Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT

THE EFFECTS OF DIFFERENT TYPES OF NOISE ON HUMAN HEART RATE

by

Jose R. Fabregas

In an industrial environment, chronic noise exposure is assumed to affect human heart rate. If this is true, people who are more sensitive to noise will run a higher risk of incurring cardiovascular diseases.

Sixteen healthy experimental subjects, all with normal hearing, eight males and eight females, were exposed to five different types of pink and white noise at 60, 70, 80, and 85 dBA in order to determine if any relationship exists between the heart rate and sex. Each individual was exposed for a maximum of thirty seconds for each type and level of noise. Audiometric tests were given to subjects in order to measure their hearing sensitivity (threshold) before and after the experiment.

This study provides valuable information towards understanding if autonomic responses are higher in people who consider themselves sensitive to noise, and in determining if sex plays a role on any effects noise may exert on heart rate.

THE EFFECTS OF DIFFERENT TYPES OF NOISE ON HUMAN HEART RATE

by Jose R. Fabregas

A Thesis
Submitted to the Faculty of
New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Occupational Safety and Health Engineering

Department of Mechanical and Industrial Engineering

May 1994

APPROVAL PAGE

THE EFFECTS OF DIFFERENT TYPES OF NOISE ON HUMAN HEART RATE

Jose R. Fabregas

Dr. Howard Gage, Thesis Advisor Associate Professor of Industrial Engineering and Director of the Occupational Safety and Health Program, NJIT	Date	
Dr. Min Yong Park, Committee Member Assistant Professor of Industrial Engineering, NJIT	Date	
Dr. Layek Abdel-Malek, Committee Member Professor of Industrial and Management Engineering and Associate Chairperson of Industrial Engineering	' Date	f

BIOGRAPHICAL SKETCH

Author: Jose R. Fabregas

Degree: Master of Science in Occupational Safety and Health Engineering

Date: May 1994

Undergraduate and Graduate Education:

- Master of Science in Occupational Safety and Health Engineering, New Jersey Institute of Technology, Newark, NJ, 1994
- Bachelor of Science in Industrial Engineering, Polytechnic University of Puerto Rico, Hato Rey, PR, 1989

Major: Occupational Safety and Health Engineering

This thesis is dedicated to my wife Eilyn and my parents, Jose A. and Hilda T.

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to his thesis advisors, Dr. Min Yong-Park and Dr. Howard Gage for their guidance, friendship, patience, and moral support throughout this research.

Special thanks to Dr. Layek Abdel-Malek for serving as a member of the committee.

TABLE OF CONTENTS

Chapter	Page
1 INTRODUCTION	1
2 THEORETICAL APPROACH	3
2.1 Epidemiological Studies	3
2.2 Laboratory Studies in People.	3
2.2.1 Earlier Studies on Humans	3
2.2.2 Later Human Studies	4
2.2.3 Recent Studies on Humans	9
2.3 Animal Studies	12
2.3.1 Experimental Subjects: Rodents	12
2.3.2 Experimental Subjects: Primates	12
2.4 Industrial Studies	14
METHODOLOGY OF THE EXPERIMENT	15
3.1 Research Objectives	15
3.2 Selection of Candidates	15
3.3 Types of Noise and Sound Pressure Levels	17
3.4 Testing Facilities	17
3.5 Instrumentation	19
3.6 Software	19

TABLE OF CONTENTS (Continued)

Chapter	Page
3.7 Experimental Design.	19
3.7.1 Independent Variables	21
3.7.2 Dependent Variables	21
3.8 Experimental Procedure	21
3.9 Data Analysis	22
4 STATISTICAL RESULTS.	23
5 CONCLUSIONS.	25
APPENDIX A Description of the Experimental Subjects	27
APPENDIX B Participant's Informed Consent Form.	28
APPENDIX C Experimental Protocol	31
APPENDIX D Participant's Response Form.	33
APPENDIX E Experimental Data	34
APPENDIX F Analysis of Variance for the Experimental Data	74
REFERENCES	76

LIST OF TABLES

	able	
	Maximum Intensity, Spectral Frequencies, and Time Duration of the Five Types of Noises.	S
2	Experimental Design Matrix	21
3	Five Types of Noise Used for Experimentation.	22
4	Class Level Information From ANOVA Analysis.	23

LIST OF FIGURES

)sorthood	Figure	
7	Differences Between the Percentages of Physiological Problems of Those Who Work in Two Different Levels of Noise	5
2	Pre-Experimental Questionnaire	16
3	Anechoic Chamber (New Jersey Institute of Technology)	facing 17
4	IAC Booth (New Jersey Institute of Technology)	18
5	UNIC CIC Heartwatch Model 8799	facing19
6	Equipment Used to Reproduce Noise	20
7	A Grayson Stadler Audiometer Model #1703B	facing 21

CHAPTER 1

INTRODUCTION

Noise has often been referred to as an unwanted by-product of urbanization and industrialization and, as such, noise is a pervasive aspect of many modern communities and work environments. It is generally believed that continued exposure to noise in real life can be a source of physiological stress possibly capable of causing health disorders beyond that of direct damages to the auditory system.

The autonomic nervous system is concerned with not only maintaining the homeostatic and life-continuing process of the body but also is involved when a person is startled or experiences feelings or emotions, such as becoming frightened or angry. As is well known, on these occasions the reactions may include changes in heart rate, peripheral blood pressure and volume, changes in respiration, sweating, etc.; reactions that are believed to be indicative of a state of physiological stress. Stress factors in working environments have recently been discussed as risk factors for cardiovascular disease. The best known of the acute effects that are mediated via the sympathetic nervous system are associated with peripheral circulation and heart activation via their sympathetic innervation, as well as that mediated by circulating adrenaline and noradrenaline produced by the adrenal medulla in response to sympathetic nervous stimulation. There appears to be general agreement that noise exposure operates as a stressor for human beings, resulting in contraction of peripheral arteries caused by the activation of the sympathetic nervous system to raise blood pressure. Although noise can act as a nonspecific biological stressor, it is not known whether the effects produced are transitory or whether prolonged exposure can result in cumulative pathology.

One of the researchers in this area has suggested, however, that physiological stress responses may be more related to indirect, physiological factors pertaining to the noise

than to the noise per se, or are normal physiological responses that are not indicative of a true condition of physiological stress (Kryter, 1984). In any event, the possible role of the environmental noise in causing conditions of physiological stress to man is a matter of both scientific and practical importance.

Evidence accumulated from human and animal studies suggests that noise exposure is a factor in the development of hypertension. However, there is a contradiction in research in the area as to whether it raises blood pressure. A review of the literature reveals that much more clinical and epidemiological evidence must be gathered before any valid conclusions can be made. The following sections present some history, comparisons, and contrast between some pioneers that made it possible for us to understand the relationship between noise and the heart activity through epidemiological, animal, and human studies.

Finally, the main goal of this study is to determine if there is a relationship between the heart rate, sex, and noise; and if these factors play a key role in determining cardiovascular problems.

CHAPTER 2

THEORETICAL APPROACH

2.1 Epidemiological Studies

Epidemiological studies have not conclusively demonstrated that noise exposure is one of the contributory factors inducing hypertension (Talbott, Helmkamp, Matthews, Kuller, Cuttington, and Redmond, 1985). Several studies suggested that workers exposed to long-term industrial noise suffer from high blood pressure or increase risk of hypertension. On the other hand, there are some investigations which show no significant difference in blood pressure between noise exposed workers (Brown III, 1975, and Parvizpoor, 1976).

2.2 Laboratory Studies in People

2.2.1 Early Studies on Humans

In the early 1950's, researchers Davis, Buchwald, and Frankman reported the results of a rather extensive experiment on observable changes produced by exposure to sound in a now-classic monograph. Specifically, they measured the effects of repetitive exposure to 1000 Hz tones of various intensities on blood pressure, pulse time, volume pulse, breathing amplitude and depth, and the temporal pattern of breathing, galvanic skin response (GSR) amplitude and latency, and finger and chin volumes. Noise produced an initial rise in pressure pulse amplitude; then there was a pronounced decrease, followed by a sustained rise. Volume pulse increased briefly and then fell drastically. GSR amplitude and latency decreased, and pulse rate slowed. Finger volume decreased, indicating peripheral vasoconstriction, but chin volume increased. Generally, all of these effects tended to extinguish or adapt with stimulus repetition, except for the increase in the depth of breathing, which increased with repetition. The adaptations in breathing rate, volume pulse, and finger and pulse volume fell short of statistical significance. Changes in the

extent of reactions between 70 and 90 dBA were less pronounced than changes between 90 and 120 dBA.

2.2.2 Later Human Studies

Human studies, such as the research presented by Miller (1974), tried to communicate the general sense of the effects of noise on people. He categorized three classes of transient general physiological responses to sound: (1) the fast responses of the voluntary musculature mediated by the somatic nervous system; (2) the slightly slower responses of the smooth muscles and glands mediated by the visceral nervous system; and (3) the even slower responses of the neuroendocrine system. It is relevant to discuss the importance of item two, where Miller mentioned, that in response to brief sounds there is general constriction in the peripheral blood vessels with a reduction in peripheral blood flow. There may be acceleration or deceleration of heart rate, reduction in the resistance of the skin to electrical current (an indication of the peripheral visceral nervous system), changes in breathing patterns, changes in the motility of the gastro-intestinal tract, changes in the size of pupils of the eyes, and changes in the secretion of saliva and gastric secretions. These responses to brief sounds are obvious for A-weighted sound levels over 70 dB, yet it is doubtful whether the recording techniques are sufficiently sensitive to detect whether these responses occur. In any case, they are either small or nonexistent.

There is evidence that workers exposed to high levels of noise have a higher incidence of cardiovascular disorders; ear, nose, throat problems; and equilibrium disorders than workers exposed to lower levels of noise (Miller 1974 and Kryter 1984). The results of these studies are summarized in Figure 1. The fact that those who are exposed to high noise levels show greater evidence of medical problems that those exposed to lower noise levels is not conclusive evidence that noise is the crucial factor. In each case it is possible that the observed effects can be explained by other factors such as:

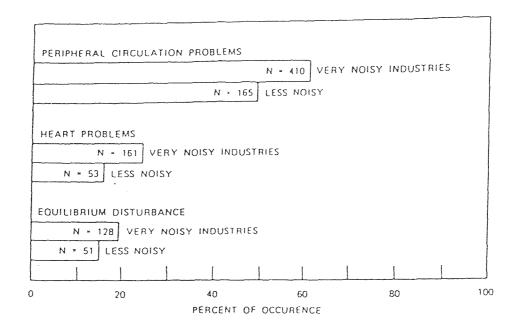


Figure 1 Differences between the percentages of physiological problems of those who work in two different levels of noise. These data are from 1005 German industrial workers. Peripheral circulation problems include pale and taut skin, mouth and pharynx symptoms, abnormal sensations in the extremities, paleness of the mucous membrane, and other vascular disturbances. [From Kryter et al., 1971.]

age, dust levels, occupational danger, life habits, and other non-noise hazards. Miller, as well as other researchers (i.e. Kryter 1980), agree that there is no substantial evidence that noise can cause cardiovascular diseases or significant changes in heart rate.

Jansen (1977) presented a paper describing experiments in which he measured the blood volume of the finger during exposure to eight minutes of 105 dBA noise and a temporary threshold shift (TTS) at 4 kHz. Volume was significantly decreased, more so after a second exposure. Strangely, there was a significantly negative correlation between finger pulse amplitude and TTS. Relatively high correlations of this kind, between physiological indices and either sensory or performance measures, are rarely encountered. It probably would be unwise to accept this finding uncritically until it is replicated.

In other studies, Glass and Singer (1972) found that physiological adaptation (GSR and vasoconstriction) invariably occurred in their laboratory studies regardless of the intensity or the unpredictability of the noise presented to their subjects. Generally, loud noise (such as 108 dBA mixed unintelligible speech and machine noise) did produce vasoconstriction, increased muscle tension, and lower skin resistance, subjects so exposed seemed to adapt completely within 23-25 minutes. However, they found about four percent of college students screened for some of their experiments seemed unable to adapt physiologically to any experimental procedures. This experiment suggested that it is important to recognize that physiological stress responses become manifest during exposures of longer duration.

In an interesting research study conducted by Osada (1972), subjects were exposed continuously for two or four hours to recordings of road traffic noise at levels of 40, 50, and 60 dBA. The subjects were exposed to the noise from a small cassette tape players. The subjects moved around the laboratory, went out to lunch, and so forth, while wearing the cassette player and earphones. For most of the noise conditions, blood and urinary

samples revealed a significant increase in blood cells and hormones, especially the corticosteroids, which would indicate autonomic system stress reactions. Osada concluded that autonomic system stress activity is caused by noise levels above 50 dBA. However, it is suggested that these effects are perhaps related to stress caused by the noise masking the hearing of speech and other wanted environmental sounds useful to the subjects while moving about, and not from some direct autonomic system arousal by the noise.

In 1980, Brown, investigated physiological effects on pilots. He chose 22 professional pilots and recorded measurements of heart rate, systolic and diastolic blood pressure, serum cholesterol, and glucose. These data were compared to records of the same measurements from 29 non-flying FAA personnel of the same ages. Every year the parameters were recorded, along with audiometric histories. The data were tabulated and compared within the noise levels found inside the aircraft. The results of measuring heart rate of the pilots were found to fluctuate considerably without establishing an increasing or decreasing trend. This finding led the author to conclude that changes observed in the heart rate over the study period (seven years), though statistically significant within population and between populations, did not show a decline in rate resulting from noise exposure, nor were these changes of sufficient magnitude to be considered biologically important.

During the same year, Andrén, Hansson, Bjorkman, and Johnson (1980), after conducting their research, explained the mechanisms by which noise may raise blood pressure in people. They studied if there was any relationship between the stroke volume (SV), cardiac output, and the total peripheral resistance with exposure to industrial noise. This study suggested that exposure to such noise at levels prevailing during several industrial processes may cause acute elevations of arterial blood pressure due to peripheral vascular resistance. In animal studies, repeated elevations of blood pressure due to exposure to noise have been shown to cause a permanent elevation of blood pressure.

Therefore, Andrén et al (1980) suggested that noise may be one of several external stimuli contributing to the development of arterial hypertension in humans. They selected eighteen males between ages 23 and 31 years old, and measured their respective blood pressure at rest, their stoke volume and cardiac output. Then, with those parameters, they measured in a laboratory the effects of different A-weighted noise levels and their frequency spectra. Measurements were made after twenty minutes of recumbent rest at 40 dBA and again after exposure to noise at 95 dBA for twenty minutes. In eight subjects, recordings were also made after stimulation for ten minutes at 75 and 85 dBA. Finally, recordings were made at five, ten, and fifteen minutes after cessation of noise stimulation. The results of this experiment found that no significant changes in heart rate occurred during stimulation with noise at either 75, 85, or 95 dBA, whereas significant reduction of stroke volume was seen at two highest levels of stimulation. The reduction of SV also caused a significant reduction of cardiac output at the highest level of stimulation. It was also found that statistically significant increments of mean arterial pressure and total peripheral resistance occurred during stimulation with noise at the 95 dBA level.

