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ABSTRACT 

EXTERNAL CAVITY LASER POWER 
STABILIZER 

by 
she Ding 

In this thesis, we want to design a stabilizer which does not depend on laser 

source--with external cavity. 

In the first part of the thesis ( Chapter 2 and 3 ), we discuss the wave 

propagation in crystals and the modulation of optical radiation. From the main two 

types electro-optic modulations, Phase Modulation and Transverse Modulation, we 

know that the transverse modulation shows an increase in the frequency limit or 

useful crystal length of (1-c0/ncm)-1, and we will use this type modulation in 

this thesis. 

The second part of the thesis is the procedure of design and experiment. 

Because we used an electrooptic modulator which characteristic is L/d = 3, its 

halfwave voltage is 1200V, we have to find an amplifier circuit which can output 

high voltage as feedback signal to control the electrooptic modulator. We tried two 

types power transistors, and finally got the output voltage of -500v--±500v. To 

compare the output power intensity of the stabilizer with the input power intensity, 

we can find that the power stability is increased by 50 times. 
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CHAPTER 1 

INTRODUCTION 

Of all the artificial light sources, the laser ( acronym for "Light Amplification by 

Stimulated Emission and Radiation") was invented most recently. But it is 

probably the most important one. 

There are several ways in which we can classify different types of lasers. 

First, lasers can be classified according to the material or element responsible for 

the light amplification. Secondly, we consider whether the laser operates in pulse 

mode or as a continuous wave (CW). 

Because of its coherence, high intensity and excellent orientation, the laser 

has been used in many fields since it was invented. In applications of lasers, more 

and more requirements were raised as regards to its stability. Usually, frequency 

stability is the first priority. But in some cases, power stability is also needed. 

Such as in research of light scattering in the air or in many experiments with CW 

laser as pump light. This is especially true for cases where one cannot eliminate 

en-ors with linear corrections. For example, in the Photorefractive effect, 

diffraction efficiency is a function of optical path and the ratio of optical path. It 

does not only depend on the intensity at time I , but also depends on the case 

before time I . Obviously, for this process, it is impossible to use linear corrections 

to delete the fluctuation errors caused by laser power. 

The output stabilized laser is commercially available in a form which 

incorporates the stabilization mechanism in the cavity of the laser. In this thesis, 

we propose to improve the laser power stability by a standing-alone external 

stabilizer. This stabilizer is suitable for visible or near infrared CW laser. With the 

laser beam passing through the external stabilizer, the intensity of laser can be 
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stabilized. The fluctuation of the laser intensity can be reduced by a factor of 50 

times. Because it contains a polarizer, the stabilizer also makes the laser output 

beam more highly polarized. The direction of the output beam polarization can be 

adjusted arbitrarily, so it can meet some kinds of special applications. 



CHAPTER 2 

WAVE PROPAGATION IN CRYSTALS 
THE INDEX ELLIPSOID 

In this thesis, we will consider the problem of propagation of optical radiation in 

anisotropic crystal media. In Chapters 2 and 3, we discuss the wave propagation in 

crystals and the modulation of optical radiation. In this chapter, we start with 

Maxwell's equations and obtain expressions of wave propagation in material 

media. We consider in some detail the phenomenon of birefringence, in which the 

phase velocity of a plane wave in a crystal depends on its direction of polarization. 

The two allowed modes of propagation in uniaxial crystals—the "ordinary" and 

"extraordinary" rays--are discussed using the formalism of the index ellipsoid. 

2.1 Wave Propagation in Isotropic Media 

First we consider the propagation of electromagnetic plane waves in homogeneous 

and isotropic media, so that s and p are scalar constants. Vacuum is the best 

example of such a "medium". Liquids and glasses are material media that can be 

treated as homogeneous and isotropic. Let us begin with Maxwell's equations: 

We choose the direction of propagation as z and, taking the plane wave to 

be uniform in the x—y plane, put ∂/∂x = ∂/∂y = ∂ in (2.1-1) and (2.1-2). 

Assuming a lossless ( a= 0 ) medium, equations (2.1-1) and (2.1-2) become 
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We can rewrite the foregoing in component form: 

From (2.1-9) and (2.1-10) it follows that Hz and Ez are both zero; therefore, a 

uniform plane wave in a homogeneous isotropic medium can have no longitudinal 

field components. We can obtain a self-consistent set of equations from (2.1-5) 

through (2.1-10) by taking Ey and Hx  (or Ex and Hy  ) to be zero. In this case 

the last set of equations reduces to (2.1-6) and (2.1-7). Taking the derivative of 

(2.1-7) with respect to z and using (2.1-6), we obtain 

A reversal of the procedure will yield a similar equation for Hy. Since our main 

interest is in harmonic (sinusoidal) time variation we postulate a solution in the 

form of 
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where Ex exp(±ikz) are the complex field amplitudes at z. Before substituting 

(2.1-12) into the wave equation (2.1-11), we may consider the nature of the two 

functions E. Taking first E+x: if an observer were to travel in such a way as to 

always experience the same field value, it would have to satisfy the condition 

where the constant is arbitrary and determines the field value "seen" by the 

observer. By differentiation of the last result, it follows that the observer must 

travel in the +z direction with a velocity 

This is the phase velocity of the wave. If the wave were frozen in time, the 

separation between two neighboring field peaks--that is, the wavelength--is 

The E-x solution differs only in the sign of k, and according to (2.1-13), it 

corresponds to a wave traveling with a phase velocity c in the -z direction. 

