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ABSTRACT

MOTION SYNTHESIS OF MECHANISMS 
USING CONSTRAINT MANIFOLDS IN IMAGE SPACE 

by 
Yeou-Kai Wu

Kinematic mappings, quaternion algebra, and constraint manifolds in the algebraic 

image space are applied to the problems of the dimensional synthesis o f mechanisms. 

Dimensions o f a mechanism are determined such that a tracer frame fixed on the coupler 

will pass through or at least as close as possible to the desired positions and orientations in 

the physical space as the input link rotates about its fixed joint. First, using kinematic 

mappings, the desired positions and orientations o f the tracer frame of the mechanism can 

be mapped onto points in a hyperspace in which the motion o f the tracer frame can be 

represented by a curve. Second, using quaternion algebra, the structure equations 

representing the transformations from the reference frame to the tracer frame via each leg, 

each crank-coupler dyad of the mechanism, form the constraint manifolds of the 

mechanism. Finally, the problem of dimensional synthesis thus becomes one o f finding a 

curve, generated by the intersection o f constraint manifolds and fulfilling the constraint 

equations o f kinematic mappings, which passes through or near the desired image points. 

The dimensions of the mechanism are found by using total least square algorithms to 

minimize the normal distance between all the desired image points and image curve o f the 

tracer frame.

Using this approach, the synthesis problems o f all three types o f mechanisms, planar, 

spherical, and spatial, can be formulated similarly. It provides a straightforward tool for 

general motion synthesis problems. The theory is illustrated by numerical examples of 

planar and spherical mechanisms.
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CHAPTER 1

INTRODUCTION

1.1 Summary of Research

A general method for motion synthesis of a mechanism has been developed. The method 

applies the theories o f kinematic mappings, quaternion algebra, and constraint manifolds 

to find the dimensions o f a mechanism which will guide a tracer frame on the coupler to 

go through or as close as possible to the desired positions, depending on the number of 

positions, in the physical space. The dimensions to be found include the locations o f  the 

fixed pivots, the link lengths o f the input link and the output link, the dimensions o f the 

coupler, and the orientation o f the tracer frame on the coupler with respect to the 

reference frame.

Three types o f mechanisms, planar, spherical, and spatial, are investigated in this 

study. Numerical examples are presented to illustrate the method. For planar 

mechanisms, both numerical and graphical results are presented. For spherical 

mechanisms, numerical results are shown. A conceptual discussion o f this approach 

applied to generalized spatial mechanisms is also included in this research.

Many theories have been developed to solve motion synthesis problems. Some are 

for special mechanisms, while others are for generalized ones. They all have their own 

assets and liabilities. The method presented in this study involves a search for the 

minimization o f a nonlinear least square function, which requires an initial guess for the 

set of the design parameters. Methods for generating proper initial guesses play an 

important role in this numerical approach. For this reason, three algorithms have been 

tested. One is the well known Levenberg-Marquart algorithm, and the others are newly 

developed artificial intelligence searching algorithms: genetic algorithms and simulated 

annealing methods.

1
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1.2 Objective

The purpose of this dissertation is to combine the motion synthesis problem with the 

theory of constraint-manifold equations developed by McCarthy (1990) while using the 

concept o f kinematic mappings proposed by Ravani and Roth (1982) to provide a 

straightforward and general approach to solve motion synthesis problems.

1.3 Background

Dimensional synthesis o f  a mechanism is the process o f designing a mechanism to 

perform a desired task. Dimensional synthesis o f mechanisms can be classified into three 

different categories (Sandor and Erdman, 1988):

1. Function generation: the motion o f a body (the output link) is to change in a specified 

manner with respect to the motion of another body (the input link). Usually the motion 

o f  the output link can be expressed as a specified function o f the motion o f the input 

link.

2. Motion generation, or rigid-body guidance: a body (the floating link) is to pass through 

or as close as possible to prescribed positions and orientations in physical space.

3. Path generation: a point on a body is to trace a specified path in physical space.

This dissertation will focus only on the motion synthesis o f mechanisms (category 

2). Motion synthesis is used to find dimensions of a mechanism which guides a body, or a 

tracer frame on the floating link, through prescribed positions and orientations in physical 

space. There are schemes for both exact-position synthesis and approximate-position 

synthesis.

Exact-position synthesis o f planar motion was first developed graphically by 

Burmester (1888). Using complex number theory, Freudenstein and Sandor (1961) 

developed an algebraic method for studying this procedure analytically. This work has 

further been developed by Bottema and Roth (1979), Sandor and Erdman (1988), and
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Mirth (1992) among many others. Both graphical and analytic methods can synthesize up 

to five prescribed positions for the motion synthesis problem. By adjusting some o f the 

design parameters, for example crank lengths, exact-position motion synthesis o f more 

than five positions is possible. Two-phase motion synthesis has been developed by 

Wilhelm (1989) by adjusting fixed pivots or by adjusting crank lengths for up to five 

prescribed positions. Using the same approach, three-phase motion synthesis has been 

investigated by Wang (1993) for up to seven prescribed positions. This approach, 

however, increases the degree o f freedom by one, therefore, requiring one more input. 

Exact-position synthesis o f  spherical motion generations has been studied by Suh and 

Radcliffe (1978), Dowler, Duffy, and Tesar (1976), and many others. Computer software 

packages, Lincages-4© (1988) andiSpHiNX (Lorachelle et al, 1993), are now available for 

synthesis o f planar four-bar and spherical four-bar mechanisms, but both packages are 

limited to synthesis problems with only up to four prescribed positions. Synthesis of 

spatial motion generations can be found in Sandor, Xu, and Yang (1986), Sandor, Weng, 

and Xu (1988), Youm and Huang (1990), and Subbian and Flugrad (1992) et al. The 

synthesis o f special mechanisms has been studied by Jenuwide and Midha (1992) and 

others.

If  the prescribed situations need only be approximated, then the design o f a 

mechanism is much facilitated. Planar approximate motion synthesis has been developed 

by Sarkisyan, Gupta, and Roth (1973), Gupta and Roth (1975). Mixed exact-approximate 

position synthesis of a planar mechanism in which the trace frame will pass certain 

important precision positions and approximate the rest can be found in Sutherland (1977). 

Selective precision synthesis methods used to achieve the prescribed limits o f precision, 

called the accuracy neighborhoods, have been developed by Kramer and Sandor (1975) 

and Premkumar, Dhall, and Kramer (1988) and others. Using kinematic mappings, 

Ravani and Roth (1983) first introduced the idea o f curve fitting in the image space for 

the dimensional synthesis o f planar motions. They used the intersection of two general
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geometric equations to represent a general motion in physical space which can be mapped 

into a curve in image space for the synthesis o f four-bar mechanisms. Bodduluri and 

McCarthy (1993) used a similar approach for synthesis o f spherical four-bar mechanisms.

After all these previous works, there is no general approach available that would 

work with three-dimensional mechanisms. The proposed method based on the coordinate 

transformations to form the constraint manifolds provides a general approach for the 

motion synthesis problems.

r n r

y\ / x

yt  y

L Physical spacej [_ ___    Image space Physical space

Figure 1-1 The kinematic mapping between physical and image spaces.

In the problem of motion synthesis, we prescribe several situations, several 

combinations o f displacements and orientations relative to a reference frame, for the 

tracer frame of the mechanism. Dimensions of a mechanism are determined such that a 

tracer frame fixed on the coupler will pass through or at least as close as possible to the 

desired situations in physical space as the input link rotates about its fixed joint. First, 

using kinematic mappings, the desired positions and orientations o f the tracer frame of the 

mechanism can be mapped onto points in a hyperspace, called the image space (Ravani 

and Roth, 1983), in which the motion of the tracer frame can be represented by a curve. 

Second, using quaternion algebra, the structure equations representing the coordinate 

transformations from the reference frame to the tracer frame via each leg, each crank- 

coupler dyad of the mechanism, form the constraint manifolds o f the mechanism. Finally,
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the problem of dimensional synthesis becomes one o f finding a curve generated by the 

intersection o f constraint manifolds, which passes through or near the desired image 

points while fulfilling the constraint equations o f kinematic mappings. The dimensions of 

the mechanism are found by optimization algorithms to minimize the normal distance 

between all the desired image points and the image curve o f the tracer frame. Details of 

curve fittings in the image space have been studied by Ravani and Roth (1982). The idea 

is illustrated in Figure 1-1.

Using this approach, the synthesis problems of all three types o f mechanisms, 

planar, spherical and spatial, can be formulated similarly. It provides a straightforward 

method for the general motion synthesis problems.

1.4 Outline of Dissertation

In chapter 2, three types o f displacements, planar, spherical and spatial, and their 

corresponding kinematic mappings in quaternion forms, are discussed. In chapter 3, 

quaternion algebra is used to construct the structure equations o f open chain mechanisms 

suitable for the motion synthesis problems. In chapter 4, we discuss the normal curve 

fitting techniques in the image space to formulate the error functions to be minimized 

using global minimization methods. In chapter 5, global minimization methods are 

discussed in more detail. In chapter 6, we present some examples and results using 

different global minimization methods. In chapter 7, conclusions and discussions are 

presented.



CHAPTER 2

DISPLACEMENTS AND QUATERNIONS

2.1 Introduction

Displacements can be classified into three categories: planar, spherical, and spatial. Planar 

displacements are motions limited to a plane, or a two-dimensional space. Spherical 

displacements, or rotations, are motions rotated about a fixed point. Spatial 

displacements, the most general type of motions, are neither limited to a plane nor rotated 

about a fixed point. They can be expressed as screw motions about an axis in three- 

dimensional space. For each category, we can construct its corresponding type of 

mechanism for the motion synthesis problem. The use o f matrices to represent 

displacements, or rigid transformations, is common and well known, especially in robotics, 

but the focus o f this study is on the usage o f various quaternions to describe these 

displacements in a higher-dimension space, called the image space (Ravani and Roth, 

1983). In this chapter, we present the relationships between these displacements and 

various quaternions. For a planar displacement, there is always a point that does not move 

during the displacement. This point is called the pole of the planar displacement. For a 

spherical displacement, there is an axis o f rotation that does not change its position. 

Similarly, for a spatial displacement, we have a screw axis that maintains its position 

during a spatial displacement. It is the pole o f a planar displacement, the axis o f rotation 

o f a spherical displacement, and the screw axis o f a spatial displacement that can be 

arranged into special hypercomplex numbers, called planar quaternions, quaternions, and 

dual quaternions, respectively, which can be used instead of matrices to represent 

coordinates transformations (McCarthy 1990).

McCarthy has also shown that these various quaternions can be constructed by using 

the theory of Clifford algebra. Planar and dual quaternions are proved to be Clifford

6
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algebras for three and four dimensional spaces, but with degenerate scalar products, while 

quaternions are also elements of the Clifford algebra of three-dimensional space with the 

usual Euclidean scalar products. The desired positions and orientations o f the tracer 

frame, when written in quaternion forms, can be mapped onto points in the image space. 

The coordinate transformations from the reference frame to the tracer frame can be 

obtained by the multiplication of these various quaternions to represent a structure 

equation. Therefore, these various quaternions play two roles in this method:

• to map the prescribed situations onto points in the image algebraic spaces;

• to construct the structure equations from the reference frame to the tracer frame. 

The quaternion, a four-element entity, was introduced by William R. Hamilton in 1843, 

who defined a quaternion in the following way:

q -  vi' + i x + j  y  + k z (2-1)

or in terms o f one scalar w and one vector v

q  = (v.', v) (2-2)

where 7 , J , and k are the three imaginary units. This definition looks quite similar to the 

definition o f a vector as a complex number

v x i / y  (2-3)

in the complex plane. A quaternion can be seen as the complex representation o f a point 

( ,x\ y, z, vi') in some 4-dimensional space, which is governed by the following fundamental 

rules:

7'  F  i j k  -J,

J k  = - k j  = 7 ,  

k 7 - 7 k -  J .

7 ]  - ] 7  77. (2-4)
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2.2 Planar Displacements and Planar Quaternions

2.2.1 Planar Displacement of a Rigid Body

The planar displacement o f a rigid body can be represented by a translation d = [a, b]T of 

coordinate frame M  fixed on the moving body and a rotation # o f the moving body in a 

plane. The coordinate transformation equation which relates a point p  in the moving 

coordinate frame M  to those in a fixed reference coordinate frame F  (Figure. 2-1) is:

X = [ A ] x + d  (2-5)

or

(2-6)
X ' cos# -s in # X

+
a

Y sin # cos# y b

where

[A]
cos#-sin# a

, d =
. sin# cos#. _b_

Figure 2-1 A planar displacement o f a rigid body.
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or in terms o f homogeneous coordinates

~ x~ cos # -s in  # a X

Y = sin # cos # b y (2-7)
1 0 0 1 i

The coordinate vectors X  = [X Y]T and x  = [x, y \T represent points in the planar reference 

coordinate frames F  and M, respectively. The parameters a, b, and #  represent a planar 

displacement of the moving frame M  relative to the reference fixed frame F.

The components o f the pole o f a planar displacement are coefficients required to 

formulate the planar quaternion which can be used instead o f transformation matrix of 

eq.(2-5) to represent a displacement. We also discuss the pole of a planar displacement. 

For a general planar displacement, there is always one point in the plane that does not 

change its position during the displacement. This means that the position coordinates of 

this particular point remain the same. The moving frame can be considered as having 

rotated about this point in the fixed frame. Therefore, its position coordinates are the 

same in both fixed frame F  and moving frame M. This point is called the pole o f the 

planar displacement (Suh, 1978). The pole o f the planar displacement is actually one of 

the eigenvectors for the system of eq.(2-7). The coordinate o f the pole P  can be obtained 

by solving eq.(2-5):

P = [A ]P + d  (2-8)

or

' Px cos # -s in # > v " a
— +

P y . sin# cos# P y . b

Solving for P  we have

P=  [I-A]-'d (2-9)
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or
a . 9 b 9 9

p x = ( 2s,n 2 '  2cos 2 '  2 ’

a e  b . <?,.  e
Pv =  ( 2C0S 2 + 2Sin ? /sm T (2- 10)

2.2.2 P lanar Q uaternions

In the last section, planar displacements were described by using matrix transformations. 

A planar displacement can also be expressed by a planar quaternion which is an even 

Clifford algebra of three-dimensional space with special degenerate scalar product. A 

typical form o f a planar quaternion can be written as a four-element entity, 

Q =<I4 + e <y, / + s  q 2 j  + q 2 k , where s  is the dual number, with the properties of e  ^ 0 , 

but e2 = 0 (Porteous, 1981). A general planar displacement can be characterized by the 

quaternion operator:
# 1  0 0  1 0 0 0 -

Q( a, b, 9) = cos^ + £ 2 (a cos2 + ^ s’n2^~ + e  2 ^  cos2 " a s’n2 ^  + s*n2^ (2-11)

or simplified as
0  ■ ■ 6 - ■ 6 r= cos^ + epy sm~ / - £p x sin~ j  + sin~ k (2- 12)

where lengths (a , b) denotes the distances through which the moving frame translates in 

the original directions o f the unit vectors / and j , and angle 9 indicates the rotation of 

the moving frame about the k  axis, and point ( p x, py ) is the pole of the displacement.

