
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

IMPLEMENTATION OF AN AUTOMATIC MAPPING TOOL
FOR MASSIVELY PARALLEL COMPUTING

by
Ajitha Gadangi

In this thesis, an implementation of a generic technique for fine grain mapping

of portable parallel algorithms onto multiprocessor architectures is presented. The

implemented mapping algorithm is a component of Cluster-M. Cluster-M is a novel

parallel programming tool which facilitates the design and mapping of portable

softwares onto various parallel systems. The other components of Cluster-M are

the Specifications and the Representations. Using the Specifications, machine

independent parallel algorithms are presented in a "clustered" fashion specifying the

concurrent computations and communications at every step of the overall execution.

The Representations, on the other hand, are a form of clustering the underlying

architecture to simplify the mapping process. The mapping algorithm implemented

and tested in this thesis is an efficient method for matching the Specification clusters

to the Representation clusters.

IMPLEMENTATION OF AN AUTOMATIC MAPPING TOOL
FOR MASSIVELY PARALLEL COMPUTING

by
Ajitha Gadangi

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer and Information Science

January 1994

APPROVAL PAGE

IMPLEMENTATION OF AN AUTOMATIC MAPPING TOOL
FOR MASSIVELY PARALLEL COMPUTING

Ajitha Gadangi

Dr. Mary M. Eshaghian, Thesis Advisor 	 Date
Assistant Professor of Computer and Information Science, NJIT

Dr. Daniel Y. Chao, Committee Member 	 Dare
Assistant Professor of Computer and Information Science, NJIT

Dr. David Wang, Committee Member

	

Date
Assistant Professor of Computer and In ma.tion Science, NJIT

BIOGRAPHICAL SKETCH

Author: Ajitha Gadangi

Degree: Master of Science in Computer Science

Date: January 1994

Undergraduate and Graduate Education:

• Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1994

• Bachelor of Science in Computer Science
Jawaharlal Nehru Technological University, Hyderabad, India, 1992

Major: Computer Science

iv

This thesis is dedicated to my beloved husband

ACKNOWLEDGMENT

The author wishes to express her sincere gratitude to her supervisor, Dr.

Mary M. Eshaghian for her guidance, friendship, and moral support throughout

this research.

Special thanks to Dr. Daniel Chao and Dr. David Wang for serving as members

of the committee. The author is grateful to the Department of Computer and Infor-

mation Science for partially funding this research.

The author appreciates the timely help and suggestions from the project group

team members Phil Chen, Ying-Chieh Jay Wu ;Geetha Chitti and Javier C. Vasquez.

The author is very much grateful to Ravindra 	Gadangi, without his

assistance this thesis would not have been in this format. The ant hot also wishes to

thank Annette Damiano for her professional con-intents in finalizing this thesis.

Last but not the least the author wishes to express her deep appreciation to

her husband Rajenara K. 	Gadangi for all his love and support and for making this

day possible.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION AND BACKGROUND 	 1

1.1 Introduction 	

2 CLUSTER-M MODEL 	 4

2.1 Cluster-M Model 	4

2.1.1 Cluster-M Specifications 	4

2.1.2 Cluster-M Representations 	6

3 CLUSTER-M MAPPING ALGORITHM 	 10

3.1 Cluster-M Mapping Algorithm 	

3.1.1 Preliminaries 	10

3.1.2 Mapping Algorithm 	13

4 IMPLEMENTATIONS AND EXPERIMENTAL RESULTS 	 15

5 CONCLUSION AND FUTURE RESEARCH 	

APPENDIX A SOURCE CODE MARC 	 26

	

REFERENCES 59

vii

LIST OF FIGURES

Figure 	 Page

2.1 Cluster-M Specification graph of a unary operation on array of size n. . . 4

2.2 Cluster-M Specification of associative binary operation. 	 7

2.3 Cluster-M Representation of n-cube of size 8. 	 8

2.4 Cluster-M Representation, of an arbitrarily connected system of size 8. . . 9

4.1 Mapping associative binary operation onto cube. 	 21

4.2 Mapping irregular problem onto mesh. 	 22

4.3 Mapping binary-associative operation, onto an irregular system 	 23

4.4 An example for irregular mapping. 	 24

viii

CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

An efficient parallel algorithm designed for a parallel architecture includes a detailed

outline of the accurate assignments of the concurrent computations onto processors,

and the data transfers onto communication links, such that the overall execution

time is minimized. This process may be complex for many application tasks with

respect to the target multiprocessor architecture. Furthermore, this process is to

be repeated for every architecture even though the application task may be the

same. Consequently, this has a major impact on the ever increasing cost of software

development for multiprocessor systems. In this thesis, we concentrate on the design

of portable parallel algorithms and present a. methodology for fine grain mapping of

these algorithms onto various parallel machines.

Cluster-M, a novel parallel programming tool introduced recently, facilitates

the design and mapping of portable softwares onto various multiprocessor systems

[7]. Portable algorithms are specified in Cluster-M format in a way that represent

concurrent computations and communications at every step of the overall execution.

To map the Cluster-M Specification onto the target architecture, the processors of

the underlying system are clustered in a hierarchical fashion such that all those in

the same cluster have efficient communication medium. The mapping methodology

outlined previously specifies a direction towards good matching of the concurrent

tasks (Specification clusters) and interconnected processors (Representation clusters)

[8]. In this thesis, we present an efficient algorithm for fine grain mapping of Speci-

fications onto Representations.

A number of other parallel programming tools have also been developed

recently, which provide an environment for design and automatic mapping of

1

2

portable algorithms [1, 2, 13, 17]. These tools can be classified into two groups. The

first group uses a library of pre-defined routines for mapping [1, 13]. In the second

category, the mapping is determined based on a graph matching technique. The

mapping problem here is the same as the classic one defined and studied by several

researchers over the years [15, 3, 12, 4, 6, 14]. The input to the mapping problem

is two graphs. The first graph is called the problem graph which is similar to the

data flow representation of the execution process, where each node is a computation

task and edges represent dependency and flow of data. The second graph is called

the system graph which is a trivial representation of the underlying architecture.

The mapping problem is defined as the matching of these two graphs such that the

overall execution time is minimized. This problem has been proven to be computa-

tionally equivalent to the graph isomorphism problem and hence is an NP-complete

optimization problem [3].

To reduce the complexity of the mapping problem, a number of approaches such

as graph contraction and clustering have been studied [5, 2, 11, 16, 17, 14]. In graph

contraction, a pair of connected nodes are merged into a supernode [2, 14], while in

clustering, a set of connected nodes are merged into one new node [5, 11, 16, 17].

This process continues until a. graph with desired order and pattern is reached. In

all these graph matching based techniques, the entire problem graph is considered

against the entire system graph. The important observation that can be made here,

is that it is not necessary to ma.p all the steps of an algorithm which is present in a

problem graph, onto the system graph all at once. An algorithm represents a. step

by step procedure for solving a problem. Therefore, it is sufficient to map one step

of an algorithm at a time onto available processors. However, this assignment should

be made intelligently so that it minimizes the total execution time of the future

steps and the overall execution time. For this reason, in this thesis, we present

an implementation of a mapping algorithm which not only considers the problem

3

graph in a. layered (clustered) fashion, hut also layers the target system graph in

a clustered form. This Cluster-M based approach is the process of finding a good

matching between the two sets of clusters.

The rest of the thesis is organized as follows. In chapter 2, we introduce the

components of Cluster-M. The mapping algorithm being implemented is detailed in

chapter 3. An implementation of this algorithm and some experiment results are

shown in chapter 4. A brief conclusion is given in chapter 5.

CHAPTER 2

CLUSTER-M MODEL

2.1 Cluster-M Model

Cluster-M has three main components: Cluster-M Specifications.

Cluster-M Representations and Cluster-M mapping module [7. 8. 9]. In this chapter.

we show how to generate a. layered problem graph with Cluster-M Specifications

and a. layered system graph with Cluster-M Representations. The mapping module

generates an efficient mapping of the Specification graph onto the Representation

graph.

2.1.1 Cluster-M Specifications

A Cluster-M Specification of a problem is a high level machine independent program

that specifies the computation and communication requirements or a. solution to a

given problem. A Cluster-M Specification can be translated into a. graph consisting of

multiple levels of clustering. In each level, there is a number of clusters representing

concurrent computations. Clusters are merged when t here is a need for communi-

cation among concurrent tasks. For example. if all n elements of an array are to he

squared, each element is placed in a cluster, then the Chuster-M specification would

state:

For all a clusters, square the contents.