The value of c can be obtained by substituting the assumed solution 

(2.1-12) into (2.1-11), which results in 

The phase velocity in vacuum is 

whereas in material media it has the value 
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where n ≡ √ɛ/ɛ0 is the index of refraction. 

Turning to the magnetic field Hy, we can express it, in a manner similar to 

(2.1-12), in the form of 

Substitution of this equation into (2.1-6) and using (2.1-12) gives 

Therefore, from (2.1-15), 

In vacuum η0 = √µ0/ɛ0 ≈  377 ohms. Repeating the same steps with H-y and E 

gives 

so that in the case of negative ( -z ) traveling waves the relative phase of the 

electric and magnetic fields is reversed with respect to the wave traveling in the 

+z direction. Since the wave equation (2.1-11) is a linear differential equation, we 

can take the solution for the harmonic case as a linear superposition of E+x and E 

and, similarly, 

where E+x and E-x  are arbitrary complex constants. 
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2.2 Wave Propagation in Crystals 

In the discussion of electromagnetic wave propagation above, we have assumed 

that the medium was isotropic. This causes the induced polarization to be parallel 

to the electric field and to be related to it by a (scalar) factor that is independent of 

the direction along which the field is applied. this situation does not apply in the 

case of dielectric crystals. Since the crystal is made up of a regular periodic array 

of atoms( or ions ), we may expect that the induced polarization will depend, both 

in its magnitude and direction, on the direction of the applied field. Instead of the 

simple relation linking P and E, 

we have 

where the capital letters denote the complex amplitudes of the corresponding time-

harmonic quantities. The 3 x 3 array of the xij  coefficients is called the electric 

susceptibility tensor. The magnitude of the 	coefficients depends on the choice 

of the x,y,z axes relative to that of the crystal structure. It is always possible to 

choose x,y,z in such a way that the off-diagonal elements vanish, leaving 

These directions are called the principal dielectric axes of the crystal. We use only 

the principal coordinate system and, instead of using(2.2-2), describe the dielectric 

response of the crystal by means of the electric permeability tensors ɛij, defined by 
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2.3 Birefringence 

One of the most important consequences of the dielectric anisotropy of crystals is 

the phenomenon of birefringence in which the phase velocity of an optical beam 

propagating in the crystal depends on the direction of polarization of its E vector. 

In an isotropic medium the induced polarization is independent of the field 

direction so that x11  x11 =  X22 =x33 and, using (2.2-4), 611 = ɛ22 = 633 = 6. Since 

c = (µɛ )-1/2 , the phase velocity is independent of the direction of polarization. In 

an anisotropic medium the situation is different. Consider a wave propagating 

along z . If its electric field is parallel to x, it will induce, according to (2.2-2), 

only Px  and will consequently "see" an electric permeability ɛ11. Its phase velocity 

will thus be cx =(µɛ11)-1/2  . If the wave is polarized parallel to y it will propagate 

with a phase velocity cy  = (µɛ 22)-1/2  • 

Birefringence has some interesting consequences. Consider a wave 

propagating along the crystal z direction and having in some plane, z = 0, a 

linearly polarized field with equal components along x and y. Since kx ≠ k y, as 

the wave propagates into the crystal the x and y components get out of phase and 

the wave becomes elliptically polarized. 
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A wave propagating along the crystal z direction, assume, as in Section 2.1, 

that the only non vanishing field components are Ex  and H l,. Maxwell's curl 

equations (2.1-6) and (2.1-8) reduce to 

Taking the derivative of the first of equation(2.3-1) with respect to z and then 

substituting the second equation for ∂Hy/∂z gives 

If we postulate, as in (2.1-12), a solution in the form 

then equation (2.3-2) becomes 

Therefore, the propagation constant of a wave polarized along x and traveling 

along z is 

Repeating the derivation but with a wave polarized along the y axis, instead of the 

x axis, yields 

2.4 The Index Ellipsoid 

As shown above, in a crystal the phase velocity of a wave propagating along a 

given direction depends on the direction of its polarization. For propagation along 

z, Maxwell's equations admit two solutions: one with its linear polarization along 

x and the second along y. If we consider the propagation along some arbitrary 
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direction in the crystal the problem becomes more difficult. We have to determine 

the directions of polarization of the two allowed waves, as well as their phase 

velocities. This is done most conveniently using the so-called index ellipsoid 

This is the equation of a generalized ellipsoid with major axes parallel to x, y, and 

z whose respective lengths are 

procedure for finding the polarization directions and the corresponding phase 

velocities for a given direction of propagation is as follows: Determine the ellipse 

formed by the intersection of a plane through the origin and normal to the direction 

of propagation and the index ellipsoid (2.4-1). The directions of the major and 

minor axes of this ellipse are those of the two allowed polarizations and the 

lengths of these axes are 2n1  and 2n2, where n1  and n2  are the indices of the 

refraction of the two allowed solutions. The two waves propagate, thus, with phase 

velocities c0/n1  and c0/n2 , respectively, where c0  = (µ 0ɛ0 )
-1/2 

is the phase 

velocity in vacuum. 

