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ABSTRACT 

An On-Line Approach For 
Evaluating Trigonometric Functions 

by 
Rajesh Amin 

This thesis investigates the evaluation of trigonometric functions based on 

an on-line arithmetic approach. On-line algorithms have been developed to 

evaluate the sine and cosine functions. Error analysis and heuristics are carried 

out to arrive at a minimal error algorithm based on the series expansion of the 

sine and cosine function. 

A logical design based on the algorithm is presented where the unit is 

designed as a set of basic modules. A detailed bit slice design of each module is 

also presented. A simulator was designed as an experimental tool for synthesis 

of the on-line algorithms, and a tool for performance evaluation. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

"It has been long recognized that the concept of computer architecture is no 

longer restricted to the structure of bare machine hardware"[1]. A modern 

computer is an integrated system consisting of machine hardware, an instruction 

set, system software, application programs, and user interfaces. Present day 

computing is driven by real life problems which require fast and accurate 

solution. 

Most scientific problems require extensive numerical computations and 

their solutions demand complex mathematical formulations and numerous fixed 

or floating point computations. Most complex problems such as weather 

forecasting, structural analysis, and random problems in navigation can be 

transferred to arithmetic computation problems using well known techniques 

[2]. The resources required by these massive problems are the driving factor that 

necessitate the enhancement of current day arithmetic units. To satisfy the 

demands of present day computational problems, more efficient implementation 

of arithmetic units and faster computational algorithms are needed. Numerous 

hardware techniques have been introduced, such as parallel processing, 

pipelining etc.[1]. These techniques are utilized to develop high speed and 

efficient arithmetic units based on architectures such as superscalar or 

superpipelining, where one or more results can be obtained in each clock cycle. 

However, the basic arithmetic pipeline structures are limited by the time 

required to add or shift operands. Methods such as carry look ahead addition or 

carry save addition have been developed to alleviate the carry propagate 
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bottleneck of addition[3]. However, these parallel implementations still require 

that both operands must be completely resided in the registers before the 

computation can start. This limitation can be eliminated by a fast evolving 

technique called on-line arithmetic which uses serial addition instead of 

conventional parallel arithmetic. 

On-line arithmetic is a process for performing arithmetic on a serial basis. 

All on-line arithmetic processors accept inputs and generate outputs in a most 

significant digit first format. Redundant number representations [4] are used for 

the digits to avoid carry propagation in addition. These methods allow the 

arithmetic unit to produce partial results starting from most significant bits of 

the input operands. That is, for every bit of input, you produce an output after a 

small delay. On-line arithmetic processors can be pipelined directly to perform 

complicated calculations and with their serial dataflow characteristic, they may 

be internally pipelined at rates limited only by the time required to calculate a 

single digit. Elimination of carry propagation allows on-line operations to be 

overlapped. Application specific systems benefit especially because arithmetic 

operations can be overlapped by starting operations as soon as digits become 

available from previous operations. 

1.2 Objectives 

The main objective of this thesis is the development of iterative algorithms for 

the computation of trigonometric functions such as, cosine and sine, based on 

on-line arithmetic techniques. Specifically, the algorithm is to be digit on-line 

algorithm and the on-line delay of this algorithm is to be at the most four. Delay 

should be limited to this value for efficient pipeline implementation of the 

algorithm. 



Secondly, a modular logic design of the underlying hardware is presented. 

This provides us with an understanding of the hardware requirements and form 

the basis of comparison with other algorithms on similar functions. 

Finally, a software simulation of the algorithm is presented. This simulation 

would act as an acid-test to verify the correctness of the algorithm. 

1.3 Thesis Overview 

The rest of the thesis is organized as follows. Chapter 2 reviews some basic 

concepts and background materials on the on-line algorithms. The CORDIC 

procedure for evaluating trigonometric functions and a comparison with the on-

line approach is discussed in chapter 3. The implementation of CORDIC is also 

briefly discussed in this chapter. Chapter 4 deals with the error analysis and 

heuristics carried out to achieve an optimal series approximation. The hardware 

implementation along with a logic design, for the implementation of the 

trigonometric functions are presented in chapter 5. Chapter 6 discusses the 

software simulation of the on-line algorithm. 



CHAPTER 2 

BACKGROUND 

2.1 Redundant Number System 

2.1.1 Signed Digit Number System (Radix > 2) 

In a conventional number system with an integer radix r>1 each digit is allowed 

to assume exactly r values: 0, 1, . 	r-1. In a redundant number representation 

with the same radix r each digit is allowed to assume more than r values. 

Avizienis[6] described a method where each digit of a positional constant 

radix number with an integer radix r is allowed to assume q values, 

r+2 	q 5_ 2r-1 	 (2.1) 

This is possible because both positive and negative digit values are allowed. 

Redundancy in the number representation allows fast addition and subtraction 

in which each sum digit is the function only of the digits in two adjacent digital 

positions of the operands. Such operations are called totally parallel addition 

and subtraction. The requirements for totally parallel addition and subtraction 

and a unique representation for the zero value are satisfied by a class of 

redundant representations with radices r > 2 which are called signed digit 

representations. Each digit of a number in signed digit representation can 

assume both positive and negative integer values. The number of digit values in 

a radix r > 2 representation ranges from a required minimum of r+2 to the 

allowable maximum of 2r-1. 

The purpose of signed digit representation is to allow addition and 

subtraction of two numbers where no carry propagation is required; that is, the 

time for the operation is independent of the length of the operands and is equal 

to the time required for the addition or subtraction of two digits. A signed digit 
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number is represented by n+m+1 digits zi (i= -n, . . . , -1, 0, 1, . . m) and has the 

value Z as shown in equation 2.2. 

Z 	r-i  
rn 

(2.2) 
-n 

Consider the addition of two digits, zi, yi, the sum digit si = f(zi, yi, ti) 

where ti is the transfer digit from the ( i+1 ) th position on the right and 	= 

f(zi, yi ). The addition of the two digits is performed in two successive steps. 

First, an outgoing transfer digit ti_i and an interim sum digit wi are formed: 

zi + yi = rti-1  + wi 	 (2.3) 

then the sum digit si is formed from, 

Si = wi + ti. 
	 (2.4) 

The requirement for the unique representation of zero is satisfied by the 

condition, 

I zi I 5_ r-1. 	 (2.5) 

For a two operand operation, the condition(equation 2.5) establishes values 

for ti = (-1,0,1) and the condition I wi I r-2 sets the upper limit for the 

magnitude of the interim sum (this also restricts the radix to r > 2). The 

relationship between the greatest value wmax  and smallest value win  of wi is 

wmax win  r 1, 
	 (2.6) 

and the set of allowable values for wi is unique and consists of 2r-3 integers 

from -(r-2) to (r-2). 

Since ti E -1, 0, 1), the required values of the sum digit si consists of a 

sequence of r+2 integers: 

si E tWmin-1, win, . . -1, 0, 1, 2, . . . ,wm  , max +1})- 
	(2.7) 

For odd radix ro, the minimum required set is, 

zi E -(r0  + 1)/2, .. . . -1, 0, 1 . . . . , (r0  + 1)/2), 	(2.8) 
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for even radix re, minimum required set is, 

zi E {-(re/2 + 1), 	, -1 , 0, 1, .... re/2 + 1). 	(2.9) 

Also, since I zi I 5 r-1 we can have different sets of zi E { -a, -(a+1), . -1, 

0, 1, ..(a-1), a), where, (r0  + 1 )/2 a 5 r0  -1 or re/2+ 1 a re  - 1. If a = ro  -1 

or a = re  -1, then there is maximum redundancy, and if a = (r0+1)/2 or a = 

re/2+1 , then condition exists for minimum redundancy. 

