Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI

University Microfilms International
A Bell & Howell Information Company
300 North Zeeb Road. Ann Arbor. MI 48106-1346 USA
313:761-4700 800/521-0600

Order Number 9514440

Algorithms in fault-tolerant Clos networks

Lee, Hyunyeop, Ph.D.

New Jersey Institute of Technology, 1994

Copyright ©1994 by Lee, Hyunyeop. All rights reserved.

U-M-1

300 N. Zeeb Rd.
Ann Arbor, M1 48106

ALGORITHMS IN
FAULT-TOLERANT CLOS NETWORKS

by
Hyunyeop Lee

A Dissertation
Submitted to the Faculty of
New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

Department of Electrical and Computer Engineering

October 1994

Copyright © 1994 by Hyunyeop Lee
ALL RIGHTS RESERVED

APPROVAL PAGE

ALGORITHMS IN
FAULT-TOLERANT CLOS NETWORKS

Hyunyeop Lee

r. John D. Carpinelli{Dissertation Advisor Date
Director of Computer Engineering
Associate Professor of Electrical and Computer Engineering, NJIT
Dr. Sotirios Ziavtas, Committee Member 7 Date
Assistant Professor of Electrical and Computer Enginecring, NJI'T
Dr. Michael Palis, thee Member " Date
Associate Professor of Electrical and Computer Engineering, NJIT
Dr. Frank Hwang, Comtfjttee Member Date
Member of Technical Staff, AT&T Bell Lab., Murray Hill, NJ

Date

Dr. Vaclav Benes, Committe¢ Member
Research Associate

BIOGRAPHICAL SKETCH

Author: Hyunyeop Lee
Degree: Doctor of Philosophy
Date: October 1994

Undergraduate and Graduate Education:

o Ph. D. in Electrical Engineering,
New Jersey Institute of Technology, Newark. NJ, 1994

e Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1990

o Bachelor of Science in Electrical Engineering,
Yonsei University, Korea, 1980

Major: Electrical Engineering

Presentations and Publications:

Hyunyeop Lee and John D. Carpinelli “Algorithms in Fault-tolerant Clos
Interconnection Networks,” 1994 Conference on Information Sciences and

Svstems, Princeton University, NJ

iv

This work is dedicated to
my family

ACKNOWLEDGMENT

The author wishes to express his sincere appreciation to his advisor Dr. John
D. Carpinelli for his guidance and assistance throughout his research. His continued
friendship, and support throughout my career as a graduate student at the New
Jersey Institute of Technology is greatly appreciated. Also, I would like to thank all
the committee members, Dr. Ziavras. Dr. Palis and Dr. Benes of NJIT. and Dr.
Hwang of AT&T Bell Lab., for sparing their precious time for this defense, and for
their valuable suggestions. Finally, the author wishes to thank his family for their

support, help and encouragement throughout his doctoral studies.

vi

TABLE OF CONTENTS

Chapter Page
1 INTRODUCTION .o et 1
1.1 Motivation ..ot e e 1

1.1.1 Parallel Processing ... 1

1.1.2 Interconnection Networks in Multiprocessor Systems 5

1.2 Backgroundo e e e 8

1.3 Outline ..o e 11

2 MODELLING OF INTERCONNECTION NETWORK 13
2.1 Introductiono i 13

2.2 Interconnection Networks, 13

2.2.1 Re‘presentation ... 13

2.3 Bipartite Multigraphs 18

2.4 Fault Toleranceooviuiiiier i 20

2.5 Reliabilityo i 22

2.5.1 Fundamentalso 22

2.5.2 System Reliability 23

3 IMPLEMENTATIONS OF MINS ... 26
3.1 Introduction i 26

3.2 Design Factors of Interconnection Networks 27

3.3 Completely Connected Networkccoooiiiiii i, 23

3.4 Crossbar Network ..o 29

3.5 Clos Interconnection Networks ool 29

3.5.1 Network Structureso i 30

3.5.2 Properties of the Clos Networkst 30

3.6 Benes Networks i 32

3.7 DISCUSSIONS 1.ttt ittt it 33

vii

Chapter Page

4 DECOMPOSITION OF CLOS MINS ... it i 37
4.1 Introductionoiuuuetoin e e 37

4.2 Matrix Decompositionouiiiitiitiiiie i e 38

4.2.1 Neiman’s Algorithmc.ooiiiiiiiiiiiiiiiiii i, 38

42,2 Ramanujam’s Algorithm i 40

4.2.3 Kubale’s Counterexample oL, 42

4.2.4 Jajszczyk’s Algorithm 43

4.2.5 Cardot’s Counterexampleoooiiiiiiiat, 44

4.3 Parallel Decompositioncco i 45

4.3.1 Carpinelli’s Algorithml e 30

4.4 Edge Coloring and Matchingc. oot 48

4.4.1 Introduction i i e 49

4.4.2 Vizing’s Method o i 50

4.4.3 Euler Partitions oot 51

4.4.4 Gabow’s Modified Algorithm 53

4.5 Gordon’s Algorithm s D

4.6 DISCUSSION ..ottt i e e 58

5 FAULT TOLERANT MINS ... oo e 59
5.1 Introductionouiiiii i 99

5.2 Extra Stage Cube (ESC) Networkoooiiiiiiiiiiin, 60

5.3 Fault Tolerant Clos Networks (FTC) ...t 64

5.3.1 Reconfiguration of the FTCol 66

5.3.2 Examples ... 68

6 NOVEL ALGORITHM FOR CLOS MINS, 72
6.1 Introduction 72

6.2 Failure of Gordon’s Algorithm, 72

6.3 New Algorithm for Clos Networkscoooi it 74

viii

Chapter Page

6.4 Example ... e e 79
6.5 Worst-case Behavior i 81
6.6 Discussion e e 83
7 ROUTING FAULT TOLERANT CLOS NETWORKS 84
7.1 Introductionoo.iiiiiiiii it ae ey 84
7.2 Routing the FTC 84

7.2.1 Routing FTC with Spare Switches in Quter Stages (Typel) ... 85
7.2.2 Routing FTC with Spare Switches in the 2nd Stage (Type II) . 89

7.2.3 Routing FTC with Spare Switches in All Stages (Type I1I) 92

7.3 Worst-case Behavior of the Algorithm 98

T4 DISCUSSION .ttt ittt et e 100

8 RELIABILITY OF FAULT TOLERANT CLOS NETWORKS 103
8.1 Introductiono i i 103

8.2 Fault Detection and Location of the FT'C 103

8.3 Reliability of the FTC Network iiiiii... 104

8.4 Effect of Spare Numbers on Reliability 106

8.5 Space Complexity of the FTC Network 109

8.6 Optimum Number of Spare Switches in the FTC Network 111

8.7 Discussion ... 112

9 CONCLUSION .. e cieaens e 114
0.1 SUMMATY oottt e e e 114

9.1.1 Routing for Clos Networkscocoiiiiiiiii i, 114

9.1.2 Routing for FTC Networksc.coovviiiiiiiiiiiiin.. 115

9.1.3 Optimum Number of Spare Switches in FTC 116

9.2 Open Problems 117
REFERENCES .. . e e 119

ix

LIST OF FIGURES

Figure Page
1.1 Flynn's classification of multicomputers 4
1.2 Multiprocessor system L 5
1.3 Ashared bussystem e 6
2.1 Switch settings of two 2 x 2 switches, 16
2.2 Switch settings of three stage network. 19
2.3 A hipartite multigraph 20
2.4 Series. parallel, and series-parallel svstems. 23
3.1 The completely connected network e 28
3.2 The N x N crosshar interconnection network 29
3.3 The three-stage Clos network, 30
3.4 The three dimensional Clos interconnection network. 32
3.5 The8x8Benesnetwork........, 33
3.6 An example of Looping Algorithm 34
3.7 The 8 x 8 Waksman network 36
4.1 Augmenting bipartite multigraphs: (a) before, (b) after 51
4.2 Euler partitioning e 52
4.3 Relations between the H,5, and C matrices 35
5.1 The Extra Stage Cube (ESC) network 61

5.2 The Extra Stage Cube Network: (a) Stage 0 interchange switch (b) Stage
3 interchange switch (c) Stage 0 enabled (d) Stage 0 disabled (e) Stage

3 enabled (f) Stage 3 disabled oL oL 62
5.3 The FTC with m = &k = 3, and one extra switch in each stage. 65
5.4 The faulty FTC with X(1,0), X(2.1), and X (2,2) faulty switches.. ... GY
6.1 Worst case runtime vs. k 82
7.1 The FTC network with extra switches in the outer stages (Typel) 86

Figure Page

7.2

7.3

8.3

[o4]
>

The FTC network with extra switches in the second stage (Type II) ... 90
The FTC network with extra switches in all stages (Type III). 93
Worst case runtime vs. number of y_spares for various k.. 99
Worst case runtime vs. number of r_spares for various n. 100
Average case runtime vs. number of y_spares for various & 101
Average case runtime vs. number of z_spares for various n 101
Number of simple, next simple, and successive swaps vs. z_spares 102

Reliability vs. number of y.spare switches in Type | networks when k =
= 20 e e e e 107

Reliability vs. number of z_spare switches in Type 1I networks when
k= =20 e e e 108

Cost vs. number of spare switches in Type I networks when n = k = 20
and T =0 e e 110

Cost vs. number of spare switches in Type II networks when n = k = 20
and ¥ = 0 . .o e e e e 111

xi

CHAPTER 1
INTRODUCTION

1.1 Motivation

1.1.1 Parallel Processing

Many of :today’s scientific and industrial problems require enormous processing
power, and the desire for faster computers appears boundless as the complicated
applications that require the processing of enormous amount of data emerge. Multi-

microprocessors are used in areas requiring one or more of the following:

Very high computational bandwidths and/or short response times

e High system resilience and fault-tolerance capabilities
e Abhility to operate under adverse environmental conditions

o Geographically distributed computing with an associated need for effective

communication between centers

e Storage and retrieval of large volumes of data within a relatively short period

of time

e Very close interactions between equipment and human beings

Advances in technology have achieved some increase in computing power.
Integrated circuit (IC) technology replaced conventional vacuum tubes and transistors,
and improved performance both in speed, size, and density. The improvements in
device technology, versatile instruction sets, large addressing ranges, and operating
systems also contributed to the increase in processing power. The development of

microprocessor architectures, accompanied by bigger and more powerful instruction

sets, has enabled the overall throughput provided by a single microprocessor to
increase by more than three orders of magnitude during the past few decades.
However, this development is approaching the limit where these technologies can
no longer keep up with the need for more speed. To meet these problems requires
deviation from the restriction of the von Neumann architecture which uses a single
processor to fetch instructions from memory and execute them one at a time.

Long before the advent of microprocessor technology, designers had proposed
the concept of parallel systems as a mechanism to go beyond the upper bound
on performance attainable with a single processor. A single processor can fetch
instructions from memory and execute them one at a time. Parallel systems. however.
are based on the principle that more than one task can be performed simultaneously.
An evolutionary change such as parallel computer architectures and super fast micro-
processors makes parallel processing feasible. Parallel processing can be realized
either at the software level or at the hardware level or at both. At the software
level, parallelism is obtained by time-sharing the computer resources among different
programs. Here. the operating system divides the CPU time among the different
programs so that no one program monopolizes the CPU for a long time while others
are waiting. This technique has been used on computers with a single processor to
achieve parallelism in the form of multiprogramming, multitasking, multiuser and
time-sharing capabilities.

When parallelism is implemented at the hardware level, it can take place
at the computer level, at the processor level, or at the subprocessor level. One
hardware strategy is the use of pipelining [12]. The concept of pipeline processing in
a computer is similar to assembly lines in an industrial plant. To achieve pipelining,
one must subdivide the input task (process) into a sequence of subtasks, each of
which can be executed by a specialized hardware stage that operates concurrently

with other stages in the pipeline. Successive tasks are streamed into the pipe and

are executed in an overlapped fashion at the subtask level. The pipeline consists of a
cascade of processing stages. The stages are pure combinational circuits performing
arithmetic or logic operations over the data stream flowing through the pipe. The
stages are separated by high-speed interface latches. According to the levels of
processing, Handler has proposed the classification scheme of pipeline processors
as arithmetic pipelining, instruction pipelining, and processor pipelining [6]. Vector
pipelines are special form of pipelines which are specifically designed to handle vector
instructions over vector operands. Computers with vector instructions are called
vector processors.

Multiprocessor computers include all systems that use more than one processor
to perform a desired application. The spectrum of such systems ranges from low-cost
personal computers which frequently utilize a second microprocessor for decoding
the keyv depressed on the kevboard, to powerful supercomputers and array processors
which contain hundreds of processors working in parallel. These processors cooperate
to execute the instructions of a program. In the ideal case, a system with n identical
processors could offer n times the throughput available with a single processor. Alter-
natively, the additional processors can be used as backups, on an automatic basis.
in case the primary processor malfunctioned.

Parallel computer systems can be grouped according to Flynn's classification
(3], which is based on the number of concurrent instruction and data streams in
a computer. An instruction stream is the sequence of instructions executed by a
computer. The data stream is the sequence of data accessed to be processed by the

instructions. Flynn defines the four classes as

e SISD (single instruction single data stream)
e SIMD (single instruction multiple data stream)

o MISD (multiple instruction single data stream)

—— OVERLAPPED
OPERATION VON NEUMANN
MACHINES

— SISD
— MULTIPLE ALU—

— MISD — PIPELINE PROCESSORS

— SIMD ‘[ARRAY PROCESSORS
ASSOCIATIVE PROCESSORS

MULTIPLE PROCESSOR
TIGHTLY COUPLED —— SYSTEM

— MIMD MODERATELY COUPLED — DISTRIBUTED SYSTEMS

LOOSELY COUPLED —— COMPUTER NETWORKS

Figure 1.1 Flynn's classification of multicomputers

o MIMD (multiple instruction multiple data stream)

Figure 1.1 shows Flynn's classification of parallel computers.

An array computer [14] is a svnchronous arrav of parallel processors which
consists of many processing elements under the supervision of one control wuit. An
array processor can handle single instructions and multiple data streams (SIMD).
Each processing element (PE) consists of a processor with a local memory. Because
of its large numbers of PEs. the array computer is suitable for applications i image
processing. matrix manipulation. parallel sorting. and fast Fourier transform.

Another form of parallel processing is distributed processing. which is also
called “computer networking™. A computer network is a multicomputer arrangeiment
where the computers communicate via special processor-to-processor data hinks. This
is a looser coupling than the shared memory communication of multiprocessing

svstems. A network can link computers hundreds of miles or just a few feet apart.

Pl P2 ®®° | Pm-l Pm

Interconnection Network

OO-OE

Figure 1.2 Multiprocessor syvstem

Short-distance networks. perhaps contained in one building. are referred 1o as “local™
networks. Here the computation load is distributed among more than one computer.
Communications between the different computers take place in the form of passing
messages to obtain data or exchange results. The advantage of the distributed
computing svstem include fast response. high availability. fault tolerance. resource
sharing. high adaptability to the changes in the work load. and better expandability.
These advantages have bheen enhanced by the availability of low-cost microprocessors

and data luk interfaces produced by LSI circuit techniques.

1.1.2 Interconnection Networks in Multiprocessor Systems

Clearly. using many processors in the same svstem vields more speed than using
one processor. Recent advances in VLSI technologies. coupled with the need for
fast computers, have made large-scale multiprocessor syvstems econonically feasible.
I such systems. hundreds or even thousands of processors are used to carry out

the computations of a program concurrently. thereby speeding up the execution of

Processor | Processor 2 Processor 3

Processor N-1 Processor N

Figure 1.3 A shared bus syvstem

the program. Many applications can benefit from this enormous computing power.
The hasic architecture of a multiprocessor system is shown in Figure 1.2, In thix
configuration. the .\ processors carry out computations on data stored in the 1/
memory modules. For the interaction between the processors and memory. there
must be a communications mechanism to enable any processor Lo access any memory
module i the shortest possible time. This communication channel is denoted as the
imterconnection network which plays important roles in multiprocessor systems.
Interconnection networks were first proposed for use in telephone exchanges to
allow subscribers to talk with one another. Some decades later. researchers hegan
to consider how networks could be incorporated into computers. Many different
approaches have been considered and some implemented. These include the use of
buses. hicrarchies of buses. direct links. single stage networks. multistage networks
and crosshars. The shared bus is shown in Figure 1.3, When several processors are
connected together via a bus. these processors should be capable of communicating
with each other. It is obvious that. as the number of processors increases. the load on

the interface increases sharply. If one provides a different bus for each path. the cost

of such multiple-bus connections increases as the square of the number of processors.
On the other hand, if only one bus is used, the contention prob:]em between different
messages may become critical. With more processors/memories, the hus becomes a
performance bottleneck. Most designers opt for multiple-bus solutions. The resulting
network is named on the basis of its geometry as a star, a cube. a hypercube. a
hypertree, a cluster, and by other similar self-explanatory names. In all of these
cases. a few pairs of resources have direct links with each other. but other pairs must
communicate via one or more intermediate nodes, thus introducing time delays and
performance degradation. In order to reduce the load on the bus. it is now becoming
common for individual processors to have cache memories.

The next simplest form of interconnection mechanism is the crossbar [17]. In
a crosshar switch, every input port can be connected to a free output port without
blocking. This is simple, but impractical as the number of processors increases.
A more practical method is the use of multistage interconnection networks (MINs)
which consist of small-sized crossbars and links between them in a way unique for
each MIN. Usually, a multistage network consists of more than one stage of switching
elements and is capable of connecting an arbitrary input terminal to an arbitrary
output terminal. These can be divided into three classes: blocking. rearrangeable.
and nonblocking. In blocking networks, simultaneous connections of more than one
terminal pair may result in conflicts in the use of network communication links.
Examples of this type of network include the data manipulator [24], baseline [17].
SW banyan [23], omega [17]. flip [25], and delta [28] networks. A network is called
a rearrangeable network if it can realize all possible connections between its inputs
and outputs by rearranging its existing connections so that a connection path for a
new input-output pair can always be established. A well-defined network. the Benes

network, belongs to this class. A network which can handle all possible connections

without blocking is called a nonblocking network; some varieties of the Clos network
are in this class.

As systems become more complex, the reliability of the system has become a
major concern because just one fault in the system can degrade system performance
or cause the system to fail completely. The function of fault-tolerance is to preserve
the delivery of expected system services in the presence of errors. There are two
major aspects to fault tolerance: (1) detecting and diagnosing faults; and (2) avoiding
known faults if such a capability exists. Techniques such as test patterns, dynamic
parity checking, and write/read-back/verify can be used in various interconnection
networks for detecting and diagnosing fault tolerance. In order to achieve fault
tolerance, the topology of the network can be modified, usually by adding spare links
and switches. Other method involve error-correcting codes, bit-slice implementation
with spare bit slices, and duplicating the entire network [57]. Many of the known
interconnection network can be made fault tolerant. Some of the examples are the
Extra Stage Cubes (ESC) [56], the multipath omega network [59], the F-network
[63], the enhanced IADM network [30], the merged delta [28], the extra stage gamma
network [58], the #~network [66] and the INDRA network [61). The fault tolerant
Clos network (FTC) has been proposed by Nassar [60]. Little about the properties

and routings of fault tolerance of the Clos networks is available in the literature.

1.2 Background
Interconnection networks have been widely studied since they play important roles
in telephone switching networks and other communication, data networks and
computing systems. In multiprocessor systems, they are needed as a means of
interprocessor communications. The three-stage Clos network [31] served as a basis

for the Benes network [32] and the Waksman network [35]. Later, other networks

9

such as the omega network [29], the baseline network [17] and the cube-connected
network [26]. were proposed in order to simplify the Benes network.

Several control algorithms for Clos networks have been proposed. The earlier
algorithms were based mostly on matrix decomposition methods. Neiman [33] has
proposed an O(n?k?) algorithm which consists of two phases: a relatively simple
preparatory phase, followed by a complex iteration phase. Here, n represents the
number of switches in the second stage, and k the number of switches in the outer
stage of the Clos network. Tsao-Wu [34] has presented two modifications to the
preparatory phase, which result in lowering the probability that the second phase
will be needed. However, this algorithm does not lower the worst case complexity of
Neiman's algorithm. Waksman introduce another new algorithm [35], and Opferman
and Tsao-Wu suggested the Looping algorithm for the Benes network [32]. A different
algorithm has been proposed by Ramanujam [36]. However, Kubale [37] showed that
Ramanujam’s algorithm fails for some permutations. Also, the matrix decomposition
algorithm suggested by Jajszézyk [38] has been proved to fail by Cardot [39]. These
algorithms select elements from the matrix according to certain rules, and backtrack
when they are unable to obtain a permutation matrix. These rules are rather intuitive
and do not work in some cases.

Many algorithms are based on the minimum edge coloring on a bipartite
multigraph. Hwang [40] suggested that edge coloring algorithms for bipartite graphs
can be adapted to decompose Clos networks. Vizing’s method uses O(n*k) time
to perform a complete coloring since it needs O(k) time to find the alternate
path to color an edge. The Euler partitioning approach to edge coloring uses a
divide-and-conquer technique and was formalized by Gabow and Kariv [46]. whose
algorithm runs in time O(nk%lg k). A modified version of the previous algorithm
was presented by Gabow [45], and it runs in time O(nklg k). Cole and Hofcroft

[47] also proposed an algorithm by preprocessing the edges while keeping the degree

10

of a vertex invariant. Lev, Pippenger and Valiant [52] developed parallel edge
coloring algorithms for routing on Clos networks. Recently, Gordon [43] introduced
an algorithm which runs in time O(nk®?2) with the aid of specification and count
matrices. Chiu [44] demonstrated that Gordon's algorithm displays errors for some
permutations.

