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ABSTRACT 

PASSIVE RADIOSONDE TRANSDUCER 
DESIGN FOR REMOTE PRESSURE SENSING APPLICATIONS 

by 
Yang Gao 

Intracranial pressure can be measured to accuracies within 1 milliTorr using 

passive microtransponders that are micromachined using silicon as a base technology. 

These microtransponders can operate with either a dual-oscillator or a phase-locked loop 

frequency scanned control system. 

The current work describes the design of a totally implantable microsensor for 

biomedical applications with the aim to monitor and measure the epidural intracranial 

pressure . The implanting microsensor is basically an RLC device in which capacitance 

varies with fluid pressure. The resonant frequency of RLC Series connected device varies 

with chemically etched diaphragm electrode spacing and thereby measures the variations 

with pressure changes in the fluid pressure The small pressure changes are recorded by 

an external receiver unit which drives the implanted sensor into oscillator by means of an 

RF magnetic field. 

The pressure measurement system is expected to measure pressure with an 

accuracy of I Torr over the range 1 to 760 Torr. The microsensor is expected to measure 

pressure at distances up to 2 meters from the power source loop in any environment that is 

nonconductive and nonmagnetic. The one application of the present thesis is for the 

chronic measurement of intercranial fluid pressure following brain surgery and for 

eschemic brain conditions. 
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CHAPTER 1 

INTRODUCTION AND HISTORY OF BIOSENSORS 

The most pervasive silicon sensor is the pressure sensor, and the highest volume 

application is the disposable blood pressure sensors. In this device, a thin pressure 

sensitive diaphragm area is etched into a small silicon chip (typically less than 2 mm. 

square). Piezoresistors are defined and diffused into the surface of the diaphragm, and 

these resistors change value in proportion to the stress applied due to pressure on the 

diaphragm. Pressure is measured by the amount of this resistance change. Typically this 

chip is mounted on a ceramic substrate (usually with thick film laser-trimmed calibration 

resistors) and encapsulated in plastic to form the sensor body. Similar devices are used to 

measure respiratory, dialysis, urinary or other pressures. 

1.1 Abstract 

Over the past several decades, a number of intracranial pressure measurement devices 

have been developed, the majority of which have been implanted with leads protruding out 

from the cranial cavity. Pioneering work in this field was done by Dr. Carter Collins in the 

1960s using pillbox devices with dimensions in the centimeter range. The method has the 

advantage of high degree of miniaturization of the device physical size, so that it can be 

totally implanted inside the skull to track the ICP. Microelectronics technology has been 

used, as recent studies in biomaterials has proved silicon sensors are biocompatible[1]. 

Moreover microengineering provides drastic reduction in device dimensions for easy 

implantation anywhere in human body. 

Resonant RLC devices based on silicon technology in which the capacitance varies 

with external fluid static pressure have been reported by [2], [3]. The resonant frequency 
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of the RLC series connected device varies with static fluid pressure as the capacitance 

diaphragm electrode spacing is varied. 

This thesis presents the design and simulation of a totally implantable microsensor 

for chronic biomedical application. 

Chapter 2 dwells with the basic theory of the sensor-based system. The block 

diagram approach for the realization of the passive radiosonde systems are also dealt in the 

same chapter. 

Chapter 3 will present theory of the resonance devices. To present a model that 

includes a magnetic field created by the if power source loop antenna, the voltage induced 

in the resonant passive device, and the magnetic field created by the resonance current at 

the frequency fo  and the voltage pickup in the loop receiving antenna of the radio receiver. 

In particular chapter 4 deal with the mathematical modeling of inductance and chapter 5 

with the capacitance modeling. 

Chapter 6 describe the performance of the passive radiosonde system using PSPICE 

modeling. The results are also included in the same chapter. 

We conclude in chapter 7 along with a brief summary. The softwares used for the 

design of the passive radiosonde system and mentor graphic design layout are presented in 

the Appendix A, B, C respectively. 

1.2 Academic Activity 

Optical, electrochemical, piezoelectric and thermometric biosensors are being actively 

pursued in a large number of laboratories throughout world. These are being coupled 

individually or in combinations with both catalytic (e.g. enzymes, cells, tissues) and affinity 

(e.g. antibody, nucleic acids, cell receptors) systems. The medical applications fall into two 

principal categories: in vitro diagnostics and in vivo monitoring. The bulk of the activity is 

concentrated on the former goal, but the challenge of continuous in vivo monitoring forms 

a significant part of many programs. Enzyme electrode technology has advanced 
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significantly in the last decade and work is now focused on refining the specificity, 

sensitivity and general operational characteristics of devices. Mediator technology has had 

a significant impact on the chemistry employed in amperometric sensors at the expense of 

more traditional hydrogen peroxide based systems, although there is significant interest in 

other ways of reducing the operating potential of enzyme electrodes. 

1.3 Silicon Sensor Technology 

Silicon microstructure technology provides a basis for manufacture high performance 

sensors at a low cost and in high volume. In addition, silicon devices are typically small, 

rugged, stable and unaffected by biological fluids. The basic technology involves 

photopatterning and chemically etching wafers of silicon to create three-dimensional 

structures. Recent process enhancements include: 

1. Detailed modeling, which allows design of higher performance parts. 

2. Electrochemical etch stops, which permit very precise dimensional control. 

3. Fusion bonding, so that multiple layers can be etched and then fused together to 

form very complex three dimensional structures. 