The following gives an example for addition of two signed digit numbers 

as the totally parallel addition of all corresponding digits. 

Example: Signed Digit Addition (Radix = 10) 

The allowed digit values for ti and wi are: 

ti: -1, 0, 1 and, 

wi: 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6. 

Z =1.651.4: 	value = 0.76486 

Y = 0.40531 	value = -0.39471 

The addition procedure S = Z + Y based on equations (2.3) and (2.4) is illustrated 

in the following table where x = -x. 

Table 1: Addition Procedure for Radix 10. 
i 0 1 2 3 4 5 

augend zi 1. -3 6 5 -1 -4 
addend yi 0. -4 0 5 3 -1 

step 1 (rti_i + wi) 0+1 -10+3 10+(-4) 10+0 0+2 0+(-5) 
step2 (ti) -1 1 1 0 0 
sum si 0. 4 -3 0 2 5 

The sum is S = 0.43-023; 	value = 0.37015 
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2.1.2 Modified Signed Digit Representations ( Radix = 2) 

The digit addition rules for signed digit may be modified to allow the 

propagation of the transfer digit over two digital position to the left[4]. If this 

type of transfer addition is allowed the radix r = 2 may be used and only r + 1 

values are required for the sum digit. Two transfer additions are executed in 

three steps 

zi'+ yi = rti-it + wi' , 	(2.10) 

wi' + = 	+ wi' 	(2.11) 

sit = ti"+ wi" , 	 (2.12) 

the digits zi yi , and si are digits of a modified signed digit representation. For 

example, with radix r = 2, the required values are -1, 0, 1; 

• if no redundancy exists and each sum digit si is the function of all the addend 

digits zi and augend digits yi to the right, i.e. 

si = f( zi yi 	..,zm  , ym  ); 

• if each sum digit assumes r + 1 values, we have si = f( zi yi , zi+i, yi+i 

zi+2 yi+2) and the operations are two transfer additions; 

• if each sum digit assumes r + 2 values or more, then we have si = f( zi , yi 

yi+1 ) and the operation is a single transfer addition. 

Example: Signed Digit Addition (Radix = 2) 

The allowed digit values are: 

wi 	wi" E 	0, 1.1 ; 	ti , ti" E (-1, 0, 1} 

S = Z 

ti  = 

if —1(zi.  
if 	(zi +yi)>1 
if 	(zi +yi) <-1  

if —1 	+ti)<1 
if 	(wi +ti)> I 
if 	+t'i)<-1 
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Z = 1.10 lil 
	

binary value = 0.1001 

Y = 0.10101 
	

binary value = 0.0011 

The procedure of addition based on equations (2.10)-(2.12) is illustrated in the 

following table: 

Table 2: The Radix-2 Addition Procedure. 
i -1 0 1 2 3 4 5 

augend z 1. -1 0 1 -1 0 
addend y 0. 1 -1 -1 1 0 

zi + yi 1 0 -1 0 0 0 
tit 0 0 0 0 0 0 0 

wit 1 0 -1 0 0 0 
ti" 0 0 0 0 0 0 0 

witt 0 1 0 -1 0 0 0 
si 0 1 0 -1 0 0 0 

The sum is S =1.01000; 	binary value = 0.11000 

2.2 On-Line Arithmetic 

2.2.1 Overview 

On-line arithmetic is a process for performing arithmetic on a serial ( i.e. digit by 

digit) basis. All on-line arithmetic processors accept inputs and generate outputs 

in a most significant digit first format. To obtain the jth digit of the result from 

an on-line algorithm, it is necessary and sufficient to have the operands available 

up to the (j + 6)th digit. The index difference 6, called on-line delay(typically 1 to 

4), is a small positive constant and it is algorithmic dependent. 
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i+6 
On-Line Arithmetic 

y 
	 Unit 

Figure 1 Input/Output Characteristics of On-Line Arithmetic 

As indicated in Figure 1, the first digit of the output is produced after a 

delay S. Subsequently, one digit of the result is produced upon receiving one 

digit of each of the operands and m is the precision of the result. 

Figure 2 demonstrates the difference in evaluation time between on-line 

and conventional arithmetic for an expression: 

a 	[ (p+q)1/2* (m  - 0)2 	(x  y) 	 (2.13) 

It is easy to perceive that a conventional (non-redundant) number system is 

not feasible for on-line arithmetic. If we were to use a non-redundant number 

system, then even for simple operations like addition and subtraction, there is an 

on-line delay 8 = m due to carry propagation. Hence it is required for an on-line 

algorithm to use redundant numbers where the time required to compute one 

output digit is independent of the length of the input operands. The on-line 

representation of a number A is defined as 

A / = A -1+ aJ. 4_ 5 r-8-' (2.14) 

and, 
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Figure 2 Comparison of Evaluation Time: On-Line and Conventional 

The digits ai belong to a redundant digit set {-µ, . . . -1, 0, 1, . . . 1.1.) where r/2 

r-1 determines the amount of redundancy. 

Example: For binary data the redundant digit set consists of {-1, 0, 1}. 

2.2.2 Fixed Point On-Line Addition 

Presented below is an example of an on-line add algorithm for adding Xk and 

Yk [5]. 

Let Xk= Xk —1+ xk.r —k  and Yk = Y k —1+ yk.r-k denote the values of the 

addends, while Sk= Sk _1+ sk.r —lc denotes the value of the sum, at step kin a 

radix-r redundant number system. 

[1] Initialization: 

w j 	; s_2 s-i = 0 

[2] Recurrence: 



11 

for j = 0, 1, 2, 3, 	 m+1 do: 

w  = r (w 1 _ 1 - s j_2)+r-5  (x + y j ) 

[3] Selection Function: 

si= S(w1) 

where the selection function S is done by rounding 

The on-line delay is 8 = 1 for r >= 4 and 11, = r-1. For r = 2, 8 = 2. 

2.2.3 Fixed Point On-Line Multiply 

We now give an example of an on-line multiply algorithm for multiplying Xk 

and Yk [5]. 

Let Xk= Xk-i+ x' K 	k and Y k  = Y k_i+ ykr-k denote the values of the 

multiplier and multiplicand, while Dk = Dk -1+ dkr-k  denotes the value of the 

partial product, at step k in a radix-r redundant number system. 

[1] Initialization: 

w1=0 ; xo= Yo= 0 ; do = 0 

[2] Recurrence: 

for j = 0,1, 2, 3, 	 m+1 do: 

wi = r (w1_ 1- dj_i)+ (XjYi+Yj-ix j ) 

[3] Selection Function: 

dj= S(wi) = sign w1. [w jI + 1/2j 

where the selection function S is done by rounding and after m steps the product 

is P = XY = Dm  + (Wm  - dm)r-m. 
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2.2.4 Implementation 

On-line arithmetic algorithms can be implemented in two ways: 

1. Linear array organization of on-line units and 

2. Pipelined implementation. 

In a linear array organization of on-line units, inputs are given parallel to 

each module where input operands are divided in sub operands depending on 

the precision of the internal digits of each module. As the input operand digits 

start coming to the first module(most-significant bits) it calculates the partial 

output and also passes the transition result to the next module. Hence the unit 

starts producing output result as soon as the input operand bits are available 

(plus a small delay), unlike the conventional computation where the unit has to 

wait for all the bits of the operand and then starts the computation. 

