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C H A P T E R  1

IN T R O D U C T IO N

1.1 M otivation

1.1.1 Parallel Processing

Many of i today ’s scientific and industrial problems require enormous processing 

power, and the  desire for faster com puters appears boundless as the complicated 

applications th a t  require the processing of enormous am ount of data  emerge. Multi- 

microprocessors are used in areas requiring one or more of the following:

•  Verj' high com putational bandw idths an d /o r  short response times

•  High system resilience and fault-tolerance capabilities

•  Ability to  operate under adverse environmental conditions

•  Geographically d istributed com puting with an associated need for effective 

com munication between centers

• Storage and retrieval of large volumes of da ta  within a  relatively short period 

of time

•  Very close interactions between equipm ent and hum an beings

Advances in technology have achieved some increase in com puting power. 

In tegrated  circuit (IC) technology replaced conventional vacuum tubes and transistors 

and improved performance both in speed, size, and density. T he improvements in 

device technology, versatile instruction sets, large addressing ranges, and operating 

systems also contributed to the increase in processing power. T he  development of 

microprocessor architectures, accompanied by bigger and more powerful instruction

1



sets, has enabled the  overall th roughput provided by a single microprocessor to 

increase by more than three orders of magnitude during the past few decades. 

However, this development is approaching the limit where these technologies can 

no longer keep up with the need for more speed. To meet these problems requires 

deviation from the restriction of the von Neumann architecture which uses a single 

processor to fetch instructions from memory and execute them  one a t a time.

Long before the  advent of microprocessor technology, designers had proposed 

the concept of parallel systems as a mechanism to go beyond the upper bound 

on performance attainable with a single processor. A single processor can fetch 

instructions from memory and execute them  one at a time. Parallel systems, however, 

are based on the principle tha t more than  one task can be performed simultaneously. 

An evolutionary change such as parallel computer architectures and super fast micro­

processors makes parallel processing feasible. Parallel processing can be realized 

either at the software level or a t the  hardware level or at both. At the software 

level, parallelism is obtained by time-sharing the computer resources among different 

programs. Here, the operating system divides the CPU time among the different 

programs so tha t no one program monopolizes the CPU for a long time while others 

are waiting. This technique has been used on computers with a single processor to 

achieve parallelism in the form of multiprogramming, multitasking, multiuser and 

ti me-sli ari ng c.apabi li ti es.

W hen parallelism is implemented at the hardware level, it can take place 

at the com puter level, at the processor level, or at the subprocessor level. One 

hardware strategy is the use of pipelining [12], The concept of pipeline processing in 

a com puter is similar to assembly lines in an industrial plant. To achieve pipelining, 

one must subdivide the input task (process) into a sequence of subtasks, each of 

which can be executed by a. specialized hardware stage tha t operates concurrently 

with other stages in the pipeline. Successive tasks are streamed into the pipe and



are executed in an overlapped fashion at the subtask level. The pipeline consists of a 

cascade of processing stages. The stages are pure combinational circuits performing 

arithm etic or logic operations over the data  stream flowing through the pipe. The 

stages are separated by high-speed interface latches. According to the levels of 

processing, Handler has proposed the classification scheme of pipeline processors 

as arithmetic pipelining, instruction pipelining, and processor pipelining [6]. Vector 

pipelines are special form of pipelines which are specifically designed to handle vector 

instructions over vector operands. Computers with vector instructions are called 

vector processors.

Multiprocessor com puters include all systems th a t  use more than one processor 

to perform a. desired application. The spectrum of such systems ranges from low-cost 

personal computers which frequently utilize a second microprocessor for decoding 

the key depressed on the keyboard, to powerful supercomputers and array processors 

which contain hundreds of processors working in parallel. These processors cooperate 

to execute the instructions of a program. In the ideal case, a system with n identical 

processors could offer n times the throughput available with a single processor. A lter­

natively, the additional processors can be used as backups, on an automatic basis, 

in case the primary processor malfunctioned.

Parallel computer systems can be grouped according to Flynn's classification 

[5], which is based on the number of concurrent instruction and data streams in

a computer. An instruction stream is the sequence of instructions executed by a

computer. The data, s tream  is the sequence of d a ta  accessed to be processed by the 

instructions. Flynn defines the four classes as

• SISD (single instruction single data  stream)

• SIMD (single instruction multiple data stream)

• MISD (multiple instruction single data, stream)
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F ig u r e  1.1 Flynn's classification of multi computers

• MIMD (multiple instruction multiple data stream)

Figure 1.1 shows Flynn's classification of parallel computers.

An array com puter [14] is a .synchronous array of parallel processors which 

consists of many processing elements under the supervision of one control unit. An 

array processor can handle single instructions and multiple data streams (SIMDl. 

Each processing element (PE) consists of a processor with a local memory. Because 

of its large numbers of PEs. the array com puter is suitable lor applications in image 

processing, matrix manipulation, parallel sorting, and fast Fourier transform.

Another form of parallel processing is distributed processing, which is a l s o  

called "computer networking ". A com puter network is a mult icompuler arrangement 

where the computers communicate via special processor-to-processor data links. This 

is a looser coupling than  the shared memory communication of multiprocessing 

systems. A network can link computers hundreds of miles or just a f e w  fee t  apart.



Ml M2 Mm-1 Mm
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Interconnection Network

F ig u r e  1.2 Multiprocessor system

Short-distance networks, perhaps contained in one building, are referred to as "local" 

networks. Here the com putation  load is distributed am ong more than one com puter. 

Communications bet ween the different computers take place in the form of passing 

messages to obtain data or exchange results. The advantage of the distributed 

com puting system include fast response, high availability, fault tolerance, resource 

sharing, high adaptability  to the changes in the work load, and better  expandability. 

These advantages have been enhanced by the availability of low-cost microprocessors 

and data link interfaces produced by LSI circuit techniques.

1 .1 .2  I n t e r c o n n e c t i o n  N e tw o r k s  in M u l t i p r o c e s s o r  S y s te m s  

C’learlv. using many processors in the same system yields more speed than using 

one processor. Recent advances in VLSI technologies, coupled with the need for 

fast computers, have made large-scale multiprocessor systems economically feasible. 

In such systems, hundreds or even thousands of processors are used to carry out 

the com putations of a program concurrently, thereby speeding up the execution of



6

Processor 1 Processor 3

Processor NProcessor N-l

Processor 2

F ig u re  1.3 A shared bus system

the program. Many applications can benefit from this enormous computing power. 

The basic architecture of a multiprocessor system is shown in Figure 1.2. In this 

configuration, the .V processors carry out computations on data stored in the M 

memory modules. For the interaction between the processors and memory, there 

must he a communications mechanism to enable any processor to access any memory 

module in the shortest possible time. This communication channel is denoted as the 

interconnection network which plays important roles in multiprocessor systems.

Interconnection networks were first proposed for use in telephone e x c h a n g e s  to 

allow subscribers to talk with one another. Some decades later, researchers began 

to consider how networks could he incorporated into computers. Many different 

approaches have been considered and some implemented. These include the use of 

buses, hierarchies of buses, direct links, single stage networks, multistage networks 

and crossbars. The shared bus is shown in Figure 1.3. When several processors are 

connected together via a bus. these processors should be capable of communicating 

with each other. It is obvious tha t,  as the number of processors increases, the load on 

the interface increases sharply. If one provides a different bus for each path, the cost



of such multiple-bus connections increases as the square of the number of processors. 

On the other hand, if only one bus is used, the contention problem between different 

messages may become critical. W ith more processors/memories, the bus becomes a 

performance bottleneck. Most designers opt for multiple-bus solutions. The resulting 

network is named on the basis of its geometry as a  s tar, a cube, a hypercube, a 

hvpertree, a cluster, and by other similar self-explanatory names. In all of these 

cases, a few pairs of resources have direct links with each other, bu t other pairs must 

communicate via one or more intermediate nodes, thus introducing time delays and 

performance degradation. In order to reduce the load on the bus, it is now becoming 

common for individual processors to have cache memories.

The next simplest form of interconnection mechanism is the crossbar [17], In 

a crossbar switch, every input port can be connected to a free ou tpu t port without 

blocking. This is simple, bu t impractical as the number of processors increases. 

A more practical m ethod is the  use of multistage interconnection networks (MINs) 

which consist of small-sized crossbars and links between them  in a way unique for 

each MIN. Usually, a multistage network consists of more than one stage of switching 

elements and is capable of connecting an arbitrary input terminal to an arbitrary 

output terminal. These can be divided into three classes: blocking, rearrangeable. 

and nonblocking. In blocking networks, simultaneous connections of more than one 

terminal pair may result in conflicts in the use of network communication links. 

Examples of this type of network include the da ta  m anipulator [24], baseline [17]. 

SW banyan [23], omega [17], flip [25], and delta [28] networks. A network is called 

a rearrangeable network if it can realize all possible connections between its inputs 

and outputs  by rearranging its existing connections so th a t  a connection path  for a 

new input-output pair can always be established. A well-defined network, the Benes 

network, belongs to this class. A network which can handle all possible connections



without blocking is called a nonblocking network; some varieties of the Clos network 

are in this class.

As systems become more complex, the  reliability of the system has become a 

major concern because jus t  one fault in the  system can degrade system performance 

or cause the system to fail completely. The function of fault-tolerance is to preserve 

the delivery of expected system services in the presence of errors. There are two 

major aspects to  fault tolerance: (1) detecting and diagnosing faults; and (2) avoiding 

known faults if such a  capability exists. Techniques such as test pa tte rns ,  dynamic 

parity checking, and write/rea.d-back/verify can be used in various interconnection 

networks for detecting and diagnosing fault tolerance. In order to achieve fault 

tolerance, the topology of the network can be modified, usually by adding spare links 

and switches. O ther m ethod involve error-correcting codes, bit-slice implementation 

with spare bit slices, and duplicating the  entire network [57], Many of the known 

interconnection network can be made fault tolerant. Some of the examples are the 

E xtra  Stage Cubes (ESC) [56], the m ultipa th  omega network [59], the F-network 

[63], the enhanced I ADM network [30], the  merged delta [28], the  extra  stage gamma 

network [58], the  /?—network [66] and the INDRA network [61]. The fault tolerant 

Clos network (FTC) has been proposed by Nassar [60]. Little about the properties 

and routings of fault tolerance of the Clos networks is available in the literature.

1.2 Background

Interconnection networks have been widely studied since they play im portant roles 

in telephone switching networks and other communication, data networks arid 

computing systems. In multiprocessor systems, they are needed as a means of 

interprocessor communications. The three-stage Clos network [31] served as a basis 

for the Benes network [32] and the W aksman network [35]. Later, other networks



such as the omega, network [29], the baseline network [17] and the cube-connected 

network [26], were proposed in order to simplify the Benes network.