The components of quaternion O are:
. 9  1 9 9

cp = py simj- = 2 ( a cos^ + b s in j ),

. 9  1 9 . 9 .
q2 = - px sin~ = 2 ( " cos2 ‘ a sin2

. 9 
% = sinj,

0
qA = cos^ (2-13)
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We now define the mappings for planar kinematics, which can be used to map the desired

positions and orientations o f the tracer frame into points in the image space for the

synthesis problems. The mapping is
1 0 0 1 0 0 0 0 

(h : (h : cIs: ch  = 2^ a cos2 +  ^  s*n2 2  ̂ ^  C0S2 " a S*n2  ̂ ' S’n2 ' C0S2 (2 -1 4 )
ci b

Positions with 0 = 0  will map into points at ( ^  ^   ̂ )> wM e positions with 0 = n  will

b ci
correspond to image points at ( ^  1. 0). The reference frame, at (a = b = 0=  0), maps

into the point ( 0, 0, 0, 1) o f the planar quaternion image space. In general, the points in 

the image space o f planar displacements satisfy the algebraic relation:

q ; + q ;  = \ (2-15)

Other forms of planar kinematic mappings are described in Blaschke and Muller (1956) 

and Ravani (1982).

The planar displacement quantities (a, b, 0) can be recovered from cjt, i = 1,2,..4 by the 

following formula:

0  = 2 ( q xqA - q2q j ,  sm0=  2 q2qA,

b = 2 (<y,f/3+r/2<y4), C O S<9= q\ - q\. (2-16)

Eq.(2-7), in terms o f qn becomes

~ X~ ~ cl l - 2 q,qA 2 (qxqA - q 2q3) X

Y =7 ‘1* ~<K 2 (<M.i - ‘hV t) y (2-17)
1 0 0 1 1

2.2.3 Planar Quaternion Product

The structure equation representing the transformation from the reference frame to the 

tracer frame is obtained by successive coordinate frame transformations. The successive 

coordinate frame transformations can be expressed in the form of the successive products 

o f planar quaternions. The planar quaternion Q = qA + e q x i + s  q2 j  + c/ 3 k can also be
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written as a four dimensional vector Q = (</,, r/2, q3, q4). The product of two planar 

quaternions Q = q4 + £ q x 7 + s  q2 j  + q3 k and H  = h4 + s  hx 7 + £ h2 j  + h3 k results

in a product o f their associated vectors, QH.

QH = (q4 + e q x 7 + e q 2 ]  +  <y3 k).(h4 + e h x 7 + e h 2 J  + h3 k)

=- q3h3 +  q4h4 

+ £ (q4hx - q3h2 +  q2h3 +  q {h4) 7 

+ e (q3h j +  q4h2 - q }h3 + q2h4) ]

+ {q4h3 + q3h4) k (2-18)

The components o f QH can be obtained by representing the Clifford algebra in matrix 

form (McCarthy 1990). From eq(2-18): QH  =  [0 +]H,

~ CU -ch ch ci i “ V
[0 +}H = (h % -ch ch h2

<
0 0 CU (h h 3

_ 0 0 -(h </4 - A.
or

QH=\H~]Q

^4 ^3 -h2 V cli

‘^3 h4 h \ h2 •
0 0 *4 ch
0 0 ~h7> h\~ ch .

2.3 Spherical Displacements and Quaternions

We next present the spherical displacements. Ravani (1982) used the Euler parameters of 

an orthogonal rotation transformation matrix to define a mapping o f the matrix into a 

three-dimensional projective space to study spherical kinematics. Spherical displacements 

can be identified with elements of the Clifford algebra o f three-dimensional space with the



usual Euclidean scalar products by assembling the Euler parameters of a rotation into the 

quaternion.

2.3.1 Spherical Displacement of a Rigid Body

The rotation o f a rigid body about a fixed point, termed a spherical displacement, can be 

represented by a matrix transformation between three dimensional reference frames M  and 

F  (Figure. 2-2).
Z

Figure 2-2 A spherical displacement o f a rigid body.

A'- "fln a  l2 a n X

Y = a n a 12 °2i y (2-21)
Z a r. a u_ T

The vector X=\X, Y, Z  ]r and x=[x, y, z]T represent points in frames F  and M,  respectively. 

The rotation matrix [A] = a,y, i j  = 1, 2, 3, is orthogonal and depends on three parameters, 

namely three Euler angles. There are many ways to specify these parameters. If we use 

ZYX  Euler angles, a general rotation is obtained by first rotating about the z axis by an 

angle then rotating about th e^  axis by angle i], finally rotating about the x axis by angle 

C The transformation matrix [A] is obtained as follows:
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' c0 - s 9 0" cq 0 S T ] '1 0 0 '

[A] = s9 c0 0 0 1 0 0

0 0 1 - s q 0 crj 0 < <

cOcq - s6 c £ + c & S 7 js£  s 9 s £ + c 9 s j ] c £  
S0C77 c9c£+ s9  st) sC, - c 0 s £ + s 9 s ? ] c £
- s q  cqsC, cqcC,

(2-22)

where symbols.? and c represent the sine and cosine functions.

2.3.2 Quaternions

The rotation matrix [A] can also be parameterized by using Euler parameters which 

require only one single rotation about a rotation axis. For a rotation o f angle 0 about a 

unit vector « = ( ux, uy, //z), the Euler parameters of the rotation can be expressed as the 

set o f four homogeneous parameters, q h q2, q3, and q4 , called a quaternion, and given by 

£/, = ux sin( 0/2), q2 = uv sin(0/2), q3 = uz sin(0/2), q4 = cos(0/2) (2-23)

The rotation angle 0 and the components o f the unit vector ( ux, uy, //z) can be obtained 

from the components, ay, i, j  -  1, 2, 3 of [A] by the following relationships:

0 = cos"1 { (a ,, + a22 + a33 - 1 )/2 }, (2-24)

and ux = (a32 - a23)/(2 sin0),

i3 -fl3iV(2 sin^X

uz = (a2] - fl12)/(2 sin0). (2-25)

The Euler parameters o f this orthogonal matrix are used to define the mapping of a 

spherical displacement representing the spherical displacement onto a point in the space of 

mapping. Letting x, y , z, and >i; be the coordinates o f a point in a four-dimensional space, 

we have

x = ux sin(0/2), 

y  =  uv sin(0/2),
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z = uz sin(^/2, 

w = cos(^/2).

which represent a rotation o f angle <f> about a unit axis u =( ux, uy , uz). Therefore, this is 

also a unit quaternion because the sum of the squares of its components equals unity. In 

general, the rotation o f an angle 9 about the z-coordinate axis, u = ( 0 , 0, 1), can now be

written as Q = cos(0/2) + sin(7?/2) k  . Similarly, the rotation o f an angle ;/ about the y-

coordinate axis is Q = c o s ( jj/ 2 )  + sin(;//2) j  and the rotation of an angle t, about the x-

coordinate axis is Q = cos (C /2)  + sin (C/2) T .

2.3.3 Quaternion Product

Successive spherical displacements can be expressed as the successive products o f their 

corresponding quaternions. A quaternion Q = q4 + c/, / + q2 ]  + r/3 k can also be written 

as a four dimensional vector form Q = (qx, q2, c/3, q4). The product of two quaternions Q 

= (<7u <72> <73- <74) and H  = (h\, h2, h3, h4) results in a product o f their associated vectors, 

QH

QH = q4h4 - q xh x - q2h2 - q3h3

+ ( H a K  -  < h h 2 +  ch h 2 + H \ K  ) '

+  ( 1 +  cl.\h 2 - (l \ h 2 +  ch h 4 ) J

+ ( q4h3 + q3hA + q xh2 - q2h x )k  (2-27)

The components of QH  can be obtained by representing the Clifford algebra in 

matrix form. From eq(2-27): QH  = [Q+]H,

’ <74 -<73 <7: <7i 'h1

[Q+]H = <7j </4 -<7i <72 K  < >
-<7: <7. <74 <7 3 3̂

_“<7i - q  2 ~ch <?4. A.
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or QH=[H-\Q

[H-\Q =

'  K *h ~h2 K
’
<7.

K K
K -K K K

r h\ ~h2 -*h K

(2-29)

2.4 Spatial Displacements and Dual Quaternions

2.4.1 Spatial Displacement of a Rigid Body

In a three-dimensional Euclidean space, a general displacement of a rigid body is 

determined by six parameters. Unlike a planar displacement which has a fixed point called 

the pole of the displacement, a spatial displacement has a fixed line, called the screw axis, 

that has the same position in space before and after the displacement. The relative 

position o f two rigid bodies in three dimensional space is defined by the transformation 

that specifies the coordinates X={X, Y, Z) in the base frame F  in terms o f the coordinates x  

= (x, y, z) o f a point in the moving body measured in its frame M  (see Figure 2-3).

P

X  M

Figure 2-3 A general displacement o f a rigid body
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The transformation in three-dimensional space is given as

X  = [A]x + d  (2-30)

which is analogous to the planar displacement of eq.(2-5). The rotation matrix [A] defines 

the orientation o f frame M  relative to frame F  and the translation o f vector d  gives the 

origin o f frame M. The general displacement of a rigid body can be specified by 

combining a translation with a rotation.

2.4.2 Dual Quaternions

Finally, we discuss the mapping o f a general displacement in physical space (Bottema and 

Roth, 1979, Ravani and Roth ,1982, and Ge and Ravani, 1991).

The transformation given in eq.(2-30) can be mapped into a higher dimension again by 

using the concept of Euler parameters. A general displacement o f a rigid body can be

determined by a screw displacement which is a rotation about and a translation along the 

screw axis. Let 6  be the angle of rotation and d  be the distance o f translation. The screw 

displacement can be written as a dual angle

& = 9 + zd ,  (2-31)

where e is the dual number. The screw axis is defined by

H = (« ,.« „  ) = (//, + fii/°,wv + s il l ) (2-32)

which is a dual vector. The primary component u = (ux, uv, uz ) is the direction vector of 

the screw axis and the dual component u° = u° + u° + u° is the moment o f the vector u

about the origin o f the fixed frame. The Euler parameters of this screw displacement (dual 

Euler parameters) Q = Q + e Q ° ,  can also be assembled into a dual quaternion. The 

primary part, Q = q4 + s  <:/, T + e q2 j  + r/3 k -  ( r/2, q3, q4) is defined by the Euler

parameter of the rotation matrix [A], The dual part, Q° = q °+ q °T  +q% J +q° k =

(<7,°. q°2 . <7j . c!°, ), is defined by the formula:

( Q " f = i i m r <2 -33)
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or

0 ■ 
1 0 -d} d2 d,~ ~q,
02 _  1 d 3 0 ~d, d2 <n
0
3 ~ 2 ~d2 d, 0 d 3 (h
0 
■1 _ ~d, -d2 ~d3 0 Ji*

where appears the translation vector tl = d xi + d2 j  + d3 k . Substituting the Euler
A  A

parameters o f the rotation matrix [A] into Q, the components o f Q are written as

q, = uxs m ( 0 / 2 ) , q 2 = it vs m ( 0 / 2), q3 = i i , s m ( 0 / 2) , q 4 = co s ( 0 / 2 )  (2-34)

where the dual angles

sinf 0 2) = s \n (0 /  2)  + e ( d  /  2)  cos(0 /  2),  (2-35)

cosf 0 2) = cos(0 2)  -  s ( d  2)  s in f0 2). (2-36)

2.4.3 Dual Quaternion Product

The dual quaternion 0  = 0  + 6' 0°,  when written in vector form, becomes an eight 

dimensional vector O = (0,  0°) e R%. The product of two dual quaternions OH can also 

be written in matrix forms (McCarthy, 1990):

or

' QH 
( O H ) 0

J QH
1 ( O H ) 0.

' [ V ]  i°] '  H '

J C T ]  [q *]_ H°

' [ » ■ ]  lo] ' r g  '

. M [ g °_

(2-36)

(2-37)

where the 4x4 matrices [ 0 1 ], [0° '  ], [// ']  and [H°~] are obtained from the matrix forms of 

quaternion products.



CHAPTER 3

CONSTRAINT MANIFOLDS FOR MOTION SYNTHESIS

3.1 Introduction

A mechanism consists o f a sequence o f links, generally considered rigid, which are 

connected by joints, such as revolute joints or ball joints, to form an open or closed chain. 

The position and orientation o f the end link of an open chain relative to the base frame can 

be obtained by a sequence o f coordinate transformations which define the position and 

orientation o f each link relative to its neighbor in the chain from the base frame to the end 

link. Normally, this is done by using a sequence o f matrix multiplications. By carrying out 

the multiplications to obtain an explicit form for the position and orientation of the end 

link, we obtained the structure equation of an open chain. Using quaternion algebra, the 

structure equation o f an open chain mechanism forms the constraint manifold of the open 

chain in a higher-dimensional image space. The manifold can be a parameterized curve, 

surface, or hypersurface, depending on the degree o f freedom of the chain. A constraint 

manifold defines all the reachable points o f an open chain mechanism in the image space. 

It also represents the position and orientation o f the end link constructed by the rest of the 

chain in the physical space. The constraint manifold of a closed chain is the intersection of 

the constraint manifolds o f the structure equations of the two open chains which connect 

to form the complete mechanism.

The application of constraint manifolds for the synthesis o f mechanisms in the image 

space is the main idea of this research. Papers dealing with the constraint manifolds and 

their applications to mechanisms include Ge and McCarthy (1989), Fischer (1990), 

McCarthy (1990), and others.

19
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In this chapter we have developed the constraint manifolds suitable for the synthesis 

o f a planar-four-bar mechanism, a spherical-four-bar mechanism, and a spatial four-bar 

mechanism.

3.2 Constraint Manifold of a Planar Four-Bar Mechanism

A general planar four-bar mechanism for motion synthesis is shown in Figure 3-1. The 

reference (fixed) frame is designated as F, and the moving frame, or the tracer frame, is 

designated as M. The coordinates o f the two fixed pivots, o, and o2, are (x,, >>,) and (x2, 

y 2) respectively. The lengths o f the cranks are <3, and a2, and the dimensions o f the 

coupler are denoted as b x, b2, and h. The angular orientation of the tracer frame M  with 

respect to the reference frame F  is denoted by angle ?/.

Figure 3-1 A general planar four-bar mechanism for motion synthesis.

Two structure equations can be formed representing the displacement of the tracer 

frame from the reference frame. One is obtained by the coordinate transformations 

through the left-hand side crank-coupler dyad, and the other is obtained similarly through 

the right-hand side crank-coupler dyad. Therefore, two constraint surfaces, each from one
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of the structure equations, are obtained. The constraint manifold o f a planar four-bar 

mechanism is a curve formed by the intersection o f the constraint surfaces of the two 

structure equations.

3.2.1 Constraint Manifold of a 2R Open Chain

The constraint surface to be used for the motion synthesis problem is based on the crank- 

coupler dyad, a two-revolute joint (2R) open chain (Figure 3-2). The structure equation 

o f 2R open chain is derived by a rotation about joint axis o by the displacement angle #, a 

translation along the link by the distance a , and a rotation about joint axis p  by the 

displacement angle <f>.

Coupler

Crank

j.
O

Figure 3-2 A 2R crank-coupler dyad with link a and joints o and p.

In term of matrix transformation this becomes 

[5] = [ Z m [ X { a ) ] [ Z [ m

or

cos# -s in # O' ' l 0 a cos^ -s in ^ O'

[S\ = sin# cos# 0 0 1 0 sin^ COS (f) 0

0 0 1 0 0 1 0 0 1

which can also be written as a product of planar quaternions:
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S  = Z($)X(a)Z(<f>)

or

S  = (0, 0 , sin e/2, cos0/2)(a/2 , 0, 0, 1 )(0, 0, sin^/2, cos^/2) (3-2)

Using planar quaternion algebra, this product can be expanded as a parameterized surface 

in R4:

S{6; (j>) = ( ^ (0 , £  «), S2(0, </>, a), S3(0, </>), SA{0, $)) (3-3)

where

S , ( 0 ,0  = f c o s ( ^ ) ,

S2( 0, 0  = f  s in (~ ^),

S3(0, 0  = s i n ( ^ ) ,

54(6>, 0) -  c o s ( ^ ) .