Figure 3 Linear Array Organization of On-Line Unit 

The pipelined implementation is similar to the linear array implementation 

but here the input operands are given in a pipelined fashion instead of single 

input operation as in the linear array. A pipelined on-line unit consists of (n+8) 

stages with the stage delay td. In the steady state, the unit is computing up to n 

different results and the last stage producing the last digit of the (i-n)th result. To 

implement the recurrence of an on-line algorithm, the working precision that 

increases with the number of steps must be provided. If the result is to be 

computed to a maximum precision of n digits, the recurrence requires at the jth 
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step a precision of the j digits for j< n/2 and a precision of n-j digits for j > n/2. 

Therefore, n simultaneous operations in various stages of completion require a 

total working precision of about n2/4  digits. This requires that a one-

dimensional array of modules, shown in figure 3, would not be suitable for 

pipelined inputs since the modules ( their internal precision) and the inter-

module bandwidth would depend on the relative position in the array. A two 

dimensional array typical for pipelined inputs is shown in the figure 4. 

This array, if implemented with d digit wide modules, requires rn/d1 

rows with a variable number of modules per row. The total number of d-digit 

modules required for maximum precision of n digits is approximately (n/d)2/4. 

2.2.5 Characteristics and Features 

The following depicts some of the important characteristics and features of on- 

line arithmetic : 

1. Produces results most significant digit first. 

2. Digit cycle time is independent of data wordlength. 

3. Higher computational rates by allowing overlap at the digit level between 

successive operations. 

4. Variable precision. 

5. Overlapped operand alignment in floating point operations. 

6. Error control. 

7. Minimum interconnection complexity between the processing units - one 

digit per operand. 

8. Low interconnection bandwidth. 

9. Modularity. 

10. High concurrency. 

11. VLSI realizability. 
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Figure 4 Two-Dimensional Pipelined On-Line Unit ( n= 5, d = 1, 6 = 1) 

On-line arithmetic is highly ails 	active in high speed multi-module 

structures for parallel and pipelined computations. Compared to conventional 

arithmetic where high speed multi-operand processing requires full precision 

bandwidth between arithmetic units, on-line requires a bandwidth of only one 

digit per operand which presents a very feasible and cost effective alternative. 

Also due to its highly modular characteristics it can be easily realized in terms of 

VLSI design. The main results indicate that the on-line approach offers a speed-

up factor of 2 to 16 with respect to conventional arithmetic while preserving 

limited interconnection bandwidth, decentralized control, and uniform 

structure. These features are highly attractive for reconfigurable networks. 



The principal disadvantage lies in the fact that the use of redundant 

number system is mandatory where conversions to and from the conventional 

system is an overhead. Moreover the inherently serial operation makes on-line 

arithmetic unsuitable for isolated arithmetic operations and comparisons. 
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CHAPTER 3 

TRIGONOMETRIC FUNCTION EVALUATION 

3.1 The CORDIC Procedure 

3.1.1 CORDIC Algorithm 

The COordinate Rotation DIgital Computer (CORDIC) algorithm to evaluate 

trigonometric functions was first introduced by Volder[6]. Consider the problem 

of rotating a vector R(r, B), where r is the magnitude and [3 is the angle made by 

the vector with the positive X-axis, through a specified positive angle 0. Assume 

that the original vector is expressed in terms of its coordinates X andY and we 

wish to find the coordinates X' and Y' of the rotated vector. 

Figure 5 Coordinate Rotation of Vector R 

From figure 5, we have, 

X' = Xcoso - Y sinΦ 

Y' = XsinΦ - Ycoso 	 (3.1) 
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and, 	 X' /cos = X - Ytanq) 

Y'/sin =Y+Xtan 
	

(3.2) 

The CORDIC algorithm is an iterative procedure, in which each step, a 

vector is rotated in one or the other direction through an angle aj = tan-1  2-i. The 

direction for each al  is chosen as positive (anti-clockwise) if ( - Iaj) > 0 and as 

negative(clockwise) if (o - Eaj) < 0 where j = 0 to i -1. Thus if we let of denote the 

total angle through which the vector has been rotated through step i then, i= 

±a0±a1±a2. . . .±ai. This sum converges for all  angles of magnitude less than 

100° (1.74 radians). The iterative rotation through ±ai  can be used to compute X' 

and Y' iteratively with 

X1+1 = Xi - Yi tan ai 

= Yi - Xi tan ai. 	 (3.3) 

If 	- Eaj) < 0 then, 

Xi±i = Xi + Yi * 2  

Yi+1 = Yi Xi * 
	

(3.4) 

and if ((13, - Eaj) > 0 

V. 	= Xi - Yi * 2-i 

Yi+1 = Yi + Xi * 
	

(3.5) 

Continuation of the iterations until Φ i  approximates therefore produces X and Y 

components which are Kc times as large as the true X' and Y', where Kc is given 

by 

Kc = 1/cosao *1/cosai *1/cosa2 	 

= 4(1 + 2-0) * 4(1 + 2-1)* 4(1 + 2-2) 	 

= 1.646760255. . . 	 (3.6) 

which is the Volders Value through i = 24. Division by this factor forms the true 

X' and Y' values from the X and Y values formed by repeated application of 

equations (3.3)-(3.5). 
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Figure 6 Implementation of CORDIC 

The hardware requirements for performing these steps are quite simple. We 

need a shift register for Xi and Yi and two adders. We also need to accumulate 

Φ - Φi and to test its sign. Figure 6 shows the block diagram of these elements. The 

crossover paths A and B carry the shifted ( and possibly complemented) values 

of Xi and Yi to be added or subtracted as specified by equations (3.3)-(3.5). The 

sign of ai is determined by the sign bit of the (Φ - 0i) register, and the various 

values of ai must be provided on successive steps. These values are stored in 

ROM. 

The structure of the algorithm can be easily adapted for other purposes 

besides the rotation described above. Some of them are: 

® 	Given a vector (r,0), we find its components X' and Y' by setting Xo = r and 

Yo = 0 and rotating through 0. 



19 

Given a vector (r, ), we find sinΦ and cos by setting Xo = 1 and Yo = 0 and 

rotating through o, to form X' = cosΦ and Y' = sin 

scaling factor 1 /Kc). 

Given an angle o, we find tan  

(after multiplying by 

as shown previously by forming sinΦ and cos 

and then finding their quotient. 

• Given the components X and Y, we find (r, ) by choosing successive ai so that 

Yi+i becomes zero as the rotation continues. Then r = Xi+i/Kc and Φ = Φi, the 

accumulated sum of ±ai.  

• Given X1 and Y1, to find = tan-1  Yi /Xi, set X = X1 and Y = Y1. Rotate the 

vector by choosing signs for successive ai so that Yi+1 becomes zero. Then Φ = 

Φi. 

Larger values must be prescaled to reduce them to size for which the procedure 

converges. 

3.2 On-Line Trigonometric Functions Over Conventional CORDIC 

As discussed in section 3.1 the CORDIC method [6] is straightforward and easy 

to implement. Its principal advantage is that it requires neither floating point nor 

multiplication hardware. Also it requires only a small number of operations. 

