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ABSTRACT

Heart Rate Variability Study 
Using Phase Response Curve

by
Peizhuan Zhang

A noninvasive phase resetting experiment on human subjects was 

investigated. The phase response curve was estimated and was used to demonstr ate 

cardiac phase resetting due to a vagal input. The estimated running phase response 

curve showed that the cardiac cycle resetting depended on the time and the 

amplitude of the vagal stimulation. The phase response curve was then studied 

using time circle analysis, topological analysis and nonlinear dynamics analysis. 

Also phase entrainment and stimulus frequency dependence of the phase response 

were evaluated. Further, the Van Der Pol model, Generalized Additive model and 

Knight and Peskin’s model were used to simulate the phase resetting process so 

that the char acteristics of the phase resetting can be better understood.
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CHAPTER 1 

INTRODUCTION

1.1 Introduction to Heart Rate Variability

Heart beats normally originate from the cardiac pacemaker. A complete heart beat 

is electrically displayed by an electrocardiogram (ECG). The heart rate is normally 

derived from the QRS complex of the ECG by measuring the R-R interval. The 

human heart rate is typically not constant with time as shown in Figure 1.1.1, since 

the cardiac pacemaker receives a rich supply of parasympathetic and sympathetic 

neural fibers [9]. The fluctuations in heart rate, known as heart rate variability, 

disclose activities of both the parasympathetic and sympathetic nervous systems. 

Generally, sympathetic input increases heart rate while parasympathetic input 

decreases it.
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Figure 1.1.1 Heart rates o f  a young adult during rest. Total 300 beats are 
measured, x-axis is heart beat numbers, y-axis is heart rates (beats per 
minute).

The heart rate variability signal is formed by the transformation of the R-R

1



intervals into a time series. A typical procedure of this transformation is graphically 

shown in Figure 1.1.2 [1]. The basic steps are as follows: First, the R waves in the

Figure 1.1.2 (a) ECG signal, (b) R-wave pulse (rain, (c) IBI values, (d) 
Interpolated IBI values. The dots in (d) represent interpolated data points.

ECG signal are detected as shown in Figure 1.2(b). A discrete interbeat interval

(IBI) sequence is determined from the time between R waves and has samples only

at the time when a heartbeat occurs as shown in Figure 1.2(c). Then the IBI

sequence is interpolated into equidistant IBI samples (IBI signal) as though it were

sampled from a series of step functions as shown Figure 1.2(d). Since there is

always a very low trend in the IBI signal, which may affect the analytic result in

time series analysis, it is normally removed in the signal processing and analysis.

The heart rate variability signal shows oscillatory behavior reflecting different

control mechanisms. A region of low frequency activity at around 0.04 Hz reflects

thermoregulatory activity. Middle-frequency activity around 0.1 Hz is associated
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with spontaneous vasomotor activity within the blood pressure control system. A 

region of activity which occurs at around 0.25 Hz is attributable to respiratory 

arrhythmia. The effects of respiration on heart rate are mediated through the vagal 

nerve of the parasympathetic system, also called the vagal system [1,2,3,9,17]. It 

is known that inspiration increases heart rate and expiration decreases heart rate. 

The respiration-associated heart rate variability (RA-HRV) has recently become a 

topic of considerable interest for investigations of normal physiology and disease 

[1,12,16,20,21,22,23,24] because the potential utility of RA-HRV as an index of 

vagal effects on the heart assumes special importance in understanding of the 

complexities of autonomic control.

1.2 Past and Current Trends of the Research

co
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Figure 1.2.1 A spectrum o f the heart rate variability signal. The corresponding 
heart rates shown in Figure 1.1.1

The RA-HRV has been quantified by conventional time-series techniques such as



power spectrum analysis and complex demodulation. Power spectrum analysis 

separates the power on the basis of the frequency components in the IBI signal. 

Using this method, we can separate the average power associated with respiration 

(which we call vagal power) from the rest of the signal [29]. Figure 1.2.1 shows 

a spectrum of the IBI signal from a subject at rest, in which there is a peak at the 

respiration frequency and the area under that peak represents the vagal power. 

Vagal influences on the heart can be measured by finding vagal power under 

different conditions [25]. Complex demodulation enables us to display the 

amplitude and phase of respiration frequency components of the IBI signal as 

functions of time. The demodulated amplitude indicates the intensity of the vagal 

actions on the heart across time [1]. Figure 1.2.2 displays an output of the complex 

demondulation from the IBI signal for a conditioned dog after a small shock. These 

techniques have been used in an effort to understand the role of vagal control of 

the heart in normal healthy subjects and in disease [1,15,17,18,19,25], and will be 

discussed in greater detail in the following chapters.

Figure 1.2.2 Anamplitude output of complex demodulation from the IBI signal 
for a conditioned dog after the shock, x-axis represents time.

Conventional time-series analysis of HRV has the following advantages:

(1) The intensity of RA-HRV is expressed by a power in the frequency domain



using spectrum analysis. The relation between the vagal power and the 

respiration frequency can be viewed.

(2) The activity of RA-HRV (vagal activity) is approximately displayed across 

time using complex demodulation. A rapid or significant change of the vagal 

activity can be studied.

However, a number of disadvantages need to be overcome:

(1) Conventional time-series analysis of HRV fails to take advantage of 

well-known characteristics of vagal-cardiac interaction. In fact, heart rate 

variations are due to perturbations to the cardiac oscillator. Cardiac cycles 

perturbed by respiration through the vagus nerve (vagal stimulation) generate 

RA-HRV. The change in length of the cardiac cycle depends on the 

intensity and timing of the perturbation or stimulus, which is called 

phase-dependency. Spectrum analysis and complex demodulation are not 

able to show this phenomenon.

(2) The lack of stationarity of the data constrains the data analysis using 

spectrum analysis and complex demodulation to a short period.

In this thesis, our major work is to examine the possibility that we can develop an 

analysis of HRV that incorporates the fact that the effects of vagal stimulation on 

the heart are phase-dependent. Also, other problems which were discussed above 

can be resolved. To better understand what we mean by phase dependence, 

consider that the sinoatrial node [SA node] of the heart acts as a self-sustaining 

oscillator. In the absence of stimuli the SA node progresses through its cycle,



exhibiting its own constant intrinsic rate. When a volley of vagal stimuli arrive at 

the SA node, their effect is to reset the cardiac cycle, which means that the 

initiation time of a cardiac cycle is changed. The initiation time of a cardiac cycle 

is called the phase of the cardiac cycle and a change of the initiation time of a 

cardiac cycle is a phase shift. The cardiac cycle can be either advanced or delayed 

depending upon the phase at which the vagal stimulation arrives. The phase of the 

stimulus is referred to the time of the stimulation in a cardiac cycle. Advancing the 

cardiac cycle increases heart rate, while delaying the cardiac cycle slows heart rate. 

Therefore, the phase of the cardiac cycle at the time of the vagal stimulation and 

the intensity of the vagal stimulation both play an important role in determining the 

heart rate. Although typically the vagus acts to slow heart rate, this is not always 

true. In 1934 Brown and Eccles [5] showed that vagal stimulation at the 

appropriate phase could accelerate the heart rate. Cardioacceleration due to vagal 

stimulation is a dramatic example of the phase-dependent nature of vagal effects 

on heart rate. To describe the phase-dependent effects of vagal action on cardiac 

resetting, Jalife and Glass [8,10] have examined the cardiac response to vagal 

stimulation across different phases of the cardiac cycle and constructed a phase 

response curve. The phase response curve (PRC) displays phase shifts at different 

phases of the stimulation, which is a function of stimulus phase, and stimulus 

amplitude. The phase response curve is a powerful tool to illustrate the phasic 

nature of the cardiac oscillator in response to brief vagal perturbations. Knowing 

the PRC gives us a great deal of information about the dynamics of the vagus-heart



system. Since phase dependence is an important characteristic of the effects of the 

vagus nerve on the heart, it would be valuable to examine the physiology and 

pathology of phase-dependent phenomena. This has become an area of considerable 

interest in physiology [2,4,11,12,13,26]. Recent studies, including the works of 

Winfree, Jalife & Antzelevitch, Guevara & Shrier & Glass, and etc.[4,6,7,12], have 

analyzed the phase dependence of cardiac tissue by either chemical or electrical 

assessment. The results indicate that the magnitude of the phase resetting depends 

on the amplitude, duration and timing of the stimulus.

Present studies of cardiac phase resetting are, however, all constrained to 

surgical preparations in animals or in vitro work [4,6,7,12]. Here we report a 

noninvasive human cardiac phase resetting study during paced-breathing. We pay 

particular attention to estimating the PRC of respiration related vagal effects on the 

heart in intact awake humans. As a result, it is possible to characterize the phase 

dependence of heart rate variability (HRV) under continuous vagal influence of 

respiration on the heart. Further we have developed several methods to analyze the 

PRC, which has been not done in previous studies.

1.3 The Scope of Our Research

Heart rate variability has, in recent studies, become a noninvasive assessment of 

the autonomic nervous system. Study of the respiration-associated heart rate 

variability (RV-HRV) provides important clues in understanding of the vagal 

control mechanisms of the heart. In this study, we will first cite two powerful



analytic techniques, spectrum analysis and complex demodulation, to access the 

vagal system using the heart rate variability signal. Then we will investigate a new 

approach, the phase response curve, which includes the advantages of spectrum 

analysis and complex demodulation but overcomes their disadvantages, to reveal 

the vagal control mechanisms on the heart. Therefore, a complete study of the 

vagal effects on the heart can be accomplished.

In this study, it is important to understand the physiological structure of the 

heart and autonomic branches including the sympathetic and vagal systems. In 

chapter 2, we will review the structure of the heart, neural effects on the heart and 

neural coupling between heart and lung. This background is helpful to 

understanding the later study of RA-HRV using conventional time-series techniques 

and the approach we have developed.

Study of the RA-HRV is a valuable approach to access the vagal control 

mechanism. Two powerful time-series techniques, complex demondulation and 

spectrum analysis, have been used to noninvasively quantify the vagal intensity 

using the heart rate variability signal. Each technique provides important 

information about vagal effects on the heart in a different manner. In chapter 3, we 

will introduce the complex demodulation technique. Complex demodulation can 

demodulate the RA-HRV from the heart rate variability signal in the time domain 

and is normally used to characterize changes of the vagal input over time. For 

effective usage of complex demodulation, a conditioning experiment that causes 

distinct vagal variation is introduced in this chapter and application of complex



demodulation is illustrated. Following complex demodulation, we will present 

spectrum analysis in chapter 4. Spectrum analysis is a Fourier transform based 

technique that can decompose the heart rate variability signal into frequency-related 

components in the frequency domain. The average power related to the respiration 

frequency or vagal power can be obtained in the spectrum. An experimental 

protocol, consisting of physical exercise with different walking speeds, is 

introduced and vagal powers at different exercise stages is discussed.

Vagal activity can be evaluated in the time domain using complex 

demodulation and in the frequency domain using spectrum analysis. Both spectrum 

analysis and complex demodulation have their short-comings. The major common 

drawback is that these two conventional techniques fail to show the phase 

dependent characteristics of the vagal-cardiac interaction. Chapter 5 gives a general 

review of recent development of phase dependent studies. In the review, we will 

try to abstract basics of the cardiac phase dependent nature in response to 

stimulation in animal experiments and to establish a theoretical foundation for our 

further study on human subjects. Chapter 5 also provides us with solid evidence of 

the cardiac phase dependence.

To noninvasively investigate the phase resetting behavior in the intact 

human, we have developed a paced-breathing protocol. This protocol is important 

to generate easily analyzable data, and will be described in detail in Chapter 6. 

Briefly, subjects were asked to breathe at a fixed rate. During the experiment, ECG 

and respiration signals were collected. The ECG signal was used to derive phasic
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changes or phase shifts of the heart-beat, and the respiration signal was used to 

measure the strength of the respiration-related vagal stimulation. We then 

introduced the concept of phase-dependence and defined the concepts of phase, 

stimulus and coupling intervals. Based on the definitions and some assumptions, 

we began to estimate the running phase response curve (phase response curve 

corresponding to various respiration cycles). The estimated phase response curve 

(PRC) was used to display the general characteristics of phase-dependence of the 

heart rate on respiration. Many studies which are discussed in chapter 5 were 

limited to searching for a phase resetting pattern without further analysis. We have 

proposed several methods to explore the PRC analysis. Among them, a time circle 

method projects the PRC corresponding to every respiration cycle into one 

respiration cycle so that the common phase resetting behavior can be illustrated. 

The time circle method not only condensed repetitive or redundant information in 

the running PRC, but also demonstrated variations away from "common behavior". 

We have derived the common pattern of the PRC and analyzed the variations. 

Since die running PRC exhibited its oscillatory feature and dynamics of any 

oscillatory process could be easily demonstrated by its topological properties, we 

have presented topological methods in chapter 7 to unveil die topological properties 

of the running PRC. We have introduced phase plane and Poincare map techniques, 

and also discussed the 3-dimensional features of die cardiac phase resetting 

behavior.

Topological analysis also revealed nonlinear dynamic characteristics of the



running PRC. In Chapter 8, we developed a technique to analyze the nonlinear 

dynamics of the running PRC. The technique includes information entropy and 

information dimension calculations. Information entropy and dimension have 

proved to be a good measure of dynamical and chaotic activity underlying the 

phasic changes of the heart rate. Information dimension also provided us with 

information about system complexity.

To better understand the mechanism of phase resetting of the heart-beat due 

to respiration, we have investigated modeling and proposed several possible models 

such as the Van der Pol model, a nonparametric model called the generalized 

additive model, and Knight’s and Peskin’s models, which will be discussed in 

chapter 9. The modeling and simulation played a very important role in the 

explanation of the cardiac oscillatory system perturbed by a respiration stimulus.

To test their applicability, we have used all the methods we have developed 

to characterize and compare the normal group with subjects with chronic fatigue 

syndrome (CFS). CFS is a baffling and controversial illness that has been making 

headlines since the mid 1980’s. It is a disabling chronic illness characterized by 

fatigue which is not the result of any medical conditions known to cause fatigue. 

Although it is believed that CFS has been in existence for over a century, the 

illness still remains cloaked in mystery. It is estimated that at least 100,000 

Americans have the illness. Current investigations include various approaches in 

neurology, psychology and pathology. In this study, we also attempt to make a 

contribution to this area.



CHAPTER 2 

BACKGROUND

2.1 The Heart and the Electrocardiogram

The human heart is divided longitudinally into right and left halves, each consisting 

of two chambers, an atrium and a ventricle. The architecture of the heart is shown 

in Figure 2.1.1.

Figure 2.1.1 Diagrammatic section o f the heart. The arrows indicate the direction 
o f blood flow [9],

The origin of the normal heartbeat is generated from the conducting system 

of the heart, as shown in Figure 2.1.2. In this system, about 1% of cardiac muscle 

cells are autorhythmic, i.e. they are capable of autonomous rhythmical 

self-excitation. The important feature of such cells is gradual depolarization, which 

causes the membrane of the cells to reach a threshold potential and generate an 

action potential. The small mass of specialized cardiac muscle cells in the right
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atrium is called the SA node, which is the normal pacemaker of the entire heart. 

From this cardiac pacemaker, the action potential spreads throughout both atria, 

reaching the AV node. The bundle of His, a conducting link between atria and 

ventricles, then carries the potential to the ventricles, causing the ventricles to 

contract. The spread of electrical activity throughout the cardiac tissue is recorded 

as an electrocardiogram (EKG) on the surface of the body.

Figure 2.1.2 Conducting system o f tire heart. The inleratrial conducting bundles 
are not shown in die figure [9].

An example of the normal EKG is shown in Figure 2.1.3. By convention, 

deflections within the overall periodic wave form of the EKG are referred to by the 

consecutive waves, P, QRS, and T in Figure 2.1.3. The P wave of the EKG 

originates from the electrical excitation of the atrium and reflects the spread of the 

impulse through the atria. From the SA node, the PQ interval indicates the slower 

rate of conduction through the AV node, whereas the small Q wave shows the 

spread of the ventricular impulse through the septum. The QRS complex originates 

from electrical excitation of the ventricles. The large QR wave represents a stage
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of fast and full depolarization of the ventricle. The RS wave represents the return 

from the charged stage to a stage with no current flow, called isoelectric state. The 

ST segment represents the duration of the isoelectric state. Finally, the myocardium 

repolarizes and the T wave reflects the repolarization of the ventricle.
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Figure 2 .1 3  Typical electrocardiogram. P, atrial depolarization; QRS, ventricular 
depolarization; T, ventricular repolarization [9],

2.2 Measurement of the ECG

Measurement of the EKG is very important in understanding the origin of the 

cardiac events described above and to various clinical research. The EKG is usually 

measured by placing electrodes on the body surface. The quality of the 

measurement depends on electrode characteristics, number of leads, external noise, 

electrical equipment and technical skill.

A simple body surface EKG measurement in diagrammatic form is shown 

in Figure 2.2.1. Three electrode sites, on the left arm (LA), left leg (LL), and right 

leg (RL) are portrayed. The function of the amplifier (Amp) is to amplify the 

voltage difference between electrode leads LL and LA by a factor of about 500 so
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that a "large" signal on the order of one volt can be displayed on a screen (S) or 

a recorder. The magnitude of the P wave is about 100 pV and the magnitudes of 

the QRS and T waves are approximately one millivolt. Most real amplifiers achieve 

this result by measuring the voltage difference between leads LL and RL and the 

difference between LA and RL, and then subtracting the latter difference from the 

former, which is used to diminish the effects of external noise.

AmpLA

R E F

LL

Figure 2.2.1 Idealized connections for making an ECG recording. The function 
o f amplifier (Amp) is to amplify the voltage between the left arm (LA) and left 
leg (LL) electrodes by a factor o f about 500. The right-leg electrode (RL) is a 
voltage reference [42],

Configuration of the lead system plays an important role for a quantitative 

EKG measurement. Early electrocardiographic investigators developed a common 

measurement protocol and standardized lead systems, known as Einthoven lead 

system: Lead I is the voltage measured between the left arm with respect to the 

right arm. Lead II is the voltage on the left leg with respect to the right arm. Lead
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III is the voltage on the left leg with respect to the left aim. The precordial lead 

system is a set of six leads measured at standard anatomical locations across the 

anterior chess wall. The voltage at each of these sites is measured with respect to 

Wilson’s central terminal. The Wilson’s central terminal is formed by connecting 

electrodes on the right arm, left arm, and left leg to a common terminal though 

large resistors. The precordial lead system is also called the unipolar lead system. 

In addition, three augmented unipolar limb leads sometimes are used. The 

augmented leads use the right arm, left aim, and left leg, respectively, as the 

positive electrode and measure with respect to the average of the other two. 

Together the three limb leads, six precordial leads, and three augmented unipolar 

limb leads are referred to as the standard twelve-lead system. In practice, the 

selection of the lead system is determined by what information is required to be 

recorded.

Figure 2.2.2 Equivalent circuit for the skin-electrode contact. As an 
approximation, die skin electrode interface may be modelled electrically with a 
battery (B), resistance (R), and capacitance (C) |42],

The interface between the electrodes and the skin tissue can be 

approximately modeled as shown in Figure 2.2.2. A battery B in the model
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represents a voltage generated by die electrochemical interface between the skin 

tissue and the electrodes. The relative resistive and frequency-dependent properties 

of the skin can be modelled with a resistor R in parallel with a capacitor. Because 

of the dc voltage B, an EKG amplifier is normally designed to be ac coupled to the 

subject so that the effect of the dc voltage B can be eliminated. The resistor R is 

in the range from a few thousand to a few hundred thousand ohms. To 

accommodate that resistant, the EKG amplifier is required to have a high input 

impedance.

The EKG amplifier often incorporates a high-pass filter to eliminate the 

skin-electrode dc voltage and a low-pass filter to remove high-frequency noise, 

such as radio. The EKG amplifier is highly sensitive to 60-Hz noise. Such noise 

may be coupled capacitively from whatever power lines are in the vicinity to the 

subject or to the electrodes. The result is that the EKG often shows 60-Hz noise. 

Filtering 60-Hz noise is complicated and is done occasionally because the EKG 

wave form covers 60-Hz frequency band and a filter at 60-Hz may affect the 

original shape of the EKG. Filters may be analog or digital.

Signals from the EKG amplifier are often acquired by a computer. 

Evaluation of the frequency content of the EKG wave form is useful as a guide to 

the signal recording specification. More importantly, changes in the frequency 

content might be used as an indicator of changes in the underlying cardiac state. 

It is found that the frequency content of measured electrocardiograms shows most 

of the signal power under 100 Hz. There is a gradual decrease of power as
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frequency increases. The power does not become zero at any frequency [42], It is 

difficult to specify a maximum frequency beyond which there are no signals of 

cardiac origin to be found. This difficulty is due to small features of the 

electrocardiographic wave form close to the noise level. The uncertainty of the 

frequency content of the EKG is reflected in the data acquisition. The sampling rate 

in the data acquisition determines the accuracy of the data collection. Commonly 

used sampling rates range from 200 to 1000 samples per second.

The EKG is often used to study the rhythmic activity in the heart. The rate 

of heart beating rhythms is normally measured by the time difference between two 

consecutive R waves. Fluctuations of heart rate reflect different effects of the 

neural control on the heart. Heart rate variability can be measured in various ways, 

depending on the application. An important application is the study of the vagal 

activity using heart rate variability signal, which we will discuss in the rest of this 

thesis.

2.3 Neural Effects on the Heart

The rhythmic beating of the heart will have a constant rate in the complete absence 

of any nervous or hormonal influences. This is the inherent autonomous discharge 

rate of the cardiac pacemaker. However, the heart receives a rich supply of 

sympathetic and parasympathetic nerve fibers. The vagus nerve, subserving 

parasympathetic function to the heart, has a general inhibitory influence on the rate 

of cardiac impulse formation and on the velocity of conduction. The effects of
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vagal stimulation are known as cholinergic responses, which tend to depress 

automaticity and conductivity within the heart. The sympathetic nervous system is 

just the reverse. Figure 2.3.1 illustrates the nature of the sympathetic and 

parasympathetic influence on the pacemaker, which directly causes changes of the 

heart rate. We note that parasympathetic stimulation not only reduces the slope of 

the pacemaker potential but also lowers the "take o f f  point.

a = c o n tro l
b = sym p a the tic  s tim u la tion  
c = pa rasym pathe tic s tim u la tion

threshold
po ten tia l

Figure 2.3.1 Effects o f sympathetic and parasympathetic nerve stimulation on the 
slope o f the pacemaker potential o f an SA-node cell. Note that parasympathetic 
stimulation not only reduces the slope o f the pacemaker potential but also lowers 
the "take o ff' point [9],

Because the cardiac pacemaker is normally under the constant influence of 

these nerves [9], the heart rate may be much lower or higher than that with no 

nervous influence. Figure 2.3.2. shows the influence of the vagus nerves and 

sympathetic nerves on the heart rate, in which vagus nerves slow the heart rate and 

sympathetic nerves speed up the heart rate. The centr al nervous system controls the 

relative levels of sympathetic and vagal activity in a reciprocal fashion |1 ]. When 

both divisions of the autonomic system are active simultaneously, the sympathetic
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and vagal effects do not summate algebraically. Instead, nonlinear sympathetic- 

parasympathetic interactions are prominent [43].
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Figure 2.3.2 Balance o f sympathetic and parasympatlietic forces.
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Figure 2 3 .3  Upper thoracic sympathetic chain and the cardiac autonomic nerves 
on the right side in the dog [43],

The anatomy of the cardiac innervation is illustrated in Figure 2.3.3. The 

preganglionic cell bodies of the sympathetic fibers to the heart lie in the
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intermediolateral columns of the first five or six thoracic segments of the spinal 

cord. The postganglionic sympathetic fibers travel to the heart as a complex plexus 

of small nerve bundles. The cell bodies of the preganglionic vagal neurons are 

located in the nucleus ambiguus. The preganglionic fibers exit from the skull, travel 

down the neck in the carotid sheaths, and enter the thorax. As they pass near the 

caudal cervical ganglia, the preganglionic vagal fibers become part of the cardiac 

plexus by forming a number of mixed nerve trunks along with postganglionic 

sympathetic fibers. The synapses between preganglionic and postganglionic vagal 

fibers occur in ganglia very close to, or actually within, the walls of the heart itself. 

Such ganglia are most abundant near the SA and AV nodes.

Sympathetic control of heart rate is facilitatory. The norepinephrine (NE) 

release from the sympathetic nerve endings in the SA node increase the firing rate 

of the cells in the node. This is accomplished by increasing the rate of slow 

diastolic depolarization. When the cardiac sympathetic nerves are stimulated by a 

long bain of pulses, the heart rate begins to increase after a latent period of 1 to 

3 seconds as shown for a dog in Figure 2.3.4. The steady-state level of the heart 

rate is not reached until about 30 to 60 seconds after the beginning of sympathetic 

stimulation. After removal of sympathetic stimulation, the chronotropic response 

gradually returns back to the control level. The magnitude of the positive 

chronotropic response to sympathetic stimulation varies with the stimulation 

frequency. The maximum response occurs with stimulation frequencies of 20-30 

Hz.
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Figure 2.3.4 Heart rate (H.R.) response o f  an anesthetized dog to steady 
stimulation o f the cardiac sympathetic nerves at a frequency o f 20 Hz for 30 
seconds [43],

In contrast to the rather slow chronotropic response to sympathetic 

stimulation, the latent period of the response to a train of vagal stimuli is only 

about 200 ms, and the steady-state heart rate is achieved within a few beats. Figure 

2.3.5 shows variations of the heart rate in a dog in response to a train of vagal 

stimulation at frequencies of 7 and 10 Hz. When stimulation is removed, the 

response returns to control level rapidly. This is due to abundance of 

acetylcholinesterase (Ach) receptors in the nodal regions of the heart.