This is the constraint manifold o f a 2R crank-coupler dyad. It represents the reachable 

points of the open chain in the image space in terms o f the length of the link and the 

rotation angles o f the joint. Eliminating the rotation angles 0and (j> we have:

S ; + S ; - ( ^ ) z S ; - ( l f S ; = 0  (3-4)

Let positions S  = OS’,, S2, S3, S4) reachable by the end link o f the 2R open chain be 

represented by a vector X  = ( x, y, z, w). Eq.(3-4) defines a surface given by the equation

x- + y  - ( - T z -  - ( - ) - w -  = 0 (3-5)

It has been shown (McCarthy, 1990) that this equation can be written as the quadratic 

form

X T[O]X=0  (3-6)
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where the 4 x 4  coefficient matrix has the form

'1 0 0 0

0 1 0 0

[0 ] = 0 0
a 2

~ T
0 (3-7 )

0 0 0
a "

4 .

The 2R constraint manifold can be visualized by projecting on the w = 1 plane which 

produces a right circular hyperboloid o f one sheet (Figure 3-3). This hyperboloid is 

centered at the point x = y  --- z -  0 and is aligned with the z-axis and has the minimum 

diameter a  at the center circle.

x

Figure 3-3 Constraint manifold o f a 2R open chain.

The canonical form of eq.(3-7) is the result of the choice o f fixed and moving frame. For 

motion synthesis o f mechsnisms, we have to move the moving frame from the joint p  to 

the tracer frame and move the fixed frame from the joint o to the global reference frame.
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3.2.2 Constraint Manifold of the Left-Hand Side Crank-Coupler Dyad

The constraint manifold o f the left-hand side crank-coupler dyad (Figure 3-4) is developed 

by considering the transformation from the reference frame through a distance (x,, y x) to 

the joint O, o f the link a t, through the link length a , and into the tracer frame through a 

distance (bx, h) and a rotation of angle r\.

y  x

Figure 3-4 The left-hand side crank-coupler dyad.

In terms of quaternion product, this can be expressed as a premuitiplication of 

displacement (x,, _y,) with eq.(3-3), followed by a postmultiplications o f a displacement 

(b t, h) and a rotation o f angle 77. Therefore, we have

s l = (x i>Th °,1) S(0, (bx, h, 0, 1) (0 ,0,sin77/2 , cos/7/2) (3-8)

Instead of carrying out the quaternion multiplication, SL is written as a linear

transformation o f the vector S(d, <j>) given in eq.(3-3):

S,=  [C,]5 (3-9)

where [C,] can be obtained by multiplications of matrices as shown in eqs.(2-19, 2-20) so 

that
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"1 0 Ti X," ' l 0 -h K C7J STJ 0 0 '
0 1 T, 0 1 h -STJ C TJ 0 0

0 0 1 0 0 0 1 0 0 0 C TJ STJ
0 0 0 1 0 0 0 1 0 0 -STJ crj

crj S T J

-STJ C T J

0 0

0 0

-hcTj+y^Tj+b^sTj-x^rj  bl crj-f-x] crj+hsrj-T-y] stj

2 2
Z>, c?j-x^crj +hsrj-y^sr j  hcrj+y^ c r j -b x s / / -x , stj

2 2
C7J STJ
-STJ C TJ

(3-10)

Figure 3-5 The constraint manifold after a linear transformation

There exists a constraint manifold equation similar to eq.(3-5) based on quaternion 

product SL. The constraint manifold that also satisfies eq.(2-10) represents the reachable 

points o f the left-hand side crank-coupler open chain in the image space. When projecting 

on the m' 1 plane, the constraint manifold becomes a skew hyperboloid of one sheet 

(Figure 3-5). Written in quadratic form, it becomes

x \  [Qt]Xt = 0  (3- 11)



where vector X j  is a linear transformation of vector X such that 

X x = [C,]X

Substituting eq.(3-12) into eq.(3-l 1), we have 

which can be written as

where

X T[Ox] X = 0

and

0

«i ~y\
2

-(/?, + x x)

a x =  h c o s t j  -  b x sin77, 

Px = bx c o s t j  +  h sin;/,

~ ( P i + x ,)
2

*1 ~ P x

Px
cr,

2
-(«! ^-^l) 

2
Z l
2

A
A

= -h x, cos;/ + /;, _y, cos;/ + /;, x, sin;/ + h y x sin;/, 

= (-a7 + + h1 + x2x + y 2x) / 4,

cr, = />, x, cosr] + h y x cos;/ + /7X, sin;/ - sin;/.

26

(3-12)

(3-13)

(3-14)

(3-15)
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Figure 3-6 The right-hand side crank-coupler dyad.

3.2.3 Constraint Manifold of the Right-Hand Side Crank-Coupler Dyad

The constraint manifold o f the right-hand side crank-coupler dyad (Figure 3-6) is 

developed by considering the coordinate transformations from the reference frame through 

a distance (x2, _y2) to the joint o2 of the dyad, then through the link length a2 and into the 

tracer frame through a distance (-b2, h) and a rotation of angle //.

In terms o f quaternion products, this can be expressed as a premultiplication of 

displacement (x2, y 2) with eq.(3-3), then postmultiplications o f a displacement (-b2, h) and 

a rotation o f angle Therefore, we have

S2 = {x2, y 2, 0, 1) S(0, </>) {-b2, /?, 0, 1) (0, 0, sin?//2, cos/;/2) (3-16)

Similarly,

S2=[C2]S (3-17)
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where

C 77 S77
-h  c  77 +  j / ,  c  77 -  b2 s  77 -  x ,  s  77 - b 2CT] + x 2crj +hsrj  + y 2sij

2 2

- S 77 crj
-Z>2 c  77 -  j r ,  c  77 •/- h  s  77 -  _y2 s 77 h  c  77 +  j ; ,  c  77 6 2 s 77 -  x 2 s  77

( 32 2
0 0 C 77 ST]

0 0 —S 77 CT7

[C2] =

Again, there exists a constraint manifold equation similar to eq.(3-5) based on quaternion 

product SR. Written in quadratic form, it becomes

X t [O2] X = 0  (3-19)

The coefficient matrix is

[O2] = ([C2]-/)/ [0 ]([C2]-O

where

0

0

a 2
2

Pi ~ Xl

a2 = h cos ij i b2 sin 77, 

P2 = b2 cos 77 - h sin 77,

a 2 - y 2 Pi ~ xi 
2

P 2 + X2

P-, +X^ C7 ,
------------  P-, + -----

2 2
-(or, + y2)

2 2

~(a2 + y 2) 
2

L l
2

cr,
p ,  -

2 .

y2= - h x2 cos77 - b2y 2 cos 77 - b2 x2 sin 77 + h y 2 sin 77,

p2 = (- a\  + b\  + h1 + x2 + y 22) / 4,

o 2 = b2 x2 cos 77 - h y 2 cos 77 - h x 2 sin 77 - b2 y 2 sin 77.

(3-20)
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Eq.(3-19) represents all the reachable points o f the right-hand side crank-coupler open 

chain in the image space. Again, when projecting on the w = 1 plane, the constraint 

manifold becomes a skew hyperboloid of one sheet. The intersection o f the two constraint 

manifolds eq.(3-5) and eq.(3-19) defines the image curve through which the coupler o f the 

four-bar linkage will pass (Figure 3-7). Furthermore, the image curve must also satisfy 

eq.(2-15), the constraint equation of the planar quaternion. Therefore, we have a total o f 

three equations in the four-dimensional image space resulting in one degree of freedom for 

planar four-bar mechanisms.

Figure 3-7 The intersection o f two constraint manifolds.

3.3 Constraint Manifold of a Spherical Four-Bar Mechanism

A spherical four-bar mechanism is a special type of four-bar mechanism with the property 

that the axes o f the joints all intersect at a single point, c (Figure 3-8). By fixing one of 

the links, we obtain a single degree o f freedom spatial mechanism similar to a planar four- 

bar mechanism. For motion generation, the tracer frame is to pass through frames lying 

on a concentric sphere about the point c. The constraint manifold o f a spherical four-bar 

is based on a 2R spherical crank-coupler dyad open chain shown in the next section.
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Z

Figure 3-8 A spherical four-bar mechanism.

3.3.1 Constraint Manifold of a 2R Spherical Open Chain

A 2R spherical open chain, similar to a 2R planar open chain, has two revolute joints, but 

the axes o f the joints intersect at the center point o f a sphere at c, making an intersection 

angle J3, and intersecting the sphere at points o and p  (Figure 3-9). Let us assign frames O 

and P  to have their origin at center c and their z-axes passing through o and p  respectively.

z'p

O "  _____

Figure 3-9 A 2R spherical open chain.

To obtain the constraint manifold of a 2R spherical open chain, let the rotation angle 

o f the frame O about its z-axis be 9  such that its jc-axis is perpendicular to the plane 

defined by the z-axes and let the rotation of the frame P  about its z-axis be angle <j). The
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structure equation o f the spherical crank-coupler dyad from the fixed pivot to the moving 

pivot is then defined by a rotation about the z-axis by the angle 0, followed by a rotation

about the x-axis through the intersection angle ft, and then a rotation about the z-axis

through angle tj> (Figure 3-9).

The quaternion form o f this structure equation become

S = Z(0)X(J3)Z(<I>) (3-21)

or

S = (0, 0 , sln0/2, cos(9/2)(sin/?/2, 0 , 0 , cos/?/2)(0 , 0, sin^/2 , cos^/2) 

Expanding the quaternion product we have the parameterized surface

S(J3., 6; 0) = (SjGfl, 6: <f>\ S2(fi, 0, <P), H f r  % t) , 0, <t>)) (3-22)

where

£ , ( #  6> <f>) = s in (|) c o s ( ^ ) ,

S2(fl, 0, (j>) = s in (|) s in (~ ^),

S3( #  6>, <{>) = co s( |)  s in (~ ^),

6’40ff, 0, &) = co s( |)  co s(~ ^ ).

Angles # and (j> in eq.(3-19) can be eliminated to obtain the algebraic equation

parameterized by the intersection angle /?:

cos2( |) S ?  + cos2( | ) S ;  - s i n 2 ( ^ ) S 2 - s i n 2( | ) S 2 = 0  (3-23)

This is the constraint manifold of a 2R spherical crank-coupler dyad open chain. Let 

positions S  = (£',, S2, S4) reachable by the end link of the 2R open chain in the image

space be represented by a vector X  = ( x, y, z, w). Eq.(3-23) defines a surface given by the 

equation:

cos2( ^ ) x 2 + co s2( ^ ) y : - s i n 2( ^ ) z 2 - s i n 2( ^ ) w 2 = 0 (3-24)
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This equation can be written as the quadratic form (McCarthy, 1990): 

X T[0]X=  0 

where the 4 x 4  coefficient matrix

(3-25)

['Q] =

cos2( /? /2 ) 0 0

0 cos" (/? / 2 ) 0

0 0 - s in 2 (/?/ 2 )
0 0 0

A

0

0

0

-sin2 ( £ / 2 )

If we divide Eq.(3-24) by cos2( p  and project it on the w = 1 plane, we have

(3-26)

' / P \  1-y~ -  tan" ( — )z~ = ta n '(—) 
2 2

(3-27)

which again is a right circular hyperboloid of one sheet. This hyperboloid is aligned with

the z-axis and centered at the point x  = y  = z = 0. The radius o f its center circle is tan^)-

3.3.2 Constraint Manifold of the Left-Hand Side Crank-Coupler Dyad

The constraint manifold of the left-hand side crank-coupler dyad (Figure 3-10) is 

developed by considering the transformation from the reference frame through a rotation 

o f angle about the Z-axis (symbolized as Rz( ^ ) )  such that the X-axis is perpendicular 

to the plane defined by the Z-axis and the vector or c followed by a rotation through angle 

a ,  about the X-axis to frame (Rx(a,)). The transformation from the fixed pivot to the 

moving pivot is through a link of twist (3,. It can be expressed by the 2R open chain in 

canonical form. Finally, the transformation from the fixed pivot to the tracer frame is 

through a rotation o f angle y, about the x-axis o f frame P x (Rx(Y/)X followed by a rotation 

o f angle a  about the y-axis (Ry( cr)), and a rotation o f angle i] about the z-axis (Rz(//)).
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Z X

Figure 3-10 The spherical left-hand side crank-coupler dyad.

In terms of quaternion products, we have

SL = S \ S S 2 (3-28)

where

5', = (0 , 0, sinvp,/2, cosi|/,/2)(sina,/2 , 0 , 0 , cosa ,/2)

S2 = (siny,/2, 0, 0 , cosy,/2)(0, sina,/2 , 0 , cosa,/2)(0, 0, sinp,/2, cosp,/2). 

Eq.(3-28) can also be written as a linear transformation of the vector S(a , 9, <f>) given in 

eq.(3-21):

SL= [C,]5 (3-29)

In terms of symbolized notations, we have

[ c , j  -  [ i y  * 'i)+ ]R x[(“ i)+]R z iO 'r ] R y [ ( o i_ ] [R x [ (T in  (3_30)

Again, there exists a constraint manifold equation similar to eq.(3-25) based on quaternion 

product SL. Written in quadratic form, it becomes

* i 7[£?i]*i = 0 (3‘31)

where vector X, is a linear transformation of vector X  such that

X x = [C,]X (3-32)

This transforms the coefficient matrix [O] of eq(3-3 1) to

(3-33)
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All the matrices in eq.(3-30) are orthogonal transformations, therefore [C,] is an 

orthogonal matrix and [C,]w = [C,]r , so

m  = [Ci][Q]([C,])T (3-34)

3.3.3 Constraint Manifold of the Right-Hand Side Crank-Coupler Dyad

The constraint manifold o f the right-hand side crank-coupler dyad (Figure 3-11) is 

developed by considering the transformation from the reference frame through a rotation 

of angle y/2 about the Z-axis (symbolized as Rz( ^ 2)) such that the A-axis is perpendicular 

to the plane defined by the Z-axis and the vector o2-c, followed by a rotation about the 

A-axis to frame 0 2 (Rx( a 2)). The transformation from the fixed pivot to the moving pivot 

is through a link o f twist /?•>. Finally, the transformation from the fixed pivot to the tracer 

frame is through a rotation of angle (-y,) about the x-axis o f frame P2 (Rx(-y •-,)), followed 

by a rotation a  about they-axis (Ry(a)), and a rotation 77 about the z-axis

Z
f t

Figure 3-11 The right-hand side crank-coupler dyad.

In terms o f quaternion products, we have 

S iS| iS .s2 (3-35)
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where

Sj = (0, 0, sinv|/2/2 , cosv|/2/2)(sina2/2, 0 , 0, cosa2/2)

S2 = (-siny2/2 , 0 , 0 , cosy2/2)(0, sina/2 , 0, cosa/2)(0, 0 , sinp/2, cosp/2).

SR can be written as a linear transformation o f the vector S(a, 6, <j>) given in eq.(3-19):

S j r  [C2)S (3-36)

In terms o f symbolized notations and matrix form o f quaternions, we have

[C2] = [Rz(v|/2)+]Rx[(a2)+]Rz[(//)-]Ry[(c7r ] [ R x[(-y2)-] (3-37)

The constraint manifold equation similar to eq.(3-19) based on quaternion product SR. 