Several control algorithms for Clos networks have been proposed. The earlier 

algorithms were based mostly on m atrix  decomposition methods. Neiman [33] has 

proposed an 0 ( n 2k 2) algorithm which consists of two phases: a relatively simple 

preparatory phase, followed by a  complex iteration phase. Here, n represents the 

num ber of switches in the  second stage, and k the num ber of switches in the outer 

stage of the Clos network. Tsao-Wu [34] has presented two modifications to the 

preparatory phase, which result in lowering the probability th a t  the  second phase 

will be needed. However, this algorithm does not lower the  worst case complexity of 

N eim an’s algorithm. Waksman introduce another new algorithm [35], and Opferman 

and Tsao-Wu suggested the Looping algorithm for the Benes network [32], A different 

algorithm has been proposed by R am anujam  [36]. However, Ivubale [37] showed that 

R am anujam 's  algorithm fails for some permutations. Also, the m atrix  decomposition 

algorithm suggested by Jajszczyk [38] has been proved to fail by Cardot [39]. These 

algorithms select elements from the  m atrix  according to certain rules, and backtrack 

when they are unable to obtain a perm utation  matrix. These rules are ra ther intuitive 

and do not work in some cases.

Many algorithms are based on the  minimum edge coloring on a bipartite 

multigraph. Hwang [40] suggested th a t  edge coloring algorithms for bipartite  graphs 

can be adapted to decompose Clos networks. Vizing’s m ethod uses 0 ( n 2k) time 

to  perform a  complete coloring since it needs O(k)  t im e to find the alternate 

pa th  to color an edge. The Euler partitioning approach to edge coloring uses a 

divide-and-conquer technique and was formalized by Gabow and Kariv [46]. whose 

algorithm runs in time 0 ( n k *  lg k). A modified version of the previous algorithm 

was presented by Gabow [45], and it runs in time 0 { n k \ g  k).  Cole and Hofcroft 

[47] also proposed an algorithm by preprocessing the edges while keeping the degree
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of a vertex invariant. Lev, Pippenger and Valiant [52] developed parallel edge 

coloring algorithms for routing on Clos networks. Recently, Gordon [43] introduced 

an algorithm which runs in tim e 0 { n k z!2) with the aid of specification and count 

matrices. Chiu [44] dem onstrated  th a t  Gordon's algorithm displays errors for some 

permutations.

Parallel algorithms were proposed by Nassimi and Sahni [49]. The time bounds 

of these algorithms may be reduced if all of the switch sizes are integral powers of 

two. Another parallel algorithm was proposed by Carpinelli [50] which eliminates 

backtracking by introducing the concept of partitioning. The Benes network control 

algorithm for frequently used perm utations was reported by Lenfant [53].

The self-routability of Clos networks has been studied by Douglass and Oruc 

[54]. This study shows th a t  the Clos network is self-routing if and only if A’/??? <  2 

or m  =  1. Raghavendra [55] also reported self-routing algorithms in Benes and 

shuffle-exchange networks.

Meanwhile, a  great deal of effort has been directed to the fault tolerant 

multistage interconnection network in order to make the network more reliable and 

fault tolerant. A single fault in the interconnection network can cause a severe degra­

dation in performance unless measures are provided to make the network tolerant 

to such faults. W ith developments in VLSI technology, large scale multiprocessor 

systems with fault-tolerant interconnection networks have become feasible. Many 

fault tolerant interconnection networks have been proposed. However, few fault 

tolerant Clos networks have been studied until Nassar [60], who provided alternate 

paths by adding multiplexers and switches to the network.

Although several control algorithms have been proposed in order to reduce the 

run time in the Clos interconnection network, little effort has been made in improving 

the performance by extending the algorithm to the fault-tolerant cases. Nassar's 

control algorithm [60] for the fault tolerant Clos network is based on Neiman's
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algorithm, and has the same time complexity as Neiman's algorithm. Considering 

th a t  the spare switches can provide alternative paths in the system, his algorithm 

could have been faster if he could utilize these paths during the routing process. 

The ex tra  switches in the fault-tolerant Clos (FTC) network have been found to 

give great flexibility to the routing algorithms by providing alternative paths to  the 

system, and thus can be used to improve the run time significantly when the system 

displays few or no faults. No studies have been made so far about the utilization of 

the extra spare switches for the improvement of routing speeds in the fault tolerant 

Clos network.

In this thesis, Gordon’s algorithm is shown to display errors in some perm u­

tations. Then, the new simple algorithm which works for all perm utations for the 

control of rearrangeable Clos networks is proposed, which is ba»sed on his algorithm. 

The new algorithm is extended to the fault tolerant Clos (FTC) network. The extra 

switches in the fault-tolerant Clos (FTC ) network are used to improve the run time 

significantly since they provide alternative paths to the system when the system 

displays few or no faults. The effect of increasing the number of ex tra  switches on 

system routing time, reliability and cost in fault tolerant Clos networks is analyzed. 

Finally, the optim um  number of ex tra  switches on the fault tolerant Clos network is 

determined which will best satisfy the  run time, reliability and cost constraints.

1.3 O utline

This research has dem onstrated th a t  Gordon's algorithm displays errors for some 

permutations. Next, a  new algorithm is proposed for the Clos networks which is 

based on Gordon’s algorithm. This algorithm is extended to the FTC  networks, and 

resulting run times are compared with the ordinary networks. The FTC network has 

been classified into three types for the purpose of developing algorithms system at­

ically. The reliabilities for these networks are examined, and the optim um  number
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of extra, switches which satisfies the  reliability, run time and cost, constraints is 

considered.

The rest of the thesis is organized as follows. In chapter 2, basic concepts and 

relevant notation which will be used in the thesis are introduced. These include 

the representation of interconnection networks, fault tolerance, and reliability of the 

system. In chapter 3, the im plem entation of im portan t MINs such as the crossbar 

network, Clos network and Benes network are examined. Routing algorithms based 

on the m atrix  decomposition, edge coloring and matching, and parallel decomposition 

are discussed in Chapter 4. Next, Gordon’s algorithm is examined and then a counter 

example is given which dem onstrates th a t  his algorithm has a flaw. A new algorithm 

for routing on ordinary Clos networks and three kinds of swaps used in the algorithm 

are introduced in chapter 5. In chapter 6, some of the  fault tolerant multistage inter­

connection networks, such as E x tra  Stage Cube (ESC) and Fault. Tolerant Clos (FTC) 

networks, are addressed. In chapter 7, three types of F T C  network are discussed, 

and swapping rules and conditions in each case are considered. A new' algorithm for 

the FT C  network is proposed, which is extended from the algorithm illustrated in 

chapter 5. Reconfiguration of the FT C  network is considered next. In chapter 8. 

reliabilities of the fault tolerant Clos network are considered and corresponding space 

complexities are examined. Also, the fault detection and location of the FTC network 

is considered. Finally, conclusions and open problems are presented in Chapter 9.



C H A P T E R  2

M ODELLING OF IN TER C O N N EC TIO N  N ETW O RK  

2.1 Introduction

The modelling of interconnection networks is im portan t in order to  analyze them. 

In this chapter, the concept of perm utations as well as basic definitions and notations 

tha t are used in interconnection networks are introduced in section 2.2. These provide 

a basis for representing interconnection networks in the various m atrix  forms by 

setting each of the stages of the network. Section 2.3 introduces b ipartite  m ulti­

graphs, which is another method of representing interconnection networks. These 

can be used to route a perm utation for Clos network in edge coloring algorithms, as 

will be shown in chapter 4. The concept of fault tolerance is described in section 2.4. 

followed by the concept of reliability in section 2.5. These will be used to describe 

the fault to lerant Clos network, which will be discussed in chapter 5.

2.2 Interconnetion Networks 

2.2.1 Representation

A set is a collection of distinct elements. A mapping or a function from a set .4 into 

a set B  is a rule which assigns to each element a  of A exactly one element b of B.  

It is written as b=( a ) f  to imply tha t a is m apped to b by f .  Let /  be a mapping of 

A into B.  It is said to be one-to-one if, whenever ai ^  a 2, ( a i ) /  ^  (a2) /  and it is 

said to be onto if for each b G B,  there exists a £ A such th a t  ( « ) /  — b. Let /  be a 

mapping of set A into set B  and let g be a  mapping of set B  into set C . The mapping 

/  • g . defined by (a ) f  ■ g = ({a) f )g  =  (b)g =  c, a €  A,  b € B , c € . C ,  is called the 

composition of /  and g. A  perm utation of a set S  is a  one-to-one mapping of 5  onto

13
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itself. It is written as {x )P  = y to imply tha t x  is mapped onto y by perm utation  

P.  Both x  and y  belong to S.

A group is a set. G  with a binary operation do t( ')  on G, where the binary 

operation is associative, there is an identity element e in G  such tha t e • x  — x  ■ e = x 

for all x  in G, and for each x  in G, there is an inverse element x'  in G  with the

property tha t x' ■ x  = x ■ x ’ = e. A  subgroup of a  group G is a subset of G  which also

forms a group with respect to the group operation of G. The set of all perm utations 

of N  elements on S  form the symmetric group, denoted as E/v • The cardinality of

Ea- is N\.

Two notations are used for representing perm utation  P.  In s tandard  notation.

also called two-row m atrix  form, there are two rows of elements; the first row contains

the source elements to be permuted and the second row contains the destination

elements that they are mapped onto. It is written as P  =  ( 'Tl 32 Xn ] to
V 2/i 2/2 ■ ■ ‘ Vn J

imply tha t ( x i )P  =  y u 1 <  i <  n, where S' =  {.Ti,;r2,- • •,.?„} =  {t/i,t/2. • • ••*/«}■ 
/ l  2 3 4 V

For example, I 0 j is a perm utation which maps 1 to 2, 2 to 4, 3 to itself

and 4 to 1, where S  =  {1 ,2 ,3 ,4}. In cyclic notation, the perm utation  is of the 

form (,ri ,.r2, • • •, x n) where .Ti is mapped onto .r2, ,r2 is mapped onto .73, and so on. 

The final element x n is mapped onto the first element .Ti. It is written as P  = 

( .r i . .r2. • • •,.?•„) to imply tha t (x^ )P  =  ,r2, [x2)P  =  x 3.- ■ •, {xn)P = .Ti. where x, G S.

5  = {.Tj. ,r2. • • •, .rn }. The previous example P  =  ^ ^ ^ ^ ^ will be represented 

by the cycle (1 2 4). Any element which is m apped onto itself is not written explicitly, 

so 3 is not included in the cycle (1 2 4). Particularly, the permutation e is called 

the identity perm utation , and (x ) t  — x  for all x  £  S.  For example, the perm utation

6 =  ( l  ^ 3 4 )  m a Ps every element onto itself.

Given a switch with N  inputs and N  ou tputs, the setting can be expressed as 

an N  x N  m atrix , K . The rows of the m atrix  represent the inputs of the switch and
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the columns represent its outputs. I \ [ i , j]  =  1 if the switch is set so th a t  input ? is 

connected to ou tpu t j ;  otherwise, K [i , j ]  =  0.

The K  m atrix  can be used to represent a stage. A stage is a  set of switches 

which are disjoint, th a t  is, there is no possible connection from the ou tpu t of one 

switch to the  inpu t of another in the set. Notice th a t  the  perm utations for the two 

2 x 2  switches were combined to form one perm utation encompassing four elements. 

The m atrix  approach is similar; the 2 x 2  matrices corresponding to the switch 

settings are embedded in a 4 x 4 m atrix  which defines the  setting of the entire stage. 