When a brief burst of stimuli is delivered to the vagus nerves, a triphasic 

chronotropic response of the heart rate in next 10-15 seconds occurs as shown in 

Figure 2.3.6. A brief but pronounced deceleratory phase (ABC) is followed by a 

short phase of relative or absolute cardiac acceleration (CDE), and then by a final 

small and more prolonged secondary phase of deceleration (EFG). 

Electrophysiologically, the phase of deceleration (ABC) is associated with a 

prologation of the sinoatrial conduction time and a hyperpolarization of the
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automatic cells. The secondary phase (EFG) of cardiac deceleration is related to a 

reduction in slope of the pacemaker potential. In the acceleratory phase (CDE), the 

maximum diastolic potential of the pacemaker cells becomes slightly less negative. 

This transient acceleration might be ascribable to an evanescent increase in sodium 

conductance.
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Figure 2.3.5 The change in heart rate evoked by trains o f right vagal stimulation 
at frequencies o f  7 and 10 Hz in a dog [43].

A P-P

SECONDS

Figure 2.3.6 Time course o f the change in P-P interval evoked by a brief burst 
of vagal stimuli in a dog [43],

Effects of repetitive vagal stimuli on the heart rate is illustrated in Figure 

2.3.7, in which one stimulus was delivered to the cervical vagi of an anesthetized
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dog during each cardiac cycle and the different P-P intervals are measured when 

each stimulus (St) is delivered at a different time after a P wave (P-St interval) in 

each cardiac cycle. Such a curve of P-P intervals, plotted as a function of the P-St 

interval, constitutes a phase response curve for the SA node pacemaker cells.

8 0 0

P — P 750
( m s e c . )

7 0 0  
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Figure 2.3.7 The effects o f vagal stimuli, delivered once each cardiac cycle, on 
the cardiac cycle length (P-P interval) in the dog. The effect varied, depending on 
the P-St interval, which is the time after the onset o f atrial depolarization (P 
wave) [43].

2.4 Neural Coupling between Cardiac Oscillatory 
System and Pulmonary System

There are many different vagal control schemes to change the heart rate, such as

electrical, chemical and mechanical control. Generally fluctuations in the heart rate

can be attributed to the modulation of blood pressure, thermoregulation, and

respiration. Among them, the effect of respiration on the heart, respiratory sinus

arrhythmia (RSA), has been known for a long time and holds considerable promise

as a noninvasive index of vagal control that is derivable from the EKG signal.

Respiratory sinus arrhythmia arises from a complex interaction of central and

P - S t  I N T E R V A L  ( m s e c .
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peripheral factors. Cardiorespiratory rhythm generators, tonic and phasic 

baroreceptor and chemoreceptor reflexes, cardiac and pulmonary stretch reflexes, 

and local mechanical and metabolic factors may all contribute to RSA. However, 

neural mechanisms play a far more dominant role in the determination of the RSA 

than nonneural mechanisms because RSA can be eliminated by autonomic 

denervation [33]. It is believed that a central respiratory generator can maintain 

heart period rhythmicity in the absence of peripheral inputs since many studies 

indicate that fluctuations in h e a t rate persist at the approximate respiratoiy 

frequency even in the absence of respiration or after pulm onay reflexes a e  

eliminated [2]. An example is that heat-period rhythms within the typical 

respiratory frequency band persist even during complete breath hold.

The two central generators that are mostly associated with the respiratory 

and the cad iac  rhythms a e  depicted in Figure 2.4.1, which shows the neural 

control paths of respir atory generator and sympathetic generator to the h ea t. In 

spite of the notable respiratory rhythms appa-ent in both sympathetic and vagal 

ca'diac nerves, RSA is considered to a ise  la'gely or exclusively from fluctuations 

in vagal control. The reasons a-e (a) RSA is not generally attenuated by 

sympathectomy, (b) sympathetic contributions are seen only under conditions of 

depressed vagal control, (c) when present, sympathetic contributions a e  minimal, 

(d) sympathetic activity is usually limited at a frequency below 0.1 Hz and is not 

appreciably manifested in the respiratory frequency band (0.12-0.4 Hz). Vagal 

cadiom otor neurons a e  inhibited during the inspiratory phase and are activated
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during expiration. In addition to central rhythm generators, peripheral baroreceptors 

and chemoreceptors also determine the heart rate and heart rate variability as shown 

in Figure 2.4.1. These peripheral inputs exert powerful excitatory effects on vagal 

cardiomotor neurons via central relays in the nucleus tractus solitarius. Therefore, 

both the central respiratory generator and pulmonary afferent modulate the vagal 

cardiomotor outflow and determine the RSA associated heart rate variability.

N ucleus T ra c lu s  S o lita riu s
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Figure 2.4.1 Schematic depiction o f the interaction between central and 
peripheral determinants o f RSA. Solid lines depict excitatory effects; dashed lines 
represent inhibitory effects. Waveforms illustrate the time varying patterns of 
activity at the respective sites. Lines from the cardiac and pulmonary depictions 
illustrate the trajectories o f  chemoreceptor and baroreceptor afferents and 
pulmonary stretch receptor afferents, respectively. Graphic inserts depict the 
frequency transfer functions o f  the cardioeffector synapses, and the associated 
waveforms illustrate the transformations on the input functions. EXP.= expiratory 
phase; Insp. = inspiratory phase; n. IX & X = cranial nerves IX and X.

Most often, inspiration, partially turning off vagal control, is associated with
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an increment in heart rate, whereas expiration, partially turning on vagal control, 

is associated with a decrement in heart rate. The control mechanism is probably 

that oscillatory changes in the EKG induced by the respiration cycle may be 

associated with periodic discharge of afferent fibers in the lungs, producing vagal 

perturbations on the cardiac pacemaker [10]. Therefore interaction between heart 

and lung is a neural coupling through the vagus. The effects of respiration on the 

heart rate can be evaluated noninvasively by studying RSA in the heart rate 

variability signal.

Examination of the RSA data is important. Individual differences in RSA 

have been interpreted as reflecting differences in basal cardiac vagal tone, and 

changes of the RSA have been suggested to reflect corresponding alterations in the 

cardiac vagal tone. This interpretation is based on the fact that changes in tonic 

vagal activity yields the corresponding changes in the RSA. In the past decade, an 

increasing number of studies of the RSA have appealed in the physiological, 

psychological and clinical literatures. These studies have utilized RSA as an index 

of vagal control of the heart. In the following, we will introduce two conventional 

time-series techniques we have used to study the RSA. These two techniques are 

complex demodulation and spectrum analysis.



CHAPTER 3

HEART RATE VARIABILITY STUDY 
USING COMPLEX DEMODULATION 

3.1 Introduction

Complex demodulation is a time series technique which estimates the instantaneous 

amplitude and phase of a given frequency in a time series [30,44]. The 

demodulated amplitude and phase of the given frequency in the signal can be 

expressed in the time domain. In the demodulated series, the variation of the 

amplitude represents intensity changes of the given frequency over time while 

change of the phase indicates the frequency variation around the given frequency. 

Since complex demodulation can provide us with information about instantaneous 

change of a given-frequency-related activity in a signal, we can use this method to 

derive information about the respiration-frequency-associated vagal activity in the 

IBI signal.

3.2 Complex Demodulation

The theory of complex demodulation can be found in detail in Bloomfield’s book 

[30], When a multi-frequency signal is multiplied by a given single frequency 

signal, in which the given frequency is one of the frequencies in the 

multi-frequency signal, the resulting d.c. component will be the demodulated 

component of the given-frequency in the multi-frequency signal. Mathematically, 

a multi-frequency signal can be represented by

2 8
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s  ( t) =y, Akc o s  ( £kt+a k) ( 3 . 2 . 1 :
jc=i

where f k is the frequency, ak is the phase and A k is the amplitude of a signal with 

a frequency of f k. The representation in (3.2.1) can be expressed in the following 

complex form using the Euler expansion:

The component with a frequency of f„ in the signal s(t) can be complex 

demodulated by multiplying s(t) by the following complex expression:

x{  t )  = 2 e 3 . 2 . 3 :

Then

y  ( t )  - s ( t ) x ( t )
n

-^2 Ak f e itffct' f“t+afc) +e -li£kt+£mt*aj ]
k=1 ( 3 2 4

=Ame la“ +Ame _i (2f“c+a'")

+ £ )  A* [ e i( f ) 't+f“t+a*) + e _1 ]
k*m

When the resulting y(t) passes through a low pass filter, the following component, 

called z(t) remains:
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z  ( t )  =Ame ia n, ( 3 . 2 . 5 :

Therefore, the amplitude and phase of the component with frequency f m in the 

signal s(t) are extracted. The amplitude is

Am= j z ( t ) |  ( 3 . 2 . 6

and the phase is

r ( t )  i  / 2  o  n

In practice, the amplitude Am and the phase am are varying with time. Thus, 

the demodulated result contains not only the d.c. component, but also the slow 

components around the given frequency. The actual result depends on the 

bandwidth of the lowpass filter. In order to illustrate the application of the complex 

demodulation technique, we first present some examples, which are shown in 

Figures 3.2.1a-d.

Figure 3.2.1a is a one second interval sinusoidal wave with a fixed 

frequency of 60 Hz. We used a 60 Hz signal to demodulate the 60 Hz component 

in the sinusoid, and the result was a constant amplitude as shown in Figure 3.2.1b 

because the sinusoid contained only the 60 Hz component whose amplitude didn’t 

vary with time.
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Figure 3.2.1a A standard sinusoidal wave with a 60 Hz frequency.
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Figure 3.2.1b The demodulated signal from the signal shown in Figure 3.2.1a 
using 60 Hz as the demodulation frequency.

Figure 3.2.1c shows a signal of one second duration with a 60 Hz oscillation 

distorted by white noise in the middle of the one second interval. When we used 

the same 60 Hz signal to demodulate the 60 Hz component from the distorted 

wave, we found that the demodulated component had a trough at the time 

corresponding to the distorted portion of the oscillation as shown in Figure 3.2.1 d. 

We could then conclude that the amplitude of the 60 Hz component in that portion 

of distorted oscillation was very small. Therefore the demodulated component at 

a given frequency can demonstrate the instantaneous amplitude as well as changes 

of the amplitude of a certain-frequency-associated component.
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Figure 3.2.1c A 60 Hz sinusoidal signal wave distorted by the noise.
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Figure 3.2.1d The demodulated components from the signal shown in Figure 
3 .2 .ic  using 60 Hz as the demodulation frequency.

3.3 Applications of Complex Demodulation

Because of the properties described above, complex demodulation has been used 

to characterize the changes of autonomic input to the regulation of heart rate over 

time. An example can be found in the study of heart rate response to classical 

conditioning [1J. In the experiment, a group of dogs received training on a 

differential classical conditioning task in which a tone, identified by cs+, was 

generated simutaneously with an electrical shock administered to the flank of the
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animal. When the animal is conditioned, it learned that the cs+ tone reliably 

predicted a shock and produced vagal response.

Figure 3.3.1 The 50-point (5 s) average o f the respiration frequency response 
magnitude front the cs+ trials with a reference dotted line at the average o f  the 
30 s data before the pre-cs+ interval. The arrow points to the time where the 
shock was delivered.

Figure 3.3.1 shows vagal responses in three different periods, a 30-second 

pre-cs+ without a tone, a 30-second cs+ with a tone, and a 30-second post-cs+ with 

a shock at end of the cs+ period. The curve shown in Figure 3.3.1 is the amplitude 

of the respiration frequency response and is derived from the complex-demodulated 

component in the IBI signal by averaging its amplitude in every 5 seconds. It is 

noticed that vagal response drops significantly during the cs+ period and increases 

during the post-cs+ period. In this conditioning experiment, complex demodulation 

successfully illustrated the highly dynamic vagal changes of heart rate associated 

with respiration. It is of considerable physiological interest to study situations using 

complex demodulation, where heart rate changes dramatically over time and the 

control of these changes.
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We have used the complex demodulation technique in a conditioning study 

called thermal entrainment analysis. Entrainment is a phenomenon where an 

oscillating system exhibits a strong oscillation when a stimulus is applied to the 

system at a frequency approaching the system’s natural resonant frequency. The 

study has shown that by applying a certain range of periodic thermal stimuli to one 

hand the spontaneous variations in blood flow in the contralateral hand could be 

suppressed and replaced by strong oscillations occurring at the same frequency as 

the stimulus [31]. This phenomenon is called thermal entrainment. We have 

measured peripheral blood flow and found that the spontaneous blood flow 

oscillation occurs in the range from 0.02 Hz to 0.04 Hz. We then carried out 

experiment to study characteristics of vagal activity during the thermal entrainment.

A thermistor was attached to the forefinger of the right hand and a 

photoelectric plethysmograph to the distal phalanx of the forefinger of the left 

hand. The right hand was then immersed alternatively in a cold water bath for 15 

seconds and back to air for another 15 seconds, that is, the thermal stimulus had 

a period of 30 seconds or a frequency of 0.033 Hz. The experiment was repeated 

with a thermal stimulus at a period of 40 seconds or 0.025 Hz.

Figure 3.3.2a shows the blood flow signal when a thermal stimulus was 

applied with a period of 30 seconds. Figure 3.3.2b displays the temperature signal 

with a period of 30 seconds, which was used as the stimulus to entrain the blood 

flow. The entrainment phenomenon can be illustrated by comparing the spectra 

shown in Figure 3.3.2c and Figure 3.3.2d. Figure 3.3.2c shows spectra of both the
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Figure 3,3.2a A blood flow signal on the hand under a condition o f  the high-low  
temperature stimulation on the contralateral hand in a normal human subject 
(sampling rate is 50Hz).
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Figure 3.3.2b Temperature signal represents the temperature alternations in a 30s 
period, which is used as the stimuli on llie hand (sampling rate is 50 Hz).
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Figure 3.3.2c Spectra ol' the blood flow and the temperature signals. The dotted 
line represents the spectrum of the temperature signal with a 30 s period and die 
solid line is die spectrum of die blood signal.
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Figure 3.3.2d Spectra o f  the blood flow and die temperature signals. Tire dotted 
line represents the spectrum o f the temperature with a 40s period and the solid  
line is the spectrum o f the blood flow.

temperature and the blood flow during the entrainment, in which the temperature 

signal has a period of 30 seconds. It is observed that there is a large peak in the 

spectrum of the blood flow corresponding to the peak of the spectrum of the 

temperature signal, which implies that the blood flow is entrained at the frequency 

of the temperature signal. Figure 3,3.2d shows spectra of both the temperature and 

the blood flow without entrainment, in which the temperature signal has a period 

of 40 seconds. We have found that at the peak of the spectrum of the temperature 

there is no obvious peak in the spectrum of the blood flow, which is a good 

indication of nonentrainment.

The above experiment suggested that cold temperature could be used as a 

stimulus to regulate thermal activities in the human body, which could then affect 

the vagal activity. Subjects were therefore asked to sit quietly for 4 minutes, 

followed by immersing their right hand in a cold water with 4 °C bath for another
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4 minutes. Their hands were then returned to ah' for a 24-minute recovery period. 

During each stage we measured both EKG and respiration signals. EKG was used 

to derive the interbeat interval (IBI) signal, following the basic steps described in 

Chapter 1. We complex demodulated the IBI signal at 0.28 Hz with a low-pass 

filter that has a cut-off frequency of 0.16 Hz so that the range of the respiration 

frequency peak (0.12-0.44 Hz) was covered. Figures 3.3.3a and 3.3.3b display the 

temperature signal as the thermal stimulus on one hand and the subsequent blood 

flow on the contralateral hand of a normal subject. Figure 3.3.3c shows the 

complex demodulated vagal activity in the form of the amplitude of the respiration 

frequency response to the thermal stimulation. It is found that vagal activity 

decreases significantly when the cold water stimulation is given. After removal of 

the stimulation, the vagal activity starts to increase and recover to the previous 

level before the stimulation.
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Figure 3.3.3a A change of the temperature stimulation on one hand represented 
by the temperature signal. The vertical axis has no unit since the signal front the 
thermistor was amplified and filtered.
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Figure 3.3.3b The blood flow signal on die contralateral hand in response to the 
temperature change on the one hand as shown in Figure 3.3.3a.
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Figure 3.3.3c Respiration-associated vagal changes in response to the 
temperature stimulation. The vagal changes are obtained from tire heart rate 
variability signal using the complex demodulation.

Therefore, changes of vagal activity with changes of stimulus condition can 

be clearly observed in the time domain using complex demodulation. Therefore 

complex demodulation is a valuable tool to examine the change of vagal activity 

under various conditioning situations in the time domain.



CHAPTER 4

SPECTRUM ANALYSIS OF HEART RATE VARIABILITY

4.1 Introduction

Spectrum analysis is an analytical method based on the Fourier transform. The 

Fourier transform is a function that decomposes a signal into a set of sinusoidal 

components corresponding to different frequencies. The amplitude of each 

decomposed sinusoidal component describes the intensity of the sinusoidal wave 

at its frequency, while the phase of each decomposed sinusoidal component 

specifies the starting point in the sinusoid’s cycle. Spectrum analysis allows us to 

find the power densities of decomposed components in the frequency region of 

interest. Because a signal can be decomposed into many components based on their 

frequencies and expressed in the spectrum, the power in a certain frequency region 

can be derived from the spectrum by computing the area in that region. Thus, the 

Fourier transform can be used to identify the regular contributions to a fluctuating 

signal, thereby helping to make sense of observations in diverse fields of science 

[32]. One of the applications of spectrum analysis is the study of heart rate 

variability.

It has been recognized that heart rate var iability is usually due to the neural 

effects of blood pressure, thermoregulation and respiration on the heart. Study of 

heart rate variability can help to assess the parasympathetic and sympathetic 

systems. The power spectrum of the heart rate variability signal contains

39



40

identifiable peaks at different frequencies associated with cyclic fluctuations in 

peripheral vasomotor tone (thermoregulation), the frequency response of the 

baroreceptor reflex (blood pressure) and respiration frequency, which is shown in 

Figure 4.1.1.
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Figure 4.1.1 (a) Power spectrum of heart rate fluctuations in tire adult conscious 
dog. (b) Power spectrum o f heart rate fluctuations under parasympathetic blockade 
and combined parasympathetic and sympathetic (3-adrenergic blockade [25],

Figure 4.1.1a displays a power spectrum of the heart rate variability signal 

in the adult conscious dog. The low-frequency peak is related to variations in 

peripheral vasomotor tone associated with thermoregulation, the mid-frequency 

peak is related to the frequency response of the baroreceptor reflex, and the high- 

frequency peak is centered at the respiration frequency. Further the 

respiration-related peak of the power spectrum of the IBI variations vanishes under
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parasympathetic blockade as shown in Figure 4.1.1b [33]. This fact suggests that 

heart rate variability in response to respiration is a pure parasympathetic control 

process. An experiment will be described concerning quantitative measurement of 

the respiration-related contribution to the power spectrum of the heart rate 

variability signal in humans.

4.2 Experiment and Method

12 controls and 12 multiple sclerosis (MS) patients were selected. Subjects were 

asked to dress in shorts and sports shoes and walked on a treadmill. All exercise 

tests were earned out at room temperature. 2 protocols were used, depending on 

the subject’s physical condition.

Rest 1MPH 2MPH Rest 1.5MPH 2.5MPH 3MPH Rest
Protocol 1 :_____________________________________________________________

5 min 4 min 4 min 4 min 4 min 4 min 4 min 10 min

Rest 1MPH 2MPH 2.5MPH 3MPH Rest 3.5MPH 4MPH Rest
Protocol 2 :---------------------------------------------------------------------------------------------

5 min 4 min 4 min 4 min 4 min 4 min 4 min 4min 10 min

Protocol 1 was 5-minute rest, followed by 4-minute exercise interval at 1 

mile per hour (MPH), 2MPH, rest, 1.5 MPH, 2.5 MPH, 3MPH. If possible, 

elevation was added cumulatively every minute after 3MPH in order to push the 

subject to a maximum fatigue. Protocol 2 was 5-minute rest, followed by 4-minute 

exercise interval at 1 MPH, 2MPH, 2.5MPH, 3MPH, rest, 3.5MPH and 4MPH, each
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for a 4-minute period. If possible, elevation was added cumulatively every minute 

after 4MPH in order to push the subject to a maximum fatigue. Both protocols 

ended with a 10-minute rest, which we call the recovery period. During the test, 

ECG, EMG, respiration, skin temperature, oxygen consumption, subjective 

perceived exertion, blood pressure and cadence were measured. The respiration 

signal was measured by placing two electrodes on the chest and variation in the 

chest impedance was transformed into voltage changes via the Respl Monitor (UFI, 

Inc., Morrow Bay, CA). The standard 12-lead system and Picker/Cambridge Test 

System were used to measure the EKG. The EKG and respiration signals were then 

digitized by a 12-bit A/D converter (DASH16, MetraBytes, Inc.) and input into an 

IBM personal computer. An 8-channel Sony instrumentation tape recorder was 

utilized to record the EKG and respiration signals as a back-up system. The 

digitized EKG and respiration data in the PC were transferred by the file transfer 

protocol (FTP) to a Sun Sparc station 1 where the data processing and analysis 

were performed.

The interbeat interval signal was derived from the EKG. The basic steps 

have been introduced in Chapter 1. The IBI signal usually contains some very low 

frequency components between dc and 0.00158 Hz. These very low frequency 

components sometimes occupy much power in the spectr um of the IBI signal and 

make it difficult to visualize the respiration frequency peak. We have designed a 

detrending procedure using a locally weighted robust regression (LWRR) method 

to filter out these very low frequency components. The LWRR gives a robust and
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local smoothing of scatter plot data. In the LWRR, we chose 0.1 as the fraction of 

data used for smoothing at each data point, two as the number of iterations used 

in computing robust estimates, and 5% of the range of the data as the interval size 

used in the computing estimates. The detrended IBI signal was the IBI signal after 

the subtraction of the output of the LWRR and was ready for windowing. 

Windowing is a preprocessing of the time series before the Fourier transform. The 

direct Fourier transform of finite time series without windowing usually has large 

frequency leakage. The frequency leakage can be reduced by windowing. The 

procedure of windowing is to multiply the finite time series by a finite width 

window in the time domain. Selection of the proper window can result in the 

reduction of frequency leakage of the Fourier transform. In our study, we selected 

the Hanning window since it is widely used, easily implemented and gave us 

satisfactory results. The Fourier transform is performed numerically using the Fast 

Fourier Transform (FFT) algorithm. The FFT minimizes the number of 

multiplications in the transform and significantly increases the computing speed. 

The detailed FFT procedure may be found in many books [45]. The power 

spectrum contains the amplitudes of the decomposed components of the FFT and 

displayed the power density in the frequency domain.

4.3 Vagal Activity Study Using the Power Spectrum

The data used in the studies of spectrum analysis of heart rate variability and vagal 

activity were the IBI and respiration signals. Typical data during physical excise
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is illustrated in Figure 4.3.1, which is obtained from a normal subject walking at 

2 MPH.

LO
CD
o

UD
CO

d

o

0 50 100 150 200

Time (sec)

Figure 4.3.1a An IBI signal from a normal subject walking at 2 MPH.
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Figure 4.3.1b A respiration signal from a normal subject walking at 2 MPH.

Figure 4.3.1a is the IBI signal constructed by the procedures outlined in 

Chapter 1. The line which crosses the IBI signal is the detrending line, which 

represents the very low frequency trends in the IBI signal and needs to be removed
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before the Fourier transform action is applied. Figure 4.3.1b is the respiration 

signal. The noise on the respiration signal might be due to body movement, but 

will not affect the identification of the respiration frequency in the spectrum of the 

respiration signal as shown in Figure 4.3.1c. Figure 4.3.1c shows power spectra of
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Figure 4.3.1c Spectra o f the IBI and respiration signals corresponding to the 
signals shown in Figure 4.3.1a and Figure 4.3.1b.

the IBI and respiration signals. The solid line represents the power spectrum of the

IBI signal while the dotted line represents the power spectrum of respiration. The

spectrum of the respiration signal is the reference used to identify the respiration

frequency peak in the spectrum of the IBI signal. It is clear that an identifiable

peak in the spectrum of the IBI signal corresponds to the peak of the spectrum of

the respiration signal at the same frequency. Since this peak is located at the

respiration frequency and is a contribution of respiration control, the area under the
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peak reflects the intensity of the parasympathetic activity in the control of 

respiration and is called vagal power in our study.
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Figure 4.3.2 Vagal powers vs working loads ( the unit o f  the working load is 
miles/hour). The negative number represents the number o f  the rest during the 
exercise.