Written in quadratic form, this equation becomes

*2 = 0 (3-38)

where vector X j  is a linear transformation of vector X such that

-  [C2]X (3-39)

This transforms the coefficient matrix [0\  o f eq.(3-38) to

m  = ([c2r ) T[0]{[c2]->) (3-40)

Again, all the matrices in eq.(3-37) are orthogonal transformations, therefore [C\] is an 

orthogonal matrix and [C2\ ‘ = [C2]1, so

[02] = [C2][0][C2V  (3-41)

3.4 Constraint Manifold of a Spatial Four-Bar Mechanism

We next consider the constraint manifolds of three-dimensional mechanisms. A general 

spatial four-bar mechanism consists of four cylindrical joints which allow two different 

motions, rotation and translation, between two links (Figure 3-12). In general, the four 

axes o f the spatial mechanism are not parallel with each other nor do they intersect at a 

point. If  the four axes o f the mechanism were parallel with each other, the mechanism 

would be a planar four-bar mechanism. If the four axes of the mechanism intersected at a 

common point, the mechanism then would be a spherical four-bar mechanism.



M

Figure 3-12 A general spatial four-bar mechanism.

Figure 3-13 A 2C spatial open chain
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3.4.1 Constraint Manifold of a 2C Spatial Open Chain

The constraint manifold o f a spatial four-bar mechanism is based on a two-cylindrical joint 

(2C) open chain (Figure 3-13). The structure equation o f a 2C open chain is obtained by a 

screw displacement through a dual angle 9  = 9  + e d  with respect to a z-axis aligned with 

the base joint, followed by a screw displacement o f P  = P+ e b along the x-axis aligned 

with the length o f the link, and a screw displacement with respect to the axis o f the joint 

with the coupler through a dual angle 0 = 0 + e / ,  which can be written as a product of 

dual quaternions:

S = Z(9)X(P)Z(0)  (3-42)

or

S = (0, 0, sin6?/2, cos#/2)(sin/?/2, 0, 0, cosy0/2)(O, 0, sin 0/2, cos 0/2) 

Expanding the quaternion product we have the parameterized surface

s C p , o ,  h  = (5 j(y3 , &, h  s 2 i h  0 ,  h  0 ,  h  0 ,  h )  (3-43)

where

~ ~ - P  9 - 0
S i (p ,  9, 0)  = sin(y) cos(—^—),

~ P 9 —0
S2i P t 9 , 0 )  = sin(y) sin( ^ ),

 ̂ P 9+6
S3(P, 9, 0) = cos(y) sin(— ),

~ ~ „ p  9+0  
S4(P, 9, 0) = cos(y) cos(—— ).

Angles 9 and 0 in eq.(3-43) can be eliminated to obtain the algebraic form of the 

constraint manifold parameterized by angle p :

cos2 i ~ ) ^ \  + cos;! “  s‘n2 (^ )^ 3  "  s 'n 2 ( “ )^4 “  0 (3-44)
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This equation can be written as the quadratic form 

X [ 0 ] X T = 0

where the points in the image space are represented by the vector 

X = ( x , y J , w ) (3-46)

(3-45)

and the 4 x 4 coefficient matrix

cos" { p / 2 ) 0

cos2 (/?/ 2 ) 
0 

0

0

0

- s in 2 (y^/ 2 ) 
0

0

0

0

- s in 2 ( /? /2 )

(3-47)

0

Again, the canonical form of eq.(3-47) is the result o f the choice o f fixed and moving 

frame. For motion synthesis o f mechanisms, we have to move the moving frame from the 

moving joint to the tracer frame and move the fixed frame from the fixed joint to the 

global reference frame. This can be done by linear transformations o f eq.(3-47). 

Therefore, two dual constraint manifolds can be obtained by the dual quaternion operators 

from the reference frame through each leg to the tracer frame. We also have two 

constraint equations associated with the dual quaternion space:

Eq.(3-48) comes from the definition o f the dual part of dual quaternions (eq.(2-33)) and 

eq.(3-49) is the constraint equation for the normalized coordinates.

Since each dual equation can be separated into two equations, we have a total of 

six equations in the eight-dimensional image space resulting in two degrees o f freedom 

(DOF) for general three-dimensional spatial four-bar mechanisms. If we fixed one 

rotation or one translation in any joint o f the spatial four-bar mechanism, one more 

constraint equation will be needed to reduce the motion to only one DOF. The method

and

X x X*  + X 2 X l  + X 3 X°3 + X°4 = 0

X f  + X ;  + X -  + X]  - 1 = 0

(3-48)

(3-49)
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applied to the general spatial four-bar mechanisms can also be applied to more 

complicated spatial mechanisms such as the RSSR-SS mechanism shown in Figure 3-14. 

Three eight-dimensional constraint equations can be obtained by the coordinate 

transformations from the reference frame to the tracer frame through the three legs and 

additional two four-dimensional constraint manifolds can also be obtained by planar 

quaternions through the two revolute-joint legs. A total o f seven equations, including 

eqs.(3-48) and (3-49), can be formulated in the eight-dimensional image space resulting in 

a one DOF motion for the RSSR-SS spatial mechanism.

z  y  ( m- , eh, v>

Figure 3-14 A RSSR-SS mechanism,



CHAPTER 4

CURVE FITTINGS IN IM AGE SPACE

4.1 Introduction

By means o f kinematic mapping, the prescribed situations o f the tracer frame o f a 

mechanism can be mapped onto points. The motion o f the tracer frame becomes a curve 

in the mapped space. Therefore, the problem of motion synthesis becomes one o f finding 

a curve which passes through, or as close as possible to, the prescribed points. Although a 

space curve can be represented in many ways, it is convenient for us to use the constraint 

manifold equations derived in the last chapter for the motion synthesis problems. The 

image space curve can be obtained by the intersection of the constraint surfaces 

represented by the constraint manifold equations. It is known that when the total number 

o f prescribed positions is five or less, an image curve can be found to pass through these 

prescribed image points and an exact solution can be obtained. When the number o f the 

prescribed positions is more than five, in general there is no exact solution and we have to 

seek a best-fit curve in the image space for an approximate solution. The normal curve 

fitting method (Ravani and Roth, 1983) is used to formulate an error function to represent 

the summation of the square of the normal distances between prescribed points and the 

fitted curve in the image space. The solution is found by minimizing the error function 

using nonlinear least square algorithms (Figure 4-1).

4.2 Curve Fitting in the P lanar Q uaternion Image Space

A general planar four-bar motion can be mapped onto a curve in the image space. The 

quadrics in eqs.(3-l 1 and 3-17)

X 1 [Q,(r)]X = 0 ,  and X r[02{r)]X = 0 (4-1)

are functions of the design parameter vector r  = r2, where m is the total number

40
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of design parameters and X  = [XJt X 2, X 3, A"Jr is the vector o f image space coordinates. 

The synthesis problem is to determine a curve which passes through, or as close as 

possible to, a set of n prescribed points X d. We now rewrite eq.(4-l) as

O, (X,r) = 0

0 2 (X, r) = 0 (4-2)

We also have the constraint equation for the normalized coordinates from the mapping of 

the planar motion:

H  = X \  + X -  -1 = 0 (4-3)

Using Taylor series to expand equations (4-2) and (4-3) about a desired point X d and 

neglecting higher order terms, we have

4 fX)
Qi = o = Q ,(xd) +

<=l UA'
(X . ’ X J

and

4 /XI
o 2 = 0 = o , ( X J  +

, = /  O A '

H  = 0 = 2 £ { X , A X , - X J J
r - 3

(4-4)

(4-5)

These surfaces are now approximated by the tangent hyperplanes at Xd. Combining 

equations (4-4) and (4-5), we have a set of three equations which can be written in matrix 

form as

J  A = V (4-6)
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where

J  =

cX, oX2 dX3 3X,
d 0 2 c 0 2 c 0 2 cQ2
dX, cX, cXy e x A

0 0 2 X 3 2 X A

(4-7)

-V=.V,,

A = [ A X x A X 2 A X 3 A X 4]7 (4-8)

and

v = [ - O l( Xd) - Q 2(X d) O f  (4-9)

Eq.(4-6) is a system of three equations in four unknowns and thus has an infinite number 

o f solutions, where A = A' - X d is the normal error vector. The distance between a 

prescribed point X d and the image curve is defined as the square root o f A TA, i.e. 

(AA',2 + AX; + A X 3 + A X 4 )f/~. To determine the minimum distance between each point 

o f X j  and the fitting curve, we can use the minimum-norm pseudo-inverse o f  J. The error 

term A  is obtained by premultiplication o f eq.(4-6) by J 1

J TJ A = f V  (4-10)

and premultiplication by the factor

A -  ( f j y ' f  V  (4-11)

then

A =(JrJ)'\F r V  (4-12)

The approximation error function at each point X d becomes

e2 -  A rA (4-13)

The image curve that best fits through all prescribed points is found by minimizing the sum 

o f the normal distance errors at each o f the n prescribed image points. The total error is 

defined as the sum o f the squares o f each local error function.
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E =  £<?,2 = Z A rA (4-14)/=] 1 = 1

It should be noted that the errors measured are in the image space and not in the physical 

space. The design problem becomes the search for a set of design parameters which will 

minimize eq.(4-14).

4.3 Curve Fitting in the Quaternion Image Space

For spherical four-bar mechanisms, we have two constraint manifold equations similar to 

eq.(4-l) and the constraint equation for the normalized coordinate o f a spherical motion in 

the image space:

H  = X ;  + X \  + X ;  + X \  - 1  = 0 (4-18)

We follow the same procedures outlined in the last section to formulate the error function 

for spherical motions except that the third equation is replaced by eq.(4-18). The 

minimum norm solution A  can be obtained from eq.(4-12) and the sum of normal distance 

error from eq.(4-14).

4.4 Curve Fitting in the Dual Quaternion Image Space

For spatial mechanisms, the curve fitting technique is applied to the dual quaternion image
A

space. A general surface Q in dual image space F  is the locus of the points satisfying an 

equation o f the form

& ( X h X :J sJ 4 ) ~  0 (4-19)

The above equation can be expanded as

Q ( X l , X 2, X 3, X 4) + e Q ° ( X l l X 2, X J , X 4, X ' ; , X % X oJ , X ° )  = 0 (4-20)

The primary component and dual component both vanish. Therefore, we have

r q ( X ) = o
i J - (4-21)1 Q ( X ) = 0

where X = ( X „  X 3, X 4) and X  = (Xh X 2, X s, X 4, X°„ X°2, X°}, X°J.
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A general curve k in the dual image space is the locus o f points satisfying two dual 

equations, which imply four real equations:

\ Q , ( X ) = o
Q ? ( X ) = o
Q i ( X )  =o  
Q °( X  )  = 0

(4-22)

Expanding the approximating curve k  in Taylor series about the desired points X d, or 

X d , and neglecting the higher order terms results in:

Qi 0 = Q,{Xd) + (X, - X J (4-23)
A \ = A \

Q° = 0 = Q ° ( X d) + Z
dX.

(X ,  - x , d) +
8Q\0

i j/i
dX°

( x,° - x : d )
y 0 _ v 0
Kl - A l(t

q 2 = o = Q2{x / z % t (X, - X J

(4-24)

(4-25)

Q° =0=Q°} ( X d) + £
1=1 dX.

(  X , -  X ul) + <%>°2

X. -X , dX°
(X°, - X uHi) (4-26)

X cj and X c/ should satisfy two other conditions which are the fundamental relation of the 

dual quaternion and the condition for the normalized Euler parameters:

X,  X °  + X 2 X°2 + X j  X °  + X  4 X I  = 0 (4-27)

X f  + X;  + X ]  + X:  = /  (4-28)
A

Expanding eqs.(4-27 and 4-28) in Taylor series about the desired points X c/, or X j, and 

neglecting the higher order terms results in:

4

I
1= i

(4-29)
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2 Z [ X , d( X , - X ld)] = 0 (4-30)

Combining eqs.(4-23 to 4-28), we have a set o f six equations which can be written as a 

matrix form:

JA = V  (4-31)

where

and

with

J=

Qn Qn Qn Qn 0 0 0 0

Qn Qn Qn 0 1 o° 0 °  ~ 120 o ° 0 °~N"
Qn Qn Qn Qn 0 0 0 0
o ° o °~22 0 ° o °\C24 Q% Q0n° Q l°
x ° d X°2d x ° d X L X u X M x 3d x dd

2 X U 2 X ld 2 X SJ 2 X 4d 0 0 0 0

[A*, a x 2 a x 2 A X 4 A X ° a x °2 A X ° A X °

[ -a- -Q° - Qi  - 0 °  0 °]

= o ° ( x d) , d 2 = Q2( x d) , 0 °2 = q °2( X d )

(4-32)

(4-33)

(4-34)

(4-35)

and

i AX,  =X , i s. A X °  = X? -X°,d

o„ = dQ>
dX, ■V,=A-„(

Qn
cQ°

"  ax,
0  = * *
~ "u ^ A ' / U . V "

~ 3‘ dX, •v, - v,„
Ql

dO°2 
~ dX,

0
v v ’ d X 0, A'," - A',1,/ .

Eq.(4-31) is a system of six equations in eight unknowns and thus has an infinite number 

o f solutions. To determine the minimum distance between each point o f X (/, or X j, and
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the curve k ,  we again need to determine the minimum norm solution o f eq.(4-31). In 

view o f equations (4-12), the minimum norm solution A  can also be obtained as

A = (JTJ ) '] f  V  (4-37)
A

The approximation error function at each point X d, or X d, becomes

e2 = A tA

The curve fitting of the given points is found by minimizing the sum o f the normal distance 

errors at each of n prescribed image points:

E =  £ e f  = £ a tA (4-39)



CHAPTER 5

GLOBAL MINIMIZATION METHODS

The method presented in this study involves a search for the minimization o f the error 

function which consists o f a total least square problem. Three algorithms were explored 

for the purpose o f comparison: one is the well known Levenberg-Marquart algorithm, and 

the other two are newly developed artificial intelligence searching algorithms, the genetic 

algorithms and the simulated annealing methods.

5.1 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt (L-M) Algorithm (Dennis and Schnabel, 1983) was developed 

to solve nonlinear least squares problems. This algorithm is a modification o f the Gauss- 

Newton method. The problem is stated as follows:

where m > n, F: R" —> R"\  and f }{x) is the /-th component function of F{x). From a 

current point xc, the algorithm uses the trust region approach:

where jjc is a parameter to control the direction toward the steepest-decent direction and 

the step size. p c = 0 if Sc > ||(.7( jtc. )7 J ( x c) ) J ( x c )7 / " ' ( ) | 2 and juc. > 0 otherwise.

F(xc) and J(xc) are the function values and the Jacobian evaluated at the current point xc. 

This procedure is repeated until the stopping criteria are satisfied. The L-M algorithm

subject to | j r „  - * c||2 5  &c. 

where 5C is the maximal step length, or the trust radius.

A new point xn is obtained by:

xn = xc - (J{xl) !J{xl)  + lu jy 'J ix J 1 F{xc),

47
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may still be slowly convergent on large residual or very nonlinear problems. However, 

many implementations o f this algorithm, for example, MINPACK by More who used a 

scaled trust region to choose p c and 8C or the IMSL routine ZXSSQ or UNLSF, have 

proven to be very successful in practice. There are some merits that make the L-M 

algorithm better than the damped Gauss-Newton method on many problems. One is that 

the L-M method is well defined even when J(xc) does not have full column rank. Another 

is that when the Gauss-Newton step is much too long, the L-M step is close to being in 

the steepest-descent direction -  J(xc) F(xc). The Fortran program using L-M algorithm 

for synthesis o f planar mechanisms is listed in Appendix C.

5.2 Genetic Algorithms

Genetic algorithms (GA's) are adaptive search and optimization techniques based on the 

theory of natural selection and natural genetics (Goldberg 1989, Schraudolph and 

Grefenstette, 1992). As function optimizers, GA's are computational models that emulate 

biological evolutionary theories to solve optimization problems and are iterative 

procedures which maintain a population P  o f n candidate solutions of an objective 

function /:
P(t) = (jc  , ( / ) , * / / ) , .........