Figure 2.1 Cluster-M Specification graph of a unary operation on array of size n

5

Note, that since no communication is necessary, there is only one level in the

Cluster-M Specification graph as shown in Figure 2.1. The mapping of this Specifi-

cation to any architecture having n. processors would be identical.

The basic operations on the clusters and their contained elements are performed

by a set of constructs which form an integral part of the Cluster-M model. For a.

complete listing and description of these constructs which are essential for writing

Cluster-M Specifications, refer to [8, 9]. All these constructs have been implemented

in PCN [9, 10]. Below we show an example for computing the associative binary

operation * of N elements of vector A. using the constructs implemented in PCN.

The resulting Cluster-M specification will be as follows. where CM A K E. CMERGE

and CBI are Cluster-M specification constructs. The Cluster-M Specification graph

of this example is shown in Figure 2.2.

ASSOC_BIN(op, N, A, Z) /* op: operation, Z: return value */

int N, A[];

; lvl = 0,

make_tuple(N, cluster),

{ ; i over 0 .. N-1::

{ ; CMAKE(lvl, [A[i]], c),

cluster[i] = c

}

Binary_Op(cluster, N, op, Z)

}

Binary_Op(X, N, op, B)

int N , n;

{ ? N > 1 -> { ; n := N / 2,

make_tuple(n, Y),

6

{ ; i over 0 .. n-1 ::

{ ; BLMERGE(op, X[2 * X[2 * i 	Z), Y[i]

= Z } },

Binary_Op(Y, n, op, B) },

default -> B = X

}

BLMERGE(op, X1, X2, M)

int e;

{ ; CBI(op, X1, 1, X2, 1, e),

CMERGE(X1, X2, [e], M)

}

2.1.2 Cluster-M Representations

For every architecture, at least one corresponding Cluster-M Representation graph

can be constructed. Cluster-M Representation of an architecture is a multi-level

nested clustering of processors. To construct a Cluster-M Representation, initially,

every processor forms a cluster, then clusters which are completely connected are

merged to form a. new cluster. This is continued until no more merging is possible.

In other words, at level LVL of clustering, there are multiple clusters such that each

cluster contains a collection of clusters from level LVL+ 1 which form a clique. The

highest level consists of only one cluster, if there exists a connecting sequence of

communication channels between any two processors of the system. A Cluster-M

Representation is said to be complete if it contains all the communication channels

and all the processors of the underlying architecture. For example, the Cluster-M

Representation of the n-cube architecture is as follows: At the lowest level n + 1,

7

Figure 2.2 Cluster-M Specification of associative binary operation.

every processor belongs to a. cluster which contains just it self. At level n., every two

processors (clusters) which are connected are merged into the same cluster. At, level

n — 1, clusters of previous level which are connected belong to the same cluster, and

so on until level 1.. The complete Cluster-M Representation of a 3-cube, and of a.

system with arbitrary interconnections are shown in Figures 2.3 and 2.4, respectively.

An algorithm for generating a Cluster-M Representation for any given archi-

tecture has been presented and implemented in [9]. The algorithm has a running

complexity of O(N 3) where N is the number of processors.

Figure 2.3 Cluster-M Representation of n-cube of size 8.

8

Figure 2.4 Cluster-M Representation of an arbitrarily connected system of size 8.

9

CHAPTER 3

CLUSTER—M MAPPING ALGORITHM

3.1 Cluster—M Mapping Algorithm

Given a Specification graph and a Representation graph as the input to the mapping

module, the process continues as explained in this section. The mapping procedure

presented in this thesis has a much lower time complexity than the traditional

mappings since it contains a. graph matching procedure which considers the input

graphs level by level. In this chapter , we first present a set of definitions and prelim-

inaries, Then in 3.2 we present a high level description of the mapping algorithm.

3.1.1 Preliminaries

Definition 3.1

• Let a Specification cluster at level LVL be denoted by

κs[i1,i2,....,iL vL], where iLVL is the cluster number at level LVL and i1 (≤

I ≤

LV

L — 1) is the cluster number of its parent cl uster at level I .

• If a. Specification cluster κs[i1,i2,....,iLVL], can not be furtliet decoinposed into

sub-clusters, i.e. if this cluster is corresponding to a line grain sub-task Tk .

let κs[i1,i2,....

,

iLVL] = T

k

Definition 3.2

• Let a Representation cluster at level

L

VL be denoted by

κs[i1,i2,....

,

iLVL], where 	is the cluster number at level LVL and i1 (1 ≤ 1 ≤ L

VL — 1) is the cluster number of its parent duster at level l.

• If a Representation cluster κs[i1,i2,....,iLVL], can not be further decomposed

into sub-clusters, i.e. if this cluster is corresponding to a. processor p j, let

κs[i1,i2,....,iLVL] = pj

.

10

11

Definition 3.3

• Let the computation requirement of Specification cluste

r κs[i1,i2,.... ,iLVL]

be denoted by

σs[i1,i2,.... ,iLVL].

	

• The computation requirement of any fine grain subtask Tk, σs [Tk], is specified

in Problem Specifications.

* For any cluster κs[i1,i2 ,....

,

iLVL] which contains sub-clusters at a. lower level,

LVL + 1, σs[i1,i2,....

,iLVL] = Σi σs[i1,i2,....,iLVL,i].

Definition 3.4

do Let the computation capacity of Representation clus

ter κs[i1,i2 ,.... ,iLVL]

be denoted by

σR [i1,i2 ,.... ,iLVL]

• The computation capacity of any processor p j ,σR[pj] , is given.

e For any cluster κR[i1,i2 ,.... ,iLVL] which contains sub-clusters at a. lower level

LVL + 1, σs[i1,i2,....

,iLVL] = Σi σs[i1,i2,.... ,iLVL,i].

Definition 3.5

• Let the clustering degree of Specification cluster

κS[i1,i2 ,.... ,iLVL]

 be denoted by σs[i1,i2 ,....

,

iLVL] and defined to be the the

number of levels down to its

deepest sub-cluster κS[i1,i2 ,....

,iLVL ,.... ,iLVL], i.e. σs[i1,i2,.... ,iLVLδ]

= LVLδ - LVL, where for any sub-clusters

κs[i1,i2 ,.... ,iLVL ,.... ,iLVLδ], LVLδ - LVLδ.

• The clustering degree of a fine grain subtask is 0.

12

Definition 3.6

• Let the clustering degree of Representation cluster

κ R[i1,i2,....

,

iLVL] to be denoted by σR[i1,i2,....

,

iLVL], and defined to be the the

number of levels clown to its

be the the

number of levels clown to its

deepest sub-cluster

κR[i1,i2,....,iLVL ,....,iLVLδ], i.e. κR[i1,i2,....,iLVL ,....,iLVLδ1], LVLδ ≤ LVLδ.

• The clustering degree of a, processor is 0.

A cluster of less clustering degree has more communication requirement/capacity

than a. cluster with the same computation requirement/capacity.

According to the above definitions of clusters, we have., the following propo-

sitions.

Proposition 3.1

• Specification clusters κS[ii ,i2 , • • • iLVL,i] and

 κS[i1,i2,....

,

iLVL ,....

,

iLVL,j] have communication need.

• Representation clusters κ R[i1,i2,....

,iLVL ,.... ,iLVL,i]

and κS[i1,i2,....

,

iLVL ,....

,

iLVL,j] have communication links.

Proposition 3.2

•

δS[i1,i2,....,i1] ≥ δS[i1,i2,....,i1 ,....,i1+m] + m.

•

δS[i1,i2,....,i1] ≥ δS[i1,i2,....,i1 ,....,i1+m] + m.

Definition 3.7

• Let S be the total computation requirement of the whole task, i.e. S = ΣiδS[i] .

• Let R be the total computation capacity of the whole system, i.e. R = ΣiδS[i

] .

13

• Let f be the reduction factor which indicates how much Specification compu-

tation is to be mapped onto a Representation processor. f = R/S. Therefore,

if f > 1, then the computation capacity of the system is greater than what

is required to solve the problem as outlined in the Cluster-WE Specification.

Otherwise, 1/f of the computations specified are to he mapped onto each of

the computational units represented.