To illustrate the use of the index ellipsoid, consider the case of a uniaxial 

crystal (that is, a crystal which possesses a single axis of threefold, fourfold, or six 

fold symmetry). Taking the direction of this axis as z, symmetry considerations 

dictate that ɛ11 = ɛ22 . Defining the principal indices of refraction n„ and ne  by 

the equation of the index ellipsoid (2.4-1) becomes 
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This is an ellipsoid of revolution with z -axis being the circular symmetry axis. 

The z major axis of the ellipsoid is of length 2ne, whereas that of the x and y 

axes is 2no. The procedure of using the index ellipsoid is illustrated by Figure 2-1. 

Figure 2-1 Construction for finding indices of refraction and allowed polarization 
for a given direction of propagation s. The figure shown is for a uniaxial crystal 

with nx = ny  = no. 

The direction of propagation is along s and is at an angle 8 to the (optic) z 

axis. Because of the circular symmetry of (2.4-3) about z we can choose, without 

any loss of generality, the y axis to coincide with the projection of s on the x — y 

plane. The intersection ellipse of the plane normal to s with the ellipsoid is 

crosshatched in the figure. The two allowed polarization directions are parallel to 

the axes of the ellipse and thus correspond to the line segments OA and OB. They 

are consequently perpendicular to s as well as to each other. The two waves 
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polarized along these directions have indices of refraction given by ne(θ) =  |OA| 

and n0  = |OB|. The first of these two waves, which is polarized along OA, is called 

the extraordinary wave. Its direction of polarization varies with 8 following the 

intersection point A. Its index of refraction is given by the length of OA. It can be 

determined using Figure 2-2, which shows the intersection of the index ellipsoid 

with the y - z plane. 

Figure 2-2 Intersection of the index ellipsoid with the z -  y plane. OAI = ne  (θ) is 

the index of refraction of the extraordinary wave propagating in the direction s. 

Using the relations 

and the equation of the ellipse 
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The ordinary wave remains, according to Figure 2-1, polarized along the 

same direction OB independent of 8. It has an index of refraction no. The amount 

of birefringence ne(θ)- n0  thus varies from zero for θ= 00  (that is, propagation 

along the optic axis) to ne  — no  for θ=900 . 

2.5 The Normal Index Surfaces 

Consider a surface in which the distance of a given point from the origin is equal 

to the index of refraction of a wave propagating along this direction. This surface 

is called the normal index surface. 

Figure 2-3 Intersection of s—z plane with normal surfaces of a positive uniaxial 

ciystal (ne> no). 
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The normal surface of the ordinary wave is a sphere, since the index of 

refraction is n0 and is independent of the direction of propagation. The normal 

surface of the extraordinary wave is an ellipsoid. In a uniaxial crystal it becomes 

an ellipsoid of revolution about the optic (z) axis in which the distance ne(∂) to 

the origin is given by (2.4-4). The intersection of the normal surfaces of a positive 

(ne  > no ) uniaxial crystal with the s-z plane is shown in figure 2-3. 



CHAPTER 3 

THE MODULATION OF OPTICAL RADIATION 

In Chapter 2 we treated the propagation of electromagnetic waves in anisotropic 

crystal media. It was shown how the properties of the propagating wave can be 

determined from the index ellipsoid surface. 

In this chapter we consider the problem of propagation of optical radiation 

in crystals in the presence of an applied electric field. In certain types of crystals it 

is possible to effect a change in the index of refraction which is proportional to the 

field. This is the linear electro-optic effect. It affords a convenient and widely used 

means of controlling the intensity or phase of the propagation radiation. 

3.1 The Electro-optic Effect 

Given a direction in a crystal, in general two possible linearly polarized modes 

exist; the so-called rays of propagation. Each mode possesses a unique direction of 

polarization ( that is, direction of D ) and a corresponding index of refraction (that 

is, a velocity of propagation). The mutually orthogonal polarization directions and 

the indices of the two rays are found most easily by using the index ellipsoid 

where the directions x,y, and z are the principal dielectric axes--that is, the 

directions in the crystal along which D and E are parallel. The existence of two 

"ordinary" and "extraordinary" rays with different indices of refraction is called 

birefringence. 

15 
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The linear electro-optic effect is the change in the indices of the ordinary 

and extraordinary rays that is caused by and is proportional to an applied electric 

field. This effect exists only in crystals that do not possess inversion symmetry. 