Each candidate structure jc , in population P(t) at time t is simply a binary string o f length /, 

where / is the length o f the coded design parameters analogous to a chromosome in 

genetics. Each jc , represents a vector of parameters of the function / ( jc ) ,  but the semantics 

associated with the vector is unknown to the GA. During each iteration step, called a 

generation, the performance (or fitness) o f each individual o f the current population is 

evaluated according to a fitness function, and, on the basis of that evaluation, a new 

generation o f candidate solutions is formed by some genetic manipulations including: 

reproductions, crossovers, and mutations. Termination o f the search procedure may be
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triggered by finding an acceptable approximate solution to^jc), by fixing the total number 

of evaluations, or some other application-dependent criteria.

A general schematic of this procedure is shown in Figure 5-1 (Filho, Alippi, and 

Treleaven 1993).

Population P ( t)
(Chromosomes)

N e w  G e n e r a t i o n D e c o d e  s t r i n g s

Evaluation
(Fitness)

Genetic Operators

G e n e t i c  '  
M a n i p u l a t i o n

R e p r o d u c t i o n

Selection
(M ating pool)

Figure 5-1 A typical GA cycle.

A typical GA contains the following steps:

1. Randomly generate a population of strings,
2. Evaluate each string based on a fitness function,
3. Select some good strings according to the evaluation,
4. Perform genetic manipulations,
5. Create a new population o f string.

5.2.1 R eproduction

The first generation P(0) o f this process is randomly generated as a starting point for the 

search process. From there on, the genetic operations, in concert with the fitness function, 

operate to improve the generation of potential solutions. The first genetic operation is 

reproduction which is to produce the next generation based on the evaluation o f each 

individual o f the previous generation by a selection procedure. Those who have better 

performance in the parent generation will have a higher probability to be appear in the



50

child generation. That is, if x  has twice the average performance o f all the structures in 

P(t), then it is expected to appear twice in population P(t+1). At the end o f the selection 

procedure, population P (/+ /) contains exact duplicates o f the selected structures in 

population P(/).

5.2.2 Crossover

in order to search other points in the search space, some variation is introduced into the 

new population by means o f idealized genetic operators. The most important operator is 

called crossover. Under the crossover operator, two structures in the new population 

exchange portions o f their binary representation. This can be implemented by choosing a 

point at random, called the crossover point, and exchanging the segments to the right o f 

this point. Figure 5-2 shows the crossover operation between two chromosomes.

Parents Children

cooco@®
Crossover Point 

Figure 5-2 Crossover operation between two chromosomes.

5.2.3 Mutation

Mutation is another genetic operator and is implemented by occasionally altering a random 

bit in a string. Figure 5-3 presents the mutation operator being applied to the sixth 

element o f the string.

M O O O M
1•*cc«c»

Figure 5-3 Mutation operation of a chromosome.
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The description of the GA given in this section presents an overall idea o f the steps needed 

to design a genetic algorithm. However, real implementations have to consider a number 

o f problem-dependent parameters such as the population size, crossover and mutation 

rate, convergence criteria, etc. GA's are very sensitive to most o f these parameters. 

Methods o f setting them up is still an active research topic. In our study, we had 

difficulties to obtain the optimal solution without reducing the number o f  design variables. 

We tried different values o f these genetic parameters but no clear trend is found. Using 

genetic algorithms for optimization problems can be found in Back and Schwefel (1993), 

Leu, wong, and Ji (1993) and many others.

5.3 Simulated Annealing Methods

The adaptive simulated annealing (ASA) algorithm developed by Ingber (1993) was also 

used in this study. Simulated annealing (SA), motivated by an analogy to the physical 

process o f annealing a material, uses temperature cooling operations to transform an initial 

poor solution into a high quality global solution. The SA algorithm starts at some high 

temperature T0 given by the user. L e t /b e  the function to minimize. SA conducts an 

iterative random search procedure with adaptive moves along the coordinate directions 

from an arbitrarily selected solution and then evaluates the resulting change in the 

objective function A f  If A f  < 0, the new solution is accepted as the starting point for the 

next move. However, if A f > 0, the move is accepted with probability P(A/) = e~A/tT 

which permits uphill moves under the control of the probabilistic criteria, where T  is the 

temperature which controls the state generation and state acceptance. Therefore, a move 

toward a state which increases the objective function can be accepted occasionally. This 

uphill move allows the procedure to escape from local minima and more effectively search 

the function space to find the global minimum. By gradually lowering the temperature, 

fewer uphill moves are allowed, and the likelihood that the solution approaches a global 

optimum increases. Finally, when the temperature reaches zero, only downhill moves are
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permitted and the system finds the lowest minimum. The ASA has exponentially 

decreasing temperature T schema with respect to annealing time / which is faster than the 

traditional (Boltzmann) annealing where annealing schedule decreases logarithmlically. 

Recent research (Ingber, 1989, Ingber and Rosen, 1993) has shown that SA is more 

efficient than a standard genetic algorithm.



CHAPTER 6

NUMERICAL EXAMPLES

Numerical examples are presented to complete the whole idea of this approach. We still 

start with planar mechanisms which are displayed numerically and graphically. For 

spherical mechanisms only numerical data are shown.

6.1 Construction of Planar Mechanisms

After obtaining the numerical results from the optimization routine, we can then construct 

the mechanism. The set o f design parameters for planar mechanisms are X  = [x,, y x, a x, 

bx, x2, y 2, a2, b2, h, jj\. The parameters ( x,, y x ) and ( x2, y 2 ) are coordinates o f the two 

fixed pivots and the parameters a x and a2 are the link lengths o f the input and the output 

cranks which are also the radii for drawing the crank circles. The parameters used for 

constructing the coupler are lengths bx, b2, and h. The orientation o f the tracer frame with 

respect to the fixed frame is denoted by the angle r\.

There are no constraints associated with these parameters except that a, and a2 have 

to be positive in order to draw the crank circles. The configurations o f the coupler for 

positive or negative b ,, b2, /?, and r\ are shown in Figure 6-1, 6-2, 6-3, and 6-4, 

respectively.

Figure 6-1 The configuration of the coupler for a positive or a negative b,.

Figure 6-2 The configuration of the coupler for a positive or a negative b2.
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+h

L
Figure 6-3 The configuration o f the coupler for a positive or a negative h.

L t 11

h \

b2
Figure 6-4 The configuration o f the tracer frame for a positive or a negative 7 .

To verify the synthesis of the mechanism, we simply draw the tracer frame and the coupler 

at each and every prescribed position and orientation. If a valid solution exists, the 

moving pivots should be located on, or as close as possible to, the path o f the crank 

circles. A program written in Quickbasic is also developed to animate the motion of the 

planar four-bar mechanism for verification.

6.2 P lanar Mechanisms Examples

For motion synthesis problems, if the number o f positions and orientations is less than five, 

graphical methods, analytical methods or software packages work well. Numerical 

methods are suitable for problems with five or more positions. Five, six, and ten positions 

are presented in the following examples using Levenberg-Marquart algorithm to illustrate 

our approach.

Example 1. For a five-position synthesis problem, the prescribed orientations and 

positions and their corresponding image point coordinates are listed in Table 6-1.

As we mentioned in last chapter, the results of the global algorithms are greatly 

affected by the initial guesses. In the examples we used the Lincages-4® software to 

obtain the fixed pivots, (x{, y x) and (x2, y 2), and crank lengths, a t and a2, for any
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combination o f four positions out o f the given five positions as our initial guesses for these 

parameters. There are a total o f five different initial guesses as shown in Table 6-2. Since 

there are an infinite number o f solutions for the four positions synthesis, we still have free 

choices. The parameters />,, b2, h , and r\ associated with the dimensions o f the coupler are 

random guesses. The solutions for five positions synthesis are listed in Table 6-3. Two 

solutions, case 1 and 2, are illustrated in Figure 6-1. Other solutions are shown in 

Appendix-A.

Table 6-1 The prescribed situations (&h ah bj) and their corresponding image point 
coordinates Xh i = 1, 2,..4, for example 1.

Position <9(deg) a  ( c m ) b ( c m ) * 2 * 3 * 4

1 0 . 0 -19.21 -1.68 -9.605 -0.840 0 . 0 0 0 1 . 0 0 0

2 -27.3 - 1 5 . 3 4 11.38 -8.796 3.719 - 0 . 2 3 6 0.972
3 - 3 7 . 0 - 1 2 . 5 8 14.28 -8.231 4.775 -0.317 0.948
4 -58.1 -4.83 18.28 -6.549 6.817 -0.486 0.874
5 -94.9 7 . 8 8 17.09 -3.631 8.681 -0.737 0.676

Table 6-2 Initial guesses o f the design parameters for the five-position example.
C a s e l ’o s .

* 1 y\ °\ b \ * 2 y i a2 2 h 7
1 1 2 3 4 4 . 6 7 - 7 . 0 1 4 . 0 4 1 0 . 0 1 . 7 8 - 4 . 6 8 2 . 5 9 1 5 . 0 2 4 . 0 0 . 0

2 1 2 3 5 5 . 3 6 - 4 . 7 2 3 3 . 2 1 1 0 . 0 1 9 . 1 2 7 . 6 8 3 1 . 6 9 1 0 . 0 1 0 . 0 0 . 0

3 1 2 4 5 0 . 4 9 - 3 . 0 6 6 6 . 6 9 3 0 . 0 2 . 6 2 - 0 . 0 2 4 . 3 8 3 0 . 0 2 0 . 0 0 . 0

4 1 3 4 5 1 . 6 9 - 4 . 3 1 1 3 . 5 4 1 0 . 0 3 . 1 6 - 0 . 7 3 3 . 2 1 1 0 . 0 1 0 . 0 0 . 0

5 2 3 4 5 3 . 1 8 - 2 . 7 8 1 . 9 1 3 0 . 0 0 . 2 1 - 2 . 8 4 2 . 5 6 3 0 . 0 1 0 . 0 - 1 0 . 0

Tab e 6-3 Solutions for the five-position example for different initial guesses.
Design parameters

C a s e s x l y \ a, bl X , y? a , h h 7 error
1 0 . 3 2 - 2 . 7 2 1 4 . 0 4 0 . 8 5 3 . 5 1 1 . 6 9 7 . 9 3 1 3 . 1 9 8 . 7 3 - 5 2 . 5 8 1 . 5 0 x 1 0 - 3

2 5 . 1 1 - 5 . 5 1 3 9 . 6 3 1 3 . 4 1 2 8 . 8 3 1 6 . 7 7 4 5 . 9 8 1 8 . 2 0 2 2 . 4 6 - 1 1 . 5 5 6 . 9 4 x 1 0 - 3

3 0 . 7 2 - 0 . 8 0 7 . 3 0 - 1 2 . 8 8 - 4 . 7 4 - 1 . 5 3 1 2 . 7 3 2 7 . 1 0 1 . 1 4 1 . 4 1 5 . 5 0 x 1 0 - 3

4 3 . 7 0 - 5 . 0 6 4 5 . 3 4 3 1 . 0 5 1 . 4 9 - 4 . 1 5 2 6 . 0 7 - 1 2 . 0 5 6 . 2 5 - 5 0 . 5 7 8 . 9 8 x 1 0 - 4

5 0 . 4 7 - 3 . 2 1 1 8 . 1 0 3 . 5 9 2 . 7 8 1 . 0 5 7 . 0 6 1 2 . 9 9 8 . 0 1 - 4 3 . 7 0 6 . 0 4 x 1 0 - 4
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Example 2. Another situation is added to those o f example 1 to consider the case o f six- 

position synthesis (Table 6-4). It is impossible to synthesize a six-position problem using 

analytical methods. We again used the Lincages-4® software to obtain the fixed pivots, 

(Xj, y x) and (x2, y 2), and the crank lengths, a x and a2, for any combination o f four positions 

out o f the six positions as our initial guesses for these parameters. There are a total of 

fifteen different combinations as shown in Table 6-5.

Table 6-4 The prescribed situations and their corresponding image point coordinates for
the six-position problem.
Position Q(deg) a ( c m ) b ( c m ) X* X*

i 0.0 -19.21 -1.68 - 9 . 6 0 5 -0.840 0.000 1.000
2 -27.3 -15.34 11.38 -8.796 3.719 -0.236 0.972

3 -37.0 -12.58 14.28 -8.231 4.775 -0.317 0.948

4 -58.1 -4.83 18.28 -6.549 6.817 -0.486 0.874

5 -94.9 7.88 17.09 -3.631 8.681 -0.737 0.676

6 200.0 8.78 7.91 1.214 -10.116 0.961 -0.276

Table 6-5 Initial guesses o f design parameters for the six-position example.
C a s e P o s . X , y\ ° \ b\ * 2 T?1 a 2 b2 h 7

1 1 2 3 4 4 . 6 7 - 7 . 0 1 4 . 0 4 1 0 , 0 1 . 7 8 - 4 . 6 8 2 . 5 9 1 5 . 0 2 4 . 0 0 . 0

2 1 2 3 5 5 . 3 6 - 4 . 7 2 3 3 . 2 1 1 0 . 0 1 9 . 1 2 7 . 6 8 3 1 . 6 9 1 0 . 0 1 0 . 0 0 . 0

3 1 2 3 6 0 . 2 2 7 . 4 6 3 0 . 1 9 3 0 . 0 - 4 . 3 6 - 2 . 1 4 1 7 . 8 9 3 0 . 0 4 0 . 0 - 5 0 . 0

4 1 2 4 5 0 . 4 9 - 3 . 0 6 6 6 . 6 9 3 0 . 0 2 . 6 2 - 0 . 0 2 4 . 3 8 3 0 . 0 2 0 . 0 0 . 0

5 1 2 4 6 0 . 8 5 - 2 . 8 6 1 4 . 2 5 1 0 . 0 2 . 0 5 0 . 7 0 6 . 5 2 1 0 . 0 1 0 . 0 0 . 0

6 1 2 5 6 2 . 1 5 - 4 . 4 1 3 0 . 5 9 1 0 . 0 2 0 . 8 5 1 9 . 3 8 4 1 . 8 7 1 0 . 0 1 0 . 0 0 . 0

7 1 3 4 5 1 . 6 9 - 4 . 3 1 1 3 . 5 4 1 0 . 0 3 . 1 6 - 0 . 7 3 3 . 2 1 1 0 . 0 1 0 . 0 0 . 0

8 1 3 4 6 1 . 0 2 - 3 . 9 1 2 8 . 0 6 5 . 0 - 4 . 3 5 0 . 3 6 3 3 . 6 7 5 . 0 5 . 0 - 1 0 . 0

9 1 3 5 6 1 . 2 0 - 3 . 9 2 2 7 . 3 7 1 0 . 0 - 3 . 8 3 4 . 5 5 2 3 . 8 4 1 0 . 0 1 0 . 0 0 . 0

1 0 1 4 5 6 1 . 6 3 - 4 . 1 8 3 0 . 6 3 1 0 . 0 - 3 . 2 7 4 . 9 9 1 7 . 6 2 1 0 . 0 1 0 . 0 0 . 0

1 1 2 3 4 5 3 . 1 8 - 2 . 7 8 1 . 9 1 3 0 . 0 0 . 2 1 - 2 . 8 4 2 . 5 6 3 0 . 0 1 0 . 0 - 1 0 . 0

1 2 2 3 4 6 3 . 2 8 - 3 . 0 8 1 2 . 4 1 1 0 . 0 - 0 . 7 6 - 1 . 3 5 1 2 . 9 6 1 0 . 0 1 0 . 0 0 . 0

