

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

An On-Line Approach For
Evaluating Trigonometric Functions

by
Rajesh Amin

This thesis investigates the evaluation of trigonometric functions based on

an on-line arithmetic approach. On-line algorithms have been developed to

evaluate the sine and cosine functions. Error analysis and heuristics are carried

out to arrive at a minimal error algorithm based on the series expansion of the

sine and cosine function.

A logical design based on the algorithm is presented where the unit is

designed as a set of basic modules. A detailed bit slice design of each module is

also presented. A simulator was designed as an experimental tool for synthesis

of the on-line algorithms, and a tool for performance evaluation.

AN ON-LINE APPROACH FOR
EVALUATING TRIGONOMETRIC FUNCTIONS

by
Rajesh Amin

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

January 1994

APPROVAL PAGE

AN ON-LINE APPROACH FOR
EVALUATING TRIGONOMETRIC FUNCTIONS

Rajesh Amin

Dr. Edwin Hou, Thesis Adviser 	 Date
Assistant Professor of Electrical & Computer Engineering, NJIT

Dr. Sotirios Ziavras, Committee Messer
	

Date
Assistant Professor of Electrical & Computer Engineering, NJIT

Dr. M. Zhou Committee member 	 Date
Assistant Professor of Electrical & Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: Rajesh Amin

Degree: 	Master of Science in Electrical Engineering

Date: January 1994

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1994

• Bachelor of Science in Electronics and Communications Engineering,
Maharaja Sayajirao University, Baroda, India, 1991

Major: 	Electrical Engineering

iv

This thesis is dedicated to my sister

v

ACKNOWLEDGMENT

I would like to express my sincere gratitude to my advisor Dr. Edwin

Hou for his guidance and motivation throughout this research, without whom

this thesis could not have been conceived. His insight, comments, criticisms and

suggestions added greatly to the final result. Thanks especially for his support of

the thesis writing and for his many readings of it, at different stages.

Special thanks to Dr. Ziavras for his help and advice which made it possible

for me to reach higher standards. I also would like to thank him for leading me

through my masters program. My thanks also goes to Dr. Zhou for serving as a

member of committee.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

1.1 Introduction. 	 1

1.2 Objectives 	 `2

1.3 Thesis Overview 	 3

	

2 BACKGROUND.. 4

2.1 Redundant Number Systems 	 4

	

2.1.1 Signed Digit Number System 4

2.1.2 Modified Signed Digit Representation. 	 7

2.2 On-Line Arithmetic 	 8

2.2.1 Overview 	 8

2.2.2 Fixed Point On-line Add 	 10

2.2.3 Fixed Point On-line Multiply 	 11

2.2.4 Implementation 	 11

2.2.5 Characteristics And Features 	 13

3 TRIGONOMETRIC FUNCTION EVALUATION. 	 16

3.1 Cordic Procedure 	 16

3.1.1 Cordic Algorithm. 	 16

3.1.2 Implementation. 	 18

3.2 On-Line Trigonometric Functions Over Conventional CORDIC 	19

4 ERROR ANALYSIS 	 21

4.1 Introduction 	 21

4.2 Error Analysis 	 23

4.2.1 Error Analysis 	 23

vii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

4.2.2 Input Deviation Error 	 24

4.2.3 Optimal Series 	 24

5 HARDWARE IMPLEMENTATION 	 26

5.1 Design Considerations 	 27

5.2 OLMLP 	 28

5.2.1 Data Conversion 	 28

5.2.2 Single Bit Multiplier 	 30

5.2.3 Addition 	 31

5.2.4 Result Digit Selection 	 31

5.2.5 Pipelining Implementation 	 33

5.2.6 Organization Of On-line Unit. 	 35

5.3 OLADD3 	 37

6 SOFTWARE SIMULATION 	 39

6.1 Overview 	 39

6.2 Design Of Simulator 	 39

7 CONCLUSION 	 43

7.1 Future Investigation 	 43

	

APPENDIX 45

A Conversion Algorithm 	 45

B On-Line Algorithms 	 48

C Heuristics And Error Analysis graphs 	 51

D Visual Basic: Windows Programming System 	 55

REFERENCES 	 58

viii

LIST OF FIGURES

Figure 	 Page

1 Input/Output Characteristics of On-Line Arithmetic. 	 8

2 Comparison of Evaluation Time: On-Line And Conventional 	 10

3 Linear Array Organization of On-Line Unit 	 12

4 Two-Dimensional Pipelined On-Line Unit 	 14

5 Coordinate Rotation of Vector R 	 16

6 Implementation of CORDIC 	 18

7 Error Curve for Cosine Series. 	 facing 22

8 Error Curve for Modified Cosine Series 	 facing 23

9 Input Deviation Error Curve for Modified Cosine Series 	 facing 23

10 Block Diagram of the On-Line Implementation of the Cosine Function . 	27

11 Implementation of the Conversion Algorithm 	 30

12 Addition by Carry Save Addition Technique 	 31

13 Implementation of Select Function 	 33

14 Pipelined Implementaion of Multiplication Recurrance 	 34

15 On-Line Linear Array Organization 	 35

16 Modular Decomposition of the Conversion Algorithm Implementation . 	 36

17 Bit Slice Organization of the On-Line Multiply Module 	 facing 36

18 Pipelined Implementation of OLADD3 	 38

19 Bit Slice Organization of the On-Line Add Module 	 facing 38

20 User Interface Screen of the Simulator 	 facing 40

ix

LIST OF FIGURES
(Continued)

Figure 	 Page

21 Exploded View of the OLADD3 Unit 	 facing 41

22 Exploded View of the OLMLP Unit 	 facing 41

23 The Error Curve for fsin(x) = X - x3/23 + X5/210 - X7/214; (m = 16) 	 52

24 The Error Curve for fcos(x) = 1 - X2/21 + X4 /24 - X6/29 ; (m =16) 	 52

25 The Error Curve for fsin(x) = X - X3/23 + X5/25 - X7/214 ; (m =16) 	 53

26 The Error Curve for fcos(x) =1 - X2/21 + X4 /24 - X6/27 ; (m =8). 	 53

27 Deviation Error Curve for fcos(x) = 1 - X2/21 + X4/24 - X6/29 	 54

28 Deviation Error Curve for fcos(x) ..+_ I - X2 /21 + X4/24 - X6/27 	 54

LIST OF TABLES

Table 	 Page

1 Addition Procedure for Radix 10 	 6

2 The Radix-2 Addition Procedure 	 8

3 Significant Terms Analysis 	 22

4 Truth Table for Y = -X 	 26

5 Truth Table for Selection Function 	 32

6 Conversion Procedure for Radix r= 2 	 47

7 Substitution Table 	 47

xi

CHAPTER 1

INTRODUCTION

1.1 Introduction

"It has been long recognized that the concept of computer architecture is no

longer restricted to the structure of bare machine hardware"[1]. A modern

computer is an integrated system consisting of machine hardware, an instruction

set, system software, application programs, and user interfaces. Present day

computing is driven by real life problems which require fast and accurate

solution.

Most scientific problems require extensive numerical computations and

their solutions demand complex mathematical formulations and numerous fixed

or floating point computations. Most complex problems such as weather

forecasting, structural analysis, and random problems in navigation can be

transferred to arithmetic computation problems using well known techniques

[2]. The resources required by these massive problems are the driving factor that

necessitate the enhancement of current day arithmetic units. To satisfy the

demands of present day computational problems, more efficient implementation

of arithmetic units and faster computational algorithms are needed. Numerous

hardware techniques have been introduced, such as parallel processing,

pipelining etc.[1]. These techniques are utilized to develop high speed and

efficient arithmetic units based on architectures such as superscalar or

superpipelining, where one or more results can be obtained in each clock cycle.

However, the basic arithmetic pipeline structures are limited by the time

required to add or shift operands. Methods such as carry look ahead addition or

carry save addition have been developed to alleviate the carry propagate

1

bottleneck of addition[3]. However, these parallel implementations still require

that both operands must be completely resided in the registers before the

computation can start. This limitation can be eliminated by a fast evolving

technique called on-line arithmetic which uses serial addition instead of

conventional parallel arithmetic.

On-line arithmetic is a process for performing arithmetic on a serial basis.