Definition 3.8

The measure of mapping quality we use can he formulated as:

│ fm│= Fσ * Σi │ f x σs[i] - σR [fm(κs[i])]│+ FS * Σi

g

(δS[i] — δR[f m

(

κs[i])]) (3.1)

where

f m

 is the mapping function for Specification ciir or at top level, and g is a

function defined as g(x) = 1 if x < 0 and g(x) = 0 if x ≥ 0. (Fσ ≥ 0, FS ≥ 0). The best mapping is the one with the

minimum │ f m│.

3.1.2 Mapping Algorithm

Given a. Specification graph to be mapped onto a Representation graph. the mapping

procedure starts at the top layer (level) of the Specification graph. "lo map every

Specification cluster ns[i] at the top level. onto a Representation cluster. we search

for the best matched Representation cluster wit h a. computation capacity closest to

f x σs[i] and a clustering degree equal to or less than σs[i] .

When the. mapping at top level is done, for each pair of the mapped Specifi-

cation and Representation clusters, the same mapping procedure is continued (recu-

sively) at a lower level until the mapping is fine grained to the processor revel. A

high level description of the mapping algorithm is given below.

1. Sort all κR[i1,i2,....,iLVL] in descending order of the value of

σR[i1,i2,....,iLVL].

14

2. Sort κR[i] in descending order of the value of

σs[i].

3. Calculate S, R and f. If f > 1, let f = 1. Calculate the required computation

capacity of κS[i] to he f x σs[i].

4. Find a virtual Representation layer consisting of non-overlapping clusters such

that when the Specification clusters at the current, la.vel are mapped onto these

clusters, the measure of quality │

f

m│ is minimized.

5. For each pair of κS[k] and

κR[i1,i2,....,iLVLk],

= fm

(

κS[k]), if κ R[i1,i2,....,iLVLk]) = p j, then stop. Otherwise

let κS[i2,....,i1] = κS[i1,i2,....,i1], and κ R[i2,....,iLVLk ,....i1] = κ R[i1,i2,....,iLVLk ,....i1] for any existing l, and go to step 2.

The total time complexity of this algorithm is analyzed as follows. For each level

except step 4, the complexity of step 2 to 5 is dominated by the complexity of sorting

which can be done trivially in O(K 2) time sequentially for A. inputs, where A- is the

number of Specification clusters at current level. An optimal solution for step /1 can

have an exponential time complexity. However. since the number of clusters being

mapped every level is usually constant, it leads to an average linear time performance.

The step 2 to 5 may be repeated for J iterations. where J is the number of nested

levels in the Cluster-M Specification graph.

CHAPTER 4

IMPLEMENTATIONS AND EXPERIMENTAL RESULTS

We have implemented the algorithm described above in C language under UNIX

environment. In our implementation, we have used a. heuristic for finding

fm

 in step

4, which has a time complexity of O(KN), where K is the number of Specification

clusters at current level, and the total number of clusters in the Representation graph

is O(N), where N is the number of processors. The total time complexity of this

entire implementation, steps 1 to 5, is O(T 2), where T is max {M, N}. The pseudo

code of the implementation is shown in below.

program mapping;

var Spec: entire problem specification;

Rep: entire system representation;

{Spec and Rep are represented by a. set of

multi-level lists}

begin

sort all the clusters of Spec and Rep at each level;

map(Spec, Rep)

end.

procedure map(Spec, Rep); {recursive mapping

procedure}

var

S: integer; {total computation capacity of Spec}

R: integer; {total computation capacity of Rep}

15

f: real; {reduction factor}

begin

if Spec or Rep null then return

calculate S of Spec;

calculate R of Rep;

f:=R/S;

if f>1 then f:=1;

while (Spec not empty) do

begin

for each Spec cluster i at top level

begin

begin {calculate the required computation

capacity of the Rep cluster to be

mapped onto}

Ri = R — (Σi-1k:=1 Rk

+ f x Σnk:=i+1 σs[k]):

{ This is a more accurate version of

Ri = f xσ

s

[i] }

search for Rep cluster at top level of

computation capacity of Ri ;

if found such Rep cluster / then

begin

delete cluster i from Spec;

delete cluster j from Rep;

map(Spec cluster i, Rep cluster j)

end {if}

end {for}

16

{Now there is no best match between Spec

and Rep clusters at top level}

delete header cluster s1, from Spec list;

initialize Rep cluster h to be empty;

σ R[h] : = 0;

repeat

delete header cluster rh from Rep list;

σR[h] : = σR[h] + σR[r

h]; 	

merge cluster

rh

into cluster h:

until

σR[h] = Rsh ;

if σR[h] = Rsh then

map(Spec cluster sh , Rep cluster h)

else

begin

extra:=

σ R[h] - R sh ;

delete the last cluster Th from

split(cluster rh , extra);

{returns the extra, part and the

required part of cluster

rh

}

merge extra part into Rep;

merge required part into cluster h;

map(Spec cluster sh , Rep cluster h)

end {else}

end {while}

end; {map}

17

function split(cl:cluster, extra:integer);

{to split cl into two parts and return these two

clusters. One with computation capacity of extra.

The other one then has the required capacity.

This function is also a recursive one. }

begin

go to a lower level of cl;

search for a cluster of capacity extra;

if found such a cluster ca then

begin

delete ca from ci;

cluster cb : = cl — a;

return the extra part as ca

and the required part as cb

end

else

begin

initialize a Rep cluster It. to be empty;

σ R[h] : = 0;

repeat

delete header cluster r j, from cl;

σR[h] : =

σR[h] + σR[rh];

merge cluster rh into cluster h ;

until σR[h] ≥ extra;

if σR

[h]

 = extra then

return h as extra part

18

19

and the rest of c/ as required part

else

begin

extrctl := σR[h] — extra;

delete the last cluster rh from h:

split(cluster rh , extra l);

{returns the extra part and the

required part of cluster rh }

merge extra. part into cl ;

merge required part into cluster

h:

return

h

 as extra. part

and the rest of cl as required part.

end {else}

end {else}

end; {split}

As shown in the pseudo code, to implement. the step .1 of the algorithm in

O(KN) time for every Specification cluster, we consider all Representation clusters

and select the best one which minimizes │fm│. We do this for all the Specification

clusters at that level. Furthermore, in calculating │fm│. We only consider matching

the computation capacity by letting Fδ = 0. The results are good even though

Fδ is forced to be 0 due to the effects of chest ring. Clustering has two effects.

First, it partitions the problem graph vertically to indicate group of computations

which have data. dependency. Second, it partitions the problem graph horizontally

to create independent layers such that all the computations in that layer are to be

computed concurrently. As a result of this. the concurrent. computations (Specifi-

cation clusters) are mapped onto concurrent processors (Representation clusters),

20

such that the clustered data. dependent computations are mapped onto group of

processors having efficient communication medium.

In the following, we show the results of our experiments in four categories

according to the structures of the input problem and system graphs.

Regular problem vs. regular system

The output of mapping of an associative binary operation problem onto a cube

architecture, whose Cluster-M specification and representation are illustrated in

Section 2, is shown in Figure 4.1. In this example. both the problem and the system

are regular, i.e. the problem graph and system graph have uniform structures. Our

experiment results show that our algorithm is very efficient in producing close to

optimal solutions for these regular mappings.

Irregular problem vs. regular system

Multiprocessor systems are usually constructed width a. uniform structure. However

problems may have an irregular structure. This may make the mapping process

difficult. Figure 4.2 shows how an irregular problem is mapped moo a 2 x 2 mesh.

The problem contains 6 fine grain subtasks. Subtask a. b and r have computation atioll

requirement of 2, while the computation requirement of subtask d and f are of 3,

and subtask c of 4. The output of our mapping algorithm show a here is actually an

optimal solution.

Regular problem vs. irregular system

Figure 4.3 illustrates the output of our algorithm h in in mapping an associative binary

operation onto an irregular system. The problem contains ti subtasks of computation

requirement 1, while the system has S processors of computation capacity t. except

processor A has capacity 2 (e.g. A is a master processor of the completely connected

21

Figure 4.1 Mapping associative binary operation onto cube.

22

Figure 4.2 Mapping irregular problem onto mesh.

23

subsystem of A, B, C and D). In this particular example, the system provides

more computation capacity than the problem requirement while still maintaining

the problem communication needs. Therefore, processor D is not. used.

Figure 4.3 Mapping binary-associative operation onto an irregular system.

Irregular problem vs. irregular system

Such an example is given in Figure 4.4. In this example, all the fine grain subtasks

have the same computation requirement of 1, and all the processors have the compu-

tation capacity of 1. However, the total Specification computation requirement and

total Representation computation capacity are different. and the communication

patterns of the subtasks and processors are different too.