This statement can be justified as follows: Assume that in a crystal possessing an 

inversion symmetry, the application of an electric field E along some direction 

causes a change ∆n1 = sE in the index, where s is a constant characterizing the 

linear electro-optic effect. If the direction of the field is reversed, the change in 

the index is given by ∆n2  = s(—E), but because of the inversion symmetry the 

two directions are physically equivalent, so ∆n1 = ∆n2. This requires that s = —s, 

which is possible only for s = 0, so no linear electro-optic effect can exist. The 

division of all crystal classes into those that do and those that do not possess an 

inversion symmetry is an elementary consideration in crystallography and this 

information is widely tabulated. 

Since the propagation characteristics in crystals are fully described by 

means of the index ellipsoid (3.1-1), the effect of an electric field on the 

propagation is expressed most conveniently by giving the changes in the constants 

of the index ellipsoid. 

Following convention, we take the equation of the index ellipsoid in the 

presence of an electric field as 

(3.1-2) 

If we choose x, y, and z to be parallel to the principal dielectric axes of the 

crystal, then with zero applied field, equation (3.1-2) must reduce to (3.1-I); 

therefore, 



is defined by due to an arbitrary electric field 

The linear change in the coefficients 

1' 

where in the summation over j we use the convention 1= x,2 = y,3 = z. Equation 

(3.1-3) can be expressed in a matrix form as 

where, using the rules for matrix multiplication, we have, for example, 
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The 6 x 3 matrix with elements rij is called the electro-optic tensor. In the figure 

(3-1) we give the form of the electro-optic tensor for two noncentrosymmetric 

crystals we will discuss and use in this thesis. 

Figure 3-1 The examples of the form of the electro-optic tensor 

Consider the crystal KDP (KH2PO4). The crystal has a fourfold axis of 

symmetry, which by strict convention is taken as the z (optic) axis, as well as two 

mutually orthogonal twofold axes of symmetry that lie in the plane normal to z . 

These are designated as the x and y axes. Using Figure (3-1) , we take the electro- 

optic tensor in the form of 
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so the only nonvanishing elements are r41  = r52  and r63. Using (3.1-1), (3.1-4) and 

(3.1-5), we obtain the equation of the index ellipsoid in the presence of a field 

as 

where the constants involved in the first three terms do not depend on the field 

and, since the crystal is uniaxial, are taken as nx =ny =n0 ,nz =ne  . We thus find 

that the application of an electric field causes the appearance of "mixed" terms in 

the equation of the index ellipsoid. These are the terms with xy,xz and yz. This 

means that the major axes of the ellipsoid, with a field applied, are no longer 

parallel to the x,y, and z axes. It becomes necessary to find the directions and 

magnitudes of the new axes, in the presence of E , so that we may determine the 

effect of the field on the propagation. To be specific we choose the direction of the 

applied field parallel to the z axis, so (3.1-6) becomes 

The problem is one of finding a new coordinate system--x' ,y',z'--in which the 

equation of the ellipsoid (3.1-7) contains no mixed terms; that is , it is of the form 
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x',y' and z' are then the directions of the major axes of the ellipsoid in the 

presence of an external field applied parallel to z . The length of the major axes of 

the ellipsoid is, according to (3.1-8), 2nx' ,2ny' and 2nz' and these will depend on 

the applied field. 

In the case of (3.1-7) it is clear from inspection that in order to put it in a 

diagonal form we need to choose a coordinate system x',y',z', where z' is parallel 

to z , and because of the symmetry of (3.1-7) in x and y,x' and y' are related to 

x and y by a 450  rotation. The transformation relations from x,y to x',y' are thus 

which, upon substitution in (3.1-7), yield 

Equation (3.1-9) shows that x',y' and z are indeed the principal axes of the 

ellipsoid when a field is applied along the z direction. According to (3.1-9), the 

length of the x' axis of the ellipsoid in 2nx' , where 

which, assuming 	r63Ez << n0-2 and using the differential relation 



21 

and, similarly, 

3.2 Electro-optic Retardation 

Assume the index ellipsoid for KDP (K1491304) with E applied parallel to z. It is 

shown in figure (3-2). 

If we consider propagation along the z direction, then we need to determine 

the ellipse formed by the intersection of the plane z = 0 (in general, the plane that 

contains the origin and is normal to the propagation direction) and the ellipsoid. 

Figure 3-2 A section of the index ellipsoid of KDP, showing the principal 

dielectric axes x',y',and z' due to an electric field applied along the z axis. 
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The equation of this ellipse is obtained from (3.1-9) by putting z = 0 and is 

One quadrant of the ellipse is shown in figure (3-1), along with its minor and 

major axes, which in this case coincide with x' and y', respectively. The two 

allowed directions of polarization are x'and y' and that their indices of refraction 

are nx' and ny' , which are given by (3.1-10) and (3.1-11). 