All on-line arithmetic processors accept inputs and generate outputs in a most

significant digit first format. Redundant number representations [4] are used for

the digits to avoid carry propagation in addition. These methods allow the

arithmetic unit to produce partial results starting from most significant bits of

the input operands. That is, for every bit of input, you produce an output after a

small delay. On-line arithmetic processors can be pipelined directly to perform

complicated calculations and with their serial dataflow characteristic, they may

be internally pipelined at rates limited only by the time required to calculate a

single digit. Elimination of carry propagation allows on-line operations to be

overlapped. Application specific systems benefit especially because arithmetic

operations can be overlapped by starting operations as soon as digits become

available from previous operations.

1.2 Objectives

The main objective of this thesis is the development of iterative algorithms for

the computation of trigonometric functions such as, cosine and sine, based on

on-line arithmetic techniques. Specifically, the algorithm is to be digit on-line

algorithm and the on-line delay of this algorithm is to be at the most four. Delay

should be limited to this value for efficient pipeline implementation of the

algorithm.

Secondly, a modular logic design of the underlying hardware is presented.

This provides us with an understanding of the hardware requirements and form

the basis of comparison with other algorithms on similar functions.

Finally, a software simulation of the algorithm is presented. This simulation

would act as an acid-test to verify the correctness of the algorithm.

1.3 Thesis Overview

The rest of the thesis is organized as follows. Chapter 2 reviews some basic

concepts and background materials on the on-line algorithms. The CORDIC

procedure for evaluating trigonometric functions and a comparison with the on-

line approach is discussed in chapter 3. The implementation of CORDIC is also

briefly discussed in this chapter. Chapter 4 deals with the error analysis and

heuristics carried out to achieve an optimal series approximation. The hardware

implementation along with a logic design, for the implementation of the

trigonometric functions are presented in chapter 5. Chapter 6 discusses the

software simulation of the on-line algorithm.

CHAPTER 2

BACKGROUND

2.1 Redundant Number System

2.1.1 Signed Digit Number System (Radix > 2)

In a conventional number system with an integer radix r>1 each digit is allowed

to assume exactly r values: 0, 1, . 	r-1. In a redundant number representation

with the same radix r each digit is allowed to assume more than r values.

Avizienis[6] described a method where each digit of a positional constant

radix number with an integer radix r is allowed to assume q values,

r+2 	q 5_ 2r-1 	 (2.1)

This is possible because both positive and negative digit values are allowed.

Redundancy in the number representation allows fast addition and subtraction

in which each sum digit is the function only of the digits in two adjacent digital

positions of the operands. Such operations are called totally parallel addition

and subtraction. The requirements for totally parallel addition and subtraction

and a unique representation for the zero value are satisfied by a class of

redundant representations with radices r > 2 which are called signed digit

representations. Each digit of a number in signed digit representation can

assume both positive and negative integer values. The number of digit values in

a radix r > 2 representation ranges from a required minimum of r+2 to the

allowable maximum of 2r-1.

The purpose of signed digit representation is to allow addition and

subtraction of two numbers where no carry propagation is required; that is, the

time for the operation is independent of the length of the operands and is equal

to the time required for the addition or subtraction of two digits. A signed digit

4

5

number is represented by n+m+1 digits zi (i= -n, . . . , -1, 0, 1, . . m) and has the

value Z as shown in equation 2.2.

Z 	r-i
rn

(2.2)
-n

Consider the addition of two digits, zi, yi, the sum digit si = f(zi, yi, ti)

where ti is the transfer digit from the (i+1) th position on the right and 	=

f(zi, yi). The addition of the two digits is performed in two successive steps.

First, an outgoing transfer digit ti_i and an interim sum digit wi are formed:

zi + yi = rti-1 + wi 	 (2.3)

then the sum digit si is formed from,

Si = wi + ti.
	 (2.4)

The requirement for the unique representation of zero is satisfied by the

condition,

I zi I 5_ r-1. 	 (2.5)

For a two operand operation, the condition(equation 2.5) establishes values

for ti = (-1,0,1) and the condition I wi I r-2 sets the upper limit for the

magnitude of the interim sum (this also restricts the radix to r > 2). The

relationship between the greatest value wmax and smallest value win of wi is

wmax win r 1,
	 (2.6)

and the set of allowable values for wi is unique and consists of 2r-3 integers

from -(r-2) to (r-2).

Since ti E -1, 0, 1), the required values of the sum digit si consists of a

sequence of r+2 integers:

si E tWmin-1, win, . . -1, 0, 1, 2, . . . ,wm , max +1})-
	(2.7)

For odd radix ro, the minimum required set is,

zi E -(r0 + 1)/2, -1, 0, 1 , (r0 + 1)/2), 	(2.8)

6

for even radix re, minimum required set is,

zi E {-(re/2 + 1), 	, -1 , 0, 1, re/2 + 1). 	(2.9)

Also, since I zi I 5 r-1 we can have different sets of zi E { -a, -(a+1), . -1,

0, 1, ..(a-1), a), where, (r0 + 1)/2 a 5 r0 -1 or re/2+ 1 a re - 1. If a = ro -1

or a = re -1, then there is maximum redundancy, and if a = (r0+1)/2 or a =

re/2+1 , then condition exists for minimum redundancy.

The following gives an example for addition of two signed digit numbers

as the totally parallel addition of all corresponding digits.

Example: Signed Digit Addition (Radix = 10)

The allowed digit values for ti and wi are:

ti: -1, 0, 1 and,

wi: 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6.

Z =1.651.4: 	value = 0.76486

Y = 0.40531 	value = -0.39471

The addition procedure S = Z + Y based on equations (2.3) and (2.4) is illustrated

in the following table where x = -x.

Table 1: Addition Procedure for Radix 10.
i 0 1 2 3 4 5

augend zi 1. -3 6 5 -1 -4
addend yi 0. -4 0 5 3 -1

step 1 (rti_i + wi) 0+1 -10+3 10+(-4) 10+0 0+2 0+(-5)
step2 (ti) -1 1 1 0 0
sum si 0. 4 -3 0 2 5

The sum is S = 0.43-023; 	value = 0.37015

7

2.1.2 Modified Signed Digit Representations (Radix = 2)

The digit addition rules for signed digit may be modified to allow the

propagation of the transfer digit over two digital position to the left[4]. If this

type of transfer addition is allowed the radix r = 2 may be used and only r + 1

values are required for the sum digit. Two transfer additions are executed in

three steps

zi'+ yi = rti-it + wi' , 	(2.10)

wi' + = 	+ wi' 	(2.11)

sit = ti"+ wi" , 	 (2.12)

the digits zi yi , and si are digits of a modified signed digit representation. For

example, with radix r = 2, the required values are -1, 0, 1;

• if no redundancy exists and each sum digit si is the function of all the addend

digits zi and augend digits yi to the right, i.e.

si = f(zi yi 	..,zm , ym);

• if each sum digit assumes r + 1 values, we have si = f(zi yi , zi+i, yi+i

zi+2 yi+2) and the operations are two transfer additions;

• if each sum digit assumes r + 2 values or more, then we have si = f(zi , yi

yi+1) and the operation is a single transfer addition.

Example: Signed Digit Addition (Radix = 2)

The allowed digit values are:

wi 	wi" E 	0, 1.1 ; 	ti , ti" E (-1, 0, 1}

S = Z

ti =

if —1(zi.
if 	(zi +yi)>1
if 	(zi +yi) <-1

if —1 	+ti)<1
if 	(wi +ti)> I
if 	+t'i)<-1

8

Z = 1.10 lil
	

binary value = 0.1001

Y = 0.10101
	

binary value = 0.0011

The procedure of addition based on equations (2.10)-(2.12) is illustrated in the

following table:

Table 2: The Radix-2 Addition Procedure.
i -1 0 1 2 3 4 5

augend z 1. -1 0 1 -1 0
addend y 0. 1 -1 -1 1 0

zi + yi 1 0 -1 0 0 0
tit 0 0 0 0 0 0 0

wit 1 0 -1 0 0 0
ti" 0 0 0 0 0 0 0

witt 0 1 0 -1 0 0 0
si 0 1 0 -1 0 0 0

The sum is S =1.01000; 	binary value = 0.11000

2.2 On-Line Arithmetic

2.2.1 Overview

On-line arithmetic is a process for performing arithmetic on a serial (i.e. digit by

digit) basis. All on-line arithmetic processors accept inputs and generate outputs

in a most significant digit first format. To obtain the jth digit of the result from

an on-line algorithm, it is necessary and sufficient to have the operands available

up to the (j + 6)th digit. The index difference 6, called on-line delay(typically 1 to

4), is a small positive constant and it is algorithmic dependent.