24

Figure 4.4 An. example for irregular mapping.

CHAPTER 5

CONCLUSION AND FUTURE RESEARCH

In this thesis we have implemented a novel algorithm for mapping fine grain compu-

tations of portable Cluster-M algorithms onto various multiprocessor systems. The

input to the mapping algorithm is a. Cluster-M Specifications graph which corre-

sponds to a. layered problem graph, and a. Cluster-M Representations which corre-

sponds to a. layered system graph. Unlike other mapping approaches, which map

the entire problem graph onto the entire system graph. this algorithm reduces the

complexity of the problem by only mapping the corresponding layers of the two

graphs. We presented our experimental results in using t he implemented algorithm

for mapping various types of problems onto systems. Our implementation produces

fast and sub-optimal results. Furthermore, these results cane be extended for mapping

of application tasks onto heterogeneous suite of processors. Also the proposed

implementation can be improved by parallelizing various components of the original

algorithm.

25

APPENDIX A

SOURCE CODE MAP.0

#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>

int getnum();
struct cluster {

int cluster_num;
int pr_num;
int ser_num;
int req_rep;
int map_flag;
struct cluster *save_ptr;
struct cluster *cl_ptr;
struct cluster 	*sub_cl;
struct cluster 	*par_ptr;

};

struct cluster *rep_start,*spec_start;
struct cluster *insert();
struct cluster *st_cluster ;
struct cluster *start_rep;
struct cluster *start_spec;
struct cluster *spec_save;
struct cluster *start_ins;
struct cluster *insert_clptr();;
struct cluster *map_ptr;

int N,sernum_tag =1,ser_num_tag2,ser_num_tagl;
FILE *fp;

/* This function reads a whole number from the file fp and returns */
/* it. If cflag is one character, ch is taken as part of the 	*/

/* number 	 */

int getnum(cflag,ch)
int cflag,ch;
{

26

27

int i;
char ch_array[10];
int c;
i = 0;
/* Retreiving already read character into ch_array 	*/

if (cflag)
ch_array[i++] = ch;

c = fgetc(fp);
if (c == EOF)
{

return(0);
}

/* Reading the whole number 	 */

while (isdigit((char) c))
{

ch_array[i++] = (char) c;
c=fgetc(fp);

}

ch_array[i] = '\0';
c = atoi(ch_array);
/* Converting characters to number 	 */

return(atoi(ch_array));
}

/* This function creates and inserts in ascending order, the cluster */
/* of size "size" in the recursive pointer structure given 	 */

/* st_cluster 	 */

struct cluster *crt_cl(size)
int size;
{

struct cluster *cl,*cl_prev;
int c;
/* Searching for the position of the cluster 	 */

for (cl=st_cluster, cl_prev=NULL; ((cl) &&
(cl->cluster_num > size)); cl_prev=cl,cl=cl->cl_ptr)

/* Creating the cluster with the given size 	 */

cl= (struct cluster *) malloc(sizeof(struct cluster));
cl->cluster_num = size;
cl->ser_num = sernum_tag++;
cl->map_flag =0;
cl->cl_ptr = (struct cluster *) NULL;

28

cl->sub_cl = (struct cluster *) NULL;
cl->save_ptr = NULL;
/* First cluster in the list st_cluster 	 */

if (st_cluster == (struct cluster *) NULL)
{

st_cluster = cl;
return(cl);

}

/* To be inserted after cl_prev 	 */
if (cl_prev)
{

cl->cl_ptr = cl_prev->cl_ptr;
cl_prev->cl_ptr = cl;

}

else
{

/* To be inserted after st_cluster 	 */

if (st_cluster->cluster_num > cl->cluster_num)
{

cl->cl_ptr= st_cluster->cl_ptr;
st_cluster->cl_ptr = cl;

}

/* To be inserted before st_cluster 	 */

else
{

cl->cl_ptr = st_cluster;
st_cluster = cl;

}

return(cl);
}

/* This function outputs the recursive pointer structure pointed */
/* by start to the output device 	 */

Write_Graph(start)
struct cluster *start;
{

struct cluster *cl;

if (start == NULL)
return;

else

29

/* for all the clusters from start 	 */
for (cl = start ; (cl != NULL) ; cl = cl->cl_ptr)
{

if (cl->sub_cl == NULL)

printf("Processor num : %d \n",cl->pr_num);
else

printf("cluster num 	: %d \n",cl->cluster_num);
}

printf("\n");
if (start->sub_cl == NULL)

{

/* Searching for next parent to start from 	*/

while ((start->par_ptr != NULL)&&

(start->par_ptr->cl_ptr == NULL))

start =start->par_ptr;
/* start has no parent 	 */

if (start->par_ptr == NULL)
Write_Graph(start->cl_ptr);

else
Write_Graph(start->par_ptr->ci_ptr);

}

else
Write_Graph(start->sub_cl);

}

}

/* This function gives the serial number to each cluster in the */
/* recursive pointer structure starting at start 	 */

giv_sernum(start)
struct cluster *start;
{

struct cluster *cl;

if (start == NULL)
return;

else
{

/* Giving serial number to all the clusters 	 */

for (cl = start ; (cl != NULL) ; cl = cl->cl_ptr)
{

cl->ser_num = ser_num_tagl++;
}

/* Invoking recursion if necessary 	 */

if (start->sub_cl == NULL)
{

while ((start->par_ptr != NULL)&&
(start->par_ptr->cl_ptr == NULL))
start =start->par_ptr;

if (start->par_ptr == NULL)
giv_sernum(start->cl_ptr);

else
giv_sernum(start->par_ptr->cl_ptr);

}
else
giv_sernum(start->sub_cl);
}

}

/* This function gets the input representation clusters and */
/* specification clusters from the file fp and forms the 	*/
/* recursive pointer structure used for mapping 	 */

Input()
{

int i;
int c;
struct cluster *cl,*cur_cl;
struct cluster *start;
struct cluster *cur_par;
int open, closed;
int break_flag;
int num,k;
int rep_flag,j,l;
int save;

/* Reading the given input */
rep_flag = 1;
for (j =0; j<2;j++) /* for rep and spec input */
{

num= getnum(0,0);
for (i=0;i<num;i++) /* Number of clusters times */
{

N= getnum(0,0);
st_cluster = start ; /* Initialising the start 	*/

cur_cl = crt_cl(N);

30

cur_cl->par_ptr = NULL;
start = st_cluster;
c = fgetc(fp);
open =0;
closed =0;
break_flag =0;
save = 0;

while ((c != EOF) && (c != '\n'))
{

if (c == '[)') /*Sub cluster is read 	*/
{

open++;
N= getnum(0,0);
save = N;
st_cluster = cur_cl->sub_cl;
cur_par = cur_cl;
cur_cl = crt_cl(N);
cur_cl->par_ptr = cur_par;
cur_par->sub_cl = st_cluster;

}

else {
if(c == '(') /* Processor Number is given*/
{

N= getnum(0,0);
cur_cl->cluster_num = save;
cur_cl->pr_num = N;
cur_cl->sub_cl = NULL;

}

else {
if (c == ')')
{

c = fgetc(fp);
if (isdigit(c))
/* Another sub cluster is read 	*/
{

N = getnum(1,c);
save = N;
st_cluster = cur_par->sub_cl;
cur_cl = crt_cl(N);
cur_cl->par_ptr = cur_par;
cur_par->sub_cl = st_cluster;

}
else
{

31

/* All sub clusters of present
cluster are completely read*/
if(c == ']')
{

do{
cur_par = cur_par->par_ptr;
closed++;
if (open == closed)
{

break_flag = 1;
break;

}
c = fgetc(fp);

}while (c==']');
if (break_flag)
{

/* Complete cluster is read */
c = fgetc(fp);
while ((c!='\n')&&(c!=E0F))

c=fgetc(fp);
break;

}

/* Get next input 	 */

N = getnum(1,c);
save = N;
st_cluster = cur_par->sub_cl;
cur_cl = crt_cl(N);
cur_cl->par_ptr = cur_par;
cur_par->sub_cl = st_cluster;

}
}

}
else {

if(c == '1')
{

do{
cur_par = cur_par->par_ptr;
closed++;
if (open == closed)

break_flag = 1;
break;

}

c = fgetc(fp);

32

}while (c==']') ;

if (break_flag)
break;