Parallel algorithms were proposed by Nassimi and Sahni [49]. The time bounds
of these algorithms may be reduced if all of the switch sizes are integral powers of
two. Another parallel algorithm was proposed by Carpinelli [50] which eliminates
backtracking by introducing the concept of partitioning. The Benes network control
algorithm for frequently used permutations was reported by Lenfant [53].

The self-routability of Clos networks has been studied by Douglass and Oruc
[54). This study shows that the Clos network is self-routing if and only if N/m < 2
or m = 1. Raghavendra [55] also reported self-routing algorithms in Benes and
shuffle-exchange networks.

Meanwhile, a great deal of effort has been directed to the fault tolerant
multistage interconnection network in order to make the network more reliable and
fault tolerant. A single fault in the interconnection network can cause a severe degra-
dation in performance unless measures are provided to make the network tolerant
to such faults. With developments in VLSI technology, large scale multiprocessor
systems with fault-tolerant interconnection networks have become feasible. Many
fault tolerant interconnection networks have heen proposed. However, few fault
tolerant Clos networks have been studied until Nassar [60], who provided alternate
paths by adding multiplexers and switches to the network.

Although several control algorithms have been proposed in order to reduce the
run timein the Clos interconnection network, little effort has been made in improving
the performance by extending the algorithm to the fault-tolerant cases. Nassar's

control algorithm [60] for the fault tolerant Clos network is based on Neiman's

11

algorithm, and has the same time complexity as Neiman's algorithm. Considering
that the spare switches can provide alternative paths in the system, his algorithm
could have been faster if he could utilize these paths during the routing process.
The extra switches in the fault-tolerant Clos (FTC) network have been found to
give great flexibility to the routing algorithms by providing alternative paths to the
svstem. and thus can be used to improve the run time significantly when the system
displays few or no faults. No studies have been made so far about the utilization of
the extra spare switches for the improvement of routing speeds in the fault tolerant
Clos network.

In this thesis, Gordon's algorithm is shown to display errors in some permu-
tations. Then, the new simple algorithm which works for all permutations for the
control of rearrangeable Clos networks is proposed, which is based on his algorithm.
The new algorithm is extended to the fault tolerant Clos (FTC) network. The extra
switches in the fault-tolerant Clos (FTC) network are used to improve the run time
significantly since they provide alternative paths to the system when the system
displays few or no faults. The effect of increasing the number of extra switches on
system routing time, reliability and cost in fault tolerant Clos networks is analyzed.
Finally, the optimum number of extra switches on the fault tolerant Clos network is

determined which will best satisfy the run time, reliability and cost constraints.

1.3 Outline
This research has demonstrated that Gordon's algorithm displays errors for some
permutations. Next, a new algorithm is proposed for the Clos networks which is
based on Gordon’s algorithm. This algorithm is extended to the FTC networks, and
resulting run times are compared with the ordinary networks. The FTC network has
been classified into three types for the purpose of developing algorithms systemat-

ically. The reliabilities for these networks are examined, and the optimum number

12

of extra switches which satisfies the reliability, run time and cost constraints is
considered.

The rest of the thesis is organized as follows. In chapter 2, basic concepts and
relevant notation which will be used in the thesis are introduced. These include
the representation of interconnection networks, fault tolerance, and reliability of the
system. In chapter 3, the implementation of important MINs such as the crossbar
network, Clos network and Benes network are examined. Routing algorithms based
on the matrix decomposition, edge coloring and matching, and parallel decomposition
are discussed in Chapter 4. Next, Gordon’s algorithm is examined and then a counter
example is given which demonstrates that his algorithm has a law. A new algorithm
for routing on ordinary Clos networks and three kinds of swaps used in the algorithm
are introduced in chapter 5. In chapter 6, some of the fault tolerant multistage inter-
connection networks, such as Extra Stage Cube (ESC) and Fault Tolerant Clos (FTC)
networks, are addressed. In chapter 7, three types of FTC network are discussed,
and swapping rules and conditions in each case are considered. A new algorithm for
the FTC network is proposed, which is extended from the algorithm illustrated in
chapter 5. Reconfiguration of the FTC network is considered next. In chapter 8.
reliabilities of the fault tolerant Clos network are considered and corresponding space
complexities are examined. Also, the fault detection and location of the FT'C network

is considered. Finally, conclusions and open problems are presented in Chapter 9.

CHAPTER 2
MODELLING OF INTERCONNECTION NETWORK

2.1 Introduction
The modelling of interconnection networks is important in order to analyze them.
In this chapter, the concept of permutations as well as basic definitions and notations
that are used in interconnection networks are introduced in section 2.2. These provide
a basis for representing interconnection networks in the various matrix forms by
setting each of the stages of the network. Section 2.3 introduces bipartite multi-
graphs, which is another method of representing interconnection ne_*.tworks. These
can be used to route a permutation for Clos network in edge coloring algorithms. as
will be shown in chapter 4. The concept of fault tolerance is described in section 2.4.
followed by the concept of reliability in section 2.5. These will be used to describe

the fault tolerant Clos network, which will be discussed in chapter 5.

2;2 Interconnetion Networks

2.2.1 Representation

A set is a collection of distinct elements. A mapping or a function from a set 4 into
a set B is a rule which assigns to each element a of A exactly one element b of B.
It is written as b=(a)f to imply that a is mapped to b by f. Let f be a mapping of
A into B. It is said to be one-to-one if, whenever a; # aa, (a1)f # («2)f and it is
said to be onto if for each b € B, there exists a € A such that («)f = b. Let [be a
mapping of set A4 into set B and let g be a mapping of set B into set C. The mapping
f-g . defined by (a)f g = ((a)f)g = (b)g =¢, « € A,b€ B,c € C, is called the

composition of f and g. A permutation of a set S is a one-to-one mapping of 5 onto

13

14

itself. It is written as (r)P = y to imply that = is mapped onto y by permutation
P. Both r and y belong to S.

A group is a set G with a binary operation dot(:} on G. where the binary
operation is associative, there is an identity element e in G such that e .2 =2 ¢ = ¢
for all in G, and for each z in G, there is an inverse element z’ in G with the
property that 2'-x = x-2’ = e. A subgroup of a group G is a subset of G which also
forms a group with respect to the group operation of G. The set of all permutations
of N elements on S form the symmetric group, denoted as 35 . The cardinality of
Sn is NL

Two notations are used for representing permutation P. In standard notation.
also called two-row madtrix form, there are two rows of elements; the first row contains
the source elements to be permuted and the second row contains the destination
elements that they are mapped onto. It is written as P = < ;: ;z L ;: > to
imply that (2;,)P = y;, 1 <7 < n, where S = {2,272, - . Tn} = {y1,¥2." - Yu}.

1 2 3 4
24 31

and 4 to 1, where S = {1,2,3,4}. In cyclic notation, the permutation is of the

[N}

For example, ()is a permutation which maps 1 to 2, 2 to 4, 3 to itself

form (xy,25, -+, z,) where x; is mapped onto x4, x4 is mapped onto x3, and so on.

The final element =z, is mapped onto the first element ;. It is written as P =

(ry.20. - 2y) to imply that (z1)P = 25, (22)P = 23.---. (2,)FP = x;. where v, € 5.
1 2 3 4
2 4 31

by the cvcle (1 2 4). Any element which is mapped onto itself is not written explicitly,

S = {xy.22.-- -, ¥y }. The previous example P = () will be represented
so 3 is not included in the cycle (1 2 4). Particularly, the permutation e is called
the identity permutation, and (r)e = x for all x € S. For example, the permutation
1 23 4 .
c=< 1 2 3 4) maps every element onto itself.
Given a switch with N inputs and N outputs, the setting can be expressed as

an N x N matrix, K. The rows of the matrix represent the inputs of the switch and

15

the columns represent its outputs. A7, j] = 1 if the switch is set so that input 7 is
connected to output j; otherwise, K{i,j] = 0.

The A matrix can be used to represent a stage. A stage is a set of switches
which are disjoint, that is, there is no possible connection from the output of one
switch to the input of another in the set. Notice that the permutations for the two
2 x 2 switches were combined to form one permutation encompassing four elements.
The matrix approach is similar; the 2 x 2 matrices corresponding to the switch
settings are embedded in a 4 x 4 matrix which defines the setting of the entire stage.

Given the settings of two switches

] 0 1 . 1 0
I‘l2=[1 0] 1‘3“2[0 1}

the 4 x 4 matrix which results from their embedding is

01
10
0 0
00

0
K

]

—_— 0 O O

0
1
0
In the permutation notation, 1 and 2 had to be mapped amongst themselves, as
did 3 and 4. This is because the switches are disjoint, and the input of one switch
cannot be mapped onto the output of the other. In the matrix this is accomplished
by setting the elements of the quadrants not on the main diagonal to zero. In this
example, rows 1 and 2 cannot have non-zero entries in columns 3 and 4. Figure 2.1
shows the resultant switch settings.

A multistage permutation network consists of several stages of switches. The
outputs of one stage serve as the inputs to the next stage. The mapping realized
by the network is derived from the mappings of the individual stages. 1f the maps
of each stage are represented as matrices, the matrix representing the map of the
entire network is the ordered product of the stage matrices. As an example, consider
a three-stage network as shown in Figure 2.2. The matrices corresponding to the

stage settings are, respectively,

16

R I
2 | 2
3 3
4 4

Figure 2.1 Switch settings of two 2 x 2 switches

01 00 0 01 0 1 0 0 0

{1 0 0 0 6 0 0 |1 | 01 00

00 1 0 1 oo o] ™ oo ool

0 0 0 1 01 0 0 00 1 O

Their ordered product is
0 0o 1 0
0o o0 0 1
L 0 0 0
01 00
The matrix of this kind becomes very sparse as the number of inputs increases.

For N inputs. a matrix of this form has N? entries. In order 1o reduce this size.
a compacted matrix is often used. The N x N matrix 1s consolidated into a & x I
matrix. I, . where ne = N/k. The first row of H,, is the sum of the tirst m rows
of the original matrix: the second row of H,, is the sum of the second m rows. and
so on. The columus are compacted in a similar manner. The 2 x 2 matrix. ;.

corresponding to the ordered product matrix derived above is

N

v <
(el)

17

Note that the sum of the elements in each row and in each column is exactly m.

There is a trade-off that results from the savings in matrix size; one compacted
. . .10 2
matrix may represent more than one mapping. The compacted matrix [5 0 } may

represent any of the following matrices.

0010 0 010 0 0 01 0 001
0 001 0 001 0010 0010
1 000 0100 1 000 0100
01 00 1 000 0100 1000

When dealing with compacted matrices, additional information is required to
distinguish between mappings. The matrix H, is the representation used by the
matrix decomposition class of algorithms for routing on Clos networks. The H,,
matrix is a typical way of representing the permutation. However, as the matrix
becomes sparse, further reduction in size can be possible with the I.JS(:‘ of S and C
matrices, which are called the specification matrix, and the count matrix. In the §
matrix. the k x k matrix H,, is consolidated into a & x n matrix where n is the sum
of the elements in any row or column of Hp,. This is especially useful in representing
the Clos network as is explained in chapter 5. In order to obtain the S matrix. let

P:(O | N_l)ﬁwhereogigjv_landN:nk.Foreach

Yo v o Y o0t YN-
signal ¢. calculate z and t where # = |i/n] is the first-stage input switch at which
the signal arrives, and t = |y;/n]| is the last-stage output switch to which it should
be routed, and set any unassigned element which is the next unassigned element in
the zth row of S to t. On the other hand, each element of C, ¢[z,y],0 <z < k —1.

0 £ y £ n—1, is the number of occurrences of the integer x in column y of 5. As

an example, the permutation matrix is given as

p_(0 1 234567809101
V210 356 11 7194 0 8
The H; matrix is
1 01 1
1 1 01
H = 01 11
1 110

18

The S and C matrices are

03 1 120
12 3 2 0 1
S=1lg9 93| ad =17,
10 2 01 2

A multistage permutation network consists of several stages of switches. The
output of one stage must be connected to the inputs of the next stage. The permu-
tation realized by a multistage network is the ordered composition of the permu-

tations realized by its stages. Consider a 4-input, 3-stage network. The first stage

f)
realizes the permutation i '1' Z ; , the second stage realized the permutation
1 2 3 4 . . 1234\ .
(34 1 2) , and the third stage the permutation (1 3 2 4) Composing

stage permutations in order, the first permutation maps input 1 onto-output 2. This
output 2 of the first stage is assigned to input 2 of the second stage: the second
stage permutation map routes this to output 4 of the second stage. Finally. input
4 of the third stage is routed to output 4, so the network routes input 1 to output
4. Repeating this for the other inputs, the permutation realized by entire network is

2 3 4 ; ,
(}1 9 3]), as shown in Figure 2.2.

2.3 Bipartite Multigraphs
The bipartite multigraph also can be used to represent a permutation for Clos
networks, which will be introduced in chapter 3. A graph G' = (V. £) is an ordered
pair of finite sets V' and E. The elements of V' are called vertices, and the elements
of £ are called edges. An edge (v, w) is an unordered set of two distinct vertices. If
an edge (v.w) can occur more than once. G is a multigraph. Edge (v.w) is incident
to v and to w, and vertices v and w are adjacent. A subgraph of G 1s a graph whose
vertices and edges are in G. To delete edge e from G means to form the subgraph
G — €. consisting of all vertices of G and all edges of G except €. To delete vertex v

from G means to form the subgraph G — v, consisting of all vertices of G except v.

19

I |
2 2
3 3
4 4

Figure 2.2 Switch settings of three stage network

and all edges of GG except those incident to v. A graph corresponding to a function
lias the property that the vertex set can be partitioned into two disjoint subsets
R and D (R corresponds to the set of range vertices and D to the set of domain
vertices) such that all edges in the graph join a vertex in D to one in R. There are
no edges that join two vertices in R or two vertices in D.

A graph whose vertex set can he partitioned in this wayv is called a bipartite
graph. All graphs that correspond to functions are hipartite, The degree of a vertex
¢ 15 the number of edges incident to v. An example of a hipartite multigraph is
shown in Figure 2.3. A graph is regular if all vertices have the same degree. A patl
P is a sequence of edges (vy. v2). (va. v3) {v,_;.ty). The ends of P are vertices
vy and o, o ey #oe,0 Pos open. otherwise Pois closed. A graph is connected if
there is a path between any two distinct vertices. A connected component of a graph
is a maximal connected subgraph. A malching M of GG is a set of edges. no two of
which are incident to the same vertex: A/ covers any vertex incident to an edge in

M. An edge coloring of G s an assignment of a color to each edge n G such that

Figure 2.3 A bipartite multigraph

no edges incident to a vertex have the same color. Thus all edges of a given color
form a matching. A minimal edge coloring uses the fewest number of colors possible.
The apphcation of coloring and matching to routing Clos network will he discussed

in Chapter 4.

2.4 Fault Tolerance
A fault tolerant MIN is one that provides service even when it contains a fauhy
conmponent or compounents. A fault can be either permanent or transient. Fault
tolerance is defined only with respect to a chosen fault tolerance model. which has two
parts. The fault model characterizes all faults assumed to occur. stating the failure
modes for each network component. The {ault tolerance criterion is the condition
that must be met for the network to be said to have tolerated a given fanlt or faults.
The fault model is the tyvpe of faults that can occur in the network. Inplicitly.
the fault model specifies the tvpe of faults that can be recovered from using the

proposcd fault tolerance design. Different designs specify different fault models. A

21

good design, however, is one whose fault model includes as many fault types as

possible. To illustrate, a typical fault model is as follows.

e Any network component can fail: MINs are made up of two types of

components which are switches and links.

e Switches and links are likely to fail.

The network is capable of recovering from any such fault.

A link fails if it is open or short circuited. A switch fails due to some internal

malfunction.

The extra hardware added to provide fault tolerance to the network fails at
a lower rate than the network hardware. This assumption is usually made for two
reasons. First, if the extra hardware added to the network to make it fault tolerant
could bhe assumed to fail at any significant rate, then it would not be possible to
propose any fault tolerance design. In addition, this assumption can be justified for
MINs because these components usually remain idle under normal conditions. Thus
they can be expected to have higher lifetime than the actively working components
of the network.

The fault tolerance criterion is the condition that must be met in order for the
system to be called fault tolerant. The fault tolerance criterion for the networks is
mainly full-access retention. That is, after a fault occurs, each processor must still
be able to communicate with any memory module. However, the two fault tolerant
designs can offer a higher criterion, i.e., full recovery. Full recovery is the ability of the
network to regain its pre-fault connectivity after a fault occurs. A network is single-
fault tolerant if it can function as specified by its fault tolerance criterion despite
any single fault conforming to its fault model. Generally, if any set of ¢ faults can

be tolerated, then a networl is :-fault tolerant. A network that can tolerate some

22

instances of i faults is i-robust although not 7-fault tolerant. Many fault tolerant
systems require fault diagnosis such as fault detection and location to achieve their
fault tolerance. Techniques such as test patterns, dynamic parity checking. and
write/read-back/verify can be used in various interconnection networks.

Fault tolerance can be achieved at various level in a system. Techniques for fault
tolerant design can be categorized by whether they involve modifying the topology
of the system. Three well known methods that do not modify topology are error-
correcting codes [64], bit-slice implementation with spare bit slices [63], and dupli-

cating an entire network [65].

2.5 Reliability

2.5.1 Fundamentals

The reliability of a system is defined as the probability that the system will perform
a required function under stated condition for a stated period of time . Mathemat-
ically. the reliability, R, of a system is a function of A and ¢, where A is a constant
representing the failure rate (per unit time). To simplify the analysis in this thesis,
the time factor will be only implicit. In other words, when it is said that the relia-
bility of a switch is r, it will mean the reliability of the switch over a given period of
time t. This is done because the focus will be on comparing reliabilities, rather than
obtaining the absolute reliability value. In comparing two networks, for instance.
the two networks should be under the same circumstances, including the period of
time, ¢, hence the omission of the time factor. Predicting reliabilities usually involves
dealing with probabilities. It stands to reason then that an overview of probability

theory should be given before discussing the fundamentals of reliability.

a) Series

b) Parallel

c) Series-parallel

Figure 2.4 Series. parallel. and series-parallel systems

2.5.2 System Reliability

23

Simple systems can generally be classified into three categories as shown in Fieure

2.0 series. parallel. and series-parallel. A syvstem can be broken down ino isolated

components. First. a series syvstem is defined as a complex syvstem of independem

units connected together. or interrelated. in such a way that the entire svstem will

fail 1l any one of the units {ails. It is assumed that the fatlure of one component has

no effect on the probability of any other component failing. Thus. the svstem cau

he no bhetter than its weakest component. Series reliability is calculated using the

product rule as

-
R, =

17

=1

where [, 1s the probability that a component 7 of the svstem will function properly.

When component reliabilities are equal. the reliability of the svstem is

24

The unreliability of the system is defined as 1—reliability. Thus, the unreliability of

a system is

On the other hand, a parallel system is defined as a set of interrelated
components connected in such a way that a redundant, or standby part can take
over the function of a failed part to save the system. Redundancy refers to the use of
more than one part for the same function. The calculations for parallel reliability are
more complex than those {or series reliability and include the concept of unreliability.

The parallel reliability of a system is
R,=1-T] U
i=1

For equivalent component unreliability,
Ry=1—(U)"=1—(1-P)

Parallel reliability increases as the number of components increases, which is the
opposite of the series systems. Parallel systems also display marginal proba-
bility. which refers to the increase in reliability as components are added. As the
redundancy is increased in parallel svstems, it is important to balance the costs
involved.

Mixing the two kinds of systems, there can be a series-parallel system which
includes both series and parallel components. Reliability for these systems can be
determined by computing the reliabilities separately, using the rules that apply to
either series or parallel systems, until the entire system is completed.

Sometimes a system has n parallel components but needs at least m of them
to remain operational. This problem is a binomial distribution. The reliability of
the system in this case can better be expressed as unity minus the probability of the

complementary event (that is, failure occurring from having between 0 and m — 1

25

operational components). The operational components are indistinguishable from
each other, and so are the non-operational components. Recall that the way to count
the number of ways these components can be arranged together is a combination
problem. Thus the reliability of the system is

R=1-5 (™) P -py
This equation is used in chapter 8 to obtain the reliability of the fault-tolerant Clos

network.

CHAPTER 3
IMPLEMENTATIONS OF MINS

3.1 Introduction

The overall performance of multiprocessor configurations is affected by the number
and the type of processors, the communication mechanism between the computing
sources, the characteristics of the computational workload, and the control program.
Whereas the major constraint in uniprocessor systems is the speed of the processor,
the critical factor in multiprocessor systems is the speed of the interconnection
mechanism. The performance of the interconnection mechanism, on the other hand,
is determined by network structures and routing algorithms. A broad spectrum
of networks has been studied ranging from simple linear arrays to the completely
connected situation, with all other configurations falling in between. In many appli-
cation, the choice of an appropriate interconnection network is a key issue in the
design of any system with multiple processing resources. Nonblocking networks
which work for all permutations are particularly well suited in these purposes.
Rearrangeable nonblocking networks and their routing methods are also studied for
their potential uses.