13 2 3 5 6 1 . 9 1 0 . 0 5 6 . 7 5 1 0 . 0 - 0 . 3 4 - 1 . 4 3 1 1 . 7 6 1 0 . 0 1 0 . 0 0 . 0

14 2 4 5 6 4 . 4 5 0 . 0 8 1 1 . 2 1 1 0 . 0 - 4 . 4 4 3 . 7 4 8 . 8 7 1 0 . 0 1 0 . 0 - 1 0 . 0

15 3 4 5 6 4 . 6 7 0 . 3 3 1 1 . 7 2 1 0 . 0 - 4 . 5 9 4 . 0 3 8 . 1 6 1 0 . 0 1 0 . 0 0 . 0
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Tab e 6 -6  Solutions for the six-position exam ple with different initial gu esses (E P S=  10~6)
D esign  parameters

errorX ,
y \ a \ b \ X ? y 2 « 2 h h ;7

1 0.322 -2.724 14.038 0.845 3.510 1.690 7.932 13.185 8.732 -52.582 1.50x10-3
2 5.110 -5.506 39.635 13.405 28.826 16.766 45.977 18.196 22.459 -11.546 6.94x10-3
3 0.720 -0.796 7.303 -12.879 -4.736 -1.534 12.732 27.099 1.136 1.413 5.03x10-3
4 3.347 -4.662 53.399 38.850 2.233 0.700 6.652 12.064 8.893 -44.548 4.64x10-4
5 0.466 -3.206 18.101 3.592 2.783 1.045 7.061 12.991 8.013 -43.799 6.04x10-4
6 2.171 -4.413 34.076 10.676 23.892 22.335 43.507 22.280 17.884 -6.414 1.17x10-3
7 0.508 -3.139 18.808 4.161 2.370 0.801 6.728 12.678 8.088 -41.640 4.01x10-4
8 3.364 1.402 7.754 13.179 0.223 -2.576 14.045 0.738 -8.682 129.18 9.07x10-4
9 0.907 -3.628 21.288 6.381 2.501 0.894 6.819 12.828 7.981 -41.930 3.79x10-4

10 1.432 -4.017 26.859 11.808 2.251 0.723 6.655 12.596 8.066 -40.888 2.91x10-4
11 -0.511 -2.622 20.886 7.935 6.102 -1.282 19.325 27.953 5.592 -51.228 8.51x10-3
12 0.188 -2.895 15.979 1.823 2.934 1.100 7.188 12.938 8.252 -45.619 1.91x10-3
13 0.800 -3.533 22.020 7.158 2.414 0.808 6.781 12.818 7.907 -41.136 2.49x10-4
14 0.605 -0.893 7.298 -12.977 -4.516 -0.584 14.555 28.939 1.009 1.607 4.66x10-3
15 0.668 -1.016 7.32 -12.85 -4.36 -1.25 15.92 30.63 1.89 -1.71 5.93x10-3

Table 6-7 S olutions for the six-position exam ple with different initial gu esses (E P S=  10-7).

Case

D esign  parameters
errorx l y i

a, b l Xj y? ° ? b-, h n
1 0.234 -2.603 14.373 0.864 3.240 1.345 7.636 13.137 8.595 -49.51 8.56x10-4
2 4.348 -5.286 44.671 21.089 32.120 24.497 51.749 17.462 22.645 -17.09 2.20x10-3
3 0.720 -0.796 7.303 -12.879 -4.736 -1.534 12.732 27.099 1.136 1.413 5.03x10-3
4 3.347 -4.662 53.399 38.850 2.233 0.700 6.652 12.064 8.893 -44.55 4.64x10-4
5 0.358 -2.953 16.456 2.229 2.855 1.111 7.157 12.989 8.214 -45.21 5.28x10-4
6 0.213 -2.743 15.481 -7,347 17.239 19.514 38.740 30.446 4.132 24.66 1.15x10-3
7 0.190 -2.685 14.466 0.985 3.282 1.216 7.616 13.093 8.623 -49.31 1.19x10-3
8 0.152 -2.438 12.941 3.056 8.737 0.682 47.170 53.710 8.471 -73.02 2.10x10-3
9 0.332 -2.758 14.576 1.027 3.245 1.438 7.584 13.080 8.602 -49.97 8.78x10-4

10 1.432 -4.017 26.859 11.808 2.251 0.723 6.655 12.596 8.066 -40.888 2.91x10-4
11 -0.511 -2.622 20.886 7.935 6.102 -1.282 19.325 27.953 5.592 -51.23 8.51x10-3
12 0.306 -2.726 14.508 0.966 3.293 1.447 7.661 13.093 8.603 -50.05 8.82x10-4
13 0.175 -2.626 14.298 0.901 3.423 1.307 7.801 13.224 8.611 -50.10 8.71x10-4
14 0.667 -0.927 7.281 -12.94 -4.517 -1.164 14.513 29.069 1.335 0.30 4.43x10-3
15 -0.030 -2.733 17.511 -4.835 10.341 17.451 32.831 30.312 7.013 14.84 1.97x10-3

Solutions for the six-position  problem are listed in Table 6-6 and Table 6-7 by using 

different values o f  EPS in the stop criteria. EPS is the second stop criterion in the IMSL  

routine. The program convergence condition is satisfied if  on tw o su ccessive iterations, 

the residual sum o f  square estim ates have relative difference less than or equal to EPS. In 

Table 6-6 EPS =  10'6 is used as the stop criterion, w hile EPS = 10'7 is used in Table 6-7.
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Four graphical solutions are shown in Figures 6-6 and Figure 6-7 for cases 1, 2, 3, and 4. 

Other graphical solutions are shown in Appendix-B.

\

Case
Crank C ircles

Case 2

Figure 6-6 Solutions for the six-position synthesis problem.
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Case 3

Case 4

Figure 6-7 Solutions for six position synthesis problem.
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Example 3 Five more situations are added to the five situations o f example 1 for a ten- 

position synthesis problem as listed in Table 6-8 . Five runs with different initial guesses 

are tabulated in Table 6-9. It has been observed that some solutions resulted in essentially 

the same values as other solutions but with the order o f the parameters varied. After 

rearrangement, they all converged approximately to the same set o f design parameters. 

The average values o f the design parameters and their standard deviations are listed in 

Table 6-10. The graphical solution for the average values o f design parameters is shown 

in Figure 6-8 . A typical convergence diagram for the ten-position problem is shown in 

Figure 6-9. The convergence curves for five and ten-position problems, using the ASA 

algorithm, are shown in Figure 6-10. The design parameters found using the ASA 

algorithm is listed in Table 6-11.

Table 6-8 The situations and their image point coordinates for ten positions.
Position 0  (deg) a ( c m ) b ( c m ) *1 * 2 X , ^ 4

1 0.0 -19.21 -1.68 -9.605 -0.840 0.000 1.000
2 -27.3 -15.34 11.38 -8.796 3.719 -0.236 0.972

3 -37.0 -12.58 14.28 -8.231 4.775 -0.317 0.948

4 -58.1 -4.83 18.28 -6.549 6.817 -0.486 0.874

5 -94.9 7.88 17.09 -3.631 8.681 -0.737 0.676

6 212.0 18.78 7.91 1.214 -10.116 0.961 -0.276

7 171.8 21.80 -0.06 0.749 -10.874 0.997 0.071

8 92.0 12.55 -8.07 1.456 -7.317 0.719 0.695

9 20.0 -3.47 -12.76 -2.817 -5.982 0.174 0.985

10 6.0 -18.33 -5.79 -9.304 -2.411 0.052 0.999

Table 6-9 Solutions for the ten-position example with different initial guesses.

Case

Design parameters
errorX , y i a l b l X , y-> a 1 b , h 7

1234 10.460 -2.476 20.702 19.436 1.268 0.777 9.103 -0.656 11.545 -103.91 8.67x10-4

1235 10.459 -2.452 20.578 19.384 1.247 0.794 9.093 -0.694 11.535 -104.27 9.86x10-4

1245 1.255 0.817 9.112 0.776 10.449 -2.468 20.216 -19.106 11.523 -104.71 1.85x10-3

1345 10.494 -2.468 20.357 19.223 1.237 0.812 9.111 -0.748 11.530 -104.63 1.62x10-3

2345 1.267 0.758 9.107 -0.843 10.565 -2.439 20.574 19.516 -11.524 75.356 2.36x10-3

The solutions for case 1245 and 2345 can be rearranged as:
1245 10.449 -2.468 20.216 19.106 1.255 0.817 9.112 -0.776 11.523 -104.71 1.85x10-3

2345 10.565 -2.439 20.574 19.516 1.267 0.758 9.107 -0.843 11.524 -104.64 2.36x10-3
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Table 6-10 The average values X  o f the design parameters and their standard deviations 
a.

The average design parameters
errorxi y\ h l X ? y? hn h V

X 10.485 -2.461 20,485 19.333 1.255 0.791 9.105 0.743 11.531 -104.43 1.54x10-3

o 0,0475 0.0149 0.1953 0.1659 0.0133 0.0246 0.0077 0.0727 0.0090 0.3410 0.00062

Figure 6-8 The mechanism found to pass closely to the ten prescribed situations.
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Figure 6-9 A typical convergence diagram for the ten-position example.
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Figure 6-10 The convergence curves using the ASA algorithm.

Table 6-11 Optimal design parameters for five and ten positions.
D esign parameters

errorX j yi a l b l X-, y? a . b , h
5 * 10.01 -2.05 24.06 22.11 1.34 0.80 9.04 -0.80 11.73 -98.89 9.8x10-5

10* 10.47 -2.42 20.64 19.44 1.26 0.79 9.08 -0.69 11.55 -104.1 6.1x10-4

* Using the ASA algorithm.
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6.3 Numerical Examples for Spherical Mechanisms

Numerical examples for five and ten positions synthesis o f a spherical mechanism as 

discussed in chapter 3.2 are listed in Table 6-12 and Table 6-13. These examples are 

given in Bodduluri and McCarthy (1992). The optimal design parameters for the spherical 

mechanism is listed in Table 6-14.

Table 6-12 The prescribed rotation axes and angles and their corresponding image points

No.
Rotation axis Angle Image Point

« * " v U 7 (deg) * i X , * 3 * 4

1 0.000 0.000 0.000 0.00 0.000 0.000 0.000 1.000
2 0.124 -0.978 -0.164 25.66 0.028 0..217 -0.036 0.975
3 -0.018 -0.999 0.025 71.73 -0.011 -0.586 0.015 0.081
4 -0.762 -0.648 -0.001 80.20 -0.491 -0.417 -0.005 0.765
5 -1.000 0.000 0.000 89.10 -0.702 0.000 0.000 0.713

Table 6-13 The prescribed rotation axes and angles and their corresponding image points

No.
Rotation axis A ngle Im age Point

«Y "v Uy (deg) X, x , X, *4
1 0.000 0.000 0.000 0.00 0.000 0.000 0.000 1.000
2 0.143 -0.966 -0.215 22.38 0.028 -0.187 -0.042 0.981
3 0.060 -0.995 -0.077 48.34 0.025 -0.41 -0.031 0.912
4 -0.018 -0.999 0.025 71.73 -0.011 -0.586 0.015 0.810
5 -0.484 -0.873 0.051 82.59 -0.320 -0.576 0.033 0.751
6 -0.762 0-0.648 -0.001 80.20 -0.491 -0.417 -0.005 0.765
7 -1.000 0.000 0.000 89.10 -0.702 0.000 0.000 0.713
8 -0.767 0.460 0.448 63.35 -0.403 0.242 0.235 0.851
9 -0.578 0.623 0.528 43.31 -0.213 0.230 0.195 0.929
10 -0.369 0.801 0.470 18.95 -0.061 0.132 0.077 0.986

Tab e 6-14 The optimal design parameters for spherical four-bar mechanisms.
Design parameters

errorM'i a , Pi Y, Vj/, a , P? Y7 a T1
5* 33.11 35.11 42.05 105.03 166.06 93.78 62.63 126.07 159.84 154.67 8.56x10-9

10* 34.41 34.10 41.87 -106.46 157.28 93.72 72.08 -124.85 -157.20 -28.41 3.75x10-7

* Using the ASA algorithm.



CHAPTER 7

CONCLUSIONS AND DISCUSSIONS

This study furthers the development o f curve-fitting in the image space by using constraint 

manifold equations as a technique for the motion synthesis o f  mechanisms. There are 

some basic advantages in using constraint manifold equations for solving mechanism 

synthesis problems. First, they can be derived easily using quaternion algebra. Second, 

they are functions o f the link and joint variables o f  the mechanism, which are the design 

parameters for the motion synthesis problem, Finally, the constraint manifolds are actually 

the structure equations resulting from the relationship o f the tracer frame to the reference 

frame which represents the geometry of the mechanism explicitly.

Integration o f kinematic mappings with the theories o f quaternion algebra is one of 

the contributions o f this study to the field o f kinematic synthesis. The general idea is to 

convert the prescribed situations in real space to points in an image space. By using 

quaternion algebra we then curve fit a system o f equations to the points in the image 

space. The parameters o f these equations are the dimensions required to construct the 

mechanism. Dual quaternions that represent both rotation and translation for a screw 

motion are applied to synthesize general spatial mechanisms. For spherical mechanisms 

that involve only rotational motion, quaternions are used to identify the motion. Planar 

quaternions are used for planar mechanisms.

As in all synthesis techniques, the mechanisms developed by the method described in 

this study may exhibit branch defects, meaning that the linkage may not be able to move 

from one prescribed position to the next although it can be disconnected and reassembled 

in each prescribed position. Besides branch defects, there may be order defects: the 

synthesized linkage may pass through the prescribed situations but not in the prescribed 

order. Non-branch constraint and linkage type constraints, for example, Grashof and non-
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Grashof constraints, can be formulated in the unconstrained optimization problem by using 

penalty functions (Rao, 1984). This technique has been implemented by Bodduluri and 

McCarthy (1992). Papers dealing with branch problems include: Waldron, (1977), 

Reinholtz, Sandor, and Duffy, (1986) and others.

Using numerical minimization algorithms the method developed can be applied for 

any number o f  prescribed positions and orientations, while analytical or graphical methods 

are generally limited up to five prescribed situations.

7.1 Discussions of Numerical Results

It is well known that when the total number o f prescribed situations is five or less, an 

image curve can be found to pass through these prescribed image points and an exact 

solution can be obtained. When the number of the prescribed situations is more than five, 

in general there is no exact solution and we have to seek a best-fit curve in the image 

space for an approximate solution.

The numerical solutions for five, six, and ten positions have been illustrated in 

chapter 6 . The resulting mechanisms approximate the prescribed situations by using 

nonlinear least square algorithms to minimize the normal distance errors between all the 

desired image points and image curve o f the tracer frame. As a result, depending upon the 

allowable error in the minimization algorithm, an infinite number o f solutions could be 

found. An obvious advantage for having more than one solution, even it is not exact, is to 

give the designer flexibility of choices. The solutions to which the algorithm converges 

depend upon the stopping criteria adapted and the initial guesses. The method to select 

the initial guesses has been explained in detail in chapter 6 . As far as the stopping criteria 

are concerned, there are three stopping criteria in the ZXSSQ routine provided in the 

IMSL package which was used. The first convergence criterion is NSIG. The 

convergence condition is satisfied, if on two successive iterations the parameters estimates 

agree, component by component, to NSIG. The second convergence criterion is EPS.
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The convergence condition is satisfied, if on two successive iterations the residual sum of 

square estimates have relative difference less than or equal to EPS. The final convergence 

criterion is DELTA. The convergence condition is satisfied, if on two successive 

iterations the (Euclidean) norm o f the approximate gradient is less than or equal to 

DELTA. In all o f the examples in chapter 6, the EPS criterion was the effective one. The 

effect o f different values o f EPS is shown in Table 6-6 and 6-7. The appropriate values 

for EPS are between 10'5 and 10'8 in our tests. The total errors in the examples are 

between 9x10° and lx l O4 which generally are smaller than the deflections o f the links or 

the backlashes o f the joints for application purposes. By decreasing the value o f EPS, the 

calculations converge to a better solution, but the number o f iterations increase 

appreciably, for example, the number o f iterations in case 1 and case 2 o f Table 6-6 are 

24,450 and 5,447, while in Table 6-7 the number o f iterations become 34,195 and 

197,931, respectively. The program may fail to converge if the stopping criteria are too 

small.