We consider an optical field which is incident normally on the x' y' plane 

with its E vector along the x direction. We can resolve the optical field at z = 0 

into two mutually orthogonal components polarized along x' and y'. Figure 

(3-3) shows Ex' (z) and Ey'  (z) at some moment in time. The x' component 

propagates as 

which using (3.1-10), becomes 

while the y' component is given by 

the phase difference at the output plane z = I between the two components is 

called the retardation. It is given by the difference of the exponents in (3.2-2) 

and (3.2-3) and is equal to 
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Figure 3-3 An optical field that is linearly polarized along x is incident on an 
electrooptic crystal having its electrically induced principal axes along x' and y'. 
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In figure 3-3, (a) shows the component ex' at some time t as a function of 

the position z along the crystal. (b) shows ey' as a function of z  at the same value 

of t as in (a). (c) shows the ellipsoid in the x'-y' plane traversed by the tip of the 

optical electric field at various points ( a through i ) along the crystal during one 

optical cycle. The arrow shows the instantaneous freld vector at time t , while the 

curved arrow gives the sense in which the ellipsoid is traversed. (d) is a plot of the 

polarization ey' = cos( cot — 46). Also shown are the instantaneous field vectors at 

(1) cot = 00, (2) cot = 600 , (3) cot = 120°, (4) cot = 2100, and (5) cot = 270g. 

In Figure 3-3 (a), at point a the retardation is F = 0 and the field is 

linearly polarized along X. At point e , F = 	, omitting a common phase 

factor, we have 

and the electric field vector is circularly polarized in the clockwise sense. At 

point i, F = π  and thus 

and the retardation is again linearly polarized, but this time along the y direction-- 

that is, at 900  to its input direction of polarization. 

The retardation as given by (3.2-4) can also be written as 

where V, , the voltage yielding a retardation F = π, is 



where is the free space wavelength. 
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3.3 Phase Modulation of Light 

In the preceding section we saw how the modulation of the state of polarization, 

from linear to elliptic, of an optical beam by means of the electrooptic effect can 

be converted, using polarizers , to intensity modulation. Here we consider the 

situation depicted by Figure (3-4) below: 

Figure 3-4 An electro-optic phase modulator. The crystal orientation and applied 
directions are appropriate to KDP. The optical polarization is parallel to an 
electrically induced principal dielectric axis ( x' ) 
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Suppose instead of there being equal components along the induced 

birefringent axes , the incident beam is polarized parallel to one of them . In this 

case the application of the electric field does not change the state of polarization, 

but merely changes the output phase by 

where, from (3.1-10) 

If the bias field is sinusoidal and is taken as 

then an incident optical field which, at the input ( z = 0 ) face of the crystal varies 

as ein = A cos ωt , will emerge according to (3.2-2) as 

where / is the length of the crystal. Dropping the constant phase factor, which is of 

no consequence here, we rewrite the equation as 
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is referred to as the phase modulation index. The optical freld is thus phase-

modulated with a modulation index S . 

3.4 Transverse Electro-optic Modulators 

In the cases of electro-optic retardation discussed in preceding section, the electric 

field was applied along the direction of light propagation. This is so-called 

longitudinal mode of modulation. A more desirable mode of operation is the 

transverse one, in which the field is applied normal to the direction of propagation. 

The reason is that in this case the field electrodes do not interfere with the optical 

beam, and the retardation, being proportional to the product of the field times the 

crystal length, can be increased by the use of longer crystals. In the longitudinal 

case the retardation, according to (3.2-4), is proportional to Ezl  =V and is 

independent of the crystal length l . How transverse retardation can be 

obtained using a KDP crystal is shown by an actual arrangement in figure (3-5). 

The light propagates along y', and its polarization is in the x'—z plane at 450  

from the z axis. The retardation, with a field applied along z, is, 

where d is the crystal dimension along the direction of the applied field. F 

contains a term that does not depend on the applied voltage. 

3.5 High-Frequency Modulation Considerations 

3.5.1 Transit-Time Limitations to High-Frequency Electro-optic Modulation 

According to Equation (3.2-4) the electro-optic retardation due to a field E can be 

written as 
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Figure 3-5 A transverse electro-optic amplitude modulator using a KDP crystal 
in which the field is applied normal to the direction of propagation. 

where a = no3 r63 /c0  and / is the length of the optical path in the crystal. If the 

field E changes appreciably during the transit time τd = l/c of light through the 

crystal, we must replace (3.5-1) by 

where c is the velocity of light and e(t') is the instantaneous electric field. In the 

second integral we replace integration over z by integration over time, recognizing 

that the portion of the wave which reaches the output face z =1 at time t entered 

the crystal at time t — τd. We also assumed that at any given moment the field 

e(t') has the same value throughout the crystal. 

Taking e(t') as a sinusoid 



where 

The factor 

and use the relation ,we obtain 
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we obtain from (3.5-2) 

is the peak retardation, which obtains when 

gives the decrease in peak retardation resulting from the frnite transit time. For 

r 	1 	(that is, no reduction), the condition ωm  τd << I must be satisfied, so the 

transit time must be small compared to the shortest modulation period. 

If we take the highest useful modulation frequency as that for which 

3.5.2 Traveling-Wave Modulators 

One method that can overcome the transit-time limitation, involves applying the 

modulation signal in the form of a traveling wave, as shown in figure (3-6). 

If the optical and modulation field phase velocities are equal to each other, 

then a portion of an optical wave front will exercise the instantaneous electric 

field, which corresponds to the field it encounters at the entrance face, as it 

propagates through the crystal and the transit-time problem discussed above is 

eliminated. 
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Figure 3-6 A traveling-wave electro-optic modulator. 