1.4 Passive Sensor and its Applications 

Passive sensor is that which does not need its own power supply which has the advantage 

of avoiding both lifetime reduction and problems resulting from an inductive energy 

transmission into the implant. The function of passive sensor system is based on the 

coupling of two components either by induction or by electromagnetic or ultrasonic wave 

fields, so that the information receiver changes a characteristic parameter according to the 

variations of the second, implanted component's condition. 

The various applications of biosensor systems are as follows: 

1. Patient monitoring where freedom of movement is desired, such as in obtaining an 

exercise electrocardiogram. 
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2. Patient monitoring in an ambulance and in other location away from the hospital. 

3. Research on unrestrained, unanesthetized animals in their natural habit. 

4. Collection of medical data from a home or office. 

5. Radio frequency transmissions for monitoring astronauts in the space. 

6. Use of telephone links for transmission of electrocardiograms or other medical 

data. 



CHAPTER 2 

DESCRIPTION OF THE SENSOR-BASED SYSTEM 

2.1 Introduction 

This chapter establishes the perspectives of elements of intracranial pressure and its 

measurement techniques. The varied sensors based intracranial pressure measurement 

techniques are compared. A detailed description of the improved tracking system is 

presented. 

2.2 Intracranial Pressure Monitoring 

Intracranial hypertension is a syndrome that results from tumor, trauma hydrocephalus or 

massive lesions brought by abscess or injection. The increased fluid pressure inside the 

skull that results can be deceiving and devastating. Hence a continuous, accurate 

knowledge of intracranial pressure would be of great value as a guide for therapy and as 

an index of the clinical state in many neurosurgical cases, particularly in monitoring 

pressure changes in acute head injury cases. Our research focuses on the development of 

totally implantable microsensors for biomedical applications including chronic intracranial 

monitoring. The present work design and fabricates an implantable silicon sensor based on 

microelectronics technology. Silicon has become a synonym for integrated circuit 

technology, thanks to its spectacular electronic properties and equally amazing mechanical 

properties. Silicon can be micromachined into the tiniest electromechanical systems even 

built. Microsensors and microactuators intended for biomedical applications have become 

an important research area. 

5 
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2.2.1 Concepts of Intracranial Pressure 

Intracranial pressure is a generic term to designate any pressure measured in the cranial 

cayity. The concept of ICP is based on the relationships among three yolumes, blood, 

brain, and cerebrospinal fluid(CSF), enclosed within a skull. If one or more of these three 

yolumes increase without a concomitant fall in the other yolumes, an increase in ICP 

results[4]. 

The goal of all intracranial therapies is maintenance of cerebral blood flow to 

proyide adequate oxygen and glucose to the brain. Increases in ICP can reduce cerebral 

blood flow. Because it is not practical to monitor cerebral blood flow at the bedside, a 

calculated pressure, cerebral perfusion pressure(CPP), is used to reflect cerebral blood 

flow. CPP equals arterial pressure(MAP) minus ICP. 

Once ICP rises to arterial pressure leyels, blood flow through the brain reduces, and 

death occurs. Patients at risk of such a condition occurring include those with seyere head 

trauma, space-occupying mass lesion, hydrocephalus, encephalitis, Rey's syndrome, and 

cerebral hemorrhage. 

2.2.2 Totally Implantable Radiosonde 

Fig. 2.1 shows the different sites of the cranial compartment. The passiye pressure sensor 

that is totally implanted works on the principle of radio frequency coupling. The figure 

also shows the incision made to implant the radiosonde. Fig. 2.2 shows the section of 

cranial compartment after healup. Fig. 2.3 is the equiyalent circuit diagram of the passiye 

radiosonde. 

2.2.3 Fully Implanted ICP Monitoring 

Inyasive intracranial pressure monitoring and the data it provides has adyantages 

especially as a treatment and prognostic indicator[5]. The most common complication 
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Figure 2.1 Cranial compartment showing the implanted pressure sensor 
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Figure 2.2 Showing the healup of incision after craniotomy 
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Figure 2.3 Equivalent circuit diagram of the passive radiosonde 
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associated with ICP monitoring is infection. The factor most consistently associated with 

ICP monitor-related infection was the duration of monitoring. 

Inyasive monitoring of ICP is becoming the standard of care for management of 

acute neuralgic and neurosurgical patients. As a result of microelectronics technology, a 

new totally implantable silicon microsensor has been designed and fabricated for 

facilitating chronic measurement of ICP thus by reducing the risk of infection to a greater 

extent. 

2.3 The Passive Sensor-based System 

Intracranial pressure can be measured to accuracies within 1 MilliTorr using passive 

microtransponders based on the current silicon micromachining technology. These 

microtransponders can operate with either a dual-oscillator or a phase-locked loop 

frequency scanned control systems. 

2.3.1 Design of Passive Pressure Sensors 

The basic passive pressure sensor consists of a chemically etched diaphragm with an 

integral plane coil. The yariables for the design of inductance include track width, spacing 

between the tracks and the number of turns of the coil. In this design aluminum and 

copper metallization are used for a spiral square geometry that is compatible with our 

CAD design tools. The capacitance of the microsensor is based on the distance of 

separation between the internal plates that yary with biofluid pressure. The inductance and 

capacitance used for fabrication are 100 nanoHenries and 10 picoFarads respectiyely 

which proyide a resonant frequency of 161MHz. The quality factor around 500 results in 

higher circulating currents in the sensors. 