We have measured the vagal power in different stages (that is, 1MPH, 

2MPH, etc). Figure 4.3.2 shows vagal powers at different work loads (or walking 

speeds) from a normal subject using protocol 2. The x-axis represents the walking 

speed while the y-axis represents the vagal power. The negative numbers on the x- 

axis represents the number of rests during the experiment. We have found that 

vagal power decreases with an increase of the walking speed. The result also 

implies that vagal control of the heart diminishes if exercise load (walking speed) 

increases. Further investigation indicated that the trend of vagal power decrease 

was an exponential-like curve. For an exponential curve, the time constant is an
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important factor that determines the characteristics of the curve. Thus it is valuable 

to study the "time constant" of the vagal-load distribution since it can tell us how 

rapidly the vagal power decreases to the 36% of the vagal power during rest. The 

"time constant" can be obtained using the curve-fitting method. It was found that 

the "time constant" for the normal group was 20% less than in subjects with 

disease.

Spectrum analysis has been demonstrated in the above applications. The 

advantage of spectrum analysis is that the intensity or the power of frequency- 

associated activities can be easily visualized and studied.



CHAPTER 5

RECENT DEVELOPMENT OF PHASE DEPENDENCE STUDY 
IN HEART RATE VARIABILITY

5.1 Introduction

Heart rate variability studies using conventional time series analysis techniques, 

such as complex demodulation and spectrum analysis, have demonstrated the 

applicability and advantages of these techniques. From the amplitude variation of 

the complex demodulated output, we are able to trace the intensity of the vagal 

control of the heart as a function of time, especially changes of vagal control due 

to the change of conditioning. From the amplitude of the Fourier transform using 

power spectrum analysis, we are able to find the frequency content of heart rate 

variation and identify the contributions of respiration-associated vagal control of the 

heart, or vagal power. Since an amplitude at a given frequency in the power 

spectrum of a signal is an averaged contribution of the given frequency component 

over the time duration of the signal, the vagal power is an averaged power 

contributed by the respiration to the heart rate variations. These two time series 

techniques have provided valuable tools to analyze the heart rate var iability in both 

the time domain and the frequency domain, and their popularity is increasing.

However, a major drawback is that these two techniques fail to show 

phase-dependence of vagal control on the heart rate. In fact, the timing and 

intensity of vagal stimulation both play an important role in determining the hear t 

rate. The effect of vagal stimulation on the heart either delays or advances the time

48



of the heart-beat initiation, depending on the timing of the stimulation.
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Figure 5.1.1 Suppression o f pacemaker activity o f an SA  node by a brief, 
hyperpolarizing current pulse. (A) Control cycle with a 640 msec period. (B) A 
hyperpolarizing pulse applied at an early phase accelerated the next charge. (C)
A pulse applied at late phase slightly delayed next charge. (D) A pulse delivered 
at 67% o f  the spontaneous cycle terminated (lie next charge [4],

To illustrate the timing relation between heart rate and stimulation, we

present an example as shown in Figure 5.1.1 [4J. Figure 5.1.1 shows the pacemaker

activities of a kitten’s SA node in response to the stimulation with a brief,
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hyperpolarizing current pulse. The peak of the action potential represents the phase 

marker of the beat. Beneath the action potential curve is the stimulus pulse (no 

pulse in Figure 5.1.1 A). The time of the stimulus pulse following the phase marker 

of the beat is the phase of the stimulus. Figure 5.1.IB shows that a stimulus 

applied at an early phase accelerates the discharge of the next action potential 

(phase advanced). A stimulus applied at a later phase slightly delays the next 

discharge (phase delayed) as shown in Figure 5.1.1C. Figure 5.1.ID shows that a 

stimulus applied at a specific phase stopped the spontaneous activity. Therefore 

change of the heart rate is a phase-resetting process in response to stimulation. A 

time advance of the heartbeat initiation means an increase of heart rate while a time 

delay of the heartbeat initiation means an decrease of the heart rate. Study of the 

timing and intensity relationship between changes of heart rate and vagal 

stimulation is of great interest to physiologists.

5.2 A Review of Current Research on Phase Dependence

In 1934, Brown and Eccles conducted an experiment to discover an explanation of 

the vagal action on the heart [5]. In the experiment, single vagal volleys were 

initiated by applying single induction shocks to the peripheral ends of the 

transected vagi in a cat. The heart rate was recorded electrically from the 

pacemaker. It was found that the response of the heart to the single vagal 

stimulation was a general inhibition or a slowing of the heart rate, but a cardiac 

acceleration occurred if the vagal volley was set up late in a cardiac cycle. This
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discovery suggested the heart rate is dependent upon the phase of the cardiac cycle 

at which it is stimulated.

To investigate the phase dependence of the heart rate, scientists have 

approached the response of the heart rate to vagal stimulation with different 

perspectives and examined the change of cardiac cycle length to vagal stimulation 

across different phases of cardiac cycles. A phase response curve has been 

constructed to describe the change of the cardiac cycle length with respect to the 

phase of stimulation. Jalife and Antzelevitch studied the spontaneous rhythmic 

activity in isolated cardiac pacemaker cells [4], Their studies, in which strips of 

sinoatrial nodes from kittens were used and a current pulse of variable duration was 

adopted as stimulation, have demonstrated that phase shifts (changes of the cardiac 

cycle length) occur in response to brief, subthreshold, depolarizing current pulses. 

The timing relation between cardiac cycle resetting and stimulation was illustrated 

in Figure 5.1.1 in the section 5.1. The phase response curve was constructed by the 

phase shift via the phase of the stimulus in order to show different phase resetting 

behaviors and cessation of spontaneous activity of SA node pacemakers due to the 

application of perturbing stimuli at different points in the pacemaker cycle. They 

also provided evidence that there exists a critical time point in a cardiac cycle at 

which a specific amplitude of stimulus can terminate the spontaneous cardiac 

rhythm [4], That is why it is important to apply a defibrillation pulse at the right 

time to restore the heart to normal sinus rhythm. This evidence is supplementary 

to proving that timing of stimulation plays an important role on heart rate
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variability. Jalife, Slenter, Salata and Michaels also did research on dynamic vagal 

control of pacemaker activity and suggested that the magnitude of phase shift is a 

function of the timing, amplitude and duration of the stimulus [10]. This 

investigation illustrated how many factors usually determine the length of a cardiac 

cycle or the heart rate. Reiner and Antzelevitch successfully developed a 

mathematical model to study phase resetting behavior and the annihilation of 

cardiac rhythmic activity induced by critically timed stimuli [13]. This 

mathematical modeling helped enhance the understanding of the complex phase 

resetting mechanism.
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Figure 5.2.1 A. Phase response curve (PRC) obtained from a Purkinje fiber- 
sucrose gap preparation by scanning the pacemaker cycle with brief subthreshold 
depolarization current pulses. B. Microelectrode recordings from the same 
preparation using current pulses o f the same duration and amplitude but following  
a change o f the steady state maximum diastolic potential to -60 mV by the 
application o f bias current. C. PRC from a complete scan in the run illustrated in 
B. The vertical line indicates the phase at which annihilation occurred [131.

Figure 5.2.1 displays a typical result of the above studies in order to depict



53

phase resetting behaviors during different timing and amplitudes of stimulus. The 

phase resetting behavior is illustrated by the phase response curve, which was 

constructed by the change of the basic cycle length (BCL) via phase of the stimulus 

normalized by the cycle length, represented in percentage of a cycle. Figure 5.2.1 A 

is a phase response curve obtained from a Purkinje fiber pacemaker perturbed by 

brief subthreshold depolarizing current pulses. Figure 5.2.1C shows a different 

phase response curve in response to the same duration and magnitude as in Figure

5.2.1 A but following a change of the steady state maximum diastolic potential to - 

60 mv by application of a bias current. The discontinuous portion of the curve in 

Figure 5.2.1C represents occurrence of the annihilation and the corresponding 

stimulus phase which could stop the spontaneous pacemaker activity. Figure 5.2.IB 

shows several cases of the stimulation.

Guevara, Shrier and Glass did some research on the spontaneous rhythm of 

embryonic chick ventr icular heart cell aggregates. They paid par ticular attention to 

the phase resetting behavior where transition from delay to advance is a sensitive 

function of stimulation parameters [7]. Figure 5.2.2 shows a part of their results. 

They demonstrated that a pulse of stimulus could either delay or advance the time 

of occurrence of the next action potential, depending on whether the stimulus was 

delivered early or late in a cardiac cycle. It was found that the phase transition 

from delay to advance depended on the amplitude of the stimulus. With an increase 

of stimulus amplitude, the range of phase transition from delay to advance became 

narrower and nar rower, and the smooth phase response curve became discontinuous
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in the transition range when stimulus was high. This investigation provided detailed 

information about phase resetting behavior. Glass, Guevara, Sherier and Perez 

developed biological models for a cardiac-dysrhythmia-related phase resetting 

study, and analyzed experimentally observed "chaotic" dynamics at different 

stimulation parameters [8].
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Figure 5.2.2 Data points from phase resetting runs carried out at 6 different 
stimulus amplitudes in one aggregate. Normalized perturbed cycle length (T,/T0) 
is plotted vs the normalized coupling interval (<f> = t,/T0). tc is the stimulus time 
after the previous cycle. Crosses are placed midway through stimulus artifact 
which obscures action potential upstroke. Solid lines are extrapolations based on 
results obtained in other aggregates and correspond to membrane reaching 
threshold during stimulus. Data points are found along dashed lines in A-C when 
phase-resetting run repeated [7].

In summary, phase resetting behaviors are normally illustrated by the phase 

response curve. The phase response curve is constructed by finding the change of

the cardiac cycle length for a given stimulus around the cycle. The stimulus affects
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the immediate cardiac cycle during the stimulation and the change of this cycle is 

usually evaluated in the construction of the phase response curve. The timing of the 

stimulus determines the phase advance or phase delay. The timing and amplitude 

of the stimulus determine the amount of the phase shift and possible cessation of 

the pacemaker activity.

The above work on phase resetting of the cardiac cycle or heart rate is 

extensive and has provided the basis for further investigation in the area of phase 

dependence of the heart rate. However, these studies are limited to surgical heart 

preparations. Phase resetting studies, based on a noninvasive heart preparation, have 

not as yet been approached.



CHAPTER 6

PHASE DEPENDENCE STUDY

6.1 Experiment

Thirteen presumably healthy volunteers and sixteen persons with chronic fatigue 

syndrome (CFS) [27] were selected as subjects. At first the subjects were asked to 

sit and breathe naturally for 2 minutes in order to be stable. Then subjects were 

asked to pace their breathing at three different rates. The subjects were instructed 

to inhale-exhale in synchrony with a sequence of lights moving up and down at the 

desired pacing rate. A light moving up directs subjects to breathe in while a light 

moving down directs subjects to breathe out. In this way inspiration and expiration 

each takes approximately half of the respiration cycle so that they have same 

influence on the heart through the vagus. The three different breathing rates, 8, 12 

and 18 breaths/min, were chosen as slow, comfortable and fast pacing rates. The 

choice of these three pacing rates was intended to examine phase-resetting 

dependence on the respiration frequency. Each pacing rate was studied in a 2- 

minute interval since previous work showed that this time length was sufficient to 

obtain reliable results [27]. The same test sequence — normal breathing and paced 

breathing at 8 ,12  and 18 breaths/min, was also performed in the standing condition 

so that effects of posture could be evaluated.

Two standard ECG leads were placed on the subject’s chest for monitoring 

ECG and respiration via impedance pneumography. A 50KHz constant current

56
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signal was applied and the corresponding 50KHz voltage was measured. Changes 

of the voltage represented variations in chest impedance due to respiration. ECG 

and respiration signals were collected by a Respl Monitor (UFI, Inc. Morrow Bay, 

CA.) and digitized at 200 Hz using a Metrabyte DASH-16 A/D data acquisition 

board. The digitized signals were transferred to a Sun workstation for data 

processing and data analysis. The ECG was used to derive the interbeat interval 

(IBI) signal. The basic steps have been described in Chapter 1.

6.2 Some Concepts of Phase Dependence

Figure 6.2.1 is an idealized paradigm to illustrate the concept of phase dependence 

in a self-sustained oscillator that responds to an input. The vertical bars represent 

some distinguishable phase marker of the oscillator (for example, the positive 

peaks). In our case, the distinguishable phase marker is the peak of the R wave. 

When there is no input to the self-sustained oscillator, the same period T0 will 

occur repeatedly. When a brief stimulus acts on the oscillator, the phase of the 

oscillator is reset producing a new period (Ta or Tb). The first half of Figure 6.2.1 

shows that the new period becomes greater than T0 producing a phase delay. 

Following the phase shift the oscillator continues with period T0. In the second half 

of Figure 6.2.1, the stimulus is applied at a different point in the cycle producing 

a phase advance where the new period is less than T(). In our application, the input 

stimulus is the vagus under control of respiration and change in the period 

corresponds to variation in the interbeat interval.
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Figure 6.2.1 An idealized phase resetting paradigm. T0 is the cycle without any 
perturbation. A stimulus delivered in the 3rd cycle delayed the next cycle (Ta >
T0) while a stimulus delivered in 6th cycle advanced the following cycle (Tb <
T 0).

The circle diagrams in Figure 6.2.1 are another way to illustrate the concept 

of phase dependence. Each circle represents a cycle. Where there is no stimulus, 

the period remains at T0. In the cycle with phase delay or phase advance, the end 

of the cycle occurs at a time which is greater or smaller than T0.

6.3 Phase Response Curve

Since either phase advance or phase delay relies on the time of the stimulation, we 

can describe it as a function of stimulation time. Usually the phase shift is used to 

represent a phase delay or advance. Phase shift is defined as the normalized 

difference between the reset period and the period without any perturbation. A 

phase delay is represented by a positive phase shift while a phase advance is
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represented by a negative phase shift. For example, a phase delay in Figure 6.2.1 

can be expressed by the positive phase shift (Ta-T0)/T0 since Ta is greater than T0 

and a phase advance in Figure 6.2.1 can be represented by the negative phase shift 

(Tb-T0)/Tn since Tb is less than T0. The phase response curve is phase shift as a 

function of the stimulation time.

The phase response curve is a convenient way to illustrate the phasic nature 

of die response of an oscillatory system to brief perturbations from its 

surroundings. When a nonlinear oscillator is perturbed by an external stimulus, the 

perturbation will change the starting point of the subsequent oscillation, inducing 

either an earlier oscillation cycle or later oscillation cycle. A good quantative 

description of this phenomenon is to express the difference between the perturbed 

period and the period without the perturbation (phase shift) as a function of the 

stimulus time, which is the phase response curve. Thus the phase response curve 

is a probe for the control mechanism of the oscillation. When two linear oscillators 

are coupled but operate at different frequencies, die output of the combined 

oscillatory system contains only terms corresponding to the modes of the oscillation 

of the individual oscillators. In this case, the phase response curve may not 

contribute much to dris study since the period of the individual oscillator is not 

perturbed into any new value. However, when oscillators are nonlinear, the 

coupling can cause the two oscillators to lock onto a common frequency if the 

frequency difference of the two coupled oscillators is small or one is a submultiple 

of the odier. This suggests that the individual periodic cycle has been perturbed
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into a new value and the phase response curve can be used to measure those 

changes. Specially, for a nonlinear oscillator with spontaneous frequency f0 

perturbed by a periodic external stimulus, as the difference between the natural 

frequency f0 (or harmonics) and the stimulus frequency fs is decreased a point is 

reached where the system output consists of only a single dominant component at 

the stimulus frequency fs. This phenomenon is called frequency entrainment [46]. 

The phase response curve can be used to show the entrainment. We will 

demonstrate it later on in our study.

The phase response curve has been used to describe the timing of circadian 

rhythms and cardiac pacemaker activity in response to external stimuli. In the 

circadian study, a phase response curve is a plot of phase shifts as a function of 

circadian phase of a stimulus. The phase shift is the difference between the reset 

rhythmic period and its natural period, the stimuli include light, temperature, drugs 

and chemicals. In this way, circadian resetting can be measured. The cardiac cycle 

resetting has been discussed in chapter 5. As we know, heart rate changes in 

response to the effect of the vagal nerves on the pacemaker. In our study, the 

cardiac pacemaker is treated as an oscillatory system. Respiration is considered as 

vagal input to the system and heart rate is taken as output of the system. Based on 

the system we have defined and the concepts illustrated in Figure 6.2.1, we began 

to derive the phase response curve for our experimental data.

Coupling interval — a time region to evaluate phase dependence on respiration:
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Respiration continuously modulates the vagal input to the cardiac oscillatory system 

so that we can not observe the individual vagal stimuli to each cardiac cycle. It is 

therefore impossible to use the idealized phase resetting method illustrated in 

Figure 6.2.1 without some simplification and quantization of the respiratory stimuli. 

The effect of the respiratory stimulus on cardiac resetting depends upon the phase 

of the heartbeat without any perturbation and the phase of the respiration cycle 

[28]. We divide the respiration signal into blocks (or phases) and define the most 

effective time region of the respiratory stimuli in each cardiac cycle. We locate the 

interval of the respiration block where the heartbeat occurs and call this the 

coupling interval because it is the most clearly marked interval where cardiac and 

respiratory cycles show their coupling. In each respiration cycle, we maintain that 

ten equidistant coupling intervals have good resolution to capture the changes in 

the phase of the heartbeat and show the coupling between cardiac cycle and 

respiration since the number of beats in a respiration cycle (ratio of heart rate and 

respiration frequency) is normally no more than 10. The points dividing the 

coupling intervals are called coupling interval points and are normalized by the 

respiration period as shown in Figure 6.3.1. The stimulus in our study is the 

respiration depth at the coupling interval point.

Tn a reference: To study phase changes of the cardiac cycle due to the vagal 

perturbation, we must find a reference period T0 without respiration influence so 

that phase shift, the difference between the period perturbed by respiration and T0,
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can be measured. We hypothesize that if we could stop or remove respiration 

modulated vagal effects on the heart, we could measure the interbeat interval 

without respiration influence. Ideally we could obtain T0 by examining the interbeat 

interval. However, since our experiment studies intact awake humans with a focus 

on a noninvasive phase resetting study and the respiration influence can not be 

removed, T0 must be estimated by mathematical means and signal analysis.

Figure 6.3.1 Coupling intervals marked by coupling interval points. One 
respiration cycle is shown in tire graph.

To estimate T0, we made the following assumptions: As described 

previously, the paced-breathing protocol with the instructed breathing can keep tire 

inspiration and expiration well-balanced in a respiration cycle. Since inspiration and 

expiration can have equivalent vagal regulation on the heart but in the opposite 

direction, their contributions to the amount of prolongations and abbreviations of 

the interbeat intervals should be the same. Thus the average of the interbeat
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intervals in a respiration cycle represents the reference period T0 in our study. In 

fact, T0 is an approximate value since the propagation of inspiration and expiration 

signals through the vagus might be slightly different and the control mechanism of 

inspiration and expiration to the lung might be slightly different. We have found 

a very low frequency trend in the interbeat interval signal that causes T0 to be 

slightly different in different respiration cycles. The cause of this very low 

frequency trend is unknown. We have named each T0 as the local T0 and used the 

local T0 as the reference to compute the phase shift, which we are going to derive 

next.

Phase (T) of the heartbeat in response to respiration — estimate of a phase given 

the stimulus at a coupling interval: The human heart is under constant influence of 

respiration. The interbeat interval reflects both the instantaneous and previous vagal 

actions on the heart. The evidence provided by Jalife and Glass [4,8] indicates that 

a single stimulus can change the cardiac period (phase) at the time of the stimulus 

and the following cardiac periods. The phase of any heartbeat in our paced 

breathing experiment is due to the integrated effect of the respiration within its 

coupling interval since the respiratory stimuli within the coupling interval have 

major impact on the phase resetting of the cardiac oscillatory system. Figure 6.3.2 

shows an example to illustrate how the phase of tire heartbeat corresponding to a 

respiration stimulus is estimated. Panel A displays the heartbeats. Panel B is the 1BI 

signal generated as described in chapter 1, which corresponds to the heartbeats in
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Panel A. Panel C shows a coupling interval in a respiration cycle with respect to

0.9 —

Heart B eals

4.02.0 2.9

0.91BI Signal

Respiration

ba

Figure 6.3.2 An example to estimate phase o f the heartbeat. A. Heart beats is 
represented by vertical bars. B. The IBI signal corresponding to the heart beats 
shown in A. C. A portion o f the respiration cycle, in which a and b represent the 
coupling interval points.

the heartbeats in Panel A. To estimate the phase of the heartbeat given the stimulus 

at coupling interval point b, we first find the interbeat interval at coupling interval 

point b from the IBI signal (1.1). Because we are assuming that the interbeat

interval of 1.1 is mostly due to the additive effects of all stimuli in the coupling
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interval between a and b, we notice that this coupling interval also covers a 

previous IBI with a value of 0.9, which means that a portion of the stimuli act on 

the left side of the heartbeat and another portion of the stimuli acts on the right 

side of the heartbeat. In a coupling interval, action on the left side of the heartbeat 

means that stimulation is in the late period of a cardiac cycle while action on the 

right side of the heartbeat means that stimulation is in the early period of a cardiac 

cycle; they have opposite effects. Therefore averaging the segment of the IBI signal 

corresponding to the interval between a and b reflects the effect of the stimulation 

after the cancellation of the opposite effects. The averaging has been done by 

finding the mean value of the IBI segment in this interval. This averaged value is 

the estimated phase of the heartbeat, which is a value between 0.9 and 1.1, for 

example, 1.05.

Phase response curve — characterizing the phase dependence: Once the phase of 

the heartbeat is estimated at each coupling interval point, the amount of cardiac 

cycle resetting can be represented by a phase shift that is the normalized difference 

between phase (T) and T0, i.e., (T-T0)/T0. Therefore characteristics of the phase 

dependence of the heartbeat on the respiratory stimulation can be revealed by 

finding phase shifts at different coupling intervals, which is called the phase 

response curve. The stimulus is represented by the amplitude of respiration at a 

coupling interval point.
i

Cardiac cycle resetting in response to respiration generates heart rate
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variability and is measured by phase shifts of the heartbeat with respect to 

respiration stimuli. Study of the heart rate variability is now focused on the 

examination of this cardiac resetting behavior. Respiration induces the cardiac cycle 

resetting through the vagal input to the cardiac oscillatory system. The dynamic 

control process of respiration on the phase of the heartbeat is illustrated in Figure 

6.3.3a during sitting and Figure 6.3.3b during standing for a normal subject. In 

Figure 6.3.3a or Figure 6.3.3b the upper curve shows a running phase response 

curve estimated by using our method while the lower curve shows the 

corresponding respiration stimuli at the coupling interval points. A positive value 

in the running PRC represents a phase delay because the period of the cardiac cycle 

is prolonged after a stimulus. A negative value in the running PRC represents a 

phase advance because the period of the cardiac cycle is shortened after a stimulus. 

Each phase delay and phase advance corresponds to a certain respiration stimulus 

at a coupling interval point. In this way phase dependence of the heartbeat on the 

respiration stimulation is clarified. For a running PRC under the slow pacing (8 

breathes/min) condition, it is observed that the phase advances to a maximum when 

the respiration stimulus reaches a maximum, while the phase delays to a maximum 

when respiration reaches a minimum. This characteristic of the phase resetting is 

a frequency entrainment phenomenon. Considering the running PRC under slow, 

intermediate and fast pacing conditions, it is seen that there is a noticeable decrease 

of the magnitude of the PRC with an increase of the pacing rate (8 —> 12 —> 18 

BPM). Therefore fast vagal modulation by paced-breathing produces less cardiac



resetting. This study suggests that phase changes of the heartbeat in response to 

respiratory stimulation is frequency-dependent.
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Figure 6.3.3 The running PRC and respiration stimuli, (a) silting; (b) standing.

Also, it is observed that the entrainment phenomenon in the sitting state

occurs strongly during the slow pacing condition, and occurs weakly during the fast

pacing condition. In the standing state where the entrainment phenomenon
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decreases with increase of the pacing rate, however, the entrainment was lost at 18 

BPM. The degree of the entrainment may be studied by examining the envelope 

of the PRC, i.e, during the entrainment, the larger the variation of the envelope of 

the PRC, the lower the degree of the entrainment. The study of the entrainment 

degree has provided us with a useful way to evaluate the strength of the vagal 

control of the heart in healthy subjects and subjects in disease. The investigation 

of the amplitude relationship between phase shifts and respiration stimuli may lead 

us to better understand how respiration regulates the vagal activity on the heart.

The phase response curves for different pacing rates and in different states 

have been estimated and illustrated graphically in tire above. Analysis of these 

PRCs plays a very important role for understanding of vagal control mechanisms 

of respiration on the heart. So far, few analytic techniques have been presented to 

analyze the PRC and most are focused on the estimation of different PRCs in 

different situations. Thus investigation of the analytical techniques for the PRC is 

a part of our research.

6.4 Reexamination of the PRC

Traditionally, most activities are examined on tire basis of a one-dimensional 

straight time line. An example is shown in Figure 6.4.1, which is the usual way to 

describe a sinusoidal wave with a period of 12 hours. This activity usually needs 

at least a few cycles (for example, 5 periods) displayed on a straight time line in 

order to show its periodic characteristics. However, in many respects time does run
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in a circle, just as day and night do on a rotating planet. Instead of a straight time 

line, this sinusoidal activity can also be studied on the basis of a time circle with 

a period of 12 hours as illustrated in Figure 6.4.2a. The resulting wave is displayed 

in Figure 6.4.2b. The analysis shows that this oscillatory activity repeats every 12 

hours when the time circle of a 12-hour period is adopted. In this way information 

about this activity is compressed in a 12-hour period. Showing this activity for 

more than 12 hours will provide no more information.
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Figure 6.4.1 A sinusoidal wave with a period o f  12 hours.