Given the settings of two switches

' 0 1  ‘ r  i  o ‘
1 o 

.
»

>. CO .fit II *o1

the 4 x 4  m atrix  which results from their embedding is

' 0 1 0 0 '
1 0  0 0 
0 0 1 0  

. 0 0 0 1 .

In the perm utation  notation, 1 and 2 had to be m apped amongst themselves, as 

did 3 and 4. This is because the  switches are disjoint, and the  inpu t of one switch 

cannot be mapped onto the ou tpu t of the other. In the m atrix  this is accomplished 

by setting the elements of the quadrants not on the  main diagonal to zero. In this 

example, rows 1 and 2 cannot have non-zero entries in columns 3 and 4. Figure 2.1 

shows the resultant switch settings.

A multistage perm utation  network consists of several stages of switches. The 

ou tpu ts  of one stage serve as the inputs to the next stage. T he mapping realized 

by the network is derived from the mappings of the individual stages. If the maps 

of each stage are represented as matrices, the m atrix  representing the map of the 

entire network is the ordered product of the stage matrices. As an example, consider 

a three-stage network as shown in Figure 2.2. The matrices corresponding to  the 

stage settings are, respectively,
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2

F ig u r e  2.1 Switch settings of two 2 x 2 switches

'  0 1 0 0 ' 0 0 1 0 ' 1 0 (J ft ■

1 u u u 0 u 0 1
a n d

0 1 u (J

0 t) 1 0 1 0 0 t) 0 t) u 1

. 0 0 0 1 . . u 1 0 0 . _ 0 0 1 u .

Their ordered product is

0 0 1 0
0 0 (J 1

1 U (J 0 

0 1 0  0

The matrix of this kind becomes very sparse as the number of inputs increases. 

For :Y inputs, a m atrix of this form has A'2 entries. In order to reduce this size, 

a compacted m atrix  is often used. The A’ x A’ m atrix is consolidated into a /,■ x /,- 

matrix. . where in — X / k .  The first row of 11,n is the sum of the first m  nuv> 

of the original matrix: the second row of 7 7 is the sum of the second in rows, and 

so on. The columns are compacted in a similar manner. The 2 x 2 matrix. / / j . 

corresponding to the ordered producl matrix derived above is

0 2 
2 0
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Not.e th a t  the sum of the  elements in each row and in each column is exactly 7 7 7 .

There is a  trade-off th a t  results from the savings in m atrix  size; one compacted
0 2

m atrix  may represent more than  one mapping. The compacted matrix 

represent any of the following matrices.
2 0

mav

•  0 0 1 0 ■ ■ 0 0 1 0 ■ ■ 0 0 0 1 ' '  0 0 0 1 ■

0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0
1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0

.  0 1 0 0 . .  1 0 0 0 . .  0 1 0 0 . .  1 0 0 0 .

When dealing with com pacted matrices, additional information is required to

distinguish between mappings. The m atrix H m is the representation used by the

matrix decomposition class of algorithms for routing on Clos networks. The H m

m atrix is a  typical way of representing the perm utation. However, as the m atrix

becomes sparse, further reduction in size can be possible with the use of S  and C

matrices, which are called the specification m atrix , and the count matrix. In the .S’

m atrix , the k x k  m atrix  H m is consolidated into a k x 77 m atrix  where ?? is the sum

of the elements in any row or column of H m. This is especially useful in representing

the  Clos network as is explained in chapter 5. In order to obtain the S  m atrix , let

P  = [ V ^   ̂ ] , where 0 <  i < N  — 1 and N  =  nk.  For each
\ y 0 y  1 • • • y i  • • • y N - i  J

signal 7. calculate x  and t where x — \_i/n\ is the first-stage input switch a t which 

the signal arrives, and t =  [y i /n \  is the last-stage ou tpu t switch to which it should 

be routed, and set any unassigned element which is the next unassigned element in 

the 2 th  row of S  to t. On the o ther hand, each element of C, c[:r, y], 0 <  x < k — 1. 

0 <  ?/ <  77 — 1, is the num ber of occurrences of the integer x  in column y of S.  As 

an example, the perm utation  m atrix  is given as

P  = 0 1 2 3 4 5 6 7 8 9 10 11
2 10 3 5 6 11 7 1 9 4 0 8

The H 3 m atrix is

H  =

1 0  1 1  
1 1 0  1 
0 1 1 1  
1 1 1 0
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The 5  and C  matrices are

' 0 3 1 ' '  1 2 0 '
1 2 3

and C  =
2 0 1

2 0 3 1 1 1
. 1 0 2 .  0 1 2

S  =

A m ultistage perm utation  network consists of several stages of switches. The 

o u tp u t  of one stage m ust be connected to the inputs of the  next stage. The perm u­

ta tion  realized by a. multistage network is the ordered composition of the perm u­

ta tions realized by its stages. Consider a 4-input, 3-stage network. The first stage 

realizes the  perm uta tion  ^ 9 1 4 3

/  1 2 3 4 A /  1 2 3 4
I g j 9 ] , and the th ird  stage the  perm utation  I  ̂ 3 ‘> 4

stage perm utations  in order, the  first perm uta tion  m aps input 1 onto output 2. This

ou tpu t 2 of the first stage is assigned to  inpu t 2 of the  second stage; the second

stage perm uta tion  m ap routes this to  ou tpu t 4 of the second stage. Finally, input

4 of the third stage is routed to o u tpu t  4, so the network routes input 1 to output

, the second stage realized the perm utation

Composing

4. R epeating this for the other inputs, the perm utation  realized by entire network is 
1 2  3 4 
4 2 3 1 , as shown in Figure 2.2.

2.3 B ipartite M ultigraphs

The b ipartite  multigraph also can be used to represent a perm uta tion  for Clos 

networks, which will be introduced in chapter 3. A graph G — (K  E )  is an ordered 

pair of finite sets V and E.  T he  elements of V’ are called vertices, and the elements 

of E  are called edges. An edge (tk i d )  is an unordered set of two distinct vertices. If 

an edge (v. iv) can occur more than  once. G is a multi-graph. Edge (v.u')  is incident 

to v and to w. and vertices v and w are adjacent. A subgraph of G  is a graph whose 

vertices and edges are in G. To delete edge e from G means to form the subgraph 

G — t .  consisting of all vertices of G  and all edges of G  except e. To delete vertex v 

from G  means to form the subgraph G  — v , consisting of all vertices of G except v.
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2

3

4

F ig u r e  2.2 Switch settings of three stage network

and all edges of G except those incident to r .  A graph corresponding to a function 

has the property that the vertex set can be partitioned into two disjoint subsets 

f i  and D {R  corresponds to the set of range vertices and D  to the set of domain 

vertices) such that all edges in the graph join a vertex in D  to one in R. There are 

no edges that join two vertices in R  or two vertices in D.

A graph whose vertex set can be partitioned in this way is called a biparlil< 

graph. All graphs that correspond to functions are bipartite. The degree of a vertex 

r is the number of edges incident to v. An example of a b ipartite  multigraph is 

shown in Figure 2.3. A graph is regular if all vertices have the same degree. A path 

P  is a sequence of edges (t>,. r 2). (to. t ’3 )  . . . .  ( r , T h e  ends of P  are vertices 

C] and r„ . If tq ^  r„. P  is open, otherwise P  is closed. A graph is connected if 

there is a path between any two distinct vertices. A connected component of a graph 

is a maximal connected subgraph. A matching M  of G is a set of edges, no two of 

which are incident to the same vertex: M  covers any vertex incident to an edge in 

M.  An edge coloring of G is an assignment of a color to each edge in G such that
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F ig u r e  2 .3  A bipartite multigraph

no edges incident to a vertex have the .same color. Thus all edges of a given color 

form a matching. A minimal edge coloring uses the fewest number of colors possible. 

The application of coloring and matching to routing C'los network will he discussed 

in Chapter 4.

2.4 F a u l t  T o le r a n c e

A fault tolerant MIN is one that provides service even when it contains a faulty 

component or components. A fault can be either permanent or transient. Fault 

tolerance is defined only with respect to a chosen fault tolerance model, which has t wo 

parts. The fault model characterizes all faults assumed to occur, stating the failure 

modes for each network component. The fault tolerance criterion is the condition 

that must be met for the network to be said to have tolerated a given fault or faults. 

The fault model is the type of faults that can occur in the network. Implicitly, 

the fault model specifies the type of faults that can be recovered from using t h e  

proposed fault tolerance design. Different designs specify different fault m o d e l s .  A
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good design, however, is one whose fault, model includes as manj' fault types as 

possible. To illustrate, a typical fault model is as follows.

•  Any network component can fail: MINs are made up of two types of 

components which are switches and links.

•  Switches and links are likely to fail.

• The network is capable of recovering from any such fault.

•  A link fails if it is open or short circuited. A switch fails due to some internal 

malfunction.

The ex tra  hardware added to provide fault tolerance to the network fails at 

a lower ra te  th an  the network hardware. This assumption is usually made for two 

reasons. First, if the extra  hardware added to the network to make it fault tolerant 

could be assumed to fail at any significant rate, then it would not be possible to 

propose any fault tolerance design. In addition, this assumption can be justified for 

MINs because these components usually remain idle under normal conditions. Thus 

they can be expected to have higher lifetime than the actively working components 

of the network.

The fault tolerance criterion is the  condition tha t must be met in order for the 

system to be called fault tolerant. The fault tolerance criterion for the networks is 

mainly full-access retention. T h a t  is, after a fault occurs, each processor must still 

be able to com municate with any memory module. However, the two fault tolerant 

designs can offer a higher criterion, i.e., full recovery. Full recovery is the ability of the 

network to regain its pre-fault connectivity after a fault occurs. A network is single­

fault tolerant if it can function as specified by its fault tolerance criterion despite 

any single fault conforming to its fault model. Generally, if any set of i faults can 

be tolerated, then a network is i-fault tolerant. A network th a t  can tolerate some
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instances of i faults is f-robust although not 7-fault tolerant. Many fault tolerant 

systems require fault diagnosis such as fault detection and location to achieve their 

fault tolerance. Techniques such as test patterns , dynamic parity checking, and 

w rite/read-back/verify can be used in various interconnection networks.

Fault tolerance can be achieved at various level in a  system. Techniques for fault 

tolerant design can be categorized by whether they  involve modifying the topology 

of the system. Three well known methods th a t  do not modify topology are error- 

correcting codes [64], bit-slice implementation with spare bit slices [63], and dupli­

cating an entire network [65].