In this research we haye designed four microtransponder deyices. Deyice A(Fig. 

2.4) is a yery simple parallel resonant circuit that has a resonant frequency yarying with 

enyironment fluid pressure. Device B(Fig. 2.5)is a series connected circuit which operates 
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Figure 14 Wafer bonded microtransponder A 
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Figure 2.5 Wafer bonded microtransponder B 



Figure 2.6 Wafer bonded microtransponder C 
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Figure 2 7 Wafer bonded microtransponder 
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with a basic resonant circuit also yarying with fluid pressure. The basic theory of device C 

(Fig. 2.6) and deyice D(Fig. 2.7) are the same as deyice A and deyice B respectively 

except the sensitiyities are much higher. Also the devices C and D haye a major 

disadyantage in the form of the complexity in deyice design and fabrication technology and 

they also need adyanced micromachining technologies. 

2.3.2 Design of Phase Locked Loop System and its Operation 

The system design consists of an implantable pressure sensor and a receiyer to detect and 

measure biofluid pressure yariations. The implanting microsensor is basically a series 

connected RLC circuit in which capacitance yaries with biofluid pressure. The resonant 

frequency of RLC circuit yaries chemically etched diaphragm electrode spacing that is 

linear function of the biofluid pressure. 

The basic principle involyed in detecting the signal from the passiye radiosonde is by 

FM detection. A simple method of conyerting frequency yariations to yoltage yariations is 

by FM reactance technique. In FM reactance principle the reactance yaries with the 

frequency. An alternating current, such as an r-f signal or i-f signal, flowing through an 

inductor will remain at a constant yalue if neither the yoltage nor the frequency is yaried. 

However, since reactance yaries with the frequency, the current flowing through an 

inductor will yary in amplitude when the frequency of the applied signal yaries, eyen 

though the amplitude of the yoltage remains constant. The amount of change in the 

amplitude of the current is dependent upon the shift in frequency because of the basic 

resonant characteristics of the pressure sensors and other tuned circuits. Since an FM 

signal yaries in frequency aboye and below the center frequency by an amount depending 

upon the amplitude of the modulating signals, applying a frequency modulated signal to an 

inductor will conyert frequency deyiations to amplitude changes in the current. These 

amplitude changes in current when made to flow through an resistor will produce 

corresponding yoltage changes across the terminals of the resistor. The ideal response 



Figure 2.8 Phase locked loop system 
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Figure 2.9 Selected signal levels for she phase locked loop system 

1
7
  



18 

curve of an FM detector shows that each frequency variation produces a definite yalue of 

yoltage and also that a linear relationship exists between the frequency and the voltage. 

This linear relationship is essential in order to produce distortionless conyersion. 

The basic system operates with a yery simple LC-resonant passiye radiosonde 

microsensor. The LC-resonant circuit is excited by the magnetic field created by the 

remote transmitter as shown in Fig 2.8, Without the influence of the passiye microsensor 

radiosonde, the oscillator maintains a fixed frequency f1, as it is tandem-tuned oyer a 

frequency range. The f1  provides a steady signal to the analog-to-digital conyerter unless 

the specific resonant frequency f0 of the microsensor is matched at time t2, when f1=f0. A 

sudden shift in f1 occurs at time t2 and a 'blip' occurs in the ADC output. This 'blip' can be 

decoded into a specific, unique gauge pressure in the remote electronics. That is basic 

system operation principle and is summarized furthering Fig.2.9. 

2.3.3 Design of Dual Tracking Hartley Decode System and Its Operation 

A phase sensitiye endoradiosonde absorption detector was decided to be more useful. An 

external inductiyely coupled oscillator detector of the Hartley type has been chosen for 

detecting the passiye radiosonde at a distance. Fig. 2.10 shows the improyed model of the 

complete receiver unit system to detect the radiating signal from the passive radiosonde. 

The system is employed two Hartley oscillators, one acting as a reference oscillator. The 

Hartley oscillator is chosen because of the fact that the operating range falls in the lower 

frequency ranges. The other blocks of the diagram are the signal conditioning block(low 

pass or band pass filter), the phase detection block(reactance phase demodulator), an AID 

conyerter for interfacing to a datalogging machine(IBM/AT). 

The dual tracking Hartley decode system was designed and the operation of the 

systems is characterized by the graphs shown in Fig. 2.11. Both the oscillators track each 

other with a constant frequency. As long as the frequency f1 of the Hartley oscillator is 

different from the resonant frequency f0 of the implanted radiosonde, f2-f1 is a constant. 
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Figure 2.10 Dual tracking hartley decode system 



Figure 2.11 Selected signal levels for dual tracking hartley decode system 20  
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By repeatedly sweeping the external oscillator frequency, the energy absorbed by the 

passive radiosonde at its resonant frequency which changes with time is tracked and is 

received by the Q-sensitiye telemetry receiver unit. Wheneyer the external oscillator 

frequency f1=f0, the resonant frequency f1 changes due to the coupling. This is detected 

by: the phase reactance demodulator circuitry. The momentary shift in the phase is 

converted to a digital signal by using an A/D converter. A calibrated look up table is 

stored in the computer, the direct reading of the intracranial pressure as a function of 

radiosonde frequency is continuously logged in and the reading of the ICP is directly 

shown on the PC monitor. This way the systems continuously monitors and tracks the 

ICP in the skull. 