7.2 Future Work

The proposed method is a general approach for motion synthesis o f mechanisms. 

The use o f coordinate transformations to form the constraint manifold equations provides 

a flexible way to formulate equations for motion synthesis problem and has potentials to 

solve for more complicated mechanisms. In the future work, we would like to apply this 

method for motion synthesis o f some specialized three-dimensional mechanisms, for 

example, RSSR-SS mechanisms as discussed in chapter 3.



APPENDIX A

SOME OTHER SOLUTIONS FOR THE FIVE-POSITION EXAMPLE
IN CHAPTER 6

Case 3
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Case 4

Case 5



APPENDIX B

SOME OTHER SOLUTIONS FOR THE SIX-POSITION EXAMPLE

IN CHAPTER 6

Case 5

Case 6
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Case !3

Case 14



Case 15



APPENDIX C

LIST OF THE FORTRAN PROGRAM FOR SYNTHESIS OF 

PLANAR MECHANISMS

C A Fortran Program for
C Motion Synthesis o f a Planar Four-Bar Mechanism
C using Constraint Manifolds Equation.
C

implicit real*8 (a-h,o-z) 
real*8 x(4,10), r(10) 
common x

pi=4.0*atan(1.0)
C

call precision () 
call guess(r) 
call optimal(r) 
end

C * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

subroutine precision()
C Input desired positions and convert to quaternions
£ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

implicit real*8 (a-h,o-z) 
real* 8 phi(10), a(10), b(10),x(4,10) 
common x

C
pi=4.0*atan(1.0)
degtorad=pi/180.

C
OPEN(UNIT=5,FILE-gplnr6.dat', STATUS-old')

C Read in point#, orientations, and locations
write (30,*)' xl x2 x3 x4' 
read (5,*) m 
do 1 i=l,m

read (5,*) k, phi(i), a(i), b(i) 
phi(i)=degtorad*phi(i)

C convert to quaternions
x(l,i)= ,5*a(i)*dcos(.5*phi(i))+.5*b(i)*dsin(.5*phi(i))
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x(2,i)=- .5 *a(i)*dsin(. 5 *phi(i))+. 5*b(i)*dcos(. 5*phi(i))
x(3,i)=dsin(0.5*phi(i))
x(4,i)=dcos(0.5 *phi(i))

write (30,2) x(l,i),x(2,i),x(3,i),x(4,i)
1 continue
2 format (4F9.3) 

close(5) 
return
end

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

subroutine guess(r)
C Initial guess for the optimization routine

implicit real*8 (a-h,o-z) 
real *8 r(10)

pi=4.0*atan(1.0)
degtorad=pi/180.0

OPEN(UNIT=5,FILE-guesse.dat',STATUS-old')

readCS,*) x l, y l, a l, bl 
read(5,’l<) x2, y2, a2, b2 
read(5,*) h, eta 
close(5)

eta=eta*degtorad

r(l)=xl 
r(2)=y 1 
r(3)=al 
r(4)=b 1

r(5)=x2
r(6)=y2
r(7)=a2
r(8)=b2

r(9)=h
r(10)=eta

return
end
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£ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

subroutine optimal(r)
C Modified from the example o f IMSL packages 
C

implicit real*8 (a-h,o-z)
INTEGER ldfjac, m, n 
PARAMETER (ldfjac=6, m=6, n=10)
real*8 FJAC(LDFJAC,N), FVEC(M), RPARAM(7),r(N), work(lOOO), 

& xjtj(500)
EXTERNAL func

call zxssq(func, m, n, 5, 1.0D-6, 1.0D-6, 1000, 0, rparam,
& r, ssq, fVec, fjac, ldfjac, xjtj,
& work, infer, ier)

C convert design variables back to angles

pi=4.0*atan(l .0) 
r(10)=r(10)*180./pi

WRITE (30,99999) r, FVEC,work(5),work(2), ssq, infer 
99999 FORMAT (' The solution is ', 10F9.4, / / , '  The function ',

& 'evaluated at the solution is ', /, 18X, 6D9.4, //,
& ' The number o f iterations is 10X, F9.2, / , '  The 
& 'number o f function evaluations is ', F9.2, /,
& 'The total error=',D9.4/,
& 'The convergence param eters-,12/) 

return 
end

Subroutine func(r,m,n,f)

implicit real*8 (a-h,o-z) 
integer m,n 
real*8 r(n),f(m)
real*8 Q1 (4,4),Q2(4,4),g 1 (4,4),G2(4,4),H 1 (4,4),H2(4,4)
real*8 tmp 1 (4,4),c 1 (4,4),c 1 invt(4,4),c2(4,4),c2invt(4,4)
real*8 Rzeta(4,4)
real*8 v(3),ja(3,4),u(4),jat(4,3)
real*8 jajat(3,3),temp(3),x(4,10)
common x

C r(l)= x l, r(2)=yl, r(3)=al, r(4)=bl, 
C r(5)=x2, r(6)=y2, r(7)-a2, r(8)=b2,
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C r(9)=h, r(10)=eta

pi=4.0*atan(1.0)

C Initialize the arrays

do 1, i= l,4 
do 1, j= l,4

Q l(ij)=0.0  
Q2(ij)=0.0 
G l(ij)=0.0  
G2(i,j)=0.0 
H l(ij)=0.0  
H2(i,j)=0.0 

1 Rzeta(i,j)=0.0

Q K U )  = 1 
Q 1(2,2) = 1 
Q l(3,3) =-r(3)**2/4. 
Q 1(4,4) = Q l(3,3)

Q 2 ( l , l )=  1. 
Q 2(2,2)= 1.
Q2(3,3) =-r(7)**2/4. 
Q2(4,4) = Q2(3,3)

G l( l ,  1) = 1. 
G l(2 ,2 )=  1.
G1 (3,3) = 1.
G l(4,4) = 1.
G l( 1,3) = r(2)/2.
G l( 1,4) = r(l)/2. 
G l(2,3) =-r(l)/2.
G 1(2,4) = r(2)/2.

G 2(l, 1) = 1.
G2(2,2) = 1.
G2(3,3) = 1.
G2(4,4) = 1.
G 2(l,3) = r(6)/2. 
G 2(l,4) = r(5)/2, 
G2(2,3) =-r(5)/2. 
G2(2,4) = r(6)/2.
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Rzeta( 1,1 )=dcos(0.5 * r( 10)) 
Rzeta(2,2)=Rzeta( 1,1) 
Rzeta(3,3)=Rzeta( 1,1) 
Rzeta(4,4)=Rzeta( 1,1)
Rzeta( 1,2)=dsin(0.5*r(l 0)) 
Rzeta(2,1 )=-Rzeta( 1,2) 
Rzeta(3,4)= Rzeta(l,2) 
Rzeta(4,3)= Rzeta(2,1)

HI (1,1) = 1.
H l(2 ,2 )=  1.
H l(3,3) = 1.
HI (4,4) = 1.
HI (1,3) =-r(9)/2.
H l(l,4 ) = r(4)/2.
H l(2,3) = r(4)/2.
HI (2,4) = r(9)/2.

H2( 1,1)= 1.
H 2(2,2)= 1.
H2(3,3)= 1.
H2(4,4) = 1.
H 2(l,3)=-r(9)/2.
H 2(l,4) =-r(8)/2.
H2(2,3) =-r(8)/2.
H2(2,4) = r(9)/2.

call matmult(g 1 ,rzeta,tmp 1,4,4,4) 
call matmult(tmpl,hl,cl,4,4,4) 
call inv(cl,4)
call matransp(cl,4,4,clinvt) 
call matmult(c 1 invt,Q 1 ,tmp 1,4,4,4) 
call matmult(tmpl,cl,Ql,4,4,4)

call matmult(G2,Rzeta,tmpl,4,4,4) 
call matmult(tmpl,H2,c2,4,4,4) 
call inv(c2,4)
call matransp(c2,4,4,c2invt) 
call matmult(c2invt,Q2,tmp 1,4,4,4) 
call matmult(tmpl,c2,Q2,4,4,4)

do 222, k=l,M

v( 1 )=-(Q 1(1,1 )*x( 1 ,k)**2+2.*Ql (1,2)’t‘x( 1 ,k)*x(2,k)
& +2. *Q 1 (1,3)*x( 1 ,k)*x(3,k)+2. *Q 1 (1,4)*x( 1 ,k),|tx(4,k)



& +Ql(2,2)*x(2,k)**2+2.*Ql(2,3)*x(2,k)*x(3,k)
& +2:*Q 1 (2,4)*x(2,k)*x(4,k)+Q 1 (3,3)*x(3,k)**2
& +2.*Q1(3,4)*x(3,k)*x(4,k)+Q 1 (4,4)*x(4,k)* *2)

v(2)=-(Q 2(l,l)*x(l,k)**2+2.*Q 2(l,2)*x(l,k)*x(2,k)
& +2. *Q2( 1,3)*x( 1 ,k)*x(3,k)+2. *Q2( 1,4)*x( 1 ,k)*x(4,k)
& +Q2(2,2)*x(2,k)**2+2.*Q2(2,3)*x(2,k)*x(3,k)
& +2.*Q2(2,4)*x(2,k)*x(4,k)+Q2(3,3)*x(3,k)!,!*2
& +2.*Q2(3,4)*x(3,k)*x(4,k)+Q2(4,4)*x(4,k)**2)

v(3)=0.0

ja (U )= 0 .0
ja(l,2)=0.0
ja(l,3)=0.0
ja(l,4)=0.0
ja(2,l)=0.0
ja(2,2)=0.0
ja(2,3)=0.0
ja(2,4)=0.0

do 3, i= 1,4 
ja( 1,1)= 
ja(l,2)= 
ja(l,3)= 
ja(l,4)= 
ja(2,l)= 
ja(2,2)= 
ja(2,3)= 

3 ja(2,4)=

a(l,l)+2.*Q l(l,i)*x(i,k) 
a(l,2)+2.*Ql(2,i)*x(i,k) 
a( 1,3)+2. *Q 1 (3,i)*x(i,k) 
a(l,4)+2.*Ql(4,i)*x(i,k) 
a(2 ,1 )+2. *Q2( 1 ,i)*x(i,k) 
a(2,2)+2.*Q2(2,i)*x(i,k) 
a(2,3)+2. *Q2(3,i)*x(i,k) 
a(2,4)+2. *Q2(4,i)*x(i,k)

ja(3,1)=0.0 
ja(3,2)=0.0 
ja(3,3)=2.*x(3,k) 
ja(3,4)=2.*x(4,k)

C Calculate the inverse of J matrix 
call matransp(ja, 3, 4,jat) 
call matmult(jajat,jajat,3,4,3) 
call inv(jajat,3)

C The normal error vector u is the product o f Jacobian inverse and v vector 
call matxvec(jajat, 3, 3, v, temp) 
call matxvec(jat, 4, 3, temp, u)



C The error function eq.24
f(k) = vecxvecfu, u, 4)

222 continue 
err=0.0

C Add penalty functions to r(3) and r(7) 
IF (r(3).LE.0.0) THEN 
err=err+1000000.0 
endif
IF (r(7).LE.0.0) THEN 
err=err+1000000.0 
endif
do 123, k=l,M  

f(k)=err+f(k)
123 f(k)=sqrt(f(k))

C write(6,*) 'Total err = ',err 
return 
end

subroutine matmultfa, b, c, 1, m, n)

real*8 a(l,m), b(m,n), c(l,n)

do 1, i=l,l 
do l ,j= l ,n  

c(i,j)=0.0 
do 1, k=l,m  

1 c(i,j) = c(i j)+a(i,k)*b(k j)
return 
end

subroutine matransp(a,m,n,b)

real*8 a(m,n), b(n,m)

do 1, i=l,m 
do l j= l ,n  

1 b(j,i)=a(i,j)
return 
end



SUBROUTINE inv(a, mm)

integer mm, i, j, k, m, nn 
real*8 a(mm,mm), b(10), c(10) 
real *8 d

nn - mm - 1 
a( 1,1) = 1.0 / a ( l ,l)  
do 400 m = 1, nn 

k = m + 1 
do 410 i = 1, m 

b(i) = 0.0 
do 410 j = 1, m 

410 b(i) = b(i) + a(i,j) * a(j,k)
d = 0.0
do 420 i = 1, in 

420 d = d + a(k,i) * b(i)
d = -1.0 * d + a(k,k) 
a(k,k)=  1.0/ d 
do 430 i = 1, m 

430 a(i,k) = -1.0 * b(i) * a(k,k)
do 440 j = 1, m

c(j) ~ 0.0
do 440 i = 1, m 

440 c(j) = c(j) + a(k,i) * a(i,j)
do 450 j = 1, m 

450 a(k,j) = -1 .0  * c(j) * a(k,k)
do 460 i = 1, m 

do 460 j = 1, m 
460 a(i j )  = a(i j )  - b(i) * a(kj)
400 continue 

return 
end

subroutine matxvec(a, m, n, b, c)

real*8 a(m,n), b(n), c(n)

do 1, i = l,m 
c(i) = 0.0 
do l ,j= l,n  

1 c(i) = c(i) + a(i, j)*b(j)
return 
end



subroutine vecxmat(a, m, n, b, c) 

real*8 a(m, n), b(m), c(m)

do l , j= l ,n  
c(j) = 0.0 

do 1, i=l,m  
1 cO) = c(i) + b(j) * a(j, i)

return
end
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function vecxvec(a, b, n) 
£******************************************************** 

implicit real*8 (a-h,o-z) 
real*8 a(n), b(n) 

temp = 0. 
do 1, i=l,n 

1 temp=temp+a(i)*b(i) 
vecxvec = temp 
return 
end



APPENDIX D

LIST OF THE COST FUNCTION SUBROUTINE FOR THE ASA ALGORITHM

The Cost function subroutine written in C  for the ASA algorithm used to synthesize

spherical four-bar mechanisms are listed in the following:

* double cost fiinction
* This is the users cost function to optimize
* (find the minimum).
* cost_flag is set to true if the parameter set
* does not violates any constraints
* param eterlow erbound and param eterupperbound may be
* adaptively changed during the search.