2.5 Reliability

2.5.1 Fundamentals

The reliability of a system is defined as the probability th a t  the system will perform 

a required function under stated condition for a s ta ted  period of time t. M a th em at­

ically. the reliability', R , of a system is a function of A and t, where A is a constant 

representing the failure rate (per unit time). To simplify the analysis in this thesis, 

the time factor will be only implicit. In other words, when it is said tha t the relia­

bility of a switch is it will mean the reliability of the switch over a given period of 

time t. This is done because the focus will be on comparing reliabilities, ra ther  than 

obtaining the absolute reliability value. In comparing two networks, for instance, 

the two networks should be under the same circumstances, including the period of 

time, t , hence the omission of the time factor. Predicting reliabilities usually involves 

dealing with probabilities. It stands to reason then th a t  an overview of probability 

theory should be given before discussing the fundamentals of reliability.
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a) Series

b) Parallel

c) Series-parallel

F ig u r e  2.4  Series, parallel, and series-parallel systems 

2 .5 .2  S y s te m  R e l ia b i l i ty

Simple systems can generally be classified into three categories as shown in Figure 

2.4: series, parallel, and series-parallel. A system can be broket) down into isolated 

components. First, a series system is defined as a complex system of independent 

units connected together, or interrelated, in such a way that the entire system will 

fail if any one of the units fails. It is assumed that the failure of one component has 

no effect on the probability of any other component failing. Titus, the system can 

he no better than its weakest component,. Series reliability is calculated using the 

product rule as

r .  =  n  p .

1=1
where P, is the probability that a component i of the system will function properly. 

W hen component reliabilities are equal, the reliability of the system is

/?, =  ( P i ) n
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The unreliability of the system is defined as 1—reliability. Thus, the unreliability of 

a system is

U, =  l - R t =  l - f [ P i
!=i

On the other hand, a parallel system is defined as a  set of interrelated 

components connected in such a way th a t  a  redundant, or standby part  can take 

over the function of a  failed part to save the  system. Redundancy refers to the use of 

more than  one part for the same function. The calculations for parallel reliability are 

more complex than  those for series reliability and include the concept of unreliability. 

The parallel reliability of a  system is

R P  = 1 -  n  u >
!=i

For equivalent, component unreliability,

=  1 - ( £ / , • ) "  =  i - ( i - < p . r

Parallel reliability increases as the num ber of components increases, which is the 

opposite of the series systems. Parallel systems also display marginal proba­

bility. which refers to the increase in reliability as components are added. As the 

redundancy is increased in parallel systems, it is im portant to balance the costs 

involved.

Mixing the two kinds of systems, there can be a  series-parallel system which 

includes both series and parallel components. Reliability for these systems can be 

determined by computing the reliabilities separately, using the rules th a t  apply to 

either series or parallel systems, until the entire system is completed.

Sometimes a system has n parallel components but needs at least m of them 

to remain operational. This problem is a binomial distribution. The reliability of 

the system in this case can better be expressed as unity minus the probability of the 

complementary event ( tha t is, failure occurring from having between 0 and m  — 1



operational components). The operational components are indistinguishable from 

each other, and so are the non-operational components. Recall tha t the way to count 

the number of wavs these components can be arranged together is a combination 

problem. Thus the reliability of the system is

R = 1  ̂ ” j  P ‘(l - P ) n~l

This equation is used in chapter 8 to obtain the reliability of the fault-tolerant Clos 

network.



C H A P T E R  3

IM PLEM ENTATIO NS OF M INS

3.1 Introduction

The overall performance of multiprocessor configurations is affected by the number 

and the type of processors, the communication mechanism between the computing 

sources, the characteristics of the com putational workload, and the  control program. 

Whereas the m ajor constraint in uniprocessor systems is the speed of the processor, 

the critica.1 factor in multiprocessor systems is the speed of the interconnection 

mechanism. The performance of the interconnection mechanism, on the other hand, 

is determined by network structures and routing algorithms. A broad spectrum 

of networks has been studied ranging from simple linear arrays to the completely 

connected situation, with all o ther configurations falling in between. In many appli­

cation, the  choice of an appropria te  interconnection network is a key issue in the 

design of any system with multiple processing resources. Nonblocking networks 

which work for all perm utations are particularly well suited in these purposes. 

Rearrangeable nonblocking networks and their routing methods are also studied for 

their potential uses.

In this chapter, design factors for interconnection networks are discussed in 

section 3.2. In next two sections, the  fully-connected and crossbar networks, which 

are the most straightforward in design, are examined. In section 3.5, the  construction 

of the Clos network capable of m apping its N  input term inal to its N  output terminal 

is described. Finally, the  Benes network is discussed in section 3.6, followed by 

discussion in section 3.7.

26
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3.2 Design Factors of Interconnection Networks

There are fundamental decisions in determining the appropriate architecture of an 

interconnection network. The decisions are the  operation mode, control strategy, 

switching m ethod, and network topology [17]. Among the four decisions, network 

topology is a key factor in determining a  suitable architectural structure. A network 

can be depicted by a graph in which nodes represent switching points and edges 

represent communication links. The topologies of interconnection networks tend to 

be regular and can be classified into the  following two categories: static  networks 

and d y n a m ic . networks. In a static network, links between two processors are 

passive and dedicated buses th a t  cannot be reconfigured for direct connections to 

other processors. Topologies in the static  category can be classified according to 

the dimensions required for layout, for example, one-dimensional, two-dimensional, 

three-dimensional and hypercube. In a dynamic network, links can be reconfigured 

by setting the network’s active switching elements.

There are three topological classes in the dynamic network: single-stage,

multistage, and crossbar. A single-stage network is composed of a stage of switching 

elements cascaded to a link connection pattern . The shuffle-exchange network is 

a single-stage network based on a perfect-shuffle connection cascaded to a stage 

of switching elements. A multistage network consists of more than one stage of 

switching elements and is usually capable of connecting an arbitrary input terminal 

to an arbitrary ou tpu t terminal. M ultistage networks can be one-sided or two-sided. 

The one-sided networks have input-output ports on the same side. The two-sided 

networks have separate input and ou tp u t sides.

The control-setting function can be managed by a centralized controller or by 

the individual switching element. T he la tter  strategy is called distributed control 

and the first strategy is called centralized control. Generally, the centralized control 

is simple, bu t takes a longer time. In contrast, the distributed control is fast bu t
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F ig u r e  3.1 The completely connected network

requires additional computing .sources in each switch. The typical operation modes 

of interconnection networks can be classified into three categories: synchronous, 

asnychronous. and combined. Also, three switching methodologies can be identified 

as circuit switching, packet switching, and integrated switching, which are not 

covered in this thesis.

3 .3  C o m p l e te ly  C o n n e c t e d  N e tw o r k

The ideal situation would be to link directly each processor to every other processor 

so that the system is completely connected as shown in Figure 3.1. 1'nfort uriat ely. 

this is highly impractical for large N  because it requires ;Y — 1 connections for each 

processor, and the total number of connections needed in the network would reach 

A ' ( A  — 1). For example, if A' =  2 y. then 2 y( 2 y — 1) - 2 6 1 . 6 3 2  links would b e  n e e d e d .

3.4 C r o s s b a r  N e tw o rk

The simplest connection network is the Crossbar network, which has one switch lor 

each possible input-output connection. Given A ’ inputs and A" outputs, a crossbar
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F ig u r e  3.2 The :Y x A’ crossbar interconnection network

network would have A'2 switches and 0(  A'2) area. The routing algorithm to set the 

switches is trivial. The A’ x A' Crossbar network is shown in Figure 3.2. All Crossbar 

networks are strictly non-blocking. The difficult}- with crossbar networks is that the 

cost of the network or the number of crosspoint switches which grows with A"2. This 

makes the crossbar network infeasible for large systems.

3.5 C los  I n te r c o n n e c t i o n  N e tw o rk s

The interconnection networks shown above are impractical as the number of i n p u t s  

increases. .Many other networks are reported in the literature. Most of them are 

blocking networks which can not implement all the permutations. Rearrangeable 

nonblocking networks such as the Clos network and cellular networks are networks 

without blocking properties. The three-stage C'los interconnection network, which is 

illustrated in this section, is shown in Figure 3.3.
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3.5.1 Network Structures

The three-stage Clos network [31] consists of two symmetrical outer stages of 

rectangular switches, with an inner stage of square switches. It is completely 

determined by the integer param eters n, m,and k tha t give the switch dimensions. 

The first stage contains k  switches, each of which has m  inputs and n outputs. Each 

switch is actually' a simple crossbar switch which can realize any mapping of its 

inputs onto its outputs on a one-to-one basis. The second stage consists of n k x k 

switches, each of which receives exactly one input from each first-stage switch. The 

ou tpu t stage has k n  x  m  switches, each of which receives exactly one input from 

each second stage switch. The num ber of inputs to the network is N  =  mk.  Inputs 

and outputs  to the first-stage switch or third-stage switch i are numbered from 

(?' — 1) ??? +  1 to 7?77. 1 <  ?' <  k. The Clos network can reduce the area of the 

crossbar switches for the same number of inputs. For example, when A” =  12 with 

?7 =  ?77 =  3 and k =  4. the number of cross points in the crossbar is 122 =  144, while 

in the  Clos network, total num ber of cross points is 2 x 4 x 32 +  3 x 42 =  120. The 

Clos network is much easier to visualize when it is illustrated in three dimensions as 

shown in Figure 3.4.

3.5.2 Properties of the Clos Networks

In contrast to most other interconnection networks, the Clos network satisfies some 

im portan t characteristics. One of the properties of the Clos network is the rearrange- 

ability if the network satisfies the condition n > m  . The interconnection network 

is rcarrangtablt if it can connect any idle input to any idle output by possible 

rearrangement of its existing paths. If the network satisfies m = n = k. then 

at most /? — 1 existing calls need be moved in the Clos network in order to connect 

an idle input-output pair. Also, Clos showed tha t for m  > 2n — 1. the network is 

nonblocking in the strict sense [31]. The network is strictly nonblocking if it is always



32

F ig u r e  3.4  The three dimensional Clos interconnection network.

possible to connect together an idle pair of input-outputs without disturbing the 

routing already established, no m atter  in what state the network may be. Note here 

that the network is nonblocking in the wide sense when putting up new calls results 

in avoiding all the blocking states, so that the system is effectively nonblocking.

3 .6  B e n e s  N e tw o r k s

Benes considered the class of rearra.ngea.ble 3-st.a.ge Clos networks with n — in — 2 

and /.' =  2' for some positive integer i. He showed that any such network can he 

recursively decomposed into 2/ -f 1 stages, each consisting of .'Y/ 2 2 x 2 cells. Benes 

networks have 2(lg A') — 1 stages and 0 ( N  lg A') crossbars, where A’ — ink  =  

2 '+ l . To illustrate Benes’s decomposition, consider the 3-stage Clos network with 

n =  in =  2 and k — 4 which is depicted in Figure 3.5. The first and last stages 

consist of four 2 x 2 crossbars, and the center stage consists of two 4 x 4 cells. These 

cells are decomposed into 2 x 2 crossbars and the total number of stages is live, each 

of the stage consists of four switches, This yields the final S x 8 Benes network.
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F ig u r e  3 .6  An example of Looping Algorithm

Sequential routing algorithms [42] need 0(.A’log A ) steps where A is the 

network size. O ther methods such as the parallel processing m ethod, heuristic 

method, or recursive approach are used to improve this time complexity. One ol 

the basic algorithms is the looping algorithm. In order to illustrate the looping 

algorithm, consider a permutation matrix P

0 1 2 3 4 5 6 7
P 1 3 7 4 0 2 (i 1 o 

The looping algorithm starts  recording the perm utation. P  as shown in Figure Tti.