However, the conventional implementation of a CORDIC module has a lot more 

disadvantages when compared to modern techniques. 

• The first advantage which on-line implementation of trigonometric functions 

has over CORDIC method is that the usage of redundancy greatly improves 

the speed. That is because the time required to compute one output digit is 

independent of the length of operands. 

• Secondly, CORDIC requires variable shifting which is time consuming and 

expensive, this can be eliminated or alleviated using an on-line approach. 
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Thirdly, the on-line approach does not require table lookup, which is a major 

bottleneck while the CORDIC method requires ROM's to store angle 

constants. Using ROM's makes the implementation slow and requires large 

chip area. Moreover, the on-line approach uses a regular implementation of 

modules such as add, multiply. etc., hence the design is highly modular and 

interconnections are simpler. This is a highly desired feature in highly 

complex systems such as matrix triangularization and singular value 

decomposition (SVD [7]) which uses angle calculation algorithm as their 

basis. The modularity feature of the on-line approach can be utilized in 

building systems which are internally pipelined and consequently increases 

the overall system throughput. They are also highly cost-effective. 

Other features of on-line approach include realization of a variable precision 

arithmetic. Floating point operand alignment can be performed in 

overlapping manner with significand operation. Moreover, in contrast to 

conventional CORDIC method we can control error, i.e. if error occurs during 

computation at the jth step, we can restrict the precision of result to j and still 

get a partial output. 



CHAPTER 4 

ERROR ANALYSIS 

4.1 Introduction 

In this chapter, we investigate the possibility of using a series expansion 

approach to evaluate trigonometric functions. The first question that was 

encountered was whether this method is feasible. This means, we need to 

evaluate the error produced by a series expansion approach where error is 

defined as I cos(x) - fcos(x) I . In this chapter, we determine how the size of the 

input operand and the number of terms in the series expansion is related to this 

error. 

To calculate the error, several programs were written to graph the error of 

the sine and cosine series from their actual values. At the same time, calculations 

were carried out to find out the significance of each terms in the series. Also 

these calculations involve finding out the number of terms needed to be 

performed ( i.e. number of xn / n! terms to be added) before the output remains 

unaffected for the number of precision bits considered. 

For example, consider the cosine series expansion: 
x4 x6 

COS(X) = 1 — 	+ — 
2! 	4! 	61 + 

e_on X 2n
+  

2n! (4.1) 

With a 16 bit input and output precision, the first step would be to find how 

many terms from the above series would affect the result within the precision. 

Table 3 provides summarizes the results. 

From the table, we selected at most nine terms of the series as an 

approximation to the cosine function. 
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(_unx2npn 	, Figure 7 Error Curve For Cosine Series 1-X20! + X414! 



Table Significant Terms Analysis 
ANGLE NUMBER OF TERMS SERIES 

15° 5 (1 - x2/2! + 	+ x8/8!) 
30° 7 (1 - x2/2! + 	 + x12/12!) 
45° 8 (1 - x2/2! + 	 + x14/14!) 
60° 9 (1 - x2/2! + 	+ x16/16!) 

The next step is to take the truncated series and analyze its error at 

different values ( 0 to 90 degrees). The curve in figure 7 shows how the error 

I cos(x) fcos(x)  I takes a constant path curve with the error remaining more or 

less constant between 0 to 90 degrees. This indicates the behavior of the series 

expansion in different input regions. The maximum error from the curve is 

0.000024057036. 

After determining the characteristics of the series approach and its 

feasibility, we carried out analysis ( see Appendix C) to derive a series which has 

the denominators as only powers of two. 

For example, in our case for the cosine function we determine the series as 

approximation 

f (X) = - X2  + X4  _ x6  
COS 	21  24  27  (4.2) 

To prove that this is a good approximation, we determine the characteristic 

of this series with an error analysis as before. Furthermore, routines were written 

to graph the deviation error I x - f-lcos(x) I • 

Figure 8 shows a normal error curve ( I cos(x) - fcos(x) I) for the equation 

4.2. It shows the exponentially increasing behavior, due to heavy truncation on 

elements of the series plus the modified denominator values. 

Figure 9 demonstrates the deviation error characteristics. This means that 

if the original value for cos(60) is 0.5, then to get 0.5 as output with the modified 
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Figure 8 Error Curve For Modified Cosine Series 1-X2/2  + X4/16 - X6/128 

Figure 9 Input Deviation Error Curve For Modified Cosine Series 
1-X2/2  + X4/16 - X6/128 
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series, an input of 60° + error should be given. This error in terms of degrees, is 

shown by the graph. Error curves and deviation error curves for different 

possible series are discussed in following section. The maximum error at 90 

degrees is 0.029661147. 

4.2 Error Analysis 

4.2.1 Error Analysis 

The error between the function and the series approximation is defined as 

cos(x) - fcos(x)I  Appendix C shows several error curves for different series at 

different precision values. The curves are plotted for both sine and cosine series. 

A close study of these figures indicates several important characteristics of 

the sine and cosine series implementation : 

• Keeping input values between 0 and 30 degrees result in minimal error; 

• Input values at or near 90 degrees result in maximal error; 

• Changing denominators in the power series result in different error 

characteristics; 

• Changing precision value keeps the characteristic of the error curve 

approximately the same but the net error changes; 

• For cosine series 1 - x2/2  + x4116 - x6/128, the maximal error region is at or 

near 70 degree instead of 90 degrees; 

• For sine series x - x3/8  + x5/32 - x7/16384, the error curve takes a steep 

increase, which indicates this series may not converge at all. 

4.2.2 Input Deviation Error 

The error between the function and the series approximation is defined as 

x - series-1(x) I . Input deviation error is an indication of how much the input 
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value is deviated from the correct value to obtain the same results for each 

function. Input deviation error curves for cosine series at 16 bit precision is 

shown in figure 9. The X axis indicates the input value in degrees while Y axis 

indicates the deviation error in degrees. 

A close study of the curves(Appendix C) indicates the following important 

characteristics: 

• Keeping input values between 0 and 30 degrees result in minimal input 

deviation error; 

• Input values at or near 90 degrees result in maximal input deviation error; 

• Changing denominators in power series result in different error 

characteristics; 

• Changing precision value keeps the characteristic of the error curve 

approximately the same but the net error changes; 

• For cosine series 1 - x2/2  + x4/16 - x6/128, the maximal error region is at or 

near 70 degrees instead of 90 degrees; 

• For cosine series 1 - x2/2  + x4/16 - x6/512, the error curve takes a steep 

increase after around 60 degrees, which indicates this series may not be 

feasible to use for inputs greater than 60 degrees. 

4.2.3 Optimal Series 

An optimal series in our case is a series with the best error and input deviation 

error characteristics. Programs were written which were capable of running 

heuristic calculations on every possible powers of two, for each term in the 

series. The following results were obtained: 

• Some series may have the smallest error in a small region of input, that is it is 

optimized for that region of input, but further observation shows that error in 

other regions are increased; 



• Changing the computation precision does not have a major effect on the 

optimal series denominators; 

• The optimal series that can be found under the constraints of available 

resources and time are, 

fcos(x) = 1- x2/2  + x4/16 - x6/128, maximum normal error of 0.02958 

f 	(x) = x - x3/8  + x5/1024 - x7/16384, maximum normal error of 0.09395 



(5.1) 

CHAPTER 5 

HARDWARE IMPLEMENTATION 

The general cosine and sine functions in their series forms are respectively, 

As derived in the chapter 4, the series is truncated and the factorial 

denominators are approximated by exact powers of two to simplify the 

hardware implementations. The approximate equations for sine and cosine in 

equation 5.1 are 

(5.2) 

An exploded block diagram of the implementation of the cosine series 

using on-line arithmetic is shown in figure 10. A similar implementation for the 

sine function using equation 5.2 can be realized without making major changes 

to the design for the cosine function. The implementation utilizes on-line units 

capable of doing multiplication, addition (3-operands) and shifts. 