CHAPTER 3 

BASIC THEORY AND SIMULATION TOOLS 

This chapter starts with the description of electronic circuit equiyalent for pressure sensor 

and its detection system. In the process all the mathematics required to simulate entire 

detection system is also taken care of. 

3.1 Basic Device 

The principle of operation of pressure sensor is based on resonant circuit. In general there 

are two types of resonant circuits possible known as series resonant circuit and parallel 

resonant circuit. With the resonance nature the impedance becomes either maximum or 

minimum depending upon the type of resonant circuit. So the corresponding electrical 

parameter of measurement can be either current or yoltage. The resonant frequency of 

operation is a function of L and C of the pressure sensor used 

In a pressure sensor the inductance is realized using square spiral geometry and its 

simulations whose results are discussed in chapter 4. Capacitance is a parallel plate type 

whose design is giyen in chapter 5. Capacitance is a function of distance of separation 

between plate [6]. 

The separated distance of a pressure sensor between plates yaries with amount of 

pressure applied the diaphragm of the second wafer as shown in Fig. 2.10. All the 

possible types of pressure sensors discussed in chapter 2 are resonant circuits with the 

resonant frequency being a function of inductance and capacitance only. It is worthwhile 

to note that the Quality factor of the deyice decides the bandwidth of the resonant circuit 

22 
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used and also the quality factor of the circuit decides amount of power dissipated per unit 

cycle in the inductance. 

3.2 RF Coupled Detection 

The block diagram of the RF Coupled detection is shown in Fig. 2.10. In this the 

implanted sensor is the pressure sensor with the coil being a spiral structure of square 

geometry acting as an inductor. The Q-sensitiye oscillator has a coil that is acting like an 

antenna to receiye and track the signal generated by the pressure changes in the form of 

frequency changes of the implanted pressure sensor. The amount of coupling between the 

coils (oscillator coil and inductor coil of pressure sensor) is important parameter which 

decides the sensitiyity of the whole system. Coupling Coefficient is function of distance 

separation between the coils and orientation of the two coils. The amount of signal 

reception for inductiye coupling is mathematically derived in the following section. 

3.3 Induction Coupling 

A current carrying small inductor coil can induce a magnetic flux into near loop antenna. 

The magnetic induced magnetic field can be estimated by Biot Savart's Law Which states 

that the magnetic field induced at any point P2 produced by a current carrying differential 

element Idl at a point P I is giyen by 

where 

I = Filamentary current 

dl = yector length of current path P1 

aR = unit yector of points joining P1 to P2 
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R = distance of separation between P1 & P2 

Applying the above principle to a side of the rectangular loop carrying current I 

shown in Fig. 3.1 we haye 

For a rectangular loop carrying current I has four side, by superposition principle 

Where ϕ is the angle between the planes and is well known to be a function of direction 

cosines. The direction cosines for the Fig. 3.2 are calculated and cosines of the angles 

between planes are giyen by following equations 

= Angle between AE and AB 
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Figure 31 Magnetic fluxdensity at a point p 1 due to the current carrying element Id] 
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Figure 3.2 Voltage induced into the square loop antenna from a small current carrying 
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The distance of separation between E and AB ,BC, CD and AD lines is given as R1, 

R2, R3 and R4 respectiyely are giyen by the following expressions. 

The resultant unit vectors are giyen by 



So the oyerall magnetic flux density is giyen as 

and so the magnetic flux density as a yector form can be giyen as 

The induced yoltage due to the flux density is calculated by the help of Faraday's law 

which is giyen by 
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Where 'S' is any surface bonded by the coil and does not change with time 

Therefore the yoltage induced in the coil can be considered as at the steady state 

conditions and is giyen by 

Where A = area of cross section 

= frequency in radians 

a, 0, y are the angles between and X,Y and Z axes respectiyely. 

Applying reciprocity theorem yoltage induced by the small current carrying coil into 

the receiving antenna is given as 

The results show that the maximum voltage can be induced in the antenna when 

current carrying conductor is parallel to the Z-axis , i.e., when γ=nπ  where n=0,1,2, With 

this electromagnetic theory and the mathematical equations deyeloped in this section the 

RF coupling between the pressure sensor and receiying system we are ready to analyze 

the whole system. 

This RF coupled system is also known as dual tracking Hartley decode system. Eyen 

though there are many techniques ayailable to track a passiye frequency modulated 

endoradiosonde but this system is proyed to be more sensitiye and accurate when the 

pressure sensor and RF coupled system separated by a distance of 5 mm to 1 centimeter. 