The two output numbers of a switching element in the output stage are shown 

in the same column, and the two input numbers of a switching element in the input 

stage are shown in the same row. Then choose an arbitrary entry in the chart as 

a starting point. For example, starting at row 23 and column Ul. then look for a 

same-row or column entry to form a loop and choose row 23 and column -13. The 

process continues until a loop is obtained by re-entering row 23 and column 01. 1 lie 

loop's member entries are then assigned "a" and “b" alternately. The second loop 

can be formed in the same way. Then, assign input and output l i n e s  named "a lu
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subnetwork “a" and those named “b” to subnetwork “b” . The looping algorithm can 

be applied recursively to the two subnetworks. Figure 3.6 shows an 8 x 8 Waksman 

network [35].

3.7 Discussion

T he Clos network is nonblocking and rearrangeable. Any idle input terminal of 

the network can always be connected to any idle ou tpu t term inal by rerouting the 

existing connections if necessary. Also, the  Clos network has an area complexity 

less than 0 ( N 2). For systems with a large number of processors, the Clos network 

has the advantage of area complexity when compared with crossbar switches. The 

propagation delay is also an im portan t consideration in perm utation  network design. 

Clos networks have propagation delays ranging from 0 (lg N )  to O (N ) .  depending 

on the values of the design parameters. O ther networks such as Benes networks 

are of importance. Various methods of implementing control algorithms have been 

developed, and will be discussed in chapter 4.
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C H A P T E R  4

D E C O M P O S IT IO N  OF CLOS M IN S

There are many algorithms reported in the literature for routing the Clos network. 

These algorithms can be classified basically in three categories: m atrix  decompo­

sition, edge coloring and matching, and parallel decomposition. These algorithms 

determine the setting of the switches of a  perm utation  network to realize a given 

perm utation, or a connection pa tte rn  of every stage from the inputs to the outputs. 

First, in this chapter, the m atrix  decomposition algorithms of Neiman, Ramanujam, 

and Jajszczvk are studied. Also, the counter examples of Kubale and Cardot are 

considered. The class of routing algorithms for Clos networks which make use of 

edge coloring on bipartite  graphs are presented. These two decomposition methods 

are reported to be basically the same [50]. Also, the parallel algorithms of Carpinelli 

are examined. Finally, Gordon's algorithm is discussed, which is a basis of the new 

algorithm tha t will be introduced in chapter 6 .

4.1 Introduction

In the Clos network, central routing units are required whose function is to receive 

a perm utation, and to find the corresponding settings for each individual switch 

to realize tha t permutation. Many routing algorithms have been developed for the 

Clos networks. But routing processes of the Clos network are extremely serial in 

natu re  and there often occur routing conflicts, which result in backtracking. The 

backtracking is going back to the previous steps when the conflict occurs in order 

to keep decomposing the m atrix . The basic approach in routing the Clos network is 

to find the switch settings of the second stage switches, and from there, set the first 

and th ird  stages switches accordingly. Once we know the  second stage settings, we

37
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can set the rest of the switches very easily, without any calculations. However, this 

is not true  if we try  to decide the switch settings from outside to inside. Also, setting 

the  second stage switches involves conflicts and the algorithm must backtrack to find 

the  right switch settings. This keeps the algorithm relatively slow, and make the 

algorithm highly sequential. This is one of the reasons why few parallel algorithms 

have been developed so far. For this reason, Carpinelli's [50] parallel algorithm checks 

the  possibility of backtracking using a  partitioning technique before decomposing the 

matrix. One of the  ways to improve the speed of the algorithm is preprocessing, which 

arranges the switch settings to be closer to the final settings before the algorithm 

starts, so the  total workload can be reduced. Three approaches have been explored 

in the litera ture  for decomposing the matrix: the m atrix  decomposition approach, 

the coloring and matching approach and the parallel approach, which are covered in 

this chapter.

4.2 M atrix D ecom position

4.2.1 N eim an ’s Algorithm

N eiman's algorithm consists of two stages. The first step tries to m ark all k  elements 

from the m atrix . If the first step could not mark all k  elements, then the second step 

takes over and finishes marking the elements. The algorithm is illustrated as follows. 

Step 1: S tarting  with the left-most, column, m ark a non-zero element which has no 

marked elements in its row. Repeat this process on the next column, continuing 

until all columns are processed. If during this marking process, a column is found 

to have no non-zero entry whose previous entries in its row are not marked, then 

the algorithm proceeds to the next column without- marking any elements in tha t 

column. If k  elements are marked, then the algorithm is done; otherwise, Step 2 

must be performed once for each column with no marked elements.

Step 2: If the num ber of marked elements in Step 1 is x,  then the num ber of unmarked
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elements must be k — x.  Mark a non-zero entry in a column with no marked elements, 

say Unmark the other marked element in this row, H m[i,j\. Mark another

non-zero element in this column, H m[i,j\, following the  rule th a t  once this stage 

m arks an element in a  row or column, no other element may be marked in that row 

or column until this iteration of Step 2 is completed. Continue to  unm ark and m ark 

elements until no row or column has more than one marked element. This will result 

in a matrix  with exactly one more marked element than  before executing Step 2.

The k  marked elements represent the setting for one of the m  switches of stage 

2. A marked element in a. row i and column j  represents th a t  the input, i of the

switch is to be connected to ou tp u t  j  of the same switch. Each marked element in

H m is then decremented by one to obtain H m- \ .  Next the  algorithm is applied to 

H m- 1 to obtain the setting for another switch in stage 2, and this process is repeated 

until H\ is obtained.

As an example, consider a Clos network with m  =  n =  3 and k =  4 with a 

perm utation  matrix

/  1 2 3 4 5 6 7 8 9 10 11 12 \
I 2 7 8 1 5 11 6 3 9 12 4 10

The corresponding H  m atrix  is

H 3 =

1 0  2 0 
1 1 0  1 
1 1 1 0  
0 1 0  2

The first stage arbitrarily m arks a non-zero element in the first column. H 3[2. 1]. The 

next columns are also marked without any duplications of rows or columns which 

have been already marked. Here, H 3[4,2] and ^ 3[1,3] are marked arbitrarily. Next, 

we need to mark i / 3[3,4], bu t column 4 has no non-zero entry in a row with no 

marked elements, so no element is marked in this column. Since there is no marked 

element in the fourth column, the second step must be executed. The matrix, with



40

asterisks representing marked elements, is

# 3  =

1 0 2* 0
1* 1 0 1
1 1 1 0  
0 1*  0 2

The second stage successively marks and unmarks elements of H3 until it has four 

elements, no two of which reside in the same row or column. Arbitrarily m ark a 

non-zero element in column 4 with no marked elements, / / 3[2,4]. U nmark the  other 

marked element in this row, i / 3[2 , l], and m ark a  non-zero entry in the column of the 

unmarked element, column 1. One choice can be /Z3[ l , l ] .  This process is repeated 

until one more element is marked than was the case in Step 1. Continuing the process 

of unmarking and marking elements, /i/3[1,3] would be unmarked and 7/3(3, 3] would 

be marked. Since four elements are now marked, and no two reside in the same 

row or column, the  algorithm terminates. The m atrix  £3 can be extracted from the 

marked elements of H :i as shown below'

H« =

■ 1* 0 2 0 ' ' 1 0 0 0 '
1 1 0 1* and £3 —

0 0 0 1
1 1 1* 0 0 0 1 0
0 1* 0 2 .  0 1 0 0 .

The H 2 m atr ix  is obtained by subtracting £3 from / / 3 matrix, and H 2 can also 

be decomposed using the same method described above, which would leave another 

two solutions, £ 2 and £ 1. The time complexity of Neiman's algorithm is known to 

be 0 ( n k 2) for pass 1 and 0 ( n 2k 2) for all. For large 7, Neiman's algorithm displays 

high time complexity, although his method holds for every possible perm utation .

4.2.2 R am anujam ’s Algorithm

Ram anujam  [36] uses a different matrix than the other algorithms in this class, but 

it is related to the / /  matrix. He uses the allocator matrix M  which has dimension 

k x A-, and M \i , j ]  is the set of all destinations of inputs to first-stage switch j  which 

are output at third-stage switch i. It is actually the transpose of Hm. with the entries
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listed ra ther than  counted. The phase of the  algorithm which extracts the desired 

m atrix  operates as follows. Set up a k x  k m atrix  7 \ where T[i . j ]  is the maximum 

element of M [i , j ] ,  or 0 of M [i, j]  is empty. The largest element of T  is marked, and 

its row and column are crossed off. This is repeated on the subm atrix  left in T  until 

T  is null or contains all zeros. If T  is null, the marked elements define a m atrix for 

extraction. These elements are deleted from M ,  and the process is repeated until 

M  is null. If T  is not null, reform T,  replacing the largest value with a zero, and 

repeat this stage, choosing the largest element of T.  The marked elements form the 

£  m atrix . As an example, consider the Clos network with m  = n =  3. and k  =  4. 

The perm utation  to be realized is given as

P  =
0 1 2 3 4 5  6 7 8 9  10 11 
2 3 8 7 9 5 11 6 1 10 0 4

The allocator m atrix  M  and the T  m atrix  are

r {2} $ {1} {0} 1 ' 2 <E> 1 0 ‘

M  = {3}
{8}

{3}
{7}

$
{6}

{4}
$ and T  —

3
8

5
7

$
6

4
$

$ {9} {11} { 10} J .  $ 9 11 1 0 .

From the T  m atrix , it can be seen tha t the largest element is T[3.2]. Mark this 

element, and then delete the row 3 and column 2. Since the largest remaining 

element is 8 , m ark T[2,0] and then delete row 2 and column 0. Continuing the same 

procedure, T [ l , l ]  and T[0,3j can be chosen. Marking each of the  chosen elements 

with asterisk, the resulting M  is

M  =

{2} $  {1} {0}*
{3} {5}' $  {4}
{8}* {7} {6} <&

$  {9} {11}* {10} J

From the marked M  matrix, extract one of the solution matrix  £3

£ 3  =

0 0 0 1 
0 1 0  0 
1 0  0 0 
0 0 1 0
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The other two solution matrices E-\ and E 2 can be obtained in the same manner.

■ 0 0 1

10

' 1 0 0 0 '
1 0 0 0

and E 2 —
0 0 0 1

0 1 0 0 0 0 1 0

1 ' 0 0 0 1 . . 0 1 0 0 .

4.2.3 Kubale’s Counterexample

Ram anujanTs algorithm decomposes a k  x k m atrix  M  of sets of integers, called 

the allocator m atrix , into n  matrices having exactly one nonzero integer in each row 

and column. Ivubale [37], however, noticed th a t  the algorithm is incorrect for k  >  4 

because it may run into an endless loop in Step 3, although it works well for k < 4. 

For example,

P  =
0 1 2 3 4 5 6 7
2 4 0 3 1 5 6 7

with n =  2 and k =  4. From the step described above, the  allocator m atrix  M  

becomes as follows:

M  =

’ $  {0} {1} $
{2} {3} 4> $
{4} $  {5} 4>
$  $  $  {6,7}

By choosing the m axim um  integer in each of the sets m i j  we obtain an integer m atrix

$  {0 } { 1} $
{2} {3} $  $
{4} 4> {5} $
$  $  $  {7} _

Since 7 is the largest element, T[3, 3] is marked, and row 3 and column 3 are removed, 

leaving
*  {0} { 1} .