9

i+6
On-Line Arithmetic

y
	 Unit

Figure 1 Input/Output Characteristics of On-Line Arithmetic

As indicated in Figure 1, the first digit of the output is produced after a

delay S. Subsequently, one digit of the result is produced upon receiving one

digit of each of the operands and m is the precision of the result.

Figure 2 demonstrates the difference in evaluation time between on-line

and conventional arithmetic for an expression:

a 	[(p+q)1/2* (m - 0)2 	(x y) 	 (2.13)

It is easy to perceive that a conventional (non-redundant) number system is

not feasible for on-line arithmetic. If we were to use a non-redundant number

system, then even for simple operations like addition and subtraction, there is an

on-line delay 8 = m due to carry propagation. Hence it is required for an on-line

algorithm to use redundant numbers where the time required to compute one

output digit is independent of the length of the input operands. The on-line

representation of a number A is defined as

A / = A -1+ aJ. 4_ 5 r-8-' (2.14)

and,

10

Figure 2 Comparison of Evaluation Time: On-Line and Conventional

The digits ai belong to a redundant digit set {-µ, . . . -1, 0, 1, . . . 1.1.) where r/2

r-1 determines the amount of redundancy.

Example: For binary data the redundant digit set consists of {-1, 0, 1}.

2.2.2 Fixed Point On-Line Addition

Presented below is an example of an on-line add algorithm for adding Xk and

Yk [5].

Let Xk= Xk —1+ xk.r —k and Yk = Y k —1+ yk.r-k denote the values of the

addends, while Sk= Sk _1+ sk.r —lc denotes the value of the sum, at step kin a

radix-r redundant number system.

[1] Initialization:

w j 	; s_2 s-i = 0

[2] Recurrence:

11

for j = 0, 1, 2, 3, 	 m+1 do:

w = r (w 1 _ 1 - s j_2)+r-5 (x + y j)

[3] Selection Function:

si= S(w1)

where the selection function S is done by rounding

The on-line delay is 8 = 1 for r >= 4 and 11, = r-1. For r = 2, 8 = 2.

2.2.3 Fixed Point On-Line Multiply

We now give an example of an on-line multiply algorithm for multiplying Xk

and Yk [5].

Let Xk= Xk-i+ x' K 	k and Y k = Y k_i+ ykr-k denote the values of the

multiplier and multiplicand, while Dk = Dk -1+ dkr-k denotes the value of the

partial product, at step k in a radix-r redundant number system.

[1] Initialization:

w1=0 ; xo= Yo= 0 ; do = 0

[2] Recurrence:

for j = 0,1, 2, 3, 	 m+1 do:

wi = r (w1_ 1- dj_i)+ (XjYi+Yj-ix j)

[3] Selection Function:

dj= S(wi) = sign w1. [w jI + 1/2j

where the selection function S is done by rounding and after m steps the product

is P = XY = Dm + (Wm - dm)r-m.

12

2.2.4 Implementation

On-line arithmetic algorithms can be implemented in two ways:

1. Linear array organization of on-line units and

2. Pipelined implementation.

In a linear array organization of on-line units, inputs are given parallel to

each module where input operands are divided in sub operands depending on

the precision of the internal digits of each module. As the input operand digits

start coming to the first module(most-significant bits) it calculates the partial

output and also passes the transition result to the next module. Hence the unit

starts producing output result as soon as the input operand bits are available

(plus a small delay), unlike the conventional computation where the unit has to

wait for all the bits of the operand and then starts the computation.

Figure 3 Linear Array Organization of On-Line Unit

The pipelined implementation is similar to the linear array implementation

but here the input operands are given in a pipelined fashion instead of single

input operation as in the linear array. A pipelined on-line unit consists of (n+8)

stages with the stage delay td. In the steady state, the unit is computing up to n

different results and the last stage producing the last digit of the (i-n)th result. To

implement the recurrence of an on-line algorithm, the working precision that

increases with the number of steps must be provided. If the result is to be

computed to a maximum precision of n digits, the recurrence requires at the jth

13

step a precision of the j digits for j< n/2 and a precision of n-j digits for j > n/2.

Therefore, n simultaneous operations in various stages of completion require a

total working precision of about n2/4 digits. This requires that a one-

dimensional array of modules, shown in figure 3, would not be suitable for

pipelined inputs since the modules (their internal precision) and the inter-

module bandwidth would depend on the relative position in the array. A two

dimensional array typical for pipelined inputs is shown in the figure 4.

This array, if implemented with d digit wide modules, requires rn/d1

rows with a variable number of modules per row. The total number of d-digit

modules required for maximum precision of n digits is approximately (n/d)2/4.

2.2.5 Characteristics and Features

The following depicts some of the important characteristics and features of on-

line arithmetic :

1. Produces results most significant digit first.

2. Digit cycle time is independent of data wordlength.

3. Higher computational rates by allowing overlap at the digit level between

successive operations.

4. Variable precision.

5. Overlapped operand alignment in floating point operations.

6. Error control.

7. Minimum interconnection complexity between the processing units - one

digit per operand.

8. Low interconnection bandwidth.

9. Modularity.

10. High concurrency.

11. VLSI realizability.

14

Figure 4 Two-Dimensional Pipelined On-Line Unit (n= 5, d = 1, 6 = 1)

On-line arithmetic is highly ails 	active in high speed multi-module

structures for parallel and pipelined computations. Compared to conventional

arithmetic where high speed multi-operand processing requires full precision

bandwidth between arithmetic units, on-line requires a bandwidth of only one

digit per operand which presents a very feasible and cost effective alternative.

Also due to its highly modular characteristics it can be easily realized in terms of

VLSI design. The main results indicate that the on-line approach offers a speed-

up factor of 2 to 16 with respect to conventional arithmetic while preserving

limited interconnection bandwidth, decentralized control, and uniform

structure. These features are highly attractive for reconfigurable networks.

The principal disadvantage lies in the fact that the use of redundant

number system is mandatory where conversions to and from the conventional

system is an overhead. Moreover the inherently serial operation makes on-line

arithmetic unsuitable for isolated arithmetic operations and comparisons.

15

CHAPTER 3

TRIGONOMETRIC FUNCTION EVALUATION

3.1 The CORDIC Procedure

3.1.1 CORDIC Algorithm

The COordinate Rotation DIgital Computer (CORDIC) algorithm to evaluate

trigonometric functions was first introduced by Volder[6]. Consider the problem

of rotating a vector R(r, B), where r is the magnitude and [3 is the angle made by

the vector with the positive X-axis, through a specified positive angle 0. Assume

that the original vector is expressed in terms of its coordinates X andY and we

wish to find the coordinates X' and Y' of the rotated vector.

Figure 5 Coordinate Rotation of Vector R

From figure 5, we have,

X' = Xcoso - Y sinΦ

Y' = XsinΦ - Ycoso 	 (3.1)

16

17

and, 	 X' /cos = X - Ytanq)

Y'/sin =Y+Xtan
	

(3.2)

The CORDIC algorithm is an iterative procedure, in which each step, a

vector is rotated in one or the other direction through an angle aj = tan-1 2-i. The

direction for each al is chosen as positive (anti-clockwise) if (- Iaj) > 0 and as

negative(clockwise) if (o - Eaj) < 0 where j = 0 to i -1. Thus if we let of denote the

total angle through which the vector has been rotated through step i then, i=

±a0±a1±a2. . . .±ai. This sum converges for all angles of magnitude less than

100° (1.74 radians). The iterative rotation through ±ai can be used to compute X'

and Y' iteratively with

X1+1 = Xi - Yi tan ai

= Yi - Xi tan ai. 	 (3.3)

If 	- Eaj) < 0 then,

Xi±i = Xi + Yi * 2

Yi+1 = Yi Xi *
	

(3.4)

and if ((13, - Eaj) > 0

V. 	= Xi - Yi * 2-i

Yi+1 = Yi + Xi *
	

(3.5)

Continuation of the iterations until Φ i approximates therefore produces X and Y

components which are Kc times as large as the true X' and Y', where Kc is given

by

Kc = 1/cosao *1/cosai *1/cosa2 	

= 4(1 + 2-0) * 4(1 + 2-1)* 4(1 + 2-2) 	

= 1.646760255. . . 	 (3.6)

which is the Volders Value through i = 24. Division by this factor forms the true

X' and Y' values from the X and Y values formed by repeated application of

equations (3.3)-(3.5).