N = getnum(1,c);
save = N;

st_cluster = cur_par->sub_cl;
cur_cl = crt_cl(N);;
cur_cl->par_ptr = cur_par;
cur_par->sub_cl = st_cluster;
}

}

}

}
c = fgetc(fp);

}
}

if (rep_flag)

/* Assigning the Representation start 	 */
rep_flag = 0;
start _rep = start;

ser_num_tag1 = sernum_tag;
ser_num_tag2 = sernum_tag;
start = NULL;

}
else

	

/* Assigning the Specification start 	 */
{

rep_flag = 0;
start_spec = start;

}

}

printf("\n\n Representation clusters are : \n");
Write_Graph(start_rep);
printf("\n\nSpecification clusters are : \n");
Writ e_Graph(start_spec);
}

/* This function creates and initializes a given cluster and
/* returns it 	 */

struct cluster *initialise()

struct cluster *cl;

	

/* Creating and Initialising the cluster cl 	 */

33

34

cl= (struct cluster *) malloc(sizeof(struct cluster));
cl->cluster_num = 0;
cl->cl_ptr = (struct cluster *) NULL;

cl->sub_cl = (struct cluster *) NULL;

cl->save_ptr = NULL;

cl->par_ptr = NULL;

return(cl);
}

/* This function returns the deepest sub cluster of the cluster cl */

struct cluster *cheksubcl(cl)
struct cluster *cl;
{

struct cluster *save,*savel;
/* Checks sub clusters of cl and returns the last */
/* subcluster of the cluster cl 	 */

save = cl->sub_cl;
while (save)
{

save1 = save;
save = save->sub_cl;

}

return(savel);
}

/* This function inserts a sub_cluster into par_cl cluster */

struct cluster *insert_sub(par_cl)
struct cluster *par_cl;
{

struct cluster *cl,*savel,*cll,*cl1_prev ;
for (cl = par_cl->sub_cl;cl; cl = cl->cl_ptr)

/* For all the subclusters of par_cl 	*/
{

if (save1=cheksubcl(cl))
cl = savel;

/* If there are no subclusters to par_cl 	*/
if (par_cl->sub_cl == NULL)

{

par_cl->sub_cl = cl;
par_cl->sub_cl->cl_ptr = NULL;

}

else
{

/* Insert cl in the sub clusters of par_cl */
for (cli_prev=NULL,cl1 = par_cl->sub_cl;cl1;

cli_prev = cli,cli=cli->cl_ptr)

if (cli_prev)

cli_prev->cl_ptr = cl;
cli_prev->cl_ptr->cl_ptr = NULL;

}

cl->par_ptr = NULL;

par_cl->cluster_num = par_cl->cluster_num+
cl->cluster_num;

}

/* This function copies the sub clusters of pari into the 	*/
/* sub clusters of par2 and returns par2 	 */

struct cluster *copy_cl(par1,par2)
struct cluster *par1,*par2;
{

struct cluster *cl,*cli,*cli_prev;

/* For all the subclusters of parti

for (cl = pari->sub_cl;ci;cl = cl->cl_ptr)
{

/* Insert into par2 	 */

if (par2->sub_cl == NULL)
{

par2->sub_cl = cl;
par2->sub_cl->cl_ptr = NULL;

}

else
{

for (cli_prev = NULL, cli = par2->sub_cl;

cli;cli_prev=cli,cli=cli->cl_ptr)

cli_prev->cl_ptr = cl;

cli_prev->cl_ptr->cl_ptr = NULL;

35

36

}

cl->par_ptr = par2;
par2->cluster_num = par2->cluster_num + cl->cluster_num;

}

return(par2);
}

/* This function splits the cluster spt_cluster into two 	*/
/* sub clusters of size num and total size_num and returns */
/* them to the calling functions 	 */

struct cluster *split(spt_cluster,num)
int num;
struct cluster *spt_cluster;
{

struct cluster *best_match();
struct cluster *remove();
int sum_rep,diff,req;
struct cluster *cl_prev1,*save1,*rep_save,*cl_prev,*cl;
struct cluster *sp_cl,*sp_cl_prev,*cli_prev,*cli;
struct cluster *save,*best_found,*map_save,*extra_save;
/* Creating and initialising the rep_save and map_save */
rep_save = initialise();
map_save = initialise();
extra_save = initialise();

/* Checking for the best match in sub clusters of the */
/* spt_cluster for the size of num 	 */

if (best_found = best_match(spt_cluster,num))
{

/* Removing best size subcluster from spt_cluster */

spt_cluster->sub_cl =
remove(best_found->ser_num,spt_cluster->sub_cl);

spt_cluster->cluster_num = spt_cluster->cluster_num-
best_found->cluster_num;

if (spt_cluster->cluster_num == 1)
{

if (savelcheksubcl(spt_cluster))
spt_cluster = savei;

}

/* Inserting extra size of spt_cluster into extra_save*/

extra_save->sub_cl = spt_cluster;
spt_cluster->par_ptr = extra_save;

extra_ save->cluster_num = extra_save->cluster_num +

spt_cluster->cluster_num;

/* Inserting best size subcluster into map_save 	*/

map_save->sub_cl = best_found;

best_found->par_ptr = map_save;

map_save->cluster_num = map_save->cluster_num +

best_found->cluster_num;

/* Linking mapping part and extra part together 	*/

map_save->save_ptr = extra_save;

return(map_save);
}

else
{

/* If subcluster size of spt_cluster is greater 	*/

/* than required size num 	 */

if (spt_cluster->sub_cl->cluster_num > num)
{

/* Put all the subclusters other than first */

/* first subcluster in extra_save 	 */

for (cl = spt_cluster->sub_cl->cl_ptr;cl;

cl = cl->cl_ptr)

if (save1 = cheksubcl(cl))

cl = savei;
if (extra_save->sub_cl == NULL)
{

extra_save->sub_cl = cl;

extra_save->sub_cl->cl_ptr = NULL;

}

else
{

for (cli = extra_save->sub_cl;cli;

cl1=cl1->cl_ptr)

37

cli->cl_ptr = cl;
cli->cl_ptr->cl_ptr = NULL;
}

extra_save->clusternum =

extra_save->cluster_num+cl->cluster_num;
cl->par_ptr = extra_save;
}

/* Trying to split the first subcluster of 	*/
/* the spt_cluster 	 */

if (rep_save = split(spt_cluster->sub_cl ,num))
{

if (rep_save->cluster_num == num)
{

/* copying the extra_save part returned */

/* into extra_save 	 */

extra_save =

copy_cl (rep_save->save_ptr ,extra_save) ;

/* Copying required size part into 	*/

/* 	 map_save 	 */

map_save = copy_cl (rep_save,map_save) ;

/* Linking extra and required together */

map_save->save_ptr = extra_save;

ret urn (map_ save) ;
}

else
{

printf ("can't split acurately\n") ;

exit (1) ;
}

}

}

else
{

/* If first subcluster size is less than the 	*/

/* required size 	 */

38

sum_rep = 0;

/* Create sum_rep cluster and initialise it */

rep_save = initialise();

/* Accumulate subcluster until their total 	*/
/* size is greater than or equal to num 	*/

/* into rep_save cluster 	 */

for (cl_prev = NULL,cl=spt_cluster->sub_cl;
((cl) && (sum_rep < num));
cl_prev = cl,cl=cl->cl_ptr)

{

sum_rep = sum_rep+cl->cluster_num;
if (rep_save->sub_cl)

for (sp_cl = rep_save->sub_cl,
sp_cl_prev = NULL;sp_cl;

sp_cl_prev = sp_cl,
sp_cl=sp_cl->save_ptr)

sp_cl_prev->save_ptr = cl;
sp_ci_prev->save_ptr->save_ptr = NULL;

}

eise
{

rep_save->sub_cl = cl;
rep_save->sub_cl->save_ptr = NULL;

}

cl->par_ptr = rep_save;

spt_cluster->sub_cl =

remove(cl->ser_num,spt_cluster->sub_cl);
}

for (cl=rep_save->sub_cl;cl;cl=cl->cl_ptr)

cl->cl_ptr = cl->save_ptr;
rep_save->cluster_num = sum_rep;

if (sum_rep == num)

/* If the rep_save cluster is of required size*/

{

39

/* Link extra and required parts and */

/* return 	 */

map_save = rep_save;

extra_save = spt_cluster;

map_save->save_ptr = extra_save;
return(map_save);

}

else
{

/* If rep_save is not of exact size 	 */

diff = sum_rep - num;

if (diff <0)

return;