Table 4 Truth Table for Y = -X 
x1 x0 Y1  y0 
0 0 0 0 
0 1 1 1 
1 1 0 1 

The truth table indicates that 

y0 = x0 and y1 = x1 + x0 	 (5.3) 
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Figure 10 Block Diagram of the On-Line Implementation of the Cosine Function 

Each OLMLP block in Figure 10 indicates an on-line multiplier which is 

capable of multiplying two operands in an on-line fashion. The multiplier blocks 

are used to form powers of X. Shifters at various input points of the blocks are 

used for divisions. Subtraction is done by complementing the result bits at the 

output of the on-line units. Since the number system used is a redundant 

number system, complementing the result bits is based on the function shown in 

table 4. 

The OLADD3 block is an on-line adder capable of adding three input 

operands simultaneously. A constant number (1.0) is added directly using a 

"preappend" method instead of conventional addition. 

5.1 Design Considerations 

• Inputs are given in redundant number system with working set as (-1,0,1) 

• Output is received also as a number in redundant representation. 

• Multiplication algorithm works only for inputs less than 1.0 so the inputs are 

scaled down, by using shifters at their input points. 



28 

• A "1" is added at the end by just appending it in front of the result ( result 

will always be within the range [-1,1]). 

• The input operand X can be given at each step j as indicated in equation 5.4. 

(5.4) 

where 8 is the on-line delay factor. 

Described below is the detailed design of each of the on-line units 

beginning with OLMLP, the on-line multiplication unit. 

5.2 OLMLP 

The OLMLP unit is described best by its recurrence equation (equation 5.5), 

which iteratively calculates the product of the operands X and Y (Appendix B). 

wj=2(wj-1-dj--1)+(XjYj+Yi-ixi)- 	(5.5) 

The various hardware techniques and components required to implement 

the above recurrence equation are discussed briefly in the following sections. 

5.2.1 Data Conversion 

Working with redundant number system operands internally in an accumulator 

complicates its structure and operations. Hence, we work with conventional 

binary number system instead of RNS(redundant number system) internally in 

an accumulator. This requires converting the input operands in RNS to the 

conventional(2's comp.) numbers (i.e. mapping numbers from (-1,0,1) to (0,1)). 

The conversion algorithm is based on Ercegovac [8] and is described 

briefly in equations 5.6 and 5.7. 

mk  = Input bit at time k (redundant form) 

n[k] = Output bit (conventional form) at time k 
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where, 	 (5.6) 
Q[k -1] = P[k -1]-2-(k-1)  

• Conversion Algorithm 

(1) Initialization: 

(2) Recurrence: 

For k > 1, 

(5.7) 

Adding 2-(k+1) indicates a simple operation of appending appropriate bit to 

P[k] or Q[k]. 

The above algorithm is based on the well known conditional sum 

algorithm for fast addition. As indicated by the recurrence equations, we do not 



require any kind of carry propagate addition at any stage. The implementation 

of the algorithm is shown in figure 11. 

Figure 11 Implementation of the Conversion Algorithm 

The implementation requires two registers to hold P[k] and Q[k] per bit 

slice. A combinational circuit is used to select the inputs of the two registers and 

a multiplexer decides which output should be given (Figure 11). 

A counter input to the multiplexer decides whether the output is from the 

buffers or from the input itself depending on the count. That is, at the i th clock 

cycle, the i th bit-slice selects the input directly without taking from the buffers. 

This represents the appending of the 24+1)  to the P[k] or QM terms in the 

recurrence equation (equation 5.7), while other bit slices ( 1 to i-1) select their 

outputs from their respective buffer registers depending on the input bit (1,0,-1). 

5.2.2 Single Bit Multiplier 

Multiplications such as xiy j  and yi_ lx j require single bit multiplication 

between its operands. Such multiplication can be achieved by the following 

function given in equation 5.8. 

for: Z j  = Xjyi 	where, Xi = x0 x1  x2 	xJ 

30 
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hence, 

5.2.3 Addition 

Addition of the variables in the recurrence equation is done by using the carry 

save adder technique[9I. Since there are multiple input terms to the adder, we 

implement the adder as bi-level carry save adders. Actual addition in the design 

of bit slice is realized by full adders implemented as shown in figure 12. 

Figure 12 Addition by Carry Save Addition Technique 

5.2.4 Result Digit Selection 

The result digit selection is done by using a selection function S which is given in 

equation (5.9), si = S(wj). The selection function S is done by rounding. 

(5.8) 



(5.9) 
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This implies that whenever the intermediate sum Wj is less than 1, then the 

binary value 0.1 is added to it and a floor rounding is done. If it is greater than 1, 

then a simple floor rounding is done. This implies the following bitwise 

input/output relationship between Wj and Si shown in table 5. 

Table 5 indicates that, 

(5.10) 

Table 5 Truth Table for Selection Function 
Wi Si-2 

W-1 W0 W1 W2 W3 W4 • • • S0 S1 

0 1 0 * * * 0 1 
0 0 1 * 0 1 
0 1 1 * * * 0 1 

0 0 0 * * 0 0 
1 0 0 * * not possible 
1 1 0 1 1 
1 1 1 1 1 
1 0 1 not possible 
1 1 1 1 * 0 0 
1 1 1 0 1 0 0 

. . . . . 

* indicates the don't care condition. 

The selection is independent of the precision of the input w. 



33 

Instead of generating logic for all 1,0 and -1 we generate only 1 and -1 and 

assume 0 as the default output. 

Figure 13 Implementation of Select Function 

Figure 13 shows implementation of S(wj) (equation 5.10) using only w-1,w0, 

w1  bit of the input w. The logic used is that if S is not 1 or -1, then for all valid 

inputs it has to be 0. Hence, only the first three bits of the input are used to select 

for 1 or -1, otherwise, it is 0 by default. 

5.2.5 Pipelining Implementation 

To minimize the number of steps of the computation, we use a two stage 

pipelined scheme which is implemented by using the modified equations(5.11): 

(1) w'j = 2(w'j_i -dj_i)+(XiYi+Yi-ixj) 

(2) dj = SELECT(2(wi j-1 - c11-1)) 	 (5.11) 

Step 1 is done in stage 1 while step 2 is done in stage 2 in the pipeline. 
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Figure 14 Pipelined Implementation of Multiplication Recurrence 

Figure 1.4 illustrates the pipeline implementation of the multiplication recurrence 

equation. The select function in equation 5.9 is modified slightly in equation 5.11 

to incorporate the two stage pipelining in the design. We have two buffers, one 

stores the previous value of w'j  while other stores the previous value of dj. The 

cony. X and cony. Y stages indicate the accumulation and conversion of the input 

bits from redundant number system to conventional number system. The 

multiplier stages indicate the single bit multiplier as discussed in equation 5.7. 