In this chapter, design factors for interconnection networks are discussed in
section 3.2. In next two sections, the fully-connected and crosshar networks, which
are the most straightforward in design, are examined. In section 3.5, the construction
of the Clos network capable of mapping its N input terminal to its ' output terminal
is described. Finally, the Benes network is discussed in section 3.6, followed by

discussion in section 3.7.

26

27

3.2 Design Factors of Interconnection Networks

There are fundamental decisions in determining the appropriate architecture of an
interconnection network. The decisions are the operation mode, control strategy.
switching method, and network topology [17]. Among the four decisions, network
topology is a key factor in determining a suitable architectural structure. A network
can be depicted by a graph in which nodes represent switching points and edges
represent communication links. The topologies of interconnection networks tend to
be regular and can be classified into the following two categories: static networks
and dynémic,netwérks. In a static network, links between two processors are
passive and dedicated buses that cannot be reconfigured for direct connections to
other processors. Topologies in the static category can be classified according to
the dimensions required for layout, for example, one-dimensional, two-dimensional.
three-dimensional and hypercube. In a dynamic network, links can be reconfigured
by setting the network’s active switching elements.

There are three topological classes in the dynamic network: single-stage,
multistage, and crosshar. A single-stage network is composed of a stage of switching
elements cascaded to a link connection pattern. The shuffle-exchange network is
a single-stage network based on a perfect-shufle connection cascaded to a stage
of switching elements. A multistage network consists of more than one stage of
switching elements and is usually capable of connecting an arbitrary input terminal
to an arbitrary output terminal. Multistage networks can be one-sided or two-sided.
The one-sided networks have input-output ports on the same side. The two-sided
networks have separate input and output sides.

The control-setting function can be managed by a centralized controller or by
the individual switching element. The latter strategy is called distributed control
and the first strategy is called centralized control. Generally, the centralized control

is simple, but takes a longer time. In contrast, the distributed control is fast but

Figure 3.1 The completely connected network

requires additional computing sources in each switch. The tyvpical operation modes
of interconnection networks can be classified into three categories: synchronous.
asnvchronous. and combined. Also. three switching methodologies can he identified
as circuit switching. packet switching. and integrated switching. which are not

covered in this thesis.

3.3 Completely Connected Network
The ideal situation would be to link directly each processor to every other processor
so that the svstem is completely connected as shown in Figure 3.1, Unfortunately.
this is highly impractical for large N because it requires N — I connections for each
processor. and the total number of connections needed in the network would reach

N(N = 1), For example. if A= 2% then 2%(2° — 1) = 261.632 links would be needed.

3.4 Crossbar Network
The simplest connection network is the Crossbar network. which has one switeh for

each possible input-output connection. Given N inputs and N outputs. a crosshar

N-1

0 l 2 N-1

Figure 3.2 The N x N crosshar interconnection network

network would have AN? switches and O(N?) area. The routing algorithm to set the
switches is trivial. The N x A" Crossbar network is shown in Figure 3.2. All Crosshar
uetworks are strictly non-blocking. The difficulty with crossbar networks is that the
cost of the network or the number of crosspoint switches which grows with N7, This

makes the crosshar network infeasible for large syvstems.

3.5 Clos Interconnection Networks
The interconnection networks shown above are impractical as the number of inputs
increases. Many other networks are reported in the literature. Most of them are
blocking networks which can not implement all the permutations. Rearrangeable
nonblocking networks such as the Clos network and cellular networks are networks
without blocking properties. The three-stage Clos mnterconnection network. which is

illustrated in this section. is shown in Figure 3.3.

30

I+W-N
w-N

[+u

-

JHOM I SO[) 0BRs-00d1[1 Wi [g°¢ aInS1]

[-u

|

wxu

uxu

uxuw

"N

[+U-N
w-N

31

3.5.1 Network Structures

The three-stage Clos network [31] consists of two symmetrical outer stages of
rectangular switches, with an inner stage of square switches. It is completely
determined by the integer parameters n,m,and k that give the switch dimensions.
The first stage contains k switches, each of which has m inputs and n outputs. Each
switch is actually a simple crossbar switch which can realize any mapping of its
inputs onto its outputs on a one-to-one basis. The second stage consists of n k x &k
switches, each of which receives exactly one input from each first-stage switch. The
output stage has k n x m switches, each of which receives exactly one input from
each second stage switch. The number of inputs to the network is N = mk. Inputs
and outputs to the first-stage switch or third-stage switch ¢ are numbered from
(1—=1)m+1tom.1 <1<k The Clos network can reduce the area of the
crosshar switches for the same number of inputs. For example, when N = 12 with
n = m = 3 and k = 4. the number of cross points in the crossbar is 122 = 144, while
in the Clos network, total number of cross points is 2 x 4 x 32+ 3 x 42 = 120. The
Clos network is much easier to visualize when it is illustrated in three dimensions as

shown in Figure 3.4.

3.5.2 Properties of the Clos Networks

In contrast to most other interconnection networks, the Clos network satisfies some
important characteristics. One of the properties of the Clos network is the rearrange-
ability if the network satisfies the condition n > m . The interconnection network
is rearrangeable if it can connect any idle input to any idle output by possible
rearrangement of its existing paths. If the network satisfies m = n = k. then
at most n — 1 existing calls need be moved in the Clos network in order to connect
an idle input-output pair. Also, Clos showed that for m > 2n — 1. the network is

nonblocking in the strict sense [31]. The network is strictly nonblocking if it is always

32

Figure 3.4 The three dimensional Clos interconnection network.

possible to connect together an idle pair of input-outputs without disturbing the
routing already established. no matter in what state the network mav be. Note here
that the network is nonblocking in the wide sense when putting up new calls results

i avoiding all the blocking states. so that the svstem is effectively nonblocking,.

3.6 Benes Networks
Benes considered the class of rearrangeable 3-stage Clos networks with v = 1 =2

and k= 2 for some positive integer 1. He showed that any such network can he

recursively decomposed into 21 4+ 1 stages. each consisting of N/2 2 x 2 cells. Benes

networks have 2(lg N') — 1 stages and O(N lg N} crossbars. where N = ik =
241 To illustrate Benes's decomposition. consider the 3-stage Clos network witl

no=m = 2and k =4 which is depicted in Figure 3.5. The first and last stages
consist of four 2 x 2 crossbars. and the center stage consists of two 4 x 1 cells. These
cells are decomposed into 2 x 2 crossbars and the total number of stages is five. each

ol the stage consists of four switches, This vields the final 8 x 8 Benes network.

33

NLOM ML Sollog] N X N O] ¢'g 9In31]

34

0o 1|2 3[4 s5]e 7
0 - NO
2 Vv
0
2 Jlo
3o
4 I~ o
A v
v 0
6 O
7 o<

Figure 3.6 An example of Looping Algorithm

Sequential routing algorithms [42] need O(Nlog N) steps where .\ is the
network size. Other methods such as the parallel processing method. heuristic
method. or recursive approach are used to improve this time complexity. One of
the basic algorithms is the looping algorithm. In order to illustrate the looping
algorithm. consider a permutation matrix P

01 2 4 5 6

3
D
p= 374 0 2 6 1

<=1

The looping algorithm starts recording the permutation. P as shown in Figure 3.6.

The two output numbers of a switching element in the output stage are shown
in the same column. and the two input numbers of a switching element in the imput
stage are shown in the same row. Then choose an arbitrary entry in the chart as
a starting point. For example. starting at row 23 and columun 01. then look for a
same-row or column entry 1o form a loop and choose row 23 and column 43, The
process continues until a loop is obtained by re-entering row 23 and column U1, The
loop's member entries are then assigned “a™ and “b” alternatelv. The second loop

can be formed in the same wayv. Then. assign input and output hnes named “a” 1o

35

subnetwork “a” and those named “b” to subnetwork “b”. The looping algorithm can

be applied recursively to the two subnetworks. Figure 3.6 shows an 8 x 8 Waksman

network {35].

3.7 Discussion
The Clos network is nonblocking and rearrangeable. Any idle input terminal of
the network can always be connected to any idle output terminal by rerouting the
existing connections if necessary. Also, the Clos network has an area complexity
less than O(N?). For systems with a large number of processors, the Clos network
has the advantage of area complexity when compared with crossbar switches. The
propagation delay is also an important consideration in permutation network design.
Clos networks have propagation delays ranging from O(lg N) to O(N). depending
on the values of the design parameters. Other networks such as Benes networks
are of importance. Various methods of implementing control algorithms have been

developed, and will be discussed in chapter 4.

36

LOM UL RIusY Ry R X R 0] L°¢ aan81 g

CHAPTER 4

DECOMPOSITION OF CLOS MINS

There are many algorithms reported in the literature for routing the Clos network.
These algorithms can be classified basically in three categories: matrix decompo-
sition, edge coloring and matching, and parallel decomposition. These algorithms
determine the setting of the switches of a permutation network to realize a given
permutation, or a connection pattern of every stage from the inputs to the outputs.
First. in this chapter, the matrix decomposition algorithms of Neiman, Ramanujam,
and Jajszczyk are studied. Also. the counter examples of Kubale and Cardot are
considered. The class of routing algorithms for Clos networks which make use of
edge coloring on bipartite graphs are presented. These two decomposition methods
are reported to be basically the same [50]. Also, the parallel algorithms of Carpinelli
are examined. Finally, Gordon’s algorithm is discussed, which is a basis of the new

algorithm that will be introduced in chapter 6.

4.1 Introduction
In the Clos network, central routing units are required whose function is to receive
a permutation, and to find the corresponding settings for each individual switch
to realize that permutation. Many routing algorithms have heen developed for the
Clos networks. But routing processes of the Clos network are extremely serial in
nature and there often occur routing conflicts. which result in backtracking. The
backtracking is going back to the previous steps when the conflict occurs in order
to keep decomposing the matrix. The basic approach in routing the Clos network is
to find the switch settings of the second stage switches, and from there, set the first

and third stages switches accordingly. Once we know the second stage settings. we

37

38

can set the rest of the switches very easily, without any calculations. However, this
is not true if we try to decide the switch settings from outside to inside. Also, setting
the second stage switches involves conflicts and the algorithm must backtrack to find
the right switch settings. This keeps the algorithm relatively slow, and make the
algorithm highly sequential. This is one of the reasons why few parallel algorithms
have been developed so far. For this reason, Carpinelli's [50] parallel algorithm checks
the possibility of backtracking using a partitioning technique before decomposing the
matrix. One of the ways to improve the speed of the algorithm is preprocessing. which
arranges the switch settings to be closer to the final settings before the algorithm
starts. so the total workload can be reduced. Three approaches have been explored
in the literature for decomposing the matrix: the matrix decomposition approach.
the coloring and matching approach and the parallel approach. which are covered in

this chapter.

4.2 Matrix Decomposition

4.2.1 Neiman’s Algorithm

Neiman's algorithm consists of two stages. The first step tries to mark all k elements
from the matrix. If the first step could not mark all & elements, then the second step
takes over and finishes marking the elements. The algorithm is illustrated as follows.
Step 1: Starting with the left-most column, mark a non-zero element which has no
marked elements in its row. Repeat this process on the next column, continuing
until all columns are processed. If during this marking process. a column is found
to have no non-zero entry whose previous entries in its row are not marked. then
the algorithm proceeds to the next column without marking any elements in that
column. If & elements are marked, then the algorithm is done; otherwise, Step 2
must be performed once for each column with no marked elements.

Step 2: 1f the number of marked elementsin Step 1 is z, then the number of unmarked

39

elements must be k—z. Mark a non-zero entry in a column with no marked elements,
say Hmlt,7]. Unmark the other marked element in this row, Hy[i,j]. Mark another
non-zero element in this column, Hylf, j], following the rule that once this stage
marks an element in a row or column. no other element may be marked in that row
or column until this iteration of Step 2 is completed. Continue to unmark and mark
elements until no row or column has more than one marked element. This will result
in a matrix with exactly one more marked element than before executing Step 2.
The k marked elements represent the setting for one of the m switches of stage
2. A marked element in a row ¢ and column j represents that the input 7 of the
switch is to be connected to output j of the same switch. Each marked element in
H,, is then decremented by one to obtain H,,—;. Next the algorithm is applied to
H,,-1 to obtain the setting for another switch in stage 2, and this process is repeated
until H; is obtained.
As an example. consider a Clos network with m = n = 3 and k£ = 4 with a

permutation matrix

P_123456789101112
12781511 639 12 4 10
The corresponding H matrix is
1020
1101
Ha=17 11 0
010 2

The first stage arbitrarily marks a non-zero element in the first colummn, H3(2.1]. The
next columns are also marked without any duplications of rows or columns which
have been already marked. Here, H3[4,2] and Hj[1,3] are marked arbitrarily. Next.
we need to mark Hj[3,4], but column 4 has no non-zero entry in a row with no
marked elements, so no element is marked in this column. Since there is no marked

element in the fourth column, the second step must be executed. The matrix. with

40

asterisks representing marked elements, is

1 0 2% 0
I 1 0 1
Hs = 1 1 1 0
0 1 0 2

The second stage successively marks and unmarks elements of H; until it has four
elements, no two of which reside in the same row or column. Arbitrarily mark a
non-zero element in column 4 with no marked elements, H3[2.4]. Unmark the other
marked element in this row, H3[2,1], and mark a non-zero entry in the column of the
unmarked element, column 1. One choice can be H3[l1,1]. This process is repeated
until one more element is marked than was the case in Step 1. Continuing the process
of unmarking and marking elements, Hj{1, 3] would be unmarked and Hj([3, 3] would
be marked. Since four elements are now marked, and no two reside in the same
row or column, the algorithm terminates. The matrix Fs can be extracted from the

marked elements of Hs as shown below

1*x 0 2 0 1000
1 1 0 1« 00 0 1
Hi=1 1 1 1« o |2 EB=]¢ ¢ 1 ¢
0 1« 0 2 0100

The H, matrix is obtained by subtracting E3 from Hz matrix, and H; can also
be decomposed using the same method described above, which would leave another
two solutions, £y and F;. The time complexity of Neiman's algorithm is known to
be O(nk?) for pass 1 and O(n2k?) for all. For large k, Neiman's algorithm displays

high time complexity, although his method holds for every possible permutation.

4.2.2 Ramanujam’s Algorithm

Ramanujam [36] uses a different matrix than the other algorithms in this class, but
it is related to the H matrix. He uses the allocator mairiz M which has dimension
k x k, and Mz, 7] is the set of all destinations of inputs to first-stage switch j which

are output at third-stage switch 7. It is actually the transpose of H,,. with the entries

41

listed rather than counted. The phase of the algorithm which extracts the desired
matrix operates as follows. Set up a k& x k matrix T, where T'[¢. j] is the maximum
element of M|[i, j], or 0 of M[i,j] is empty. The largest element of T is marked. and
its row and column are crossed off. This is repeated on the submatrix left in T until
T is null or contains all zeros. If T is null, the marked elements define a matrix for
extraction. These elements are deleted from M, and the process is repeated until
M is null. If T is not null, reform T, replacing the largest value with a zero. and
repeat this stage, choosing the largest element of T. The marked elements form the
E matrix. As an example, consider the Clos network with m = n = 3. and &k = 4.

The permutation to be realized is given as

0 1
P=(23

The allocator matrix M and the T matrix are

-1 W

4 3
9 5 11 6 10 0 4

[>T (]

67891011)
1

2} @ {1} {0} 2 9% 1 0
(3} {5 © {4 3 5 & 4
M = {8} {1} {6} {<1> and T=1 o - 5 g
¢ {9} {11} {10} ® 9 11 10

From the T matrix, it can be seen that the largest element is T'[3.2]. Mark this
element, and then delete the row 3 and column 2. Since the largest remaining
element is 8, mark T'[2,0] and then delete row 2 and column 0. Continuing the same
procedure, T'[1,1] and T'[0,3) can be chosen. Marking each of the chosen elements
with asterisk, the resulting M is
{2y o {1} {0}
wol BBy e
{8} {7} {6} @
o {9} {11} {10}

From the marked A matrix, extract one of the solution matrix Ej

Ey

I
o = O C
SO = O
— o O C
o C O -

42

The other two solution matrices £ and E5 can be obtained in the same manner.

fl

E, and FEp =

oo - o
O —= O O
[R e R
= O O O
o C O
— o O O
S = O o
(= el -]

4.2.3 Kubale’s Counterexample

Ramanujam’s algorithm decomposes a k& x &k matrix M of sets of integers, called
the allocator matrix, into n matrices having exactly one nonzero integer in each row
and column. Kubale [37], however, noticed that the algorithm is incorrect for k > 4

because it may run into an endless loop in Step 3. although it works well for & < 4.

01234567
P‘(240 1567)

with n = 2 and k¥ = 4. From the step described above. the allocator matrix M

For example,

w w

o,

becomes as follows:

& {0} {1} &
{2} {3} & i

4} ¢ {5} ¢

¢ & & {6.7}
By choosing the maximum integer in each of the sets m; ; we obtain an integer matrix

& {0} {1} @
2} {3 @ &
{44 @ {5} o
» @ o {7

Since 7 is the largest element, T'[3, 3] is marked, and row 3 and column 3 are removed.

M=

T =

leaving
¢ {0} {1}
@ e e
{4} ¢ {3}
The next largest element is 5, and T'[2.2] is marked. T" then becomes

o {0)
|2 @)

43

From the above matrix, it is obvious that the invalid choice is made by selecting
T'[1,1] and then, T'[0, 0], which has no elements. Since we are unsuccessful in selecting
four nonzero integers, we must set the largest element of the original T matrix to

zero and go back to previous steps. Then the T matrix becomes

¢ {0} {1} @
o3 e e
=l {4 o {5 @
¢ ® o o

However, going back to previous steps is of no effect here because constructing the
new 7 is based on same matrix M, and the algorithim loops indefinitely, thus showing

that the Ramanujam’s algorithm does not work in all cases.

4.2.4 Jajszczyk’s Algorithm

Neiman has shown that the control of the rearrangeable switching network can be
interpreted as a procedure of finding a set of £ matrices which can be subtracted, one
at a time, from some given H,;, and the £ matrices are permutations to be realized
by the middle-stage switches, which a one denoting a crosspoint to be closed and a
zero to be open. Jajszczyk [38] used another approach to find a set of E matrices,
which 1s illustrated as follows.

Step 1: For each row and column of the matrix H,,, find the number of zeros.

Step 2: Find the row or column with the maximum number of zeros and mark an
arbitrarily chosen nonzero element in this row or column.

Step 3: Cross out the row and the column containing the marked element. The
size of the matrix is essentially reduced by one. although the indices of the elements
remain unchanged.

Step {: Repeat the procedure m — 1 times, starting from step 1. for the reduced
matrix. The last element is always a nonzero element and is marked after mn — 1

repetitions of the procedure.

44

Step 5: Form an elementary permutation matrix £ with the elements E[i, j] given

by

0, if h;; is not marked

£li 5] = { 1, if hi; is marked
The obtained E matrix is then subtracted from the H,, matrix, and the procedure
is repeated for the resultant matrix Hp-¢ (0 < ¢ < m — 1), until the matrix H, is
obtained. Notice that the matrix H; is equal to matrix £;. Jajszczyk's algorithm
is simple and the time complexity of the algorithm is O(nk?), which is fast among

the matrix decomposition algorithms.

4.2.5 Cardot’s Counterexample
Jajszczyk's algorithm is very efficient and works pretty well. However, Cardot [39]
has found some errors in this algorithm. For example, the Hy matrix with & = 10 is

given below.

=
I

o oOCocRwOoO~ROoOCO
wmomwmeocoooocaoo
oo HIVOOoO O
Y =N A -R=-N==
—C o CC O, O =
cocoCc o~ weo o
—w oo 0O o~ O
cCococowCocCowoO
co~woOoOoco—~oo
o CcocCc o~ oo

r
1

According to Steps 1 to 3 of Jajszczyk's algorithm. the elements H[3.6], H[5. 7]. H[6.1]
and H[8.2] can be marked, and all the rows and columns containing the marked

elements are crossed out. leaving

H,

il

0
0

0
0

0
1

2
1

o -

0
0

8V

1
0

-

45

Suppose we choose the element H[3, 7] which has maximum five zeros in its column.

At the next step, column 9 will be empty, so the algorithm is blocked, which means

there is a flaw in Jajszczyk's algorithm.