18

Figure 6 Implementation of CORDIC

The hardware requirements for performing these steps are quite simple. We

need a shift register for Xi and Yi and two adders. We also need to accumulate

Φ - Φi and to test its sign. Figure 6 shows the block diagram of these elements. The

crossover paths A and B carry the shifted (and possibly complemented) values

of Xi and Yi to be added or subtracted as specified by equations (3.3)-(3.5). The

sign of ai is determined by the sign bit of the (Φ - 0i) register, and the various

values of ai must be provided on successive steps. These values are stored in

ROM.

The structure of the algorithm can be easily adapted for other purposes

besides the rotation described above. Some of them are:

® 	Given a vector (r,0), we find its components X' and Y' by setting Xo = r and

Yo = 0 and rotating through 0.

19

Given a vector (r,), we find sinΦ and cos by setting Xo = 1 and Yo = 0 and

rotating through o, to form X' = cosΦ and Y' = sin

scaling factor 1 /Kc).

Given an angle o, we find tan

(after multiplying by

as shown previously by forming sinΦ and cos

and then finding their quotient.

• Given the components X and Y, we find (r,) by choosing successive ai so that

Yi+i becomes zero as the rotation continues. Then r = Xi+i/Kc and Φ = Φi, the

accumulated sum of ±ai.

• Given X1 and Y1, to find = tan-1 Yi /Xi, set X = X1 and Y = Y1. Rotate the

vector by choosing signs for successive ai so that Yi+1 becomes zero. Then Φ =

Φi.

Larger values must be prescaled to reduce them to size for which the procedure

converges.

3.2 On-Line Trigonometric Functions Over Conventional CORDIC

As discussed in section 3.1 the CORDIC method [6] is straightforward and easy

to implement. Its principal advantage is that it requires neither floating point nor

multiplication hardware. Also it requires only a small number of operations.

However, the conventional implementation of a CORDIC module has a lot more

disadvantages when compared to modern techniques.

• The first advantage which on-line implementation of trigonometric functions

has over CORDIC method is that the usage of redundancy greatly improves

the speed. That is because the time required to compute one output digit is

independent of the length of operands.

• Secondly, CORDIC requires variable shifting which is time consuming and

expensive, this can be eliminated or alleviated using an on-line approach.

20

Thirdly, the on-line approach does not require table lookup, which is a major

bottleneck while the CORDIC method requires ROM's to store angle

constants. Using ROM's makes the implementation slow and requires large

chip area. Moreover, the on-line approach uses a regular implementation of

modules such as add, multiply. etc., hence the design is highly modular and

interconnections are simpler. This is a highly desired feature in highly

complex systems such as matrix triangularization and singular value

decomposition (SVD [7]) which uses angle calculation algorithm as their

basis. The modularity feature of the on-line approach can be utilized in

building systems which are internally pipelined and consequently increases

the overall system throughput. They are also highly cost-effective.

Other features of on-line approach include realization of a variable precision

arithmetic. Floating point operand alignment can be performed in

overlapping manner with significand operation. Moreover, in contrast to

conventional CORDIC method we can control error, i.e. if error occurs during

computation at the jth step, we can restrict the precision of result to j and still

get a partial output.

CHAPTER 4

ERROR ANALYSIS

4.1 Introduction

In this chapter, we investigate the possibility of using a series expansion

approach to evaluate trigonometric functions. The first question that was

encountered was whether this method is feasible. This means, we need to

evaluate the error produced by a series expansion approach where error is

defined as I cos(x) - fcos(x) I . In this chapter, we determine how the size of the

input operand and the number of terms in the series expansion is related to this

error.

To calculate the error, several programs were written to graph the error of

the sine and cosine series from their actual values. At the same time, calculations

were carried out to find out the significance of each terms in the series. Also

these calculations involve finding out the number of terms needed to be

performed (i.e. number of xn / n! terms to be added) before the output remains

unaffected for the number of precision bits considered.

For example, consider the cosine series expansion:
x4 x6

COS(X) = 1 — 	+ —
2! 	4! 	61 +

e_on X 2n
+

2n! (4.1)

With a 16 bit input and output precision, the first step would be to find how

many terms from the above series would affect the result within the precision.

Table 3 provides summarizes the results.

From the table, we selected at most nine terms of the series as an

approximation to the cosine function.

21

facing 22

(_unx2npn 	, Figure 7 Error Curve For Cosine Series 1-X20! + X414!

Table Significant Terms Analysis
ANGLE NUMBER OF TERMS SERIES

15° 5 (1 - x2/2! + 	+ x8/8!)
30° 7 (1 - x2/2! + 	 + x12/12!)
45° 8 (1 - x2/2! + 	 + x14/14!)
60° 9 (1 - x2/2! + 	+ x16/16!)

The next step is to take the truncated series and analyze its error at

different values (0 to 90 degrees). The curve in figure 7 shows how the error

I cos(x) fcos(x) I takes a constant path curve with the error remaining more or

less constant between 0 to 90 degrees. This indicates the behavior of the series

expansion in different input regions. The maximum error from the curve is

0.000024057036.

After determining the characteristics of the series approach and its

feasibility, we carried out analysis (see Appendix C) to derive a series which has

the denominators as only powers of two.

For example, in our case for the cosine function we determine the series as

approximation

f (X) = - X2 + X4 _ x6
COS 	21 24 27 (4.2)

To prove that this is a good approximation, we determine the characteristic

of this series with an error analysis as before. Furthermore, routines were written

to graph the deviation error I x - f-lcos(x) I •

Figure 8 shows a normal error curve (I cos(x) - fcos(x) I) for the equation

4.2. It shows the exponentially increasing behavior, due to heavy truncation on

elements of the series plus the modified denominator values.

Figure 9 demonstrates the deviation error characteristics. This means that

if the original value for cos(60) is 0.5, then to get 0.5 as output with the modified

facing 23

Figure 8 Error Curve For Modified Cosine Series 1-X2/2 + X4/16 - X6/128

Figure 9 Input Deviation Error Curve For Modified Cosine Series
1-X2/2 + X4/16 - X6/128

23

series, an input of 60° + error should be given. This error in terms of degrees, is

shown by the graph. Error curves and deviation error curves for different

possible series are discussed in following section. The maximum error at 90

degrees is 0.029661147.

4.2 Error Analysis

4.2.1 Error Analysis

The error between the function and the series approximation is defined as

cos(x) - fcos(x)I Appendix C shows several error curves for different series at

different precision values. The curves are plotted for both sine and cosine series.

A close study of these figures indicates several important characteristics of

the sine and cosine series implementation :

• Keeping input values between 0 and 30 degrees result in minimal error;

• Input values at or near 90 degrees result in maximal error;

• Changing denominators in the power series result in different error

characteristics;

• Changing precision value keeps the characteristic of the error curve

approximately the same but the net error changes;

• For cosine series 1 - x2/2 + x4116 - x6/128, the maximal error region is at or

near 70 degree instead of 90 degrees;

• For sine series x - x3/8 + x5/32 - x7/16384, the error curve takes a steep

increase, which indicates this series may not converge at all.

4.2.2 Input Deviation Error

The error between the function and the series approximation is defined as

x - series-1(x) I . Input deviation error is an indication of how much the input

24

value is deviated from the correct value to obtain the same results for each

function. Input deviation error curves for cosine series at 16 bit precision is

shown in figure 9. The X axis indicates the input value in degrees while Y axis

indicates the deviation error in degrees.