Figure 6.4.2a Time circle with a 12-hour period.



o  2 4 6  8 1D 12

hour

Figure 6.4.2b The compressed sinusoidal wave with a period o f  12 hours, which 
provides the same information as Figure 6.4.1.

However, if an oscillatory activity is different in different periods, the 

analysis based on the time circle will not only compress the same information (for 

example, enhance the same repetitive pattern in a signal) in different periods into 

one period but will also highlight the difference between periods. This idea inspired 

us to reexamine the running PRC in a time circle since the running PRC exhibits 

oscillatory properties.

0.9

0.8 0.2

0.7 0.3

0.6 0.4

Figure 6.4.3 A time circle with a period of 10 marked by coupling interval 
points.

In our study the period of the time circle is defined as a respiration cycle
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marked by 10 coupling interval points as shown in Figure 6.4.3. Based on this time 

circle, we have reexamined the running phase response curve in Figure 6.3.3a and 

Figure 6.3.3b, and the results are shown in Figure 6.4.3a and Figure 6.4.3b.
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Figure 6.4.3 PRCs projected into one respiration cycle, (a) silling; (b) standing. 

Further, because of the fluctuation of the heart rate, some coupling intervals 

in a respiration cycle may not capture a heartbeat. It is therefore helpful to project 

the PRCs corresponding to different respiration cycles in a cycle in order to resolve
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this problem.

This analysis provides us with condensed information about both the 

common phase resetting behavior shown by the. overlapped dark lines and the 

variation away from the common pattern in different respiration cycles. The 

illustration offers a way to retrieve a repetitive pattern and to analyze the variation 

of the PRC in different respiration cycles. The repetitive pattern demonstrates an 

important characteristic of the phase change of the heartbeat in response to 

respiration stimulation on the heart. The variation away from the common pattern 

indicates a decrease of entrainment since respiration stimuli are quite similar in 

each respiration cycle. We have found that the magnitude of the PRC decreased 

with increased pacing rate while variation of the PRC increased with increased 

pacing rate. This feature is an indication of a decrease of entrainment with an 

increase of the pacing rate.

To retrieve the underlying common pattern in Figure 6.4.3a and Figure 

6.4.3b, we have calculated the mean value of the PRC at each coupling interval 

point. The results are displayed in Figure 6.4.4a and Figure 6.4.4b. The 

characteristic of the mean PRC is that phase delay occurs mostly during the first 

half of the coupling interval period, and advance in the second half as illustrated 

in Figure 6.4.4. The first half of the coupling intervals is the period of late 

expiration and early inspiration while the second half is the period of late 

inspiration and early expiration. This illustration gives us a clear picture of how the 

respiration works as a vagal regulator. As we know, heart rate variability is due to
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cardiac cycle resetting. Phase shifts represent the heart rate variability related to 

respiration stimuli. The mean PRC represents the averaged heart rate variability 

given stimuli at coupling interval points. In this way phase dependence of the heart 

rate variability has been demonstrated.
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Figure 6.4.4 The mean PRC at different pacing rates, (a) sitting; (b) standing.



The maximal heart rate variability (MHRV) of the system was measured by 

finding the difference between maximal delay and maximal advance in the mean 

PRC. We have calculated the average MHRV for the normal group during both 

sitting and standing states and the results are shown in table 6.4.1. In the table

6.4.1 it is found that the MHRV decreases about 53% for the sitting state and about 

60% for the standing state during the 12 cycles/min breathing rate, and decreases 

about 79% for the sitting state and 85% for the standing state during the 18 

cycles/min breathing rate with respect to the 8 cycles/min breathing rate. The 

decrease of the MHRV with increase of the pacing rate reflects the reduced vagal 

control to the heart.

Table 6.4.1 The MHRV at different pacing rates during sitting and standing

Sitting State Standing State

8BPM 0.256 (X) 0.191 (Y)

12 BPM 0.120 (47% X) 0.077 (40% Y)

18 BPM 0.054 (21% X) 0.028 (15% Y)

The results presented above have provided much information about effects 

of vagal actions on the heart through phase resetting and the corresponding 

respiration stimulus. Because respiration resets the cardiac cycle through the vagus,
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investigation of cardiac resetting in response to respiration may provide us some 

information which leads to an understanding of mechanisms underlying the 

parasympathetic nervous system and finally the ability to decipher it.

6.5 Comparison between Controls and CFS Subjects

Heart rate variability is due to cardiac cycle resetting in response to stimulation on 

the heart [1], The amount of the cardiac resetting is typically not constant, 

depending on stimulus intensity and phase of the stimulus with respect to a cardiac 

cycle. Study of cardiac cycle resetting is involved in finding a phase resetting 

pattern of the cardiac oscillator given a stimulus at different phases of a cardiac 

cycle. Generally a phase response curve (PRC) is constructed to demonstrate the 

phase resetting behavior.

Recent experiments by surgical assessment of cardiac resetting have 

demonstrated that phase resetting studies have provided important clues to 

understand the mechanism of the vagal-heart system [8,10]. However most 

investigations are limited to searching for phase resetting patterns under different 

stimulation conditions. The characteristics of the phase resetting are viewed by 

examining the consequent phase response curve. We believe that phase resetting 

study can be further explored and phase resetting methods can be used to 

investigate certain diseases. Therefore an attempt has been made to characterize the 

abnormal phase resetting behavior due to chronic fatigue syndrome (CFS) and to 

compare subjects in disease with normal subjects.
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Based on the method we have introduced above, we have constructed the 

running PRCs for CFS subjects. Typical examples in the normal group and in the 

CFS group during 8 BPM sitting are illustrated in Figure 6.5.1a for the normal 

group and Figure 6.5.1b for the CFS group.
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Figure 6.5.1 The running PRC with respiration stimuli at 8 BPM. (a) normal; (b)
CFS.

In each figure, the upper curve is the running phase response curve and the
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lower curve shows the respiration stimuli represented by respiration depths. In this 

way phase shifts (points on the curve) accompanied by their corresponding 

respiration stimuli (bars) are displayed and the characteristics of the running PRC 

can be examined. In general, there is a big difference in the running PRC between 

the normal group and the CFS group. In Figure 6.5.1a phase shifts are strongly 

entrained by the respiration stimuli. This entrainment phenomenon is easily 

observed by examining the peak-peak relationship between the running PRC and 

respiration stimuli, that is, positive peaks of the running PRC is tracing in 

coincident with the negative peak of respiration and negative peaks of the running 

PRC in coincident with positive peaks of respiration. However, this relationship is 

not maintained very well in Figure 6.5.1b. We notice that at around 100 sec, phases 

were not delayed as expected before starting to advance (negative phase shifts), and 

at around 80 sec the large stimuli did not induce big phase advances. This 

phenomenon is an indication of weaker entrainment than the normal subject. Our 

analysis of the normal and the CFS groups indicates that, although the respiration 

stimuli in both normal and CFS groups are clearly similar, the amount of phase 

resetting represented by phase shifts and degree of the entrainment in the CFS 

group are smaller. This difference may be due to the dynamic control process. In 

other words, the reduced neural coupling between respiration and the cardiac 

oscillator through the vagus in the CFS group might explain the subtle difference. 

We have also projected the PRCs of Figure 6.5.1a and Figure 6.5.1b in different 

respiration cycles into one cycle using time circle concept as described in section
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6.4. The results are shown in Figure 6.5.2a for the normal subject and Figure 6.5.2b 

for the CFS subject. It is observed that the projected PRCs exhibit the bigger 

variation in the CFS subject than the normal subject. We will quantify this 

variation in the later chapters.
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Figure 6.5.2 PRCs projected into one respiration cycle, (a) normal; (b) CFS.

We first obtained a repetitive pattern by averaging the PRCs of different



79

respiration cycles at each coupling interval point, which is displayed in Figure 

6.5.3a for the normal subject and Figure 6.5.3b for the CFS subject. The resulting 

PRC is called the mean PRC in our study.
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Figure 6.5.3 The mean PRC. (a) normal; (b) CFS.

Since the range of the mean PRC represents the degree of the phase change 

(or maximal heart rate variability) in the cardiac oscillatory system, we have
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measured these values for both normal and CFS groups in order to compare the 

CFS group with the normal group statistically.

Table 6.5.1 Comparison between the Normal and CFS groups in MHRV

Normal CFS Normal CFS

(p<0.05) Sitting Sitting Standing Standing

8 BPM 0.256 0.133 0.191 0.053

(X) (52%X) Y (28%Y)

12 BPM 0.120 0.072 0.077 0.028

(X,) (60% X,) Y, (36% Y,)

18 BPM 0.054 0.041 0.028 0.014

(X 2) (76%X2) y 2 (50% Y2)

Table 6.5.1 shows the average MHRV for two groups during the sitting state 

and the standing state. We have found that the MHRV for the CFS group is 48% 

lower during 8 BPM sitting, 40% lower during 12 BPM sitting, 24% lower during 

18 BPM sitting, 72% lower during 8 BPM standing, 64% lower during 12 BPM 

standing and 50% lower during 18 BPM standing. This result indicated that the 

degree of the phasic change of the cardiac oscillatory system in response to the 

respiration stimulus in the CFS group was reduced with respect to the normal
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group.

We then evaluated the variations of the running PRCs at different pacing 

rates during both sitting and standing conditions when the PRCs corresponding to 

different respiration cycles are projected into one cycle. The variation is measured 

by standard deviation. We found that standard deviations are different in different 

coupling interval points (the data are in Appendix IV). These absolute standard 

deviations could not differentiate the CFS group from the normal group because 

standard deviations of the normal group in some coupling intervals are smaller than 

the CFS group while in other coupling intervals standard deviations of the normal 

group are larger than the CFS group. The reason is that normal PRCs have larger 

range (the difference between the maximal and minimal values) of the mean PRC 

than the abnormal PRCs and the consequent values of the standard deviation in the 

normal group may be larger. Therefore we have computed relative standard 

deviation (RSD), which is the absolute standard deviation divided by the range of 

the mean PRC, and used this relative value as a measure of the variation of the 

projected PRCs. The results are demonstrated in Figure 6.5.4. Figure 6.5.4 shows 

the relative standard deviations in different coupling intervals for both normal and 

CFS groups, which are computed by averaging the RSDs of all the subjects. It is 

noticed that the RSDs in the CFS group are larger than the normal group for all the 

pacing rates either in the sitting state or in the standing state. In this way the 

variations for the normal group and the CFS group are distinguishable. Figure 6.5.4 

also shows that the RSDs for two groups elevate with an increase of the pacing
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rate, which reflects inversely both the degree of the entrainment between phase 

shifts and respiration stimuli and the stability of the vagal-heart system.

6.6. Discussion

In this chapter, we have described an investigation into the phase dependence on 

heart rate variability (HRV) in response to respiration as a vagal input. This 

investigation offers considerable promise as a noninvasive scheme for 

phase-resetting experiments in humans. The estimated phase response curve has 

succeeded in demonstrating the dynamic phase resetting behavior of cardiac cycles 

given the respiratory stimulus. An important characteristic is that the phase 

response curve can demonstrate entrainment. We have found that the degree of 

entrainment decreases with an increase of the pacing rate. Also the amount of 

phase resetting decreases when the pacing rate increases.

Although respiration influences the cardiac pacemaker through the vagus in 

an indirect way, and integrated effects of the continuous respiration control on the 

cardiac pacemaker is complicated, our study has proved that it is possible to use 

some noninvasive experimental and mathematical techniques to extract useful 

information on how the cardiac oscillator reacts to perturbation from the vagus.

Further, we have discussed characteristics of the phase resetting behavior in 

the normal group and the CFS group by means of the running PRC in the time 

domain, the projected PRCs based on a tune circle and the common PRC pattern. 

We have also illustrated the difference between normal and abnormal phase
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resetting in response to a respiration stimulus quantitatively and qualitatively.

Analysis of the running PRC has indicated that the degree of phase resetting 

and entrainment depends on the pacing rate, posture (sitting or standing), and 

function of the vagal-heart system. It has been found that the slower the pacing, die 

higher the degree of phase resetting and entrainment. The effect of the standing 

state was to reduce the amount of phase resetting and the degree of entrainment 

compared over the sitting state. The difference between the normal and the 

abnormal phase resetting behavior may be due to the difference in degree of 

functioning of the vagal-heart system in the normal group and the CFS group. The 

CFS group exhibited a lower phase setting, larger variation and weaker entrainment 

compared to the normal group.



CHAPTER 7 

TOPOLOGICAL STUDY

7.1 Introduction

The study described in chapter 6 has indicated that the running phase response 

curve displays its oscillatory features during a respiration related vagal stimulation 

on the heart [1]. Many studies have demonstrated that most oscillatory processes 

exhibit qualitatively similar properties [4,12]. These properties can be analyzed 

effectively by using topological techniques. Study of the topological properties of 

the running PRC may provide us with insights into the dynamics of the vagal-heart 

system. In our present study we present a topological technique to study the phase 

resetting characteristics. We also attempt to characterize the abnormal phase 

resetting behavior due to CFS and to compare these subjects with normal subjects.

The dynamic control process of respiration on the cardiac cycle resetting has 

been illustrated by the running PRC, in which phase shifts are under control of the 

respiration stimuli. Although this dynamic control process has been characterized 

in various ways such as entrainment analysis, time cycle analysis and common 

pattern analysis, it still presents a challenge to understand in depth and to interpret 

the mechanism of the vagal-heart system. We will now present a technique to 

construct the phase plane of the running PRC. The phase plane can help us not 

only to reveal topological properties of the running PRC, but also to transform a 

running PRC into a topologically recognizable shape. We can then compare the

85
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derived phase plane with the shapes seen in dynamic systems for which the 

underlying control process is known.

7.2 Phase Plane

Theoretically, the phase plane of a signal is defined as its first derivative dx/dt 

(usually called velocity) vs x [46]. In our study, the running PRC has values only 

at coupling interval points. To construct a phase plane, we first interpolated ten 

points in each coupling interval using cubic splines so that we have the reasonable 

number of points to do numerical differentiation. The reason we chose the cubic 

spline method is that the interpolated running PRC will then have continuous first 

and second derivatives, which is essential in order to construct a phase plane of the 

numerical data with smooth trajectories. The constructed phase planes of the 

running PRCs for a normal subject and a CFS subject during the 8 BPM sitting 

condition are illustrated in Figure 7.2.1a and Figure 7.2.1b. Figure 7.2.1a is a 

typical example of a normal phase plane. Each point on the trajectory represents 

a phase shift and its velocity (called phase velocity in our study). The phase 

velocity represents how rapidly the phase shift changes and in what direction it is 

going to change. A positive phase velocity indicates an increase of phase shift in 

the following heartbeat while a negative phase velocity indicates a decrease of 

phase shift in the following heartbeat. Therefore the phase plane provides us with 

a dynamic map showing current phase shift, on-going change and direction of the 

change.
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Figure 7.2.1 Phase planes during 8 BPM sitting. Dotted circles are the inner and 
outer layers, (a) normal; (b) CFS.

Study of the phase plane reveals topological properties and provides 

qualitative analysis of the dynamic behavior of the running PRC. In our study, one
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orbit is defined as a closed trajectory. If all the orbits fall into one orbit, this orbit 

is called a limit cycle. In Figure 7.2.1a, we can imagine that initially, the orbit may 

be on the limit cycle, and it moves off the limit cycle and forms a new orbit due 

to the stimulation, which we call a shifted cycle. Because the shifted cycle moved 

differently orbit by orbit, a unique phase plane has been formed. It has been 

observed that each shifted cycle has similar patterns but different positions. Also 

each shifted cycle corresponds to one respiration cycle, which indicates a single 

frequency mode of the phase plane and implies entrainment by respiration. The 

shifted cycle moved around a bounded region and formed an inner boundary and 

an outer boundary in the phase plane. The center of the phase plane is a point with 

zero phase shift and zero phase velocity (singular point), in which phase resetting 

is zero and heart rate variability is zero. The distance between the center and the 

inner boundary can be a measure of the degree of the phase resetting. The distance 

between the inner boundary and outer boundary can be a measure of the degree of 

dispersion. In addition, we found that the normal phase plane is odd-symmetrical 

with respect to the zero line. Figure 7.2.1b is a representative phase plane for CFS 

subjects. Clearly there is a noticeable difference between the normal group and the 

CFS group. We noticed that some shifted cycles exhibited different patterns. The 

inner boundary is closer to the singular point since the dispersion of the phase 

plane is very large. Some orbits are near to the singular point. This suggests an 

unstable dynamic control by respiration on the cardiac cycle resetting.

The phase plane for a normal subject during the 12 BPM sitting condition



89

LQ
O
o
o

^  o
y o

oo
03 l o  xz o  o

LO

o

■0.15 -0 .10  -0 .0 5  0 .0  0 .0 5  0 .1 0  0 .1 5

phase shift

(a)

m
o
o
o

oo
cu l o  .c o  

d

o

•0.15 -0 .1 0  -0 .05  0 .0  0 .0 5  0 .1 0  0 .1 5

phase shift 

(b)

Figure 72.2 Phase planes during 12 BPM sitting. The dotted circles represents 
the inner and outer layers.

is displayed in Figure 7.2.2a. We have found that the pattern of the trajectories was

changed. Compared with the phase plane during 8 BPM sitting, the inward bending

of the trajectory was increased. The inner boundary is still clear but smaller.
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Although some orbits exhibited different patterns, most orbits follow a similar 

pattern but at different positions. Figure 7.2.2b is a representative phase plane for 

the CFS group during 12 BPM sitting. We can see that the shape of the phase 

plane consisted of many different orbits. Although some common pattern in the 

orbits was recognizable, the characteristics of the phase plane becomes difficult to 

be analyzed. The inner boundary of the phase plane could hardly be identified.

The phase planes during 18 BPM sitting are shown in Figure 7.2.3a for a 

normal subject and Figure 7.2.3b for a CFS subject. We have observed that the 

phase planes became very complicated. It is very hard to characterize these phase 

planes and is impossible to distinguish the normal phase plane from the abnormal 

phase plane. We also examined the phase planes during the standing condition with 

different pacing rates. We found that posture did not affect the basic topological 

properties of the phase planes.

In this section, we have discussed characteristics of the phase resetting 

behavior in the normal group and the CFS group by means of the phase plane. We 

have also qualitatively illustrated the difference between normal and abnormal 

phase resetting in response to respiration stimuli. Topological analysis of the 

running PRC has indicated that the phase plane can reveal the topological 

properties of the phase resetting behavior and illustrate some mechanisms of the 

vagal-heart system. We also have demonstrated qualitatively the applicability of the 

phase plane to distinguish an ordered mechanism from a disordered mechanism. 

During slow pacing at 8 BPM, phase planes of normal subjects and CFS subjects
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Figure 7.2.3 Phase planes during 18 BPM silling, (a) normal; (b) CFS. 

are well distinguishable. With an increase of the pacing rate, the distinction 

between normal and abnormal phase planes decreased and the characteristics of the
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phase plane became difficult to be recognized. This suggested that topological 

techniques are suitable for the slow pacing data. Since we had recognizable phase 

planes in normal and CFS groups, we started to search for a mathematical model 

to simulate the dynamic activity in the phase plane and attempt to understand the 

control mechanism of the cardiac oscillator. The proposed model in our study was 

the Van Der Pol oscillator, which will be discussed in chapter 9. Therefore, the 

phase plane can provide us with a recognizable topological shape that we can use 

to develop a mathematical model that simulates the mechanism of the vagal-heart 

system.

7.3 Poincare Map

A Poincare map is a geometric analytic approach that was developed by Poincare 

in the early 1900s. A Poincare map of a signal x(t) is constructed by plotting a 

signal widi a certain delay x(t+a) against the signal x(t) itself [36]. It projects a 

signal into a 2-dimensional map, in which time is excluded and only the amplitude 

relationship between adjacent signal points is shown. The Poincare map is used 

mostly in a qualitative analysis of a system, stressing the global behavior of system 

dynamics. In our study, the Poincare map is constructed by plotting each phase- 

shift against the previous one. It can provide information about the relationship of 

a phase-shift to the next phase-shift. We also constructed a Poincare map to 

characterize normal and abnormal groups qualitatively.

To illustrate and better understand some features of the Poincare map, we
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Figure 7.3.1 (b) The Poincare map of a constant signal, 

started with simple signals. Figure 7.3.1a displays a signal without any variation, 

called a constant signal. The Poincare map of the constant signal is a point located 

at the mean value (zero) of the constant signal as shown in Figure 7.3.1b because 

neighboring points of the signal have no difference and the overall signal has no 

variation. This point is called the mean value point.
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Figure 7.3.1c is a sinusoidal signal with 160 data points. The Poincare map 

of the sinusoidal signal is illustrated in Figure 7.3.Id. In Figure 7.3.Id, we can see 

that many points surround the mean-value point represented by a small circle at 

(0,0) because the mean value of the sinusoidal signal is zero. These points form a 

cycle, called the "limit cycle". The difference between neighboring points can be 

measured by the distance along the vertical axis from the point on the limit cycle 

to the 45 degree line represented by the solid line in Figure 7.3.Id.

For the sinusoidal signal, the difference between neighboring points 

decreases with an increase of the absolute value of the data point, forming an 

elliptic shape. Therefore a Poincare map can demonstrate the trend of changes from 

one data point to the next neighboring point when the amplitude of the data point 

changes. Overall variation of the signal away from its mean value can be evaluated 

by noting that the smallest horizontal and vertical scale of all the data point reflects 

the smallest variation away from the mean value and the largest scale shows the 

largest variation from the mean value.

Figure 7.3.le  shows a distorted sinusoidal wave, which is simulated by the 

sinusoidal wave shown in Figure 7.3.1c with a small amount of white noise added 

(the noise range, which the difference between the maximal and minimal values, 

is 12.5% of the range of the signal), and its Poincare map is displayed in Figure 

7.3.If. We observed that there is a large dispersion from the limit cycle and the 

center of the limit cycle (called the mean value point) has been shifted because the 

mean value of the signal is no longer zero.
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Therefore from a Poincare map we can visualize information about (a) the 

mean value point, which is the center of the limit cycle or the center of the
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Poincare map, (b) variations away from the center, including smallest and largest 

variation, by examining the scale on the map between center and nearest point or 

farthest point, (c) trend of changes from a data point to the next neighboring points 

due to the amplitude change of the data point and (d) dispersion from the limit 

cycle due to the perturbation. The above study provides us with the basis for the 

investigation of dynamic phase-to-phase relationship.

Figure 7.3.2a shows a typical Poincare map of the PRC from the normal 

group at 8 BPM. It is noticed that center of the Poincare map is approximately at 

(0,0) coordinates, which implies that phase advances (negative phase-shift) and 

phase delays (positive phase-shift) are well balanced due to the respiration control. 

We have found that with an increase of the phase shift, the difference between 

neighboring phase shifts becomes smaller as in the example shown in figure 7.3.1 

since the distance from most points along the vertical axis to the 45 degree line 

decreases. It can be visualized that the points surround the center and form a so- 

called "str ange attractor". A str ange attractor represents a perturbed limit cycle with 

a certain degree of dispersion [36]. The degree of dispersion from the limit cycle 

can be estimated by measuring the average distance between the inner layer of data 

points and the outer layer of data points with respect to the center. Figure 7.3.2b 

displays a typical Poincare map of the CFS group. Comparing to the normal 

Poincare map, we have found that (a) the center of the Poincare map for the CFS 

group was shifted by 1.2% of the range of the data since the mean value point was 

not at (0,0) coordinates, which means that phase advances and phase delays are not



98

CMO

o

ooQC0.

«•o

CM

O
- 0.2 - 0.1 0.0 0.1 0.2

PRC(t)

(a)

o
o

LO

o
o+

o

0.0 0 .05  0.10- 0.10  - 0.05

PRC(t)

(b)

Figure 7.3.2 Poincare maps of the PRC. (a) normal; (b) CFS. 

balanced and do not have equal results in response to the same respiration 

associated vagal stimulation, (b) variation from the mean value point was smaller, 

which can be observed by examining the distances between inner layer of the 

scatter points and the center of the map. In fact, this variation represents the degree
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of phase change in response to the respiration stimulus. Therefore, the sensitivity of 

the cardiac oscillatory system in response to respiration associated vagal stimulation 

can be illustrated by the average variation of scatter points from the center of the 

map. The larger the variation, the larger the phase change in response to the 

respiration stimulus and the more sensitive the system. In addition, the dispersion 

between the outer layer and the inner can be a factor used to compare CFS subjects 

with normal subjects. However, the calculation of the variation and dispersion is 

complicated if we measure the average distance between inner layer and mean 

value point, and the average distance between the inner layer and the outer layer 

on the Poincare map. Since the variation and the dispersion reflect nonlinearity of 

the system and represent nonlinear dynamic activity, estimation of these two 

variables are valuable. There are a few methods to study this nonlinear dynamic 

activity, such as fractal dimension and Lyapunov exponents. We have also 

developed a method to study this activity due to the nonlinearity of the system, 

which will be discussed in the next chapter.