Consider an element of the optical wave front that enters the crystal at 

z = 0 at time I . The position z of this element at some later time I' 

where c = c0/n is the optical phase velocity. The retardation exercised by this 

element is given similarly to (3.5-2) by 

where e[t',z(t')] is the instantaneous modulation field as seen by an observer 

traveling with the phase front. Taking the traveling modulation field as 
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we obtain, using (3.5-6) 

Recalling that km= ωm/cm, where c,,, is the phase velocity of the modulation 

field, we substitute (3.5-8) in (3.5-7) and , carrying out the simple integration, 

obtain 

where F0  = alEm=acτdEm  is the retardation that would result from a dc field 

equal to Em. 

The reduction factor 

is of the same form as that of the lumped-constant modulator (3.5-4) except that 

d  is replaced by τd(1-c/cm). If the two phase velocities are made equal so that 

c = cm , then r =1 and maximum retardation is obtained regardless of the crystal 

length. 

The maximum useful modulation frequency is taken, as in the treatment 

leading to (3.5-5), as that for which wm τd(1-c/cm)= π/2, yielding 

which, upon comparison with (3.5-5), shows an increase in the frequency limit or 

useful crystal length of (1- co  /ncm y-1. 



CHAPTER 4 

THE PRINCIPLE AND STRUCTURE 
OF THE STABILIZER 

4.1 Background 

In order to reduce the fluctuation of laser power output and improve the stability, 

there are many ways one could use. Among them are the following: 

1. Improve the stability of open loop system 

To get the output stability, the first method is to stabilize every unit of the 

laser. 

( a ) Power source stability: for most CW lasers excitation is provided by a 

DC power supply. To improve stability one can use a stabilized DC supply, and 

additionally, incorporate filters to suppress spikes and other transients in the 60Hz 

AC source. 

( b ) Theimal stability: the change of the cavity length is one of the main 

sources of laser output variations. This is primarily due to thermal dilation of the 

cavity. For a high precision laser, we always use Invar as main frame of cavity and 

use Quartz as gas discharge tube. 

( c ) Reduce the effect of external conditions: in the laser cavity, one part of 

optical path is air. Isolating the flux of air and reducing the vibration of cavity can 

improve the stability. 

2. Closed loop system control 

To further increase the stability of laser output, closed loop control must be 

used. A very popular technique is to stabilize both frequency and power. At 

present, the way of stabilizing power is to monitor the magnitude of output beam 

continuously and obtain the deviation between the output signal and a given 

reference signal. After amplification , the deviation can be used to control laser 
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output power. As usually implemented this method needs to send the feedback 

signal to a stabilizing device inside the laser cavity. Our method is rather different; 

we employ an external cavity stabilizer. This stabilizer lets the laser output beam 

pass through it without any connection with the laser itself. 

4.2 The structure of the stabilizer 

The laser power stabilizer uses optical polarizer components and an electro-optic 

modulator as a basic system. It is shown in Figure 4-1. 

Laser source: we use an argon ion laser as the source in this experiment. Its 

operating wavelength can be adjusted to certain wavelength in the range of 

457nm-514nm. 

Polarizer: establishes a certain direction of linear polarization of the beam 

from the laser. 

Electro-optic Modulator: changes state of polarization of optical beam 

according to applied voltage as discussed in Chapter 3. 

Analyzer: selects one component along a given direction of input beam from 

modulator and produces a linearly polarized output. 

Wave-plate: it is a rotatable 2/2 waveplate . It is used to adjust the passing 

beam's polarization. Its operating wavelength can be adjusted according to the 

laser wavelength. 

Beam splitter: directs 1% of the output beam to detector. 

Detector: we use a Silicon Photodiode as the detector. It monitors the power 

of the output beam. 

Reference signal and Comparer: we use the output voltage of a precision 

low voltage supply as the reference signal, and compare it with the voltage signal 

from the detector and send the difference to an amplifier. 
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Amplifier: to amplify the difference signal, we use a voltage amplifier, the 

output of which serves to control the electro-optic modulator. 

Figure 4-1 The structure of laser power stabilizer 
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4.3 Electro-optic Modulator 

There are a variety of factors which will cause the fluctuation of laser power. No 

matter which is the principal factor, the stabilizer needs only to monitor and 

control the output intensity. So a high speed response is needed. From the 

discussion of Chapter 3, we already know that there are two main methods of 

electro-optic modulation, Phase Modulation and Transverse Modulation. To 

compare these two methods, we refer to Equations (3.5-5) and (3.5-11). From 

(3.5-11), we know that transverse modulation shows an increase in the frequency 

limit or useful crystal length of (1- c0  /ncm)-1. Here, c,,, is the propagation speed 

of electromagnetic field; n is the refractive index of electrooptic crystal; c0  is the 

light velocity in vacuum. So, we elect to use the Transverse Electro-optic 

Modulation as the basis of our stabilizer. ( as shown in figure 3.5 ) 

We use an electro-optic modulator made with crystal LiNbO3 , its crystal 

length is L = 20mm, and its width is d = 6mm . Its modulation half-wave voltage 

is V=1200V . These parameters require that the amplifier produce a high voltage 

output. 