4.3 Parallel Decomposition

4.3.1

Carpinelli’s Algorithm

Ramanujam’s algorithm and Jajszczyk's algorithm fail because they could not predict

the partitionability of the given permutation matrix in advance. Any algorithm to

perform a matrix extraction must have the capability to determine whether a parti-

tioning exists. Neiman's algorithm achieves partitioning by convolving the marked

elements until the partitions are accounted for although he never explicitly checked

for them.

accounts for the failure these matrix decomposition algorithms.

recognize this partitioning is given below.

partition(H,E,.)
{

int H,. . partition_exists, My. My;

H-,ln =Hm; Em =05
while (H], '=10) {

partition_exists=NQO;

Carpinelli’s algorithm [50] introduces a concept of partitioning which

An algorithm to

46

generate_partition(H!,, partition_exists, My, Ma);
if (ﬁav‘tition_mists==NO) {
pick ¢, 7 such that H,[7,]] # 0;
Hy, = Hy\ 4,7, Ealt,j]=L
}
else {
partition(M,, E);
partition(M2, E3);
Em=FE,+E +F;; H =0

First, the algorithm initializes the variables H], and E,. The while loop
adds elements to E, until it becomes a permutation matrix. The subroutine
generate_partition() is to check if the partition exists. If a partition exists, the
subroutine forms the submatrices and returns them in M; and AM;. If a partition
does not exist, 7 and j are chosen to mark an arbitrary non-zero element. If a
partition exists, two partition submatrices are processed recursively. The subroutine
generate_partition() is shown below, which is a heart of the algorithm.
generate_partition(H!, , partition_exists, My, M3)

{
int R, C,

J\/Il = 0;]V[g = 0;
parfor (each possible set of rows of H)) {
R =set of rows of H,,;

C =set of all columns of H, that have at least one non-zero in a row of R;

if (J1R| = 1C|) {
M, = rows and columns of H! in R and C;
M; = rows and columns of H] not in R and C}

partition_exists=YES;

This subroutine generates all the possible sets R in parallel, and checks all
possible partitions. First, the subroutine initializes the variables, and checks the
partitionability in parallel. The condition of the partitionability can be checked by
extracting the sets R and C and checking the number of elements in the two sets.
If the number of elements in the two sets is the same. this means that a partition
does exist, and partition submatrices M; and M, are formed and the flag 1s set.
Once a partition is found, parallel executions are terminated, and the subroutine
exits, returning the values obtained. Returning to the subroutine partition(). two
partition submatrices are recursively processed and partial E matrices are created.
A partial matrix is a matrix with one or more rows of all zero elements. Then. these
partial £ matrices are combined together to form E,,.

For example, consider the matrix

Hm =

[en i R en B
— o w e
<o == O W
N o - o

First, variables are initialized by setting H, = H,, and E,, = 0, and starts parti-
tioning. Then partition_exists 1s set to NO and calls subroutine generate_partition().

One of these execution has R = {1,3} and C = {1.3}. Since |R| = |C| = 2.

48

partition_exists is set to YES, and M, and M, become
1 2
M, = 5 1 and M, =
12
Since a partition does exist, Step 3b recursively processes Af; and M,. resulting in

two E;, F; matrices

1 000 0 00O
0 00O 0 001
Br=lo o1 o|™E=19 900
0 00O 0100
These two matrices are added, resulting in the final matrix E,,
1 000
0 0 01
Em = 0 0120
0100

4.4 Edge coloring and Matching
So far, matrices are used to represent the Clos network and the decomposition has
taken place on that basis. Another approach to represent a permutation network is
by using the bipartite multigraph. The bipartite multigraph G can be expressed as
a triplet {¥4, V5, E'}, where ¥} and 1, are sets of vertices and £ is the multiset of all
edges of the multigraph. The coloring is the process of assigning tags, or colors to
each edge such that no vertex has more than one edge of a given color incident to
it. This is actually a means of minimizing the number of colors used. The matching
is the process of creating a set of edges such that no two are incident to a common
vertex. The following algorithms make use of coloring and matching to effectively

decompose the permutation.

4.4.1 Introduction
The graph theoretic approach to finding the setting of the switches of stage 1 starts

by treating each switch in stages 0 and 2 as a vertex in a multigraph G. Let the set

49

of switches of stage 0 be denoted as 170 and the set of switches of stage 2 be denoted
as 172. Then, given a permutation P, an edge is added between vertex 7 and vertex
J if an inlet attached to switch ¢ of stage 0 is to be routed to an outlet attached to
switch 7 of stage 2. The result of this is the bipartite multigraph G = (V0.172. E).
where F is the set of edges between V0 and V2. G is a multigraph since multiple
edges between vertices are allowed, and is bipartite since each edge in G is incident
to two vertices, one in V0 and the other in V2. The degree of G, which is the
number of edges incident on any vertex, is clearly m. The graph theoretic approach
then decomposes G into m subgraphs, each of degree 1. Each such subgraph will
represent the setting of one of the m switches of stage 1. An edge in a subgraph
between vertex ¢, ¢ € V0, and vertex 7, j € V2, indicates that an input to switch
¢ is to be connected to an output of switch j. These settings insure that no conflict
will occur in stage 1 and all required paths specified by the permutation will be
accommodated.

Many algorithms have been proposed to decompose G in the general case
[40]. Hwang's algorithm runs in O(k*?) time. Other algorithms also exist where
techniques such as edge coloring and Euler partitioning are used. The graph
based algorithms are outside the scope of this thesis. The two routing approaches
mentioned above have been discussed extensively in the literature and the graph
theoretic techniques have always been described as more efficient. However. it has
been found that both edge coloring and direct matrix decomposition approaches are
equivalent [51]. This finding may well lead to a new, unified routing algorithm that
makes Clos network particularly suitable for processor interconnection in large-scale

multiprocessor systems.

50

4.4.2 Vizing’s Method
Vizing's method [48] of coloring a bipartite multigraph uses the method of alternating
path. The multigraph is initially uncolored, and each iteration adds one more colored
edge to the multigraph. Assume that edge (i, 7) which is incident to vertices 7 and j
1s uncolored. In the multigraph for Clos networks, each vertex has degree m. Since
this edge is uncolored, vertices 7 and j are each missing at least one color. Assume
that vertex ¢ is missing color @ and vertex 7 is missing color . If they both miss
the same color, that edge can be colored by the missing color. Color edge (7,j) with
a. This now leaves two edges incident to vertex j with color @ and none with the
color b, so change the color of the other edge from a to b. If this causes another
vertex to have two edges colored b, change the color or the other edge from b to a.
and continue until the coloring is valid. Since the multigraph is bipartite, and both
vertex sets have the same cardinality, there must be at least one other vertex which
needs color a. The alternating path, the path of edge color changes. will eventually
find this vertex. An algorithm based on Vizing’s method which was formalized by
Gabow and Kariv [46] is shown below.
augment()
{

let vertex 2 miss color ¢ and vertex j miss color b;

let .S be the subgraph of edges colored « or b;

let P be a connected components of S incident to 7 or j:

interchange color @ and b on the edges of P;

color edge (7. j);

As an example, consider Figure 4.1. First, edge (71,y1) 1s selected. Since
vertex r; does not have color « and y; misses color b, an allernating path of colors

a and b will be formed. Then color edge (zy.y;) with a. The time complexity

51

Figure 4.1 Augmenting bipartite multigraphs: (a) before. (L) after

of this algorithm for the complete coloring is O(|V| - |E|) where [V7] is the number

of vertices in the multigraph. and |E| is the number of edges. Since

V= 2k and
|| = nik for the Clos network. the time complexity is again O(nk?). Likewise. the

space complexity is O(|V'| + |E]). which reduces to O{nk).

4.4.3 Euler Partitions

The Euler partition uses a divide-and-conquer technique. This partitions the edges
of (/' into open and closed paths. so that each vertex of odd/even degree is the end
of exactly one/zero open paths. Figure 1.2 shows the Euler partitioning of a grapls.
The partition enables the division of G into two edge-disjoint subgraphs /) and /..
A path can be found by starting at a vertex of odd or even degree and selecting an
edge. Add it to the path. traverse the edge from the original vertex to the other
vertex it is incident to. and remove it from G. Repeat the process until a vertex of
zero degree is reached. If £ 5 ¢ then repeat the entire process. Once the multigrapl
is reduced to a set of paths. the subgraphs can be determined. This procedure can

he formalized as the following recursive algorithm.

(OO—) C—) ()
C—O—0 & @
(O— &) (—) (—C)

Figure 4.2 Euler partitioning

BEGIN
1. Let é be the maximum degree in G
2. Jf & =1 THEN color all edges in G using a new color
ELSE
BEGIN
3. Form Gy and G using an Euler partition such that neither

subgraph has degree > [6/2]:
4. Euler-color(Gh):
5. Euler-color(G,):
END:
END

4.4.4 Gabow’s Modified Algorithm
Gabow [45] presents a modified version of the previous algorithm which always

determines a minimal edge coloring. 1f the degree of the vertex is odd. the algorithm

53

finds a matching of all vertices having maximum degree. The edges in this matching
are colored and removed from the multigraph. This reduces the degree of the
multigraph by one, and the degree now becomes even. The rest of the algorithm

follows the same procedure as the previous one, as illustrated below.

PROCEDURE EC(G, 6);
BEGIN

PROCEDURE REC(G.é);
BEGIN

1. IF éisodd THEN

BEGIN
2. IF é =1 THEN M := G ELSE MD(G.M);
3. Let ¢ be a new color;
4. FOR each edge e € M DO
BEGIN
5. color(e) := ¢;
6. Delete ¢ from G,
END;
END;
T. EP(G. P);
8. IF P is not empty THEN

9, Make Ly and L, empty lists;
10. For each path pin P DO
BEGIN
11. Let p be the sequence of edges €, -, ¢€,;
12. Foru:=1tor DO
13. IF 7 is odd THEN put ¢; in L; ELSE put €; in Ly;

54

END:
14. FOR :=1,2DO
BEGIN
15. Let G; be the multigraph consisting of the edges in L; and the

vertices incident to them;

16. REC(G;. |6/2)):

END:;
END:
END (REC):
17. Delete all vertices of degree 0 from G,
18. Let é be the maximum degree of a vertex;
19 REC(G.6);
END(EC);

MD is a procedure which finds M which is a matching of all vertices of maximum
degree. EP forms P, the set of paths needed to derive the Euler partition. Gabow’s

algorithm runs in time O(nk®/?1g k) for the Clos network where m = n.

4.5 Gordon’s Algorithm
Unlike the above algorithm, Gordon [43] uses a unique method to decompose the
matrix. although the nature of his algorithm is the same as the coloring decompo-
sition. He defined two k x n matrices S and C, called the specification and count
matrices, respectively. The relations between the H, S. and C matrices can be seen
in Figure 4.3. If we use the notation proposed by Neiman in reference to the Clos

network, then the necessary connections are assumed and expressed as a permutation

[}
[

O |1 |2 (2 1 1 (2 [0 |0
] 3 12 (0 1 1] | 0
0 |4 (4 |3 1 {0 |0 |1 |2
3 13 [0 |4 I 10 jO0 |2 |1
Smatrix |2 [4 |1 |1 O [2 |1 |0 |1
2 1o |1 |1 H matrix
1 1 1 1
1 [0 |2 |1
1 |2]0 |1
C matrix 0 j2 {1]!

Figure 4.3 Relations between the H.5. and ¢ matrices

P (01 . N)
7(0) =(1) ... 7)) ... ®(N=1)
wlhere inlet ¢ is to be connected to outlet #(¢). 0 < ¢ < N = 1. and N = 1k, Initially.
S 1s set to represent the épeciﬁcation in the following way. All elements of 5 are
unassigned. Then for each signal 7.0 < ¢ < N —1. calculate r and 7 where o = [1/n] is
the first-stage input switch at which signal arrives. and t = |[7(:/)/n] is the last-stage
output switch to which it should be routed. and set the next unassigned element in
the wth row of 5 to 1. Ou the other hand. cach element of C'. clr.y]. 0 < w0 < A= 1.
0 <y <n—1.is initialized to the number of occurrences of the integer .« 1 columu
y of 5. The pointers ca and s represent rows of C" and .5 matrices respectively. and
y and = represent columns of the S or (' matrix. As an example, a sample /2 matrix

and resulting 5 and " matrices when k=4 and n =3 are

56

P_01-34.567891011
“\12 10 3 5 6 11 719 4 0 8
0 3 1 1 20
- 1 2 3 2 0 1
S=15 93| d O=17 1,
1 0 2 01 2

Algorithm: Initially, sz is set to zero.

Step 1: Find a row cx, in column y of C such that c[ecx,y] = 0. If no such element
can be found then increment y until either such an element is found or all columns
are satisfied, in which case the algorithm halts with a solution.

Step 2: I we have not halted we must have found c[cz, y] = 0. There must therefore
be another column z (greater than y since we are leaving only satisfied columns to
the left). such that ¢[cz,z] > 1. This follows since there are exactly n copies of each
element (0 to n—1) in each row, so a missing element in one column implies a repeated
element in another. We increment z. from the initial value y, until ¢[cz.z] > 1.

Step 3: We now have a column =z of S that contains more than one copy of the missing
element cz. Repeatedly increment sz (mod k) until s[sz.z] = cx. As explained later.
this way of setting sz prevents the algorithm from entering a loop in which the same
elements are swapped repeatedly on successive passes.

Step 4: Swap the elements s[sa, y] and s[sz, z] . thus inserting the missing element
s[sz.z] into column =z of S. This will as a side effect reduce the number of elements
sfsx. z).

Step 5: Increment c[ez.y] and c{s[sx,y).z} and decrement c[cz. =] and c{s][sa. y].y}.
Step 6: Increment cx (mod k) and go to Step 1.

Example: The application of Gordon’s algorithm is illustrated by the following
sequences of matrices for the example. The two elements of the scheduling matrix
that have been swapped are marked by *: the incremented and decremented elements

in C' are marked by + and —. The P matrix is given as

LU
]
TN
o
—_
| SR)
[

The .S and C matrices are

1 0 0 2 0 2
S=(12 21 and C=120
2 0 01 11

= O

1

ool & I e

1

57

In the first iteration, cx =0, y = 0, = = 1, and sz = 2. The resulting matrices are

as follows with the swapped elements marked with asterisks.

1 0 0 2 R
S=|1 2 21 and C=| 2 0
0~ 2 0 1 0~ 2t
In the second iteration, cx = 2, y =0, == 1. and sr = 1.
1 0 0 2 1 1
S=|21" 21| and C=| 1" 1*
0 2 01 1t 1-

In the third iteration, cx = 1, y = 2. = = 3. and st = 2.

1 0 2 1 1 1°
S=1{21 2 1 and C=|1 1 17
o 2 1~ O 1 1 1

— O o

_ O N

— v O

N o

In this example, S becomes the solution matrix after the third step of the algorithm.

The run time is dominated by the number of swaps, which has time complexity

O(nk3?). Gordon's algorithm is basically a special kind of edge coloring algorithm.

Each column of the decomposed .S matrix determines the switch setting of a second

stage switch whose destination is given by elements in that column.

Since the

Clos network has connections from each center-stage switch to each of the last-

stage switch, elements in each column of the .S matrix are not identical. Gordon’s

58

algorithm, however, has been found to display errors which will be discussed in

chapter 6.

4.6 Discussion
Neiman's algorithm, which consists of two stages, works for all permutation.
However, the matrix algorithms of Jajszczyk and Ramanujam are faster, but do
not work for all permutations. This is due to the improper choice of elements in
the H matrix which leads to errors in the algorithms. This can be prevented using
the partitioning. which works for all permutation and does not require backtracking.
Gordon’s algorithm uses two matrices for the decomposition. However, his algorithm
is closer to the coloring algorithms in nature because elements in each column of
the decomposed S matrix can be considered as edges colored with one of n different
colors. The H. S, and C matrices are closely rela.ted. and each matrix has its own
characteristics. Although the H matrix and bipartite multigraphs are basically
the same, edge coloring algorithms usually work faster than matrix decomposition
algorithms without any errors. Gordon’s algorithm does not work for all cases: this
will be discussed in chapter 6. Also, a new routing algorithm is introduced hased
on Gordon's algorithm. The routing algorithms for fault tolerant Clos networks are

discussed in chapter 7.

CHAPTER 5
FAULT TOLERANT MINS

5.1 Introduction

In chapter 3, we reviewed the interconnection networks that can be appled for
parallel/distributed computer systems and switching networks. However. these
interconnection networks provide only one path from a given network input to a given
output. Hence, if there is a single hardware fault, fault-free communication will not
be possible between some network input/output pairs. Different approaches to fault
tolerant multistage interconnection networks have been studied. In general. MINs
can be made fault tolerant by adding extra hardware such as switches. interstage
links and multiplexers/demultiplexers. Adding extensive hardware usually decreases
performance degradation under faulty condition, but increases the cost and size.
Adding little hardware, on the other hand. increases performance degradation under
faulty conditions but keeps the cost and size down. As a consequence. a compromise
must be made where the trade-offs are weighed carefully and the Dbest design is
reached. A govod fault tolerance technique is one that needs minimal hardware and
causes minimal performance degradation under faulty conditions. Any fault tolerance
technique should cause no performance degradation under normal conditions. As
the extreme case, the duplication provides two networks in parallel. with one being
active and the other being standby. If a fault occurs. the standby network is switched
in and the faulty network is switched out, and normal operation resumes. This
approach provides the same performance in faulty conditions as in normal conditions.
but increases the cost and size of the system.

A number of fault tolerant MINs have recently been reported for multipro-

cessor systems. The details of these techniques depend mainly on the type of network

59

60

and the fault tolerance model used. Fault tolerance has also been provided for some
other network a.rchitectureslthrough various approaches. In this chapter, some of the
fault-tolerant MINS are discussed including the Extra-Stage Cube {ESC) and fault-
tolerant Clos network (FTC). The advantages and disadvantages of each network
will be discussed. This will help explain the problem of fault tolerance. and thus will
facilitate its solution. The reconfiguration of the fault tolerant networks when faults

occur 1s considered.

5.2 Extra Stage Cube (ESC) Network
The ESC network is formed from the generalized cube (GC) network by adding one
extra stage and multiplexers/demultiplexers to activate the bypass extra stage (stage
3) or the output stage (stage 0) [56]. An ESC network for N = 8 inputs is shown in
Figure 5.1. The stages are numbered in decreasing order from 3 to 0 starting from
the extra stage. Stage 3 offers two tvpes of paths depending on the states of the
multiplexers. This results in an additional path being available from each source to
each destination. A stage is enabled when its interchange switches provide paths to
the next stage. It is disabled when its interchange switches are bypassed. Enabling
and disabling of stages 3 and 0 is accomplished by having dual input/output ports.
and multiplexers and demultiplexers to select between the input/output lines. Figure
5.2 details interchange switches for stages 3 and 0. At stage 3. a multiplexer selects
between two sets of identical input lines, one of which bypasses the stage 3 switch and
the other of which routes through the switch. At stage 0, a demultiplexer provides
the option of bypassing the switch or routing data through it. Failures may occur
in network interchange switches. links between interchange switches. and network
input/output lines. Failed components of the network are considered unusable until

replaced or repaired.

61

Ij._;_J L__rl LI.I_.] l._"_J L].___.J

NIOMIU ()G) oqu) 98R1S RONT o[T'¢ 3InS1]

\

/

I

-

/

\

I_H

]

Xnp

xXnwa(q

TTTT TT T

xXnwa(q

o T— L 0 [

]_ Interchange switch

Multiplexer Demultiplexer

I

¢) d) e)

O

— == T

Figure 5.2 The Extra Stage Cube Network: (a) Stage U interchange switch (b) Stage
3 interchange switch (¢) Stage 0 enabled (d) Stage 0 disabled (e) Stage 3 enabled ()
Stage 3 disabled

Once a fault occurs in the network. the network is recovered in the following
wavs. 1t is assumed that the ESC network can be tested to determine the existence
and location of faults. 1f an input line connected to a stage 3 multiplexer fails. stage
3 1s enabled and the nonfaulty input line is used instead. If the fault is on an mpuw
line to a stage 3 interchange switch. that line is unused and the system continues to
ignore the faulty line. If an output line from a stage 0 switch to a PE is faulty. the
network is reconfigured as if stage 0 is faulty. If the fault 1s on an output lne from
a demultiplexer. that line is unused and the svstem continues to ignore the faulty
line. Stage 3 and 0 enabling and disabling may be performed by a syvstem control
unit. In normal operation. stage 3 is disabled and stage U is enabled. This fault-free
ESC is 1opologically identical to a GC. If after running fault detection and location
tests a fault 1s found. the network is reconfigured. I the fault is in stage 0. stage 3 1s
enabled and stage 0 is disabled. For faults in a link or switch in stages 2 or 1. both

stages 3 and 0 will be enabled. Stage 3 of the ESC network allows access 1o two

63

distinct stage 2 inputs. Stages 2 to 0 of the ESC network form a GC topology. so
each of the two stage 2 inputs has a single path to the destination, and these paths
are distinct except for the stage 3 and 0 switches, which are fault-free in this case.
Thus. at least one fault-free path must exist.

The ESC uses a routing tag scheme for the control of the network. which is
similar to the exclusive-or tag scheme for the GC network. The ESC network uses
4-bit routing tag T = {3fot1¢¢ for the one-to-one source to destination connection.
The tag values depend on whether the ESC network has a fault. as well as the source
and destination addresses. which need to be computed. If the network is fault free.
stage 3 is disabled and the routing tag is T' = t3f51,fo. where t3 is ignored and can
take any value. If there is a fault in a network link or switch in stages 2 to 1. stage 3
is enabled. and bit 3 of the tags can be used to control stage 3 and select between the
one of two paths. The primary path is used if it is not faulty. However. if it is faulty.
the secondary path is used. For routing tags, T = 0 13111 vields the primary path
and T =1 15t,1, the secondary path. Stage 0 uses T instead of {o to compensate for
the swap already performed by stage 3. If the fault is in stage 0. stage 3 is enabled
and stage O disabled. A routing can be accomplished by substituting stage 3 for
stage 0. because both stage 0 and stage 3 perform same functions. In this case, the
tag is T = tofot1t5. where t5 is ignored because stage 0 is disabled. The t3 is now set
as ty, and stage 3 performs the function of stage 0.