7.4 3-D Study

As we have mentioned before, topological graphs, such as phase-stimulus 

relationships, phase planes and Poincare maps, are limited to two variables. 

Therefore time has to be eliminated in order to examine two additional variables. 

This leads to either comparing two signals without time or looking at a single 

signal with time. The 3-dimensional plot can include 3 variables together and
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display them in a 3-dimensional space instead of a plane, which provides time- 

space information about the relationship between heart rate variability and 

respiration.

The first step in the 3-D analysis is the data mapping from the plane to the 

space. This mapping can be accomplished in many ways. In our study, we have 

used the perspective plot to do so. After mapping, we can start to recognize each 

special pattern and provide some explanations.

In section 7.2, we demonstrated the relationship between the phase shift and 

the phase velocity (rate of change of phase shift) by the phase plane, which is 

shown in Figure 7.2.1a. The relationship between these two variables are displayed 

by sacrificing the time. It is a typical phase plane from the normal group and its 

structure has been described in section 7.2. Figure 7.2.1a displays the dynamic 

behavior of the PRC by its trajectories. To include time and display it with time 

evolution, we have generated a 3-D plot as shown in Figure 7.4.1a, which includes 

3 variables, phase shift on x-axis, phase velocity on z-axis and time on y-axis. In 

this 3-D plot, the specific phase-shift with a phase velocity at each time point has 

been demonstrated. The trajectories at different times are displayed. It is observed 

that most trajectories follow the same pattern. Figure 7.4.1b is a 3-D plot of Figure 

7.2.1b from the CFS group. It is observed that a major difference between the 

normal and the CFS 3-D phase planes is that the first few trajectories in time show 

a transient build-up for the CFS group but not in the normal subject. This tells us 

that the difference between the normal and the abnormal phase planes are mostly
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Figure 7.4.1 A 3-D view o f phase planes, (a) normal; (b) CFS. 

due to the first several trajectories.

Figure 7.4.2a is a 3-dimensional Poincare map for the normal subject, which
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(a)

(b)

Figure 7.4.2 Phase spaces of the PRCs. (a) normal; (b) CFS.

is also called a phase space. It is constructed by adding one more variable to the 

Poincare map shown in Figure 7.3.2a, that is, the 3-D plot consists of the running
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PRC with no delay, the PRC with one unit delay and the PRC with two unit delay. 

This 3-D plot can display the global dynamic behavior of the phase changes. Figure 

7.4.2b is a phase space for the CFS subject, which is constructed by adding a 

variable of the running PRC with 2-unit delay to the Poincare map in Figure 

7.3.2b. The difference in shape between the normal and CFS groups is obvious. To 

study either 2-D or 3-D plots, we think that symmetry of the topology is an 

important characteristic. It has been observed that many experimental systems 

possess symmetry. As we have observed before by examining the mean PRC and 

the phase plane, they have all displayed their symmetry or symmetry-like 

characteristics. Our study indicates that the preservation of symmetry may be 

crucial to a stable system. We have found that data from CFS patients such as the 

mean PRC, phase plane and phase space lost symmetry. The reason may be that 

the stable neural coupling between heart rate and respiration is not well maintained.

The three dimensional picture is not only capable of providing timing 

information of the two interesting variables, but also can integrate 3 different 

variables together to generate a stereo picture. In Chapter 6 we have discussed that 

a phase-shift depends on both stimulus and coupling interval. To visualize the 

relationship between these 3 variables, we have generated a 3-D plot shown in 

Figure 7.4.3, which displays phase-shift as function of coupling interval and 

respiration stimulus. In this way, we can demonstrate how a phase-shift is related 

to the respiration and the coupling interval. It is found that a stimulus can cause 

either a phase advance or a phase delay, depending on the coupling interval.
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Figure 7.4.3 A 3-D view o f the relationship between phase shift, stimulus and 
coupling interval.

We have presented several 3-D examples to expand our 2-D work. At first 

we included timing information along with two other variables, so the 3-D plots 

include time. Then we added one more delayed PRC to study the global dynamic 

behavior of the PRC in a phase space. Finally we viewed the phase-shift as a 

function of two variables, stimulus and coupling interval. The puipose is to include 

as much related information as we can by a 3-D construction. Based on our study, 

we think that the pattern recognition of a 3-D picture is a first step and an 

important step to understand the system. At present, our patterning study of a 3-D 

plot is focused on the recognization of the difference between the normal and the 

abnormal 3-D plots.



CHAPTER 8 

NONLINEAR DYNAMICS STUDY

8.1 Introduction

In Chapter 7, we discussed the variation and dispersion phenomena on the Poincare 

map. This dispersion reflected nonlinearity of the cardiac oscillatory system 

coupling with respiration. The system nonlinearity often causes the output of the 

system to be a so-called "chaotic behavior" [36]. Chaotic behavior appeals to be 

"random" dynamic activity but there is a definite law determining its dynamics. In 

many studies, researchers only concentrated on the linear output of the system and 

ignored the chaotic activity caused by nonlinear outputs. In our study, we examined 

the lineai' output of the cardiac oscillatory system in response to respiration by 

finding the mean PRC. The dispersion away from the limit cycle on the Poincare 

map represents the variation of the PRCs in different respiration cycles from the 

mean PRC and is due to the system nonlinearity. Complexity is a very important 

factor of a system and plays a crucial role in determining the nonlinear dynamic 

behavior of the output of a system. Recently, the study of the complexity of a 

system has become of great interest to scientists mainly because recent 

development of nonlinear dynamic theories allows scientists to quantify the degree 

of a system nonlinearity [23,37-39]. Many studies focused on complex 

mathematical formulas such as correlation dimension [37]. Few studies have dealt 

with the probability associated dimension (so-called information dimension),
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because there is not a well-developed method to calculate the probability of a 

system behavior and to construct a proper probability density curve for information 

entropy and dimension calculation. We have investigated various dimension 

calculations and found that information dimension is a simple and easily-understood 

way to characterize complexity of a system as long as we have a good approach 

to construct the probability density curve.

Here we present a method to calculate the information entropy and 

dimension of tire phase response curve (PRC) in response to respiration stimulation 

[23J. We have also used this method to analyze the complexity of the vagal-heart 

system for normal and abnormal situations.

8.2 Probability Density Curve (PDC)

The probability of an event is defined as the ratio of its favorable outcomes to the 

total number of outcomes provided that all outcomes are equally likely. In the 

applications of the theory of probability, the probability of an event gives us a 

certain degree of confidence that the event will occur [34]. In our study, the 

probability is the frequency of the phase shift located at a certain range of the 

running PRC. We use an example shown in Figure 8.2.1 to illustrate our procedure 

of probability calculation.

In Figure 8.2.1, dots are the discrete points on the running PRC. We have 

a total of 150 points representing each phase change of the cardiac oscillatory 

system due to respiration. We have categorized these points in different boxes,
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where each box represents a range of phase shifts. Since different ranges of phase 

shift reflect different degrees of phase changes of the cardiac oscillator in response 

to respiration stimulation, computing the number of phase shifts favorable to each 

range will provide us with quantitative information of cardiac oscillatory system 

behavior. For example, if all the points have the same value, which means the 

system has the same response to each input no matter how different the inputs, no 

information on the system would be provided. In information theory, this is 

considered as the output of the system containing only redundant repeats and with 

zero information. If all the points are different, which means the system has a 

different response to each input whether the inputs are the same or different, it 

would provide us with the largest uncertainty of the system, and hence, maximal 

information.

CM
O

- b o x  2 -

o

p
o ’

Q .

.Q...

C\J
o

0 5 10 15

resp. cy c les

Figure 8.2.1 Phase response curve divided by boxes.

To calculate the information on the basis of information theory, we must 

find the probability of the different system outputs. For the output shown in Figure
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8.2.1, each box will be used to categorize the different system outputs. The 

probability at a box equals the number of points in the box divided by the total 

points (150 points), which reflects the degree of the system output favorable to that 

range of the phase shift covered by the box. For example, the probability of box 

2 equals 2/150, or 0.0133. The higher the probability of the box, the more likely 

the system output is in the box. The probability density curve (PDC) was 

constructed by finding the probability of each box at the corresponding range of 

phase shifts, which is shown in Figure 8.2.2.
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Figure 8.2.2 Probability density curve.

The probability of each box can also be interpreted as a measure of the 

system preference. If the probability of a box were very large like 0.999, it would 

be almost certain that the system would respond in the range of the box; if the 

probability of a box were very small like 0.001, it would be reasonably certain that 

the system’s response would be highly unlikely in the range of the box.
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In Figure 8.2.2, we can see a distribution of the system preference for 

different ranges of phase shifts. The peaks in the probability density curve reflect 

the most frequent visitation of the phase shift while those probabilities with very 

low values indicate the unlikeness of phase shifts in those corresponding ranges. 

It is noticed that large phase shifts have lower probabilities and phase shifts around 

0.1 or -0.1 have maximum probabilities.

8.3 Information Entropy and Dimension

In information theory, the uncertainty of a system event is normally measured by 

the following formula;

A=Pal o g 2Pa ( 8 . 3 . 1 )

where Pa is the probability of the event and A represents the uncertainty of the 

event. The summation of uncertainties of all events represents the degree of 

uncertainty of a system. Since we have derived the probability density curve, we 

can measure the uncertainty of the cardiac oscillatory system during respiration 

stimulation. This measure is called information entropy. It is calculated by the 

following formula [6]:

( P j . x l o g ^ )  i = 1 , 2 , 3  n .  ( 8 . 3 . 2 )

where P, is the probability of the /th box, n is total number of boxes, and XP, = 1.
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The entropy of the PRC shown in Figure 8.2.2 is 2.846 bits. The entropy, 

as a measure of uncertainty of the system, would be the greatest when all boxes 

have equal probabilities.

We have noticed that information entropy we calculated above is a value 

related to the box size of 0.05 as shown in Figure 8.2.1. This suggests that 

information entropy depends on the box size we choose. Different entropies have 

been obtained using different box sizes as shown in Figure 8.3.3.
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Figure 8.3.1 The relation between entropy and box size.

It is observed that entropy declines with an increase of the box size. This 

can be explained by the fact that specifying a large box will include more points 

in the box, which means that more phase shifts belong to the same category, so the 

degree of uncertainty will decrease. Information entropy provides us with
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qualitative information about the predictability of the system behavior. A system 

with large entropy demonstrates low predictability or high uncertainty. However, 

entropy of the system depends on how we choose a measure and what scale the 

measure is. Therefore, information dimension is introduced. Information dimension 

utilizes information entropies of a system in different measures and is independent 

of the scale of the measurement (for example, the box size in our study). It is a 

measure of complexity of a system [36], Equation 8.3.3 gives the information 

dimension.

H = K ( - ) d ( 8 . 3 . 3 )
E

where H  is information entropy, D is information dimension, E  is box size, and K 

is a scaling factor. The above equation may be rewritten as:

l o g ( H )  = D log  ( —) + l o g (K)  ( 8 . 3 . 4 )
E

Therefore, if we have a plot of log(entropy) vs log(l/boxsize), the slope of 

this plot will be the information dimension. It is clear that information dimension 

is independent of the box size. Figure 8.3.4 is a plot of log(entropy) vs 

log(l/boxsize), in which information dimension is calculated by finding the slope 

using a least-square-fit method. The information dimension in Figure 8.2.1 equals 

0.652.
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8.4 Comparison between Controls and CFS subjects

C Oo * — normal

-  CFS
coo

•*ro

C \Jo sitting standing

oo
8bpm 12bpm  18bpm 8bpm 12bpm I8 b p m

Figure 8.4.1 Information dimensions for the normal and the CFS groups.

We have used the method in section 8.2 and section 8.3 to calculate information 

dimensions in die normal group and the CFS group. The results are shown in 

Figure 8.4.1 for die control group and the CFS group.
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The analysis shows that information dimensions in the CFS group are 

generally lower than the control group except in the case of 18 BPM standing. The 

largest difference of the information dimension between the two groups has been 

found in the slow pacing condition ( 8 BPM sitting and standing). The information 

dimension in the CFS group is 21% lower during 8 BPM sitting and 31% lower 

during 8 BPM standing than the control group.

Table 8.4.1 Comparison between the Normal and CFS Groups 

in Information Dimension

Normal

Sitting

CFS

Sitting

Normal

Standing

CFS

Standing

8 BPM 0.632 0.490 0 .6 0 0 .414

(x) tv) (X ) (Y )

12 BPM 0.486 0.386 0 .398 0.311

(77% x) (77% y) (66% X ) (75% Y )

18 B PM 0.325 0 .302 0.134 0 .192

(51% x) (61 %y) (23% X ) (46% Y )

We noticed from the table 8.4.1 that information dimension decreases with 

an increase of the pacing rate. In the normal group, the decrease of the information
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dimension was from 23% during 12 BPM sitting to 49% during 18 BPM sitting 

with respect to 8 BPM sitting, and from 34% during 12 BPM standing to 77% 

during 18 BPM standing with respect to 8 BPM standing. This suggested that 

information dimension decreased faster during the standing condition than die 

sitting condition. Similar results have been obtained from the CFS group. In the 

CFS group, the decrease of the information dimension was from 23% during 12 

BPM sitting to 39% during 18 BPM sitting with respect to 8 BPM sitting, and from 

25% during 12 BPM standing to 54% during 18 BPM standing with respect to 8 

BPM standing. Comparing to the normal group, we can see that in the CFS group 

the rate of decrease with an increase of the pacing rate was smaller. This may 

suggest that system sensitivity and controllability in the CFS group may be lower 

than in the normal group.

8.5 Discussion

We have presented a new approach to construct the probability density curve 

(PDC) of a running PRC, in which the PRC reflects directly heart rate fluctuations 

by phase shifts during the different vagal stimuli (paced breathing in our study). 

We have found that die width of the PDC usually reflects die range of heart rate 

variations and the peaks of the PDC corresponds to most favorable states of the 

phase shifts. A narrow PDC with high peaks implies less heart rate variability and 

has been found in the CFS group, while die wide and flat PDC implies high heart 

rate variability and has been found in die normal group. Based on the PDC, we
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have calculated information entropy. Information entropy reflects the system 

preference to certain state of the phase shifts and represents the amount of 

information needed to specify the state of phase shifts or the state of the heart rate 

variability to an accuracy of the boxsize. Our study has indicated that large 

information entropy has usually been obtained in the normal group with a large 

heart rate variability, which suggested there was a lesser chance to produce 

identical heart rates in response to different stimulations ( less predictability of the 

system). The entropy obtained from the CFS group was generally small. A similar 

result was obtained from the calculation of information dimension, which has been 

derived from information entropies of the different box sizes. Information 

dimension is an index of the complexity of a system that generated the data. A low 

dimension means that less states are needed to describe the system while a large 

dimension means more states are required to describe the system. We have found 

that the system complexity depends on the stimulation frequency and decreases 

with an increase of the pacing rate. A lower dimension occurred in the CFS group 

except during the condition of 18 BPM standing.

The calculation of information entropy and dimension provides an attractive 

and useful tool to examine aspects of heart rate variability. Future investigation of 

the reasons which caused the CFS group to have low information dimension may 

be valuable.



CHAPTER 9 

MODELING AND SIMULATION

9.1 Introduction

System modeling becomes necessary when whole or part of the internal structure 

of the system is not clear. System modeling serves either to develop or to search 

for well-defined mathematical equations that can simulate the system behavior. 

There are several advantages to system modeling, including (a) better 

comprehension of a system, (b) further simplification of a complicated system 

because many real and complex systems can be simplified into a mathematical 

model with the basic characteristics of the system so that we are not bothered by 

too much complexities, (c) quantitative analysis of a system using known 

parameters in a mathematical model, (d) abstraction or generalization of real system 

behavior for the predication of some system behaviors under a condition that is 

theoretically possible but physically hard to implement, (e) utilization of 

well-developed theories. Usually system modeling is involved in determination of 

proper mathematical equations, and finding the optimal parameters of the model.

To model a system, we first need to know the characteristics of the system. 

Since we are studying the phase resetting behavior of the cardiac oscillatory system 

in response to respiration, we need to take into account characteristics of both the 

running PRC and respiration stimuli. Respiration is a periodic signal that consists 

of well-balanced, alternating and smooth expiration and inspiration movement. In

116
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chapter 7. we characterized the running PRC in the topological domain. This 

characterization provided us with topologically recognizable shapes, that is, phase 

planes. We started modeling from a second order system since a second order 

system is simple and can generate easily analyzable phase planes. After a review 

of the second order system, we have chosen the Van Der Pol model for a first 

investigation. We will also discuss other models as a complementary investigation.

9.2 Second-order Systems

A second-order system can be described by a second-order differential equation. 

Study of second-order systems is important because many practically important but 

dynamically complicated systems can be reasonably simplified or approximated by 

second-order systems and can be analyzed accordingly. Since the second-order 

system is simple, many significant results and conclusions can be derived. Finally, 

several important theorems concerning phase trajectories have been formulated. In 

particular the phase plane,which describes the output of a second-order system and 

its rate, is well-known.

Because of the development of modern computers, a second-order 

differential equation can be solved easily by state space methods [47,49]. The use 

of the state-space approach offers a great deal of convenience conceptually, 

notationally and analytically. The conceptual advantage of the state-space approach 

is from its unique representation of a second-order system, that is, the state-space 

method describes the condition of a system in the time domain by the notation of



the so-called system state. The system state (for example, the position of an object, 

the velocity of an object, etc.), which is usually defined based on the interests of 

the analysts, can be visualized as a point in a Euclidean space and the behavior of 

the system as time progresses is then given by a trajectory traced out by the point 

on a 2-dimensional plane. The notational and analytical convenience arises through 

the form of the state-space equation of a system and the form of its solution, which 

is a compact matrix, has only first-order differentiation in the equation and can be 

solved easily by numerical methods developed for computers [49]. An example is 

now presented to illustrate the state-space approach:

af ^ f +CX=° (9-2 J )

Equation (9.2.1) is a standard second-order differential equation, where a, 

b and c are constant for a linear time-invariant system. For a second-order system, 

there are two system states that can be defined, depending on the interest of the 

study. Usually one state, called x,, is defined as x and another state, called x2, is 

defined as its derivative with respect to time (dx/dt). Equation 9.2.1 can then be 

transformed into equations:
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d x 1
d t
d*2
d t

r o l i
_ c _ b x i

X,a a Z
( 9 . 2 . 4 )

Equation (9.2.4) is a state space representation of the second-order system, which 

can be solved easily by computers using numerical methods. The numerical 

solution normally transforms dx into a x  and dt into A t, and multiplies both sides 

of the equations by At. Then it begins recursion from initial conditions with proper 

step size A t and ends at the specified time. The computer can perform this 

recursion and solve the equations rapidly.

The second-order differential equation can also be easily solved by means 

of frequency-domain methods, such as the Laplace transform and Fourier 

transform. However, when a system to be studied contains time-varying or 

nonlinear elements, utilization of the frequency-domain transform method becomes 

restricted; the state-space method can nevertheless produce a state-space equation 

that can be easily solved numerically by a computer. In this work the state-space 

representation is especially useful. A Van der Pol equation is a typical example, 

which we will discuss in detail in the next section.

As we have discussed before, there are two states in a second-order system. 

The relationship between these two states can be easily demonstrated by the 

trajectory of a state plane or phase plane that is constructed by one state against the 

another state in the Euclidean coordinate space. In a phase plane, a slate is called 

an equilibrium state if starting from that state, the system will not move from it in
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the absence of forcing functions. For a linear second-order system, the state-space 

equation is given as follows:

^  = A x  ( 9 . 2 . 5 )
d t

where x is a state vector consisting of two states (x,, x2) and A is a 2x2 matrix. 

The equilibrium states of the system are given by those states satisfying Ax=0. 

From this, we see that x=0 is the only solution as long as the determinant of the 

matrix A is nonzero. In other words, the origin of the phase plane of the system 

is the only equilibrium for a linear time-invariant system provided that the 

determinant of A is nonzero. Thus the study of the behavior of the linear 

time-invariant second-order system phase trajectories can be focused on the 

behavior of phase trajectories in the vicinity of the origin of the phase plane 

because the characteristics of the equilibrium for a linear time-invariant second 

order system determine trajectory behaviors around the origin.

Further, the behavior of a system as well as the trajectories of the system 

phase plane, are determined by the poles of the system. For a second-order system, 

there are only two poles that determine the system behavior. Figure 9.2.1 shows 

how the two poles ( A, and A,) in a second-order system play a role on the 

formation of its phase plane. The arrow in Figure 9.2.1 indicates the direction of 

the state changes as time progresses.
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F ig u r e  9 .2 ,1  The state-plane portraits in the normal coord inates, (a ) lor A,,<0,
A,2<(); (b) for X ,<0, A,2>0; (c) A., and X2 tire com p lex  w ith  n eg a tiv e  real parts; (d)
X, and are purely im aginary.

For the system with two negative poles, its trajectories fall into a node at 

(0,0) as shown in Figure 9.2.1(a), which is called stable equilibrium point. For the 

system with one negative pole and one positive pole, which is displayed in Figure 

9.2.1(b), the trajectories approaching to the node (0,0) will eventually be deflected 

away from it. This node is called saddle point. Figure 9.2.1(c) shows the trajectory 

for the system with complex poles that have negative real parts. The trajectory is 

a spiral that will converge toward the node (0,0). For the system with poles that are 

purely imaginary, its trajectories are circles centered about the node (0,0) as shown 

in Figure 9.2.1(d).

The linear second-order system we have discussed has the characteristics of 

a single equilibrium point, and the properties of the entire phase plane are reflected 

by the behavior of the trajectories in the vicinity of the origin of the phase plane.
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The study of characteristics of a linear time-invariant system is helpful to analyze 

the nonlinear system. However, a linear system is a special case of a nonlinear 

system when the nonlinearity of the system is zero. In Figure 9.2.1, we can see that 

for a linear second-order system oscillation can take place only when the two 

poles are purely imaginary. A slight change of the system parameters (for example, 

one pole is changed from an imaginary value to a complex value) will end the 

oscillation of the system. Also the amplitude of the oscillation depends on the 

initial condition, the starting point of the two states. In nonlinear systems, 

amplitude of the oscillation is independent of the initial condition. The 

corresponding trajectory of the system phase plane is a limit cycle, which we will 

definite in the next, instead of a circle in linear systems. A further property of limit 

cycle type oscillation is that the oscillation is usually much less sensitive to system 

parameters. In particular, there usually exist finite ranges of parameter values over 

which the oscillation can be sustained.

x ,

i o i

F ig u re  9 .2 .2  (a) A stable lim it cyc le; (b) An unstable limit cy c le .;  (c) A se m i­
stable limit cy c le .

A limit cycle is defined as a closed curve in a phase plane with one of the
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following features [47J. Feature I: All system trajectories in the vicinity of a closed 

curve ultimately tend toward the closed curve as time approaches infinity as shown 

in Figure 9.2.2 (a), this closed curve is a stable limit cycle; Feature II: All system 

trajectories in the vicinity of a closed curve, starting from any points close to the 

closed curve, tend away from the closed curve as time approaches to infinity as 

shown in Figure 9.2.2 (b). This closed curve is an unstable limit cycle; Feature III: 

All system trajectories in the vicinity of a closed curve fall into two exclusive 

classes, one class of trajectories tend toward the closed curve while another class 

of trajectories tend away from the closed curve as time approaches to infinity as 

shown in Figure 9.2.2 (c). This closed curve is a semi-stable limit cycle.

In addition to limit cycles, a nonlinear system can have multiple modes of 

behavior.The multiple modes occur in cases when a second-order system has a 

multiple of isolated equilibrium states or has different behaviors in the different 

regions of a phase plane surrounding the same equilibrium state.

9.3 Van Der Pol Model

A Van der Pol oscillator is a typical nonlinear second-order system, which is 

described by a second-order differential equation [46]. The reason that the Van der 

Pol model can be adapted for our phase resetting study is due to the following of 

its special features. The output of the Van der Pol model is an oscillatory signal 

with an endogenous period and is capable of describing cardiac oscillatory activity 

around its natural period. The nonlinearity of the Van der Pol model can be
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adjusted to reflect the nonlinear dynamic activity existing in the running PRC (the 

nonlinear dynamic activity has been illustrated by the dispersion of the phase plane 

of the running PRC in the topological study in chapter 7 and in the information 

dimension analysis in chapter 8). Further, two coupled Van der Pol oscillators 

allow us to adjust their frequency ratio so that the frequency dependence of the 

phase plane of the running PRC can be investigated. In our study, we will use the 

Van der Pol model to explain and better understand some characteristics of the 

PRC.

9.3.1 A Van Der Pol Model

The differential equation of the Van der Pol oscillator is as follows:

k z— + v k { x 2- l ) ^ + w 2x=0 ( 9 . 3 . 1 . 1 )
d t 2 d t

where oo is the endogenous frequency of the Van der Pol oscillator and p is a 

parameter that determines the nonlinearity of the oscillator. The value of co can be 

easily derived by assuming p to be zero so that the consequent oscillator becomes 

a pure sinusoidal wave generator. The frequency of the sinusoidal wave is 03. p=() 

is a special case, in which the oscillator becomes a linear oscillator. The linear 

oscillator produces a pure sinusoidal wave with a fixed frequency. The nonlinear 

oscillator is able to generate multiple frequency components or harmonic 

components in its output signal in addition to the dominant sinusoidal wave. The
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larger the value of p, the higher the degree of the nonlinearity.