A close study of the curves(Appendix C) indicates the following important

characteristics:

• Keeping input values between 0 and 30 degrees result in minimal input

deviation error;

• Input values at or near 90 degrees result in maximal input deviation error;

• Changing denominators in power series result in different error

characteristics;

• Changing precision value keeps the characteristic of the error curve

approximately the same but the net error changes;

• For cosine series 1 - x2/2 + x4/16 - x6/128, the maximal error region is at or

near 70 degrees instead of 90 degrees;

• For cosine series 1 - x2/2 + x4/16 - x6/512, the error curve takes a steep

increase after around 60 degrees, which indicates this series may not be

feasible to use for inputs greater than 60 degrees.

4.2.3 Optimal Series

An optimal series in our case is a series with the best error and input deviation

error characteristics. Programs were written which were capable of running

heuristic calculations on every possible powers of two, for each term in the

series. The following results were obtained:

• Some series may have the smallest error in a small region of input, that is it is

optimized for that region of input, but further observation shows that error in

other regions are increased;

• Changing the computation precision does not have a major effect on the

optimal series denominators;

• The optimal series that can be found under the constraints of available

resources and time are,

fcos(x) = 1- x2/2 + x4/16 - x6/128, maximum normal error of 0.02958

f 	(x) = x - x3/8 + x5/1024 - x7/16384, maximum normal error of 0.09395

(5.1)

CHAPTER 5

HARDWARE IMPLEMENTATION

The general cosine and sine functions in their series forms are respectively,

As derived in the chapter 4, the series is truncated and the factorial

denominators are approximated by exact powers of two to simplify the

hardware implementations. The approximate equations for sine and cosine in

equation 5.1 are

(5.2)

An exploded block diagram of the implementation of the cosine series

using on-line arithmetic is shown in figure 10. A similar implementation for the

sine function using equation 5.2 can be realized without making major changes

to the design for the cosine function. The implementation utilizes on-line units

capable of doing multiplication, addition (3-operands) and shifts.

Table 4 Truth Table for Y = -X
x1 x0 Y1 y0
0 0 0 0
0 1 1 1
1 1 0 1

The truth table indicates that

y0 = x0 and y1 = x1 + x0 	 (5.3)

26

27

Figure 10 Block Diagram of the On-Line Implementation of the Cosine Function

Each OLMLP block in Figure 10 indicates an on-line multiplier which is

capable of multiplying two operands in an on-line fashion. The multiplier blocks

are used to form powers of X. Shifters at various input points of the blocks are

used for divisions. Subtraction is done by complementing the result bits at the

output of the on-line units. Since the number system used is a redundant

number system, complementing the result bits is based on the function shown in

table 4.

The OLADD3 block is an on-line adder capable of adding three input

operands simultaneously. A constant number (1.0) is added directly using a

"preappend" method instead of conventional addition.

5.1 Design Considerations

• Inputs are given in redundant number system with working set as (-1,0,1)

• Output is received also as a number in redundant representation.

• Multiplication algorithm works only for inputs less than 1.0 so the inputs are

scaled down, by using shifters at their input points.

28

• A "1" is added at the end by just appending it in front of the result (result

will always be within the range [-1,1]).

• The input operand X can be given at each step j as indicated in equation 5.4.

(5.4)

where 8 is the on-line delay factor.

Described below is the detailed design of each of the on-line units

beginning with OLMLP, the on-line multiplication unit.

5.2 OLMLP

The OLMLP unit is described best by its recurrence equation (equation 5.5),

which iteratively calculates the product of the operands X and Y (Appendix B).

wj=2(wj-1-dj--1)+(XjYj+Yi-ixi)- 	(5.5)

The various hardware techniques and components required to implement

the above recurrence equation are discussed briefly in the following sections.

5.2.1 Data Conversion

Working with redundant number system operands internally in an accumulator

complicates its structure and operations. Hence, we work with conventional

binary number system instead of RNS(redundant number system) internally in

an accumulator. This requires converting the input operands in RNS to the

conventional(2's comp.) numbers (i.e. mapping numbers from (-1,0,1) to (0,1)).

The conversion algorithm is based on Ercegovac [8] and is described

briefly in equations 5.6 and 5.7.

mk = Input bit at time k (redundant form)

n[k] = Output bit (conventional form) at time k

29

where, 	 (5.6)
Q[k -1] = P[k -1]-2-(k-1)

• Conversion Algorithm

(1) Initialization:

(2) Recurrence:

For k > 1,

(5.7)

Adding 2-(k+1) indicates a simple operation of appending appropriate bit to

P[k] or Q[k].

The above algorithm is based on the well known conditional sum

algorithm for fast addition. As indicated by the recurrence equations, we do not

require any kind of carry propagate addition at any stage. The implementation

of the algorithm is shown in figure 11.

Figure 11 Implementation of the Conversion Algorithm

The implementation requires two registers to hold P[k] and Q[k] per bit

slice. A combinational circuit is used to select the inputs of the two registers and

a multiplexer decides which output should be given (Figure 11).

A counter input to the multiplexer decides whether the output is from the

buffers or from the input itself depending on the count. That is, at the i th clock

cycle, the i th bit-slice selects the input directly without taking from the buffers.

This represents the appending of the 24+1) to the P[k] or QM terms in the

recurrence equation (equation 5.7), while other bit slices (1 to i-1) select their

outputs from their respective buffer registers depending on the input bit (1,0,-1).

5.2.2 Single Bit Multiplier

Multiplications such as xiy j and yi_ lx j require single bit multiplication

between its operands. Such multiplication can be achieved by the following

function given in equation 5.8.

for: Z j = Xjyi 	where, Xi = x0 x1 x2 	xJ

30

31

hence,

5.2.3 Addition

Addition of the variables in the recurrence equation is done by using the carry

save adder technique[9I. Since there are multiple input terms to the adder, we

implement the adder as bi-level carry save adders. Actual addition in the design

of bit slice is realized by full adders implemented as shown in figure 12.

Figure 12 Addition by Carry Save Addition Technique

5.2.4 Result Digit Selection

The result digit selection is done by using a selection function S which is given in

equation (5.9), si = S(wj). The selection function S is done by rounding.

(5.8)

(5.9)

32

This implies that whenever the intermediate sum Wj is less than 1, then the

binary value 0.1 is added to it and a floor rounding is done. If it is greater than 1,

then a simple floor rounding is done. This implies the following bitwise

input/output relationship between Wj and Si shown in table 5.

Table 5 indicates that,

(5.10)

Table 5 Truth Table for Selection Function
Wi Si-2

W-1 W0 W1 W2 W3 W4 • • • S0 S1

0 1 0 * * * 0 1
0 0 1 * 0 1
0 1 1 * * * 0 1

0 0 0 * * 0 0
1 0 0 * * not possible
1 1 0 1 1
1 1 1 1 1
1 0 1 not possible
1 1 1 1 * 0 0
1 1 1 0 1 0 0

.

* indicates the don't care condition.

The selection is independent of the precision of the input w.

33

Instead of generating logic for all 1,0 and -1 we generate only 1 and -1 and

assume 0 as the default output.

Figure 13 Implementation of Select Function

Figure 13 shows implementation of S(wj) (equation 5.10) using only w-1,w0,

w1 bit of the input w. The logic used is that if S is not 1 or -1, then for all valid

inputs it has to be 0. Hence, only the first three bits of the input are used to select

for 1 or -1, otherwise, it is 0 by default.

5.2.5 Pipelining Implementation

To minimize the number of steps of the computation, we use a two stage

pipelined scheme which is implemented by using the modified equations(5.11):

(1) w'j = 2(w'j_i -dj_i)+(XiYi+Yi-ixj)

(2) dj = SELECT(2(wi j-1 - c11-1)) 	 (5.11)

Step 1 is done in stage 1 while step 2 is done in stage 2 in the pipeline.

34

Figure 14 Pipelined Implementation of Multiplication Recurrence

Figure 1.4 illustrates the pipeline implementation of the multiplication recurrence

equation. The select function in equation 5.9 is modified slightly in equation 5.11

to incorporate the two stage pipelining in the design. We have two buffers, one

stores the previous value of w'j while other stores the previous value of dj. The

cony. X and cony. Y stages indicate the accumulation and conversion of the input

bits from redundant number system to conventional number system. The

multiplier stages indicate the single bit multiplier as discussed in equation 5.7.

To get Yj-1 at the j th clock cycle, we can put a one-clock cycle delay for cony. Y.

35

5.2.6 Organization of the On-Line Unit

The on-line unit is organized as a linear array of modules as shown in figure 15.