During the same decade, Kryter and Poza (1980), performed two types of experiments. The first tried to replicate some results of Jansen (1964). In the second experiment, they tried to determined the effects of slow versus rapid onset of noise interruption rate; measuring in both experiments the heart rate, pulse amplitude, blood volume, and peripheral body temperature. The first experiment consisted of four groups of six subjects who were exposed to four different noise characteristics: (1) wide-band pink noise at 92 dB, (2) narrow-band noise, a 1/3-octave band centered at 3150 HZ at 92 dB SPL, (3) wide-band pink noise at 76 dB SPL, (4) wide-band pink noise at 67 dB SPL. The wide-band noise was band limited only by the acoustic characteristics of the speaker. Within these characteristics, each subject group was tested for three different stimuli: (a) quiet, (b) noise lasting for two minutes, or (c) noise lasting for four minutes. The second experiment consisted of three groups of four subjects. There were six stimulus types, as

compared to three in the first experiment: (1) quiet, (2) continuous noise, rapid onset and offset, (3) same as item (2), but noise with slow, (4) noise bursts of three seconds each, separated by twenty seconds of silence, (5) noise burst at twenty seconds each, separated by twenty seconds of silence (rapid onset and offset), (6) same as 5 but with slow onset and offset time. The results of these experiments, regarding the heart rate, indicates that there is no systematic change in heart rate because of the noise, even though an increase in vasoconstriction did occur. But, Kryter (1980) states that some studies reported that heart rate is possibly a meaningful indicator of a "stress" response to noise.

2.2.3 Recent Studies on Humans

Di Nisi (1987), tried to indicate a cardiovascular response to noise by looking at the effects of self estimated sensitivity of noise, sex, and time of the day. He issued a 31 item questionnaire to a select group of 80 subjects. The selection was based on self-estimates of sensitivity to noise ranging from a scale of one (not sensitive to noise) to twelve (very sensitive to noise). Hearing was tested by an automatic audiometer for ten frequencies between 250 and 8000 Hz. Noises used in this study were five: (1) jet airplane, (2) truck, (3) motor cycle, (4) train, and (5) telephone. (Refer to Table 1).

 Table 1 Maximum Intensity, Spectral Frequencies, and Time Duration of the Five Types of Noises

Type of noise	Maximum intensity (dBA)	Spectral frequencies (min-max)(Hz)	Duration (s)
Airplane	86	30-7000	21.4
Truck	81	30-6000	20.4
Motor cycle	71	40-5000	10.2
Train	76.6	20-5000	16.8
Telephone	74.5	1000-2000	10.0

Heart rate intervals were continuously recorded on a digital computer and time-related exposures of the different noises and the amplitude of the heart rate response to each noise

were then calculated. Statistical analyses were made by three-three level analysis of variance ANOVA and student's t-test. The results showed that for an average heart rate, the only significant difference was related to the sex factor. In other words, female subjects exhibited a higher heart beat than observed in male subjects. This is because men have a larger heart capacity than women. Another finding in this study was that the average amplitude of the heart rate response (HRR) depends on both the amplitude of the heart rate modifications and the percentage of noises producing that effect. The average amplitude of the HRR represents the "heart rate cost" over the entire exposure of noise (Di Nisi 1987). The only result found here was that the group that was highly sensitive presented significantly more responses to noise than did a lower sensitivity group. In this study, there was a large difference between frequency of vasoconstrictions and the frequency of heart rate responses produced by noise. Seventy-two percent of noises presented provoked a vasoconstriction while 22 percent provoked a heart rate response.

Another recent research, presented by Chen, Hiramatsu, Ooue, Takagi, and Yamamoto (1991), attempted to determine whether the blood pressure rises as a result of noise exposure. They conducted a short-term experiment using the method of synchronized averaging of blood pressure. The authors defined noise-evoked blood pressure as the rise of systolic blood pressure owing to sound presentation. This quantity was clearly shown as a synchronized averaging signal. They identified twenty-five healthy male and female Japanese students with normal heart activity, aged between 18 and 28 years. They were exposed to white noise, as the stimulus, with sound pressure levels of from 60 to 100 dB. The signal outputs of systolic blood pressure and pulse rate from the measuring device as well as the ongoing signal of the sound presentation were stored in the computer. The results of this study can be summarized as follows:

- 1. A noise-evoked blood pressure rise was detected by using the synchronized method.
- 2. A linear relation was found, with a high correlation between blood pressure rise and the sound pressure levels of white noise.

3. A peak of the blood pressure rise was found at 10 seconds after onset of the stimulus without regard to the sound pressure level.

Finally, the most recent study in this field conducted by Griefahn, and Di Nisi (1992), stated that chronic noise exposure is assumed to contribute to cardiovascular diseases (i.e. stress) by means of the autonomic responses produced during acute stimulation. However, if this is true, the autonomic responses are higher in people who feel sensitive to noise, indicating that these people are at higher risk. The main goal of this study was to determine the influence of personal self-estimated sensitivity on the extent of noise-induced responses, on mood and cardiovascular function. The experiment consisted of selecting 150 healthy normal subjects with ages ranging from 30 to 60 years old who were distributed according to gender and these three categories: (1) resistant, (2) indifferent, and (3) sensitive to noise. The criterion used to select these categories was based upon the basis of self-estimated sensitivity to noise. The selection of this subjects was based on a questionnaire given to 3000 employees at the University of Dnsseldorf. The experiments were executed in a soundproof room, using three types of noises: (1) pink noise, (2) traffic noise, and (3) gunfire, with repetitions of two shots per second. Results were presented for 19 seconds with equivalent noise levels of 62, 68, 74, and 80 dBA (gunfire used a sound pressure level {SPL} of 71 dBA). Peripheral blood flow, heart rate and mood were measured as a result of the noises. Specific statistical comparisons were used (i.e. analysis of variance and t-test). The results of this study suggested that heart rate responses are not determined by mood during noise, and that both the physiological responses are independent of each other. The small differences observed between the responses of so-called sensitive and resistant subjects do not support the hypothesis that sensitive people run a higher risk of developing cardiovascular diseases if permanently exposed to noise.

2.3 Animal Studies

In addition to the studies mentioned above, researchers have done many well-documented animal studies relating cardiovascular effects to noise exposure. The most common subjects used by researchers were rodents and primates.

2.3.1 Experimental Subject: Rodents

Rodents are not ideal subjects for studying the physiological effects of noise (Loeb, 1986). Thus, conjectures and extrapolations about the effects of noise stress in humans from these mice and rats studies have been controversial. Nevertheless, there have been a number of experiments in which rodents were chronically exposed to noise and the effects on health observed. Buckley and Smookler (1970) reported that exposing rats to high noise produced elevated blood pressure. But, since environmental factors were not independently manipulated, it is hard to evaluate their significance for human health.

One study, which failed to demonstrate a relationship between noise exposure and rats were more susceptible to noise induced hearing loss. Ising and Melchert (1980) exposed rats to random four second bursts of noise each night. Instead of using A-weighting which is based on human hearing, the researchers used a weighting curve based on the hearing level of rats, expressing levels in dB_{rat}. Changes in cardiac structure were observed after periods of noise exposure up to 28 weeks.

2.3.2 Experimental Subjects: Primates

It would appear safer to extrapolate from experiments with primates (monkeys or apes) than from rodents, both because they are more closely related to humans and because they do not suffer audiogenic seizures. Unfortunately there are conflicting results from such experiments.

Peterson and his colleagues (Peterson et al, 1981) performed a number of experiments with rhesus monkeys at the University of Miami. In one, they employed 112

dBA traffic noise as an unconditioned (traumatic) stimulus and measured blood pressure and heart rate in a restrained subject over a thirty day period. Heart rate was initially elevated but soon significantly adapted. The baseline blood pressure significantly increased over the thirty day period. A second monkey was exposed for twelve hours per day for thirty days to a noise which was variable, exceeding 68 dBA 90 percent of the time, 76 dBA 50 percent of the time, and 84 dBA 10 percent of the time. Overall, the levels were such that it would be annoying to most humans but not injurious to hearing. Both systolic and diastolic pressure were elevated on days in which there was noise exposure. During the night they fell to near normal values but rose again during the next day. After days of exposure, this change began to occur an hour before each daily exposure, presumably in anticipation. Restraint alone produced no such effects. This study suggested that with continued daily exposures, there may be permanent elevations of blood pressure and heart rate.

Turkkan, Hienz, and Harris (1983) used baboons rather than rhesus monkeys. They reported that although there were initial elevations, the chronic effect of noise on their subjects was to lower blood pressure rather than elevate it. They also noted chronic depression of heart rate. Both research groups, Peterson et al and Turkkan et al, considered that differences in reactions of the two species might be important. If so, then extrapolation from animal studies will necessarily be more difficult. This is unfortunate, as good controlled studies of this kind can only be performed with animal subjects.

Finally, another primate research, performed by DeJoy (1984), only mentions animal studies that reflected physiological disorders when animals were exposed to noise. He notes a study using primates exposed for a nine month period of continuous daily noise at $L_{eq24} = 85$ dB; here sustained elevations in blood pressure of 23 to 28 percent in rhesus monkeys.

2.4 Industrial Studies

Industrial studies have been reviewed by a few researchers such as Kryter (1970), Gulian (1974), and others. Jansen (1961) found that there were more circulatory, cardiac, and equilibratory problems in workers in noisy industries (i.e. iron and steel) than workers in quieter industries. Similar effects have been reported by Strakhov(1964) and Shatalov, Sanitanov, and Glotova (1962). Lehman (1964) considers that it has been demonstrated that prolonged and chronic noise exposure has a detrimental effect on cardiovascular function.

Nevertheless, it is clear that there is no convincing evidence from industrial studies conclusively proving that noise impairs health, though there is considerable suggestive evidence (Loeb, 1986).

CHAPTER 3

METHODOLOGY OF THE EXPERIMENT

3.1 Research Objectives

It is clear from the previous review of the literature that researchers in the noise and heart field, have not yet found enough evidence to prove that different types of chronic noise exposure contribute to cardiovascular diseases, or even irregular heart beat. On the other hand, Kryter (1985) and Griefhan (1992) found that heart rate experiences an increase with exposure to white noise.

This study compared the effects of different types of noise at different sound pressure levels in order to determine if there is any relationship between human heart beat and the gender, and type of noise and sound level of the subjects under the investigation. An audiometric test was given to the subjects in order to measure their hearing sensitivity (threshold) before and after the experiment. A questionnaire was given to each subject in order to record their sensitivity while exposed to noise.

This study provides information to future researchers in the health and safety fields to confirm if autonomic responses are higher in people who feel they are more sensitive to noise. The study also helps to determine the roles which sex, type of noise, and sound pressure level may play in regulating heart beat in high noise environments.

3.2 Selection of Subjects

Sixteen individuals, eight males and eight females, volunteered as experimental subjects for this experiment conducted at the New Jersey Institute of Technology. Subjects were briefed about their role in the experiment and how to follow directions from the experimenter. The description given to subjects is shown in Appendix A. Every

participant received a pre-experimental questionnaire (see Figure 2), in order to categorize each individual according to their sex, age, and sensitivity to noise.

	QUESTIONNAIRE				
Puŋ	Purpose: The purpose of this questionnaire is to determine how the results of your heart beat compare with your physical condition when you are expose to different types of noise levels.				
Ans	Answer the best selection and fill in the blanks:				
1.	Male Female				
2.	Age:				
3.	Do you consider yourself sensitive to noise: Yes No				
4.	Are you exposed, in a daily basis, to high noise levels at work (i.e. traffic noise, radio, etc.) Yes No If yes, what type(s) of noise are you exposed to:				
5.	Have you ever had an illness or problem of any sort related to your heart or blood vessels? Yes No If yes, what kind of illness				
6.	Do you exercise : once a week twice a week none other :				
7.	Do you experience shortness of breath during exercise ? Yes No				
8.	Do you smoke ?YesNo				

Figure 2 Pre-Experimental Questionnaire

Subjects filled a participant's informed consent form in order to understand their role in agreeing to participate in the experiment. This form is shown in Appendix B.

Audiometric tests were given to each of the subjects prior to and after the experiment in order to check for auditory threshold shifts (ATS) and temporary threshold shifts (TTS). If any hearing-related or heart-related chronic diseases were found, those individuals were excluded from the experiment.

Requirements for participation for this experiment were: (1) no individual working in a high noise level environment, (2) no previous participation in audiometric testing, (3) no individuals having cardiovascular problems at time of the experiment, and (4) the ability to experience high noise levels.

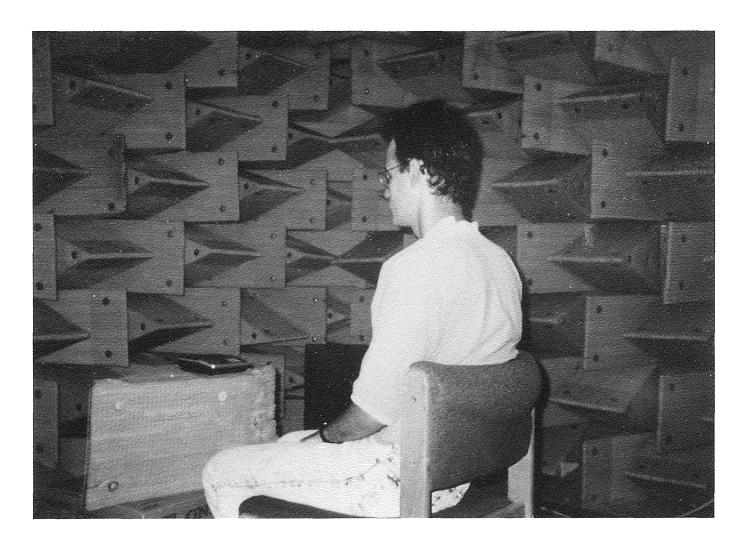


Figure 3 Anechoic Chamber (New Jersey Institute of Technology)

3.3 Types of Noise and Sound Pressure Levels

Five different types of noise were used in this experiment. The types of noise used were:

(1) boiler room, (2) exhaust fan for power saw, (3) pump room, (4) screw gun, and (5) gas compressor. The types of noise selected were recorded on metal recording tape for higher fidelity. Noise types were recorded with a SONY® boom box two-way recorder at the Princeton Plasma Physics Laboratory in Princeton, New Jersey.