Since modern numerical methods developed for computers can only be used 

to solve first order differential equations, we need to transform equation (9.3.1.1) 

into state equations in order that numerical solution can be obtained using a 

computer. The state equations are as follows:

- ^ = - “ ^ x 1- i | - ( x 12- l ) x 2 ( 9 .  3 . 1 . 3 )
dt k 2 k 1 2

The above equations are derived by assuming x as a state variable x, and 

derivative of x as another state variable x2. We have developed a software package 

interacting with Splus for the Van der Pol model (the software description is given 

in Appendix V).

Figure 9.3.1.1 shows an output of the Van der Pol model described in 

equations (9.3.1.2) and (9.3.1.3), and the corresponding phase plane. The 

parameters are k=3.82, p = 0.2, go = 1.92. Figure 9.3.1.1 (a) is a oscillation wave. 

Figure 9.3.1.1 (b) is the corresponding phase plane consPucted by x2 via x,, which 

shows that the trajectory moves from a small circle toward the limit cycle 

(condensed lines).
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9.3.2 Phase Response to an Impulse

Since the Van der Pol model is a nonlinear oscillator and its trajectories, starting 

at an initial state, will always approach a limit cycle, it is a self-sustained oscillator 

and its oscillation has the period of the limit cycle. During the oscillation on the 

limit cycle, a perturbation to the Van der Pol oscillator causes the trajectory to 

move away from the limit cycle, which leads the current oscillation cycle or period 

to be changed into a new value (called the perturbed period) instead of the period 

of the limit cycle. In the time domain, change of the current oscillation period 

means that the following oscillation cycle will be advanced if the perturbed period 

is shortened or will be delayed if the perturbed period is prolonged. This 

phenomenon is called "shift of the phase of the oscillation", in which phase is the
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perturbed period. A small perturbation or stimulation to the Van der Pol model 

induces the trajectory away from the limit cycle and produces a phase shift of its 

oscillation. After the stimulation, the trajectory will approach the limit cycle in a 

few cycles (normally 2 or 3 cycles), depending on the size of the stimulation and 

how far the trajectory moves away from the limit cycle in response to the 

stimulation. A large perturbation may cause the trajectory to approach the 

equilibrium point at the origin of the phase plane, and without any force the 

trajectory is not able to go back into the limit cycle so that the oscillation stops. 

The equilibrium point that terminates the oscillation is also called a singular point. 

Figure 9.3.2.1 shows the above situations. Figure 9.3.2.1(a) is a phase plane after 

the Van der Pol oscillator received a positive stimulus, which caused the trajectory 

to move away from the limit cycle in an inward direction and approached the limit 

cycle in three cycles after the stimulus was removed. Figure 9.3.2.1(b) is a phase 

plane after the Van der Pol oscillator was stimulated by a negative impulse, which 

induced the trajectory away from the limit cycle in the outward direction and 

approached the limit cycle in two cycles. When die positive stimulus was increased, 

it took more cycles for die perturbed trajectory to return to the limit cycle as shown 

in Figure 9.3.2.1(c). When a large stimulus was delivered, the Van der Pol 

oscillator was terminated and the perturbed trajectory ended in the singular point 

as shown in Figure 9.3.2.1(d).

We have used the impulse stimulus to perturb the Van der Pol oscillator and 

studied its phase response behavior. Figure 9.3.2,2 (in Appendix IV) shows the
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detailed perturbation process, in which an impulse stimulus represented by a solid 

vertical line was delivered at different times in a oscillation cycle and the 

consequent period of the oscillation cycle was measured. The phase response curve 

was constructed by the difference between the period of the perturbed oscillation 

cycle and the period of the limit cycle, normalized by the period of the limit cycle.

Figure 9.3.2.3 Phase response curves at different stimulus amplitudes (amp=2 
and amp=3).

Two phase response curves are presented in Figure 9.3.2.3 to show the phase 

resetting behavior of the Van der Pol oscillator in response to an impulse and also 

to illustrate that the amplitude of the phase shift depends on the time when a 

stimulus is delivered and the amplitude of the stimulus. The x axis represents the 

phase of the stimulus and is the percentage of the oscillation period at which a 

stimulus is given. The y axis represents the perturbed period, in which values above

c

0 6
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1.00 mean the oscillation period is prolonged (phase delay) while values below

1.00 mean the oscillation period is shorted (phase advance). It is found that changes 

of the oscillation periods (phase shifts) are different at different phases of the 

stimulus. Thus the phase shift depends on the time of the stimulus. It is also found 

that a larger stimulus causes a larger phase shift. Thus the phase shift depends on 

the amplitude of the stimulus.

9.3,3 Two Coupled Van Der Pol Oscillators

A Van der Pol oscillator perturbed by a single stimulus generates phase resetting 

and its phase resetting behavior can be used to illustrate the phase dependence of 

a self-sustained oscillator. It is quite useful to simulate the phase resetting behavior 

of the cardiac oscillator in response to a single stimulus. However, the cardiac 

oscillator in response to the respiration stimulation is a continuous perturbation 

process because the heart is under a constant influence of respiration-associated 

vagal activity. Therefore a continuously-perturbed Van der Pol model may be 

needed to simulate the phase resetting behavior of the cardiac oscillator in response 

to respiration stimulation. There are two possible models we have considered for 

the continuous perturbation. One model is a Van der Pol oscillator perturbed by a 

linear oscillator and perturbation is a one-way control process. The linear oscillator 

is not affected by the Van der Pol oscillator. Another possible model is two 

coupled Van der Pol oscillators where the two oscillators interact with each other. 

We have chosen two coupled Van der Pol oscillators as a reasonable model l'or our
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study because the heart is under the influence of respiration on one hand and 

respiration is also affected by the heart on the other hand. Heart and respiration 

interact with each other. The cardiac oscillator is considered as one Van der Pol 

oscillator and the respiration as another oscillator. The phase resetting behavior of 

the cardiac oscillator due to the respiration is determined by the coupling factors. 

The model of the two coupled Van der Pol oscillator is as follows:

where f xy and f yx are the direct coupling coefficients between the x and y oscillators 

while gxy and gyx are velocity coupling coefficients between the x and y oscillators. 

This model provides us with many flexible ways to study the interaction between 

the heart and respiration. The following is noted:

(a) Choosing ^  = 0, we can study characteristics of a Van der Pol 

oscillator coupled with a linear oscillator;

(b) Choosing gxy = gyx = 0, we can evaluate aspects of two coupled 

oscillators coupled by their amplitudes;

(c) Choosing f xy = f yx = 0, we can examine how the slope of the 

oscillation wave from one oscillator affects another oscillator;

(d) Choosing different ratio cp/(Dv, we can estimate what role the change 

of the frequency ratio between two coupled oscillators may play on

A c ^ 2- 1 ) ( 9 .  3 .  3 . 1 )

: d x  _ n ( 9 . 3 . 3 . 2
yxd t  )
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the system features;

(e) Choosing all parameters as nonzero value, we can inspect the 

combined effects of two coupled oscillators on the system 

behaviors.

Figure 9.3.3.1 (in Appendix IV) shows phase planes for different 

nonlinearities during velocity coupling. We can see that a big increase of the 

nonlinearity p of the two coupled oscillators, will change the basic shape ol the 

trajectories and increase the amount of trajectory bending. It is observed that with 

larger nonlinearity, the system oscillation tends to be attracted to the limit cycle.

To see how the way of the coupling affects the phase plane, we have 

compared the phase planes during direct coupling (fxy=fyx=0) with the phase plane 

during the velocity coupling (g =g =0). The results are shown in Figure 9.3.3.2 

(in Appendix IV). We have found that at the same condition the oscillator is more 

sensitive to velocity coupling than direct coupling since velocity coupling increases 

the complexity of the system state plane (phase plane). We have also investigated 

how the coupling coefficients play the role on the phase plane. The results are 

shown in Figure 9.3.3.3 (in Appendix IV). It is observed that the smonger the 

coupling between two oscillators, the more complicated the system states.

The coupling factors include the method of coupling (direct and/or velocity 

coupling), coupling coefficients, and the coupling frequency (frequency ratio 

between two oscillators). The system state planes related to different frequency 

ratios are illustrated in Figure 9.3.3.4. It is noticed that an increase of the frequency
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ratio between two oscillators induces an increase of the trajectory bending number 

and degree. Therefore the structure of the phase plane becomes more complicated 

when the coupling frequency ratio is increased. Also the difference between phase 

planes with integer frequency ratio and phase plane with fractional frequency ratio 

has also been observed in Figure 9.3.3.4. The phase plane with fractional frequency 

ratio has more overlapped trajectories while the phase plane with integer frequency 

ratio has more trajectories following the same pattern but in different positions.

From the above simulation, we conclude that the increase in the complexity 

of the phase plane of the running PRC with an increase of the pacing rate may be 

due to the increase of the nonlinearity and the frequency ratio in the cardiac 

oscillator in the interaction with respiration cycles since the nonlinearity and the 

frequency ratio contributes to the complexity of the phase plane.

9.4 Generalized Additive Model

The generalized additive model (GAM) uses an adaptive approach to fit the real 

data and models the terms nonparametrically using a scatterplot smoother. The 

output of the GAM can estimate the coefficients, evaluate and examine the fits. In 

particular, the estimated residual and partial residual plots can be used to illustrate 

discrepant observations and to identify nonlinearities.

The general form of the additive model is as follows [481:

n (x)  -  f x ( x 3) + f 2 ( x 2) + .............................................................. ( 9 . 4 . 1 )
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where each of the x, are predictors and the f  are transform functions of the 

predictors or terms. The n(x) consists of different parametric functions, which may 

be polynomials, logarithms, sinusoids, step functions and other functions. These 

functions either add together to fit the real data or fit the real data in a piecewise 

fashion. The form of the mathematical expression of the GAM is simple. The 

additive model also has an appeal of flexibility since we have a lot of options to 

choose various functions to fit the real data. However sometimes it is very difficult 

and time-consuming to determine the correct transform functions for each variable 

and combine them in a correct additive way for the modeling. Therefore using the 

parametric transform functions for the modeling limits the popularity of the additive 

model.

A solution of the above problem is to use regression algorithms. Thus the 

parametric transform functions in equation (9.4.1) are replaced by the 

nonparametric regression fitting functions, which are the scatter data smoothers and 

will be described in the next. This overcomes the shortcomings of the parametric 

modeling and provides more flexibility to the users. Since nonparametric transforms 

deal with local data fitting instead of the parameters of the parametric transform, 

large computation time are usually needed. In order for the nonparametric 

techniques to be used easily, they must be supported by some well-developed and 

easily-mastered software. In our study, we have used Splus software to do the 

general additive modeling.

Splus is a language and an interactive programming environment for data
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analysis and graphics, and is a very high level language for specifying 

computations. The primary facilities in Splus include (a) organizing, storing and 

retrieving all sorts of data; (b) providing numerical methods and computational 

techniques; (c) allowing users to program and produce new functions; (d) 

interfacing with other kinds of computer languages such as C and Fortran, and 

Unix and DOS commands; (e) graphics capabilities. Here we introduce some Splus 

functions that are used in our nonparametric modeling.

A. gam(l'ormula): The function "gam" is used to generate a fit of the generalized 

additive model. The argument "formula" of the gam function is of the following 

form:

output ~ f(input A) + g(input B) + ... + h(input X) 

where f, g, ... and h are smoothing transform functions. The input A, B, and X are 

the given data sets related to the output.

B. poly(x,n): The function "poly" is a smoothing transform function and is able to 

generate a basis of polynomial regression. The argument "x" of the function poly 

is a given data or a predicator. The argument "n” of the function "poly" is a 

parameter used to specify the degree of the polynomial transform.

C. s(x,df): The function "s" is a smoothing transform using the spline method. The 

argument "x" is the same as in B. The argument "df" of the function s is used to



specify the degree of freedom of the smoothing spline transform.
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D. Io(x,span,degree): The function "lo" is a scatter-plot smoothing transform and 

uses the robust locally linear fit. The argument "x" is the same as in B. The 

argument "span" of the function "lo" is used to specify the range of a neighborhood 

of data points to be accounted. The argument "degree" has two options: degree = 

1 means a local linear fit while degree = 2 means a local quadratic fit.

car index

Figure 9.4.1 Car mileages lor different cars.

In Appendix 1 we give the detailed description of the above Splus functions. 

In order to illustrate how the generalized additive model (GAM) works, we present 

an example here. The data in our example is from a car test data frame as shown 

in Appendix II. Figure 9.4.1 shows car mileage for different cars and the mileage
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distribution will be modeled using the GAM. Since the car mileage mainly depends 

on the car weight and the horse power of a car, the predicator are selected as the 

car weight and the horse power. If the function "s" is used as the smoothing 

transform, the modeling can be done as follows: 

gam(mileage ~ s(weight) + s(HP)) 

where HP represents horse powers for different car's and weight is a data set 

consisting of weights for different cars, which are illustrated in Appendix II. 

Mileage is the mileage data for different cars as shown in Figure 9.4.1. The 

transform "s" is a spline smoothing. The simulation result is given in the following 

form:

Degrees o f Freedom: 60 touil; 51 Residual 

Residual Deviance: 306.3506

where "Degrees of Freedom: 60 total" means total number of data points simulated, 

and "51 Residual" means that the number of residuals derived is 51. The residual 

represents the difference between the real mileage data and the simulated data 

consisting of the addition of the contributions from the car weight data and the 

horse power data. The "Residual Deviance" is the summation of the square of the 

residuals. Figure 9.4.2 shows that the above additive model relates the car mileage 

shown in Figure 9.4.1 to the car weight and the horse power. Each plot illustrates 

the contribution of a term (transformed predictor) to the model. The solid line in 

Figure 9.4.2 (a) represents the simulated result and the contribution from the
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weight. The solid line in Figure 9.4.2 (b) represents the simulated result and the 

contribution from the horse power. It can be seen that with an increase of the car 

weight the simulated mileage data represented by the solid line in Figure 9.4.2 (a) 

declines. However, change of the horse power does not significantly affect the 

mileage, which is illustrated by a flat solid line in Figure 9.4.2 (b). Therefore, the 

car weight plays a more important role on the car mileage than the horse power.

2 0 0 0  2 5 0 0  3 0 0 0  35 0 0

W eight

Figure 9.4.2 An additive model relates Mileage to Weight and HP.

Since the generalized additive model provides us with flexible ways to 

investigate the relationship between phase resetting and respiration, we have used 

(lie GAM to model the phase resetting data. We have derived the following 

additive models using the GAM:

(a). gam(Prc ~ s(Coup) + s(Resp.amp) )

(b). gam(Prc ~ poly(Coup) + poly(Resp.amp) )
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(c). gam(Prc ~ lo(Coup) + lo(Resp.amp) ) 

where Pro is the phase response curve, Coup is a predictor of the Prc, consisting 

of the coupling intervals and Resp.amp is another predictor of the Prc, consisting 

of the amplitudes of the respiration at coupling interval points. The transform "s" 

is a spline smoothing, the "poly" is a transform generating a basis for polynomial 

regression, and the transform "lo" is a robust locally weighted regression; the 

functions were described before in this section and are described in detail in 

Appendix I. The following table shows the results of the three models.

Table 9.4.1 The GAM models at different transforms

Degree o f Freedom Residual Numbers Deviance

poly 150 147 0.22738

In 150 142 0.17955

s 150 141 0.17458

Since we have chosen the coupling interval and respiration amplitude as two 

major predictors related to phase resetting behavior, the modeling becomes a 

question of how to select smoothing transform functions in order to fit the real 

PRC data. The quality of the fit can be evaluated by the deviance. From Table 

9.4.1, we can see that different smoothing transforms have different qualities of fit, 

and the model of Prc = f(Coup) + g(Resp.amp) using the spline smoothing
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transform "s" is the best because the model gives the smallest deviance among 

these three models.

In order to reduce the deviance of the model, we need to take more factors 

into account, which will increase the complexity of the model. As we have 

discussed in chapter 6, a phase shift depends on the time of the stimulus (coupling 

interval) and the amplitude of the stimulus (respiration amplitude). Since the slope 

of impedance pneumography (respiration) may have some impact on the phase 

resetting behavior of the cardiac cycle, we included the slope of respiration in the 

model and the three models we presented before will be:

(a). gam(Prc ~ s(Coup) + s(Resp.amp) + s(Resp.slope) )

(b). gam(Prc ~ poly(Coup) + poly(Resp.amp) + poly(Resp.sIope) )

(c). gam(Prc ~ lo(Coup) + lo(Resp.amp) + lo(Resp.slope) )

where Resp.slope represents the slope of the respiration. A similar table has been 

created to show the improvement of the models:

Table 9.4.2 The improved models

D egree o f  Freedom Residual Numbers Deviance

poly 150 14b 0.2265

lo 150 131S’ 0.17692

s 150 137 0.17072
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Figure 9.4.3 An additive model used to show the contributions o f coupling 
interval, respiration stimulus and slope o f respiration to the PRC.

We can see that deviances have been reduced due to the increase of number

of predicator by comparing Table 9.4.2 with Table 9.4.1. Figure 9.4.3 shows the

contributions of the coupling interval, respiration amplitude and the slope of

respiration to the PRC, which is obtained using the spline smoothing transform

since it produces minimal deviance in the models. The solid lines in Figure 9.4.3

represent the contributions from coupling interval, respiration amplitude and

respiration slope. The contribution of the coupling interval to the phase response

curve ("Prc" in the model) is: In the first half of the coupling interval the phase

shift represented by the solid line in Figure 9.4.3 (a) is positive while in the second

half of the coupling intervals the phase shift is negative. The contribution of the
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respiration amplitude is: The positive amplitude of respiration induces the negative 

phase shift represented by the solid line in Figure 9.4.3 (b) while the negative 

amplitude of respiration induces a positive phase shift. Further, the larger the 

amplitude of respiration, the larger the phase shift. The relation between the phase 

shift and the amplitude of respiration is not linear as shown by the solid line in 

Figure 9.4.3 (b). The contribution of the slope of respiration is: The positive slope 

of respiration produces a positive phase shift shown by the solid line in Figure

9.4.3 (c) while the negative slope of respiration produces a negative phase shift. 

The relation between the phase shift and the slope of respiration is not linear. 

However, compared with the coupling interval and the respiration amplitude, the 

contribution of the slope of respiration is much smaller. Thus respiration amplitude 

and coupling interval play the major role on the phase resetting and the slope of 

respiration has a minor effect on the phase response curve, which can be visualized 

by the flat line in Figure 9.4.3 (c).

The generalized additive model uses statistical techniques to simulate the 

real data. The quality of the simulation depends on how many predicators are 

considered in the model and what transform is used. An increase of the number of 

possible predictors can improve the accuracy of the simulation, but increases the 

complexity of the model analysis. Selection of the transform is normally done by 

comparing the deviances of the model using various transforms. The smaller the 

deviance, the better the model. For the phase resetting study, we have considered 

the coupling interval, the respiration amplitude and the respiration slope as the
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predictors for the PRC simulation since our present study indicates that the phase 

shift depends on these three variables. The uansforms we have selected are three 

commonly used algorithms in the general additive model, spline smoothing, 

polynomial regression and robust locally weighted regression. Our study 

demonstrated that the spline smoothing was a better choice since it produced a 

smaller deviance.

9.5 Knight and Peskin’s Models

In this section, we will introduce three models discussed by Knight and Peskin 

[40]|411, which are used to demonstrate the relationship between firing rate of 

"pacemaker" and input stimulus. These three models are (a) Knight’s simple 

integrate-and-fire model (IAF), which yields the firing rate of a "pacemaker" 

maintaining a perfect copy of the input stimulus, (b) Knight’s forgetful integrate- 

and-fire model, which yields die firing rate of a "pacemaker" being a much 

degraded copy of the input stimulus, (c) Peskin’s model, which is a modified 

forgetful integrate-and-fire model, in which the stimulus depends on the 

"pacemaker" behavior. We will limit our study to a theoretical investigation.

A. K night’s simple integrate-and-fire model [40]

=s  { t )  . { S ( t ) f c 0 )  ( 9 . 5 . 1 )
d t

Knight’s simple IAF model is characterized by the above mathematical equation.
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where u is the value of the internal variable of the "pacemaker" and s(t) is a 

stimulus. Since s(i) is greater than zero, the u will increase with time. When u 

achieves a criterion level C (called threshold), the "pacemaker" fires an impulse, 

u is reset to zero and the process starts again. Therefore the "pacemaker" follows 

a repetitive resetting process. The point of resetting depends on the stimulus value. 

In general, larger stimuli will induce a faster speed for u to reach the threshold so 

that a higher firing rate will be generated.

From equation (9.5.1) and the above discussion, we can see that the 

instantaneous firing period of a "pacemaker" is determined by the time since its last 

firing. The reciprocal of the instantaneous period is the instantaneous firing rate. 

The relationship between instantaneous rate and stimulus may be derived by 

integrating equation (9.5.1) once. Then

where tn and tll+I are the times of the nth and (n+1 )th impulses, respectively. If the 

stimulus is constant ,v0, then

( 9 . 5 . 2 )
t,

C { t n+1 t ^)  s 0 ( 9 . 5 . 3 )

or if f 0 is assumed to be the instantaneous rale, then
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( 9 . 5 . 4 )

Thus the firing rate is linearly proportional to the stimulus. Since C is a constant, 

the firing rate is a perfectly linear copy of the stimulus. This is a simplest case. 

However the result of (9.5.4) can also be used in the situation during which the 

stimulus s(t) changes by only a very small fraction of its value between two 

impulses. The following derivation is used to illustrate what degree of error may 

be made by this approximation. s(t) can be expanded at /„ by a Taylor series

w h ere /is  the instantaneous firing rate. Multiplying equation (9.5.6) on both sides 

by f /C  and assuming s >1 s '/f  I leads to

s (  t )  = s (  t n) + s ' { t n) +.  . ( 9 . 5 . 5 )

and is substituted into equation (9.5.2), which gives

s ' + . . . ( 9 . 5 . 6 )

s ' + . . .

( 9 . 5 . 7 )
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The major error is from the term //2s.  If this term is much smaller than ,y/C, the 

linear relationship is still a reasonable approximation. If the error term is not small, 

the firing rate can not be considered as a linear copy of the stimulus.

In the following, we will discuss how the instantaneous firing rate follows 

a periodic stimulus which consists of a small fluctuation about a steady mean level. 

In equation (9.5.2), tn+I is the time of the present impulse and /„ is the time of the 

last. The instantaneous period T equals to (r„+/ - /„). A constant stimulus s0 

corresponds to a constant firing period T0 as illustrated in equation (9.5.4) where 

f 0 is the reciprocal of T0. Let stimulus s(t) = s0 + s,(t) and the corresponding firing 

period T  = T0 + 7), which means that a perturbation stimulus s, causes a change 

Tj in the period. The integration in equation (9.5.2) is approximated and linear 

perturbation theory is adopted to obtain the following result:

The detailed derivation is given in Appendix III. Equation (9.5.8) tells us that 

change of the firing rate j)(t) is proportional to the running average of the stimulus 

perturbation over the last T0 time period. If s,(t) fluctuates periodically and can be 

expressed mathematically by s,(t) = s,(0)e1"'', the frequency response o f / / / )  can be 

evaluated by integrating (9.5.8)

( 9 . 5 . 8 )



Since s,(0)e'"" = s,(t) and f ,  = ]/T0, equation (9.5.9) becomes

£ i = £ 0 1
s, s

- J .W

£n

i w / f Q

-  — B ( )

( 9 . 5 . 1 0

Three conclusion can be derived from the above result (equation 9.5.10). (a) The 

ratio of f / s ,  reflects how the firing rate follows the change of the stimulus. From 

equation (9.5.10), it is clear that this ratio is independent of time, (b) The ratio is 

also independent of amplitude of the s,. (c) Since this ratio is a complex number, 

its magnitude shows the amplitude relationship between firing rate and stimulus 

while its phase shows the phase shift of the firing rate to the stimulus. The
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amplitude and phase relationship between firing rate and stimulus is displayed in 

Figure 9.5.1. For a slow oscillation of the stimulus (with a small w comparing with 

firing rate f 0), the flat curve in Figure 9.5.1 suggests that firing rate following the 

change of the stimulus is a linear replica. When the frequency w/2n of the stimulus 

rises and approaches the unperturbed firing rate f 0, the perturbation of the stimulus 

Sj to die firing ra te /; decreases and approaches a cut-off. The ratio of the firing 

r a te /  and the perturbation force Sj is frequency-dependent. If the frequency of the 

perturbation .vv is an integer multiple of the unperturbed frequency f 0, the ratio will 

be zero. This phenomenon can be easily explained by inspecting equation (9.5.9) 

in which " " is zero if w=2nnf0 (n is integer).

Knight’s IAF model is a simple model to show the firing rate linearly 

follows the stimulus. This model can be used for our phase resetting study. As we 

have discussed in the previous chapters, the change of the cardiac cycle with 

respect to the reference period is entrained by respiration. This entrainment 

phenomenon is similar to the output of the IAF model if we assume respiration to 

be a stimulus signal with a baseline s0 and with an inspiration-expiration fluctuation 

s, with respect to the baseline, the reference period in our PRC study is assumed 

to be T0 (1/fa), and die change of the cardiac cycle (phase shift) is assumed to be 

T, (1/fj). Therefore, the relation between the phase shift and the amplitude of 

respiration after removal of the baseline can be modeled by equation (9.5.10). 