Figure 15 On-Line Linear Array Organization

The first module M1 as shown in figure 15, contains components for generating

the result exponent, result digit selection(SELECT) and bit slices for the most

significant portion of the recurrence calculation, this includes the sign and

integer bit positions and a few fractional bit positions. The other modules

M2....Mp are identical in that each consists of bit slices of the fractional bit

positions. The number of modules required for a m-bit precision calculation with

input of Nfrac (number of fractional bits) and Nint (number of integer bits) is

given by equation 5.12.

(5.12)

According to the modular design shown above, the conversion algorithm

implementation for our modular pipelined design should also be modular (i.e.

bit slices should be able to handle input bit that is coming at each iteration).

Hence, our implementation for conversion algorithm should be as shown in

figure 16.

facing 36

Figure 17 Bit slice Organization of the On-Line Multiply Module

36

Figure 16 Modular Decomposition of the Conversion Algorithm Implementation

Cbuf is a circuit consisting of two buffers to store P(k) and Q(k) and

combinational circuits to form P(k+1) and Q(k+1).

Figure 17 shows a single bit slice organization.

The Xacc and Yacc design goes according to the design of the conversion

algorithm as in equations 5.6 & 5.7, and it incorporates the Cbuf along with other

necessary logics.

Instead of using two separate buffers as shown in figure 14 we use a

common buffer to store wj-1 and dj-1.

Notes:

• the clocking circuitry designed latches latches the incoming xi and yj bits at

the jth clock cycle of the jth bit slice in order to have the correct position of xj

and yj.

, 	Also xj and yj goes to all bit slices for the single bit(sbit) multiplier, i.e.

multiplication of the latched bits in each bit-slice with value of xi and yj at

time period j.

O inputs xj and yj are two bit inputs.

37

5.3 OLADD3(on-line add recurrence)

The OLADD3 is an on-line unit which can add up to three operands

simultaneously in an on-line manner. The OLADD3 is required to sum up all the

power series terms as shown in figure 18. It is based on the on-line addition

algorithm (see Appendix B).

The on-line add algorithm can be implemented similar to the on-line

multiply discussed in section 5.2. The differences are that there is an on-line

delay δ at the input for the OLADD3 unit, and that there are three operands

internally instead of two. The equations for on-line addition implementation are

(1) 	w j = 2(w 	-si_3)+(xj+yj+zi),-2

(2) 	s 1_2 = sel(wj-i —s1-3) 	 (5.13)

Similar to the on-line multiply case, wj' is used in order to facilitate

pipelining between the two stages. Step 1 is implemented in pipeline stage 1,

while step 2 is implemented in pipeline stage 2. The select function is modified

slightly to incorporate the two stage pipelining in the design. Hence as can be

seen from the figure 18 we have two buffers, one stores the previous value of wj'

while the other stores the previous value of dj. FA and SHR indicates the unit

required for adding bitwise three operands and multiplication by 2-2. The FA is

implemented as a RNS full adder which can handle inputs in the range of

(-1,0,1).

Select is implemented exactly in same manner as equation (5.10). Since no

accumulation of the input bits is required in this case, the hardware structure is

simpler than what we have discussed for OLMLP unit.

facing 38

Figure 19 Bit slice Organization of the on line add module

38

Xj Zj

FA and SHR

-2
wj-1' (xj-i-yj+zj)2

cSA

SELECT
wl-

cSA
Sj-3

Figure 18 Pipelined Implementation of OLADD3

Since RNS could not be handled properly within the accumulator, it is

required that the accumulated bits within the accumulator be converted from

RNS to conventional number system.

Instead of using two separate buffers as shown in the figure 19, we use a

common buffer to store wj-1 and sj-3.

Note that,

• the clocking circuitry designed latches latches the incoming xi and yj bits at

the jth clock cycle of the jth bit slice in order to have the correct position of xi

and yj.

• inputs xj and yj are two bit inputs.

CHAPTER 6

SOFTWARE SIMULATION

6.1 Overview

The simulation was designed primarily to serve as

1. a tool for experimental testing and understanding of the on-line cosine

algorithm;

2. a tool to study the real-time behavior of the algorithm where intermediate

results at each step (clock cycle) can be viewed;

3. a performance evaluation tool for on-line arithmetic unit for cosine function

evaluation;

4. a calculator which can do binary operations such as add, subtract, multiply,

divide (some of which are not supported by conventional calculators) on

numbers with precision up to 256 bits. It also serves as a converter which can

convert a number in redundant number system (-1, 0, 1) to conventional

binary system (0, 1).

6.2 Design of Simulator

The simulator is designed to be highly modular and convenient for interactive

usage. The simulator has been written completely in a graphical user interface

language - Visual Basic (programming language for windows), which allows the

simulator be implemented exactly as the logic design discussed before. The

language is different from other languages as being an object oriented language

and also an event driven language (Appendix D), which is exactly what is

required for simulation of on line algorithm. An event can be generated

whenever a bit arrives at the input of the cosine unit in an on-line manner. This

39

facing 40

Figure 20 User Interface Screen Of The Simulator

40

event is used to evaluate the bit and calculate the partial result corresponding to

that bit position.

The simulator uses as input the same number system as is actually

required by the design. The use of redundant number representations of the

operands is necessary as in on-line arithmetic. Results are also in redundant

number. The simulator uses modules for on-line add (OLADD3) and on-line

multiply(OLMLP) which have the same capabilities as discussed in Chapter 5.

All hardware logic designs discussed previously have been implemented by

equivalent software modules. Algorithms for OLADD3 and OLMLP are

discussed in Appendix B. The on-line delay of OLADD3 is taken as 8 = 1.

A functional block diagram of the on-line simulator is shown in figure 20.

This is an actual print out of the user interface screen of the simulator. The block

diagram shows the OLMLP and OLADD3 units along with the required shifters

to implement the cosine function. A "1" is added to the final result in each step

using the preappend method discussed in section 5.2. A button on the left hand

corner is used to display the current clock period(iteration number), it can also

be used to run the simulation manually. The button on the right hand corner is

used to start or stop the simulation. Intermediate boxes show the partial result

generated by each stage in that clock period.

The input part prompts the user to enter the input bit stream (either in

regular binary or in redundant number system). Even though the input section

displays the complete bit stream, the simulator engine only takes input bitwise

depending on the clock period. The advantage of the user giving the whole

input is, once a complete input has been given the whole simulation procedure

can be automated instead of the user entering each bit at each dock period. The

small boxes indicate the bit inputs to the corresponding stage at that particular

facing 41

Figure 21 Exploded View Of The OLADD3 Unit

Figure 22 Exploded View Of The OLMT P Unit

41

clock period. Also global parameters such as precision can be entered by the user

(if not entered the default computation precision is 16 bits).

The centralized control mechanism used in this simulator is a function

which facilitates input in an on-line fashion. It finds the input bit from the given

bit stream and does the necessary conversions so that it can be interpreted by

Visual Basic properly. The simulator engine then keeps the current clock period

and simultaneously broadcasts the clock signal to each unit (OLMLPO, OLMLP1,

OLMLP2, OLADD3) so that they can take the necessary action in response to

that. One more important aspect that the simulator takes care of is that the

OLMLP algorithm can handle only numbers which are less than 1.0. The

simulator eliminates this problem by placing the shifters at the appropriate

positions in the data path so that the input to any on-line unit has computation

value less than 1.0. Hence instead of shifting the operand after calculating

different powers of it, we just shift it intermediately along the data path as

shown in figure 18.

The execution part of the simulator is interfaced to a set of on-line

arithmetic procedures. These procedures are reentrant and the design is such

that it is relatively easy to add new modules specifying new on-line algorithms.

The interface between the execution part of the simulator and the algorithm

procedures is a set of parameters which are used and modified by the algorithms

(one such example is the current clock period in which the simulator is

executing). This way the control structure of the simulator is hidden and

modifying an algorithm or implementing a new algorithm is relatively easy.

In the evaluation of the cosine function, computations are performed in an

automated manner. An event is generated by using a timer control which in turn

generates interrupt and is used to start the computation using the input bit. The

evaluation of the input operand continues until the specified precision output is

42

obtained. After that a user can override the automatic simulation and gets output

of higher precision than specified in the input area by clicking the time control

button.