To get Yj-1 at the j th clock cycle, we can put a one-clock cycle delay for cony. Y. 
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5.2.6 Organization of the On-Line Unit 

The on-line unit is organized as a linear array of modules as shown in figure 15. 

Figure 15 On-Line Linear Array Organization 

The first module M1 as shown in figure 15, contains components for generating 

the result exponent, result digit selection(SELECT ) and bit slices for the most 

significant portion of the recurrence calculation, this includes the sign and 

integer bit positions and a few fractional bit positions. The other modules 

M2....Mp are identical in that each consists of bit slices of the fractional bit 

positions. The number of modules required for a m-bit precision calculation with 

input of Nfrac  (number of fractional bits) and Nint  (number of integer bits) is 

given by equation 5.12. 

(5.12) 

According to the modular design shown above, the conversion algorithm 

implementation for our modular pipelined design should also be modular (i.e. 

bit slices should be able to handle input bit that is coming at each iteration). 

Hence, our implementation for conversion algorithm should be as shown in 

figure 16. 
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Figure 17 Bit slice Organization of the On-Line Multiply Module 
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Figure 16 Modular Decomposition of the Conversion Algorithm Implementation 

Cbuf is a circuit consisting of two buffers to store P(k) and Q(k) and 

combinational circuits to form P(k+1) and Q(k+1). 

Figure 17 shows a single bit slice organization. 

The Xacc and Yacc design goes according to the design of the conversion 

algorithm as in equations 5.6 & 5.7, and it incorporates the Cbuf along with other 

necessary logics. 

Instead of using two separate buffers as shown in figure 14 we use a 

common buffer to store wj-1  and dj-1. 

Notes: 

• the clocking circuitry designed latches latches the incoming xi and yj bits at 

the jth clock cycle of the jth bit slice in order to have the correct position of xj 

and yj. 

, 	Also xj and yj goes to all bit slices for the single bit(sbit) multiplier, i.e. 

multiplication of the latched bits in each bit-slice with value of xi and yj at 

time period j. 

O inputs xj and yj are two bit inputs. 
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5.3 OLADD3( on-line add recurrence) 

The OLADD3 is an on-line unit which can add up to three operands 

simultaneously in an on-line manner. The OLADD3 is required to sum up all the 

power series terms as shown in figure 18. It is based on the on-line addition 

algorithm (see Appendix B). 

The on-line add algorithm can be implemented similar to the on-line 

multiply discussed in section 5.2. The differences are that there is an on-line 

delay δ at the input for the OLADD3 unit, and that there are three operands 

internally instead of two. The equations for on-line addition implementation are 

(1) 	w  j = 2(w 	-si_3)+(xj+yj+zi),-2 
 

(2) 	s 1_2  = sel(wj-i —s1-3 ) 	 (5.13) 

Similar to the on-line multiply case, wj' is used in order to facilitate 

pipelining between the two stages. Step 1 is implemented in pipeline stage 1, 

while step 2 is implemented in pipeline stage 2. The select function is modified 

slightly to incorporate the two stage pipelining in the design. Hence as can be 

seen from the figure 18 we have two buffers, one stores the previous value of wj' 

while the other stores the previous value of dj. FA and SHR indicates the unit 

required for adding bitwise three operands and multiplication by 2-2. The FA is 

implemented as a RNS full adder which can handle inputs in the range of 

(-1,0,1). 

Select is implemented exactly in same manner as equation (5.10). Since no 

accumulation of the input bits is required in this case, the hardware structure is 

simpler than what we have discussed for OLMLP unit. 
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Figure 19 Bit slice Organization of the on line add module 
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Xj Zj 

FA and SHR 

-2 
wj-1' (xj-i-yj+zj)2 

cSA 

SELECT 
wl- 

cSA 
Sj-3 

Figure 18 Pipelined Implementation of OLADD3 

Since RNS could not be handled properly within the accumulator, it is 

required that the accumulated bits within the accumulator be converted from 

RNS to conventional number system. 

Instead of using two separate buffers as shown in the figure 19, we use a 

common buffer to store wj-1  and sj-3. 

Note that, 

• the clocking circuitry designed latches latches the incoming xi and yj bits at 

the jth clock cycle of the jth bit slice in order to have the correct position of xi 

and yj. 

• inputs xj and yj are two bit inputs. 



CHAPTER 6 

SOFTWARE SIMULATION 

6.1 Overview 

The simulation was designed primarily to serve as 

1. a tool for experimental testing and understanding of the on-line cosine 

algorithm; 

2. a tool to study the real-time behavior of the algorithm where intermediate 

results at each step (clock cycle) can be viewed; 

3. a performance evaluation tool for on-line arithmetic unit for cosine function 

evaluation; 

4. a calculator which can do binary operations such as add, subtract, multiply, 

divide (some of which are not supported by conventional calculators) on 

numbers with precision up to 256 bits. It also serves as a converter which can 

convert a number in redundant number system (-1, 0, 1) to conventional 

binary system (0, 1). 

6.2 Design of Simulator 

The simulator is designed to be highly modular and convenient for interactive 

usage. The simulator has been written completely in a graphical user interface 

language - Visual Basic (programming language for windows), which allows the 

simulator be implemented exactly as the logic design discussed before. The 

language is different from other languages as being an object oriented language 

and also an event driven language (Appendix D), which is exactly what is 

required for simulation of on line algorithm. An event can be generated 

whenever a bit arrives at the input of the cosine unit in an on-line manner. This 
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Figure 20 User Interface Screen Of The Simulator 
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event is used to evaluate the bit and calculate the partial result corresponding to 

that bit position. 

The simulator uses as input the same number system as is actually 

required by the design. The use of redundant number representations of the 

operands is necessary as in on-line arithmetic. Results are also in redundant 

number. The simulator uses modules for on-line add (OLADD3) and on-line 

multiply(OLMLP) which have the same capabilities as discussed in Chapter 5. 

All hardware logic designs discussed previously have been implemented by 

equivalent software modules. Algorithms for OLADD3 and OLMLP are 

discussed in Appendix B. The on-line delay of OLADD3 is taken as 8 = 1. 

A functional block diagram of the on-line simulator is shown in figure 20. 

This is an actual print out of the user interface screen of the simulator. The block 

diagram shows the OLMLP and OLADD3 units along with the required shifters 

to implement the cosine function. A "1" is added to the final result in each step 

using the preappend method discussed in section 5.2. A button on the left hand 

corner is used to display the current clock period( iteration number), it can also 

be used to run the simulation manually. The button on the right hand corner is 

used to start or stop the simulation. Intermediate boxes show the partial result 

generated by each stage in that clock period. 

The input part prompts the user to enter the input bit stream (either in 

regular binary or in redundant number system). Even though the input section 

displays the complete bit stream, the simulator engine only takes input bitwise 

depending on the clock period. The advantage of the user giving the whole 

input is, once a complete input has been given the whole simulation procedure 

can be automated instead of the user entering each bit at each dock period. The 

small boxes indicate the bit inputs to the corresponding stage at that particular 
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Figure 21 Exploded View Of The OLADD3 Unit 

Figure 22 Exploded View Of The OLMT  P Unit 
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clock period. Also global parameters such as precision can be entered by the user 

(if not entered the default computation precision is 16 bits). 