The fault size of the ESC is 1. and any inputs must remain capable of accessing
any outputs after the ESC recovers from a fault. The ESC is robust in the presence
of multiple faults. The ESC offers a straightforward routing method. In addition.
the multiplexers and demultiplexers need to be set only after a fault occurs. Also.
the ESC does not need specially designed switches. Simple binary switches and
I % 2 multiplexers/demultiplexers are used in order to form the ESC along with

interstage links. On the other hand, the ESC requires N/2 extra switches in addition

64

to N multiplexers and N demultiplexer to achieve fault tolerance for a MIN of size
N. Also. there must be an external hardware unit to set all the multiplexers and
demultiplexers so that data is routed through stage 3 rather than being byvpassed
when a fault occurs. Furthermore, after recovering from a fault, additional time is
needed to find if the fault lies on the primary path or on the secondary path hefore
generating a new routing tag. This time constitutes performance degradation. as it
slows down the system. Although the ESC has many advantages and drawbacks.

this network is considered one of the best fault tolerant MINs reported.

5.3 Fault tolerant Clos Networks (FTC)
The fault tolerant Clos network adds fault tolerance to the ordinary Clos network
by using extra switches and multiplexers/demultiplexers [60]. Recall that the Clos
network of size N must have & = N/m switches of size m x n in stage 0. and
switches of size n x m in stage 2. The n switches of stage 1 must be of size k x A.
An ordinary Clos network has n = m. However, when n > m, some degree of fault
tolerance is obtained since extra paths exist in the network.

The FTC achieves fault tolerance in the following ways. To make the outer
stages fault-tolerant. ks, extra switches are added to each of these two stages. Also.
N, extra switches are added to the middle stage in order to make it fault tolerant.
In the FTC. each inlet is connected by a demultiplexer to 1 + n,, distinct switches in
stage 0. Also. each outlet is connected by a multiplexer to 1 +n,, distinct switches in
stage 2. These multiplexers and demultiplexers serve as a fault recovery mechanism
in case of a fault in either of the two outer stages. Figure 3.3 shows the F'TC with
n=k=m=3.and ky, =n, = 1.

An FTC with N = mk is formed from an ordinary Clos of size N as follows.
First. use k + k,, switches with size m x (n + n,,) in each of the outer stage. Then

the original center stage switches must be enlarged from k x & to (k4 Ay,) x (h+ky,).

65

DBV TIRO UL ([D1Ms R11X0 ol puv "go=.y = wcitn) [o[¢ ¢ aan3drg

o

66

Connect the network inlets to the inputs of the first stage switches via 1 x (ng, + 1)
demultiplexers, and the network outlets to the outputs of the third stage switches
via 1 X (ng + 1) multiplexers.

For the FTC. the fault model is defined as follows.

1. Any switch can fail.

[S]

. Any interstage link can fail.

3. External links and multiplexers/demultiplexers cannot fail.

It should be mentioned that the faults are assumed to occur independently. and that
faulty components are unusable. The fault tolerance criterion of the FTC is complete

recovery. that is. regaining pre-fault connectivity after a fault occurs.

5.3.1 Reconfiguration of the FTC

It is important for the FTC to be reconfigured in case of faults in order to regain
its pre-fault connectivity. Consider an FTC network with n,, = k;, = 1. Let three
switches be X(f,.7), 0 <7 < 2. where fy. f1. and f; are unused switches of the first.
second. and third stage, respectively. The configuration of the FTC at any time is
a function of the present values of fy. fi, and f2. In general. the reconfiguration of

the FTC can be performed through one or more of the following operations:

e Setting the multiplexers and demultiplexers
e Terminal relabelling

e Permutation translation

As will be seen below. the value of f; affects the terminal relabelling, while the

values of fo and f; affect the settings of multiplexers/demultiplexers and permutation

translation. The multiplexer/demultiplexer setting is performed if an outer stage
switch fails.

When the FTC is not faulty, one switch in each stage will be unused. This
unused switch can be any switch, but {for convenience it will be assumed to be the last
switch in each stage. i.e., X(k.0), X(n—1.1). and X (k%.2). This choice is convenient
because it makes the multiplexers and demultiplexers remain in state 0 under normal
conditions. When a fault occurs, theyv can switch to state 1, thereby avoiding the
defective switch. Permutation translation is also performed if an outer stage switch
fails. Let P = {Py, P;....., Px_1} be an arbitrary permutation of {0.1.....N —1}. In
the actual network. P; is the outlet to which inlet ¢ is to be connected. In an ordinary
Clos network, P goes directly to the central routing unit where the-settings of the
individual switches are extracted and delivered to the switches for implementation.
In the FTC. the same steps are to be taken with the exception that permutation
P is translated before it goes to the central routing unit. Terminal relabelling is
performed if a middle-stage switch fails.

As mentioned above. f; affects the labelling of the outputs of switches X'(z.2).
0 < = < k+1. Let these outputs and inputs be referred to as the inward terminals of
the outer stages or just the inward terminals. In each of these switches. only m out
of the n inward terminals will be used. and will be referred to as the active terminals.
Each active terminal will have two labels: a local one. to be used by the switch’s
control unit. and a global one, to be used by the central routing unit. The local lahel
is an integer =, 0 < 2 < m. and the global label is also an integer Z. 0 < Z < m(k+1).
The active terminals will be labeled from top to bottom locally, with respect to the
switch. as the sequence 0.1....,m—1. Globally. the active terminals that were labelled
from top to bottom locally will be labelled from top to bottom. with respect to the
stage, as 0.1,...,m(k +1)—1. The labels are updated always after a fault occurs. and

the current labels are used to implement the routing information received from the

68

control unit. More details about the terminal relabelling can be found in [60]. The
reconfiguration of the FTC network can be illustrated more straightforward using

the S and C matrices, as can be seen in following examples.

5.3.2 Examples

To illustrate this, consider a permutation P of the FTC with n = k = 3. and one
spare switch in each stage.

01 8
P=(14 6’)

Initially. let the unused switches be X (3,0), X(3,1), and X(3.2) in each of the three

(S 3 ()
-1 Ot

(O |

3 4 6
0 8 3

stages of the FTC. Recall that this is the configuration suggested to be used under

normal conditions. Then. permutation @, according to the rules set forth above. will

o (01234 § 9 10 11
“\3 4 8 7 6 0 » 2 =

The H and S matrix representations of P are

be

~1

— Ot
o O
(1]

0 21 112
Hy=(1 0 2 S=(12 20
210 010

On the other hand, the H and 5 matrix representations of) are

0210 1 1 2 =
1 020 . 2 2 0 =«
H3“2100 =101 0
0 0 0 3 # H# #

The size of the matrix H increases by exactly one row and one column, and the 5
matrix also has an additional row and column. The additional paths due to extra
switches in the outer stages are represented as pound characters. and asterisks for the
extra switches in the middle stage. which are explained in greater detail in chapter
7.

As another example, again consider a permutation of 7 of the FTC with n =

k = 3, and one spare switch in each stage. Assume that switches X(1.0).X(2.1) and

69

SOU IS Nj[ne) (ZT) N PUR (12X 0T N s) Duey ot [prg aanS8

Aney : g

r]‘JEJ,J

4

L
:

|
I

70

X (2.2) suddenly failed, as shown in Figure 5.4. Due to the failure of X(2.1). the
inward terminals of stages 0 and 2 should be relabelled. Specifically. inward terminal
number 2 of each switch should be left out in assigning the numbers. The failure
of X(1.0). and X(2,2) aflects the permutation translation. Permutation P. given

before, is translated according to the rules laid down above to
Q_01234567891011
" \3 411l 22225010 9 1
The routing result will be implemented by all the switches except those that are

defective. namely, X(1,0), X(2,1) and X(2.2). The matrix representation of permu-

tation @ above is

Hs =

— N OO

< = C W
o W o
oo

In the previous example, the S matrix was be given by

1 1 2
" 2 2 0 =
ST 001 0+

#

Since X(1.0) 1s defective and X (3.0) is a spare switch, all input signals are moved

to the extra switch. and X(1,0) becomes unusable, which is denoted as dots.

1 1 2 =
szlO*
2 2 0 =

Also, the faulty condition of X (2.1) forces the elements in column 2 to be bypassed

to the spare switch X(3,1) which is represented as column 3. resulting in

11 2
S= |

0 1 0

22 0

Finally, the faulty condition of X(2,2) prevents the use of the second switch of in

the third stage. Instead. the signals assigned to this switch must now use the spare

switch which will be denoted as 3. Thus the resulting matrix is

11 .3
Flo1 .0
33 .0

Representing the reconfiguration of the network using the S matrix shown above
presents complications because of the introduction of dots in the rows and columns
of the matrix. In chapter 7, the reconfiguration matrix is introduced which retains

all the information of each switch’s use without swapping the rows or columns.

CHAPTER 6

NOVEL ALGORITHM FOR CLOS MINS

6.1 Introduction

Although Gordon's algorithm is simple and fast, as discussed in chapter 4. his
algorithm does not work for all permutations. His algorithm has two special features.
First. the use of two matrices in the algorithm contributes to the improvement of
the time complexity since it helps to find the number of occurrences of each element
directly. The next is the use of sa(mod k), which is the heart of the algorithm
and makes the algorithm very effective. In this chapter. it will be shown that
Gordon's algorithm does not work for all cases, and a counterexample will be given
in section 6.2, Next, a new simple algorithm will be introduced. This algorithm
is based on the Gordon’s algorithm. Three kinds of swaps by which this algorithm
realizes the desired mapping are discussed: 1) simple swap. 2) next simple swap.
and 3) successive swap. Also. we are going to prove that the new algorithim works
for all permutations. In section 6.4, the worst case and the average behavior of the

algorithm are discussed in detail.

6.2 Failure of Gordon’s Algorithm
The algorithm given by Gordon is very simple, fast. and works well when the matrix
size is moderate. Although Chiu and Siu [44] claimed the incorrectness of the
algorithm. it stemmed mainly from a typographical subscript reversal, which led
to a misunderstanding about the algorithm. Gordon reaffirmed in his reply that the
algorithm is still valid. However, our research found that his algorithm may run into
an infinite loop for k > 5. The heart of his algorithm lies in the repeated increment

of sz (mod k) until s[sx.z] = cr as shown in step 3 of his algorithm. Recall that

73

cr represents a row of (' which satisfies clex.y] = 0. This wav of setting sa is
intended to prevent the algorithm from entering a loop in which the same elements
are swapped repeatedly on successive passes. The setting of s, on the other hand.
is influenced by the choice of cz. However, Gordon did not mention anything specific
about the way of setting next cz after two elements in row sa of S are swapped. This
is especially true if row cx of C reaches & —1 while column y of C still contains zeros.
It is quite possible that the increment of cx (mod k) until ¢[ca. y] = 0 must have
been used in the algorithm because this is the most easy and efficient way to choose
the next value of cz. It is not likely that Gordon chose cr after some calculations
because. if he had done that. he certainly would have made it clear in the paper. We
have tested this algorithm on several possible cases. These include 1) increment of
cr (mod &) after the swap. 2) decrement of cz. and reset to k — 1 when cr < 0. and
3) random choice of cr. until cfex, y] = 0 for all three cases. An example for the first
case is given helow. The two elements of the C' matrix that have been swapped are
marked by ™: the incremented and decremented elements in S are marked by + and

—. Suppose that currently. cz =0, y = 1,sx = 4. and

0 0 2 41 1 3001
31 3 20 1 11 11
S=14 01 3 2 and C=1]1 1111
1 0 4 1 4 1 0 2 1 1
2 2 3 4 3 1 01 21

After the first repetition, cx = 1, y=1. se =1, z =2, and

00 2 41 1 3 0 0 1
3 3 1" 2 0 1 00 2t 1 1
S=14 0 1 3 2 and C=|11 1 11
1 0 4 1 4 1 1t 1= 11
2 2 3 4 3 1 0 1 2]

The second repetition vields cr =4, y = 1. s =4. z = 3. and

00 2 4 1 13 00 1
33 1 2 ¢ 1 0 21 1
S=(40 1 3 2 and C={1 0~ 1 2% 1
1 0 4 1 4 1 1 11 1
2 4~ 3 203 1 1t 1 17 1
After the third repetition,cr = 1. y =1, sxr = 1. = = 2. and
00 2 41 13 0 01
3 1~ 37 2 0 11t 17 11
S={4 0 1 3 2 and C=1(11 0 1 21
1 0 4 1 4 1 00 2 11
24 3 23 11 1 11

(s

The fourth repetition yields cx = 2. y = 1. sx = 4, = = 3, which reduces to the
first matrix and enters into an infinite loop. When examining the above example.
it can be clearly seen that the use of (mod k) incrementing of s does not always
effectively prevent the process from repeatedly finding the same element in following
passes. In most cases. this does not happen and the algorithm behaves well. especially
when & < 5. However, as k increases. the algorithm has more chances to enter a
loop independent of the ways of setting cx as described above. Chiu and Siu [44]
reported a new algorithm by modifving Gordon's algorithm without giving the time
complexity and proof that it works for all permutations. Also. their algorithm is
trivial. so it will not be covered in this thesis. In the next section. a new algorithm
15 introduced for decomposing Clos networks which is based on Gordon’s algorithm,

This can be done by scanning the C' matrix row-by-row. and by a class of swaps.

which will be explained later.

6.3 New Algorithm for Clos Networks
Although Gordon's algorithm is simple and fast. his algorithm has been demonstrated
to have errors in some permutations as shown in the previous section. In this section.
a new algorithm will be discussed which is based on Gordon’s algorithm. but uses

a different approach. In order to describe the algorithm. we shall use the notation

75

proposed by Neiman in reference to the Clos network. The necessary connections

are assumed and expressed as a permutation:

0 1 1 N-—-1
P—<7T(0) (1) ... w(1) .. 7r(/\"—1))

where inlet 7 is to be connected to outlet 7(i}, 0 < ¢ < N -1, and N = mk.
This algorithm uses two k& x n matrices S and C, called the specification and count
matrices. which were described in chapter 2. In order to obtain the S matrix from
the permutation matrix, the following step must be taken. Initially, all elements of
S are unassigned. Then for each signal 7,0 < 7 < N — 1. calculate & and t where
r = [i/n] is the first-stage input switch at which signal arrives. and t = |[x(¢)/n] is
the last-stage output switch to which it should be routed. and set the next unassigned
element in the xth row of S to f. The first stage switches are denoted by r. and the
second stages are represented by y. Each element of s[x.y] is the destination switch
in the third stage. Each element of C. ¢[r.y]. 0 S <k-1.0<y <n-—1.1s
mitialized to the number of occurrences of the integer x in column y of 5.

As an example, a permutation P and the S and C' matrices when k¥ = 4 and

n = 3 is as follows.

p= 0 1 2 3 ¢4 6 7T 8 9 10 11
“\2103 36 11 7194 0 8
0 3 1 1 20
. 1 23 2.0 1
S = 5 0 3 and C = 111
1 0 2 01 2

In order to explain the algorithm, it is necessary to define some of the terms that
are going to bhe used.
Definition 1: A column of C is d-missing if that column does not contain anyv d.

On the other hand. a column of C is d-excessive if there are more than one d in that

column.

Definition 2: When a column y in the C' matrix is d-excessive and a column z is
d-missing. an element which satisfies s[sz,y] = d in the S matrix for 0 < sx < k- 1.
is called a swapping element and s[sx. z] is called the swapped element.

Definition 3: When s[sz,y] is a swapping element and s[sr. z] is a swapped element.
then two elements s[sz.y] and s[sa. z] are simply swappable if s[sz.y] < s[sz.z] and
clex.y] = cler.z] =1 for 0 < ex < s[sz, y).

Definition 4: When s[sz. z] is a swapped element and s[sz. y] is a swapping element.

)

L&

then two elements C[‘CJ,‘, y] and c[ex, z] are successively swappable if s[sz,y] > s[sz.
and clex.y] = cler,z] =1 for 0 < cx < s[sz,y].

Definition 5: When two elements s[sx.y], and s[sx.:z] are swapped because of
being successively swappable. an element s[sz;.y] which satisfies s[sxy.y] = s[sv.y]
is called s[sz.y]-alternative.

The new algorithm is illustrated as follows.

Algorithm: Initially sz 1s set to zero.

Step 1: Find a column cz. in a row y of C such that ¢f[ex,y] > 1. I{ no such element
can be found then increment cx until either such an element can be found or all rows
are satisfied. in which case the algorithm stops with a solution. If the algorithm has
not stopped. it must have found ¢fcz,y] > 1. Set = = 0.

Step 2: Increment = until ¢fex, z] = 0. This follows since there are exactly n copies of
each element {0 to n — 1) in each row, so a repeated element in one column implies a
missing element in another. We now have a column = of S that contains no element
cr.

Step 3: (Simple Swap) Repeatedly increment sx(mod k) until s[sz.y] = co. If
slsw.z] < ca, go to Step 2. Otherwise, swap the elements s[sz. y] and s[sz. z] thus
removing the repeated element cx = s[sz,y] in column y of S. This will. as a side

eflect. increase the number of occurrences of element cx in column z of 5. Increment

~1
-1

clex.z) and cfs[sz.z]).y} and decrement cca,y] and c[s[scr.z].z]. It is easily seen
that these four simple changes restore the count property. If swapped. go to Step 1.
Step 4: (Next simple swap) Repeat Step 3. thus providing one more chance to simply
swap two elements in another row. If swapped. go to Step 1. This step is done only
once before ¢[cr. y] becomes 1.

Step 5: (Successive Swap) Swap s[sz.y], s[sx.z]. and update C as in Step 3. I
s[sx,y] > cx, go to Step 1. Otherwise, increase sz(mod k) for another s[sz.y| and
repeat Step 3.

This algorithm works for all permutations. which can be proved using the following
three theorems.

Theorem 1: Given two sets Se and Sm which are Y-excessive and Y -missing.
respectively. let Xe(¢). and Xm(7) be numbers with the value 7 in the sets Sc¢ and
Sm. where 0 <7 < Y. If the number of Y's in Se is two. it is always possible to
reduce the number of }" in Se to one without any change in the occurrence of Xe
and X'm.

Proof : Arranging the elements of the set Se and Sm.

Xe(0) A'm(0)
Xe(l) Xm(1)
XNe(2) Xm(2)
Ye

Ve

Ze Zm

Ze Zm
Zm

There are two possible cases for Ye to be swapped with an element in the set Sm.

First.if Y'e and Zm are in the same row, then two elements can be swapped. resulting
the reduction of number of Y'e in the set Se to be one without anyv change in the
number of occurrences in Xe or Xm. However, if Ye¢ and Xm are on the same row.
Y'e and any one of Xm(z), 0 <1 <Y should be swapped. The index 7 is used in
order to distinguish the elements of Xe and X'm which have the same value 7. As a
result, two identical numbers Xe(} —1) and Xm(} —1) are on the same }'¢-excessive
column. Now take Xe(} — 1), which is an Xm(}" — 1)-alternative. Again, there are
two possibilities. If X'e(} — 1) is in the same row with Zm, the number of Y'¢ n
the Y ¢-excessive column can be reduced to one without any change in the number of
occurrences in X, However, if X'e(} —1) is in the same row with Xm(} —2). we need
to swap Xe(Y —1) and Xm(Y - 2). and then find the Xm(} — 2)-alternative which
is Xe(Y —2). In worst case. this process continues until X'm(1) finds its alternative
Xe(0). Since other X'ms are not in the same row with Xe(0). Xe(0) must select
Zm. which leads to the proof of the theorem. D

Theorem 2: Given two sets of Se and Sm which are Y -excessive and) '-missing.
respectively. let Xe(¢). and X'm(z) be numbers with the value ¢ in sets Se¢ and Sm.
where 0 <7 < Y. If the number of Y's in Se is three. it is alwayvs possible to reduce
the number of ¥ in Se to one by applying simple and successive swaps.

Proof : Any Ye¢ in the Ye-excessive column can be swapped into the Y e-missing
column without any change of occurrences of Xs, which can be proved using the
same procedure as in Theorem 1. Once the number of Ye¢'s i1s reduced to two.
Theorem 1 can be applied. so the number of Y”'s can he reduced to one.O

Theorem 2 can be generalized to the case when the number of Y'¢'s 1s arbitrary.
Theorem 3: Given an arbitrary permutation of the S matrix. it is always possible
to decompose the matrix if the ¢ matrix is scanned row-hy-row from top-to-bottom.
Proof : For an arbitrary c[cx,y] in a row cx being scanned which satisfies ¢[ca. y] > 1.

it is alwavs possible to make ¢[cx,y] = 1 by applving Theorems | and 2. Thus. all

79

elements in the ' matrix which are greater than one can be reduced to one. O
Lemma 1: The maximum number of swaps in the successive-swap 1s k — 1.
Proof: All k elements in the Y 'e-excessive and }'e-missing columns can be swapped

except the remaining Y'e. which is at least one.OJ .

6.4 Example
To illustrate the algorithm clearly. consider a three-stage Clos network having n = 3

and & = 5 with an A matrix as shown below.