An external inductiyely coupled oscillator detector system has Hartley oscillator 

detector which is used for tracking oscillator frequency for detecting the passiye 

radiosonde at a distance of 0.5 cm. The whole system is shown in Fig. 2.10 

The system operates with two Hartley oscillators in which one constantly operates 

at f2 and the other oscillator operate at a frequency depending on the coupling between 

the pressure sensor and the resonant oscillator circuit. By repeatedly sweeping external 
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oscillator frequency 	the energy absorbed by the passiye radiosonde at its resonant 

frequency which changes with time is tracked and receiyed by the Q-sensitiye telemetry 

receiver unit. The difference between these two signals is signal conditioned by passing 

through a low pass/band pass filter and using a reactance phase demodulator (which is 

also known as FM Detector) and is fed as a digital signal to the computer after passing 

through the A/D conyerter and interface circuitry called as Data Acquisition system. An 

FM detector has a definite yoltage corresponding to each frequency input signal and this 

linear relationship is crucial for the whole system detection capability. So the band of 

frequency of operation is limited to this linear range of this FM detection system. At any 

other frequency the reactance modulator will be in nonlinear range and the system 

reception will be poor and therefore the accuracy of measurement will be less and the 

whole system becomes less sensitiye. 

The digital signal received by the PC will be read as 1CP reading by using the look 

up table of calibrated system readings. So the digital signal at the PC is function of the 

frequency of reception which in turn is function of Pressure sensor frequency of 

operation and the amount of coupling between the two coils. The graphs corresponding to 

this method are all shown in Fig. 2.11. 



CHAPTER 4 

SIMULATION RESULTS FOR INDUCTANCE MODELLING 

This chapter deals with the design and simulation of spinal inductance. 

4.1 Mathematical Concept for Inductance Calculation 

The square spinal inductance is shown in Fig. 4.1. Computer calculation of spinal 

inductance for square geometries is based on Groyer method[7]. The total inductance is a 

function of the length, width, thickness, spacing between tracks and the number of turns of 

square spinal inductor. 

The total inductance is given by 

where 

LT = total inductance of the coil in nonohenries 

Lo = total self inductance of all the segments used in the coil 

M+  = total mutual inductance of the segments haying current flow in same direction 

M_ = total mutual inductance of the segments haying current flow in opposite 

direction 

The self inductance of a conductor segment of rectangular cross section is giyen by 

where 

I = length of conductor segment 

W = width of conductor segment 

T = thickness of conductor segment 

With the skin depth into consideration at 161MHz in around 6.25*2=13.5 micron, a 

conductor of width 10p. is chosen so that skin depth is taken care of. In general by 
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Figure 4.1 Spiral inductor of square geometry 
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increasing the width of inductor the resistance of conductor decreases and a high quality 

factor is obtained for the coil. 

The mutual inductance between current flowing conductors 1 and 2 is given by 

In general, at the same frequency of operation and mutual inductance is yectorial 

sum of M+  & M.  

The mutual inductance between two parallel conductors are a function of length, 

and geometric mean distance between conductors. 

M = 21Q 

where 

Q = mutual inductance parameter 

where 

where M+ and M_ are positiye and negatiye yalues respectiyely. 

d = distance between tracks 

w = track width 

Using the aboye concept, mutual inductances for current flowing in the same 

direction and for opposite direction are calculated . 

All the formulas haye been used for simulation of inductance using Sigmaplot 

software in PC. Simulation program and result haye been shown in nest two pages. From 

the results we can observe that positive mutual inductance M+ is much higher than M_. 
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The 1\4_ is smaller because the distance of separation is much higher between two 

conductors haying opposite current directions. 

4.2 Solid Modeling Spiral Inductance 

We use Maxwell 2D to calculate the inductance of this model(Fig. 4.2-4.5). The 

procedure for modeling inductance is described in detail in Appendix A, B. 



Figure 4.3 Mash for the microtransponder 
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Figure 4.4 Lines of Magnetic flux For inductance calculation 
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Figure 4.5 Output of result for inductance calculation 

3 7  



The following is a program for calculating inductance using Grover's model as 

described in section 4.1 
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Table 4.1 Summary of inductor characteristics 
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CHAPTER 5 

SIMULATION RESULTS FOR CAPACITANCE MODELING 

5.1 Capacitance Estimate 

In biomedical research, the need for small and reliable pressure sensor is without 

question[8]. It has an urgent need for a small, accurate, stable and low power pressure 

sensor, which is biocompatible and inexpensive. By taking adyantage of the adyanced state 

of the art for integrated circuit processing, silicon diaphragm miniature pressure sensors 

were developed for biomedical applications. 

The two main types of transducers commonly used pressure sensors are 

piezoresistors mounted on a thin diaphragm that is deflected by pressure, and the 

capacitive transducer which has two plates one of which is a diaphragm. Both can be made 

using monolithic silicon technology, but capacitive transducers offer a number of 

adyantages. 

An exact method of calculating the capacitance of a plate capacitor has been 

suggested first by J.J. Thompson and more completely worked by A.E.H. Love[9]. In the 

present design the fringing effects were not considered. The general formula for 

calculating the capacitance consisting of a single pair of parallel plates in air is given by: 

where 

C = the capacitance between the circular plates 

A = πr2 = the area of the modeled capacitance increment 

d = the separation between the circular plates 

For the following deyice dimensions, 
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Figure 5. I Cross section of the capacitance modeling 
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Figure 5.2 Electrostat equi plot 



Figure 5.3 Output of result for capacitance calculation 
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r = 120µm and d = 0.6 p.m the capacitance was found to be 2.9nF/meter. 

5.2 Solid Modeling of Capacitance 

For my thesis we would like to use a diaphragm type LC resonant sensor that resonates at 

the lowest practical frequency f0. Calculate the actual capacitance of these structures Fig. 