The centralized control mechanism used in this simulator is a function 

which facilitates input in an on-line fashion. It finds the input bit from the given 

bit stream and does the necessary conversions so that it can be interpreted by 

Visual Basic properly. The simulator engine then keeps the current clock period 

and simultaneously broadcasts the clock signal to each unit (OLMLPO, OLMLP1, 

OLMLP2, OLADD3) so that they can take the necessary action in response to 

that. One more important aspect that the simulator takes care of is that the 

OLMLP algorithm can handle only numbers which are less than 1.0. The 

simulator eliminates this problem by placing the shifters at the appropriate 

positions in the data path so that the input to any on-line unit has computation 

value less than 1.0. Hence instead of shifting the operand after calculating 

different powers of it, we just shift it intermediately along the data path as 

shown in figure 18. 

The execution part of the simulator is interfaced to a set of on-line 

arithmetic procedures. These procedures are reentrant and the design is such 

that it is relatively easy to add new modules specifying new on-line algorithms. 

The interface between the execution part of the simulator and the algorithm 

procedures is a set of parameters which are used and modified by the algorithms 

(one such example is the current clock period in which the simulator is 

executing). This way the control structure of the simulator is hidden and 

modifying an algorithm or implementing a new algorithm is relatively easy. 

In the evaluation of the cosine function, computations are performed in an 

automated manner. An event is generated by using a timer control which in turn 

generates interrupt and is used to start the computation using the input bit. The 

evaluation of the input operand continues until the specified precision output is 



42 

obtained. After that a user can override the automatic simulation and gets output 

of higher precision than specified in the input area by clicking the time control 

button. 

The following objectives were achieved by developing a simulator for on-

line evaluation of the cosine function: 

1. an insight into the algorithm on the implementation and operational details; 

2. automate computations without having to do complex calculations manually; 

3. performance evaluation by running it virtually as a real time application 

using a timer control which generates timer interrupts at every specified 

interval; 

4. provide user with a very easy to understand and comprehensive simulation 

interface, so that it can help them in understanding the working of on-line 

mechanism. 



CHAPTER 7 

CONCLUSION 

An alternative to the conventional CORDIC method for evaluating trigonometric 

functions was studied. On-line algorithms have been developed to evaluate the 

sine and cosine functions. Error analysis and heuristics are carried out to arrive 

at a minimal error algorithm based on the series expansion of the sine and cosine 

function. A logical design based on the algorithm is presented where the unit is 

designed as a set of basic modules. A detailed bit slice design of each module is 

also presented. A simulator was designed as an experimental tool for synthesis 

of the on-line algorithms, and a tool for performance evaluation. 

The main advantages achieved by this approach are 1) the use of redundant 

number system, which allows carry free addition to replace time consuming 

carry propagate additions; 2) the use of on-line arithmetic to reduce the 

communication bandwidth and maximize the overlap between successive 

operations; 3) eliminate ROM table lookup method used by other trigonometric 

algorithms[101. 

The error analysis indicates errors for the optimal sine and cosine series as 

fcos(x) = 1- x2/2  + x4/16 - x6/128 maximum normal error of 2.958 * 10-2  and 

fsin(x) = x - x3/8  + x5/1024 - x7/16384 maximum normal error of 9.395 *10-2. 

7.1 Future Research 

The on-line algorithms presented can be further optimized in terms of their 

hardware implementation. The restriction of requiring the input within the 

range [-1,11 on the OLMLP algorithm can be eliminated. This can facilitate in 

reducing the number of shifters used in the hardware design. A more 
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sophisticated simulator can be developed where the user can use the available 

modules to generate new on-line algorithms without having to make major 

changes at the code-level. The series approximations can be improved to reduce 

the error using advanced heuristic techniques. 



APPENDIX A 

CONVERSION ALGORITHM 

We now consider an algorithm to convert redundant number representation into 

conventional representation. The algorithm is performed concurrently by each 

accumulators as discussed in section 5.2. It can be divided into bit slice form, so 

that each bit slice in the logic implementation can utilize it inherently. This 

algorithm has a step delay approximately equivalent to the delay of a carry-save 

adder and its implementation is relatively simple. It can be applied to any on-

line arithmetic algorithms generating redundantly represented results in a digit-

by-digit manner from the most significant digit to the least significant digit. 

The important characteristics of this algorithm are: 

• It performs the conversion on the fly, as the digits of the result are obtained 

in a serial fashion from most significant to least significant; 

• it uses two conditional forms of the current result, similar to the conditional 

sum technique; 

• it has a delay which is compatible with one step of the fast division 

algorithm. This delay is approximately of a carry-save adder. 

Radix- r Conversion 

mk  = Input bit at time k (redundant form) 

n[k] = Output bit (conventional form) at time k 

45 



46 

where, (5.6) 
Q[k -1] = P[k -1] - r-(k-1) 

 

(1) Initialization: 

(2) Recurrence: 

For k > 1, 

(5.7) 

Adding 2.-(k+1)  indicates a simple operation of appending appropriate bit to 

P[k] or Q[k]. 

The implementation of the algorithm requires two resisters to hold P[k] 

and Q[k]. These registers can be shifted one bit left with insertion in the least 

significant bit depending on the value of mk. They also require parallel loading 

of P[k] with Q[k] and vice versa. The implementation related to our application 

has been described in details in chapter 5. 
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Example 

r = 2 

M = 0.1-101-110-1 

Table 6 Conversion Procedure for Radix r = 2. 
k mk P[k] Q[k] n[k] 
0 0 
1 1 0.1 0.0 0.1 
2 -1 0.01 0.00 0.01 
3 0 0.010 0.001 0.010 
4 1 0.0101 0.0100 0.0101 
5 -1 0.01001 0.01000 0.01001 
6 1 0.010011 0.010010 0.010011 
7 0 0.0100110 0.0100101 0.0100110 
8 -1 0.01001011 0.01001010 0.01001011 

The converted fraction is n = 0.01001011 

Another algorithm for converting the redundant representation to the 

conventional representation is also available which is simpler in logic but 

requires more complex hardware implementation. This algorithm separates the 

redundant number into two different numbers A[j] and B[j] according to table 7. 

Table 7 Substitution Table. 
j A[j] B[j] 
1 1 0 
-1 0 1 
0 0 0 

We get the converted number n[j] by just subtracting A[j] - B[j]. Due to 

large carry propagate delays and hardware complexities, we do not implement 

this algorithm. 



APPENDIX B 

ON-LINE ALGORITHMS 

We present here some of the On-line algorithms that were frequently used in the 

on-line cosine function implementation. All of these algorithms are presented as 

actual functions that were used in developing the simulator. They require certain 

global parameters which are either algorithm generated or are given by the user 

as global parameters. 

• xj: bit input of operand X at iteration "xitr" 

• yj: bit input of operand Y at iteration "yitr" 

• xitr: iteration number for operand X 

• yitr: iteration number for operand Y 

• wj: intermediate sum at step j 

• dj: result bit at step j 

• X[j]: the accumulated operand X at step j 

• Y[j]: the accumulated operand Y at step j 

They also use certain global parameters like exp() which indicates the 

exponent part of the two inputs and the result. 

• Shiftrt function shifts the passed operand right by the number of bits 

specified; 

• sSelect function implements the rounding select function. 