20100
0100 2
Hy=101110
01110
1 0011

The S and C' matrices derived from the H matrix are shown helow.

0 0 2 111
1 4 4 111
S=}13 1 2|1C=]10 2
2 31 210
3 4 0 0 21

Now check the €' matrix for an element that 1s greater than 1. which implies that more
than two edges incident to the corresponding output node are colored identically.
Since ('[2.2] > 2 and C[2.1] = 0, the ¢ matrix is 2-excessive in column 2 and 2-
missing in column 1. Since cr = 2, we find cx in the 5 matrix at s = 0 because sx
was first set to zero. Thus, we find that S[sz.y] = 2. and S[sz.z] = 0. These two
elements are not simply-swappable because S{sx.y] > S[sz.z]. so we move to the
next row. 2, in the S matrix. Since S[2,1] < S[2.2] in this case. they too are not
simply-swappable. thus a forced-swap must be applied. This is done by swapping the
first two elements 5[0. 1] and S{0. 2]. and then updating the (" matrix by incrementing

(’[0.2]) and C'[2.1} and decrementing C'[0,1] and C[2.2].

80

0 20 1 02
1 4 4 1 11
S=13 1 2(C=|111
231 210
3 40 0 21

Since the swapped element S[0,2] in column y is 0 which is less than ¢z, next find
the O-alternative in column 2, which is S[4.2]). Now, S[sz.y] = S[4.2] and S[sz.z] =
S[4.1]. These two elements are simply-swappable since S[4.2] < S[4.1] and thus can

be swapped. This finishes the successive swap for C[2.2] and results in

0 20 111
1 4 4 111
S=1312|C=|111
2 31 210
3 0 4 01 2

Next, we proceed to ("[3.0], which is greater than 1. From the S5 matrix. we
find that S[2.0] is not simply-swappable with 5[2.2]. so we move to the next 3 in the
4th row. For 5[4.0] < S[4,2], we can now swap two elements and the two matrices

are shown helow.

020 1 11
1 4 4 1 11
S=1312iC=]111
2 31 1 11
4 0 3 111

Finally, the program terminates since all the elements in the " matrix are
1. The resulting three columns of the S matrix denote the completely decomposed
switch settings of the second-stage switches. and first and third stage switch settings
can be derived from this. The basic idea of the algorithm is to make the ' matrix all
1's by using three kinds of swaps. This means that there are no identical elements in
each column of .5 when completely decomposed. Steps 1 and 2 find the two columns

zp and yy which are cr-missing and cr-excessive from the C' matrix. The cx i1s. on the

81

other hand, the element in 5 which is missing or excessive in the same two columns

of S. Then, swaps are performed from Steps 3 to 5 until all c[cz.y] become 1.

6.5 Worst-case Behavior

This algorithm is simple, but deriving the exact time complexity of the algorithm
is very complicated. Gordon reported the time complexity of his algorithm in his
paper without giving any proof. He just mentioned that the time complexity is
roughly proportional to the number of swaps. The basic difficulty in deriving the time
complexity of the algorithm is as follows. First, the runtime is proportional to the
number of swaps. However. it is difficult to calculate the number of swaps for a given
permutation. For a given c[cx.y] > 1, the number of swaps to be performed must
be clex.y] — 1. But, Y (c[ex.y] — 1) does not necessarily represent the total number
of swaps. because one swap results in the change of four elements of ¢[ca.y]. two of
them increase. and two of others decrease. Secondly, for an element c[ca.y] > 1. it
is difficult to know analytically what kind of swaps must be performed in the worst
case for a given permutation.

Considering the difficulty of analytic approaches. the next possible method
i1s simulation. The computer simulation usually cannot prove all the possible
cases as the problem becomes complex. However, it helps to narrow the bound of
time complexities. For that reason, the new algorithm has been programmed and
simulated for various values of n and k. Figure 6.1 shows the worst case runtime
vs. k with respect to various values of n. The graph shows that the runtime of
setting the Clos network increases as & increases. For a fixed k. the runtime also
increases as n increases. A closer look at the graph shows that the runtime is roughly
proportional to n, but in case of k, the runtime is proportional to A* for some values
of . In order to exactly obtain the time complexity of the algorithm. these curves

were fitted to the arbitrary non-polynomial function. The result of the curve fitting

82

Runtime vs. k

Runtime
6000
PR pU— m=2
5000 4
—a—3
4000 —_—
—7
3000 4
— 10
2000 4 —t—]2
—s— 13
1000 : 20

0

3]
w
W
~J
>
o
o
()
<

Figure 6.1 Worst case runtime vs. &

shows that the time complexity of the algorithm is proportional to nk*? that is
Ol k3,

The simple swap dominates the other two kinds of swaps. and the next simiple
swap also dominates successive swaps. Simple swaps do not require much time to
swap two elements. The successive swaps. on the other hand. are not frequent. but
take relatively long since up to k' — 1 swaps must be made in order to reduce ¢[c. yj
by one. As a result. successive swaps still have considerable effects on the overall
runtime although they are less frequent. Another thing to mention here is that the
runtime is linearly proportional to just the number of columns n. hut not to the

number of rows k. This 1s mainly due to the use of swe(mod &) and the effect of

SUCCessIve swa Ps.

6.6 Discussion
In this chapier. Gordon's algorithm has been demonstrated to display some errors

in some of the permutations. A new algorithm for decomposing the Clos network

83

which is based on Gordon's algorithm has been introduced. In this algorithm. the
same 5 and C matrices are used to represent the Clos network, which help to speed
up routings by checking C' in order to calculate the number of occurrences of each
element in S in each column. The basic difference between Gordon's algorithm
and the new algorithm lies in the scanning direction in the C' matrix. In Gordon's
algorithm, it is scanned column by column. removing columns once all elements
are nonidentical in each column. Swapping elements can take place between a not-
vet-decomposed leftmost column and the rest of the columns. However, the new
algorithm scans the C' matrix row-by-row, and swapping elements are restricted to
two columns for the successive swap. This gives an obvious advantage in proving
that it works for all permutations, but. in Gordon's algorithm. it is difficult to prove.
Another advantage to the new algorithm is that it has the potential to be run in
parallel since only two columns are involved in the successive swap and other pairs

of two columns can be swapped at the same time.

CHAPTER 7

ROUTING FAULT TOLERANT CLOS NETWORKS

7.1 Introduction

The Clos network can not realize all possible permutations when a fault occurs in
the svstem. Thus, extra switches are added to the ordinary Clos network in order
to achieve fault tolerance. The algorithm for the ordinary Clos network needs to
be extended to the fault-tolerant cases for following reasons. First. the structure of
the FTC is basically same as the ordinary Clos network except for added switches.
Because of this. the representation of the network does not beconmie complicated.
Second. the spare switches can greatly simply the routing process. which is an obvious
advantage when there are few or no faults in the system. Third. the same routing
algorithm for the FTC can be used for the ordinary Clos network. which is a special
case of the fault tolerant network. A new routing algorithm for the FTC will be
introduced in section 7.2, which utilizes extra switches in all stages. For clarity. the
FTC is classified into three types of networks. and in each case, the representation
of the network. and routing rules are considered. In the last section. the simulation

of the runtime for the FTC is discussed.

7.2 Routing the FTC
In chapter 6, we introduced a new routing algorithm for the Clos network. The
algorithm for the ordinary Clos network can be extended to the fault-tolerant Clos
network discussed in chapter 5. Recall that the FTC has extra switches in all stages
and they provide alternative paths when faults occur in the network., However. when
there are no faults in the system, these extra switches can be utilized as additional

routing paths. which simplify the requirements of the routing process and reduce the

84

85

runtime. The outer stage spare switches generate additional rows in the .5 matrix
and the second stage spare switches creates additional columns. Additional paths
introduced by the two types of spare switches are very flexible during the routing
process, but they have different characteristics. In order to develop the new routing
algorithm for the FTC, it is required to know the properties of these two tvpes of
spares and. for that reason. the fault-tolerant Clos network will be classified into

three possible configurations:

I. networks with spare switches in each of the outer stages only.
II. networks with spare switches in the second stage only.

II1. networks with spare switches in all stages.

In the following subsections. the networks and representation of the extra switches
are discussed for all three possible cases. The rules and conditions for swapping the

elements are considered. which will be the basis of the new algorithm for the FTC.

7.2.1 Routing FTC with Spare Switches in Outer Stages (Type I)

The first type of FTC has extra spare switches in outer stages only along with
multiplexers and demultiplexers. In this configuration. signals are bypassed to the
spare switches through the multiplexer/demultiplexers in case of faults which occur
in the outer stages. Figure 7.1 shows the Type I FTC network which has one extra
spare switch in each outer stage.

The 5 and C matrices are the same as those of the ordinary Clos network except
that extra rows are added which account for the extra outer stage switches and
multiplexer/demultiplexers. The elements in the xth row of 5 represent the signals
passing through the xth switch of the first stage whose destination switches are
slw.y]). where 0 y € n — 1. The elements in the yth column of 5 are the signals

passing through the yth second stage switch whose destinations are s{z.y]. where

86

dileds A @
[-]
®

ok

I

0< a2 < k—1. Each element of the S matrix represents the signal directed to the last
stage switch sf[z,y] through the yth second stage switch. Let ks, be the number of
spare switches in the first or third stage. If the number of spare switches are not equal
in those stages. then the smaller number will be taken as k,,. The k;, spare switches
at the outer stages create kg, additional rows in the S matrix, and each element can
serve as an alternative path during the routing process. The total number of extra
paths 1s nks,. All the redundant paths due to the spare switches are denoted as #
for convenience. Initially, the elements of S, s[z,y], where k < o < k + &k, — 1.
0 <y < n—1, are initialized to spares #. Also. each c[z.y] of the C matrix. where
0 < a < k=1 0<y <n—1 is initialized to the number of occurrences of the
integer in column y of 5. The number of spares in the .5 matrix is-not considered
in the (" matrix. For example, the S and C matrices for a Type I Clos network with

n = k = 3. and 2 spare switch in each of the outer stage can be given as.

1 0 1

1 20 1 11
S=10 2 2 and C=[2 0 1

#H H # 0 21

#

To consider the reconfiguration of faulty switches in the outer stages. faulty
switches and interstage connections must be taken into account. Recall that we have
assumed no multiplexers/demultiplexers are defective. If the zth switch at the first
stage is faulty. the xth multiplexer is set so that each signal in the ath switch is
bypassed to the available spare switches. One of the spare switches. the rth spare
switch. is assigned to these signals in order to provide alternative paths. The rth
row of the 5 matrix is simply cleared which is denoted as dots. Now define a new
matrix. the reconfiguration matriz, R. The R matrix is a & x 3 matrix. where each
row y represents the yth switch in one stage, and each column r denotes the rth
stage. The element R[y.z] shows that the R[y.z]th spare switch in the xth stage is

assigned instead of the yth switch in the xth stage. For example. if the Oth switch in

88

the first stage is defective in the above example, the S, C. and R matrices would be

1 0 1
1 2 0 111 300
S=|0 2 2 C=|201| and R=|1 1 1
0 2 1 2 2 2

Notice that the elements in the Oth row of S remains same, but the # spares in the
last row are no longer available. These spares are now assigned to the signals in
the Oth row. which can be seen in the R matrix where »[0.0] = 3. Note that other
elements in R show that other switches are not reconfigured. and remain the same.
Dots in the .S matrix mean that there are no paths available in the Oth input switch.
and they are simply ignored during the decomposition process. On the other hand.
if the xth switch at the third stage is faulty, the ath demultiplexe‘r 1s set so that
rerouted signals from the third-stage spare switches can be bypassed to reach outlets
of the ath switch. For example. if the O0th switch in the third stage is also defective.
and the 4th spare switch is used instead for the above matrices. the resulting 5. C.

and R matrices would be

1 0 1

1 2 0 1 11 3 0 1
S=(10 2 2 C=12 01 and R=|1 11

0 21 2.2 2

Permutation translation can also be used as was shown in chapter 5 for the
reconfiguration due to the failure of outer stage switches. Faults due to the interstage
links can be modeled as a switch failure and the network can be reconfigured in the
same way described above. The rules and conditions {or swapping elements in the
ordinary Clos networks can be applied in the FTC. since the basic structures remaiu
the same. Recall that, in the Clos network, any two elements except spares in a
row & of S can be swapped. This is due to the fact that inlets input to each of the
first-stage switches can be fully connected within the switch. Each first-stage switch

is represented by a row of 5. and each element in a row of S corresponds to the inlets

89

to a switch which flows to the third stage switch s{z.y]. Each column must have no
1dentical elements except spares when completely decomposed. This is because each
second-stage switch has only one connection to each third-stage switch.

The introduction of # spares has the following features. First. # spares in a
column y of S can be swapped with any elements in that column. This is due to
the multiplexers and demultiplexers along with spare switches in outer stages which
can bypass input signals to the spares switches. Second. spares in a column y can be
swapped with any element in another column = as long as both columns maintain
the same number of # spares since the number of outer spare switches is fixed in the
network. When the matrix is fully decomposed. then all the elements in (" matrix
must be one. The zeros in the C matrix indicate that these elements are swapped
with the # spares in the same column. The total number of spares in each column

is restricted to kg,. which does not change during the routing process.

7.2.2 Routing FTC with Spare Switches in the 2nd Stage (Type II)

In contrast to the first type. the second type of FTC has extra spare switches in
the second stage. In this configuration, signals are bypassed to the extra switches in
case of faults in the second stage switch y. where 0 <y < n — 1. Figure 7.2 shows
the Type 11 FTC network with one extra spare switch in the second stage. In
the Type I1 FTC, the S matrix is represented in a different way from the Type I
FTC. Let ng, be the number of spare switches in the second stage. The ny, spare
switches at the middle stages create n,, additional columns in the 5 matrix. and
each element in the additional column can serve as an alternative path during the
routing process. The total number of extra paths is kng,. All the initial elements in
the spare columns of S are denoted as asterisks (*) for convenience. These spares
are wild cards, like the # spares. but different in characteristics. Also. the (' matrix

is defined as in the ordinary Clos network except that extra columns are added. The

90

{11 .‘x‘_.Q.w OBR S PHOVON U1 UL 5o 1IMs RLINS (1w Nlowlatl Yy o o] Z°L 3dn

Q

817

91

c[x.y] of the €' matrix, where 0 < » < k—1,0< y £ n+ny — 1 are initialized to the
number of occurrences of the integer x in column y of S. Each extra spare switch in
the second stage generates one extra column in the S and ¢’ matrices. The elements
in the yth column of S represent the signals moving to destination switches s[x. y].

0 <2 <k —1 through the yth second stage switch. For example.

1 0 1 * =% 111 00
S=11 20 % = and =12 0 1 0 0
0 2 2 % «x 0 21 0 0

The right two columns of C are all zero because there are no elements between 0 to 2

* are in these columns. If the zth switch of the middle stage

in those columns, only
is faulty, the terminal relabelling described in chapter 5 must be performed. In the
S matrix. the terminal relabelling can be achieved by clearing the rth column of 5.
and assigning these spares for the faulty xth second stage switch. The cleared rth
column of 5 will be denoted as dots. The relationship between the faulty switch and
spare switches will be noted in the reconfiguration matrix /£ as in the Type I FTC.
The R matrix is used to perform the terminal relabelling of the inward terminals of
the outer stages. For example. if the first switch in the middle stage n the above

example 1s defective. and the 4th spare switch is used instead. the resulting 5. C.

and R matrices would he

1 01 % . 1 1 1 0 0 0 0 0
S=|[1 2 0 % . C=12 01 00 and =11 4 1
0 2 2 % 021 00 2 22

Notice that the elements in the first column of .5 remain the same. but the * spares in
the last column are no longer available. These spares are assigned now to the siguals
in the first column, which can be seen in the R matrix where r[1,1] = 4. Dots in the
S matrix mean that there are no paths available in the first second-stage switch. and
they are simply ignored during the decomposition process. The rules and conditions
for swapping elements and * spares are as follows. First, any two elements including

spares (™) in a row x of 5 can be swapped with any element. After the swap. the

92

swapped elements are again free for any other swaps. This flexibility of ™ spares
makes the routing processes very simple. However, spares in a column y can not be
swapped with any elements in that column. Secondly, each column of S must have
no identical elements except * spares when completely decomposed. This is because
the second-stage switch has only one connection to each of the third-stage switches.

Finally. the number of * spares in a column can take any value ¢, where 0 <7 < k—1.

7.2.3 Routing FTC with Spare Switches in All Stages (Type III)
The last type of FTC is the one with extra spare switches in outer stages. along
with multiplexers and demultiplexers. as well as in the second stage. In this FTC.
alternative paths are provided regardless of faults in any of the three stages. Figure
7.3 shows the type 1 of the FTC network with one extra spare switch in each stage.
In this type of network. there are k,, spare switches in each outer stage and
ngp spare switches in the middle stage. The k;, spare switches in the outer stages
create kg, additional rows in the S matrix, which has a total of nk,, extra paths.
Also. the ng, spare switches in the middle stage create n,, additional columns in the
S matrix, and this can generate a total of kn,, extra paths. Initially. the elements
of S, s[e.y], where k L < k+k;, — 1,0 £y £n— 1. are initialized to # spares
and sfr.y]. 0 2 < k-1, n <y < n+ns — 1 are initialized to ™ spares. The
elements of S. s{r,y]. where ¥ <a < k+ ky, — 1.n <y <n+ny, — 1. are denoted
as blanks because spares in this area are not used as will be illustrated later in the
new algorithm. Note that this area could have been initialized to ™ spares. Also.
the " matrix has ng, additional columns due to the second stage spare switches.
but there are no additional rows in the matrix. The ¢[x.y] of the ' matrix. where
0<r<k—-1.0<5y £ n+ny—1 are initialized to the number of occurrences of the

integer x in column y of S. Each extra spare switch in the second stage generates

93

. Q
(111 od X)) SOBR1S I[P UL Soa s RIINO W MHoanloll) [] 9] ¢t adnslf

areds A

.

:

el

=

94

one extra column in the 5 and C matrices. For example. when n,, = kg, = 2.

* %
* %
* %

and C =

S O =
o S —
—

(e en ¥ e
o OO

FHIFhwo o o
FHFh o o —

Since this type of FTC has extra switches in all stages, all the defective switches
need to be considered for the reconfiguration. If the zth switch in the first stage is
faulty, the xth multiplexer is set so that each signal in the xth switch is bypassed
to the available spare switches. One of the spare switches, the rth spare switch. is
assigned to these signals in order to provide alternative paths. The rth row of the
S matrix is simply cleared, which is denoted as dots. Set the R matrix with v =0
as in the Type I FTC, where the element r[y. 2] represents that the r[y.z]th spare
switch in the rth-stage is assigned instead of the yth switch in the wth-stage. If
the xth switch in the middle stage is faulty. clear the rth column of 5, and assign
these spares for the faulty xth second stage switch. The cleared rth column of S
will be denoted as dots. The R matrix is used to perform the terminal relabelling of
the inward terminals of the outer stages. For example. if the 0th switch in the first
stage and the 1st switch in the middle stage in the above example are defective. the

resulting 5. C'. and R matrices would be

1 0 1 =

1 2 0 = 11100 4 0 0
S=1]10 2 2 = C=]20100 and FR=}]1 4 1

02100 2 2 2

The rules and conditions for swapping elements and ™ or # spares are as follows.
First. # spares in a column y of .5 can be swapped with any elements in that column
except * spares because the multiplexers and demultiplexer along with spare switches
in outer stages can bypass signals. Also, spares in a column y can be swapped with
any elements in another column = as long as both columns maintain the same number

of # spares. Secondly. any two elements including * spares in a row & of 5 can be

95

swapped with any element except # spares. After the swap. the swapped elements
are again {ree to perform any other swaps. This flexibility of * spares makes the
routing process very simple. However, * spares in a column y can not be swapped
with any elements in that column. Third, each column of S must have no identical
elements except # or * spares when completely decomposed. This is because the
second-stage switch has only one connection to each third-stage switch. Finally. the
number of * spares in a column is not restricted to ng,, but can take any value i.
0 <7 < k+ng —1. However, the number of # spares in a column must remain k.
Based on the above rules and conditions, the algorithm for the FTC network is
introduced as follows. The 5 and C matrices in the FTC are the same as in the
ordinary Clos network except that two kinds of spares are considered. First. the
elements of 5, s[x,y], where k < a < k+k;, —1,0 <y <n—1. are initialized to #
spares. Also. s[x,y] is initialized to * spares where 0 v < k—=1.n <y <n+n, —1.
The c[r.y] of the C matrix, where 0 <o < k—1.n <y < n+n,s —1 are initialized
to the number of occurrences of the integer @ in column y of S.

Algorithm: Initially sz is set to zero.

Step 1@ Find a column ez, in a row y of C such that ¢[cz.y] > 1. If no such element
can be found then increment ca until either such an element can be found or all rows
are satisfied. in which case the algorithm terminates with a solution. If the algorithm
has found cfcx.y] > 1. set z = 0.

Step 2: (Wild Swap) Check whether # spares are available in column y. If available.
increment sz(mod k) until s[sx.y] = cz. then swap s[sr.y] with a # spare in the
column y. and go to Step 1. If not available, then check the ™ spare in the row sa. If
the ™ spare is available, increment sx(mod k) until s[sz.y] = ca, then swap s[sx. y]
with a spares in the row sa and go to Step 1.