5.1-5.3. We are interested in obtaining a maximum capacitance per square micro of 

silicon. This means that the gap should be a minimum consistent with technology used. 

5.3 Sigmaplot for Device Dimension Calculation 

Resonant RLC devicecs based on silicon technology in which the capacitance varies with 

external pressure have been report by Collins and Backlund et.. The resonant frequency of 

the RLC series connected devices varies with as the capacitance diaphragm electrode 

spacing is varied. 

In order to specify the device dimensions for the actual mask set, we us Sigmaplot 

Fig. 5.3-5.11 to get the relationship between resonant frequency and dimensions of the 

device. Sigmaplot is the acclaimed scientific graphics software for the PC. It is 

sophisticated enough to handle the highly specialized grahing needs of scientist and 

engineers. The program is accessible and easy to use, remarkably simple to operate. If I 

want analyze the data statistically or apply equations to generate new data. We can 

accomplish this with the menu options in the View and Math Menus, located 

approximately halfway across the Menu Bar. Sigmaplot's Transform option offers a full 

range of mathematical functions and a flexible editing format. I can define any combination 

of equations and they performed sequentially on the data in any column in worksheet. 
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Figure 5.4 Capacitance vs capacitor edge ( Device A ) Area—az 
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Figure 5.5 Capacitance vs capacitor gap ( Device A ) 
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Figure 5.6 Resonant frequency vs capacitor edge ( Device A ) 
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Figure 5.7 Resonant frequency vs capacitor gap (Device A ) 
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Figure 5.8 Capacitance vs capacitor edge ( Device B ) Area=a2 
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Figure 5.9 Capacitance vs gap ( Device 3 ) 
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Figure 5.10 Resonant frequency vs capacitor edge ( Device B ) 
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Figure 5.11 Resonant frequency vs capacitor gap ( Device B ) 



CHAPTER 6 

SIMULATION RESULTS FOR PSPICE MODELLING 

6.1 Introduction 

The operational system includes three components: the if power source, the implanted 

sensor, and the telemetry receiver shown in Fig. 3.9. The rf power source at frequency fs  

consists of a current-driven inductive source which creates the rf magnetic field around the 

implanted sensor. The implanted sensor which located within the rf magnetic field region 

contains inductance L which is excited by the magnetic field. The implanted sensor has 

series-connected capacitance C as shown in Fig. 2.3. and will resonate at the frequency 

When the external power source frequency fs  equals the implanted device resonance of f0. 

The external power source sweeps a frequency range 

near the frequency fs=f0 the current i flows in the RLC loop of the implanted device and 

the loading is detected by the telemetry receiver unit. The implanted sensor acts as a 

passive transponder in this application. A sensitive receiver unit determines the resonant 

frequency f=0 which is a direct function of capacitance and fluid pressure. 

6.2 PSPICE Simulation Result 

The equivalent circuit has been simulated (Appendix C) using varied fs and R to get 

resonant frequency f=0 and the best value of driving frequency. Quality factor is varied with 

resistance R in Fig. 6.1. 
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Figure 6.1 Quality factor ys resistance ( Device B ) 



CHAPTER 7 

SUMMARY AND CONCLUSIONS 

In this thesis we designed four totally implantable passive devices. The basic passive 

pressure sensor consists of a chemically etched diaphragm with an integral plane coil. The 

resonant frequency of the RLC series connected device varies with static fluid pressure as 

the capacitance diaphragm electrode spacing is varied. The capacitive diaphragm for the 

all types is very sensitive for ICP monitoring. The geometry of the device is simulated 

using Maxwell 2D solid modeling package. IC station in Mentor Graphic version 8.2 has 

been used for drawing the physical layout of the device. The geometry is much smaller 

than previously designed intracranial pressure sensors. The chip dimensions are 2mm by 

2mm with an area of 4mm2. Inductance of the microsensor is mathematically modeled by 

the help of Grover's model and simulation is flexible to variety of structures and 

dimensions of inductance. The PSPICE simulation for all types of devices has broadened 

the choice of the ICP monitoring. A lumped equivalent circuit is used for modeling to 

determine the resonant frequency with PSPICE. This thesis demonstrates feasibility, 

based on detail simulation of a microsensor-based pressure monitoring system with 

remote readout. The microsensor is a micromachined device using thick film copper 

interconnects to be fabricated in a Class-10 cleanroom facility at NJIT's Microelectronics 

Research Center. In accomplishing the readout measurements the coupling coefficient 

between the transmitter and receiver is observed to be very small thereby posing an 

experimental challenge. The harmonic analysis of the whole system is done using the 

Fourier Analysis capability of PSPICE. From the results it is observed that the received 

signal strength is high when the transmitter is pulsed with a burst of sinusoidal oscillations 

with ω=2f0 is twice the resonant frequency of the pressure sensor. So it is suggested for 

the improvement of the readout remote sensing of ICP that the signal strength of the Vs  
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(source) has to be high and has to be operated at 2f0 twice the frequency of the pressure 

sensor internal resonance. 

The current designed microsensor has variety applications apart from the current.  