For every type of noise, a sound pressure level was applied throughout the entire experiment. The four sound pressure levels used were 60, 70, 80, and 85 dBA.

3.4 Testing Facilities

The facility used for this experiment is housed in the Acoustics Laboratory the Department of Mechanical and Industrial Engineering at New Jersey Institute of Technology. An IAC chamber and a test booth (anechoic chamber) were used in order to obtain the best attenuation possible. Photographs of the anechoic chamber and IAC booth used are shown in figures 3 and 4.

Different types of pre-recorded noise were generated by using loudspeakers located inside the anechoic chamber.

3.5 Instrumentation

A wireless heart beat monitor was used throughout the experiment. This heart beat monitor is the *UNIC CIC HEARTWATCH* model 8799, as shown in Figure 5; it is manufactured by Computer Instruments Corporation. This heartwatch is an exercise computer instrument that senses the electrical signals generated by an individual's heart beat following the same technique used by physicians when obtaining an electrocardiogram (EKG). The heart rate in beats per minute is digitally displayed in real time on a wrist watch worn by each subject. The other component used with the

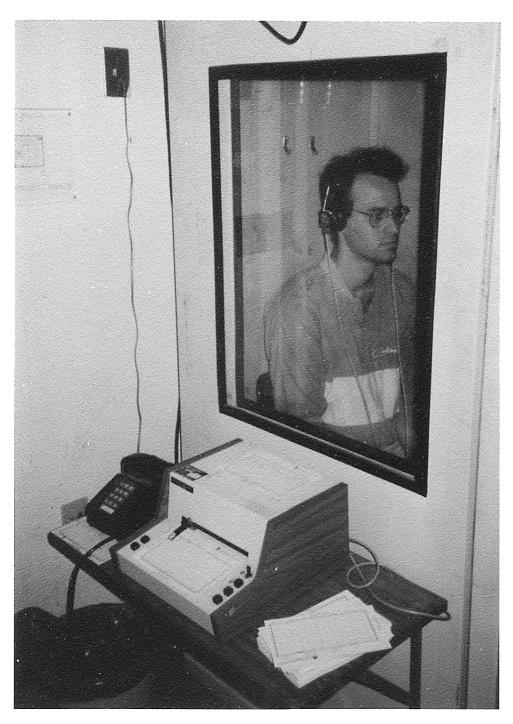


Figure 4 IAC Booth (New Jersey Institute of Technology)

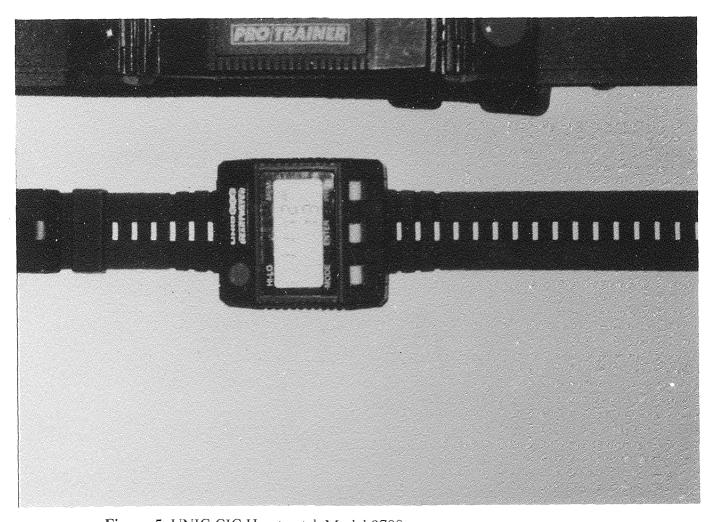


Figure 5 UNIC CIC Heartwatch Model 8799

heartwatch was the electrode strap. This strap consists of two transmitter connectors and two rubber electrodes, which send electronic signals to the heartwatch. This electrode strap was attached at the chest of each tested individual.

The different types of noise and sound pressure levels were amplified by an ONKYO P-301 Infrared wireless remote controlled stereo preamplifier. In order to measure the appropriate sound pressure level, a QUEST dosimeter was used when subjects were exposed to different types of noise. This equipment is shown in Figure 6.

3.6 Software

The software used for statistical data analysis was a computer package called Statistical Analysis System (SAS®). This software is used by engineering students at New Jersey Institute of Technology. The SAS® System, developed by SAS Institute Inc., is an integrated system of software. It provides a comprehensive approach for data management, analysis, and presentation. The SAS® System's analysis tools range from simple descriptive statistics to more advanced or specialized analyses for econometrics and forecasting, statistical design, computer performance evaluation, graphics, and operations research.

3.7 Experimental Design

The statistical matrix, shown on Table 2, was used for data collection and analysis. The matrix has S representing the types of noise and $y_{a,b,c}$ representing the dependent and independent variables used in this experiment. This experimental design focuses on any relationship or interaction which may exist between the independent and dependent variables. The experimental protocol followed the order shown in Appendix C. This protocol was strictly followed by the experimenter throughout this research project.

Figure 6 Equipment Used to Reproduce. Noise

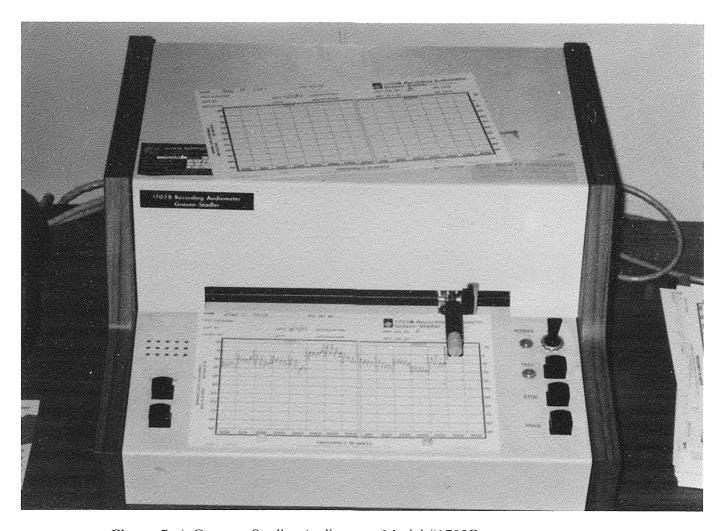


Figure 7 A Grayson Stadler Audiometer Model #1703B

	Noise Level			
Types of Noise	60 dBA	70 dBA	80 dBA	85 dBA
S1	y _{a,b,c,d,e}	y _{a,b,c,d,e}	y _{a,b,c,d,e}	ya,b,c,d,e
S2	ya,b,c,d,e	ya,b,c,d,e	y _{a,b,c,d,e}	Уa,b,c,d,e
S3	ya,b,c,d,e	ya,b,c,d,e	y _{a,b,c,d,e}	Уa,b,c,d,e
S4	Уa,b,c,d,e	Уa,b,c,d,e	y _{a,b,c,d,e}	Уa,b,c,d,e
S5	ya,b,c,d,e	ya,b,c,d,e	ya,b,c,d,e	y _{a,b,c,d,e}

 Table 2
 Experimental Design Matrix

3.7.1 Independent Variables

The factors used for the experimental design were: (1) sex, (2) type of noise, and (3) noise level.

3.7.2 Dependent Variables

The main dependent variable obtained in this experiment was heart rate, as measured in beats per minute.

3.8 Experimental Procedure

Each subject filled out a questionnaire in order to gather information about their physical condition and cardiac history. An audiometric test was given to the participants in order to check for temporary threshold shifts (TTS). A Grayson Stadler audiometer, model #1703B was used here, with typical results shown in Figure 7. After this test, the participant entered the anechoic chamber. The subject experienced five types of noise (i.e. white noise, pink noise, etc.) as shown in Table 3, at sound pressure levels of 60, 70, 80, and 85 dBA. These types of noise lasted for thirty seconds, while the subject remained in the anechoic chamber wearing the heartwatch.

Table 3 Five Types of Noise Used for Experimentation

TYPES OF NOISE USED
boiler room (t1)
exhaust fan for power saw (t2)
pump room (t3)
screw gun (t4)
compressor room (t5)

These five noises and four sound levels were presented in random order, so that each subject was exposed to a total of twenty varieties of combined noise. The only restriction was that for each type of noise selected, the sound level was presented randomly. After each noise exposure, a two minute rest, was given to each individual before the next type of noise was presented to them.

Subjects were required to fill out a response form, in order to measure their heart rate and their level of annoyance (or sensitivity to noise) for each type of noise and sound pressure level. This form is shown in Appendix D.

3.9 Data Analysis

A rigorous statistical analysis was performed to determine if there was any type of interaction between the variables (dependent and independent) used for this experiment. An analysis of variance (ANOVA) was performed using the SAS computer package. Another statistical tool used was a student t-test since the sample size was less than thirty subjects. A regression analysis was also performed in order to analyze iterations between the variables mentioned in sections 3.7.1 and 3.7.2.

CHAPTER 4

STATISTICAL RESULTS

A total of 1600 observations were taken throughout the span of this research (200 observations per subject). It is important to define each variable used for the ANOVA (refer to Table 2 and Table 4):

- 1. *subject*; person used for experimental purpose (1 to 16),
- 2. type (t₁, t₂, t₃, t₄, t₅); represents the different types of noise (refer to Table 4),
- 3. slevel (l₁, l₂, l₃, l₄); represents the different sound pressure levels (refer to section 3.3),
- 4. sex (m, f); represents the subject's gender (male or female), and
- 5. hrate; represents the heart beat of person during experimentation.

Table 4 Class Level Information From ANOVA Analysis

Class	Levels	Values
Туре	5	11, 12, 13, 14, 15
Slevel	4	11, 12, 13, 14
Sex	2	m, f

After the data were entered, a statistical tool used by SAS®, procedure ANOVA, allows us to determine if the model used by the experimenter shows any relationship between human heart beat and gender, and the type of noise and sound level encountered. The ANOVA model (see Appendices E and F), showed that the overall F value was 25.46, meaning that there is no significant interaction at a value greater than five percent. Also, the output of SAS showed that the F values for the independent variables (type of noise,

sound level, sex, and some of their interactions between them) were not significant at 5 percent. But, it is important to demonstrate that even though the F values are not significant, they are close to one, which makes this a good statistical model.

The analysis of the results of this experiment do not show if sex plays a role on any effects noise may exert on heart rate. This is because the F value exceeds five percent, but this value alone does not reveal if the F value is realistic or conclusive. On the other hand, the interactions between the type of noise and sex, and sound level and sex variables showed that there is a strong chance that this possibility may be responsible for some of the effects to the heart rate.

Finally, the hypothesis to be proven:

 H_0 : Sex does not affect human heart rate.

 H_I : Sex does affect human heart rate

has been demonstrated. Using a t-test with n=16 and a confidence level of 95 percent, it was shown that the hypothesis H_O should be accepted as noted in Appendix F. Therefore, the statistical analysis proves that gender does not affect human heart rate.

CHAPTER 5

CONCLUSIONS

Many sounds and/or noises can indirectly cause autonomic system reactions that are deemed physiologically stressful. These are sounds which create feelings of emotion (i.e. startle, fear, anger, etc.) in the listener because of their unexpectedness or other meanings they can convey, or because of the annoyance caused by interference with rest, and/or job performance. The only conclusively established effect of noise on health remains that of noise-induced hearing loss. In addition, noise can permanently damage the inner ear, interfere with speech and communication, disturb sleep, be a source of annoyance, influence mood and disturb relaxation, and interfere with job performance or other complicated tasks (Miller, 1974).

Experimental evidence demonstrated that sex does not play a role with respect to any effects which noise may exert on heart rate. But, it showed that there is a close relationship between the interaction of noise and sex, and sex and sound level. Both interactions suggest the possibility that noise may cause some effects on heart rate, but the data is inconclusive. Perhaps the stress of continued exposure to high levels of noise can produce disease or make one more susceptible to disease, but again the evidence is not conclusive. Thus, noise could be one of several external factors contributing to the development of hypertension in humans, particularly in susceptible individuals. This will be difficult to evaluate but it is important to conduct research in this field because cardiovascular diseases accounted for almost a million deaths in the United States, only a few years ago. A review of existing information on the relationship between certain workplace factors (such as industrial noise) and cardiovascular disease indicates that millions of workers are currently exposed to selected work-related factors which are associated with an increased risk of cardiovascular diseases.

Although positive findings exist concerning the relationship of chronic noise exposure to heart rate, the consensus today is that existing literature does not permit inferences of cause and effect or derivations of dose-response relationships for noise and heart rate or any other medically significant cardiovascular response or health outcome.

Finally, it is recommended that further research be conducted in this field. This research could be expanded by using other variables such as blood pressure, pulse rate, cardiac output, and span of noise, etc. to look for other specific interactions.

APPENDIX A

DESCRIPTION OF THE EXPERIMENT TO THE SUBJECTS

This experiment will investigate the effects on human heart rate by exposing you to different types of noise and sound levels. A pre-experimental questionnaire and an audiometric test will be given to you. If you are qualified, an informed consent form must be signed by you.

You will hear five different types of sound (noise), each for the period of 30 seconds. Whenever you are bothered by the noise, you have a right to terminate this experiment. The experimental session will last about one and a half hours. It is imperative that you do not expose yourself to high level noises, such as rock concerts or loud equipment (e.g. power saw, "walk-man stereo", etc.), over the period of time that you are participating in this study. Otherwise, the experiment performed may not yield accurate results.

You will wear sophisticated equipment before you enter the auditory and anechoic chambers. An intercom system will be provided for communication with the experimenter while you are in either chamber. After exposure to the different types of noise and sound levels, you will experience a second audiometric test to measure temporary threshold shifts (TTS).

No risks will be posed by this experiment except possible stress and/or fatigue due to the length of the experiment. However, you will be able to rest after each noise exposure.

APPENDIX B

PARTICIPANT'S INFORMED CONSENT FORM

Your heart beat will be measured when exposed to different types of noise and different sound pressure levels. During your exposure to noise, your heart rate will be recorded on a form provided by the experimenter.

No hazardous sounds or other danger will occur during the experiment. The test will be conducted in a sound-proof chamber with the experimenter sitting outside. The door to the chamber will be shut but not locked during the test. You may open it from the inside, or the experimenter may open it from the outside in case of an emergency. An intercom system will be provided for communication with the experimenter.

No risk to your well-being will be posed by this experiment, although you may experience fatigue due to the length of the experiment (approximately 1.5 hours). After each type of noise and sound level ends, you are able to rest for a minute. You may elect to discontinue participation at any time.

As a participant in this experiment, you have certain rights, as stated below. This form is intended to describe these rights to you and to obtain your written consent to participate in this experiment at the New Jersey Institute of Technology.