Step 3: Increment z(mod k) until cfex, z] = 0.

Step 4. (Simple Swap) Repeatedly increment sz(mod k) until sfsa.y] = ca. If

96

slsw.z] < s[sz,y], go to Step 3. If sfse.y] < s[sa,z]. or sfsx.z] is *, swap the
elements s[sz.y] and s[sz, z] and update the ' matrix. If swapped. go to Step 1.
Step 5. (Next simple swap) Repeat Step 4, thus providing one more chance to simply
swap two elements in another row. If swapped. go to Step 1. This step is done only
once before c[cz,y] becomes 1.

Step 6: (Successive Swap) Swap s[sz,y] and s[sz, =], and update C as in Step 4. If
s[sx.y] > cz or s[sx,y] is *, go to Step 1. Otherwise, increase sz(mod k) for another
s[sa,y] and repeat Step 6.

Erample: For a given S and C matrix below when n = k = 4 and k,, = n,, = 1.

2)
R 02110
1 3 2 0 =
.] 31000.
S = 2.0 2 3 % and ¢ =
1 03 00
1 0 0 3 =« 020 3 0
| # H#H#H# i}
First repetition: Wild swap continuously while scanning the ¢ matrix row by row.
[) |
* o 1o2os 01110
L3 g 0 11001
S=|2 # *x 3 2 and C =
1 01 01
#0003 01030
1 0 2 #]
Second repetition: Wild swap again for ca =3. so =3. y =3
" 5 .
123l 01110
L3 0o 11001
S=12 # = 3 2 and C =
1 01 01
00 g 01020
1 0 2 3 | -
Third repetition: cx = 3. y=3. s =0. and 2 =0
.)
5oz 01 110
b3 gt 0 11001
S=|2 # x 3 2 and C =
, 1 01 01
00 A 11010
I 0 2 3

The wild swap greatly reduces the number of next swaps or successive swaps

which take much time. since at most k& — 1 swaps are needed in order to find the

97

alternative paths. The number of simple swaps is also reduced. As the number of
extra rows and columns increases. the algorithm has more chances to suppress the
simple and successive swaps and thus improve the run time. The new algorithm
works for all permutations, which can be proved using the following three theorems.
Theorem 4: Given two sets of Se and Sm which are Y-excessive and Y -missing.
respectively, let Xe(7), and Xm(¢) be numbers with the value 7 in the set Se and
Sm. where 0 <2 < Y. Each set contains the same number of # wild cards. but the
number of * wild cards may be different. If the number of }'s in Se is two. it is
always possible to reduce the number of " in Se to one without any change in the
occurrence of Xe¢ and Xm.

Proof : Arranging elements of the set Se and Sm,

Xe(0) Xm(0)
Xe(l) Xm(l)
Xe(2) Xm(2)
Ye

Ye

Ze Zm

Ze Zm
Zm

#

* *

The proof is basically the same as Theorem 1. There are two possible cases for }'e
to be swapped with an element in the set Sm. First. if Ye and Zm (or *) are in
the same row, then two elements can be swapped, resulting in the reduction of the

number of Ye in the set Se to one without any change in the number of occurrences

| 98
in Xe or Xm. However, if Ye¢ and Xm are on the same row. }'¢ and any one of
Xm(1). 0L <Y should be swapped. The index 7 is used in order to distinguish
the elements of X'e¢ and X'm which have the same value i. As a result. two identical
numbers Xe(Y — 1) and Xm(Y —1) are in the same Y e-excessive column. Now take
Xe(Y —1). which is an Xm(} — 1)-alternative. Again. there are two possibilities. If
Xe(Y —1)is in the same row with Zm (or *), the number of }¢ in the Y¢-excessive
column can be reduced to one without any change in the number of occurrences in .Y
However, if Xe(Y —1)isin the same row with Xm(} —2), we need to swap Xe(} —1)
and Xm(Y — 2). and then find the Xm(}" — 2)-alternative, which is Xe(}" — 2). In
the worst case. this process continues until Xm (1) finds its alternative Xe(0). Since
other X'ms are not in the same row with Xe(0). Xe(0) must select Zm (or). which
leads to the proof of the theorem. DO.

Theorems 2 and 3 in chapter 6 can be used similarly to prove that the algorithm for

the FTC holds for all permutations.

7.3 Worst-case Behavior of the Algorithm
The new algorithm for the FTC network is similar to that of the ordinary Clos
network, so deriving the exact time complexity of the algorithm with respect to the
number of extra switches is a very complicated matter. In this case. the run time is
dominated by the number of swaps. which consist of simple swaps. next simple swaps.
successive swaps and wild swaps. Wild and simple swaps do not require much time
to swap two elements. The successive swaps on the other hand. are not frequent, but
take a relatively long time since they are continued until the alternative paths are
found. For the FTC algorithm, the basic difficulty of deriving the time complexity
of the algorithm remains the same as was explained in chapter 6. These are 1)
o(clex.y] — 1) does not necessarily represent the total number of swaps, because one

swap results in the change of four elements of ¢[cz. y], two of which increase and two

Runtime vs. y_spare (n=20)

Runtime
6000
5000 ¥ —a— k=2
—0— 3
4000 + —_—
w0y —o—1
—— 10
2000 —_a 2
—.— 13
1000
—0— 20
(-~

y_spare

Figure 7.4 Worst case runtime vs. number of y_spares for various &

of whicli decrease. 2) For an element ¢[ca. y] > 1. it is difficult to predict analytically
what kind of swaps must be performed in the worst case for a given permutation. For
that reason. the new algorithm for the FTC network has been simulated to obtain the
runtime of the algorithm with respect to various numbers of extra switches. Figure
7.4 shows the worst case runtime vs. y_spare for various values of A The grapl
shiows that the runtime of the algorithm for the FTC network decreases as y_spare
increases. This is continued until y_spare reaches about k/2. where the runtime is
saturated 1o a certain value. Runtime can be reduced to far less than half of that
when there are no extra switches in the network.

Figure 7.5 shows the worst case runtime vs. a_spare for various values ol 1. Axin
the previous figure. the graph shows that the runtime of the algorithm for the FTC
network decreases as x_spare increases. This is continued until w_spare reaches about
/2. But. the runtime decreases more slowly in this case. and it is reduced o slightly
more than half of that when there are no extra switches in the network. Figures
T.

7.6 and 7.7 show the average runtime versus the number of extra switches y_spare

100

Runtime vs. x_spare (k=20)
Runtime -

6000

5000

4000

3000

2000

1000

N_spare

Figure 7.5 Worst case runtime vs. number of r_spares for various n

(r_sparc) for the various A(n). Figure 7.8 shows the number of each swap with
respect to xr_spare. As can be seen from the figure. the wild swap increases steadily
with increases in r_spare. but other simple swaps and successive swaps decrease.

which explains the improvement in runtime.

7.4 Discussion
In this chapter. a novel algorithm for routing in the fault tolerant Clos network
has been introduced. Clos networks are used mainly to realize permutations.
Without any fault tolerance. if a switch in the network fails. the network is rendered
imoperative and the system has to be interrupted to put the network back to work.
The FTC network can continue its work uninterrupted during the presence of a
fault because the FTC network can reconfigure itsell dyvnamically. by changing the
settings of the multiplexers and demultiplexers and using the adaptive permutation
translation scheme which can be facilitated by the use of the reconfiguration matrix

R. The defective item can then be repaired during the time at which the system

101

Runtime vs. y_spare (x_spare=0, n=20)

Runtime
4000
3500 + —— k=2
3000 + —_ 3
2500 + . —_——— 5
| \ —_— 7
2000 + o
—— |0
1500
o- 5 | T 12
1000 — 5
500 o 20

== :
0 i 2 3 5 10 15 20

Figure 7.6 Average case runtime vs. number of y_spares for various k

Runtime vs. x_spare (y_spare=0, k=20)
Runtime

4000
3500 — m—— p=2
3000 —0—3
2500 ——
—o0— 17
2000 r
—— 10
1500
° —t—]2
)
1000 e
500 é\\\? —o— 20
0 . , .
0 | 2 3 5 10 15 20
N_spare

Figure 7.7 Average case runtime vs. number of r_spares for various n

102

No. of swap vs. x_spare (k=n=2
Swap number 0. of swap vs. x_spare (k=n=20)

160

140

—u— wild
00— simple
— = next
—O0——— succesive

—— total

X_spare

Figure 7.8 Number of simple. next simple. and successive swaps vs. w_sparcs

is unused. The spare switches introduce two types of wild cards depending on the
location of spare switches in particular stages. In the Type I FTC network. two extra
spares along with multiplexers/demultiplexers are required in order to create one
additioual row in the specification matrix. The Type Il FTC network requires less
hardware to create one additional column in the matrix. and the wild cards are much
more flexible than in the Type I FTC network. In designing the routing algorithn.
anv wild cards can be used at any time during the decomposition. However. it is
preferable 1o use the tyvpe 1 extra spares first and then type II spares next. since
tvpe 11 spares are more flexible. As in the previous algorithm. the new algorithm
scans the " matrix row by row. and swapping elements are restricted to two columns
for the successive swap. which gives the obvious advantage in proving that it works
for all permutations. Another advantage to the new algorithm is that it has the
potential to be run in parallel since only two columns are involved in the successive

swap and other pairs of two columns can be swapped at the same time.

CHAPTER 8

RELIABILITY OF FAULT TOLERANT CLOS NETWORKS

8.1 Introduction

So far we have discussed the new routing algorithms in ordinary and fault tolerant
Clos networks. Also. we considered the runtime with respect to the number of extra
switches in the outer and middle stages. Another important factor in the FTC
network is the reliability and space complexity with respect to the number of extra
switches. The reliability and space complexity are dependant on the number of
spare switches in the outer and middle stage switches, and these switches generate
additional extra rows and columns in the specification matrix which contribute to
the improvement in runtime. Thus. it 1s important to understand exactly how these
factors are related, and design the FT'C network accordingly. In section 8.2, the fault
detection and location for the FTC network is discussed hriefly. Next. the reliability
and space complexity of the FTC network, which are important factors in designing
the fault tolerant Clos networks. are considered. Finally, in the last section. the
optimum number of extra switches for the fault tolerant Clos network is considered

which will best balance the runtime. reliability and cost.

8.2 Fault Detection and Location of the FTC
The work of any fault tolerant MIN generally depends on two things: fault detection
and fault location. Two techniques have been proposed in the literature for fault
detection and location. First, fault detection and location can be performed off-
line by applving prescribed test patterns to the inlets and comparing the output at
the outlets with the expected values. Second. faults can be detected and located

dynamically online through either parity checking or data bit checking. As good as

103

104

the online techniques may sound, they require a special switch design with built-in
hardware to carry out the dvnamic checking. This online fault detection and location
technique is the mechanism that can be applied to many MINs. However. the FTC
network does not require any particular mechanism; rather it requires only that the
processors be notified of the location of the fault, if anv. For the work done in this
thesis. it is assumed that there is some mechanism to detect and locate faults and

notify the processors of the location of the fault.

8.3 Reliability of the FTC Network
The reliability of both the ordinary Clos network and the FTC network are dependent
on the reliability of each switch and link of the networks. In chapter’5. multiplexers
and demultiplexers are assumed to have high reliability when compared with switches
and links in the FTC network. Rigorous reliability analyvsis is possible which considers
the reliabilities of both multiplexers and demultiplexers. However. they are not
considered in this thesis for analytical simplicity. First. define the reliability. 7. of a
single switch as the probability that the switch does not fail over a period of time
7. Then. f = 1 — r is the probability that the switch fails in the same period r.
Similarly. define the reliability R of the network. ordinary or FTC. as the probability
that the network does not fail over a period of time 7. Then F = (1 — R) is the
probability that the network fails in the same period 7. A switch fails if it cannot
realize. partially or completely, a mapping of its inputs onto its outputs. Similarly.
a network fails 1t cannot realize, partially or completely. a mapping of its inlets onto
its outlets. For the ordinary Clos network to be fully operational over the period of
time 7. all of its switches must be operational over the same period of time 7. For
simplicity. assume that all the switches have the same reliability ». Therefore. the
reliability of the ordinary network, assuming statistical independence (independent

faillure events). is

105

Rord = 7,2k+m

where 2k + m is the number of switches in the ordinary Clos network.

For the FTC with one extra switch in each stage, the network will remain
fully operational if up to one switch in every stage fails. Let Ry, R, and R; be
the reliabilities of stages 0. 1, and 2, respectively. Clearly. the three stages are

statistically independent. Thus. the reliability of the network is

Rpre = Rolfy Ry

The reliability of the first stage, Ry is the probability that at least &k out of the & +1
first stage switches, will be operational. Alternatively. if Fy is the probability that

the first stage fails, then

Ry=1-Fy

For stage 0 to fail. given that there is one extra switch, at least two switches will
have to fail. or less than £ switches will have to function properly. This is a case of

binomial distribution or Bernoulli trials. for which Fy can be written as

k=1 .) ‘ k=1 3 . .
Fo=3) (¢ -:1) A= }:_:0 (Aj_l) ri(l —)kt

1=0
F+1Y . o . . . o
where ; is the combination of k£ 4+ 1 taken ¢ at a time. Substituting fy
to Ry = 1 — Fy and realizing that Ry = R, since the outer stages are the same. it

follows that

k—] R . .
RO=RQ=1—Z(ket)w(l—r)*“-'

1=0 !

A similar analvsis shows that the reliability of the middle stage is

106

m~1
Ri=1-3 (’":’1)7~"(1 —)i

=0

Substituting these two equations yields.

k=17 g, 2 m—
R = (1 _ Z < k —;—1)r'i(l _ r)k+1—1’) (l _ Zl (m ;{—1)ri(l _ r)m+l—i>

i=0 i=0
When more than one switch is added to every stage. additional alternative
paths are created and thus, greater reliability is expected. To verify that. the previous
equation will be generalized to the case where = switches are added to each of stages
0 and 2. and y switches are added to stage 1. Using the same procedure as above.

it can be shown that the reliability of the new network. Rpr¢ is

k-1 . . 2 m—1
RFTC' = (1 _ Z (k ':“(1) 7.1(1 _ 1.)k+2‘—1> (1 _ Z (m '?'f- y) 7"(1 _ 7-)’""’!/_')

i=0 =0

8.4 Effect of Spare Numbers on Reliability
The above equation can be used to show the reliability of a fault tolerant Clos network
with respect to the number of spares switches x or y. Figure 8.1 shows the reliability
of a fault tolerant Clos network with respect to the number of extra switches in the
first or third stage in the Type I FTC network, when the reliability of the switch
is 0.9, 0.96, 0.98, and 0.99, respectively, and n = k = 20.

As shown in the figure, the reliability of the system depends on the number of
extra switches. and just one or two extra switches are needed in each stage in order
1o improve the reliability of the system considerably especially when r is high. The
high system reliability can be obtained as the reliability of the switch » increases.
It can be seen that if r is large, the addition of more than one switch per stage is

not needed and the reliability approaches 1. However, when the reliability of the

107

. Reliability vs. v_spare (x_spare=0, k=n=20)
Reliability

0.9
0.8
0.7

0.6 —u—1=0.90

0.5 —o0— 0.96
0.4 ~— 098

—o— (99

y_spare

Figure 8.1 Reliability vs. number of y.spare switches in Type [networks when
h=mn=20

switch 7 is low or when switches with high reliability are used for a loug time. the
svstem reliability increases slowly with respect to the number of spare switches. In
this case. more switches are needed in order to obtain the better reliability of the
svstem. Also. the relatively low system reliability is obtained when 7 is low,

Figure 8.2 shows the reliability of a fault tolerant Clos network with respect
1o the number of extra switches in the second stage in the Type Il FTC network
when the reliability of the switch 7 is 0.9. 0.96. 0.98. and 0.99. respectively. and
n =k = 20. As in the Type I network. the reliability of the syvstem depends on the
number of extra switches. and just one or two extra switches are needed to improve
the reliability of the system considerably when r is high. The high svstem reliability
can be achieved as the reliability of the switch r increases. but it takes on a lower
value than in Tvpe 1 networks for the same reliability of the switch r. This is true
when the reliability of the switch is low. where the system reliability increases slowly

with respect to the number of spare switches. but with a much lower value. The

108

R Reliability vs. x_spare
Reliability -
0.7 -
(o o o ©
0.6 -Jr-
<
0.5+
0.4 __/./
03.
024 o - - o o o
{t ., 3 =" O O——0 _ =09
0.1 —0— 0.96
—— (VR
Om "] o T T ' : ' Y 1
0 1 2 3 4 5 6 7 8 9 o | T 09
X_spare

Figure 8.2 Reliability vs. number of r_sparc switches in Type I networks when
h=n=20

main reason for this is that the Type I network has extra switches in hoth the first
and third stages, while in Type Il networks the extra switches are available only
i the second stage. so the total number of extra switches is about the hall that
of the Tvpe I network. Note. in the above two figures. that the network reduces
to an ordinary Clos network and the reliability is same in both types of network
when @_spare = y_spare = 0. Generally. the addition of extra switches iucreases the
overall reliability of the network by orders of magnitude when the reliability s low.
while the addition of same number of switches increases the overall reliabilityv of the
network only slightly when » is high.

Therefore. it can be concluded that when the reliability r of the individual
switches 1s high. there is no need for adding excessive hardware. especially when
the total number of switches is small. That is because the higher the number of
switches 11 the network, the higher its vulnerability to failure. The existence of

sinall numbers of switches with a few extra switches in the FTC makes a failure in

109

the network insignificant. Adding more switches per stage can be seen to increase
the overall reliability of the network. However. reconfiguration of the network would
be more difficult and time consuming. Moreover, the extra switches would increase
the hardware of the network and complicate its design. The reliability of the FTC
is generally greatly higher than that of the ordinary network and the FTC is more
beneficial for networks with poor switch reliabilities. When r = 1. there is clearly no

need for any fault tolerance.

8.5 Space Compiexity of the FTC Network

We will now consider the space complexity of the FTC network. The addition of the
extra switches in the first and third stages causes an increase in the number of inputs
and outputs in each of the second stage switches. This is the same as when extra
switches are added in the second stage, which results in the increase of the number
of inputs and outputs in the first and third stage switches. Note that the addition of
spare switches in the second stage results in the increase of switch areas in both the
first and third stages. while the changes in the outer stages result in an increase only
in the second stage. Since the switches are actually crossbar switches. the area of
the switches. or the number of cross points is generally proportional to the product
of the number of inputs and outputs of the switch. Here, we assume that the area of
multiplexers/demultiplexers are not significant for the simplicity of analyvsis. Also.
it is assumed here that the costs for the FTC networks are proportional to the area
of the total number of switches.

Let @ and y again be the number of extra switches in the second stage and
first (or third) stage. respectively. Then the total number of switches in the second
stage is n + x, while it is & + y in the first (or third) stage. The number of inlets
in the first stage switch is n. and the number of outlets is n + 2. In the second

stage swilch. the number of inlets or outlets is k + y. Since the first and third

110

Cost Cost vs. y_spare (n=k=20, x_spare=0)
4
8°10 |
4 d
6%10 I~ /"" =
4
4*10 I -
7_'1()4 I
0 10 20
y_spare
Figure 8.3 Cost vs. number of spare switches in Type I networks when v = b = 20

and o =0

stages are identical. the total area of the outer stages is twice the arca of either
onter stage. The space complexity or the cost of the FTC network is proportional to
2k = ynin 4 a)+ (n+2)(k+y)? Figure 83 shows the cost vs. the number of extra
yospares iy Tepe T uetworks when = & = 20 and wosparc = 0. As can be seen i
the figure. the cost imcreases monotonically as the number of y_sparc ncreases,
Figure 8.4 shows the cost vs, number of w_sparcs in Type [l networks when
o= k=20 and y_sparc = 0. Asin Type 1 networks. the cost also increase steadily
with the increase in a_sparc. However. in this case. the cost is less thaw in Type |
networks. Note that the wncrease in y_spare in Tvpe I networks actually adds twice
the number of extra switches 1o the network. although the mumber of extra switches
< the number of wospare in Type 1T networks. It can be seen [rom the fignres tha
the Type T network is in general more expensive than Type IT networks. hut does

not double the cost of the Tvpe I networks for the same number of w_spare and

111

Cost Cost vs. x_sp (n=k=20, y_spare=0)
R 4
510
4'104

4
3°10
2'[04 l

0 10 20
X_spare
Figure 8.4 Cost vs. number of spare switches in Type Il networks when n = & = 20

and y =0

y_sparc. However. it can achieve better reliability than the Type I network since

there are more extra switches.

8.6 Optimum Number of Spare Switches in the FTC Network
So far we have examined the runtime. reliability. and cost with respect to the number
ol spare switches v, and y. As was seen in chapter 7. the runtime is roughly the same
in both the Tvpe I and Type 11 FTC networks. More specifically. the Tvpe 1] network
is [aster when the number of spare switches is small. However. as the number of spares
increases. the runtime is slower than the Type I network since it needs extra time
to lind the location of spares and to make sure that there are no identical elements
in the specification matrix 5. The number of spares needed in Type [networks for
venerating additional rows in the S matrix is twice the number of spares in the Tyvpe
Il network for creating the same number of additional columns. Oun the other hand.

the Type | network can achieve better reliability than the Type 11 network. but it

112

requires twice the number of extra switches. Because of this. the Type I network
is more expensive than the Type Il network, but it does not double the cost of the
Type Il network when a_spare and y_spare are the same. The optimum number
of spare switches in each stage of the FTC network can not be determined exactly.
rather it depends on the availability of the resources and requirements of the system.
The general approach would be to decide the above factors first and then adjust the
number of spare switches in the outer stages and in the middle stage.