ICP measurement application. The other biomedical applications of the sensor include the 

blood pressure measurement and the monitoring of the fluid pressures of a women during 

the child birth. Glaucoma patents and postsurgery for many ophthalmology clinical 

situations can be monitored using this passive sensor as an implanted device. With the 

further study of the diaphragm characteristics, the pressure sensing mechanism described 

in this thesis can be applied to more fields including the automotive industry. 



APPENDIX A 

MAXWELL PROGRAMMING DETAIL 

The following is a set of screens of MAXWELL modeling 

1 Meshmaker — Draw the geometry of the design and make the mesh 

(I) Set up the unit of the  screen 

In the menu, go to "param"—''Units", and choose the unit you want to use in 

solving the problem from the sub-menu bar shown on the screen (as shown in 

Figure A.1). 

Figure A.1 Screen of setting the unit. 
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(2) Set up the grid type of the screen 

In the menu, go to "param" — "Grid", it will show the screen (as shown in 

Figure A.2). There are two kinds of coordinate systems can be chosen: Cartesian or 

Cylindrical. Either coordinate system can be chosen as for the convenes for drawing 

the geometry design. 

Figure A.2 Screen of setting the grid type. 
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(4) Draw the problem geometry 

In the menu, "object", "line" or "point" sub-menu can be used to draw the 

problem geometry, whatever the geometry is. A "line" sub-menu is shown in 

Figure A.4. 

Figure A.4 Screen of "line" sub-menu. 
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(5) Edit the problem geometry 

After the problem geometry has been drawn, the "edit" sub-menu can be used to 

edit the geometry ("edit" screen is shown in Figure A.5). By using the "edit" sub-

menu, part or the whole geometry can be moved, copied or re-sized. And this makes 

the geometry making much easier. 

Figure A.5 Screen of "edit" sub-menu. 
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(6) Do the mesh making 

After the geometry is  set, mesh making is followed. A screen of "mesh" is shown 

in Figure A.6. From the menu, choose "Make" to do the initial mesh making. This is 

the fist step of mesh making. 

Figure A.6 Screen of "mesh" sub-menu. 
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(7) Refine the mesh 

The initial mesh got from the "mesh" — "Make" is pretty rough, so the refinement 

of the mesh is necessary. The "mesh" —"Refine" sub-menu is shown in Figure A.7. 

Different kinds of refinement can be chosen from this sub-menu according to the 

different geometry refinement required from the problem. 

Figure A.7 Screen of "Refine" sub-menu. 

After the refinement has been done, the mesh of the whole geometry area for this 

magnetic micromotor YTMM-5 is shown in Figure A.S. 



Figure A.8 Screen of geometry with mesh 

65  



66 

2. Magnetostatic Solver — Solve the problem 

(1) Retrieve the file and set up the parameters for the problem 

Use the "file" sub-menu and retrieve the file saved in Meshmaker. Then choose 

the "setup" — "Au Set" sub-menu (as shown in Figure A.10). If we click and choose 

this function, a series of screens will appear and the parameters can be set through 

these screens. These screens are shown as Figure A.11. 

Figure A.10 Screen of "Art Set" sub-menu. 
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Figure A.11 Screens of setting the parameters for different materials in this problem: 
(a), (b), (c), (d) set the currents to the coils wrapped around one stator pole pair, 

(e) set the relative permeability µr to the stator (yoke and poles); (f) set the parameters 

for the area between the stator and rotor, (g) set the relative permeability µr  to the 

rotor, (h) set the parameters to the program running background. 
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(2) Pick the boundary for solving the problem 

Go to the "solve" -- "B Pick" sub-menu (as shown in Figure A.12), choose any 

command and set up a boundary for this problem. 

Figure A.12 Screen of "B Pick" sub-menu. 
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(3) Define the type of the boundary chosen before 

After choosing the boundary, then to define the type of this boundary. 

A "B Type" sub-menu is shown in Figure A.13. "Balloon" is chosen as the boundary 

for solving this problem. 

Figure A.13 Screen of "B Type" sub-menu. 
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(4) Solve the problem 

Go to "solve" -- "Solve" and solve the problem. A screen of "Solve" sub-menu is 

shown in Figure A.14. After the "solve" has finished, some unknown parameters 

such as torque can be calculated. 

Figure A.14 Screen of "Solve" sub-menu. 
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(5) Calculate some unknown parameters 

Once the solve has completed, go to "post" -- "line" sub-menu (as shown in 

Figure A.15). First, use "Enter", "Crc Line" or "Obj Line" to choose a line for 

calculation. 

Figure A.15 Screen of "post" -- "line" sub-menu. 
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Then go to "Lne Calc" sub-menu (as shown in Figure A.16) to calculate some 

unknown parameters like torque. If calculate the torque, press "t", then key in the 

"Number of points". Then, press "Return" key to start calculating the torque. 

Figure A.16 Screen of "Lne Cale sub-menu. 
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The calculating result of the torque is shown in Figure A.17, and the calculating 

expression is also shown in the figure. The result here is MKS unit, so the unit for 

the torque is Nt•m. The "-" sign of the torque just means the direction of this torque is 

counter-clockwise. 

Figure A.17 Screen of "Lne Calc" sub-menu with calculating result. 