#if H A VE_AN SI
double cost_fimction(double *x,

double *parameter_lower_bound, 
double *parameter_upper_bound, 
double *cost_tangents, 
double *cost_curvature,
ALLOC INT * parameterdimension, 
int *parameter_int_real, 
int *cost_flag, 
int *exit_code,
U SERD EFIN ES * USER_OPTIONS)

#else
double cost_function(x,

param eterlow erbound,
param eterupperbound,
costtangents,
costcurvature,
parameterdimension,
parameter_int_real,
cost_flag,
ex itcode,
USEROPTIONS)

double *x;
double *parameter_lower_bound;
double *parameter_upper_bound;
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double *cost_tangents; 
double *cost_curvature;
ALLOC_INT *parameter_dimension; 
int *parameter_int_real; 
int *cost_flag; 
int *exit_code;
U SERD EFIN ES *USER_OPTIONS;
#endif
{
#if ASA TEST /* ASA test problem */
#if SELFOPTIM IZE 
#else

static LONG_INT funevals = 0;
#endif

double s[3][10],xd[4][10]; 
double phi[ 10];
double Ql[4][4],Q2[4][4],Rzpsil[4][4],Rzpsi2[4][4];
double Rxal 1 [4] [4] ,Rxal2 [4] [4] ,Rxgam 1 [4] [4] ,Rxgam2[4] [4];
double Ryseg[4][4],Rzeta[4][4],tmpl[4][4],tmp2[4][4],tmp3[4][4];
double cl[4][4],c2[4][4],clt[4][4],c2t[4][4];
double v[3]ja[3][4],u[4]jat[4][3]jajat[3][3]jajatinv[3][3];
double temp[3],f[10];
double pow(), sum;
FILE *outfp, *infp; 
int i,j,k,num_pos;

if ((infp=fopen("in","r"))==NULL)
{

fprintf(stderr,"Input file not found"); 
exit(-I);

}
outfp=fopen("out","w"),

/* fprintf(outfp, " Enter the number of position \n");*/ 
fscanf(infp,"%d",&num_pos);

/* fprintf(outfp, " Enter pos#, directional cosine, rotation angle\n"); */ 
for(i=0; i<num_pos; i++)

{
fscanf(infp,"%d %lf %lf % lf %lf',&k,&s[0][i],&s[l][i],&s[2][i],&phi[i]); 
phi[i]=Degtorad*phi[i]; 
for( j=0, j<3; j++) { 

xd[j][i]= sO][i]*sin(0.5*phi[i]);} 
xd[3][i]=cos(0.5*phi[i]);
fprintf(outfp,"%f % f % f '%f\n",xd[0][i],xd[ 1 ][i],xd[2][i],xd[3][i]);



fclose(infp);
fclose(outfp);

/* Initialize the matrices */ 
for(i=0; i<4; i++)

{
for(j=0; j<4; j++)

{
Ql[i][j]=0.0;
Q2[i]U]=0.0;
Rzpsi l[i][j]=0.0;
Rzpsi2[i][j]=0.0;
Rxal 1 [i] [j]=0.0;
Rxal2[i][j]=0.0;
Rxgaml[i][j]=0.0;
Rxgam2[i][j]=0.0;
Ryseg[i][j]=0.0;
Rzeta[i][j]=0.0;}}

/*
x[0]=psil, x[l]=alphal, x[2]=betal, x[3]=gaml, 
x[4]=psi2, x[5]=alpha2, x[6]=beta2, x[7]=gam2, 
x[8]=seg, x[9]=eta.

Ql[0][0]=cos(0.5*x[2])*cos(0.5*x[2]);
Q1[1][1]=Q1[0][0];
Q1 [2][2]=-sin(0.5*x[2])*sin(0.5*x[2]); 
Q1[3][3]=Q1[2][2];

Q2[0][0]=cos(0.5*x[6])*cos(0.5*x[6]); 
Q2[1][1]=Q2[0][0]; 
Q2[2][2]=-sin(0.5*x[6])*sin(0,5*x[6]); 
Q2[3][3]= Q2[2][2];

Rzpsil[0][0]=cos(0.5*x[0]);
Rzpsi 1 [ 1 ] [ 1 ]=Rzpsi 1 [0] [0];
Rzpsil [2][2]=Rzpsi 1 [0][0];
Rzpsi 1 [3][3]=Rzpsi 1 [0][0];
Rzpsil [l][0]=sin(0.5*x[0]);
Rzpsil [0][1]=-Rzpsil[l][0];
Rzpsi 1[2][3]= Rzpsi 1 [ 1 ][0];
Rzpsil [3][2]= Rzpsil[0][l];

Rzpsi2[0][0]=cos(0.5*x[4]);
Rzpsi2[ 1 ][ 1 ]=Rzpsi2[0][0];



Rzpsi2[2][2]=Rzpsi2[0][0]; 
Rzpsi2[3][3]=Rzpsi2[0][0]; 
Rzpsi2[l][0]=sin(0.5*x[4]); 
Rzpsi2[0][l]=-Rzpsi2[l][0]; 
Rzpsi2[2][3]= Rzpsi2[ 1 ] [0]; 
Rzpsi2[3][2]= Rzpsi2[0] [ 1 ];

Rxal 1 [0][0]=cos(0.5 *x[ 1 ]); 
R xall[l][l]=Rxall[0][0];
Rxal 1 [2] [2]=Rxal 1 [0] [0]; 
Rxall[3][3]=Rxall[0][0]; 
Rxall[0][3]=sin(0.5*x[l]); 
Rxal 1 [ 1 ] [2]=-Rxal 1 [0] [3 ]; 
Rxall [2][ 1 ]= Rxall [0][3];
Rxal 1 [3][0]= Rxall [1][2];

Rxal2[0][0]=cos(0.5*x[5]); 
Rxal2[l][l]=Rxal2[0][0]; 
Rxal2[2] [2]=Rxal2[0] [0]; 
Rxal2[3][3]=Rxal2[0][0]; 
Rxal2[0][3]=sin(0.5>|tx[5]); 
Rxal2[ 1 ] [2]=-Rxal2[0] [3 ]; 
Rxal2[2][l]= Rxal2[0][3]; 
Rxal2[3][0]= Rxal2[l][2];

Rzeta[0][0]=cos(0.5*x[9]); 
R zeta[l][l]=  Rzeta[0][0]; 
Rzeta[2][2]= Rzeta[0][0]; 
Rzeta[3][3]= Rzeta[0][0]; 
Rzeta[0][l]=sin(0.5*x[9]); 
Rzeta[ 1 ][0]=-Rzeta[0][ 1 ]; 
Rzeta[2][3]= Rzeta[0][l]; 
Rzeta[3][2]::: Rzeta[l][0],

Ryseg[0][0]=cos(0.5*x[8]); 
Ryseg[ 1 ][ 1 ]=Ryseg[0][0]; 
Ryseg[2][2]=Ryseg[0][0]; 
Ryseg[3 ] [3 ]=Ry seg[0 ] [0]; 
Ryseg[l][3]= sin(0.5*x[8]); 
Ryseg[2][0]= Ryseg[l][3]; 
Ryseg[0] [2] =-Ryseg[ 1 ] [3 ]; 
Ryseg[3][l]= Ryseg[0][2];

Rxgaml[0][0]=cos(0.5*x[3]); 
R xgam l[l][l]=  Rxgaml[0][0];



Rxgaml[2][2]= Rxgaml[0][0];
Rxgaml [3][3]= Rxgaml [0][0];
Rxgaml [0][3]=sin(0.5*x[3]);
Rxgaml [1][2]= Rxgaml [0][3];
Rxgam 1 [2] [ 1 ]=-Rxgam 1 [0] [3 ];
Rxgaml [3][0]= Rxgaml [2][ 1 ];

Rxgam2[0][0]=cos(0.5*x[7]);
Rxgam2[ 1 ][ 1 ]=Rxgam2[0][0];
Rxgam2[2][2]=Rxgam2[0][0];
Rxgam2[3 ] [3 ]=Rxgam2 [0] [0];
Rxgam2[0] [3 ]=-sin(0.5 *x[7]);
Rxgam2[l][2]= Rxgam2[0][3];
Rxgam2[2] [ 1 ]=-Rxgam2[0] [3 ];
Rxgam2[3][0]= Rxgam2[2][ I ];

matmult444(Rzpsi 1 ,Rxal 1 ,tmp 1,4,4,4); 
matmult444(tmp 1 ,Rzeta,tmp2,4,4,4); 
matmult444(tmp2,Ryseg,tmp3,4,4,4); 
matmult444(tmp3, Rxgam 1 ,c 1,4,4,4); 
matransp44(c 1,4,4,cl t); 
matmult444(c 1 ,Q 1 ,tmp 1,4,4,4); 
matmult444(tmp 1 ,c 1 t,Q 1,4,4,4);

matmult444(Rzpsi2,Rxal2,tmp 1,4,4,4); 
matmult444(tmp 1 ,Rzeta,tmp2,4,4,4); 
matmult444(tmp2,Ryseg,tmp3,4,4,4); 
matmult444(tmp3,Rxgam2,c2,4,4,4); 
matransp44(c2,4,4,c2t); 
matmult444(c2,Q2,tmp 1,4,4,4); 
matmult444(tmp 1 ,c2t,Q2,4,4,4);

for(k=0;k<num_pos; k++)
{ v[0]=-(Ql [0][0]*pow(xd[0][k],2.)+2.*Q 1 [0][ 1 ]*xd[0][k]*xd[ 1 ][k] 

+2.*Ql[0][2]*xd[0][k]*xd[2][k]+2.*Ql[0][3]*xd[0][k]*xd[3][k] 
+Q l[l][13H'pow(xd[l][k],2.)+2.*Ql[l][2]*xd[l][k]*xd[2][k] 
+2.*Ql[l][3]*xd[l][k]*xd[3][k]+Ql[2][2]*pow(xd[2][k],2.) 
+2.*Ql[2][3]*xd[2][k]*xd[3][k]+QI[3][3]*pow(xd[3][k],2.));

v[l]=-(Q2[0][0]*pow(xd[0][k],2.)+2.*Q2[0][l]*xd[0][k]*xd[l][k] 
+2.*Q2[0][2]*xd[0][k]*xd[2][k]+2.*Q2[0][3]*xd[0][k]*xd[3][k] 
+Q2[l][l]*pow(xd[l][k],2.)+2.*Q2[l][2]*xd[l][k]*xd[2][k] 
+2.*Q2[l][3]*xd[l][k]*xd[3][k]+Q2[2][2]*pow(xd[2][k],2.) 
+2.*Q2[2][3]*xd[2][k]*xd[3][k]+Q2[3][3]*pow(xd[3][k],2.)); 

v[2] = 0.0;



ja[0][0]=0.0
ja[0][l]=0.0
ja[0][2]=0.0
ja[0][3]=0.0
ja[l][0]=0.0
ja[l][l]=0 .0
ja[l][2]=0.0
ja[l][3]=0.0;

for(i=0;i<4;i 
{ ja[0][0]: 

ja[0][l]= 
ja[0][2]: 
ja[0][3]: 
ja[l][0 ]: 
ja[l][l]= 
ja[l][2 ]: 
ja[l][3]:

i++)
a[0][0]+2
a[0][l]+2.
a[0][2]+2
a[0][3]+2
a[l][0]+2
a[l][l]+ 2
a[l][2]+2,
a[l][3]+2.

*Q1[0][
* Q l [ l ] [
*Q 1[2 ][
*Q 1[3][
*Q2[0][
*Q 2[1][
*Q2[2][
*Q2[3][

]*xd[
]*xd[
]*xd[
]*xd[
]*xd[
]*xd[
]*xd[
]*xd[

][k]
][k]
][k]
][k]
][k]
][k]
][k]
][k] }

ja[2][0]=2.*xd[0][k]; 
ja[2] [ 1 ]=2. *xd [ 1 ] [k]; 
ja[2][2]=2.*xd[2][k]; 
ja[2][3]=2.*xd[3][k];

matransp34(ja, 3, 4,jat);
matmult343(ja,jat,jajat,3,4,3);
inv3(jajat,3);
matxvec33(jajat, 3, 3, v, temp); 
matxvec43(jat, 4, 3, temp, u); 
f[k]=0.0; 
for(j=0tj<4j++){

fTk]=f[k]+uO]*u[j];

/* f(k) = vecxvec(u, u, 4); */
}
sum = 0.0;

/* Add penalty function to betal and beta2 */ 
if (x[3] <=0.0) 
sum+= 1000000.; 
if (x[6] <=0.0) 
sum+= 1000000.;

for (k=0;k< num_pos;k++){ 
sum+=flk],
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}
/*

fprintf(stderr," sum=%f\n",sum);
*/

funevals += 1;
*cost_flag = TRUE;

#if SELFOPTIM IZE 
#else
#if T IM E C  ALC

/* print the time every PRINTFREQUENCY evaluations */ 
if  ((PRINTFREQUENCY > 0) && ((fimevals % PRINT_FREQUENCY) == 0))

{
fprintf(ptr_out, "funevals = %ld ", funevals); 
print_time("");
}

#endif
#endif

return (sum);
#endif /* ASA TEST */
} /* cost function */

matmult444(a, b, c, 1, m, n) 
int 1, m, n;
double a[4][4], b[4][4], c[4][4];
{
int i,j,k;

for(i=0;i<l;i++){ 
for(j=0;j<nvj++){ 

c[i][j]=0.0; 
for(k=0;k<m;k++) { 

c[i]DH[i]Dl+a[i][k]*b[k]D];
}

}
}

matmult343(a, b, c, 1, m, n) 
int 1, m, n;
double a[3][4], b[4][3], c[3][3]; 
{
int i,j,k; 

for(i=0;i<l;i++){



for(j=Oj<nj++){ 
c[i][j]=0.0; 
for(k=0;k<m;k++) { 

c[i]D]=c[i][j]+a[i][k]*b[k][j];
}

}
}

}

matransp44(a, m, n, b) 
int m, n;
double a[4][4], b[4][4];
{

int ij;

for(i=0;i<m;i++){
for(j=0j<nj++){

b D ]p ]= a[i]D ];
>

}
}

matransp34(a, m, n, b) 
int m, n;
double a[3][4], b[4][3];
{

int ij;

for(i=0;i<m;i++){
for(j=0j<n;j++){

bD ]W = a[i]D ];

}
}

}

inv4( a, mm) 
int mm; 
double a[4][4];
{

int i j,k,m,nn; 
double b[10],c[10]; 
double d;

if (a[0][0] ==0.0) {
printf(" a[0][0]= 0.0 Singular Matrix \n");
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for(i=0;i< m m ;i+ +) { 
fo r(j= 0  j< m m  J+ + )  { 

a[i][j]= 0 .0 ;

}
}
exit(O);
}
else
{ n n = m m -l; 
a [0 ][0 ]= 1 .0 /a [0 ][0 ]; 
fo r (m =0;m <nn;m ++){ 

k  =  m + 1;
for(i=0;i<=m ;i++){

b[i]=0 .0 ;
fo r G = 0 j< = m ;j++){ 

b [i]= b [i]+ a[i][j]*a[j][k ];

}

d = 0.0;
for(i=0;i<=m ;i++){ 

d = d + a[k][i]*b[i];

}
d =  -1 .0 * d  + a[k ][k ]; 
a [k ][k ]= 1 .0 /d ; 
for(i=0;i<=m ;i++){ 

a [i][k ]= -l .0 * b [i]*a[k ][k ];

}
fo r(j-0 ;j< = m ;j+ + ) { 

c[j]=0 .0 ;
fo r(i= 0;i< = m ;i+ +) {

cD H D ]+ a [k ][ i]* a [i]D ];
}

}
fo r(j= 0 j< = m ;j+ + ){

a[k ][j]= -l 0*c[j]*a[k ][k ];}

fo r (i=0;i<=m ;i++){ 
fo r(j= 0 ;j< = m j+ + ){  
a[i][j]—a[i][j]-b [i]H<a[k ] |j] ;

}
}

}
}
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matxvec33(a, m, n, b, c) 
int m,n;
double a[3][3], b[3], c[3]; 
{

int ij;

for(i=0;i<m;i++){
c[i]=0.0;
for(j=0j<nj++){

c[i]=c[i]+a[i][j]*b[j];
}

}
}

matxvec43(a, m, n, b, c) 
int m,n;
double a[4][3], b[3], c[4]; 
{

int ij;

for(i=0;i<m;i++) { 
c[i]=0.0; 
for(j=0j<nj++){

c[i]= c[i]+ a[i][j]* b [jj;
}

}
}
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