However, the relation between the phase shift and the amplitude of respiration is, 

in fact, not linear. The IAF model can only be used for situations during which a
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lineai' relationship between the firing rate and the stimulus can be established.

j .
1.0

U J / ?  7T tg

F ig u re  9.5.1 The function B, am plitude and phase.

B. Knight’s forgetful integrate-and-fire model [40]

The Knight’s forgetful IAF model is described as follows:

^  = - r u + s ( t )  ( 9 . 5 . 1 1 )a t

which shows a more general relationship between the firing rate and the stimulus. 

The simple integrate-and-fire model is a special case of the equation (9.5.11) with 

r -  0. By imposing a firing threshold at the criterion level u = C and resetting u 

to be zero as before, the equation (9.5.11) yields



Comparing with equation (9.5.2) of the simple integrate-and-fire model, we find 

that the stimulus s(t) is weighted by a decaying exponential. Therefore the time 

needed for u to reach the threshold C depends more strongly on the immediate past 

history than on its distant past. If the stimulus s(t) is a constant s0, the integration 

of equation (9.5.12) will lead to

r
f ° I n  [ 1 -  ( r C / s 0) ]

( 9 . 5 . 1 3 )

Equation (9.5.13) can be further simplified by an approximation of ln(I-(rC)/s0) 

using the Taylor expansion:

I n  ( 1 -  ( r c / s 0) ) + - ! -  ( —  ) 2 ( 9 . 5 . 1 4 a )
s 0 2!  s 0

Thus, the response of the forgetful integrate-and-fire model to the constant stimulus 

is the firing rate of simple IAF model offset by the half of the time constant of the



decaying weight in equation (9.5.12).

Similarly, substitution of s(t) = s0 + s,(t) into equation (9.5.12) where s,(t) 

= e""'1 and T = T0 + T,(t) with rTl «  1 produces the following result:

(iw+z)
f ,  f 0 f  l - e ”
—  = —   —  ( 9 . 5 . 1 5 ;s 1 s 0 (iw+r)

f o

Corresponding to equation (9.5.10) derived from the simple IAP model, the 

response of the forgetful IAF model to a periodic stimulus has some new features. 

If r = 0, the response of the forgetful IAF model is the same as the simple IAF. 

However, if r is a nonzero parameter and comparable in size to /0, the f,/s, departs 

from f(/s0 by a factor
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The conclusion from the above result is that when the stimulation fluctuates at a 

very low frequency (w = 0),

(a) the perfect copy feature f / s ,  in the simple IAF model remains since f / s ,  

= f / s a and f / s 0 -  C. Any change of the mean value (s0) of the stimulus will 

cause a proportional change of the natural firing frequency f 0, so the f,/s, 

ratio is unchanged.

(b) the copy feature f / s ,  in the forgetful IAF model is lost since f / s ,  depends on 

f(/s0 as well as A(r,f0). The f / s 0 is not a constant. Any change of the mean value 

s0 of the stimulus will induce a nonproportional change of the natural firing rate 

frequency f 0 and a corresponding nonlinear change of A(r,f0). Thus, the ratio f / s ,  

can not be kept unchanged and the response of the frequency shift f,(t) to the 

periodic stimulation is nonlinear.

(c) The null points do not exist even when w/f0 is an integer number. From the 

result in equation (9.5.15), we can easily derive the following result by substituting 

w = 2Knf,

s 1 s 0 2T7 n f 0

Knight’s IAF model becomes a nonlinear model by introducing a decaying 

factor which is the forgetful IAF model. The nonlinearily of the forgetful IAF 

model depends on the firing rate f 0 when the pacemaker receives a constant 

stimulation .v0 and the decaying factor r. Figure 9.5.2 is a plot of the function
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A(r,f0), which shows the nonlinear relationship between f / s ,  and f(/s0. Since the 

phase resetting in response to the respiration stimulus is a nonlinear control 

process, we can use the forgetful IAF model to simulate this control process. The 

assumptions are the same as before. s0 represents the baseline of the respiration, s, 

represents the inspiration-expiration oscillation, f ,  represents the reference heart 

rate, and /) represents the change of the heart rate. However, the nonlinear relation 

between the f  and s, depends on r as well as f 0. Change of the f 0, which means 

change of the reference heart rate, also affects the/, that represents the phase shift 

in our study, which is not what we want. Therefore, the forgetful IAF needs to be 

modified in our study.

OOO
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F igu re  9 .5 .2  The function A (r,l0).

C. Peskin’s model [41]

Peskin’s model is a Knight’s forgetful IAF model with a stimulus s(t) = S0 + S(t).
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The equation is as follows:

^  = - r u + S 0+S{  t)  *0 ( 9 . 5 . 1 8 )
dfc

Since the right side of equation (9.5.18) is greater than zero, the slope of the output 

u of equation (9.5.18) is positive and u is rising. When u reaches 1, the 

"pacemaker" fires and u is reset to zero. Then u starts rising and is reset to zero 

again when it reaches 1. In this way, oscillation occurs. From equation (9.5.18), we 

can see that the firing time of the oscillator depends on its intrinsic parameters, 

such as r, S0 and its external stimulus S(t) since these variables determine the rate 

of change of the u, and how fast the u reaches 1. Assuming {tn, n = 0,1,2, ...} is 

a set of firing times, the solution of equation (9.5.18) will be:

t

u( t) =J f  ( t') d t '  ( 9 . 5 . 1 9 a )

where f(t) = S0 + S(t). The firing time can be solved by substituting u(t) = / into 

equation (9.5.19a), then
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k n + l

1= J  e _ r ( t n *1 _ t / )  f  ( t') d t / ( 9 . 5 . 1 9 b )

Assume that the external stimulus is chosen to be a periodic function with a period 

T, zero mean and small amplitude, which is expressed as S(t) = A,g(t). Since f(t) = 

S0 + S(t) = S0 + Xg(t), substitution oij\ t)  = .S0 + Xg(t) into equation (9.5.19b) and 

utilization of Taylor expansion for approximation yields

’n + 1

where

G ( t ) = f  g { t ) d t  ( 9 . 5 . 2 1 )

Let h(t) = g(t) + rG(t), then

1= [ s0+k r G {  t n) ] Tn+K J  h i t 1) d t / ( 9 . 5 . 2 2 )
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Equation (9.5.22) is the solution of the Peskin’s model to any periodic 

stimulus. The filing time can be obtained by performing the above recursion. It is 

noticed that the firing time (tn+l) in the Peskin’s model is a function of the previous 

firing time (r„), the intrinsic parameters (k, r and S0), and the integral (G(tJ) of the 

stimulus at the previous firing time. To start the above recursion, an initial time t0 

is needed. An example is choosing the period of the stimulus as T = tn+1 - tn. Then

The t0 can be found from the above equation.

Peskin’s model is a modification of the forgetful IAF model. The stimulus 

of the Peskin’s model depends on the firing rate. From equation (9.5.22), we can 

see that the instant period Tn+1 depends on the decaying parameter r, constant 

stimulus S0, amplitude of external stimulus 5), integration of the S, (G(t)) and 

preceding period Tn, which offers more flexibility to simulate the phase resetting 

behavior due to the respiration stimulus. However it is more complicated than both

( 9 . 5 . 2 3 )

Since G(t„) = G(t0), hence

1 = [ S0 +A r G ( t 0) ] T

( 9 . 5 . 2 4 )
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the forgetful IAF and the simple IAF models.

We have introduced three "pacemaker" models. These three oscillators have 

clearly demonstrated the response of the filing rate to periodic stimulation in an 

approximated madiematical equation. The simple IAF model illustrates the linear 

relationship between the change of the firing rate and the periodic stimulus. The 

forgetful IAF model and the Peskin’s model shows the nonlinear relationship 

between the shift of the firing rate and the periodic stimulus. Since our work is to 

study the interactive relationship between the cardiac oscillator and the respiration 

as the stimulus to the oscillator, these three models may provide an alternative 

mathematical tool for the future development.



CHAPTER 10

CONCLUSIONS

10.1 Summary of the Research

Fluctuations in heart rate have been known for a century. Study of heart rate 

variability, linked with human functional units such as blood pressure, thermal 

activity, respiration, etc., has become of great interest to physiologists and 

pathologists only in the past 20 years. However heart rate variability associated 

with the neural coupling between heart and respiration has not been completely 

investigated. As we have discussed before, respiration regulates the heart rate 

through the vagus. In this research, we examined the respiration-regulated heart rate 

variability (called vagal activity in our study) in the time domain using complex 

demodulation, studied the power of the respiration-induced heart rate variability 

(called vagal power in our study) in the frequency domain using spectrum analysis, 

and most importantly investigated the phase dependent characteristics of the heart 

rate variability due to the respiration-associated vagal stimulation. The results of 

the phase resetting study revealed the relation between cardiac phase shifts, time 

of respiration stimulus and amplitude of the stimulus, the topological properties 

of the phase response curve and the complexity of its nonlinear dynamics. Our 

study also included an investigation of the difference between a normal group and 

a group with a disease.

In the research, the experimental protocol played a critical role on the data
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generation. In the vagal power study, a physical exercise protocol was adopted to 

drive the vagal activity of human subjects into different states by walking at 

different speeds on a treadmill. Changes of the vagal power were measured using 

the power spectrum of the heart rate variability signal. In the study of vagal activity 

in the time domain, a conditioning experiment was set up to generate rapid change 

of vagal activity so that the vagal activity underlying the heart rate variability can 

be complex demodulated and changes of vagal activity can be clearly evaluated. 

The above studies have provided us with valuable information about how the 

respiration-related heart rate variability changed in response to changes of the 

conditions of the vagal driving force. Based on the above studies, we realized that 

the timing and amplitude relationship between the heart rate variability and 

respiration were not revealed and were not able to be revealed by these two 

conventional time-series techniques. Therefore the phase resetting study developed 

in this research was meant to complement spectrum analysis and complex 

demodulation. The investigation of phase-dependent characteristics needs a set of 

fixed phases between a cardiac cycle and a stimulus, which requires well-conuolled 

heartbeats and accurate delivery of the stimulus. Therefore most phase resetting 

studies are limited to surgical experiments on animals. So far the phase resetting 

on human hearts has not been explored. The reason may be either that the 

experiment is difficult or that derivation of the phasic changes of the cardiac cycle 

is very complicated. We found that a paced breathing protocol has advantages for 

this research. First, perturbation of cardiac cycles by respiration is under purely
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vagal control, and pacing the heart by a fixed respiration pattern and constant 

frequency made the derivation of phase shifts simpler. Second, paced breathing is 

a noninvasive stimulation of the heart through the vagus. Third, the paced breathing 

provided a better respiration shape for quantization than natural breathing. But the 

fixed phase of the stimulus in a cardiac cycle as described by the studies on 

animals [4,5,7,10] and reviewed in chapter 5 is difficult to be achieved in intact 

awake humans using a paced breathing protocol. It is not our intention to use an 

invasive method. Thus we have put greater effort on mathematical manipulation 

and data analysis. We have made some assumptions and definitions in this research. 

Instead of finding the phase of the stimulus, we chose coupling intervals to locate 

heartbeats, and phase shifts were estimated in each coupling interval. We have 

found that the estimated phase response curve had some fundamentally similar 

characteristics, such as phase shifts related to stimulus time and amplitude, as 

results from animals using surgical experiments. Since the estimated phase response 

curves (PRCs) exist over many respiration cycles, we used a time circle method to 

project PRCs into one cycle so that the common pattern was enhanced and some 

errors due to missing beats in some cycles reduced by the mean PRC. The above 

methods can also be used to differentiate the normal group from the CFS group.

Analysis of the estimated phase response curve presented some challenges 

to us since we were trying to find a mathematical model based on the data analysis. 

We utilized a topological technique, the "phase plane method", to analyze the 

estimated phase response curve. The constructed phase planes of the real data



162

presented noisy topological shapes, which were hard to recognize. An effort was 

made to reduce the noise on the trajectories in the phase plane. It was found that 

the noise on the trajectories was due to insufficient number of points used to do the 

differentiation for the velocity derivation. Thus a smoothing algorithm, called 

"spline interpolation", was employed and the smoothed phase plane showed the 

clear pattern of the trajectories. The spline interpolation used in this research is a 

cubic spline and has a continuous second derivative, which is essential to construct 

a smoothed phase plane. We also used a Poincare map to view the topological 

characteristics of the PRC in a different way. The 3-D view of the data is an 

expansion of the 2-D work, which helps visualize the relation among three 

variables. Further differentiation of the normal group from the CFS group was a 

part of this research.

The nonlinear dynamics of the phase resetting was observed in the phase 

plane. Here the nonlinear dynamics are seen at the output of the nonlinear 

oscillator. A phase plane of the output of a linear oscillator is a circle. However, 

the phase plane of the output of a nonlinear oscillator shows distorted circles. In 

many studies, the linear behavior of the system is a focus of the research while the 

nonlinear dynamics is treated as noise and is ignored. In this research, we included 

the nonlinear dynamics because recent studies indicate that the nonlinear dynamics 

can be quantified by some definite laws [36], To analyze the nonlinear dynamics, 

we investigated different approaches 122],Based on the basic concepts, we 

presented a method, called information dimension, to measure the degree of
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nonlinearity and the complexity of the system.

In every part of our research discussed above, we included the study of the 

CFS patient since the CFS is still a mystery and is of great interest to physiologists 

and neurologists.

Based on the understanding of the experimental data and the analysis of the 

PRC, we searched for mathematical models. The modeling helps to better 

understand the experimental data. Since data analysis using the phase plane 

provided us with some recognizable topological forms and the phase plane is only 

meaningful to a second-order system, we started from a review of the second-order 

system. We found that the Van Der Pol oscillator is a reasonable second-order 

system for this research because the Van Der Pol model is a simple oscillator and 

has adjustable nonlinearity. We simulated the phase response of the Van Der Pol 

oscillator to an impulse and studied the relation between phase shifts and the 

impulse amplitude. Finally we used two coupled Van Der Pol oscillators to 

simulate the phase planes for different coupling situations which includes changes 

of coupling coefficients and ratio of coupling frequencies. In addition, we 

investigated a nonparametric model, tire generalized additive model (GAM). The 

GAM, from a statistical point of view, analyzed the relationship of each possible 

variable, such as respiration stimulus, coupling intervals and slope of the respiration 

stimulus, to the phase shift. As a theoretical investigation, we viewed three possible 

models for the future development, which are Knight’s integrate-and-fire (IAF) 

model, Knight’s forgetful IAF model and Peskin’s model.
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10.2 Conclusion

Traditional time-series techniques, complex demodulation and spectrum 

analysis have been used to study heart rate variability associated with respiration. 

The respiration-related neural control, which is vagal activity, has been measured 

in both the time domain and the frequency domain. These techniques have become 

valuable tools to access the vagal nervous system. However, phase dependence of 

the cardiac cycle in response to vagal stimulation on the heart could not be taken 

into account using both spectrum analysis and complex demodulation. Thus the 

phase resetting study, as a complementary research, is necessary.

A noninvasive phase resetting method has been investigated in this research. 

The paced breathing protocol and techniques of estimation of the phase response 

curve have not been presented in previous phase resetting studies. Study of cardiac 

phase resetting in humans has been rarely seen in previous work. This research 

may provide an example for the noninvasive study of the cardiac phase resetting 

in intact awake humans.

Under our definitions and assumptions, the phase response curve was 

estimated and showed basic characteristics of cardiac phase resetting, such as 

dependence of phase on the coupling interval that is associated with phase of the 

respiration and on amplitude of the stimulus, entrainment and frequency 

dependence of phase on the pacing rate. These characteristics are fundamentally
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similar to the results obtained from previous studies.

The phase plane analysis of the phase response curve was our contribution 

to the phase resetting study. The phase plane illustrated topological properties of 

the phase response curve, which provided us with much useful information for the 

simulation and modeling study. Also, the evidence of nonlinear output of the 

cardiac oscillator was displayed on the phase plane by its varying trajectories.

The information entropy and information dimension was used to measure the 

certainty of the phase resetting behavior and the system complexity. This study 

provided quantitative information about the system nonlinear dynamics. The larger 

the information dimension, the more variables are needed to describe the system.

The comparison between the normal group and the CFS group was a 

practical trial. This part of our work included the test of the practical usefulness of 

the phase resetting study. In this research, the above techniques were proved to be 

successful in the statistical differentiation of the normal group and the CFS group. 

It was found that the normal group had a more sensitive phase resetting response 

than the CFS group, given the same stimulus. The degree of the entrainment in the 

normal group was higher than the CFS group. The shape of the phase plane were 

significantly different. The normal group had the larger entropy and dimension 

than the CFS group.

The modeling study was done in a broad base, in which the nonlinear Van 

Der Pol oscillator with an impulse stimulation, two coupled Van Der Pol 

oscillators, generalized additive models, Knight’s simple IAF model, Knight’s
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forgetful IAF model and Peskin’s model were investigated. The modeling helped to 

explain and understand the real data.

10.3 Future Development of the Research

The noninvasive phase resetting study offers a totally new approach to investigate 

the cardiac response to respiration. Although physiologists and pathologists have 

made great efforts to understand the neural coupling between heart rate and 

respiration in the past two decades, there are still many underlying mechanisms 

which are unknown or unclear. The vagus, serving is conUolled respiration. If the 

vagal nervous system can be understood completely, the vagal activity and heart 

rate can be regulated by the respiration. Therefore the reduced-vagal-activity 

associated neural diseases or heart diseases can be treated by paced breathing. An 

example can be found in Chinese "Qigong", which requires a person to maintain 

slow paced breathing and can heat "back-pain" and slow down the heart rate. 

Increase of the reliability of the experimental data is another area for further 

exploration. The experimental data in this research was a 2-minute segment of data 

for every pacing rate. The longer the data length, the more reliable (lie data.

More pacing rates should be studied. The best pacing rate for the entrainment of 

the PRC to respiration stimuli should be examined.

The Knight’s and Peskin’s models deserve further exploration. The critical question 

is how to choose intrinsic parameters in the model in order that the cardiac cycle 

changes follow the respiration amplitude changes. The selection of models and
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parameters in the model to approach the experimental data is a complex process, 

which we experienced in the Van Der Pol models and the GAM model. Since 

number of selections can be very large due to the number of combinations of many 

variables, modeling accuracy depends on the experiment. Therefore further 

investigation of the optimal and adaptive selection of parameters in the model 

should be made.



APPENDIX I 

Splus Functions

A. gam function: Fit a Generalized Additive Model

DESCRIPTION:

Returns an object of class "gam" which is a generalized additive fit of the model.

USAGE:

gam (form ula ,fam ily= gaussian ,data= «see  below >>,w eights=<<see 

below »,subset=«see below», na.action=na.fail, start=«see below », 

control=gam.control(...), trace=F, model=F, x=F, y=T, contrasts=NULL, ...)

REQUIRED ARGUMENTS:

formula: a formula expression as for other regression models. Nonparametric

smoothing terms are indicated by s for smoothing splines or lo for loess 

smooth terms. Additional smoothers can be added by creating the 

appropriate interface. Interactions with nonparametric smooth terms are not 

fully supported, but will not produce errors; they will simply produce the 

usual parametric interaction.

OPTIONAL ARGUMENTS:

family: a family object - a list of functions and expressions for defining the link
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and variance functions, initialization, and iterative weights. Families 

upported are gaussian, binomial, poisson, Gamma, inverse.gaussian and 

quasi. Functions such as binomial produce a family object, but can be 

given without the parentheses. Family functions can take arguments, as in 

binomial(link=probit).

data: a data frame containing the variables occurring in the formula. If this is

missing, the variables should be on the search list 

weights: vector of the observation weights for the fitting criterion. The length

must be the same as the number of observations in the data. By default, 

an unweighted fit is produced, 

subset: expression saying which subset of the rows of the data should be used

in the fit. This can be a logical vector (which is replicated to have length 

equal to the number of observations), or a numeric vector indicating which 

observation numbers are to be included, or a character vector of the row 

names to be included. All observations are in eluded by default, 

na.action: a function to filter missing data. This is applied to the model.frame

after any subset argument has been used. The default (with na.fail) is to 

create an error if any missing values are found. A possible alternative is 

na.omit, which deletes observations that contain one or more missing 

values.

start: vector of initial values on the scale of the additive predictor,

control: a list of iteration and algorithmic constants. See gam.control for their

names and default values. These can also be set as arguments to gam
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trace: logical flag: if TRUE, then the status during each iteration of the fitting is 

reported.

x: logical flag: if TRUE, then the x matrix is returned as component x.

y: logical flag: if TRUE, then the response is returned as component y.

contrasts: list of contrasts to be used for some or all of the factors appearing as

variables in the model formula. The names of the list should be the names 

of the corresponding variables, and the elements should either be 

contrast-type matrices (matrices with as many rows as levels of the factor 

and with columns linearly independent of each other and of a column of 

one’s), or else they should be functions that compute such contrast 

matrices.

...: all the optional arguments to lm can be given including weights, subset and

na.action.

VALUE:

an object of class gam is returned, which inherits from both glm and lm. See 

gam.object for details.

DETAILS:

Components can be extracted using extractor functions predict, fitted, residuals, 

deviance, formula, and family. The output can be modified using update. It has 

all the components of a glm object, with a few more. The response variable must 

conform with the definition of family, for example factor or binary data if 

family=binomial is declared. The model is fit using the local scoring algorithm,
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which iteratively fits weighted additive models by backfitting. The backfitting 

algorithm is a Gauss-Seidel method for fitting additive models, by iteratively 

smoothing partial residuals. The algorithm separates the parametric from the 

nonparametric part of the fit, and fits the parametric part using weighted linear 

least squares within the backfitting algorithm. Although nonparametric smooth 

terms lo and s can be mixed in a formula, it is more efficient computationally to 

use a single smoothing method for all the smooth terms in an additive model. In 

this case the entire local scoring algorithm is performed in Fortran.

REFERENCES:

Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models. Chapman and 

Hall, London.

EXAMPLES:

gam(Kyphosis~s(Age,4)+Number,family=binomial) 

gam(ozoneA(l/3)~lo(radiation)+lo(wind,temperature),data =air) 

gam(Kyphosis~poly(Age,2)+s(Start),data=kyphosis,subset= Number>10)

B. glm function: Fit a Generalized Linear Model

DESCRIPTION: Produces an object of class "glm" which is a generalized linear

fit of the data.

USAGE:



g lm (fo rm ula ,fam ily= gaussian ,da ta= «see  b e lo w » ,w eig h ts= < < see  

below >> , sub se t=<<see  below>>,  na .ac t ion  = na. fai l ,  s t a r  t=<<see 

below»,control, trace=F,model=F,x=F,y=T,contrasts=NULL,qr=F, ...)

REQUIRED ARGUMENTS:

formula: a formula expression as for other regression models, of the form response

~ predictors. See the documentation of lm and formula for details.

OPTIONAL ARGUMENTS:

family: a family object - a list of functions and expressions for defining the link

and variance functions, initialization and iterative weights. Families

supported are gaussian, binomial, poisson, Gamma, inverse, gaussian and 

quasi. Functions like binomial produce a family object, but can be given 

without the parentheses. Family functions can take arguments, as in 

binomial(link=probit).

data: an optional data frame in which to interpret the variables occurring in the

formula.

weights: the optional weights for the fitting criterion.

subset: expression saying which subset of the rows of the data should be used in

the fit. This can be a logical vector (which is replicated to have length 

equal to the number of observations), or a numeric vector indicating which 

obser vation numbers are to be included, or a character vector of the row 

names to be included. All observations are in eluded by default.

na.action: a function to filter missing data. This is applied to the model.frame
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after any subset argument has been used. The default (with na.fail) is to 

create an error if any missing values are found. A possible alternative is 

na.omit, which deletes observations that contain one or more missing 

values.

start: a vector of initial values on the scale of the linear predictor,

control: a list of iteration and algorithmic constants. See glm.control for their

names and default values. These can also be set as arguments to glm itself, 

trace: logical flag: if TRUE, details of the iterations are printed. This can also be set in 

the control argument.

model: if TRUE, the model.frame is returned. If this argument is itself a

model.frame, then the formula and data arguments are ignored, and model 

is used to define the model.

y:

contrasts:

qr:

logical flag: if TRUE, the model.matrix is returned.

logical flag: if TRUE, the response variable is returned (default is

TRUE).

a list of contrasts to be used for some or all of the factors appearing as 

variables in the model formula. The names of the list should be the names 

of the corresponding variables, and the elements should either be 

contrast-type matrices (matrices with as many rows as levels of the factor 

and with columns linearly independent of each other and of a column of 

one’s), or else they should be functions that compute such contrast 

matrices.

logical flag: if TRUE, the QR decomposition of the model.matrix is 

returned.
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control arguments may be given directly, see the control argument.

V A L U E :

an object of class glm is returned, which inherits from lm. See glm.object for 

details.

D E T A I L S :

The output can be examined by print, summary, plot, and anova. Components can 

be extracted using predict, fitted, residuals, deviance, formula, and family. It can 

be modified using update. It has all the components of an lm object, with a few 

more. Other generic functions that have methods for glm objects are dropl, 

addl, step and preplot. Use glm.object for further details.

The response variable must conform with the definition of family, for 

example factor or binary data if family=binomial is declared.