/* Find the last subcluster of rep_save 	*/

for (cl_prev1=NULL,cl_prev=NULL,
cl=rep_save->sub_cl;cl;cl_prev1 =

cl_prev,cl_prev=cl,cl=cl->save_ptr)

/* Delete the last cluster from rep_save */

if (cl_prev1)

cl_prev1->save_ptr = NULL;

else
rep_save->sub_cl = NULL;

/*save contains the last cluster of rep_save*/

save = cl_prev;

/* Calculate the required size for num 	*/

req = save->cluster_num - diff;

/* Updating the rep_save as to the removal */

/* of save 	 */

rep_save->cluster_num =

rep_save->cluster_num-save->cluster_num;

40

41

/* Call split with save for new required 	*/

/* 	 size 	 */

map_save = split(save,req);

/* Take the results of split and merge them*/

extra_save = map_save->save_ptr;

rep_save = copy_cl(map_save,rep_save);
map_save = rep_save;

map_save->save_ptr = extra_save;

return(map_save);
}

}
}

}

/* This function works for cluster size of "size" in sub clusters */
/* of start cluster and returns it if found 	 */

struct cluster *best_match(start,size)

struct cluster *start;

int size;
{

struct cluster *cl;

/* Searching for the given size in subclusters of start 	*/

for (cl = start->sub_cl;cl;cl = cl->cl_ptr)
{

if (cl->cluster_num == size)
return(cl);

}
return(0);

}

/* This function removes the cluster with serial number 	*/

/* sernum from the cluster pointed by start 	 */

struct cluster *remove(sernum,start)

int sernum;

struct cluster *start;
{

struct cluster *sp_cl,*sp_cl_prev;

/* Searching for the cluster of sernum to be removed 	*/

for (sp_cl=start,sp_cl_prev=NULL;sp_cl;

sp_cl_prev = sp_cl, sp_cl=sp_cl->cl_ptr)
if (sp_cl->ser_num==sernum)
{

/* Removing the cluster with given sernum from start */

if (sp_cl_prev)

sp_cl_prev->cl_ptr = sp_cl->cl_ptr;

else

start= sp_cl->cl_ptr;
break;

}

return(start);
}

/* This function maps the specification cluster pointed by */

/* spec to the representation cluster pointed by rep 	*/

map(rep,spec)

struct cluster *rep;
struct cluster *spec;
{

struct cluster *sp,*sp_prev,*cl,*cur_cl,*cl_prev,*cl_found;

struct cluster *cl_prev1,*search();

struct cluster *spl,*sp_cl,*sp_cl_prev;

struct cluster *save,*cl1,*cl1_prev,*sp1_prev,*rep_save;

struct cluster *extra_save,*best_found;

int inttemp,req,diff,flag,sum_rep;

float fldiff,R,S,f,sum_req_rep,sum;

/* Condition for breaking the Recursion 	 */

if ((spec== NULL) II (rep== NULL))
{

start_rep = rep;

start_spec = spec;

return;
}

42

/* Calculating the total Representation size 	 */

R=0.0;
for (cl=rep;cl;cl=cl->cl_ptr)

R = R + cl->cluster_num;

/* Calculating the total Specification size 	 */

S=0.0;

for (cl=spec;cl;cl=cl->cl_ptr)
S = S + cl->cluster_num;

/* Calculating f value 	 */

if ((S) && (R))
f = R/S;

else
{

printf("Check R and S values \n");

exit(i);

}

/*If there are more Processors than the Specification requires*/

if (f >1)
f = 1.0;

ser_num_tag1 = ser_num_tag2;

/* Give serial number to all the clusters for identifying */

giv_sernum(spec);

/* For all the clusters in the Specification 	 */

for (cur_cl = spec; cur_c1;cur_cl = cur_cl->cl_ptr)
{

if (f==1.0)
cur_cl->req_rep = cur_cl->cluster_num;

else
{

sum = 0.0; sum_req_rep = 0.0;

/* Finding the required size of Representation to be*/

/* searched for the specification mapping */

43

for (cl = spec;cl;cl=cl->cl_ptr)
{

if (cl->ser_num < cur_cl->ser_num)
sum_req_rep = sum_req_rep + cl->req_rep;

else {
if (cl->ser_num > cur_cl->ser_num)
{

sum = sum + cl->cluster_num;
}

}

}

if (f)
sum = sum * f;

sum = sum + sum_req_rep;
sum = R - sum;
inttemp = sum;
fldiff = sum - inttemp;
if (fldiff >= 0.4)

sum = inttemp+i;
else

sum = inttemp;
if (cur_cl->req_rep == 0)

cur_cl->req_rep = 	sum;
}
}

/* For all the specification clusters 	 */

for (sp1 = spec;spl; sp1 = sp1->c1_ptr)
{

/* For al1 the specification clusters 	 */

for (sp = spec;sp; sp = sp->cl_ptr)
{

/* Searching for the cluster size equal to
required size of specification 	 */

if (cl_found = search(rep,sp->req_rep))
{

/* Removing sp from spec 	 */

spec = remove(sp->ser_num,spec);
sp1 = spec;

flag = 1;

44

rep = remove(ci_found->ser_num,rep);

/* Invoking recursion if necessary 	*/

if (cl_found->sub_c1==NULL)
{

if (sp->sub_cl==NULL)
{

/* if there are no subclusters*/
/* to both sp and cl_found 	*/

printf(ld mapped to 74 \n",sp->pr_num,
cl_found->pr_num);

if ((!rep)II (!spec))
{

start_rep = rep;
start_spec = spec;
return;

}
}

else
{

/* If Processor is reached and */
/* Specification has subclusters*/

printf("%d cluster is mapped to pr %d\n",

sp ->cluster_num,cl_found->pr_num);
printf("The cluster matched is \n");

Write_Graph(sp);
if ((!rep)II (!spec))
{

start_rep = rep;
start_spec = spec;

return;
}

}

}
else
{

if (cl_prev)
{

if (sp->sub_cl !=NULL)
{

45

46

/* If both have subclusters 	*/

if (sp->cl_ptr)

{ /*If sp1's cluster pointer has required
/* rep zero 	 */

if (sp->cl_ptr->req_rep == 0)
{

for(cl_prev = NULL,cl = cl_found;cl;

cl_prev = cl,cl = cl->sub_cl)

printf("%d cluster is mapped to pr %d\n",

sp->cl_ptr->cluster_num,cl_prev->pr_num);

printf("The cluster matched is \n");
Write_Graph(sp->cl_ptr);

spec = remove(sp->cl_ptr->ser_num,spec);
}

}

map(cl_found->sub_cl,sp->sub_cl);
if ((rep == NULL) II (spec == NULL))
{

start_rep = rep;

start_spec = spec;

return;
}

}

else
{

/* sp has no subclusters but */

/* cl_found has subclusters */

printf("%d mapped to %d\n",sp->pr_num,

cl_found->sub_cl->pr_num);

if Wrep)II (!spec))
{

start_rep = rep;

start_spec = spec;

return;

}
}

}

47

}

}

}

if ((rep==NULL) II (spec==NULL))
return;

/* If first cluster in Representation has greater */

/* size than required size of present sp 	 */

if (rep->cluster_num > sp1->req_rep)
{

/* If Rep cannot be spilt 	 */

if (rep->sub_cl == NULL)

if (sp1->cl_ptr)
{

if (spi->cl_ptr->req->rep_ == 0)
{

for(cl_prev = NULL,cl = rep;cl;
cl_prev = cl,cl = cl->sub_cl)

printf("%d cluster is mapped to pr %d\n",

spl->cl_ptr->cluster_num,cl_prev->pr_num);
printf("The cluster matched is \n");

Write_Graph(sp1->cl_ptr);

spec = remove(sp1->cl_ptr->ser_num,spec);
}

}

printf("%d cluster is mapped to pr %d\n",

spl->cluster_num,rep->pr_num);

printf("The cluster matched is \n");

Write_Graph(spl);

/* Removing sp1 from spec 	 */

spec = remove(spl->ser_num,spec);

/* Reducing the size of rep 	 */

rep->cluster_num = rep->cluster_num -
spl->cluster_num;

map_ptr = rep;

rep = rep->cl_ptr;

/*Insertng map_ptr into rep in right position*/

start_ins = rep;

start_ins = insert_clptr(map_ptr);

rep = start_ins;
}

else
{

/* First cluster in Rep has to be split 	*/

map_ptr = rep;

rep = rep->cl_ptr;

for (cl = map_ptr->sub_cl;cl;cl=cl->cl_ptr)

cl->save_ptr = cl->cl_ptr;

save=NULL;