4.4 Design of the Amplifier 

After choosing a modulator, we need to an design amplifier in accordance with the 

characteristics of the modulator. The configuration of the detector, comparer and 

amplifier is shown in figure 4-2. 

The detector which we use in this work is Silicon Photodiode S1337-33BR 

(HAMAMATSU COMPANY). For this detector we select OP-AMP CA3130 as 

the pre-amplifier. For the reference signal, we choose the output of MC1403, a 

precision low voltage supply. The comparer is an op-amp OP27. The two-step 

amplifiers are two op-amps 0P07. The most important and most difficult section is 

the power amplifier. Because the halfwave voltage of the modulator is 1200V, the 
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Figure 4-2 The structure of the detector, comparer and amplifier 

output voltage difference of power amplifier must reach 1200V. 

In general, we can use power transistors in the design of the power 

amplifrers. For example, the output range of the op-amp is OV--5V. When the 

output of op-amp is OV, the power amplifrer should output voltage OV; and when 

the output of op-amp is 5V, it should output voltage 1200V. As shown below: 
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Figure 4-3 The single power amplifier confrguration 

Because we need a high voltage output but only a small current lc, there is 

a problem in which we cannot get a power transistor for which VCE0  is 1200V and 

Ic  is 1A or smaller. So, we have to find another way. We use a pair of op-amps to 

output signals with same magnitude and opposite sign and send them to two power 

amplifiers: 

Figure 4-4 The power amplifiers in pair confrguration 
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In order to implement this structure, we tried several circuits. Finally, we decided 

to use the OCL circuit ( Output Capacitorless ) and improve the structure as 

shown below: 

Figure 4-5 The structure of OCL circuit 

The circuit is shown on Figure 4-6. 

The working procedure of this circuit is: when the input is OV, the output of 

the two op-amps are both OV, so the output "A" and output "B" are also OV, there 

is no voltage output . When the input is positive voltage, the output of op-amp 1 is 

positive and the output "A" is positive voltage ( maximum +300V), because there 

is a inverse gate, the output of op-amp2 is negative and the output "B" is negative 

voltage (minimum -300V), the voltage difference of these two points "A" and "B" 

VA-VB  is positive and it can reach to +600V. When the input is negative voltage, 

the output of op-ampl is negative and output "A" is negative ( minimum -300V ), 

the output of op-amp2 is positive since the inverse gate and output "B" is positive 
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(maximum +300V ), the voltage difference of these two points is negative and it 

can get to -600V. For these two cases, the maximum voltage difference is 1200V 

and satisfies the halfwave voltage of the modulator. 

The OCL circuit need a pair of power transistor, one PNP and one NPN. 

These two power transistors should have VCE0=600V and lc  as small as possible. 

Because it is difficult to get a PNP transistor with high voltage, we select a pair of 

TMOS power FET as power amplifier. They are MTP2N50 and MTP2P50. The 

characteristics of these two FETs are: maximum VDSS  is 500V ; maximum ID  is 

2.0A . So, the actual voltage range of this experiment is +500V to -500V. 

Although this voltage difference does not reach to 1200V, it can be used in this 

stabilizer. 



CHAPTER 5 

EXPERIMENT AND RESULT 

5.1 Modulator Working Range 

There are several main factors involved in the stability of the output power. 

Besides the choice of appropriate detector and polarization components, another 

important factor is the electro-optic modulator working range. The modulator 

should operate in a linear voltage range. So, the first step of the experiment is to 

measure the ratio of output to input power intensity of the electro-optic modulator 

as a function of the voltage between its two polar plates. We placed the modulator 

between two polarizers, which have a fixed angle difference Ф  between their 

polarization direction. If we choose Ф  as parameter, when we change the 

magnitude and direction of the voltage of the modulator polar plates continuously, 

the transmission coefficient will be changed also. We can get the ratio curves of 

output power intensity I and input power intensity I. Some of the data can be 

seen in figures 5-1, 5-2, 5-3 and 5-4. 	Figure 5-1 is the ratio of 

(I) = 350=400=450; 	Figure 5-2 is Ф=500,550,600; 	Figure 5-3 is 

Ф

 = 650  ,700 , 750 ; and Figure 5-4 is the ratio of Ф  = 800 ,0 = 85°  , = 900 . 

According these curves, we can select a rotational angle c1 of the two 

polarizers and let the modulator work in a linear range For different laser sources 

or different controlling voltage range, the angle D will be different. 

From the curves, we frnd that if the electro-optic modulator works in the 

voltage range -500V--+500V, the angle Ф  should be selected from Ф  = 350 to 

Ф = 450. In this angle range, the ratio of output to input power intensity is almost 

linear. 
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Figure 5-1 The ratio of output intensity I and input intensity I0  ( I ) 42  



Figure 5-2 The ratio of output intensity I and input intensity I0  ( II ) 43 



Figure 5-3 The ratio of output intensity I and input intensity I0  ( III ) 44  



Figure 5-4 The ratio of output intensity 1 and input intensity 10  ( IV ) 45  



46 

5.2 Result 

The experimental runs were carried out over a long period of time. We tested the 

argon ion laser without and with the stabilizer separately. First, we tested the laser 

without the stabilizer for 100 minutes. We used a detector with pre-amplifier to 

send the power signal to a 195A Digital Multimeter, and from the IEEE488 

interface of the Multimeter to send the digital signal to a computer. Then we used 

a BASIC program to process the data. ( This BASIC program can be found in the 

Appendix ). Figure 5-5 shows the output of the laser source over 100 minutes. 