APPENDIX B 

SIMULATION RESULTS FOR CAPACITANCE MODELLING 

B.1 Generating and Analyzing a Solution with Electrostat 

This section describes how to calculate the capacitance. My goals are to: 

• Run the electrostat module and read the mesh 

• Generate a solution for the sample problem. The electrostat module calculates 

electric potential 

• Plot lines of equal potential 

• Calculate capacitance 

The electrostat module contains a special command for capacitances and 

capacitance matrices. However, for the purpose of illustrating the use of the module, the 

capacitance will be calculated from the energy of the system. 

B.2 Run Electrostat 

This section describes how to run the electrostat module in a PC. 

(1) Load the Mesh 

The same mesh that was read into magnetosta can be read into electrostat. To read 

in the mesh by using 'file/Read' command, now the mesh is read into the solver. 

(2) Overview of the Capacitance Problem 

To calculate the capacitance, you will 

• Apply 1 volt to the upper side 

• Apply 0 volt to the down side assuming that they are both grounded. 

• Calculate the total energy of the system using this equation 
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(4) Generate the Solution 

Choose solve/solve and accept the default 1.0000 e -4 for final solver residual. 

(5) Analyzing the Problem 

Plot lines of equal potential. The electrostat module computes the electric 

potential field. To plot contours of this field, choose post/plot/Equi and accept all of the 

defaults in the dialog box. The plot drawn as shown in Fig B.2. 

Figure B.2 Electrostat equal potential line 
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(6) Calculate Capacitance 

My goal is to find capacitance by first calculating the energy in the system using 

this equation: 

But since AV is I, use following equation: 

Choose post/calc and a panel appears as shown in Fig B.3. Look at the top portion of the 

panel and note that phi is the field quantity in the top register. 

Figure B.3 2D calculator panel for electrostat 

(7) Save the Solution 

Save the solution to a file. Choose file/S Write. At the File Name Busbar prompt, 

enter a name other than busbar-don't overwrite the solved files for the maanetostat 

module. 



APPENDIX C 

RESULTS OF PSPICE SIMULATION 
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Figure C.2 Plot of pulsed input (the number of input pulses 17) 81 
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**** 08/22/94 13:08:12 ******** PSpice 5.2a (Nov 1992) 	 ID# 61746 **** 

/carr/gao/gao1/413.sch 

**** 	CIRCUIT DESCRIPTION 

* Schematics Version 5.2 - July 1992 
* Mon Aug 22 13:08:09 1994 

* From [SCHEMATICS NETLIST] section of msim.ini: 
.LIB 

.INC "/carr/gao/gaol/413.net" 

**** INCLUDING /carr/gao/gao1/413.net  **** 
* Schematics Netlist * 

R_R1 	2 1 0.01 
L_L1 	3 2 100n 

C_C1 	0 3 10p 
V v1 	1 0 dc 0.00001v ac 0.00001 
*PULSE 0 0.00001v 0.1n 0.1n 0.5n 1.545n 3.09n 

**** RESUMING /carr/gao/gaol/413.cir **** 
.INC "/carr/gao/gaol/413.als" 

**** INCLUDING /carr/gao/gaol/413.als **** 
* Schematics Aliases * 

.ALIASES 
R_R1 	R1(1=2 2=1 ) 
L_L1 	L1(1=3 2=2 ) 
C C1 	C1(1=0 2=3 ) 
V_ V1 	V1(+=1 -=0 ) 

(1=1) 
- (2=2) 

(3=3) _ 	_ 
.ENDALIASES 

**** RESUMING /carr/gao/gaol/413.cir **** 

** Analysis setup ** 
.tray. 0.lns 100ns In UIC 
.four 160meg 8 v((3)) 

.END 



92 

**** 08/22/94 13:08:12 	 PSpice 5.2a (Nov 1992) ******** ID# 61746 **** 

* /carr/gao/gaol/413.sch 

**** 	FOURIER ANALYSIS 	 TEMPERATURE = 	27.000 DEG C 

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(3) 

DC COMPONENT = 	5.926134E-06 

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE 	NORMALIZED 

	

NO 	(HZ) 	COMPONENT 	COMPONENT 	(DEG) 	PHASE (DEG) 

1 1.600E+08 6.332E-06 1.000E+00 -1.497E+02 0.000E+00 
2 3.200E+08 1.815E-06 2.866E-01 -8.985E+01 5.980E+01 

	

3 	4.800E+08 	4.893E-08 	7.727E-03 	1.668E+02 	3.165E+02 

	

4 	6.400E+08 	9.330E-08 	1.473E-02 	1.162E+02 	2.658E+02 
5 8.000E+08 4.933E-08 7.791E-03 -1.086E+02 4.102E+01 
6 9.600E+08 3.862E-08 6.099E-03 -1.590E+02 -9.381E+00 
7 1.120E+09 5.669E-08 8.953E-03 -1.248E+02 2.484E+01 
8 1.280E+09 7.859E-08 1.241E-02 -1.315E+02 1.811E+01 

TOTAL HARMONIC DISTORTION = 2.876676E+01 PERCENT 

JOB CONCLUDED 

TOTAL JOB TIME 	 4.05 



APPENDIX D 

PHYSICAL LAYOUT 
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Figure D.1 Layout of the pressure sensor (a) bottom wafer-metall 

(b) bottom wafer via (c) top wafer-metal2 
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Figure D.1 Layout of the pressure sensor (a) bottom wafer-metall 

(b) bottom wafer via (c) top wafer-metal2 
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