigzag Return Stroke 
Models 

Maybe someone will ask that the inclined return strokes used in the Subsection 4.3.3 are 

inclined in unique direction, so the comparison is not objective enough. In this subsection, 

the effect of the return-stroke inclined angle on the induced voltage on an overhead power 

line will be recompared by replacing the straight return strokes with multi-segment 

(zigzag) ones. There are three return strokes composed of 2, 5 and 10 segments 

respectively as shown in Fig.4.24. The inclined angles are the same as the straight ones. 

The calculation results are given in Fig.4.25. In general, the effect of the return-stroke 

inclined angle on the induced voltage is similar. Just on the significance of the effect, there 

exists some gap. The difference in the induced voltage between both sides of the power 

line is not so evident as those shown in Fig.4.22. 

Figure 4.24 Coordinate system of a power line and return strokes 
composed of various segments. 
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Figure 4.25 Comparison of induced voltages caused by return strokes 
composed of various segments. Effect of the inclined angle. 
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4.3.5 Significance of the Timeliness on the Induced Voltage 

To emphasize the significance of the timeliness on the induced voltage, a special return 

stroke composed of two segments is simulated, the former one-tenth inclined in the 

direction of <1,0,1> and the latter nine-tenth inclined in the direction of < —1,0,1> . The 

coordinate system is shown in Fig.4.26 and the induced voltage is given in Fig.4.27.(a). 

The calculation results are out of anticipation. Intuitively, most people will think that the 

severity of the return stroke on the power line in the —x direction is naturally worse than 

that in the +x direction because the return stroke is nearer to the former. From 

Fig.4.27.(B), although the peak value of the inducing scalar potential at a designated point 

in the +x direction is less than that at the relative point in the —x direction, the former has 

better timeliness. So an important conclusion can be drawn from this special case. The 

magnitude of the superposition effect is determined by the value of the inducing scalar 

potential at a designated point when the maximum propagated voltage reached this point, 

but not by the peak value of the inducing scalar potential. 

Figure 4.26 Coordinate system of a power line and a special return stroke 
composed of two segments. 
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Figure 4.27 Induced voltage and inducing scalar potential on an overhead 
power line caused by a special return stroke. 
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4.3.6 Effect of Return-Stroke Velocity on the Induced Voltage Caused by an 
Inclined Return Stroke 

The effect of return-stroke velocity on the induced voltage caused by a vertical return 

stroke has been discussed in Subsection 4.2.1, and the results show that it is not very 

significant. Now it will be examined again by using an inclined return stroke. The case 

with progression vector <1,0,1> shown in Fig.4.21 is adopted and three velocities, 10, 30 

and 50 percent that of light, are discussed. Fig.4.28 gives the calculation results of the 

induced voltage. The peak value of the induced voltage on the power line increases in the 

inclined direction but decreases in the other direction when the return stroke velocity 

increases, i.e., the faster the return stroke velocity the worse is the severity of the inclined 

return stroke on the overhead power line. The return-stroke velocity becomes an 

important parameter when the lightning stroke is inclined. The primary cause is still the 

timeliness of the inducing scalar potential which is illustrated in Fig.4.29. The timing 

degree can be directly judged from the waveshapes of the inducing scalar potentials. 

Examining the rise time of the inducing scalar potential curve for each point, if the rise 

time is closer to each other, then the timeliness is better. When the rise time at various 

points are the same, the timeliness is perfect and the superposition effect is maximum. Of 

course, this is impossible in the natural world. In other words, if the waveshapes at various 

points look like each other, the timeliness will be well and the superposition effect is 

significant. 

4.4 Effects of Inducing Components 

VS  , Vmz and Emx on Induced Voltage V 

Fig.4.19 has proved that the difference in the peak value of the induced voltage is 

primarily caused by the inducing scalar potential Vs. Now, an examination is made to 

determine the effect of the inducing component Emx on the induced voltage. At first, the 
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Figure 4.28 Comparison of induced voltages caused by an inclined return 

stroke with 6, = 45° and go = 0°. Effect of the return stroke velocity. 
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Figure 4.29 Inducing scalar potentials at various points on an overhead 
power line and the induced voltage at the line center caused by an inclined 

return stroke with θi  = 45° and ⱷ  = 0°. Effect of the return stroke velocity. 
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inclined return stroke model with progression vector <1,0,1> shown in Fig.4.21 is still 

adopted to discuss this topic. 