Your rights as a participant:

- 1. You have the right to discontinue participating in this experiment at any time for any reason by simply informing to the experimenter.
- 2. You have the right to inspect your data and to withdraw it from the experiment. In general, data are processed and analyzed after all subjects have completed the experiment. Subsequently, all the data are treated anonymously and confidentially in all analyses, reports, and publications resulting from the experiment. Therefore, if you

- wish to withdraw your data, you must do so immediately after your participation is completed; otherwise, your name cannot be associate with your data.
- 3. You have the right to be informed as to general results of the experiment. If you wish to receive a synopsis of the results, include your address with your signature at the space provided below this form. If, after receiving the synopsis, you would like further information, please contact the Mechanical and Industrial Engineering Department, and a more detailed report will be made available to you. To avoid biasing other potential subjects, you must not discuss the study with anyone until a year from now.
- 4. You may ask questions of the experimenter at any time prior to data collection. All questions will be answered to your satisfaction subject only to the constraint that an answer will not prebias the outcome of the experiment. If bias would occur, with your permission an answer will be delayed until after data collection, at which time a full answer will be given.
- 5. Your name, address, or phone number will not be disclosed by any means. This information will be considered confidential.

The experimenter sincerely appreciates your participation and hopes that you find the experiment an interesting experience. At least, you will have the satisfaction of knowing your audiometric test results and how sensitive you are to noise.

Before you sign this form, please make sure that you understand, to your complete satisfaction, the nature of the study and your rights as a participant. If you have any questions, please do so at this time. Then if you decide to participate, please sign your name and provide your phone number in case the experimenter has to communicate with you.

The researcher, Jose R. Fabregas, a graduate student from NJIT, and his thesis advisor, Dr. Min-Yong Park can be contacted at the address and phone number below:

Mechanical and Industrial Engineering Department New Jersey Institute of Technology Newark, NJ 07102 (201) 596-3658

	(201) 390-3038	
an an la an		
	Tear along the dotted line	
I have rea	d description of this study and understand the nature of th	ne research and my
rights as a	participant. I hereby consent to participate, with the und	lerstanding that I may
discontinu	ne participation at any time if I choose to do so.	
Signature	· ·	
Printed Na	ame :	
Date :	Phone :	
Address:		
_		
I will like	to receive a synopsis of the experiment: Yes	No

APPENDIX C

EXPERIMENTAL PROTOCOL

- 1. Subject reads instructions about the experiment (5 minutes)
- 2. If subject agrees, subject fills out a consent form and a pre-experimental questionnaire (2 minutes).
- 3. Experimenter explains to subject the audiometric testing procedure (2 minutes).
- 4. Start audiometer (3 minutes).
- 5. Move audiometer cursor from left to right until a "click" is heard (10 seconds).
- 6. Take the red plastic cap from head pin of the audiometer (10 seconds).
- 7. Subject would wear and adjust earphones with the assistance of the experimenter (1 minute).
- 8. Subject enters the IAC audiometric chamber, and both ears are audiometrically tested to check for temporary threshold shifts (TTS) by pressing the test button (10 minutes).
- 9. If subject passes the test, continue to step (10).
- 10. The subject should wear and adjust the heartwatch and electrode strap before entering the anechoic chamber (5 minutes).
- 11. Before subject enters the chamber, he/she is asked to fill a form in order to record sensitivity to noise and heart beat (displayed by the Heartwatch).
- 12. Subject enters the anechoic chamber and a practice trial is run (3 minutes).
- 13. Noise exposure begins.
- 14. Subject will be standing up at time of exposure and every 10 second, for each type and level of noise, subject will record his heart beat (displayed by the Heartwatch) on the form noted in step (11).

- 15. A type of noise and sound level will be chosen randomly by the experimenter.
- 16. Experimenter reproduces the type of noise and sound pressure level on loudspeakers inside the chamber.
- 17. After the subject is exposed to the type of noise and sound pressure level for thirty seconds, he/she can take a two minute rest by sitting down in a chair provided inside the chamber.
- 18. Repeat step (13) through step (16) until the experimental subject is exposed to a total of twenty combinations of noise.
- 19. Subject is given a second audiometric test to measure his/her temporary threshold shift (TTS). Repeat from step (6) to step (8). This will last approximately eleven minutes.
- 20. Subject is debriefed and thanked for his/her contribution to this experiment.

APPENDIX D

PARTICIPANT'S RESPONSE FORM

Participant's Response Form

Answer the following question during and/or before you been exposed to noise. In the space provided below, record your heart beat, as shown while wearing the heartwatch. Then select the best answer to the following question:

Rate your sensitivity to this type of noise and sound pressure level. Select (1) not

	2 21	average, (4) more irritating, or (5) most irritating
		-
	Heart Rate for sound 1:	Sensitivity:
	Heart Rate for sound 2:	Sensitivity:
3.	Heart Rate for sound 3:	Sensitivity:
4.	Heart Rate for sound 4:	Sensitivity:
5.	Heart Rate for sound 5:	Sensitivity:
6.	Heart Rate for sound 6:	Sensitivity:
	Heart Rate for sound 7:	Sensitivity:
	Heart Rate for sound 8:	Sensitivity:
	Heart Rate for sound 9:	Sensitivity:
10.	Heart Rate for sound 10:	Sensitivity:
		Sensitivity:
	Heart Rate for sound 12:	Sensitivity:
	Heart Rate for sound 13:	
	Heart Rate for sound 14:	Sensitivity:
	Heart Rate for sound 15:	Sensitivity:
	Heart Rate for sound 16:	Sensitivity:
	Heart Rate for sound 17:	Sensitivity:
	Heart Rate for sound 18:	Sensitivity:
		Sensitivity:
	Heart Rate for sound 20 :	Sensitivity:

APPENDIX E

EXPERIMENTAL DATA

The data is tabulated by the statistical software as discussed on page 23. The experiment consists of a total of 1600 observations, that is, 100 observations per person (refer to Table 2).

Experimental Data

17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE	
1 2 3 4 5 6 7	1 1 1 1 1 1	m m m m m	t1 t1 t1 t1 t1 t1	11 11 11 11 11 12 12	62 64 63 63 65 68 71	
8	1	m	tl	12	66	
9	1	m	tl	12	65	
10	1	m	t1	12	69	
11	1	m	t1	13	71	
12	1	m	t1	13	71	
13	1	m	tl	13	68	
14	1	m	tl	13	66	
15	1	m	tl	13	66	
16	1	m	tl	14	70	
17	1	m	tl	14	69	
18 19 20 21	1 1 1	m m m m	t1 t1 t1 t2	14 14 14 11	66 65 65	

Experimental Data 2 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
22 23 24 25 26 27 28	1 1 1 1 1 1	m m m m m	t2 t2 t2 t2 t2 t2	11 11 11 12 12 12	68 70 69 68 70 70 63
29 30 31 32	1 1 1	m m m m	t2 t2 t2 t2	12 12 13 13	64 66 60 65
33 34 35 36 37	1 1 1 1	m m m m	t2 t2 t2 t2 t2	13 13 13 14 14	67 67 65 72 71
38 39 40 41 42	1 1 1 1 1	m m m m m	t2 t2 t2 t3 t3	14 14 14 11 11	70 67 67 65 66

Experimental Data 3
17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
43	1	m	t3	11	67
44	1	m	t3	11	66
45	1	m	t3	11	64
46	1	m	t3	12	65
47	1	m	t3	12	67
48	1	m	t3	12	69
49	1	m	t3	12	68
50	1	m	t3	12	66
51	1	m	t3	13	67
52	1	m	t3	13	67
53	1	m	t3	13	71
54	1	m	t3	13	70
55	1	m	t3	13	71
56	1	m	t3	14	67
57	1	m	t3	14	69
58	1	m	t3	14	67
59	1	m	t3	14	69
60	1	m	t3	14	68
61	1	m	t4	11	70
62	1	m	t4	11	68
63	1	m	t4	11	66

Experimental Data 4 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
64	1	m	t4	11	66
65	1	m	t4	11	67
66	1	m	t4	12	66
67	1	m	t4	12	64
68	1	m	t4	12	64
69	1	m	t4	12	63
70	1	m	t4	12	63
71	1	m	t4	13	66
72	1	m	t4	13	70
73	1	m	t4	13	69
74	1	m	t4	13	70
75	1	m	t4	13	69
76	1	m	t4	14	67
77	1	m	t4	14	67
78	1	m	t4	14	68
79	1	m	t4	14	67
80	1	m	t4	14	67
81	1	m	t5	11	64
82	1	m	t5	11	66
83	1	m	t5	11	67
84	1	ra	t5	11	67

Experimental Data 5
17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE	
85	1	m	t5	11	65	
86	1	m	t5	12	73	
87	1	m	t5	12	73	
88	1	m	t5	12	70	
89	1	m	t5	12	68	
90	. 1	m	t5	12	66	
91	1	m	t5	13	76	
92	1	m	t5	13	76	
93	1	m	t5	13	72	
94	1	m	t5	13	69	
95	1	m	t5	13	66	
96	1	m	t5	14	71	
97	1	m	t5	14	70	
98	1	m	t5	14	72	
99	1	m	t5	14	72	
100	1	m	t5	14	65	
101	2	m	t1	11	64	
102	2	m	t1	11	64	
103	2	m	t1	11	67	
104	2	m	t1	11	64	
105	2	m	t1	11	65	
	E	xperime:	ntal Data			6

17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
020	0020201	0211	4 4 4 23	DHEVEN	111(111111
106	2	m	t1	12	57
107	2	m	t1	12	59
108	2	m	t1	12	67
109	2	m	t1	12	65
110	2	m	t1	12	61
111	2	m	t1	13	64
112	2	m	t1	13	64
113	2	m	t1	13	64
114	2	m	t1	13	65
115	2	m	t1	13	64
116	2	m	t1	14	70
117	2	m	t1	14	70
118	2	m	t1	14	70
119	2	m	t1	14	68
120	2	m	t1	14	65
121	2	m	t2	11	61
122	2	m	t2	11	60
123	2	m	t2	11	57
124	2	m	t2	11	58
125	2	m	t2	11	59
126	2	m	t2	12	63

Experimental Data 7
17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
127	2	m (a)	t2	12	69
128	2	m	t2	12	66
129	2 2 2	m	t2	12	62
130	2	m 🔄	t2	12	63
131	2	m	t2	13	57
132	.2	m	t2	13	62
133	2	m	t2	13	60 🔍
134	2	m	t2	13	63
135	2	m	t2	13	64
136	2	m	t2	14	64
137	2	m	t2	14	66
138	2	m	t2	14	77
139	2	m	t2	14	75
140	2	m	t2	14	70
141	2	m	t3	11	58
142	2	m	t3	11	59 di
143	2	m	t3	11	63 🐃
144	2	m	t3	11	60
145	2	m	t3	11	59
146	2	m	t3	12	55
147	2	m	t3	12	65

Experimental Data 8
17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
148	2	m	t3	12	65
149	2	m	t3	12	64
150	2	m	t3	12	62
151	2	m	t3	13	60 °
152	2	m	t3	13	63
153	2	m	t3	13	65
154	2	m	t3	13	68
155	2	m	t3	13	67
156	2	m	t3	14	62
157	2	m	t3	14	66
158	2	m	t3	14	67
159	2	m	t3	14	66
160	2	m	t3	14	64
161	2	m	t4	11	57
162	2	m	t4	11	58
163	2	m	t4	11	58
164	2	m	t4	11	58
165	2	m	t4	11	59
166	2	m	t4	12	62
167	2	m	t4	12	63
168	2	m	t4	12	61

Experimental Data 9
17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE	
169	2	m	t4	12	61	
170	2	m	t4	12	63	
171	2	m	t4	13	59	
172	2	m	t4	13	60	
173	2	m	t4	13	62	
174	2	m	t4	13	63	
175	2	m	t4	13	62	
176	2	m	t4	14	62	
177	2	m	t4	14	62	
178	2	m	t4	14	62	
179	2	m	t4	14	62	
180	2	m	t4	14	67	
181	2	m	t5	11	63	
182	2	m	t5	11	65	
183	2	m	t5	11	64	
184	2	m	t5	11	63	
185	2	m	t5	11	64	
186	2	m	t5	12	65	
187	2	m	t5	12	63	
188	2	m	t5	12	64	
189	2	m	t5	12	69	

Experimental Data 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
190	2	m	t5	12	63
191	2	m	t5	13	70
192	2	m	t5	13	71
193	2	m	t5	13	68
194	2	m	t5	13	64
195	2	m	t5	13	57
196	2	m	t5	14	63
197	2	m	t5	14	63
198	2	m	t5	14	64
199	2	m	t5	14	64
200	2	m	t5	14	67
201	3	f	t1	11	72
202	3	£	tl	11	72
203	3	f	t1	11	69
204	3	f	tl	11	68
205	3	f	t1	11	68
206	3	f	t1	12	63
207	3	f	t1	12	74
208	3	£	tl	12	72
209	3	f	t1	12	69
210	3	f	t1	12	6,8

11

Experimental Data

17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
211	3	£	t1	13	81
212	3	£	t1	13	78
213	3	£	t1	13	74
214	3	f	t1	13	72
215	3	f	t1	13	75
216	3	f	t1	14	71
217	3	f	tl	14	67
218	. 3	f	t1	14	69
219	3	f	t1	14	71
220	3	f	t1	14	68
221	3	f	t2	11	66
222	3	f	t2	11	69
223	3	£	t2	11	65
224	3	f	t2	11	66
225	3	f	t2	11	69
226	3	f	t2	12	68
227	3	£	t2	12	70
228	3	f	t2	12	70
229	3	f	t2	12	69
230	3	f	t2	12	69
231	3	f	t2	13	71

Experimental Data 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
232	3	f	t2	13	71
233	3	£	t2	13	70
234	3	£	t2	13	71
235	3	f	t2	13	71
236	3	f	t2	14	63
237	3	£	t2	14	63
238	3	£	t2	14	65
239	3	£	t2	14	69
240	3	£	t2	14	69
241	3	£	t3	11	64
242	3	£	t3	11	65
243	3	£	t3	11	66
244	3	f	t3	11	65
245	3	f	t3	11	64
246	3	f	t3	12	78
247	3	f	t3	12	80
248	3	£	t3	12	76
249	3	f	t3	12	72
250	3	£	t3	12	74
251	3	f	t3	13	68
252	3	f	τ3	13	70