/* Searching for the required size in the 	*/

/* subclusters of first cluster in Rep 	*/

for (cl1 = map_ptr->sub_cl;cl1;

cll=cl1->save_ptr)
{

if (cl1->cluster_num==sp1->req_rep)
{

if (save == NULL)

save = c11;

else
{

start_ins = rep;

start_ins = insert_clptr(cl1);

rep = start_ins;

}
}

else
{

cl1->cl_ptr = NULL;

start_ins = rep;

start_ins = insert_clptr(cl1);

rep = start_ins;
}

}

48

49

/* If required size is in the subclusters 	*/

if (save!=NULL)
{

spec = remove(sp1->ser_num,spec);

save->cl_ptr = NULL;

if (sp1->cl_ptr)
{

/* If sp1's cluster pointer has required */

/* rep zero 	 */

if (sp1->cl_ptr->req_rep == 0)
{

for(cl_prev = NULL,cl = save;cl;
cl_prev = cl,cl = cl->sub_cl)

printf("%d cluster is mapped to pr %d\n",
sp1->cl_ptr->cluster_num , cl_prev->pr_num) ;

printf("The cluster matched is \n");

Write_Graph(sp1->cl_ptr);
spec = remove (sp1->cl_ptr

->
ser_num , spec) ;

}
}

map(save,sp1);
if ((rep == NULL) II (spec == NULL))
{

start_rep = rep;
start_spec = spec;

return;
}

}

}
}

else
{

/* If first cluster in Rep is less than sp1 	*/

sum_rep = 0;
rep_save = initialise();

/* Accumulate clusters in Representation 	*/

/* until their size is greater than or equal*/

/* to sp1 size 	 */

for (cl_prev = NULL,cl=rep;((cl) && (sum_rep <

sp1->req_rep)); cl_prev = cl,cl=cl->cl_ptr)

{
sum_rep = sum_rep+cl->cluster_num;
if (rep_save->sub_cl)
{

for (sp_cl = rep_save->sub_cl,
sp_c1_prev = NULL;sp_cl;

sp_cl_prev = sp_cl,

sp_cl=sp_cl->save_ptr)

sp_cl_prev->save_ptr = cl;

sp_cl_prev->save_ptr->save_ptr = NULL;
}

else
{

/* Accumulate into rep_save 	*/

rep_save->sub_cl = cl;

rep_save->sub_cl->save_ptr = NULL;

}
rep = remove(cl->ser_num,rep);

}

rep_save->cluster_num = sum_rep;

/* If exact match between rep_save and sp1 */

if (sum_rep == sp1->req_rep)

for (cl=rep_save->sub_cl;cl;cl=cl->save_ptr)

cl->par_ptr = rep_save;

cl->cl_ptr = cl->save_ptr;
}

spec = remove(sp1->ser_num,spec);

rep_save->cl_ptr = NULL;

if (spl->cl_ptr)

/* If sp1's cluster pointer has required */

/* rep zero 	 */

if (sp1->c1_ptr->req_rep == 0)
{

for(cl_prev = NULL,cl = rep_save;cl;
cl_prev = cl,cl = cl->sub_cl)

50

51

;

printf("%d cluster is mapped to pr %d\n",

sp1->c1_ptr->cluster_num , cl_prev->pr_num) ;

printf("The cluster matched is \n");

Write_Graph(sp1->c1_ptr);

spec = remove(spl->c1_ptr->ser_num,spec);
}

}
map(rep_save,spl);

if ((!rep) II (!spec))
{

start_rep = rep;

start_spec = spec;

return;

}

}
else
{

/* If sum_rep is greater than sp1 	 */

diff = sum_rep - sp1->req_rep;

if (diff <0)

return;

/* Remove last cluster in rep_save 	*/

for (cl_prev1NULL,cl_prev=NULL,

cl=rep_save- >sub_cl;cl;cl_prevl =

cl_prev,cl_prev=cl,cl=cl->save_ptr)

; if (cl_prev1)
c1_prev1->save_ptr = NULL;

else
rep_save->sub_cl = NULL;

/* Last cluster is in save 	 */

save = cl_prev;

req = save->cluster_num - diff;

rep_save->cluster_num =
rep_save->cluster_num-save->cluster_num;

for (cl=rep_save->sub_cl;cl;cl=cl->save_ptr)

cl->cl_ptr = cl->save_ptr;
/* If best match is found in sub clusters*/

52

/* of save with size req 	 */

if (best_found = best_match(save,req))
{

/* remove the best found from save */
save->subcl =

remove(best_found->ser_num,

save->sub_cl);

save->cluster_num = save->cluster_num

-best_found->cluster_num;

best_found->cl_ptr = NULL;

/* Inserting best found into rep_save */

for (cl_prev = NULL, cl =

rep_save->sub_cl;cl;cl_prev = cl,

cl= cl->cl_ptr)

if (cl_prev)

{

cl_prev->cl_ptr = best_found;

cl_prev->cl_ptr->cl_ptr =NULL;

}

else

{

rep_save->sub_cl = best_found;

rep_save->sub_cl->cl_ptr = NULL;

}

best_found->par_ptr = rep_save;

rep_save->cluster_num =

rep_save->cluster_num +

best_found->cluster_num;

rep_save->cl_ptr = NULL;

save->cl_ptr = NULL;

save->par_ptr = NULL;

spec = remove(sp1->ser_num,spec);

/* Inserting the remaining part of */
/* save into rep 	 */

start_ins = rep;

start_ins = insert_clptr(save);

rep = start_ins ;

rep_save->cl_ptr = NULL;

if(sp1->cl_ptr)
{

/* If sp1's cluster pointer has required */
/* rep zero 	 */

if (sp1->c1_ptr->req_rep == 0)

53

{

for(cl_prev = NULL,cl = rep_save;cl;

cl_prev = cl,cl = cl->sub_cl)

;
printf("%d cluster is mapped to pr %d\n",

sp1->c1_ptr->cluster_num,cl_prev->pr_num);

printf("The cluster matched is \n");

Write_Graph(sp1->cl_ptr);

spec = remove(sp1->cl_ptr->ser_num,spec);
}
}

map(rep_save,sp1): if ((rep== NULL) II (spec == NULL)) {

start_rep = rep;

start_spec = spec;
return;

}

}
else
{

/* Spilting the last cluster of */

/* rep_save for size of rep 	*/

if (map_ptr = split(save,req))
{

/* Inserting extra part into rep */

start_ins = rep;

start_ins = insert_clptr(

map_ptr->save_ptr);

rep = start_ins;

map_ptr->c1_ptr = NULL;
/* Inserting cluster of size req */

/* into rep_save 	 */

for (cl_prev = NULL,cl =

rep_save->sub_cl;cl;
cl_prev = cl, cl= cl->cl_ptr)

if (cl_prev)
cl_prev->cl_ptr = map_ptr;

else
rep_save->sub_cl = map_ptr;

map_ptr->par_ptr = rep_save;

rep_save->cluster_num =

rep_save->cluster_num +

54

map_ptr->cluster_num;
/* mapping sp1 and rep_save */

spec = remove(sp1->ser_num,spec);
if(sp1->cl_ptr)
{

/* If sp1's cluster pointer has required */
/* rep zero 	 */

if (sp1->cl_ptr->req_rep == 0)

for(cl_prev = NULL,cl = rep_save;cl;
cl_prev = cl,cl = cl->sub_cl)

printf("%d cluster is mapped to pr %d\n",
s

pi->cl_ptr->cluster_num,cl_prev->pr_num); printf("The cluster matched is \n");
Write_Graph(sp1->cl_ptr);
spec = remove(sp1->cl_ptr->ser_num,spec);

}

}

map(rep_save,spl);

if ((!rep) l l (!spec))

start_rep = rep;
start_spec = spec;
return;

}
else

printf("spliting not done properly\n");

}
}

}
}

}

if ((rep) /a (spec))

if (spec->cl_ptr)

/* If sp1's cluster pointer has required */
/* rep zero 	 */

if (spec->cl_ptr->req_rep == 0) {

for(cl_prev = NULL,cl = rep;cl;

55

cl_prev = cl,cl = cl->sub_cl)

printf("%d cluster is mapped to pr %d\n",
spec->cl_ptr->cluster_num,cl_prev->pr_num);

printf("The cluster matched is \n");
Write_Graph(spec->cl_ptr);
spec = remove(spec->cl_ptr->ser_num,spec);