The computer program is modified to exclude the effect of Emx by eliminating step 

(6) listed in Section 3.3. The calculated Vp  and Vmz  are shown in Fig.4.30.(A), where Vp  is 

produced by Vs  only. The calculated V is shown in Fig.4.30.(B) which is the total of Vp  

and 	The actual induced voltage on the power line is calculated by using the full 

computer program and shown in Fig.4.30(C). Comparing Fig.4.30.(C) with 4.30.(B), the 

contribution of Emx  to the induced voltage is insignificant. This is as expected from 

equation (2.22) in which the value of Emt, is very small because the inclined return stroke 

is straight. The values of Emxδx appearing in Fig.3.4 are calculated and shown in 

Fig.4.31. The maximum value is only -1.8 kV which can be neglected if compared with 

Vp. 

Analyzing equation (2.22), E,,  maybe has some influence on the induced voltage 

under zigzag return stroke because the sign between E'm and E"m is changed from (-) to 

(+) sometimes. So the discussion is continued by using the zigzag return stroke model 

shown in Fig.4.24.(C). The calculations are repeated and calculated results are shown in 

Fig.4.32. The effect of Emx  is still negligible. 
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Figure 4.30 Effect of inducing components Vs , Vmz and E 	on the 
induced voltage caused by a straight inclined return stroke. 
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Figure 4.31 Values of Emxδx induced by a straight inclined return stroke. 
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Figure 4.32 Effect of inducing components Vs , Vmz and Emx  on the 
induced voltage caused by a zigzag return stroke. 



CHAPTER 5 

CONCLUSIONS 

The following conclusions are drawn from the preceding investigations: 

(1) The presented numerical model includes the most flexible capability to 

describe the configurations of the lightning in real systems. A finite-length lightning 

channel of any direction in 3-D space can be modelled and closed-form expressions 

of the inducing potentials have been derived. The inducing scalar potential and 

inducing vector potential caused by an arbitrarily shaped lightning stroke can be 

expressed and calculated by superposition. 

(2) Taking into account the retarded-height difference between the real charges in 

space and the imaginary charges produced by the perfect conductive ground, we 

were able to explain the bipolar characteristic of the inducing scalar potential 

which indirectly causes the bipolar induced voltage waves. 

(3) The induced voltage on an overhead power line can be calculated by solving 

the corresponding differential equations in which the horizontal component of the 

inducing vector potential is taken into consideration. A computer program has 

been developed with the use of the finite-difference time-domain method in which 

the differential equations are converted into difference equations. By means of the 

program, the induced voltage can be evaluated as a function of time at any point 

on the power line or as a function of space at various times and the results are 

shown up with figures. From former figure, the variation of the induced voltage 

with time can be examined. From latter figure, the propagation of the induced 

voltage along the power line can be observed. 

(4) Using the program, parametric effects on the induced voltage caused by a 

vertical lightning stroke are discussed. According to the significance of these 
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parametric effects on the induced voltage, they can be arranged in order as 

y0 , t f , h, k, 	It is out of anticipation that the effect of the return-stroke 

velocity is so slight. When the effect of the return-stroke velocity is inspected, the 

return-stroke current needs to be changed with the varying-ratio of the return-

stroke velocity. 

(5) With the use of the program, comparisons of the induced voltage caused by 

inclined lightning strokes are made under various conditions. The results show that 

the induced voltage caused by a inclined return stroke will increase in the inclined 

side of the power line but decreases in the other side when the inclined plane is not 

perpendicular to the power line. Moreover, the larger the inclined angle or the 

faster the return-stroke velocity, the larger the difference in the induced voltage 

between both sides of the power line. The induced voltages caused by inclined 

return strokes are considerably higher than those caused by vertical ones 

irrespective of the progress velocity. Higher voltage will be induced on an 

overhead power line by the inclined return stroke not near the lightning struck 

point but at the location some distance away from such point. 

(6) Since the severity of the inclined return stroke on the overhead power line is 

considerably harmful, especially when the return-stroke velocity gets faster or the 

inclined angle increases. It should be taken into account in the lightning protection 

design for transmission lines as well as distribution lines. 