The following objectives were achieved by developing a simulator for on-

line evaluation of the cosine function:

1. an insight into the algorithm on the implementation and operational details;

2. automate computations without having to do complex calculations manually;

3. performance evaluation by running it virtually as a real time application

using a timer control which generates timer interrupts at every specified

interval;

4. provide user with a very easy to understand and comprehensive simulation

interface, so that it can help them in understanding the working of on-line

mechanism.

CHAPTER 7

CONCLUSION

An alternative to the conventional CORDIC method for evaluating trigonometric

functions was studied. On-line algorithms have been developed to evaluate the

sine and cosine functions. Error analysis and heuristics are carried out to arrive

at a minimal error algorithm based on the series expansion of the sine and cosine

function. A logical design based on the algorithm is presented where the unit is

designed as a set of basic modules. A detailed bit slice design of each module is

also presented. A simulator was designed as an experimental tool for synthesis

of the on-line algorithms, and a tool for performance evaluation.

The main advantages achieved by this approach are 1) the use of redundant

number system, which allows carry free addition to replace time consuming

carry propagate additions; 2) the use of on-line arithmetic to reduce the

communication bandwidth and maximize the overlap between successive

operations; 3) eliminate ROM table lookup method used by other trigonometric

algorithms[101.

The error analysis indicates errors for the optimal sine and cosine series as

fcos(x) = 1- x2/2 + x4/16 - x6/128 maximum normal error of 2.958 * 10-2 and

fsin(x) = x - x3/8 + x5/1024 - x7/16384 maximum normal error of 9.395 *10-2.

7.1 Future Research

The on-line algorithms presented can be further optimized in terms of their

hardware implementation. The restriction of requiring the input within the

range [-1,11 on the OLMLP algorithm can be eliminated. This can facilitate in

reducing the number of shifters used in the hardware design. A more

43

sophisticated simulator can be developed where the user can use the available

modules to generate new on-line algorithms without having to make major

changes at the code-level. The series approximations can be improved to reduce

the error using advanced heuristic techniques.

APPENDIX A

CONVERSION ALGORITHM

We now consider an algorithm to convert redundant number representation into

conventional representation. The algorithm is performed concurrently by each

accumulators as discussed in section 5.2. It can be divided into bit slice form, so

that each bit slice in the logic implementation can utilize it inherently. This

algorithm has a step delay approximately equivalent to the delay of a carry-save

adder and its implementation is relatively simple. It can be applied to any on-

line arithmetic algorithms generating redundantly represented results in a digit-

by-digit manner from the most significant digit to the least significant digit.

The important characteristics of this algorithm are:

• It performs the conversion on the fly, as the digits of the result are obtained

in a serial fashion from most significant to least significant;

• it uses two conditional forms of the current result, similar to the conditional

sum technique;

• it has a delay which is compatible with one step of the fast division

algorithm. This delay is approximately of a carry-save adder.

Radix- r Conversion

mk = Input bit at time k (redundant form)

n[k] = Output bit (conventional form) at time k

45

46

where, (5.6)
Q[k -1] = P[k -1] - r-(k-1)

(1) Initialization:

(2) Recurrence:

For k > 1,

(5.7)

Adding 2.-(k+1) indicates a simple operation of appending appropriate bit to

P[k] or Q[k].

The implementation of the algorithm requires two resisters to hold P[k]

and Q[k]. These registers can be shifted one bit left with insertion in the least

significant bit depending on the value of mk. They also require parallel loading

of P[k] with Q[k] and vice versa. The implementation related to our application

has been described in details in chapter 5.

47

Example

r = 2

M = 0.1-101-110-1

Table 6 Conversion Procedure for Radix r = 2.
k mk P[k] Q[k] n[k]
0 0
1 1 0.1 0.0 0.1
2 -1 0.01 0.00 0.01
3 0 0.010 0.001 0.010
4 1 0.0101 0.0100 0.0101
5 -1 0.01001 0.01000 0.01001
6 1 0.010011 0.010010 0.010011
7 0 0.0100110 0.0100101 0.0100110
8 -1 0.01001011 0.01001010 0.01001011

The converted fraction is n = 0.01001011

Another algorithm for converting the redundant representation to the

conventional representation is also available which is simpler in logic but

requires more complex hardware implementation. This algorithm separates the

redundant number into two different numbers A[j] and B[j] according to table 7.

Table 7 Substitution Table.
j A[j] B[j]
1 1 0
-1 0 1
0 0 0

We get the converted number n[j] by just subtracting A[j] - B[j]. Due to

large carry propagate delays and hardware complexities, we do not implement

this algorithm.

APPENDIX B

ON-LINE ALGORITHMS

We present here some of the On-line algorithms that were frequently used in the

on-line cosine function implementation. All of these algorithms are presented as

actual functions that were used in developing the simulator. They require certain

global parameters which are either algorithm generated or are given by the user

as global parameters.

• xj: bit input of operand X at iteration "xitr"

• yj: bit input of operand Y at iteration "yitr"

• xitr: iteration number for operand X

• yitr: iteration number for operand Y

• wj: intermediate sum at step j

• dj: result bit at step j

• X[j]: the accumulated operand X at step j

• Y[j]: the accumulated operand Y at step j

They also use certain global parameters like exp() which indicates the

exponent part of the two inputs and the result.

• Shiftrt function shifts the passed operand right by the number of bits

specified;

• sSelect function implements the rounding select function.

On-Line ADD

Function OLADD3(xj as integer, yj as integer, xitr as integer, yitr as integer, wj

as 	 double, dj as integer) as integer

dim lvi, lvj, lvk, lvdiff as integer

dim lwj, ldj as double

48

49

if exp(0) > exp(1) then

lvdiff = (exp(0) - exp(1))

shiftrt (yj, lvdiff)

exp(2) = exp(0)

xitr = xitr + lvdiff

else if exp(1) > exp(0) then

lvdiff = (exp(1) - exp(0))

shiftrt (xj, lvdiff)

exp(2) = exp(1)

yitr = yitr + lvdiff

endif

lvj = xitr

lvk = yitr

lwj = 2*(wj - dj) + (2^-1)*(xj + yj)

wj = lwj

ldj = sSelect(wj)

OLADD3 = ldj ' Return the result bit value

End Function

On-Line Multiply

Function OLMLP (xj as integer, yj as integer, xitr as integer, yitr as integer, wj as

double, dj as integer) as integer

dim lvi, lvj, lvk, lvdiff as integer

dim lwj, ldj as double

exp(2) = exp(1) + exp(0)

For lvi = 0 to xitr -1

lvx = lvx + X[lvi]*2^(-lvi)

Next lvi

For lvj = 0 to yitr

Ivy = Ivy + Y[lvj]*2^(-1vj)

Next lvj

lwj = 2*(wj- 	dj) + (xj *lvx + yj *ivy)

wj = lwj

ldj = sSelect(wj)

OLMLP = ldj ' Return the result bit value

End Function

On-Line Squaring

Function OLSQR(xj as integer, xitr as integer, wj as double, dj as integer) as

integer

dim lvi, lvj, lvk, lvdiff as integer

dim lwj, ldj as double

exp (2) = 2*exp(0)

For lvi = 0 to xitr -1

lvx = lvx + X[Ivi]*2^(-lvi)

Next lvi

lwj = 2*(wj di) + (xj * (lvx + xj*2^(-j))

wj = lwj

ldj = sSelect(wj)

OLSQR = ldj ' Return the result bit value

End Function

50

APPENDIX C

HEURISTICS & ERROR ANALYSIS GRAPHS

We present here the figures of the error and the input deviation error curves that

were obtained during the error analysis are discussed in chapter 3. All of these

figures are presented as actual printouts of the interface screen of the program

that was written to graph these errors.

• Figure 23 shows the error curve for modified sine series fsin(x) = X - X3/23 +

x5/210 - X7/214 with computation precision as 16 bits.

• Figure 24 shows the error curve for modified cosine series fcos(x) = 1 - X2/21

+ x4/24 _ X6/29 with precision as 16 bits.

• Figure 25 shows the error curve for modified sine series fsin(x) = X - X3/23 +

X5/25 - X7/214 with computation precision as 16 bits.

• Figure 26 shows the error curve for modified cosine series fcos(x) =1 - X2/21

+ X4/24 - X6/27 with precision as 8 bits.