{2} {3} $  .
{4} $  {5} .

T  =

T  =

The next largest element is 5, and T[2, 2] is marked. T  t hen becomes

{ 0 } . .

T  = {2} {3}



43

From the above m atrix , it is obvious th a t  the invalid choice is made by selecting 

T fl ,  1] and then, TfO, 0], which has no elements. Since we are unsuccessful in selecting 

four nonzero integers, we must set the largest element of the original T  m atrix  to 

zero and go back to previous steps. Then the  T  m atrix  becomes

T  =

$  {0} {1} $  '
{2} {3} $  $
{4} $  {5} $
$  $  $  $

However, going back to previous steps is of no effect here because constructing the 

new T  is based on same m atrix  M ,  and the algorithm loops indefinitely, thus showing 

that the R am anujam 's  algorithm does not work in all cases.

4.2.4 Jajszczyk’s Algorithm

Neiman has shown tha t the control of the  rearrangeable switching network can be 

interpreted as a procedure of finding a set of E  matrices which can be subtracted, one 

at a time, from some given H m, and the E  matrices are perm utations to be realized 

by the middle-stage switches, which a one denoting a crosspoint to be closed and a 

zero to be open. Jajszczyk [38] used another approach to find a set of E  matrices, 

which is illustrated as follows.

Step 1: For each row and column of the m atrix  H m, find the number of zeros.

Step 2: Find the row or column with the m aximum number of zeros and mark an 

arbitrarily chosen nonzero element in this row or column.

Step 3: Cross out the row and the column containing the marked element. The 

size of the matrix is essentially reduced by one. although the indices of the elements 

remain unchanged.

Step Repeat the procedure m — 1 times, starting from step 1. for the reduced 

matrix. The last element is always a nonzero element and is marked after in — 1 

repetitions of the procedure.
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Step 5: Form an elem entary perm utation  m atrix  E  with the elements E[i, j]  given

by
jpr • l _  J if hi,j is n° t  marked

|  1, if h i j  is marked

The obtained E  m a tr ix  is then subtracted  from the  H m m atrix , and the  procedure

is repeated for the resultant m a tr ix  / f m_, (0 <  i <  m. — 1), until the m atrix  H\  is

obtained. Notice th a t  the m atrix  H \  is equal to m a tr ix  E\ .  Jajszczyk's algorithm

is simple and the tim e complexity of the algorithm  is 0 ( n k 2), which is fast among

the  m atrix  decomposition algorithms.

4.2.5 Cardot’s Counterexample

Jajszczyk's algorithm is very efficient and works p re tty  well. However, Cardot [39] 

has found some errors in this algorithm. For example, the H 4 matrix with k =  10 is 

given below.
0 0 1 0 1 0 0 0 0 2
0 0 0 0 1 0 1 2 0 0
0 0 0 0 0 3 0 0 1 0
1 0 0 0 1 1 0 0 0 1
0 0 0 2 0 0 0 2 0 0
2 0 2 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 2 0
0 2 0 1 0 0 0 0 1 0
1 0 0 0 0 0 2 0 0 1
0 2 0 0 1 0 1 0 0 0

According to Steps 1 to 3 of Jajszczyk's a lgorithm , the  elements H  [3, 6], H\o,  7], H  [6.1] 

and f/[8,2] can be m arked, and all the rows and columns containing the marked 

elements are crossed out. leaving



45

. 1 0 1 0 0 2

. 0 0 1 1 0 0

. 0 0 1 0 0 1

. 1 1 0 0 2 0

. 0 0 0 2 0 1

. 0 0 1 1 0 0 _

Suppose we choose the element H [3, 7] which has m axim um  five zeros in its column. 

At the  next step, column 9 will be em pty, so the algorithm is blocked, which means 

there  is a flaw in Jajszczyk's algorithm.

4 .3  P a r a l l e l  D e c o m p o s i t i o n

4 .3 .1  C a r p i n e l l i ’s A l g o r i t h m

R am an u jam ’s algorithm and Jajszczyk 's  algorithm fail because they could not predict 

the  partitionability  of the  given perm uta tion  m atrix  in advance. Any algorithm to 

perform a m atrix  extraction m ust have the capability to determ ine whether a p a r t i­

tioning exists. Neiman's algorithm  achieves partitioning by convolving the marked 

elements until the partitions are accounted for although he never explicitly checked 

for them. Carpinelli’s algorithm [50] introduces a concept of partitioning which 

accounts for the failure these m atrix  decomposition algorithms. An algorithm to 

recognize this partitioning is given below. 

p a r t i t i o n ( i / m£'m)

{

int. H'm, partiiion.erists,  M \ .  A/2;

H ' m  =  E m  =  0 ;

while [H'm 1 = 0 )  {

partit ion_ exists— NO;
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generate_partition( , partition-exists, M i ,  M 2 )',

if (parti t ion-exists==NO ) {

pick i, j  such tha t ^  0;

£ m [ . , i ] = l ;

)

else {

partition (M i, E i J; 

partition  (M 2, E 2 )',

E m — E m -j- Ei  -f E^, H'm — 0;

}

}

}

First, the algorithm initializes the variables H'm and E m. The while loop 

adds elements to E m until it becomes a  perm utation matrix. T he subroutine 

gcnerate-partition() is to check if the partition exists. If a partition exists, the 

subroutine forms the submatrices and returns them  in Mj and M 2. If a partition 

does not exist, i and j  are chosen to m ark an arbitrary non-zero element. If a 

partition exists, two partition submatrices are processed recursively. The subroutine 

generatt-parti t ion() is shown below, which is a heart of the algorithm. 

g e n e ra te _ p a r t i t io n (M ^ ,,  partition .exists, M i, M 2 )

{

int. R, C;

Mi =  0; M 2 =  0;

parfor (each possible set of rows of H'm ) {

R  =set. of rows of H'm \

C  = se t  of all columns of H'm th a t  have a t least one non-zero in a row of R;
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if (1*1= \ C \ )  {

Mi  =  rows and columns of H'm in R  and C;

M 2 =  rows and columns of H'm not in R  and C\ 

partit ion_ exists=Y  E S ;

}

}

This subroutine generates all the possible sets R  in parallel, and checks all 

possible partitions. F irs t,  the subroutine initializes the variables, and checks the 

partitionability  in parallel. The condition of the  partitionability  can be checked by 

extracting the sets R  and C  and checking the num ber of elements in the two sets. 

If the number of elements in the two sets is the same, this means tha t a partition  

does exist, and parti tion  submatric.es M i and M 2 are formed and the flag is set. 

Once a partition  is found, parallel executions are term inated , and the subroutine 

exits, returning the  values obtained. Return ing  to the subroutine parti t ion(J, two 

partition submatrices are recursively processed and partial E  matrices are created. 

A partial matrix  is a m atrix  with one or more rows of all zero elements. Then, these 

partial E  matrices are combined together to form E m.

For example, consider the matrix

H m =

1 0  2 0 
0 2 0 1 
2 0 1 0  
0 1 0  2

First, variables are initialized by setting H'm =  H m and Ern =  0, and starts  pa r t i­

tioning. Then partit ion-exists  is set to NO and calls subroutine generate-partition (). 

One of these execution has R  =  {1,3} and C  — {1-3}. Since |/?| =  |C | — 2.
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partit ion.exists  is set to  YES, and Mi and M 2 become

' 1 2 '

2 1
and M 2 =

2 1

1 2

Since a partition does exist, Step 3b recursively processes M\  and M 2, resulting in 

two E i ,  £2 matrices

' 1 0 0 0 ' ‘ 0 0 0 0 ■

0 0 0 0
and £2 =

0 0 0 1
0 0 1 0 0 0 0 0

1 O 0 0 0 . .  0 1 0 0 .

These two matrices are added, resulting in the final m a tr ix  E m

' 1 0  0 0 '

0 0 0 1 
m ~  0 0 1 0 

. 0 1 0 0 .

4.4 Edge coloring and Matching

So far, m atrices are used to represent the Clos network and the  decomposition has 

taken place on th a t  basis. A nother approach to  represent a perm utation network is 

by using the b ipartite  m ultigraph. The b ipartite  m ultigraph G  can be expressed as 

a trip let {V'i, V2, £ } .  where V'i and l-r2 are sets of vertices and E  is the multiset of all 

edges of the multigraph. T he  coloring is the process of assigning tags, or colors to 

each edge such th a t  no vertex has m ore than one edge of a given color incident to 

it. This is actually a means of minimizing the num ber of colors used. The m atching 

is the  process of creating a set of edges such th a t  no two are incident to a common 

vertex. The following algorithms make use of coloring and m atching to effectively 

decompose the  perm utation .

4.4.1 Introduction

The graph theoretic approach to  finding the setting of the switches of stage 1 s ta r ts  

by trea ting  each switch in stages 0 and 2 as a vertex in a multigraph G. Let the set



of switches of stage 0 be denoted as V’O and the set of switches of stage 2 be denoted 

as V’2. Then, given a perm utation P,  an edge is added between vertex i and vertex 

j  if an inlet a ttached  to switch i of stage 0 is to be routed to an outlet attached to 

switch j  of stage 2. The result of this is the b ipartite  multigraph G =  (V’O, V’2. E).  

where E  is the set of edges between V’O and V2. G is a m ultigraph since multiple 

edges between vertices are allowed, and is b ipartite  since each edge in G  is incident 

to two vertices, one in VO and the other in V2. The degree of G,  which is the 

num ber of edges incident on any vertex, is clearly m.  The graph theoretic approach 

then decomposes G  into m  subgraphs, each of degree 1. Each such subgraph will 

represent the setting of one of the m  switches of stage 1. An edge in a subgraph 

between vertex i, i £ V’O, and vertex j .  j  £ V’2, indicates th a t  an input to switch 

•i is to be connected to an ou tpu t of switch j .  These settings insure th a t  no conflict 

will occur in stage 1 and all required paths specified by the perm utation  will be 

accommodated.