Experimental Data 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE	
253	3	f	t3	13	68	
254	3	f	t3	13	66	
255	3	£	t3	13	65	
256	3	f	t3	14	67	
257	3	£	t3	14	67	
258	. 3	f f	t3	14	74	
259	3	f	t3	14	73	
260	3	£	t3	14	63	
261	3 3	£	t4	11	84	
262	3	£	t4	11	84	
263	3	f	t4	11	76	
264	3	£	t4	11	75	
265	3	£	t4	11	77	
266	3	£	t4	12	75	
267	3	£	t4	12	75	
268	3	f	t4	12	77	
269	3	£	t4	12	79	
270	3	£	t4	12	75	
271	3	f	t4	13	71	
272	3	f	t4	13	69	
273	3	f	t4	13	68	
				-		

Experimental Data 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
274	3	£	t4	13	69
275	3	£	t4	13	67
276	3	£	t4	14	72
277	3	f	t4	14	72
278	3	£	t4	14	71
279	3	f	t4	14	71
280	3	f	t4	14	73
281	3	£	t5	11	74
282	3	f	t5	11	74
283	3	f	t5	11	73
284	3	f	t5	11	71
285	3	£	t5	11	73
286	3	£	t5	12	65
287	3	£	t5	12	66
288	3	£	t5	12	66
289	3	£	t5	12	67
290	3	£	t5	12	66
291	3	£	t5	13	76
292	3	f	t5	13	77
293	3	f	t5	13	73
294	3	f	t5	13	71

Experimental Data 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
295	3	f	t5	13	70
296	3	f	t5	14	83
297	3	f	t5	14	82
298	3	f	t5-	14	80
299	3 3	£	t5	14	78
300	.3	f	t5	14	85
301	4	f	t1	11	69
302	4	f	t1	11	66
303	4	f	t1	11	65
304	4	f	t1	11	70
305	4	f	t1	11	68
306	4	f	t1	12	71
307	4	f	tl.	12	72
308	4	£	t1	12	69
309	4	£	t1	12	70
310	4	f	tl	12	69
311	4	f	t1	13	82
312	4	f	tl tl	13	84
313	4	£	tl +1	13	84
314	4	f	tl 41	13	82
315	4	f	t1	13	7.8

Experimental Data 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
316	4	f	tl	14	73:
317	4	£	t1	14	76
318	4	£	t1	14	72
319	4	f	t1	14	73
320	4	£	t1	14	72
321	4	£	t2	11	67
322	4	£	t2	11	66
323	4	£	t2	11	67
324	4	£	t2	11	63
325	4	£	t2	11	64
326	4	£	t2	12	65
327	4	f	t2	12	65
328	4	f	t2	12	67
329	4	f	t2	12	67
330	4	f	t2	12	70
331	4	f	t2	13	70
332	4	f	t2	13	67
333	4	f	t2	13	69
334	4	f	t2	13	69
335	4	f	t2	13	6,9
336	4	f	t2	14	68

Experimental Data 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
0.05		·	#1		
337	4	f	t2	14	70
338	4	f	t2	14	70
339	4	f	t2	14	72
340	4	£	t2	14	71
341	4	f	t3	11	63
342	4	f	t3	11	65
343	4	f	t3	11	65
344	4	f	t3	11	67
345	4	£	t3	11	64
346	4	£			
			t3	12	69
347	4	f	t3	12	72
348	4	f	t3	12	75
349	4	f	t3	12	73
350	4	f	t3	12	72
351	4	f	t3	13	66
352	4	£	t3	13	65
353	4	£	t3	13	67
354	4	f	t3	13	67
355	4	f	t3	13	68
356	4	f	t3	14	70
357	4	f	t3	14	7.0
557	-3X	Τ.	L J	T.4	.į

Experimental Data 18:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
358	4	f	t3	14	70
359	4	f	t3	14	70
360	4	f	t3	14	70
361	4	£	t4	11	73
362	4	£	t4	11	75
363	4	f	t4	11	78
364	4	£	t4	11	80
365	4	£	t4	11	71
366	4	£	t4	12	77
367	4	£	t4	12	78
368	4	f	t4	12	78
369	4	£	t4	12	78
370	4	f	t4	12	78
371	4	f	t4	13	61
372	4	f	t4	13	62
373	4	f	t4	13	63
374	4	f	t4	13	62
375	4	f	t4	13	61
376	4	f	t4	14	69
377	4	f	t4	14	65
378	4	£	t4	14	65

Experimental Data 19:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE	
379	4	£	t4	14	67	
380	4	f	t4	14	67	
381	4	f	t5	11	71	
382	4	£	t5	11	69	
383	4	£	t5	11	73	
384	4	£	t5	11	71	
385	4	£	t5	11	72	
386	4	f	t5	12	64	
387	4	£	t5	12	64	
388	4	f	t5	12	64	
389	4	f	t5	12	66	
390	4	f	t5	12	65	
391	4	f	t5	13	67	
392	4	£	t5	13	66	
393	4	f	t5	13	66	
394	4	f	t5	13	67	
395	4	f	t5	13	69	
396	4	f	t5	14	81	
397	4	£	t5	14	81	
398	4	£	t5	14	81	
399	4	f	t5	14	80	

Experimental Data 20 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
400 401 402 403 404	4 5 5 3 5	f f f f	t5 t1 t1 t1 t1	14 11 11 11	83 69 70 70
405	5	f	t1	11	69
406	5	f	t1	12	68
407	5	f	t1	12	69
408	3	f	t1	12	69
409	5	f	t1	12	69
410	5	f	t1	12	68
411	5	f	t1	13	84
412	5	f	t1	13	83
413	3	f	t1	13	77
414	5	f	t1	13	82
415	5	f	t1	13	85
416 417	5 5	f f	tl tl	14	79 77 79
418	3	f	t1	14	79
419	5	f	t1	14	71
420	5	f	t1	14	78

Experimental Data \$23\$\$ 17:22 Monday, December 13, 1993

					<u> </u>	•
OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE	
463	3	f	t4	11	77	
464	5	f	t4	11	77	
465	5	f	t4	11	79	
466	5	f	t4	12	70	
467	5	£	t4	12	70	
468	3	f	t4	12	71	
469	5	f	t4	12	71	
470	5	£	t4	12	69	
471	5	£	t4	13	65	
472	5	£	t4	13	65	
473	3	£	t4	13	65	
474	5	f	t4	13	65	
475	5	f	t4	13	64	
476	5	f	t4	14	69	
477	5	£	t4	14	72	
478	3	£	t4	14	68	
479	5	f	t4	14	68	
480	5	£	t4	14	64	
481	5	f	t5	11	66	
482	5	f	t5	11	67	
483	3	f	t5	11	67	

Experimental Data 24 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
484	5	£	t5	11	69
485	5	£	t5	11	69
486	5	£	t5	12	63
487	5	f f	t5	12	63
488	3	f	t5	12	64
489	5	f	t5	12	64
490	5	f	t5	12	63
491	5	f	t5	13	80
492	5	f	t5	13	79
493	3	£	t5	13	77
494	5	f	t5	13	77
495	5	f	t5	13	76
496	5	f	t5	14	81
497	5	f	t5	14	81
498	3	£	t5	14	83
499	5	f	t5	14	83
500	5	£	t5	14	80
501	6	f	t1	11	68
502	6	£	t1	11	67
503	6	f	t1	11	69
504	6	£	t1	11	69

Experimental Data 21 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE	
421	5	f	t2	11	59	
422	5	f	t2	11	59	
423	3	f	t2	11	60	
424	5		t2	11	60	
425	5	f f f f	t2	11	62	
426	5	f	t2	12	68	
427	5	f	t2	12	70	
428	3	f	t2	12	69	
429	5	f	t2	12	69	
430	5	£	t2	12	66	
431	5	f	t2	13	82	
432	5	f	t2	13	79	
433	3	£	t2	13	77	
434	5	£	t2	13	77	
435	5	f	t2	13	79	
436	5	f	t2	14	60	
437	5	£	t2	14	60.	
438	3	f	t2	14	61	
439	5	f	t2	14	62	
440	5	f	t2	14	62	
441	5	f	t3	11	66	

Experimental Data 22
17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
442	5	f	t3	11	67
443	3	£	t3	11	67
444	5	£	t3	11	69
445	5	£	t3	11	69
4.4.6	5	£	t3	12	88
447	5	£	t3	12	85
448	3	f	t3	12	76
449	5	£	t3	12	79
450	5	£	t3	12	79
451	5	£	t3	13	63
452	5	£	t3	13	70
453	3	f	t3	13	64
454	5	£	t3	13	69
455	5	£	t3	13	66
456	5	£	t3	14	67
457	5	£	t3	14	68
458	3	£	t3	14	68
459	5	f	t3	14	69
460	5	£	t3	14	67
461	5	f	t4	11	75
462	5	£	t4	11	7.5

Experimental Data 25 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
505 506 507 508 509 510 511 512	6666666666	f f f f f	t1 t1 t1 t1 t1 t1	11 12 12 12 12 12 12 13	67 70 70 71 71 70 59 63
513 514 515	6 6 6	f f f	tl tl tl	13 13 13	64 63 64
516 517 518	6 6 6	f f f	t1 t1 t1	14 14 14	66 67 66
519 520 521 522 523 524	6 6 6 6	f f f f	t1 t2 t2 t2 t2	14 14 11 11 11	69 68 58 59 55 63
525	6	£	t2	11	62

Experimental Data 26 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
526	6	£	t2	12	62
527	6	£	t2	12	64
528	6	£	t2	12	64
529	6	f	t2	12	65
530	6	f	t2	12	65
531	6	f	t2	13	73
532	6	f	t2	13	73
533	6	f	t2	13	69
534	6	f	t2	13	69
535	6	f	t2	13	72
536	6	f	t2	14	67
537	6	f	t2	14	68
538	6	f	t2	14	68
539	6	£	t2	14	69
540	6	£	t2	14	68
541	6	f	t3	11	64
542	6	f	t3	11	64
543	6	f	t3	11	66
544	6	f	t3	11	64
545	6	f	t3	11	64
546	6	f	t3	12	73

Experimental Data 27 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE	
547	6	f	t3	12	72	
548	6	f	t3	12	72	
549	6	f	t3	12	71	
550	6	£	t3	12	71	
551	6	f	t3	13	70	
552	. 6	f	t3	13	70	
553	6	f	t3	13	69	
554	6	f	t3	13	69	
555	6	f	t3	13	69	
556	6	f	t3	14	69	
557	6	f	t3	14	68	
558	6	f	t3	14	69	
559	6	f	t3	14	67	
560	6	£	t3	14	69	
561	6	f	t4	11	81	
562	6	f	t4	11	79	
563	6	f	t4	11	79	
564	6	f	t4	11	81	
565	6	f	t4	11	74	
566	6	f	t4	12	69	

Experimental Data 28 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
568	6	£	t4	12	66
569	6	f	t4	12	69
570	6	£	t4	12	66
571	6	£	t4	13	75
572	6	£	t4	13	74
573	6	£	t4	13	71
574	6	£	t4	13	74
575	6	f	t4	13	70
576	6	£	t4	14	72
577	6	£	t4	14	70
578	6	£	t4	14	70
579	6	f	t4	14	70
580	6	f	t4	14	72
581	6	£	t5	11	77
582	6	£	t5	11	76
583	6	f	t5	11	76
584	6	£	t5	11	78
585	6	f	t5	11	78
586	6	£	t5	12	60
587	6	£	t5	12	60
588	6	f	t5	12	59

Experimental Data 29 17:22 Monday, December 13, 1993

589 6 f t5 12 63 590 6 f t5 12 63 591 6 f t5 13 87 592 6 f t5 13 87 593 6 f t5 13 83 594 6 f t5 13 81 595 6 f t5 14 73 596 6 f t5 14 72 598 6 f t5 14 72 598 6 f t5 14 72 600 6 f t5 14 72 600 6 f t5 14 72 601 7 m t1 11 70 602 8 m t1 11 69 604 7 m t1 11 69 605 7 m t1 12 75 <td< th=""><th>OBS</th><th>SUBJECT</th><th>SEX</th><th>TYPE</th><th>SLEVEL</th><th>HRATE</th></td<>	OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
590 6 f t5 12 63 591 6 f t5 13 87 592 6 f t5 13 87 593 6 f t5 13 83 594 6 f t5 13 81 595 6 f t5 14 73 596 6 f t5 14 72 598 6 f t5 14 72 599 6 f t5 14 72 600 6 f t5 14 72 601 7 m t1 11 70 602 8 m t1 11 69 604 7 m t1 11 69 605 7 m t1 12 75 607 8 m t1 12 73 608 7 m t1 12 66 <td>589</td> <td>6</td> <td>£</td> <td>+ 5</td> <td>12</td> <td>63</td>	589	6	£	+ 5	12	63
591 6 f t5 13 87 592 6 f t5 13 87 593 6 f t5 13 83 594 6 f t5 13 81 595 6 f t5 14 73 596 6 f t5 14 72 598 6 f t5 14 69 599 6 f t5 14 72 600 6 f t5 14 72 601 7 m t1 11 70 602 8 m t1 11 70 603 7 m t1 11 69 604 7 m t1 11 69 605 7 m t1 12 75 607 8 m t1 12 73 608 7 m t1 12 66 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
592 6 f t5 13 87 593 6 f t5 13 83 594 6 f t5 13 81 595 6 f t5 14 73 596 6 f t5 14 72 598 6 f t5 14 69 599 6 f t5 14 72 600 6 f t5 14 72 601 7 m t1 11 70 602 8 m t1 11 69 603 7 m t1 11 69 604 7 m t1 11 67 606 7 m t1 12 75 607 8 m t1 12 73 608 7 m t1 12 66						
593 6 f t5 13 83 594 6 f t5 13 81 595 6 f t5 13 81 596 6 f t5 14 73 597 6 f t5 14 72 598 6 f t5 14 69 599 6 f t5 14 72 600 6 f t5 14 72 601 7 m t1 11 70 602 8 m t1 11 70 603 7 m t1 11 69 604 7 m t1 11 69 605 7 m t1 12 75 607 8 m t1 12 73 608 7 m t1 12 66			f			
594 6 f t5 13 81 595 6 f t5 13 81 596 6 f t5 14 73 597 6 f t5 14 72 598 6 f t5 14 69 599 6 f t5 14 72 600 6 f t5 14 72 601 7 m t1 11 70 602 8 m t1 11 70 603 7 m t1 11 69 604 7 m t1 11 69 605 7 m t1 12 75 607 8 m t1 12 73 608 7 m t1 12 66			£			
596 6 f t5 14 73 597 6 f t5 14 72 598 6 f t5 14 69 599 6 f t5 14 72 600 6 f t5 14 72 601 7 m t1 11 70 602 8 m t1 11 70 603 7 m t1 11 69 604 7 m t1 11 69 605 7 m t1 12 75 607 8 m t1 12 73 608 7 m t1 12 66	594		f			
596 6 f t5 14 73 597 6 f t5 14 72 598 6 f t5 14 69 599 6 f t5 14 72 600 6 f t5 14 72 601 7 m t1 11 70 602 8 m t1 11 70 603 7 m t1 11 69 604 7 m t1 11 69 605 7 m t1 12 75 607 8 m t1 12 73 608 7 m t1 12 66	595		£			
598 6 f t5 14 69 599 6 f t5 14 72 600 6 f t5 14 72 601 7 m t1 11 70 602 8 m t1 11 70 603 7 m t1 11 69 604 7 m t1 11 69 605 7 m t1 11 67 606 7 m t1 12 75 607 8 m t1 12 73 608 7 m t1 12 66	596	6			14	73
599 6 f t5 14 72 600 6 f t5 14 72 601 7 m t1 11 70 602 8 m t1 11 70 603 7 m t1 11 69 604 7 m t1 11 69 605 7 m t1 11 67 606 7 m t1 12 75 607 8 m t1 12 73 608 7 m t1 12 66	597	6	£	t5	14	72
600 6 f t5 14 72 601 7 m t1 11 70 602 8 m t1 11 70 603 7 m t1 11 69 604 7 m t1 11 69 605 7 m t1 11 67 606 7 m t1 12 75 607 8 m t1 12 73 608 7 m t1 12 66	598	6	f	t5	14	69
601 7 m t1 11 70 602 8 m t1 11 70 603 7 m t1 11 69 604 7 m t1 11 69 605 7 m t1 11 67 606 7 m t1 12 75 607 8 m t1 12 73 608 7 m t1 12 66	599	6	f	t5	14	72
602 8 m t1 11 70 603 7 m t1 11 69 604 7 m t1 11 69 605 7 m t1 11 67 606 7 m t1 12 75 607 8 m t1 12 73 608 7 m t1 12 66	600	6	£	t5	14	72
603 7 m t1 11 69 604 7 m t1 11 69 605 7 m t1 11 67 606 7 m t1 12 75 607 8 m t1 12 73 608 7 m t1 12 66	601	7	m	t1	11	70
604 7 m t1 11 69 605 7 m t1 11 67 606 7 m t1 12 75 607 8 m t1 12 73 608 7 m t1 12 66		8	m	t1	11	70
605 7 m t1 11 67 606 7 m t1 12 75 607 8 m t1 12 73 608 7 m t1 12 66		7	m	t1	11	69
606 7 m t1 12 75 607 8 m t1 12 73 608 7 m t1 12 66	604	7	m	t1	11	69
607 8 m t1 12 73 608 7 m t1 12 66	605	7	m	t1	11	67
608 7 m t1 12 66	606	7	m	t1	12	75
			m	t1	12	
609 7 m t1 12 69		•	m	t1	12	
	609	7	m	tl,	12	69