The model is fit using Iterative Reweighted Least Squares (IRLS). The 

working response and iterative weights are computed using the functions contained 

in the family object. GLM models can also be fit using the function gam. The 

workhorse of glm is the function glm.fit which expects an x and y argument 

rather than a formula.

R E F E R E N C E S :

McCullagh, P. and Nelder, J. A. (1983). Generalized Linear Models. Chapman 

and Hall, London.
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EXAMPLES:

glm(Count~.,data=soldei\family=poisson)

glm(Kyphosis~poly(Age,2)+(Number>10)*Start, family=binomials 

glm(ozoneA(l/3)~bs(radiation,5)+poly(wind, temperature, degree=2),data=air)

C. poly function: Generate a Basis for Polynomial Regression.

USAGE:

poly(x, 3) 

poly(x, y, 2) 

poly(...)

ARGUMENTS:

...: the arguments to poly can be a comma-separated list of numeric vectors or

matrices. If the final argument is atomic, positive, and integer-valued, it is taken 

to bethe degree of the polynomial.

VALUE:

a matrix of orthonormal polynomials is returned. For a single vector 

argument and a trailing degree argument (first case above), a matrix of 

orthonormal polynomials of given degree is returned (die constant column is 

excluded). The orthogonality is with respect to the data. For several arguments 

(vector, matrix, or both), each of the column vectors is used to generate
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orthogonal polynomials of the required degree. The c o l u m n s  a  s u ^ s e t  ° l

the tensor product of the the orthogonal polynomials &'ven ^egiee ol each of 

the individual variables. The ma trix has an attribute degiee that is a vectoi 

giving the degree of each column.

When called with a single vector argument, 1'°*  ̂ returns an additional 

attribute coefs. This contains the normalization constants used in constiucting the 

orthogonal polynomials. See the documentation for poly-taw foi infoimation on 

how these can be used to construct additional evaluations of the same 

polynomial basis.

EXAMPLES:

glm(Kyphosis~poly(Age,3)+Start,family=binomial)

D. s function: Specify a Smoothing Spline Fit in a GAM Formula

USAGE:

s(x , df=4, spar=0)

ARGUMENTS:

x: the univariate predictor, or expression , that eva .l,-;5,r's 10 a num eric vectoi



177

df: the target equivalent degrees of freedom, used as a smoothing parameter.

The real smoothing parameter (spar below) is found such that df=tr(S)-l, 

where S is the implicit smoother matrix. Values for df should be greater 

than 1, with 1 implying a linear fii.. 

spar: can be used as smoothing parameter, with values larger than 0.

V A L U E :

the vector x is returned, endowed with a number of attributes. The vector itself 

is used in the construction of the model matrix, while the attributes are needed for 

the backfitting algorithms all.wam or s.warn (weighted additive model). Since 

smoothing splines reproduces linear fits, the linear part will be efficiently 

computed with the other parametric linear pails of the model.

DETAILS:

Note that s itself does no smoothing; it simply sets things up for gam.

EXAMPLES:

# fit Start using a smoothing spline with 4 df. 

y ~ Age + s(Start, 4)

# fit log(Start) using a smoothing spline with 5 df. 

y ~ Age + s(log(Start), df=5)

E. lo function: Specify a Loess Fit in a GAM Formula.

USAGE:
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lo(..., span=0.5, degree=l)

A R G U M E N T S :

the unspecified ... can be a comma-separated list of numeric vectors, numeric 

matrix, or expressions that evaluate to either of these. If it is a list of vectors, they 

must all have the same length, 

span: the number of observations in a neighborhood. This is the smoothing parameter 

for a loess fit.

degree: the degree of local polynomial to be fit; can be 1 or 2.

V A L U E :

a numeric matrix is returned. The simplest case is when there is a single 

argument to lo and degree=l; a one column matrix is returned, consisting of a 

normalized version of the vector. If degree=2 in this case, a two-column matrix 

is returned, consisting of a 2d-degree orthogonal-polynomial basis. Similarly, if 

there are two arguments, or the single argument is a two-column matrix, either 

a two-column matrix is returned if degree=l, or a five-column matrix consisting 

of powers and products up to degree 2. Any dimensional argument is allowed, but 

typically one or two vectors are used in practice. The matrix is endowed with a 

number of attributes; the matrix itself is used in the construction of the model 

matrix, while the attributes are needed for the backfitting algorithms all.warn or 

lo.wam (weighted additive model). Local-linear curve or surface fits reproduce 

linear responses, while local-quadratic fits reproduce quadratic curves or surfaces. 

These parts of the loess fit are computed exactly together with the other 

parametric linear parts of the model. Note that lo itself does no smoothing; it



simply sets things up for gam.

EXAMPLES:

y ~ Age + lo(Start, span=.5)

# fit Start using a loess smooth with a span of 0.5. 

y ~ lo(Age) + lo(Start, Number) 

y ~ lo(Age, 0.5) # the argument name for span is not needed.
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Car Test Data Frame

Weight
Price Country Reliability Mi leage Type

Eagle Summit 4
2560

8895 USA 4 .33 Small
Ford Escort 4

2345
7402 USA 2 33 Small

Ford Festiva 4
1845

6319 Korea 4 37 Small
Honda Civic 4

2260
6635 Japan/USA 5 32 Smal 1

Mazda Protege 4
2440

6599 Japan 5 32 Smal 1
Mercury Tracer 4

2285
8672 Mexico 4 26 Small

Nissan Sentra 4
2275

7399 Japan/USA 5 33 Smal 1
Pontiac LeMans 4

2350
7254 Korea 1 28 Smal 1

Subaru Loyale 4
2295

9599 Japan 5 25 Smal 1
Subaru Justy 3

1900
5866 Japan NA 34 Smal 1

Toyota Corolla 4
2390

8748 Japan/USA 5 29 Smal 1
Toyota Tercel 4

2075
6488 Japan 5 35 Sma 11

Volkswagen Jetta 4
2330

9995 Germany 3 26 Sma 11
Chevrolet Camaro V8

3320
11545 USA 1 20 Sporty

Dodge Daytona
2885

9745 USA 1 27 Sporty
Ford Mustang V8

3310
12164 USA 1 19 Sporty

Ford Probe
2695

11470 USA 3 30 Sporty
Honda Civic CRX Si 4 

2170
9410 Japan 5 33 Sporty

Honda Prelude Si 4WS 4 
2710

13945 Japan 5 27 Sporty
Nissan 240SX 4

2775
13249 Japan 3 24 Sporty

Plymouth Laser
2840

10855 USA NA 26 Sporty
Subaru XT 4

2485
13071 Japan NA 28 Sporty

Audi 80 4
2670

18900 Germany NA 27 Compact
Buick Skylark 4

2640
10565 USA 2 23 Compact

Chevrolet Beretta 4
2655

10320 USA 1 26 Compact
Chrysler Le Baron V6 

3065
10945 USA 4 25 Compact

Ford Tempo 4
2750

9483 USA 2 24 Compact

180
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Honda Accord 4
2920

12145 Japan/USA 5 26 Compact

Mazda 626 4
2780

12459 Japan/USA 4 24 Compact

Mitsubishi Galant 4
2745

10989 Japan 5 25 Compact

Mitsubishi Sigma V6
3110

17879 Japan 4 21 Compact

Nissan Stanza 4
2920

11650 Japan 5 21 Compact

Oldsmobile Calais 4
2645

9995 USA 2 23 Compact
Peugeot 405 4

2575
15930 France NA 24 Compact

Subaru Legacy 4
2935

11499 Japan/USA 5 23 Compact
Toyota Camry 4

2920
11588 Japan/USA 5 27 Compact

Volvo 2 40 4
2985

18450 Sweden 3 23 Compact

Acura Legend V6
3265

24760 Japan 5 20 Medium

Buick Century 4
2880

13150 USA 3 21 Medium
Chrysler Le Baron Coupe 
2975

12495 USA 2 22 Medium

Chrysler New Yorker V6 
3450

16342 USA 3 22 Medium
Eagle Premier V6

3145
15350 USA 2 22 Medium

Ford Taurus V6
3190

1319 5 USA 3 22 Medium
Ford Thunderbird V6

3610
14980 USA 1 23 Medium

Hyundai Sonata 4
2885

9999 Korea NA 23 Medium
Mazda 929 V6

3480
23300 Japan 5 21 Medium

Nissan Maxima V6 17899 Japan 5 22 Medium
3200

Disp. HP
Eagle Summit 4 97 113

Ford Escort 4 114 90
Ford Festiva 4 81 63
Honda Civic 4 91 92

Mazda Protege 4 113 103
Mercury Tracer 4 97 82
Nissan Sentra 4 97 90

Pontiac LeMans 4 98 74
Subaru Loyale 4 109 90
Subaru Justy 3 7 3 73

Toyota Corolla 4 97 102
Toyota Tercel 4 89 78

Volkswagen Jetta 4 109 100
Chevrolet Camaro V8 305 170

Dodge Daytona 153 100
Ford Mustang V8 302 225

Ford Probe 13 3 110
Honda Civic CRX Si 4 97 108

Honda Prelude Si 4WS 4 125 140
Nissan 240SX 4 146 140
Plymouth Laser 107 92

Subaru XT 4 109 97
Audi 80 4 121 108

Buick Skylark 4 151 110
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Chevrolet Beretta 4 133 95
Chrysler Le Baron V6 181 141

Ford Tempo 4 141 98
Honda Accord 4 132 125

Mazda 62 6 4 133 110
Mitsubishi Galant 4 122 102
Mitsubishi Sigma V6 181 142

Nissan Stanza 4 146 138
Oldsmobile Calais 4 151 110

Peugeot 405 4 116 120
Subaru Legacy 4 135 130
Toyota Camry 4 122 115

Volvo 240 4 141 114
Acura Legend V6 163 160
Buick Century 4 151 110

Chrysler Le Baron Coupe 153 150
Chrysler New Yorker V6 202 147

Eagle Premier V6 180 150
Ford Taurus V6 182 140

Ford Thunderbird V6 232 140
Hyundai Sonata 4 143 110

Mazda 929 V6 180 158
Nissan Maxima V6 180 160

Price Country Reliability Mi leage Type
Weight

Oldsmobile Cutlass Ciera 4 13150 USA 2 21 Medium
2765
Oldsmobile Cutlass Supreme V6 14495 USA NA 21 Medium
3220

Toyota Cressida 6 21498 Japan 3 23 Medium
3480

Buick Le Sabre V6 16145 USA 3 23 Large
3325

Chevrolet Caprice V8 14525 USA 1 18 Large
3855

Ford LTD Crown Victoria V8 17257 USA 3 20 Large
3850

Chevrolet Lumina APV V6 13995 USA NA 18 Van
3195

Dodge Grand Caravan V6 15395 USA 3 18 Van
3735

Ford Aerostar V6 12267 USA 3 18 Van
3665

Mazda MPV V6 14944 Japan 5 19 Van
3735

Mitsubishi Wagon 4 14929 Japan NA 20 Van
3415

Nissan Axxess 4 13949 Japan NA 20 Van
3185

Nissan Van 4 14799 Japan
HP

NA 19 Van
3690

Disp.
Oldsmobile Cutlass Ciera 4 151 110

Oldsmobile Cutlass Supreme V6 189 135
Toyota Cressida 6 180 190
Buick Le Sabre V6 231 165

Chevrolet Caprice V8 305 170
Ford LTD Crown Victoria V8 302 150

Chevrolet Lumina APV V6 151 110
Dodge Grand Caravan V6 202 150

Ford Aerostar V6 182 145
Mazda MPV V6 181 150

Mitsubishi Wagon 4 143 107
Nissan Axxess 4 146 138

Nissan Van 4 146 106



APPENDIX III

The General Linear Perturbation Theory

The general linear perturbation theory is described as follows:

(1) Express both input and output variables as a constant plus a small 

departure.

(2) Substitute these variables into equations that connect them.

(3) Ignore all expressions which are small compared to those small 

departures.

An example used in our study in section 9.5 is given here.

Substitute (A3) and (A2) into (A l) and ignore smaller terms, we obtain

theory.

In section 9.5, we let s = s0 + s, and T = T0 + T lt and substitute them into

( A l )

Now let

T (  t )  =T0 + T1 ( t)  , £  ( t )  = f Q+ f 1 ( t) (A2 )

Since that

1 -  l  _ r i „ ^
(To + T ,) T0 ^

( A 3 )

f , = - ( A 4  )

The (A4) is the result change of f due to change of T using the linear perturbation
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the following integral equation

C= j  s 1 ( t ' )  d t ‘ (A5)

Then

C= Jf ( s0+s1{ t /) ) d t 1

c n--l

= S0 (Cn+l-Cn) + f  S1{ t /) d t '  
tn

*̂n+l
= s 0T+ J  s x ( t O dt '

Cn*l-T
£n«-l

=s0T0+ s0T1 + J  s l { t ,) d t '

(A6)

Cn+1 r 0 Ti

Since C = s0/f0 = s0T0, and T, <  T0, the above equation can be further simplified 

into

x

J  s 1 ( t /) » - s 0T1 (A7)
£n+i “Tn

Substitution (A4) into (A7) yields



A = -

= -  frp2 J

T 2

f i i i ld t 'rn6 J
o t-rn
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( A 8 )



APPENDIX IV 

Figures for the Simulation
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Figure 9.3.2.2 The perturbation process. The solid line represents the stimulus. 
The doited lines represent the phase markers.
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APPENDIX V

Programs

Programs for the Van Der Pol oscillators

The following programs are used to simulate one Van der Pol oscillator, two coupled Van
der Pol oscillators with either direct coupling or velocity coupling. The main program is
written in Splus language (version 3.2), and the subroutines are written in FORTRAN 77.

main program

function(k = 3.819719, u = 0.2, wx = 1.92, wy = 0.923, tp -- 0.2, tw = 0.1, fl 
= 0, f2 = 1.6, fs = 0.5, ftime = 700, km = 10000, dxsav = 0.1667)

{
dyn.load('7usr3/pei/model/vdpol2plus.o") 
btime <- 0
km ax <- round(ftim e/dxsav) 
if(km ax >  km ) {

km ax <- km
}

nvar <- 5
yy <- c (0 .6 , 0 .2 , 0 .6 , 0 .2)
kx <- k
ky <- k
ux <- u
uy <- u
f l  < - - f 1
f2  <- - f2
cof <- c(kx, ky, ux, uy, wx, wy, tp, fl, f2, fs, tw) 
yp <- matrix(0, kmax, nvar) 
z <- .FortranO'odeint", 

as.single(cof), 
as.single(yy), 
as.integer(nvar), 
as.single(btime), 
as.single(ftime), 
as.integer(kmax), 
as.single(dxsav), 
x = as.single(yp)) 

re <- matrix(z$x, ncol = nvar, byrow = T)
1 <- length(seq(l:length(re[, l]))[re[, 1] > Oj) 
ay <- re[l:l, ]
result <- list(t = ay[, 1], x = ay[, 2], xdot = ay[, 3], y = ay[, 4],

1 9 0



191

ydot = ay[, 5])
}

Subroutines

C PROGRAM INTEG1
C PARAMETER (KM=10000,NVAR=5)
C DIMENSION YY(NVAR),YP(NVAR,KM)
C DIMENSION COF(ll)
C OPEN(6,FILE=’ INT. DAT’)
C COF( 1 )=24/(2*3.1416)
C COF(2)=24/(2*3.1416)
C COF(3)=0.2
C COF(4)=0.2
C COF(5)=I.92
C COF(6)=0.923
C COF(7)=0.3
C COF(8)=-0.4
C COF(9)=-0.4
C COF(10)=1.0
C COF(11)=0.1
C YY(1)=0.6
C YY(2)=0.2
C YY(3)=0.6
c YY(4)=0.2
c BTIME=0.0
c FTIME=250.0
c DXSAV=0.I667
c KMAX=INT((FTIME-BTIME)/DXSAV)
c IF(KMAX.GE.KM) KMAX=KM
c CALL ODEINT(COF,YY,NVAR,BTIME,FTIME,KMAX,DXSAV,YP)
c c DO 27 1=1,KMAX
c c IF(YP(1,I).EQ.0.0) GOTO 27
c c WRITE(6,*) YP( 1,1),YP(2,I),YP(3,I),YP(4,I),YP(5,I)
CC27 CONTINUE
C CLOSE(6)
C END

SUBROUTINE DERIVS(COF,X,Y,DYDX)

C Please specify your ordinaty equations 
C here

c
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C Kx — Al, Ky -  A2.
C Ux -  UX, Uy -  UY.
C K -  RK
C Wx -  WX, Wy -  WY.
C B1 — direct coupling
C B2 -- velocity coupling
C x -  Y(l), dx/dt -  DYDX(1)=Y(2)
C y -  Y(3), dy/dt -  DYDX(3)=Y(4)
C

DIMENSION COF(11),Y(10),DYDX(10)
Z=0.0
ZT=0.0
Al=COF(l)
A2=COF(2)
UX=COF(3)
UY=COF(4)
WX=COF(5)
WY=COF(6)
T=COF(7)
Bl=COF(8)
B2=COF(9)
B3=COF(10)
W=COF(ll)
Z=X-FLOAT (INT (X/T)) *T 
IF(Z.LT.W) ZT=1.0 
IF(Z.GE.W) ZT=0.0 
DYDX(1)=Y(2)
DYDX(2)=UX*A 1 *(1 -Y( 1)*'Y( 1 ))*Y(2)-WX*WX*Y(1)-B 1 *Y(3)-B2*Y(4) 
D YDX(2)=DYDX(2)/( A1 * A1)
DYDX(3)=Y(4)
DYDX(4)=UY*A2*(1-Y(3)*Y(3))*Y(4)-WY*WY*Y(3)-B1*Y(1)-B2*Y(2)
DYDX(4)=(DYDX(4)+B3*ZT)/(A2*A2)
RETURN
END

C
C

SUBROUTINE RK4(COF,Y,DYDX,N,X,H,YOUT,DERIVS)
C C Given values for Nvariables Y and their derivatives DYDX known 
C C at X,use the fourth-order Runge-Kutta method to advance the
C C solution an interval H and return the increnmented variables
C C YOUT,which need not to be a distinct array from Y. The User
C C supplies the subroutine DERIVS(X,Y,DYDX) which returns derivates
C C DYDX at X.

PARAMETER (NMAX=10)
DIMENSION

Y(N),DYDX(N),YOUT(N),YT(NMAX),DYT(NMAX),DYM(NMAX)



DIMENSION COF(ll)
HH=0.5*H 
H6=H/6 
XH=X+HH 
DO II 1=1,N

YT(I)=Y(I)+HH *DYDX(I)
11 CONTINUE

CALL DERIVS(COF,XH,YT,DYT)
DO 12 1=1,N

YT(I)=Y(I)+HH*DYT(I)
12 CONTINUE

CALL DERIVS(COF,XH,YT,DYM)
DO 13 1=1,N

YT(I)=Y (I)+H*DYM(I)
DYM(I)=DYT(I)+DYM(I)

13 CONTINUE
CALL DERIVS(COF,X+H,YT?DYT)
DO 14 1=1,N

YOUT(I)=Y(I)+H6*(DYDX(I)+DYT(I)+2*DYM(I))
14 CONTINUE 

RETURN 
END

SUBROUTINE
RKQC(COF,Y,DYDX,N,X,HTRY,EPS,YSCAL,HDID,HNEXT,DERIVS)
c c Fifth-order Runge-Kutta step with monitoring of local
c c trunction error to ensure accuracy and adjust step-size
c c Input are dependent variable vector Y of lenth N and its
c c derivative DYDX at the stalling value of the independent
c c variable X. Also input are the stepsize to be attempted
c c HTRY,the required accuracy EPS,and the vector YSCAL against
c c which emor is scaled. On output, Y and X are replaced by new
c c values,HDID is the stepsize which was really accomplished
c c and HNEXT is the estimated next stepsize.DERIVS is the
c c user-supplied subroutine that computes the right-hand
c c side derivatives.

PARAMETER
(NMAX= 10,PGROW=-0.2,PSHRNK=-0.25,FCOR= 1./15. ,ONE= 1.0) 

PARAMETER (SAFETY=0.9,ERRCON=l.E-7)
EXTERNAL DERIVS
DIMENSION Y(N),DYDX(N),YSCAL(N),YTEMP(NMAX) 
DIMENSION YSAV(NMAX),DYSAV(NMAX)
DIMENSION COF(Il)
XSAV=X 
DO 15 1=1,N
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YSAV(I)=Y(I)
DYSAV(I)=DYDX(I)

15 CONTINUE 
H=HTRY

16 HH=0.5*H
CALL RK4(COF,YSAV,DYSAV,N,XSAV,HH,YTEMP,DERIVS) 
X=XSAV+HH
CALL DERIVS(COF,X,YTEMP,DYDX)
CALL RK4(COF,YTEMP,DYDX,N,X,HH,Y)
X=XSAV+H

C IF(X.EQ.XSAV) PAUSE ’Stepsize is not significant in RKQC’ 
IF(X.EQ.XSAV) RETURN
CALL RK4(COF,YSAV,DYSAV,N,XSAV,H,YTEMP)
ERRMAX=0 
DO 17 1=1,N

YTEMP(I)=Y (I)-YTEMP(I)
E R R M A X =M A X (E R R M A X ,A B S(Y T E M P (I)/Y SC A L (I)))

17 CONTINUE
ERRM AX=ERR MAX/EPS 
IF(ERRMAX. GT. ONE) THEN

H=SAFETY*H*(ERRMAX**PSHRNK)
GOTO 16 

ELSE 
HDID=H
IF(ERRMAX.GT.ERRCON) THEN 

HNEXT=SAFETY*H*(ERRMAX**PGROW)
ELSE 

HNEXT=4.*H 
ENDIF 

ENDIF 
DO 18 1=1,N 

Y(I)=Y(I)+YTEMP(I)*FCOR
18 CONTINUE 

RETURN 
END
SUBROUTINE

ODEINT(COF,YSTART,NVAR,BTIME,FTIME,KMAX,DXSAV,YP)
PARAMETER (MAXSTP=20000,TWO=2.0,ZERO=0.0,TINY= 1 .E-30) 
PARAMETER (NMAX= 10,EPS=1 .E-5,HMIN= 1 .E-32)
DIMENSION YP(NVAR,KMAX)
DIMENSION YSTART(NVAR),YSCAL(NMAX),Y(NMAX),DYDX(NMAX) 
DIMENSION YSAV(NMAX),DYSAV(NMAX)
DIMENSION COF(ll)
NOK=0 
NBAD=0 
X1 =BTEME
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X2=FTIME 
Hl=DXSAV/9.0 
X=X1 
H=H1 
KOUNT=0 
NVAR1=NVAR-1 
DO 19 I=1,NVAR1 

Y(I)=YSTART(I)
19 CONTINUE

CALL DERIVS(COF,X,Y,DYDX)
DO 30 I=1,NYAR1 

YSAV(I)=Y(I)
DYSAV(I)=DYDX(I)

30 CONTINUE 
XXSAV=X
IF(KMAX.GT.O) XSAV=X-DXSAV 
DO 20 NSTP= 1 ,MAXSTP 
IF(KMAX.GT.O) THEN

IF(ABS(X-XSAV).GT.ABS(DXSAV)) THEN 
H=DXSAV+XSAV-XXSAV 
X=XXSAV+H
CALL RK4(COF,YSAV,DYSAV,N,XXSAV,H,Y,DERIVS) 

IF(KOUNT.LT.KMAX-l) THEN 
KOUNT=KOUNT+l 
YP( 1 ,KOUNT)=X 

DO 22 1=2,NVAR 
1 1 = 1 - 1
YP(I,KOUNT)=Y (11)

22 CONTINUE
XSAV=X

ENDIF
ENDIF

ENDIF
CALL DERIVS(COF,X,Y,DYDX)

DO 21 I=1,NVAR1
YSCAL(I)=ABS(Y(I))+ABS(H*DYDX(I))+TINY 

21 CONTINUE
DO 35 I=1,NVAR1 

YSAV(I)=Y(I)
DYSAV(I)=DYDX(I)

35 CONTINUE 
XXSAV=X
IF((X+H-X2)*(X+H-X 1 ).GT.ZERO) H=X2-X
CALL RKQC(COF,Y,DYDX,NVAR 1,X,H,EPS,YSCAL,HDID,HNEXT,DERIVS) 
IF(HDID.EQ.H) THEN 

NOK=NOK+l
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ELSE
NBAD=NBAD+1 

ENDIF
IF((X-X2)*(X2-X 1 ).GE.ZERO) THEN 
DO 23 I=1,NVAR1

YSTART(I)=Y(I)
23 CONTINUE

IF(KMAX.NE.O) THEN 
KOUNT=KOUNT+l 
YP( 1 ,KOUNT)=X 
DO 24 1=2,NVAR 
11=1-1

YP(I,KOUNT)=Y (II)
24 CONTINUE 

ENDIF 
RETURN

ENDIF
C IF(ABS(HNEXT).LT.HMIN) PAUSE ’Stepsize smaller than minimum’ 

IF(ABS(HNEXT).LT.HMIN) RETURN 
H=HNEXT
z=x-float(int(x/0.3))*0.3 
if(z.lt.O.l) zz=1.0 
if(z.ge.0.1) zz=0.0 
write(6,*) x,zz 

20 CONTINUE 
RETURN 
END
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