Many algorithms have been proposed to decompose G in the general case 

[40]. Hwang's algorithm runs in 0 { k 5̂ 2) time. O ther algorithms also exist where 

techniques such as edge coloring and Euler partitioning are used. The graph 

based algorithms are outside the scope of this thesis. The two routing approaches 

mentioned above have been discussed extensively in the literature and the graph 

theoretic techniques have always been described as more efficient. However, it has 

been found th a t  both edge coloring and direct matrix decomposition approaches are 

equivalent [51]. This finding may well lead to a new, unified routing algorithm that 

makes Clos network particularly suitable for processor interconnection in large-scale 

multiprocessor systems.
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4.4.2 V izing’s M ethod

Vizing's m ethod [48] of coloring a b ipartite  multigraph uses the method of alternating 

path. The m ultigraph is initially uncolored, and each iteration adds one more colored 

edge to the multigraph. Assume th a t  edge { i . j )  which is incident to vertices ?' and j  

is uncolored. In the multigraph for Clos networks, each vertex has degree m.  Since 

this edge is uncolored, vertices i and j  are each missing at least one color. Assume 

that vertex i is missing color a and vertex j  is missing color b. If they both miss 

the same color, th a t  edge can be colored by the missing color. Color edge ( i , j )  with

a. This now' leaves two edges incident to vertex j  with color a and none with the 

color b, so change the color of the other edge from a to b. If this causes another 

vertex to have two edges colored 6, change the color or the other edge from b to a. 

and continue until the coloring is valid. Since the multigraph is b ipartite , and both 

vertex sets have the same cardinality, there m ust be at least one other vertex which 

needs color a. T he  alternating path, the  pa th  of edge color changes, will eventually 

find this vertex. An algorithm based on Vizing’s method which was formalized by 

Gabow and Kariv [46] is shown below'. 

a u g m e n t ( )

{

let vertex i miss color a and vertex j  miss color b\

let S  be the subgraph of edges colored a or 6;

let P  be a connected components of 5  incident to i or j \

interchange color a and b on the edges of P\

color edge (i, j);

}

As an example, consider Figure 4.1. First, edge (x \ , y \ )  is selected. Since

vertex a-] does not have color a and y i misses color 6, an alternating path of colors

a and b will be formed. Then color edge (X \ . y \ ) with a. The time complexity



51

YI XI

X2 Y2 X2 Y2

X3 Y3 X3 Y3

a)

F ig u r e  4.1 Augmenting bipartite  multigraphs: (a) before, (b) after

of this algorithm for the complete coloring is 0 ( |V ’| • IjE|) where |F |  is the number 

of vertices in the multigraph, and \E\ is the number of edges. Since | l ' j  = 2k. and 

\E\ =  m k  for the C’los network, the time complexity is again O ( n k ’ ). Likewise, t he 

space complexity is 0 ( |V |  +  l-EI). which reduces to 0 (n k ) .

4 .4 .3  E u l e r  P a r t i t i o n s

The Euler partition uses a divide-and-conquer technique. This partitions the edges 

of (i into open and closed paths, so that each vertex of odd/even degree is the end 

of exactly one/zero open paths. Figure -1.2 shows the Euler partitioning of a graph. 

The partition enables the division of G into two edge-disjoint subgraphs G\ and 

A path can be found by starting at a vertex of odd or even degree and selecting an 

edge. Add it to the path, traverse the edge from the original vertex to the other 

vertex it is incident to. and remove it from G. Repeat the process until a vertex ol 

zero degree is readied. If E  ^  <I> t hen repeat t he ent ire process. Once I he mull igraph 

is reduced to a set of paths, the subgraphs can be determined. This procedure can 

be formalized as the following recursive algorithm.



F i g u r e  4 . 2  Euler parti tioning

BEGIN

1. Lei 6 be the maximum degree in G';

2. If S =  1 TH EN  color all edges in G  using a new color 

ELSE

BEGIN

.'i. Form G] and G'2 using an Euler partition such that neither

subgraph has degree > |"b/2"|:

4. Euler-color(G'i);

o. Euler-color (G'2):

END:

END

4.4 .4  G a b o w ’s M o d if ie d  A lg o r i t h m

Ciahow [45] presents a modified version of the previous algorithm which always

determines a minimal edge coloring. If the degree of the vertex is odd. the algorithm
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finds a matching of all vertices having m aximum degree. The edges in this matching 

are colored and removed from the multigraph. This reduces the degree of the 

multigraph by one, and the  degree now becomes even. The rest of the algorithm 

follows the same procedure as the  previous one, as illustrated below.

P R O C E D U R E  EC ( G J ) -  

BEGIN

PR O C E D U R E  REC(G,^);

BEGIN

1. IF 8 is odd THEN 

BEGIN

2. IF 6 = 1 TH EN  M  :=  G  ELSE M D (6’.M);

3. Let c be a new color;

4. FOR each edge e E M  DO

BEGIN

5. color(e) :=  c;

6. Delete e from G;

END;

END;

7. EP(G\ P);

8. IF P  is not em pty  TH EN

9. Make L\  and L 2 em pty lists;

10. For each path p in P  DO 

BEGIN

11. Let p be the sequence of edges e j , • ■ •, er ;

12. For i :=  1 to r  DO

13. IF ? is odd TH EN  put e, in L\ ELSE put e,- in L 2\
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END:

14. FO R i:= 1,2 DO 

BEGIN

15. Let G{ be the multigraph consisting of the edges in L, and the 

vertices incident to them;

16. REC(G,-, [<5/2j);

END;

END:

END (REC);

17. Delete all vertices of degree 0 from G\

18. Let S be the maximum degree of a vertex;

19 REC(G .d);

END(EC);

MD is a procedure which finds M  which is a matching of all vertices of maximum 

degree. EP forms P. the set of paths needed to derive the Euler partition. G a b o v ’s 

algorithm runs in time 0 { n k 3̂ 2 lg k) for the Clos network where m = n.

4.5 Gordon’s Algorithm

Unlike the above algorithm, Gordon [43] uses a unique method to decompose the 

matrix, although the nature of his algorithm is the same as the coloring decompo­

sition. He defined two k x  n matrices S  and C, called the specification and count 

matrices, respectively. The relations between the H ,  S.  and C  matrices can be seen 

in Figure 4.3. If we use the notation proposed by Neiman in reference to the Clos 

network, then the necessary connections are assumed and expressed as a perm utation



S matrix

0 1 2 2

1 3 2 0

0 4 4 3

3 3 0 4

2 4 1 1

1 1 2 0 0

1 1 1 1 0

1 0 0 1 2

1 0 0 2 1

0 2 1 0 1

C matrix

2 0 1 1

1 1 1 1

1 0 2 1

1 2 0 1

0 2 1 1

H matrix

F ig u r e  4 .3  Relations between the H . S .  and ( ’ matrices

/ C l  1 ... ; ... . v - 1
 ̂ TT(O) “ (I)  ... *(,'] ... "(A -  1 )

where inlet /’ is to be connected to outlet 7r(/). (J < i < A — 1. and A = ink. Initially. 

.S' is set to represent the specification in the following way. All elements of 5  are 

unassigned. Then for each signal i. 0 <  / <  A' —1. calculate .r and / where .r =  [i/ n \ is 

the first-stage input switch at which signal arrives, and / =  is the last-stage

output switch to which it should be routed, and set the next unassigned element in 

the .rth row of .S’ to /.  On the other hand, each element of C .  cj.r. //]. 0 <  ,r <  /.• -  1. 

b < // < » -  1. is initialized to the number of occurrences of the integer ./• in column 

fl of .S'. The ]jointers c.r and s.r represent rows of C  and .S' matrices respectively, and

!/ and r represent columns of the .S' or C' matrix. As an example, a sample / ‘ matrix

and result ing .S’ and C matrices when k = 4 and n — 3 are



5 6

P = 0 1 2 3 4  5 6 7 8 9  10 11
2 10 3 5 6  11 7 1 9 4  0 8

' 0 3 1 ' ' 1 2 0 '
1 2 3

and C =
2 0 1

2 0 3 1 1 1
. 1 0 2 . 0 1 2

5  =

Algorithm: Initially, sx  is set to zero.

Step 1: Find a row c.r, in column y of C  such tha t c[ca-,?/] =  0. If no such element 

can be found then  increment y until either such an element is found or all columns 

are satisfied, in which case the algorithm halts with a solution.

Step 2: If we have not halted we must have found e{cx,y\ =  0. There must therefore 

be another column z (greater than y since we are leaving only satisfied columns to 

the left), such th a t  c\c.x,z] >  1. This follows since there are exactly n copies of each 

element (0 to 7? — 1) in each row. so a missing element in one column implies a repeated 

element in another. We increment z, from the  initial value y, until c[c.r,c] >  1.

Step 3: We now have a. column z of S  th a t  contains more than one copy of the missing 

element ex. Repeatedly increment .sr (mod k) until s[s.r, z] =  ex. As explained later, 

this way of setting sx  prevents the algorithm from entering a loop in which the same 

elements are swapped repeatedly on successive passes.

Step J,: Swap the  elements s [sr ,y ]  and s[s.r,r] . thus inserting the missing element 

s[s.r.r] into column c of S.  This will as a side effect reduce the number of elements 

s[s.r.r].

Step 5: Increm ent c[cr,y] and c{s[s.r,7/].r} and decrement c[c.r. r] and c{s[.sa. ;;/],(/}. 

Step 6: Increm ent ex (mod k) and go to Step 1.

Example: T he application of Gordon’s algorithm is illustrated by the following 

sequences of m atrices for the example. The two elements of the scheduling matrix  

that have been swapped are marked by *; the incremented and decremented elements 

in C are marked by +  and —. The P  m atr ix  is given as
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P  =
0 1  2 3 4 5 6 7  8 9 1 0  11
4 1 2  11 6 8 9 7  10 0 3 5

The 5  and C  matrices are

'  1 0 0 2 ' '  0 2 2 0 ‘

5  = 1 2 2 1 and C  = 2 0 0 2
2 0 0 1 , _ 1 1 1 1 _

In the first iteration, cx =  0, y =  0, c =  1, and sx =  2. The resulting matrices are 

as follows with the swapped elements marked with asterisks.

1 0 0 2 ' ’ 1 + 1“ 2 0 ‘
.S' = 1 2 2 1 and C  = 2 0 0 2

0“ 2* 0 1 _ 0" 2+ 1 1 _

In the second iteration, cx = 2, y = 0, ~~ = 1. and s x  = 1.

1 0 0 2 ■ 1 1 2 0 ‘
5  = 2- r 2 1 and C  = 1“ 1+ 0 2

0 2 0 1 1 + 1“ 1 1 _

In the third iteration cx = 1 .  y = 2, x =  3 and s.r =  2.

'  1 0 0 2 '  1 1 1" 1+ ‘
S  = 2 1 2 1 and C = 1 1 1 + 1"

0 2 1' 0“ 1 1 1 1

In this example, S  becomes the solution m atrix after the th ird  step of the algorithm. 

The run time is dom inated by the number of swaps, which has time complexity 

0 ( n k 3/ 2). Gordon's algorithm is basically a special kind of edge coloring algorithm. 

Each column of the decomposed .S' matrix  determines the switch setting of a second 

stage switch whose destination is given by elements in tha t column. Since the 

Clos network has connections from each center-stage switch to each of the last- 

st.age switch, elements in each column of the 5  m atrix  are not identical. G ordon’s
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algorithm, however, has been found t.o display errors which will be discussed in 

chapter 6.

4.6 Discussion

Neiman's algorithm, which consists of two stages, works for all permutation. 

However, the m atrix  algorithms of Jajszczvk and Ram anujam  are faster, but do 

not work for all permutations. This is due to the improper choice of elements in 

the H  matrix  which leads to errors in the algorithms. This can be prevented using 

the partitioning, which works for all perm utation  and does not require backtracking. 