Experimental Data 30 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
610	7	m	t1	12	69
611	7	m	t1	13	59
612	8	m	t1	13	61
613	7	m	t1	13	64
614	7	m	t1	13	61
615	7	m	t1	13	63
616	7	m	t1	14	80
617	8	m	t1	14	79
618	7	m	t1	14	66
619	7	m	tl	14	75
620	7	m	t1	14	75
621	7	m	t2	11	63 🚉
622	8	m	t2	11	62
623	7	m	t.2	11	63
624	7	m	t2	11	62
625	7	m	t2	11	63
626	7	m	t2	12	71
627	8	m	t2	12	71
628	7	m	t2	12	73
629	7	m	t2	12	69
630	7	m	t2	12	71

Experimental Data 31 17:22 Monday, December 13, 1993

					_
OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
631	7	m	t2	13	62
632	8	m	t2	13	62
633	7	m	t2	13	59
634	7	m	t2	13	60
635	.7	m	t2	13	60
636	7	m	t2	14	69
637	8	m	t2	14	67
638	7	m	t2	14	67
639	7	m	t2	14	67
640	7	m	t2	14	68
641	7	m	t3	11	64
642	8	m	t3	11	64
643	7	m	t3	11	64
644	7	m	t3	11	65
645	7	m	t3	11	65
646	7	m	t3	12	70
647	8	m	t3	12	69
648	7	m	t3	12	69
649	7	m	t3	12	68
650	7	m	t3	12	67
651	7	m	t3	13	69

Experimental Data 32 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
652 653 654 655 656 657 658	8 7 7 7 7 8 7	m m m m m m	t3 t3 t3 t3 t3 t3	13 13 13 14 14 14	67 68 71 70 63 62 64
659 660 661	7 7 7	m m m	t3 t3 t4	14 14 11	63 62 73
662 663	8 7	m m	t4 t4	11 11	72 76 76
664 665 666 667	7 7 7 8	m m m m	t4 t4 t4	11 11 12 12	76 77 60 59
668 669 670 671	7 7 7 7	m m m m	t 4 t 4 t 4 t 4	12 12 12 12	63 63 63 69
672	8	m	t4	13	70

Experimental Data 33 17:22 Monday, December 13, 1993

				,
SUBJECT	SEX	TYPE	SLEVEL	HRATE
7	m	t4	13	69
7	m	t4	13	69
7	m	t4	13	69
7	m	t4	14	66
8	m	t4	14	65
	m	t4	14	65
7	m	t4	14	66
7	m	t4	14	67
7	m	t5	11	59
8	m	t5	11	55
7	m	t5	11	57
7	m	t5	11	59
7	m	t5	11	58
7	m	t5	12	77
8	m	t5	12	77
7	m	t5	12	75
7	m	t5	12	75
7	m	t5	12	75
7	m	t5	13	69
8	m	t5	13	70
7	m	t5	13	71
	7 7 7 8 7 7 7 8 7 7 7 8 7	7 m 7 m 7 m 8 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m 8 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m 8 m 7 m 7 m 8 m 7 m 8 m 7 m 8 m	7 m t4 7 m t5 8 m t5 7 m t5 8 m t5 7 m t5 8 m t5 8 m t5	7 m t4 l3 7 m t4 l3 7 m t4 l3 7 m t4 l4 8 m t4 l4 8 m t4 l4 7 m t4 l4 7 m t4 l4 7 m t5 l1 8 m t5 l1 7 m t5 l2 8 m t5 l2 7 m t5 l2

Experimental Data 34 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
694	7	m	t5	13	72
695	7	m	t5	13	71
696	7	m	t5	14	67
697	8	m	t5	14	67
698	7	m	t5	14	70
699	7	m	t5	14	70
700	7	m	t5	14	65
701	8	m	t1	11	64
702	8	m	t1	11	64
703	8	m	t1	11	67
704	8	m	t1	11	64
705	8	m	t1	11	65
706	8	m	t1	12	57
707	8	m	t1	12	59
708	8	m	t1	12	67
709	8	m	t1	12	65
710	8	m	t1	12	61
711	8	m	t1	13	64
712	8	m	t1	13	64
713	8	m	tl	13	64
714	8	m	t1	13	65

Experimental Data 35 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
715	8	m	t1	13	64
716	8	m	t1	14	70
717	8	m	t1	14	70
718	. 8	m	t1	14	70
719	8	m	t1	14	68
720	8	m	t1	14	65
721	8	m	t2	11	61
722	8	m	t2	11	60
723	8	m	t2	11	57
724	8	m	t2	11	58
725	8	m	t2	11	59
726	8	m	t2	12	63
727	8	m	t2	12	69
728	8	m	t2	12	66
729	8	m	t2	12	62
730	8	m	t2	12	63
731	8	m	t2	13	57
732	8	m	t2	13	62
733	8	m	t2	13	60
734	8	m	t2	13	63
735	8	m	t2	13	64

Experimental Data 36 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
736	8	m	t2	14	64
737	8	m	t2	14	66
738	8	m	t2	14	77
739	8	m	t2	14	75
740	8	m	t2	14	70
741	8	m	t3	11	58
742	8	m	t3	11	59
743	8	m	t3	11	63
744	8	m	t3	11	60
745	8	m	t3	11	59
746	8	m	t3	12	55
747	8	m	t3	12	65
748	8	m	t3	12	65
749	8	m	t3	12	64
750	8	m	t3	12	62
751	8	m	t3	13	60
752	8	m	t3	13	63
753	8	m	t3	13	65
754	8	m	t3	13	68
755	8	m	t3	13	67
756	8	m	t3	14	62

Experimental Data 37 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
757	8	m	t3	14	66
758	8	m	t3	14	67
759	8	m	t3	14	66
760	8	m	t3	14	64
761	.8	m	t4	11	57
762	8	m	t4	11	58
763	8	m	t4	11	58
764	8	m	t4	11	58
765	8	m	t4	11	59
766	8	m	t4	12	62
767	8	m	t4	12	63
768	8	m	t4	12	61
769	8	m	t4	12	61
770	8	m	t4	12	63
771	8	m	t4	13	59
772	8	m	t4	13	60
773	8	m	t4	13	62
774	8	m	t4	13	63
775	8	m	t4	13	62
776	8	m	t4	14	62
777	8	m	t4	14	62

Experimental Data 38 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
778	8	m	t4	14	62
779	8	m	t4	14	62
780	8	m	t4	14	67
781	8	m	t5	11	63
782	8	m	t5	11	65
783	8	m	t5	11	64
784	8	m	t5	11	63
785	8	m	t5	11	64
786	8	m	t5	12	65
787	8	m	t5	12	63
788	8	m	t5	12	64
789	8	m	t5	12	69
790	8	m	t5	12	63
791	8	m	t5	13	70
792	8	m	t5	13	71
793	8	m	t5	13	68
794	8	m	t5	13	64
795	8	m	t5	13	57
796	8	m	t5	14	55
797	8	m	t5	14	56
798	8	m	t5	14	61

Experimental Data 39 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
799	8	m	t5	14	61
800	8	m	t5	14	60
801	9	m	tl	11	61
802	9	m	t1	11	62
803	9	m	t1	11	61
804	9	m	t1	11	62
805	9	m	t1	11	59
806	9	m	t1	12	66
807	9	m	t1	12	70
808	9	m	t1	12	69
809	9	m	t1	12	67
810	9	m	t1	12	68
811	9	m	t1	13	69
812	9	m	t1	13	71
813	9	m	t1	13	67
814	9	m	t1	13	69
815	9	m	t1	13	69
816	9	m	t1	14	70
817	9	m	t1	14	69
818	9	m	t1	14	69
819	9	m	t1	14	68

Experimental Data 40 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
820	9	m	t1	14	68
821	9	m	t2	11	64
822	9	m	t2	11	67
823	9	m	t2	11	71
824	9	m	t2	11	66
825	9	m	t2	11	66
826	9	m	t2	12	72
827	9	m	t2	12	74
828	9	m	t2	12	73
829	9	m	t2	12	74
830	9	m	t2	12	73
831	9	m	t2	13	62
832	9	m	t2	13	62
833	9	m	t2	13	63
834	9	m	t2	13	63
835	9	m	t2	13	62
836	9	m	t2	14	70
837	9	m	t2	14	70
838	9	m	t2	14	71
839	9	m	t2	14	67
840	9	m	t2	14	69

Experimental Data 41 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE	
841	9	m	t3	11	67	
842	9	m	t3	11	66	
843	9	m	t3	11	67	
844	9	m	t3	11	66	
845	9	m	t3	11	64	
846	9	m	t3	12	66	
847	9	m	t3	12	67	
848	9	m	t3	12	69	
849	9	m	t3	12	68	
850	9	m	t3	12	66	
851	9	m	t3	13	67	
852	9	m	t3	13	67	
853	9	m	t3	13	71	
854	9	m	t3	13	70	
855	9	m	t3	13	70	
856	9	m	t3	14	67	
857	9	m	t3	14	69	
858	9	m	t3	14	67	
859	9	m	t3	14	69	
860	9	m	t3	14	68	
861	9	m	t4	11	70	

Experimental Data 42 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
862	9	m	t4	11	68
863	9	m	t4	11	66
864	9	m	t4	11	66
865	9	m	t4	11	67
866	9	m	t4	12	66
867	9	m	t4	12	64
868	9	m	t4	12	64
869	9	m	t4	12	63
870	9	m	t4	12	63
871	9	m	t4	13	66
872	9	m	t4	13	70
873	9	m	t4	13	69
874	9	m	t4	13	70
875	9	m	t4	13	69
876	9	m	t4	14	67
877	9	m	t4	14	67
878	9	m	t4	14	68
879	9	m	t4	14	67
880	9	m	t4	14	67
881	9	m	t5	11	64
882	9	m	t5	11	66

Experimental Data 43 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
OBS 883 884 885 886 887 888 899 891 892 893 894 895	SUBJECT 9 9 9 9 9 9 9 9 9 9	SEX m m m m m m m m m m m m	TYPE t55555555555555555555555555555555555	SLEVEL 11 11 11 12 12 12 12 12 13 13 13 13 13	HRATE 67 67 65 73 70 68 66 72 73 72 71
896 897 898 899 900 901 902 903	9 9 9 9 9 10 10	m m m m m m	t5 t5 t5 t5 t5 t1 t1	14 14 14 14 14 11 11	71 70 72 72 65 65 65

Experimental Data 44 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
904	10	m	t1	11	61
905	10	m	t1	11	62
906	10	m	t1	12	66
907	10	m	t1	12	68
908	10	m	t1	12	70
909	10	m	t1	12	71
910	10	m	t1	12	69
911	10	m	t1	13	77
912	10	m	t1	13	77
913	10	m	t1	13	67
914	10	m	t1	13	70
915	10	m	t1	13	70
916	10	m	t1	14	70
917	10	m	t1	14	68
918	10	m	t1	14	68
919	10	m	t1	14	71
920	10	m	t1	14	69
921	10	m	t2	11	63
922	10	m	t2	11	63
923	10	m	t2	11	59
924	10	m	t2	11	61

Experimental Data 45 17:22 Monday, December 13, 1993

				17:22 MO	nday, Decem	wer 13,	1993
OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE		
925	10	m	t2	11	60		
926	10	m	t2	12	69		
927	10	m	t2	12	69		
928	10	m	t2	12	68		
929	. 10	m	t2	12	68		
930	10	m	t2	12	68		
931	10	m	t2	13	61		
932	10	m	t2	13	60		
933	10	m	t2	13	63		
934	10	m	t2	13	62		
935	10	m	t2	13	62		
936	10	m	t2	14	70		
937	10	m	t2	14	68		
938	10	m	t2	14	67		
939	10	m	t2	14	67		
940	10	m	t2	14	68		
941	10	m	t3	11	64		
942	10	m	t3	11	66		
943	10	m	t3	11	65		
944	10	m	t3	11	64		
945	10	m	t3	11	61		