• Figure 27 shows the input deviation error curve for the series fcos(x) =

X2/21 + X4/24 - X6/29 with precision as 16 bits.

• Figure 28 gives the input deviation error curve for series fcos(x) = 1 - X2/21 +

X4/24 - X6 /27 with precision as 8 bits.

As indicated in the figures 23-26, the X-Axis gives the increase in input

values in radian, where each tick indicates an increase in input by 0.1 radian.

Each tick on the Y-Axis inidicates an increase in error by 0.05 units. Figures 27-28

show that each tick on Y-Axis indicates the increase in input deviation error by

1.0 degree.

51

52

Figure 23 The Error Curve for fsin(x) = X - X3/23 x5/210 - x7/214; (m = 16).

Figure 24 The Error Curve for fcos(x) = I - X2/21 4- X4/24 - X6 /29 ; (m =16).

53

Figure 25 The Error Curve for fsin(x) = X - X3/ 23 + X5/25 - x7/214 ; (m =16).

- XL/2 Figure 26 The Error Curve for fcos(x) X4 /24 - X6/ 27 ; (m =8).

54

Figure 27 Deviation Error Curve for fcos(x) = 1 - X2/21 + X4/24 _ X6/29.

Figure 28 Deviation Error Curve for fcos(x) = 1 - X2 /21 + X4 /24 - X6 /27.

APPENDIX D

Introduction to Visual Basic

Visual Basic is a programming language from Microsoft , a graphical user

interface (GUI) revolution. Applications for Microsoft Windows or OS/2

Presentation Manager can be easily and efficiently developed in Visual Basic. It

is a development system especially geared toward creating graphical

applications. It includes graphical design tools and a simplified, high-level

language. It emphasizes feedback and debugging tools that quickly take you

from an idea to a running application.

Visual Basic is centered around two types of objects: you create windows,

called forms, and on those forms you draw objects, called controls. Then you

program how forms and controls respond to user actions. The applications you

produce are fast and can include all of the most common features an user expect

in a GUI environment.

Visual Basic works under the Windows operating system environment.

The Windows operating environment differs from DOS in at least two important

ways:

• Applications share screen space. A Visual Basic application runs in a group

of one or more windows and rarely takes over the whole screen.

Applications share computing time. An application cannot run continually,

or if it does, it has to be able to run in the background.

The event-driven approach used by Visual Basic enables you to share

computing time and other resources(such as Clipboard). An event-driven

application consists of objects that wait for a particular event to happen. (An

55

56

event is an action recognized by a Visual Basic object. Objects include form and

controls.)

The Visual Basic code does not work in the linear fashion of a DOS

program - starting at the top, proceeding toward the bottom, and finally

stopping. Instead, in event-driven programming, you use code that remains idle

until called upon to respond to specific user-caused or system-caused events.

For example, you might program a command button to respond to a mouse

dick. When the command button recognizes that the event has occurred, it

invokes the code you wrote for that event.

While the application is waiting for an event, it remains in the

environment. In the meantime, the user can run other applications, resize

windows, or customize system settings such as color. But the code is always

present, ready to be activated when the user returns to the application.

Features Supported:

• A full set of the objects needed to create Windows applications, including:

command buttons, option buttons, check boxes, list boxes, combo boxes, text

boxes, scroll bars, frames, file and directory selection boxes, and menu bars.

• Multiple windows in an application.

• Highly flexible response to mouse and keyboard events at run time,

including automated drag-and-drop support.

• Ability to show and hide any number of items at run time.

• Direct access to the environment's Clipboard and to the printer.

• Direct system calls to Windows functions.

• Communication with other Windows applications through dynamic data

exchange (DDE), and extensibility via dynamic-link-libraries (DLL). For

example, a user can call dynamic-link-libraries (including Windows functions)

for within Visual Basic code.

57

• Graphics statements.

• A powerful math and string handling library.

• Easy-to-use string variables.

• Both fixed arrays and dynamic arrays. (The latter help to simplify memory-

management problems.)

• Random-access and sequential file support.

• Sophisticated run-time error handling.

Visual Basic also makes development easier by providing a set of powerful

debugging commands that help isolate and correct errors in code. Visual Basic

operates as an incremental compiler, instantly translating code statements into

"runnable" form as soon as they are typed. GUI environments generally make

computing easier and more fun for the user. But these environments create more

complexities for developers, who now must think visually, write code that

responds to events, and anticipate how users will interact with applications.

REFERENCES

1. Hwang, K. "On-Line Algorithms for Divison and Multiplication." IEEE
Trans. Comput., (1977 Jul):681-687.

2. Owens, R.M., and M.J. Irwin. "Designing Pipeline Architectures using On-
Line Algorithms." Proc. of the 6th Annual Symposium on Computer
Architecture, (1979 Apr):12-19.

3. Hwang, K. Advanced Computer Architecture with Parallel Programming.
Preliminary Edition.,(1993).

4. Avizienis, A.,"Signed-Digit Number Representations for Fast Parallel
Arithmetic." IRE Trans. Electron. Comput.,(1961):389-400.

5. Ercegovac, M.D., "On-Line Arithmetic: An Overview." Proc. SPIE Conf. Real
Time Signal Proc.(1984):667-680.

6. Voider, J.E. "The CORDIC Trigonometric Computing Technique." IRE Trans.
Elect. Comp., (1959):330-334.

7. Golub, G.H., and C.F. Van Loan. Matrix Computations. Baltimore, MD: The
John Hopkins University Press (1983).

8. Haviland, G.L., and A.A. Tuszyunski. "A CORDIC Arithmetic Processor
Chip." IEEE Trans. Comp., (1980):68-78.

9. Waser, S., and M.J. Flynn. Introduction to Arithmetic for Digital Systems
Designer. NY: Holt, Rinehart & Winston, (1982).

10. Fowkes, R.E. "Hardware Efficient Algorithms for Trigonometric Functions."
IEEE Trans. Comput., Vol. 42 No.2(1993 Feb).

11. Steer, D.G., and S.R. Penstone. "Digital Hardware for Sine-Cosine Function."
IEEE Trans. Comp., (1977):1283-1286.

12. Brackert Jr., "A High Speed Recursive Digital Filter Using On-Line
Arithmetic." IEEE ISCAS,(1989).

13. Tullsen D.M. and M.D. Ercegovac "Design and VLSI Implementation of an
On-Line Algorithm." Proc. SPIE Conf. Real-Time Signal Process., (1986).

58

59

REFERENCES
(Continued)

14. Ercegovac, M.D., "A General Hardware-Oriented Method for Evaluation of
Functions and Computations in a Digital Computer." IEEE Trans.
Comput. (1977):667-680.

15. Gorji-Sinaka, A., and M.D. Ercegovac., "Design of a Digit Slice On-Line
Arithmetic Unit." IEEE Symp on Comput. Arith., (1981):72-80.

16. Ercegovac, M.D., and T. Lang. "On-The-Fly Conversion of Redundant into
Conventional Representation." IEEE Trans. Comput., (1987):895-897.

17. Atkins, D.E. "Introduction to the Role of Redundancy in Computer
Arithmetic." Computer. Vol. 8, No. 6(1975):84-96.

18. Ercegovac, M.D. "An On-Line Square Rooting Algorithm." Proc. of the 4th
Symposium on Computer Arithmetic, (1978 Oct):183-189.

19. Mario, M.M., Computer System Architecture, Second Edition., (1982).

20. Hwang, K., Computer Arithmetic Priciples, Architecture and Design. NY:
Wiley (1979).

21. Microsoft, Visual Basic Manual 2.0 Edition. Microsoft Press (1992).

72. Irwin, M.J., "Reconfigurable Pipeline Systems." Proc.1978 Annual Conf. of the
ACM, (1979 Apr):86-92.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Background
	Chapter 3: Trigonometric Function Evaluation
	Chapter 4: Error Analysis
	Chapter 5: Hardware Implementation
	Chapter 6: Software Simulation
	Chapter 7: Conclusion
	Appendix A: Conversion Algorithm
	Appendix B: On-Line Algorithms
	Appendix C: Heuristic and Error Analysis Graphs
	Appendix D Visual Basic: Windows Programming System
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)

	List of Tables