The study has large investigative scope. The developed computer program can be 

extended to apply in the following areas: 

(1) Analysis of multiconductor line systems. 

(2) Lightning strokes with branches. 

(3) Bent overhead power line. 

(4) Undulating ground surface. 



APPENDIX 

MULTIPLE FIGURES 

This appendix includes the figures validating the numerical method used to evaluate the 

inducing potentials, and those showing the parametric effects on the induced voltage 

caused by a vertical lightning stroke. For validating the numerical method, these figures 

include: 

• Inducing potential caused by a vertical return stroke with rectangular current 

(Figure 2.6-Figure 2.7) 

• Inducing potential caused by a vertical return stroke with rapidly-rising current 

(Figure 2.8-Figure 2.12) 

For showing the parametric effects, these figures include: 

• Progress velocity of return stroke (Figure 4.1-Figure 4.4) 

• Front time of return-stroke current (Figure 4.5-Figure 4.7) 

• Height of cloud charge center (Figure 4.8-Figure 4.9) 

• Least distance of the power line from the lightning struck point (Figure 4.10-

Figure 4.12) 

• Height of the power line above ground (Figure 4.13-Figure 4.14) 
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Figure 2.6 Comparison between numerical method and published method 
to calculate the inducing potential on an overhead power line caused by a 
vertical return stroke with rectangular current.  
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Figure 2.7 Comparison between numerical method and published method 
to calculate the inducing potential on an overhead power line caused by a 
vertical return stroke with rectangular current. 
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Figure 2.8 Comparison between numerical method and published method 
to calculate the inducing potential on an overhead power line caused by a 
vertical return stroke with rapidly-rising current possessing drooping tail. 
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Figure 2.9 Comparison between numerical method and published method 
to calculate the inducing potential on an overhead power line caused by a 
vertical return stroke with rapidly-rising current possessing constant tail. 
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Figure 2.10 Effect of the tail variety of the lightning return-stroke current. 
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Figure 2.11 Bipolar characteristic of the inducing scalar potential. 
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Figure2.12 Composition of the inducing scalar potential caused by a 
vertical return stroke with rapidly-rising current possessing drooping tail.  
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Figure 4mz1 Induced voltage as a function of time at different points on an 
overhead power line caused by a vertical lightning stroke. Effect of return 

stroke velocity, /3. 
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Figure 4.2 Induced voltage as a function of space at various times on an 
overhead power line caused by a vertical lightning stroke. Effect of return 

stroke velocity, f3. 
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Figure 4.3 Induced voltage on an overhead power line caused by a vertical 
lightning stroke. Current is not changed with the varying- ratio of the 
return stroke velocity. 
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Figure4.4 Components of induced voltage. Effect of return stroke 
velocity. 
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Figure 4.5 Induced voltage as a function of time at different points on an 
overhead power line caused by a vertical lightning stroke. Effect of current 

front time, tf. 
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Figure 4.6 Induced voltage as a function of space at various times on an 
overhead power line caused by a vertical lightning stroke. Effect of current 

front time, tf . 
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Figure 4.7 Effect of current front time on inducing scalar potential, V. 
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Figure 4.8 Induced voltage as a function of time at different points on an 
overhead power line caused by a vertical lightning stroke. Effect of height 
of cloud charge center, hc. 
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Figure 4.9 Induced voltage as a function of space at various times on an 
overhead power line caused by a vertical lightning stroke. Effect of height 

of cloud charge center, hc. 
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Figure 4mz10 Induced voltage as a function of time at different points on 
an overhead power line caused by a vertical lightning stroke. Effect of least 

distance of the power line from the struck point, y0 . 
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Figure 4.11 Induced voltage as a function of space at various times on 
an overhead power line caused by a vertical lightning stroke. Effect of least 

distance of the power line from the struck point, y0 . 
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Figure 4.12 Components of induced voltage. Effect of least distance of 

the power line from the struck point, y0 . 
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Figure 4.13 Induced voltage as a function of time at different points on 
an overhead power line caused by a vertical lightning stroke. Effect of 
height of the power line above ground, h 
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Figure 4.14 Induced voltage as a function of space at various times on 
an overhead power line caused by a vertical lightning stroke. Effect of 
height of the power line above ground, h . 
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