Experimental Data 46 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
946 947 948	10 10 10	m m m	t3 t3 t3	12 12 12	66 66 65
949 950 951	10 10 10	m m	t3 t3 t3	12 12 13	65 66 71
952 953	10 10	m m m	t3 t3	13 13	72 75
954 955 956	10 10 10	m m	t3 t3	13 13	71 72 73
957 958	10	m m m	t3 t3 t3	14 14 14	75 70
959 960 961	10	m m	t3 t3	14 14	77 74
962 963	10 10 10	m m m	t4 t4 t4	11 11 11	66 67 65
964 965 966	10 10 10	m m m	t4 t4 t4	11 11 12	65 66 62

Experimental Data 47 17:22 Monday, December 13, 1993

				11,22 2.0	maaj, boots	201 207 201
OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE	
967	10	m	t4	12	62	
968	10	m	t4	12	65	
969	10	m	t4	12	63	
970	10	m	t4	12	63	
971	.10	m	t4	13	70	
972	10	m	t4	13	70	
973	10	m	t4	13	71	
974	10	m	t4	13	71	
975	10	m	t4	13	70	
976	10	m	t4	14	64	
977	10	m	t4	14	64	
978	10	m	t4	14	64	
979	10	m	t4	14	64	
980	10	m	t4	14	65	
981	10	m	t5	11	72	
982	10	m	t5	11	63	
983	10	m	t5	11	64	
984	10	m	t5	11	63	
985	10	m	t5	11	63	
986	10	m	t5	12	66	
987	10	m	t5	12	65	

Experimental Data 48 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
988	10	m	t5	12	66
989	10	m	t5	12	64
990	10	m	t5	12	66
991	10	m	t5	13	77
992	10	m	t5	13	76
993	10	m	t5	13	69
994	10	m	t5	13	69
995	10	m	t5	13	71
996	10	m	t5	14	70
997	10	m	t5	14	70
998	10	m	t5	14	71
999	10	m	t5	14	72
1000	10	m	t5	14	69
1001	11	f	t1	11	66
1002	11	£	t1	11	65
1003	11	£	tl	11	63
1004	11	f	t1	11	61
1005	11	f	t1	11	66
1006	11	f	t1	12	66
1007	11	f	t1	12	68
1008	11	f	t1	12	70

Experimental Data 49 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
1009	11	£	t1	12	71
1010	11	f	t1	12	71
1011	11	f	t1	13	77
1012	11	£	t1	13	77
1013	11	f	t1	13	67
1014	11	£	t1	13	70
1015	11	f	t1	13	70
1016	11	f	t1	14	70
1017	11	f	t1	14	68
1018	11	f f	t1	14	68
1019	11	£	tl	14	71
1020	11	f	tl	14	69
1021	11	f	t2	11	63
1022	11	f	t2	11	63
1023	11	£	t2	11	59
1024	11	f	t2	11	61
1025	11	£	t2	11	60
1026	11	f	t2	12	69
1027	11	f	t2	12	69
1028	11	f	t2	12	68
1029	11	f	t2	12	68

Experimental Data 50 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
1030 1031 1032 1033 1034 1035 1036	11 11 11 11 11 11	f f f f f	t2 t2 t2 t2 t2 t2 t2	12 13 13 13 13 13	68 61 60 63 62 62 70
1037 1038 1039	11 11 11	f f f	t2 t2 t2	14 14 14	68 67 67
1040 1041 1042	11 11 11	f f f	t2 t3 t3	14 11 11	68 64 66
1043 1044 1045	11 11 11	f f f	t3 t3	11 11 11	65 64 61
1046 1047 1048 1049 1050	11 11 11 11	f f f f	t3 t3 t3 t3	12 12 12 12 12	66 66 65 65

Experimental Data 51 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
1051 1052 1053 1054 1055 1056 1057 1058 1059	11 11 11 11 11 11 11	f f f f f f	t3 t3 t3 t3 t3 t3 t3	13 13 13 13 14 14 14	71 72 75 71 72 73 75 70
1060 1061 1062	11 11 11	f f f	t3 t4	14	74 66
1062 1063 1064 1065 1066	11 11 11 11	f f f f	t4 t4 t4 t4	11 11 11 11 12	67 65 65 65 62
1067 1068 1069 1070 1071	11 11 11 11	f f f f	t4 t4 t4 t4 t4	12 12 12 12 12	62 65 63 63 70

Experimental Data 52 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
1072	11	£	t4	13	69
1073	11	f	t4	13	71
1074	11	f	t4	13	71
1075	11	f	t4	13	70
1076	11	f	t4	14	64
1077	11	f	t4	14	64
1078	11	f	t4	14	64
1079	11	f	t4	14	64
1080	11	f	t4	14	65
1081	11	f	t5	11	72
1082	11	f	t5	11	63
1083	11	f	t5	11	64
1084	11	f	t5	11	63
1085	11	f	t5	11	63
1086	11	f	t5	12	66
1087	11	f	t5	12	65
1088	11	£	t5	12	66
1089	11	f	t5	12	64
1090	11	f	t5	12	66
1091	11	f	t5	13	77
1092	11	£	t5	13	76

Experimental Data 53 17:22 Monday, December 13, 1993

					<u> </u>	,
OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE	
1093	11	f	t5	13	69	
1094	11	£	t5	13	69	
1095	11	f	t5	13	71	
1096	11	£	t5	14	70	
1097	.11	f	t5	14	70	
1098	11	f	t5	14	71	
1099	11	£	t5	14	72	
1100	11	f	t5	14	70	
1101	12	f	t1	11	66	
1102	12	ŕ	t1	11	64	
1103	12	f	tl	11	64	
1104	12	£	t1	11	64	
1105	12	f	t1	11	64	
1106	12	£	t1	12	66	
1107	12	£	t1	12	68	
1108	12	£	t1	12	70	
1109	12	£	t1	12	71	
1110	12	f	t1	12	67	
1111	12	£	t1	13	71	
1112	12	f	t1	13	72	
1113	12	f	t1	13	67	

Experimental Data 54 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
1114	12	f	t1	13	70
1115	12	£	t1	13	70
1116	12	£	t.1	14	70
1117	12	£	t1	14	68
1118	12	£	t1	14	68
1119	12	f	t1	14	71
1120	12	£	t1	14	69
1121	12	£	t2	11	63
1122	12	£	t2	11	63
1123	12	£	t2	11	59
1124	12	f	t2	11	61
1125	12	f	t2	11	60
1126	12	f	t2	12	66
1127	12	£	t2	12	69
1128	12	f	t2	12	68
1129	12	£	t2	12	68
1130	12	f	t2	12	68
1131	12	f	t2	13	61
1132	12	f	t2	13	60
1133	12	£	t2	13	63
1134	12	£	t2	13	62

Experimental Data 55
17:22 Monday, December 13, 1993

				17.22 110	nady, booms	JCI 10,	1,700
OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE		
1135	12	f	t2	13	62		
1136	12	f	t2	14	70		
1137	12	f	t2	14	68		
1138	12	f	t2	14	67		
1139	.12	f	t2	14	67		
1140	12	f f	t2	14	68		
1141	12	f	t3	11	64		
1142	12	f	t3	11	66		
1143	12	f	t3	11	65		
1144	12	f	t3	11	64		
1145	12	f	t3	11	61		
1146	12	f	t3	12	66		
1147	12	f f f	t3	12	66		
1148	12	f	t3	12	65		
1149	12	f	t3	12	65		
1150	12	f	t3	12	66		
1151	12	f	t3	13	71		
1152	12	f	t3	13	72		
1153	12	f	t3	13	75		
1154	12	f	t3	13	71		
1155	12	f	t3	13	72		

Experimental Data 56 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
1156 1157 1158 1159 1160 1161 1162 1163 1164	12 12 12 12 12 12 12 12 12	f f f f f	t3 t3 t3 t3 t4 t4	14 14 14 14 14 11 11	73 75 70 77 74 66 67 65 65
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175	12 12 12 12 12 12 12 12 12 12 12	£ £ £ £ £ £ £ £ £	t4 t4 t4 t4 t4 t4 t4 t4	11 12 12 12 12 13 13 13 13 13	62 62 65 63 63 70 70 71 71 70 64

Experimental Data 57 17:22 Monday, December 13, 1993

				_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		32 ,	
OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE		
1177	12	f	t4	14	64		
1178	12	f	t4	14	64		
1179	12	f	t4	14	64		
1180	12	f	t4	14	65		
1181	12	f	t5	11	72		
1182	12	f	t5	11	63		
1183	12	f	t5	11	64		
1184	12	£	t5	11	63		
1185	12	f	t5	11	63		
1186	12	f	t5	12	66		
1187	12	f	t5	12	65		
1188	12	f	t5	12	66		
1189	12	f	t5	12	64		
1190	12	f	t5	12	66		
1191	12	f	t5	13	77		
1192	12	f	t5	13	76		
1193	12	f	t5	13	69		
1194	12	f	t5	13	69		
1195	12	f	t5	13	71		
1196	12	£	t5	14	70		
1197	12	f	t5	14	70		

Experimental Data 58 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
1198	12	£	t5	14	71
1199	12	£	t5	14	72
1200	12	£	t5	14	69
1201	13	f	t1	11	59
1202	13	f	t1	11	55
1203	13	f	t1	11	53
1204	13	f	t1	11	55
1205	13	f	t1	11	57
1206	13	£	t1	12	70
1207	13	£	t1	12	68
1208	13	£	t1	12	70
1209	13	£	t1	12	71
1210	13	f	t1	12	69
1211	13	£	t1	13	77
1212	13	£	t1	13	77
1213	13	£	t1	13	67
1214	13	£	t1	13	70
1215	13	f	tl	13	70
1216	13	f	t1	14	70
1217	13	f	t1	14	68
1218	13	£	t1	14	71

Experimental Data 59 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
1219	13	f	t1	14	70
1220	13	f	t1	14	69
1221	13	f	t2	11	63
1222	13	£	t2	11	63
1223	13	f f	t2	11	60
1224	13	f	t2	11	61
1225	13	£	t2	11	60
1226	13	f f f f	t2	12	69
1227	13	£	t2	12	69
1228	13	f	t2	12	68
1229	13	f	t2	12	68
1230	13	f	t2	12	68
1231	13	f f	t2	13	61
1232	13	£	t2	13	60
1233	13	f f	t2	13	63
1234	13	£	t2	13	62
1235	13	f	t2	13	62
1236	13	£	t2	1.4	70
1237	13	£	t2	14	68
1238	13	£	t2	14	67
1239	13	f	t2	14	67

Experimental Data 60 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
1240	13	£	t2	14	68
1241	13	£	t3	11	64
1242	13	£	t3	11	66
1243	13	£	t3	11	65
1244	13	f	t3	11	64
1245	13	£	t3	11	61
1246	13	£	t3	12	66
1247	13	£	t3	12	66
1248	13	f	t3	12	65
1249	13	f	t3	12	65
1250	13	£	t3	12	66
1251	13	£	t3	13	71
1252	13	£	t3	13	72
1253	13	£	t3	13	75
1254	13	f	t3	13	71
1255	13	f	t3	13	72
1256	13	f	t3	14	73
1257	13	f	t3	14	75
1258	13	£	t3	14	70
1259	13	f	t3	14	77
1260	13	f	t3	14	74

Experimental Data 17:22 Monday, December 13, 1993 OBS SUBJECT HRATE SEX TYPE SLEVEL £ t4 £ t4 f t4 f t4 f t4 £ t4 £ t4 f t4 £ t4 t4 £ f t4 f t4 f t4 £ t4 f t4 f t4 f t4 £ t4 £ t4 t4 f £ t5 Experimental Data 17:22 Monday, December 13, 1993 SUBJECT OBS SEX TYPE SLEVEL HRATE f t5 £ t5 f t5 f t5 f t5 f t5 f t5 f t5 £ t5 f t5 f t5 f t5 £ t5 f t5 f t5 f t5 f t5 f t5 f t5

f

f

t1

t1

Experimental Data 17:22 Monday, December 13, 1993 OBS SUBJECT SEX SLEVEL TYPE HRATE £ tl t1 f f t1 f t1 f t1 f t1 £ t1 f t1 f t1 f t1 £ t1 f tl £ t1 f tl f t1 f t1 f t1 £ t1 f t2 f t2 £ t2 Experimental Data 17:22 Monday, December 13, 1993 OBS SUBJECT SLEVEL HRATE SEX TYPE f t2 £ t2 £ t2 f t2 f t2 £ t2 f t2 f t2 f t2 £ t2 f t2 f t2 f t2 f t2 f t2 £ t2 f t2 f t.3 f t3

f

f

t3

t3

Experimental Data 65 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
1345	14	£	t3	11	65
1346	14	f	t3	12	66
1347	14	f	t3	12	66
1348	14	£	t3	12	65
1349	14	f	t3	12	65
1350	14	f	t3	12	66
1351	14	f	t3	13	71
1352	14	f	t3	13	72
1353	14	f	t3	13	75
1354	1.4	f	+ 3	13	71

f t3 £ t3 f t3 £ t3 f t3 £ t3 f t4 f t4

£ t 4 f t4 f t4

Experimental Data 66 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
1366	14	f	t4	12	62
1367	14	f	t4	12	62
1368	14	f	t4	12	65
1369	14	f	t4	12	63
1370	14	f	t 4	12	63
1371	14	f	t 4	13	70
1372	14	£	t4	13	70
1373	14	£	t4	13	71
1374	14	f	t4	13	71
1375	14		t4	13	70
1376	14	f	t4	14	64
1377	14	f	t4	14	64
1378	14	f	t4	14	64
1379	14	f	t4	14	64
1380	14	f	t4	14	65
1381	14	f	t5	11	72
1382	14	f	t5	11	63
1383	14	f	t5	11	64
1384	1.4	f	t5	11	63
1385	1.4	f	t5	11	63
1386	14	f	t5	12	66

Experimental Data 67 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
1387 1388	14	f	t5	12	65
1389	14 14	f f	t5 t5	12 12	66 64
1390	14	f	t5	12	66
1391	14	£	t5	13	77
1392	14	f	t5	13	76
1393	14	f	t5	13	69
1394	14	f	t5	13	69
1395	14	f	t5	13	71
1396	14	f	t5	14	71
1397	14	f	t5	14	71
1398	14	£	t5	14	71
1399	14	f	t5	14	72
1400	14	f	t5	14	69
1401	15	m	tl	11	65
1402	15	m	t1	11	65
1403	15	m	t1	11	63
1404	15	m	t1	11	61
1405	15	m	t1	11	62
1406	15	m	t1	12	66
1407	15	m	t1	12	68

Experimental Data 68 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
1408 1409 1410	15 15 15	m m m	t1 t1 t1	12 12 12	70 71 69
1411 1412 1413	15 15 15	m m	t1 t1 t1	13 13 13	77 77 67
1414 1415	15 15	m m m	t1 t1	13 13	70 70
1416 1417	15 15	m m	tl tl	14 14	70 68
1418 1419 1420	15 15 15	m m	t1 t1 t1	14 14 14	68 71 69
1421 1422	15 15	m m m	t2 t2	11	63 63
1423 1424	15 15	m m	t2 t2	11 11	59 61
1425 1426 1427	15 15 15	m m m	t2 t2 t2	11 12 12	60 69 69
1428	15	m	t2	12	68