On-Line ADD 

Function OLADD3( xj as integer, yj as integer, xitr as integer, yitr as integer, wj 

as 	 double, dj as integer) as integer 

dim lvi, lvj, lvk, lvdiff as integer 

dim lwj, ldj as double 
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if exp(0) > exp(1) then 

lvdiff = (exp(0) - exp(1)) 

shiftrt (yj, lvdiff) 

exp(2) = exp(0) 

xitr = xitr + lvdiff 

else if exp(1) > exp(0) then 

lvdiff = (exp(1) - exp(0)) 

shiftrt (xj, lvdiff) 

exp(2) = exp(1) 

yitr = yitr + lvdiff 

endif 

lvj = xitr 

lvk = yitr 

lwj = 2*(wj - dj) + (2^-1)*( xj + yj ) 

wj = lwj 

ldj = sSelect( wj) 

OLADD3 = ldj ' Return the result bit value 

End Function 

On-Line Multiply 

Function OLMLP ( xj as integer, yj as integer, xitr as integer, yitr as integer, wj as 

double, dj as integer) as integer 

dim lvi, lvj, lvk, lvdiff as integer 

dim lwj, ldj as double 

exp(2) = exp(1) + exp(0) 

For lvi = 0 to xitr -1 

lvx = lvx + X[lvi]*2^(-lvi) 



Next lvi 

For lvj = 0 to yitr 

Ivy = Ivy + Y[lvj]*2^(-1vj) 

Next lvj 

lwj = 2*(wj- 	dj) + ( xj *lvx + yj *ivy ) 

wj = lwj 

ldj = sSelect( wj) 

OLMLP = ldj ' Return the result bit value 

End Function 

On-Line Squaring 

Function OLSQR( xj as integer, xitr as integer, wj as double, dj as integer) as 

integer 

dim lvi, lvj, lvk, lvdiff as integer 

dim lwj, ldj as double 

exp (2) = 2*exp(0) 

For lvi = 0 to xitr -1 

lvx = lvx + X[Ivi]*2^(-lvi) 

Next lvi 

lwj = 2*(wj di) + ( xj * ( lvx + xj*2^(-j) ) 

wj = lwj 

ldj = sSelect( wj) 

OLSQR = ldj ' Return the result bit value 

End Function 
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APPENDIX C 

HEURISTICS & ERROR ANALYSIS GRAPHS 

We present here the figures of the error and the input deviation error curves that 

were obtained during the error analysis are discussed in chapter 3. All of these 

figures are presented as actual printouts of the interface screen of the program 

that was written to graph these errors. 

• Figure 23 shows the error curve for modified sine series fsin(x) = X - X3/23  + 

x5/210 - X7/214 with computation precision as 16 bits. 

• Figure 24 shows the error curve for modified cosine series fcos(x) = 1 - X2/21  

+ x4/24 _ X6/29  with precision as 16 bits. 

• Figure 25 shows the error curve for modified sine series fsin(x) = X - X3/23  + 

X5/25  - X7/214  with computation precision as 16 bits. 

• Figure 26 shows the error curve for modified cosine series fcos(x) =1 - X2/21  

+ X4/24  - X6/27  with precision as 8 bits. 

• Figure 27 shows the input deviation error curve for the series fcos(x) = 

X2/21  + X4/24  - X6/29  with precision as 16 bits. 

• Figure 28 gives the input deviation error curve for series fcos(x) = 1 - X2/21  + 

X4/24  - X6 /27  with precision as 8 bits. 

As indicated in the figures 23-26, the X-Axis gives the increase in input 

values in radian, where each tick indicates an increase in input by 0.1 radian. 

Each tick on the Y-Axis inidicates an increase in error by 0.05 units. Figures 27-28 

show that each tick on Y-Axis indicates the increase in input deviation error by 

1.0 degree. 
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Figure 23 The Error Curve for fsin(x) = X - X3/23 x5/210 - x7/214;  (m = 16). 

Figure 24 The Error Curve for fcos(x) = I - X2/21  4- X4/24  - X6 /29  ; (m =16). 
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Figure 25 The Error Curve for fsin(x) = X - X3/ 23  + X5/25  - x7/214 ; (m =16).  

- XL/2 Figure 26 The Error Curve for fcos(x) X4 /24  - X6/ 27  ; (m =8). 
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Figure 27 Deviation Error Curve for fcos(x) = 1 - X2/21 + X4/24 _ X6/29.  

Figure 28 Deviation Error Curve for fcos(x) = 1 - X2 /21  + X4 /24  - X6 /27. 



APPENDIX D 

Introduction to Visual Basic 

Visual Basic is a programming language from Microsoft , a graphical user 

interface (GUI) revolution. Applications for Microsoft Windows or OS/2 

Presentation Manager can be easily and efficiently developed in Visual Basic. It 

is a development system especially geared toward creating graphical 

applications. It includes graphical design tools and a simplified, high-level 

language. It emphasizes feedback and debugging tools that quickly take you 

from an idea to a running application. 

Visual Basic is centered around two types of objects: you create windows, 

called forms, and on those forms you draw objects, called controls. Then you 

program how forms and controls respond to user actions. The applications you 

produce are fast and can include all of the most common features an user expect 

in a GUI environment. 

Visual Basic works under the Windows operating system environment. 

The Windows operating environment differs from DOS in at least two important 

ways: 

• Applications share screen space. A Visual Basic application runs in a group 

of one or more windows and rarely takes over the whole screen. 

Applications share computing time. An application cannot run continually, 

or if it does, it has to be able to run in the background. 

The event-driven approach used by Visual Basic enables you to share 

computing time and other resources( such as Clipboard). An event-driven 

application consists of objects that wait for a particular event to happen. (An 
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event is an action recognized by a Visual Basic object. Objects include form and 

controls.) 

The Visual Basic code does not work in the linear fashion of a DOS 

program - starting at the top, proceeding toward the bottom, and finally 

stopping. Instead, in event-driven programming, you use code that remains idle 

until called upon to respond to specific user-caused or system-caused events. 

For example, you might program a command button to respond to a mouse 

dick. When the command button recognizes that the event has occurred, it 

invokes the code you wrote for that event. 

While the application is waiting for an event, it remains in the 

environment. In the meantime, the user can run other applications, resize 

windows, or customize system settings such as color. But the code is always 

present, ready to be activated when the user returns to the application. 

Features Supported: 

• A full set of the objects needed to create Windows applications, including: 

command buttons, option buttons, check boxes, list boxes, combo boxes, text 

boxes, scroll bars, frames, file and directory selection boxes, and menu bars. 

• Multiple windows in an application. 

• Highly flexible response to mouse and keyboard events at run time, 

including automated drag-and-drop support. 

• Ability to show and hide any number of items at run time. 

• Direct access to the environment's Clipboard and to the printer. 

• Direct system calls to Windows functions. 

• Communication with other Windows applications through dynamic data 

exchange (DDE), and extensibility via dynamic-link-libraries (DLL). For 

example, a user can call dynamic-link-libraries (including Windows functions) 

for within Visual Basic code. 
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• Graphics statements. 

• A powerful math and string handling library. 

• Easy-to-use string variables. 

• Both fixed arrays and dynamic arrays. (The latter help to simplify memory-

management problems.) 

• Random-access and sequential file support. 

• Sophisticated run-time error handling. 

Visual Basic also makes development easier by providing a set of powerful 

debugging commands that help isolate and correct errors in code. Visual Basic 

operates as an incremental compiler, instantly translating code statements into 

"runnable" form as soon as they are typed. GUI environments generally make 

computing easier and more fun for the user. But these environments create more 

complexities for developers, who now must think visually, write code that 

responds to events, and anticipate how users will interact with applications. 
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