The research so far has shown the following results for determining the number
of spare switches in each stage. When the reliability of the switches is high. just one
or two extra switches are needed in each stage in order to improve the reliability of
the system. In this case, the fault tolerant routing algorithm is not efficient. and the
runtime approaches the speed of an algorithm for the ordinary Clos network. No
additional costs are required. However, when the reliability of the switches are not
high. more than two extra switches are required in order to improve the reliability.
High reliability can be achieved by adding more switches in outer stage. but with
the increase in cost. Adding more extra switches in the middle stage is less costly
in improving the run time than adding spares in the outer stages. However. better
reliabilities are possible in the latter case. In hoth cases, the introduced fault tolerant
routing algorithm utilizes extra switches to improve the runtime. which is roughly

the same in both types of FTC.

8.7 Discussion
Besides the fault tolerance the FTC provides. the reliability of the network is greatly
enhanced. High reliability means more system availability with uninterrupted
operations, It is seen from the analysis that using this fault tolerance approach is
most beneficial when the reliability of the individual switches is poor. or the number

of switches in the network is large. As far as reliability is concerned. larger numbers

113

of extra switches are needed in order to increase the reliability. This number depends
on the number of switches in the network and the reliability of the individual switch.
and can be determined for an optimum value. However, putting a large number
of extra switches per stage adds significantly to the network hardware and routing
complexity. High reliability can be achieved by adding more switches in any of
the stages. But adding switches in the outer stage increases the cost and system
hardware more rapidly. The same improvements in runtime can be obtained by
adding more extra switches in the middle stage, which is less costly in improving

the run time, but relatively low improvements can be achieved in reliability.

CHAPTER 9

CONCLUSION

9.1 Summary

This thesis has demonstrated the failure of Gordon's algorithm which uses two
matrices for improving the runtime. A new simple algorithm for the control of
rearrangeable Clos networks which runs in time O(nk®?) is proposed based on his
algorithm. The new algorithm is extended to the fault tolerant Clos (FT'C) network.
which can further improve the run time when there are relatively few or no faults in
the system. In order to achieve this. the FTC network has been classified into three
tvpes to find the swapping rules and conditions of extra elements. The optimum
number of extra switches on the fault tolerant Clos network is considered which
will best satisfy the run time, reliability and cost constraints. The result of each

perspectives are summarized below.

9.1.1 Routing for Clos Networks

Although Gordon's algorithm is simple and fast. this research has shown that his
algorithm displays errors in some of the permutations. especially when & > 5. The
new algorithm is based on Gordon's algorithm where the Clos network is represented
by the specification matrix and count matrix. As in Gordon's algorithm. the new
algorithm has the advantage of speeding up routings by just checking the " matrix
in order to calculate the number of occurrences of each element in each column of
the S matrix. The new algorithm consists of three kinds of swaps: simple swap.
next simple swap. and successive swap. The successive swap can be compared with
the iteration phase of Neiman’s algorithm. where the algorithm backtracks in order

to select all elements which are not in the same rows and same columns. The time

114

115

complexity of the new algorithm for the ordinary Clos network has been found to he
O(nk3?).

The basic difference between Gordon's algorithm and new algorithm lies in
the scanning direction in the C' matrix. In Gordon's algorithm, it is scanned column
by column. removing columns once all elements are nonidentical in each columu.
Swapping elements can take place between a not-yvet-decomposed leftmost column
and the rest of the columns. However. the new algorithm scans the " matrix row-by-
row. and swapping elements are restricted to two columns for the successive swap.
This gives an obvious advantage in proving that it works for all permutations, but. in
Gordon’s algorithm. this is hard to prove. Another advantage to the new algorithm
is that it has the potential to be run in parallel since only two columns are involved
in the successive swap. and other pairs of columns can be swapped at the same time.
Also, the simple. next simple. and successive swaps can easily be extended to the

fault tolerant Clos network. which is yet another advantage.

9.1.2 Routing for FTC Networks

The new algorithm for FTC networks shows that the previous algorithm for the
ordinary Clos network can be easily extended to the fault-tolerant cases. It has been
shown that the original matrices can be modified using extra rows and columns in the
specification matrix so that they can represent the extra spare switches in the FTC
network. Extra switches generates wild cards in the matrix, which provide flexibility
during the decomposition process. The wild swaps emploved in the algorithm. in
addition to three kinds of swaps in the ordinary case. were found to be important
since they can reduce the chances of entering into the time-consuming next simple
swaps or successive swaps. The spare switches introduce two types of wild cards
depending on the location of spare switches in the network. In Type I networks. two

extra spares along with multiplexers/demultiplexers are required in order to create

116

one additional row in the specification matrix. The Type II network requires less
hardware to create one additional column in the matrix, and the wild cards are
much more flexible than in the Type I network. It was shown that the addition of
extra switches to the network considerably decreases the runtime of the algorithm.
The failure in the switch is reflected in the reconfiguration matrix, which helps to
reconfigure the network dynamically by changing the settings of the multiplexers
and demultiplexers and using extra switches. As in the ordinary Clos network.
the new algorithm realizes every permutation because of its scanning the C matrix

row-by-row and restricting swapping elements to two columns in the successive swap.

9.1.3 Optimum Numbers of Spare Switches in FTC

Optimum numbers of extra switches in FTC networks can be determined with respect
to the reliability, runtime and cost. The research so far has shown the following
results for determining the number of spare switches in each stages. When the relia-
bility of the switches is high, just one or two extra switches are needed in each stage in
order to improve the reliability of the system. In this case. the fault tolerant routing
algorithm is not efficient. and the runtime approaches the speed of the algorithm for
the ordinary Clos network. No additional costs are required. However. when the
reliability of the switches is not high, more than two extra switches are required in
order to improve the reliability. High reliability can be achieved by adding more
switches in outer stages, but with an increase in cost. Adding more extra switches
in the middle stage is less costly in improving the run time than adding spares in
the outer stages. However. better reliabilities are possible in the latter case. The
runtime is improved by roughly the same amount in both types of FTC networks.
The optimum number of spare switches in each stage of the FTC network can not
be determined exactly, but rather it depends on the availability of the resources and

requirements of the system. The general approach would be to decide the above

117

factors first and then adjust the number of spare switches in the outer stages and in

the middle stage.

9.2 Open Problems

This research has covered the routing issues in the ordinary as well as fault tolerant
Clos networks in depth. In spite of the progress made in some areas. some problems
have been observed and some encouraging ideas that need further research have
been discovered. Those will altogether contribute to establish the sound bases of
the research by continuing the study more deeply. First, the current algorithm
for decomposing the Clos network requires that no identical elements be present
in a column of S except spares in order to completely decompose the matrix. This
condition is due to the structure of the Clos network in whiclh each of the second stage
switches is connected to every third-stage switch. Also. swaps are allowed only for
the elements in the same row. This is also due to the first-stage switches’ connection
to each of the second-stage switches. These conditions look straightforward. but
i fact. they requires extremely serial decomposition and frequent backtracking.
However, by modifving the Clos network somehow. the current conditions might
be alleviated in a way that could lead to a much faster. straightforward routing
strategy. The question here is: Is there any modified structure of the Clos network
which could lead to the much faster routing that can be performed in a serial as well
as in a paralle]l method? And if so. how can we find that structure. and how much
difference can we expect?

Meanwhile, this research has developed a new algorithm for decomposing the
Clos interconnection network. This algorithm can be applied to Benes and other
similar interconnection networks which are derived from the Clos network. Then.
can we apply this algorithm to other multistage interconnection networks such as

the shuffle-exchange. banyan, and omega networks? Also. can the algorithm for the

118

FTC network be applied to other fault tolerant interconnection networks such as the
ESC?

Also. the newly introduced algorithm decomposes the specification matrix
row by row. while Gordon’s algorithm decomposes it column by column. The
potential advantage of decomposing the matrix column by column is the reduction
of the dimension of the specification matrix as the routing progresses, since each
decomposed column can be removed from the matrix. Gordon’s algorithm has been
demonstrated to display errors for some permutations, but can we explain why his
algorithm fails? Also. can we really find an algorithm which decomposes the matrix
in column by column bases?

This thesis assumed that the FTC has an ability for the detection and location
of faults. Further research is required in this area. In addition. another study needs
to be performed on the reconfiguration problems due to the failure of interstage

connections. and the analysis of the time complexity of new algorithms.

™

9.

10.

I1.

REFERENCES

J. Baer. “Multiprocessing Systems.” [EEE Transactions on Computers. vol. C-
25. no. 12, pp. 613-641. December 1976.

L. Bhuyan. *"A Combinatorial Analysis of Multibus Multiprocessors.”
Proceedings of 1984 International Conference on Parallel Processing. pp.
225-227, August 1984.

H. Lorin, Parallelism in Hardware and Software., Prentice-Hall. Englewood
Cliffs. NJ. 1972.

M. Flynn. “Very High-Speed Computing Systems.” Proceedings of the IEEE.
vol. 54, pp. 1901-1909, December 1966.

. M. Flynn, "Some Computer Organization and Their Effectiveness.” [EEE

Transactions on Computers, C-21, no. 9. pp. 948-960. September 1972,

W. Handler. “The Impact of Classification Schemes on Computer Architecture.”
Proceedings of 1977 International Conference on Parallel Processing. pp.
=15, 1977,

. W. Davis. Operating Systems: 4 Systematic View. 2nd Edition. Addison Wesley.

Reading. MA. 1983.

M. Mano. Computer System Architecture, 2nd edition. Prentice-Hall, Englewood
Cliffs, NJ., 1982.

T. Hallin and M. Flynn. “Pipelining of Arithmetic Functions.” IEEE Trans-
actions on Computers. vol. C-21. no. 8. pp. 880-886. August 1972.

T. Mudge et. al.. “Analysis of Multiple Bus Interconnection Networks.”
Proceedings of the 198 International Conference on Parallel Processing.
pp. 228-232, August 1984.

T. Mudge. J. Haves and D. Winsor, “Multiple Bus Architectures.” Compuler.
pp. 42-48, June 1987.

2. T. Chen, “Parallelism, Pipelining, and Computer Efficiency.” Computer Design.

pp. 69-74. vol. 10. no. 1, January 1971.

P. Wayner, “Processor Pipelines,” Byte. vol. 17. pp. 305-306. January 1992,

. D. Lawrie, “Access and Alignment of Data in an Array Processor.” IEEE Trans-

actions on Computers, vol. 24, no. 12, pp. 1145-1155. December 1975.

W. Chu, "Advances in Computer Communications and Networking,” Artech
House, Dedham, MA, 1979.

119

120

16. Chuan-lin Wu and Tse-Yun Feng, “On a Class of Multistage Interconnection
Networks,” [EEE Transactions on Computers, vol. C-29. no. 8, pp. 694-
702, August 1980.

17. T. Feng. “A Survey of Interconnection Networks,” Computer. vol. 14. no. 12.
pp- 12-27. December 1981.

18. H. Siegel, “Interconnection Networks for SIMD Machines,” Computer, vol. 12.
pp- 57-65, June 1979.

19. Yao-Ming Yeh and Tse-Yun Feng, “On a Class of Rearrangeable Networks."
[EEE Transactions on Computers, vol. 41, no. 11. pp. 1361-1379.
November 1992.

20. F. K. Hwang., “On the Rearrangeability of Some Multistage Connecting
Networks.” Bell Systems Technical Journal. vol. 55. No. 9, pp. 1411-1422,
November 1976.

21. F. K. Hwang and A. Jajszczyvk, *On Nonblocking Multiconnection Network.”
IEEE Transactions on Communications, vol. COM-34. no. 10. pp. 1038-
1041. October 1986.

22. B. Douglass. “Rearrangeable Three-Stage Interconnection Networks and Their
Routing Properties,” [EEE Transactions on Computers. vol. 42, no. 3.
pp. 559-567. May 1993.

23. G. Goke and G. Lipovski, “Banyvan Networks for Partitioning Multiprocessor
Systems.” First Annual Symposium on Computer Architecture. pp. 21-
28, December 1973.

24. M. Leland, “On the Power of the Augmented Data Manupulator Network.” 1985
International Conference on Parallel Processing. pp. 74-78. August 1985.

25. K. Batcher. “The Flip Network in STARAN.” Proceedings of the 1976 Interna-

tional Conference on Parallel Processing, pp. 65-71. 1976.

26. H. Siegel and R. McMillen, “The Multistage Cube: A Versatile Interconnection
Network,” Computer, pp. 65-76, December, 1981.

27. F. Lombardi and C. Feng, “Detection and Location of Multiple Faults in
Baseline Interconnection Networks,” [EEE Transactions on Compulers.
vol. 41. pp. 1340-1344. October 1992.

28. M. Kumar and J. R. Jump, “Generalized Delta Networks.” Proceedings of the

1983 International Conference on Parallel Processing. pp. 10-18. August
1983.

29, Z. Cvetanovic, “Best and Worst Mapping for the Omega Network.” IBM Journal
of Research and Development, vol. 31, pp. 452-463. July 1987.

30

31.

33.

34.

38.

39.

40,

41.

43

121

. D. Rau. J. Fortes and H. Siegel, “Destination Tag Routing Techniques Based
on a State Model for the IADM Network." [EEE Transactions:on
Computers, vol. 41, no. 3, pp. 274-285. March 1992,

Charles Clos, “Study of Non-blocking Switching Networks.” Bell Systems
Technical Journal, vol. 32, no. 2, pp. 406-424, March 1953.

2. V. E. Benes, “On Rearrangeable Three-Stage Connecting Network.” Bell

Systems Technical Journal, vol. XLI. no. 5, pp. 117-123, September 1962.

V. 1. Neiman. “Structure et commande optimales des réseaux de connexion sans
blocage.” Annales des Telecommun., pp. 232-238, July/August 1969.

Nelson T. Tsao-Wu. “On Neiman's Algorithm for the Control of Rearrangeable
Switching Networks,” [EEE Transactions on Communications, vol.
COM-22. no. 6. pp. 737-742, June 1974.

. Abraham Waksman. “A Permutation Network.” Journal of the ACM. vol. 15.

no. 1. pp. 159-163. January 1968.

. H. R. Ramanujam, “Decomposition of Permutation Networks.” /IEEE Trans-

actions on Computers, vol. C-22. no. 7. pp. 639-643, July 1973.

7. Marek Kubale, “Comments on Decomposition of Permutation Networks.”™ vol.

C-31. no. 3. p. 265, March 1982.

Andrze] Jajszczyk. “A Simple Algorithm for the Control of Rearrangeable
Switching Networks.” IEEE Transactions on Communications. vol. COM-
33, no. 2, pp. 169-171, February 1985.

Claude Cardot. “Comments on a Simple Algorithm for the Control of
Rearrangeable Switching Networks.” [EEE Transactions on Communi-
cations. vol. COM-34. no. 4, p. 395. April 1986.

Frank K. Hwang, “Control Algorithms for Rearrangeable Clos Networks,” IEEE
Transactions on Communications, vol. COM-31, no. 8. pp. 952-954.
August 1983.

D. C. Opferman and N. T. Tsao-Wu, “On a Class of Rearrangeable Switching
networks. Part I: Control Algorithm.,” Bell Systems Technical Journal.
vol. 50. no. 5. pp. 1579-1600, May-June 1971.

2. Steinar Andresen. “The Looping Algorithm Extended to Base 2'.” IFEE Trans-

actions on Communications. vol. COM-25, no. 10. pp. 197-203. October
1977.

. J. Gordon and S. Srikanthan, “Novel Algorithm for Clos-Type Networks.”
FElectronic Letters, vol. 26, no. 21, pp. 1772-1774. October 1990.

44.

45.

46.

48.

49.

122

Y. K. Chiu and W. C. Siu, “Comment: Novel Algorithm for Clos-Type
Networks,” FElectronic Letters. vol. 27, no. 6, pp. 524-526. March 1991.

Harold Gabow, “Using Euler Partitions to Edge Color Bipartite Graphs
and Multigraphs.” International Journal of Computer and Information
Sciences, vol. 5. no. 4, pp. 345-355, 1976.

H. Gabow and Oded Kariv, “Algorithm for Edge Coloring Bipartite Graphs and
Multigraphs,” SIAM Journal on Computing, vol. 11. no. 1, pp. 117-129,
February 1982.

. Richard Cole and John Hopcroft, *On Edge Coloring Bipartite Graphs.” SIAM

Journal on Computing, vol. 11, no. 3, pp. 540-546. August 1982.

V. Vizing, “On an Estimate of the Chromatic Class of a p-graph.” Dishkret.
Analiz., no. 3, pp. 25-30. 1964.

D. Nassimi and S. Sahni, “A Self-routing Benes Network and Parallel Permu-
tation Algorithms.” [EEE Transactions on Computers. vol. C-30, no. 5.
pp- 332-340. May 1981.

John D. Carpinelli and A. Yavuz Oruc, "A Non-backtracking Decompo-
sition Algorithm for Routing on Clos Networks.™ IEEE Transactions on
Communications, vol. 41. no. 8. pp. 1245-1251. August 1993,

. J. Carpinelli, Interconnection Networks: Improved Routing Methods for Clos and

Benes Networks, Ph.D. Thesis, Rensselaer Polvtechnic Institute. Trov.
NY. August 1987.

G. Lev, N. Pippenger and L. Valiant, “A Fast Parallel Algorithm for Routing
in Permutation Networks.” [EEE Transactions on Compulers. vol. C-30.
no. 2. pp. 93-100. February 1981

J. Lenfant, “Parallel Permutations of Data: A Benes Network Control Algorithm
for Frequently Used Permutations.” IEEE Transactions on Compulers.
vol. 27, no. 7, pp. 637-647, July 1978.

B. G. Douglass and A. Y. Oruc, “On Self-Routing in Clos Connection Networks.”
IEEE Transactions on Communications, vol. 41, no. 1, pp. 121-124,
January 1993.

(. Raghavendra and R. Boppana. "On Self-Routing in Benes and Shuffle-
Exchange Networks,” [EEE Transactions on Computers, vol. 40. no. Y.
pp. 1057-1064, September 1991.

G. Adams and H. Siegel, “The Extra Stage Cube: A Fault-Tolerant Intercon-
nection Network for Supersystems.” IEEE Transactions on Computers,
vol. C-31. no. 5, pp. 443-454. May 1982.

[
-1

G6O.

61.

63.

64.

66.

. G

123

. Adams, D. Agrawal and H. Siegel. “A Survey and Comparison of Fault-
tolerant Multistage Interconnection Networks.” Compuier. pp. 14-27.
June 1987.

K. Yoon and W. Hegazy, “The Extra Stage Gamma Network.” Proceedings of

the 13th Annual Symposium on Computer Architecture. pp. 175-182, 1986

K. Padmanabhan and D. Lawrie, “*A Class of Redundant Path Multistage Inter-

H

C.

2. T.

D.

. D.

W

connection Networks,” IFEE Transactions of Computers. pp. 1099-1108.
December 1983.

. Nassar. Fault-Tolerant Interconnection Networks for Multiprocessor Systems.
Ph.D. Thesis, New Jersey Institute of Technology, Newark, NJ. 1989.

Raghavendra and A. Varma. “INDRA: A Class of Interconnection Networks
with Redundant Paths,” Proceedings of the 1984 Real Time Systems
Symposium, pp. 153-164. 1984.

Feng and C'. Wu. “Fault-Diagnosis for a Class of Multistage Interconnection
Networks,” TEEE Transactions on Compulers . vol. C-30. no. 10. pp.
743-758, October 1981.

Agrawal . “Testing and Fault Tolerance of Multistage Interconnection
Networks,” Computer, pp. 41-53, April 1982.

. Lilienkamp. D. Lawrie and P. Yew, “A Fault Tolerant Interconnection

Network Using Error Correcting Codes.” The Proceedings of the 1982
International Conference on Parallel Processing. pp. 123-125. 1982,

Agrawal and D. Kaur. “Fault Tolerant Capabilities of Redundant
Multistage Interconnection Networks.”™ The Proceedings of Real-time
Systems Symposium. pp. 119-127. December 1983.

. P. Shen, “Fault Tolerance of F-networks in Interconnected Multicomputer

System. Ph.D. Dissertation, Department of Electrical Engineering.
University of Southern California, CA. August 1981.

". Fuchs. J. Abraham and K. Huang, “Current Error Detection in VLSI Inter-
connection Networks,” The Proceedings of the 10th Annual International
Symposium on Computer Architecture, pp. 309-315. 1983.

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Modelling of Interconnection Network
	Chapter 3: Implementations of Mins
	Chapter 4: Decomposition of Clos Mins
	Chapter 5 : Fault Tolerant Mins
	Chapter 6: Novel Algorithm for Clos Mins
	Chapter 7: Routing Fault Tolerant Clos Networks
	Chapter 8: Reliability of Fault Tolerant Clos Networks
	Chapter 9: Conclusions
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)