Experimental Data

	17:22	Monday.	December	13.	1993
--	-------	---------	----------	-----	------

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
1429	15	m	t2	12	68
1430	15	m	t2	12	68
1431	15	m	t2	13	61
1432	15	m	t2	13	60
1433	15	m	t2	13	63
1434	15	m	t2	13	62
1435	15	m	t2	13	62
1436	15	m	t2	14	70
1437	15	m	t2	14	68
1438	15	m	t2	14	67
1439	15	m	t2	14	67
1440	15	m	t2	14	68
1441	15	m	t3	11	64
1442	15	m	t3	11	66
1443	15	m	t3	1.1	65
1444	15	m	t3	11	64
1445	15	m	t3	11	61
1446	15	m	t3	12	66
1447	15	m	t3	12	66
1448	15	m	t3	12	65
1449	15	m	t3	12	65

Experimental Data 70 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
1450 1451 1452 1453 1454 1455 1456	15 15 15 15 15 15	m m m m m	t3 t3 t3 t3 t3 t3	12 13 13 13 13 13	66 71 72 75 71 72 73
1457 1458 1459	15 15 15	m m m	t3 t3 t3	14 14 14	75 70 77
1460 1461	15 15	m m	t3 t4	14 11 11	74 66 67
1462 1463 1464 1465	15 15 15 15	m m m m	t4 t4 t4 t4	11 11 11	65 65 66
1466 1467 1468 1469 1470	15 15 15 15	m m m m m	t4 t4 t4 t4	12 12 12 12 12	62 62 65 63 63

Experimental Data 71 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE	
1471	15	m	t4	13	70	
1472	15	m	t4	13	70	
1473	15	m	t4	13	71	
1474	15	m	t4	13	71	
1475	15	m	t4	13	70	
1476	15	m	t4	14	64	
1477	15	m	t4	14	64	
1478	15	m	t4	14	64	
1479	15	m	t4	14	64	
1480	15	m	t4	14	65	
1481	15	m	t5	11	72	
1482	15	m	t5	11	63	
1483	15	m	t5	11	64	
1484	15	m	t5	11	63	
1485	15	m	t5	11	63	
1486	15	m	t5	12	66	
1487	15	m	t5	12	65	
1488	15	m	t5	12	66	
1489	15	m	t5	12	64	
1490	15	m	t5	12	66	
1491	15	m	t5	13	77	

Experimental Data 72 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
1492 1493 1494 1495 1496	15 15 15 15	m m m m	t5 t5 t5 t5	13 13 13 13 14	76 69 71 70
1497	15	m	t5	14	70
1498 1499	15 15	m m	t5 t5	14 14	71 72
1500	15	m	t5	14	69
1501	16	m	t1	11	67
1502	16	m	t1	11	67
1503	16	m	t1	11	67
1504	16	m	t1	11	65
1505	16	m	t1	11	65
1506	16	m	tl	12	68
1507	16	m	t1	12	68
1508	16	m	t1	12	70
1509	16	m	t1	12	71
1510	16	m	tl	12	70
1511	16	m	tl	13	66
1512	16	m	t1	13	65

Experimental Data 73 17:22 Monday, December 13, 1993

				1, 122 110		,	_
OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE		
1513	16	m	t1	13	67		
1514	16	m	t1	13	70		
1515	16	m	tl	13	68		
1516	16	m	tl	14	71		
1517	16	m	t1	14	69		
1518	.16	m	t1	14	68		
1519	16	m	tl	14	71		
1520	16	m	t1	14	69		
1521	16	m	t2	11	64		
1522	16	m	t2	11	63		
1523	16	m	t2	11	64		
1524	16	m	t2	11	62		
1525	16	m	t2	11	62		
1526	16	m	t2	12	82		
1527	16	rn	t2	12	69		
1528	16	m	t2	12	68		
1529	16	m	t2	12	68		
1530	16	m	t2	12	78		
1531	16	m	t2	13	59		
1532	16	m	t2	13	60		
1533	16	m	t2	13	61		

Experimental Data 74 17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
1534 1535	16 16	m m	t2 t2	13 13	62 61
1536	16	m	t2	14	72
1537	16	m	t2	14	69
1538	16	m	t2	14	69
1539	16	m	t2	14	67
1540	16	m	t2	14	68
1541	16	m	t3	11	64
1542	16	m	t3	11	66
1543	16	m	t3	11	65
1544	16	m	t3	11	64
1545	16	m	t3	11	61
1546	16	m	t3	12	66
1547	16	m	t3	12	66
1548	16	m	t3	12	65
1549	16	m	t3	12	65
1550	16	m	t3	12	66
1551	16	m	t3	13	71
1552	16	m	t3	13	72
1553	16	m	t3	13	75
1554	16	m	t3	13	71

Experimental Data 75
17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
OBS 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569	SUBJECT 16 16 16 16 16 16 16 16 16 16 16 16 16	SEX m m m m m m m m m m m	TYPE t3 t3 t33 t44 t44 t44 t44 t44	SLEVEL 13 14 14 14 14 11 11 11 11 11 12 12 12 12 12	72 73 71 70 72 74 66 67 65 65 62 62 63
1570 1571 1572 1573 1574 1575	16 16 16 16 16	m m m m m	t4 t4 t4 t4 t4	12 13 13 13 13	63 70 70 71 71 70

Experimental Data 76
17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
1576	16	m	t4	14	64
1577	16	m	t4	14	64
1578	16	m	t4	14	64
1579	16	m	t4	14	64
1580	16	m	t4	14	65
1581	16	m	t5	11	72
1582	16	m	t5	11	63
1583	16	m	t5	11	64
1584	16	m	t5	11	63
1585	16	m	t5	11	63
1586	16	m	t5	12	66
1587	16	m	t5	12	65
1588	16	m	t5	12	66
1589	16	m	t5	12	64
1590	16	m	t5	12	66
1591	16	m	t5	13	67
1592	16	m	t5	13	68
1593	16	m	t5	13	66
1594	16	m	t5	13	69
1595	16	m	t5	13	67
1596	16	m	t5	14	69

Experimental Data 77
17:22 Monday, December 13, 1993

OBS	SUBJECT	SEX	TYPE	SLEVEL	HRATE
1597	16	m	t5	14	70
1598	16	m	t5	14	71
1599	16	m	t5	14	72
1600	16	m	t5	14	69

APPENDIX F

ANALYSIS OF VARIANCE FOR THE EXPERIMENTAL DATA

The following shows an analysis of variance for the statistical model (computer output generated by $SAS^{\textcircled{\$}}$).

Analysis of Variance Procedure Class Level Information

Class	Levels	Values
TYPE	5	t1 t2 t3 t4 t5
SLEVEL	4	11 12 13 14
SEX	2	f m

Number of observations in data set = 1600

Analysis of Variance for Experimental Data 177 16:58 Sunday, December 12, 1993

Analysis of Variance Procedure

Dependent Variable: HRATE							
		Sum of	Mean				
Source	DF	Squares	Square	F Value	Pr > F		
Model	27	13489.260625	499.602245	25.46	0.0001		
Error	1572	30846.908750	19.622715				
Corrected Total	1599	44336.169375					
	R-Square	C.V.	Root MSE	H	RATE Mean		
	0.304250	6.533981	4.4297534		67.795625		
Source	DF	Anova SS	Mean Square	F Value	Pr > F		
TYPE	4	1956.9287500	489.2321875	24.93	0.0001		
SLEVEL	3	3118.5218750			0.0001		
SEX	1	3361.1006250	3361.1006250	171.29	0.0001		
	Analysis o	f Variance for	Experimental Data		178		
			16:58 Sunday	, December	12, 1993		

Analysis of Variance Procedure

Dependent Variable: HRATE

Source	DF	Anova SS	Mean Square	F Value	Pr > F
TYPE*SLEVEL	12	4382.7312500	365.2276042	18.61	0.0001
TYPE*SEX	4	353.9962500	88.4990625	4.51	0.0013
SLEVEL*SEX	3	315.9818750	105.3272917	5.37	0.0011

REFERENCES

- Andrén, L. 1980. "Noise as a Contributory Factor in the Development of Elevated Arterial Pressure". *Acta Medica Scandinavica*, 207: 493-498.
- Andrén, L., L. Hansson, M. Björkman, and A. Johnson. 1980. "Noise as a Contributory Factor in the Development of Elevated Arterial Pressure". *Acta Med. Scand.* 207: 493-498.
- Asterita, M. F. 1985. The Physiology of Stress. New York: Human Sciences Press
- Brown III, J. E. 1975. "Certain Non-Auditory Physiological Responses to Noise". *American Industrial Hygiene Association Journal*. 36: 285-291.
- Buckley, J. P., and H. H. Smookler. 1970. "Cardiovascular and Biochemical Effects of Chronic Intermittent Neurogenic Stimulation". *Physiological Effects of Noise*. Plenum, New York. 53-71.
- Chen, C. J. 1991. "Measurement of Noise-Evoked Blood Pressure by Means of Averaging Method: Relation Between Blood Pressure Rise and SPL". *J. of Sound and Vibrations*. 151(3): 383-394.
- DeJoy, D. 1984. "The Non-Auditory Effects of Noise: Review and Perspectives for Research". *J. of Auditory Research*. 24: 123-150.
- Davis, R. C., A. M. Buchwald, and R. W. Frankman. 1955. Autonomic and Muscular Stimuli and Their Relation to Simple Stimuli. *Psychological Monographs*. 69 (405).
- Di Nisi, J. 1987. "Cardiovascular Responses to Noise: Effects of Self-Estimated Sensitivity to Noise, Sex, and Time of the Day". *J. of Sound and Vibrations*. 114(2): 271-279.
- Everly, G.S., and S. A. Sodelman. 1987. Assessment of the Human Stress Response. New York: AMS Press, Inc.
- Glass, D. C., and S. E. Singer. 1972. *Urban Stress: Experiments on Noise and Social Stressors*. New York: Academic Press.
- Griefahn, B., and J. Di Nisi. 1992. "Mood and Cardiovascular Functions During Noise, Related to Sensitivity, Type of Noise and Sound Pressure Level". *J. of Sound and Vibrations*. 155(1): 111-123.
- Gulian, E. 1974. *Noise as an Occupational Hazard: Effects on Performance Level*. National Institute of Occupational Safety and Health. Cincinnati, Ohio.

REFERENCES (Continued)

- Henderson, D., R. P. Hamernik, D. S. Dosanjh, and J. H. Mills. 1976. *Effects of Noise on Hearing*. New York: Ravens Press.
- Ising, H., and H. Melchert. 1980. Endocrine and Cardiovascular Effects of Noise. Proceedings of the Third International Conference on Noise as a Public Health Hazard, American Speech and Hearing Association. Washington D.C. Report 10.
- Jansen, G. 1961. Adverse Effects of Noise on Iron and Steel Workers. *Stahl Eisen*. 81: 217-220.
- —. 1964. "The Influence of Noise at Manual Work". International J. of Appl. Physiology. 20: 233-239.
- —. 1977. *Review of Noise Criteria*. Proc. FASE 77 Symposium of Environmental Noise Legislation. London 13-17 Nov.
- Jones, D.M., and A. J. Chapman. 1984. Noise and Society. New York: Wiley.
- Kryter, K. 1984. *Physiological, Psychological and Social Effects of Noise*. California: Acousis Company.
- —. 1985. The Effects of Noise on Man. California: Academic Press, Inc.
- Kryter, K., and F. Poza. 1980. "Effects of Noise on Some Autonomic System Activities". J. Acoustical Society of America. 67(6): 2036-2044.
- Lehman, A. G. 1964. Man and Noise. *Handbook of Physiology*. American Physiological Society. 65 (4): 1007-1014.
- Loeb, M. 1986. Noise and Human Efficiency. New York: Wiley
- Miller, J. 1974. "Effects of Noise on People". *J. Acoustics Society of America*. 56(3): 729-764.
- Melius, J., C. Althafer, W. Perry, C. Robinson, L. Schleifer, R. Stanevich, M. Torrason, K. Weber, and M. Woebkenberg. 1986. Proposed National Strategy for the Prevention of Occupational Cardiovascular Diseases. *DHHS (NIOSH) Publication No. 89-132, U.S. Dept. of Health and Human Services.* Cincinnatti, Ohio.
- Osada, Y. 1972. "Physiological Effects of Long-Term Exposure to Low-Level Noise". Bulletin of the Institute of Public Health. Tokyo, Japan. 22(2): 61-67.

REFERENCES (Continued)

- Parvizpoor, D. 1976. "Noise Exposure and Prevalence of High Blood Pressure Among Weavers in Iran". J. Occupational Med. 18(11): 730-731.
- Peterson, E. A., J. S. Augenstein, D. C. Tanis, R. Warner, and W. Heal. 1981. "Noise Raises Blood Pressure Without Impairing Auditory Sensitivity". *Science*. 211: 1450-1452.
- Peterson, E. A., J. S. Augenstein, D.C. Tanis, R. Warner, and W. Heal. 1983. "Some Cardiovascular and Behavioral Effects of Noise in Monkeys". *Proceedings of the International Congress on Noise as a Public Health Hazard, Centro Richerche E. Studi Amplifon.* Milan, Italy. 1175-86.
- Shatalov, N. N., A. O. Sanitanov, and K. V. Glotova. 1962. On the State of the Cardiovascular System Under Conditions of Exposures to Continuous Noise. *Defence Research Board Report No. T411-N65-5577*. Ottawa, Canada.
- Strakhov, A. B. 1964. "The Effects of Intense Noise on Certain Functions of the Body". *Gigiena: Sanitariya*. 69: 1-25.
- Talbott, E., J. Helmkamp, K. Matthews, L. Kuller, E. Cuttington, and G. Redmond. 1985. Occupational Noise Exposure, Noise-Induced Hearing Loss, and the Epidemiology of High Blood Pressure. *Am. J. of Epidemiology*. 121(4): 501-514.
- Turkkan, J. S., R. D. Heinz, A. H. and Harris. 1983. "The Non-Auditory Effects of Noise on the Baboons". *Proceedings of the Fourth International Congress on Noise as a Public Health, Problem Centro Richerche E. Studi Amplifon.* Milan, Italy. 1187-1198.
- Walpole, R., and R. H. Myers. 1985. *Probability and Statistics for Engineers and Scientists*. New York: MacMillan Publishing.
- Wilson, C. E. 1989. Noise Control. New York: Harper & Row.