During this period, the highest point of output power is 7.7964, the lowest point is 

7.0865; the fluctuation about the mean is approximately 5%. After turning on the 

laser power stabilizer, we tested the output for another 100 minutes. The result is 

shown in Figure 5-6. The highest point is 5.4326, the lowest point is 5.4012, the 

fluctuation about the mean is approximately 0.3% . 



Figure 5-5 The output intensity of laser source 
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Figure 5-6 The output intensity of the stabilizer 
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CHAPTER 6 

CONCLUSION AND ANALYSIS 

From our results, we find that after using the laser power stabilizer the 

fluctuation can be reduced from 5% to 0.3%, which satisfres our expectations. 

However, when we use the stabilizer, we will lose some power. So, this 

stabilizer can used in some special applications which need the maximum in 

stability at expense in maximum power. In research of light scattering in air 

frequency stability of 1 part in 10-8  or 10-9 is required which is readily achieved 

in conventional laser system., so frequency stability is seldom a problem. But for 

its correlation over long distances, we can not correct the received scattering signal 

with respect to reference light intensity. In this case, laser power stability is the 

paramount factor. In many experiments with CW laser as pump light, there are a 

lot of trouble brought by the fluctuation of laser power. In the measurement of 

spectra by scanning a monochrometer, laser output stability must be maintained 

during the scanning time. Sometimes, we can monitor the pump light intensity to 

cancel the error raised by the fluctuation of pump light. But if there are any 

nonlinearities present in the optical path, it is impossible to correct it with a linear 

procedure. For this case, the laser power stabilizer is very useful . 

In this experiment, there are several factors which require further 

consideration. First, there is the loss of power. The main loss of power is in the 

two polarizers. If we do not want to lose too much power, we need to select better 

ones. They are also more expensive. Second, the electro-optic modulator working 

range is another important factor. If we select the range in a nonlinear area, the 

modulator can not trigger the change of the output power. The power amplifier 

should also work in its linear amplification area. In this experiment, we got the 
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modulator which halfwave voltage is high (1200V). But it is difficult to get a pair 

power transistor (PNP and NPN). We only use the voltage range between -500V 

and +500V and the power TMOS FET works in the nonlinear range. 

To further improve this stabilizer, we need to change the modulator with 

low halfwave voltage, get polarizers with less loss, and design the power 

amplification circuit with power transistors which can work in a linear area. We 

also need a detector with lower dark current. 



APPENDIX A 

BASIC PROGRAM FOR DATA ACQUISITION 

30 DEF FNT ( X ) = 3600 * VAL (MID$ (TIME$, 1, 2 ) ) + 60 * VAL (MID$ 
(TIME$,4, 2 ) ) + VAL (MID$ ( TIME$, 7, 2) ) 
40 OPEN "\DEV\IEEEOUT" FOR OUTPUT AS #1 
50 OPEN "\DEV\IEEEIN" FOR INPUT AS #2 
60 IOCTL #I, "BREAK" 
70 PRINT #I, "RESET" 
80 PRINT #1, "CLEAR" 
90 CLS 
100 OPTION BASE 1 
110 DIM V1 (6000) 
120 PRINT #1, "REMOTE 25" 
130 PRINT #1, "OUTPUT 25; FOX" 
140 PRINT #1, "OUTPUT 25; ROX" 
150 PRINT #I, "OUTPUT 25; P 1 X" 
160 PRINT #1, "OUTPUT 25; GI X" 
200 S = 60 
210 N = 6000 : TO = FNT ( 1 ) 
220 FOR I = 1 TO N 
230 T$ = TIME$ 
240 FOR K = 1 TO S 
250 IF T$ = TIME$ THEN 250 
260 T$ = TIME$ 
270 NEXT K 
280 REP = 15 : V1 = 0 : V2 =0 
290 FOR J=1 TO REP 
300 PRINT #1, "ENTER 25" 
310 INPUT #2, Y 
320 V1 = V1 + Y 
330 NEXT J : V1 ( I ) = V1 /REP 
340 TT = FNT ( 1 ) - TO 
350 PRINT I, V1 ( I ), TT 
360 BEEP 
370 IF HH$ = "STOP" THEN 390 
380 NEXT I 
390 CLOSE 1 : CLOSE 2 
400 INPUT "DATAFILE NAME" ; A$ 
410 OPEN A$ + ".DAT" FOR OUTPUT AS #1 
420 FOR J =1 TO I -1 
430 PRINT #1, J, VI ( J ) 
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440 NEXT J 
450 CLOSE #1 
460 END 
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