}

}

map(rep,spec);

}
if ((!rep)I I (!spec))
{

start_rep = rep;
start_spec = spec;
return;

}

/* Assigning the values of start_rep and start_spec 	*/

}

/* This function inserts the cluster cl_ins into the clusters 	*/

/* pointed by start_ins in the ascending order using save_ptr 	*/

struct cluster *insert(cl_ins)
struct cluster *cl_ins;
{

struct cluster *cl_prev,*cl;
/* Searching for the appropriate position in start_ins 	*/

for (cl_prev = NULL,cl=start_ins;((cl)
&& (cl->cluster_num>=cl_ins->cluster_num));

cl_prev = cl,cl = cl->save_ptr)

/* Starting cluster in the list start_ins 	 */

if (start_ins == (struct cluster *) NULL)
{

start_ins = cl_ins;
start_ins->par_ptr = NULL;
start_ins->save_ptr = NULL;
return(start_ins);

}

else
{

/* To be inserted after cl_prev 	 */

56

if (cl_prev)
{

cl_prev->save_ptr = cl_ins;

cl_ins->save_ptr = cl;
cl_ins->par_ptr = NULL;

}

else
{

/* To be inserted after start_ins 	 */

if (start_ins->cluster->num > cl->cluster_num)
{

cl_ins->save_ptr= (struct cluster *) start_ins->save_ptr;

start_ins->save_ptr = cl_ins;

cl_ins->par_ptr = NULL;

}
/* To be inserted before start_ins 	 */

else

cl_ins->save_ptr = start_ins;
start_ins = cl_ins;
start_ins->par_ptr = NULL;
cl_ins->par_ptr = NULL;

}
}

}

return(start_ins);
}

/* This function inserts the cluster cl_ins into the clusters 	*/

/* pointed by start_ins in the ascending order using cl_ptr 	*/

struct cluster *insert_clptr(cl_ins)

struct cluster *cl_ins;

struct cluster *cl_prev,*cl;
/* Searching for the position in the start_ins for cl_ins */

for (cl_prev = NULL,cl=start_ins;((cl)
&& (cl->cluster_num>=cl_ins->cluster_num));

cl_prev = cl,cl = cl->cl_ptr)

/* cl_ins is the first cluster in start_ins list 	 */

if (start_ins == (struct cluster *) NULL)

{

start_ins = cl_ins;
start_ins->par_ptr = NULL;
start_ins->cl_ptr = NULL;
return(start_ins);

}

else
{

/* To be inserted after cl_prev 	 */
if (cl_prev)
{

cl_prev->cl_ptr = cl_ins;
cl_ins->cl_ptr = cl;
cl_ins->par_ptr = NULL;

}

else

{

/* To be inserted after start_ins 	 */
if (start_ins->cluster_num > cl->cluster_num)
{

cl_ins->cl_ptr= (struct cluster *) start_ins->cl_ptr;
start_ins->cl_ptr = cl_ins;
cl_ins->par_ptr = NULL;

}

else
/* To be inserted before start_ins 	 */
{

cl_ins->cl_ptr = start_ins;
start_ins = cl_ins;
start_ins->par_ptr = NULL;
cl_ins->par_ptr = NULL;

}

}

}
return(start_ins);

}
/* This function searches for the cluster of size "size" in the */
/* clusters pointed by start and returns it 	 */

struct cluster *search(start,size)
int size;
struct cluster *start;
{

57

struct cluster *v;

/* Searching the cluster with its size equal to 'size' 	*/
for (v = start; ((v) && (v->cluster_num != size));

v = v->cl_ptr)

return(v);
}

/* This function opens the input file, calls Input() to read */
/* the input from the file and calls the map() function to 	*/
/* map the clusters and then outputs the result by calling */
/* the Write_Graph() function 	 */

main(argc,argv)
int argc;
char *argv[];

{

struct cluster *v;
int size;
if (argc != 2)
{

printf("\n error : Input file expected.. \n");
exit(1);

}
/* 	Trying to open the Input File 	 */

if ((fp=fopen(*(argv+1),"r")) == NULL)
{

printf("\nCan't open Input File.. \n");
exit(1);

}

/* Reading the input */
Input();

/* Mapping */
map (start_rep,start_spec) ;

/* Outputs the result of mapping */
printf("After Mapping\n");
printf("\nRepresentation Clusters are : \n\n");
Write_Graph(start_rep);
printf("\nSpecification Clusters are : \n\n");
Write_Graph(start_spec);

}

58

REFERENCES

[1] G. Agha, Actors: A Model of Concurrent Computations in. Distributed Systems,

MIT Press, Cambridge, MA, 1986.

[2] F. Berman, and B. Stramm, "Prep-F: Evolution and Overview," Technical
Report CS89-158, Department of Computer Science, University of California,

San Diego, CA, 1987.

[3] S. H. Bokhari, "On the Mapping Problem," IEEE Transactions on Computers,

vol. C-30, no. 3, pp. 207-214, March 1981.

[4] S. H. Bokhari, Assignment Problems in Parallel and Distributed Computing,
Kluwer Academic Publisher, 1990.

[5] K. Efe, "Heuristic Models of Task Assignment Scheduling in Distributed
Systems," IEEE Transactions on Computer, vol. 15, no. 6, pp. 50-56, 1982.

[6] H. El-Rewini, and T. G. Lewis, "Scheduling Parallel Program Tasks onto
Arbitrary Target Machines," Journal of Parallel and Distributed Computing,
vol. 9, pp. 138-153, June 1990.

[7] M. Esha.ghian, "Cluster-M Parallel Programming Model," In Proceedings of 6th
International Parallel Processing Symposium; Beverly Hills, California., March
1992.

[8] 114. Eshaghian. and M. Shaaban, "A Cluster-M Based Mapping Methodology,"
Proceedings of 7th International Parallel Processing Symposium, Newport
Beach, California, April 1993.

[9] M. Eshaghian, and M. Shaa.ban, "Cluster-M Parallel Programming Paradigm,"
International Journal of High Speed Computing, Accepted for publication.

[10] I. Foster, and S. Tuecke, "Parallel Programming with PCN," Technical Report,
Argonne National Laboratory, University of Chicago, January 1993.

[11] A. Gerasoulis, S. Venugopal, and T. Yang, "Clustering Task Graphs for Message
Passing Architectures," In Proceedings of nth ACM International Conference on.
Supercomputing, Amsterdam, Netherlands, vol.. ICS 90, pp 447-456, June 1990.

[12] S. Lee, and J. Aggarwal, "A Mapping Strategy for Parallel. Processing," IEEE
Transactions on Computers, vol. C-36, pp. 433-442, April 1989.

[13] V. M. Lo, S. Rajopadhye, S. Gupta., D. Keldsen, M. A. Mohamed, and
J. A. Tel.le, "Oregami: Software Tools for Mapping Parallel Computations to
Parallel Architectures," In Proceedings of International Conference on Parallel
Processing, Pheasant Run Resort, Du Page County, St.. Charles, Illinois, pp. 88-
92, August 1990.

59

60

REFERENCES
(Continued)

[14] R. Ponnusamy, N. Mansour, A. Choudhary, and G. C. Fox, "Mapping Realistic
Data Sets on Parallel Computers," In Proceedings of 7th International Parallel
Processing Symposium, Newport Beach, CA, pp. 123-128, April 1993.

[15] H. S. Stone, "Multiprocessor Scheduling with the Aid of Network Flow
Algorithms," IEEE Transactions on Software Engineering, vol. SE-3, no. 1,
pp. 85-93, January 1977.

[16] J. Yang, L. Bic, and A. Nicolan, "A Mapping Strategy for MIMD Computers,"
In Proceedings of International Conference on. Parallel Processing, Pheasant Run
Resort, Du Page County, St. Charles, Illinois, August 1991.

[17] T. Yang, and A. Gerasoulis, "A Parallel Programming Tool for Scheduling on
Distributed Memory Multiprocessors," In Proceedings of IEEE Scalable High
Performance Computing Conference, April 1992.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents
	Chapter 1: Introduction and Background
	Chapter 2: Cluster-M Model
	Chapter 3: Cluster-M Mapping Algorithm
	Chapter 4: Implementations and Experimental Results
	Chapter 5: Conclusion and Future Research
	Appendix A: Source Code Map.C
	References

	List of Figures