Gordon's algorithm uses two matrices for the  decomposition. However, his algorithm 

is closer to the coloring algorithms in na tu re  because elements in each column of 

the decomposed .S m atrix  can be considered as edges colored with one of n different 

colors. The H . 5, and C  matrices are closely related, and each m atrix  has its own 

characteristics. Although the H  m atrix  and bipartite  m ultigraphs are basically 

the same, edge coloring algorithms usually work faster than  m atrix  decomposition 

algorithms without any errors. Gordon's algorithm does not work for all cases: this 

will be discussed in chapter 6. Also, a new routing algorithm is introduced based 

on Gordon's algorithm. The routing algorithms for fault to lerant Clos networks are 

discussed in chapter 7.



C H A P T E R  5

FAULT TO LER A N T MINS  

5.1 Introduction

In chapter 3, we reviewed the interconnection networks tha t can be applied for 

parallel/d istributed computer systems and switching networks. However, these 

interconnection networks provide only one pa th  from a given network input to a given 

output. Hence, if there is a single hardware fault, fault-free communication will not 

be possible between some network in p u t /o u tp u t  pairs. Different approaches to fault 

tolerant multistage interconnection networks have been studied. In general. MINs 

can be made fault tolerant by adding ex tra  hardware such as switches, interstage 

links and multiplexers/demultiplexers. Adding extensive hardware usually decreases 

performance degradation under faulty condition, but increases the cost and size. 

Adding little hardware, on the other hand, increases performance degradation under 

faulty conditions but keeps the cost and size down. As a consequence, a compromise 

must be made where the trade-offs are weighed carefully and the best design is 

reached. A good fault tolerance technique is one tha t needs minimal hardware and 

causes minimal performance degradation under faulty conditions. Any fault tolerance 

technique should cause no performance degradation under normal conditions. As 

the extreme case, the duplication provides two networks in parallel, with one being 

active and the  other being standby. If a fault occurs, the standby network is switciied 

in and the faulty network is switched out, and normal operation resumes. This 

approach provides the same performance in fault}' conditions as in normal conditions, 

but increases the cost, and size of the system.

A number of fault, tolerant MINs have recently been reported for m ultipro­

cessor systems. The details of these techniques depend mainly on the type of network

59
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and the fault tolerance model used. Fault, tolerance has also been provided for some 

o ther network architectures through various approaches. In this chapter, some of the 

fau lt 'to le ran t MINS are discussed including the  Extra-Stage Cube (ESC) and fault- 

tolerant Clos network (FTC). The advantages and disadvantages of each network 

will be discussed. This will help explain the problem of fault tolerance, and thus will 

facilitate its solution. The reconfiguration of the  fault tolerant networks when faults 

occur is considered.

5.2 Extra Stage Cube (ESC) Network

The ESC network is formed from the generalized cube (GC) network by adding one 

extra  stage and multiplexers/dem ultiplexers to activate the bypass extra stage (.stage 

3) or the output stage (stage 0) [56]. An ESC network for N  =  8 inputs is shown in 

Figure 5.1. The stages are numbered in decreasing order from 3 to 0 s tarting  from 

the  extra stage. Stage 3 offers t.wo types of pa ths  depending on the  s ta tes  of the 

multiplexers. This results in an additional pa th  being available from each source to 

each destination. A stage is enabled when its interchange switches provide paths to 

the next stage. It is disabled when its interchange switches are bypassed. Enabling 

and disabling of stages 3 and 0 is accomplished by having dual in p u t /o u tp u t  ports, 

and multiplexers and demultiplexers to select between the  in p u t /o u tp u t  lines. Figure

5.2 details interchange switches for stages 3 and 0. At. stage 3. a m ultiplexer selects 

between two sets of identical input lines, one of which bypasses the stage 3 switch and 

the other of which routes through the switch. At stage 0. a demultiplexer provides 

the option of bypassing the switch or routing data  through it. Failures may occur 

in network interchange switches, links between interchange switches, and network 

in p u t /o u tp u t  lines. Failed components of the network are considered unusable until 

replaced or repaired.
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Interchange switch

Multiplexer Demultiplexer

F ig u r e  5.2 The Extra Stage Cube Network: (a) Stage (J interchange switch (b) St age 
3 interchange switch (c) Stage (J enabled (cl) Stage 0 disabled (e) Stage 3 enabled (f) 
Stage 3 disabled

Once a fault occurs in the network, the network is recovered in the following 

ways. It is assumed tha t the ESC network can be tested to determ ine the existence 

and location of faults. If an input line connected to a stage 3 multiplexer fails, stage 

3 is enabled and the nonfaulty input line is used instead. If the fault is on an input 

line to a stage 3 interchange switch, that line is unused and the system continues to 

ignore the faulty line. If an output line from a stage 0 switch to a PE is faulty, the 

network is reconfigured as if stage 0 is faulty. If the fault is on an output line lrorn 

a demultiplexer, that line is unused and the system continues to ignore the faulty 

line. Stage 3 and U enabling and disabling may be performed by a system control 

unit. In normal operation, stage 3 is disabled and stage tl is enabled. This fault-free 

ESC is topologically identical to a C!C. If after running fault detection and location 

tests a fault is found, the network is reconfigured. If the fault is in stage 0. stage 3 is 

enabled and stage 0 is disabled. For faults in a link or switch in stages 2 or 1. both 

stages 3 and 0 will be enabled. Stage 3 of the ESC network allows access to two
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distinct stage 2 inputs. Stages 2 to 0 of the ESC network form a GC topology, so 

each of the two stage 2 inputs has a single pa th  to the destination, and these paths 

are distinct except for the stage 3 and 0 switches, which are fault-free in this case. 

Thus, at least one fault-free path  m ust exist.

The ESC uses a  routing tag scheme for the control of the network, which is 

similar to the exclusive-or tag scheme for the GC network. The ESC network uses 

4-bit routing tag T  = f°r th e one-to-one source to destination connection.

The tag values depend on whether the ESC network has a fault, as well as the source 

and destination addresses, which need to be computed. If the network is fault free, 

stage 3 is disabled and the routing tag  is T  =  t%t2Mo- where t3 is ignored and can 

take any value. If there is a fault in a network link or switch in stages 2 to 1. stage 3 

is enabled, and bit 3 of the tags can be used to control stage 3 and select between the 

one of two paths. The primary path is used if it is not faulty. However, if it is faulty, 

the secondary path  is used. For routing tags, T  =  0 / 2M o yields the prim ary path 

and T  = 1 t 2M o the secondary path. Stage 0 uses t 0 instead of t0 to compensate for 

the swap already performed by stage 3. If the fault is in stage 0. stage 3 is enabled 

and stage 0 disabled. A routing can be accomplished by substitu ting stage 3 for 

stage 0. because both stage 0 and stage 3 perform same functions. In this case, the 

tag is T  -  toUtiio- where tg is ignored because stage 0 is disabled. The /3 is now set 

as /0, and stage 3 performs the function of stage 0.

The fault size of the ESC is 1. and any inputs must remain capable of accessing 

any outputs after the  ESC recovers from a fault. The ESC is robust in the presence 

of multiple faults. The ESC offers a straightforward routing method. In addition, 

the multiplexers and demultiplexers need to be set only after a fault occurs. Also, 

the ESC does not need specially designed switches. Simple binary switches and 

1 x 2  multiplexers/demultiplexers are used in order to form the ESC along with 

interstage links. On the other hand, the ESC requires N / 2  extra  switches in addition
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to A’ multiplexers and N  demultiplexer to achieve fault, tolerance for a MIN of size 

N .  Also, there must be an external hardware unit to set all the multiplexers and 

demultiplexers so tha t d a ta  is routed through stage 3 ra ther  than being bypassed 

when a fault occurs. Furthermore, after recovering from a fault, additional time is 

needed to find if the fault lies on the primary path or on the secondary path before 

generating a new routing tag. This time constitutes performance degradation, as it 

slows down the system. Although the ESC has many advantages and drawbacks, 

this network is considered one of the best fault tolerant MINs reported.

5.3 Fault tolerant Clos Networks (FTC)

The fault tolerant Clos network adds fault tolerance to the ordinary Clos network 

by using extra switches and multiplexers/demultiplexers [60]. Recall tha t the Clos 

network of size N  must have k  =  N / m  switches of size n? x n in stage 0. and k 

switches of size n x m  in stage 2. The n switches of stage 1 must be of size k x k. 

An ordinary Clos network has n =  in. However, when n > in, some degree of fault 

tolerance is obtained since ex tra  paths exist in the network.

The F T C  achieves fault tolerance in the following wavs. To make the outer 

stages fault-tolerant. ksp extra switches are added to each of these two stages. Also. 

n sp extra switches a.re added to the middle stage in order to make it fault, tolerant. 

In the FTC. each inlet is connected by a demultiplexer to 1 + n sp distinct switches in 

stage 0. Also, each outlet is connected by a multiplexer to 1 + n sp distinct switches in 

stage 2. These multiplexers and demultiplexers serve as a fault, recovery mechanism 

iri case of a fault in either of the two outer stages. Figure 5.3 shows the FTC with 

n =  k — in — 3. and ksp — n sp =  1.

An FTC  with A' =  ink  is formed from an ordinary Clos of size A’ as follows. 

First., use k +  kap switches with size m  x (n +  n sp) in each of the outer stage. Then 

the original center stage switches must be enlarged from k x k to (k + kap) X (k + ksp).
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Connect the network inlets to the inputs of the first stage switches via 1 x ( nsp +  1) 

demultiplexers, and the network outlets  to the ou tpu ts  of the third stage switches 

via 1 x {n3p +  1) multiplexers.

For the FTC . the fault model is defined as follows.

1. Any switch can fail.

2. Any interstage link can fail.

3. External links and multiplexers/dem ultiplexers cannot fail.

It should be mentioned th a t  the  faults are assumed to occur independently, and that 

faulty components are unusable. The fault tolerance criterion of the FTC' is complete 

recovery, th a t  is. regaining pre-fault connectivity after a fault occurs.

5.3.1 Reconfiguration of the FTC

It is im portant for the FT C  to be reconfigured in case of faults in order to regain 

its pre-fault connectivity. Consider an FTC  network with n 3p — k3p = 1. Let three 

switches be A ?’), 0 <  ? < 2. where f 0, / ] .  and J2 are unused switches of the first, 

second, and third stage, respectively. The configuration of the  FT C  at any tim e is 

a function of the present values of /o. .A, and A. In general, the reconfiguration of 

the FTC  can be performed through one or more of the following operations:

• Setting the multiplexers and demultiplexers

• Terminal relabelling

• Perm utation translation

As will be seen below, the value of .A affects the term inal relabelling, while the 

values of f 0 and .A affect the settings of multiplexers/dem ultiplexers and perm utation
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translation. The multiplexer/demultiplexer setting is performed if an outer stage 

switch fails.

When the FTC  is not faulty, one switch in each stage will be unused. This 

unused switch can be any switch, but for convenience it will be assumed to be the last 

switch in each stage, i.e., X[ k .  0), X ( n  — 1,1). and X( k , 2 ) .  This choice is convenient 

because it makes the multiplexers and demultiplexers remain in s ta te  0 under normal 

conditions. When a fault occurs, they can switch to s ta te  1, thereby avoiding the 

defective switch. Perm utation translation is also performed if an outer stage switch

fails. Let P  -- {Po, P]  ,P/v_i} be an arbitrary  perm utation of { 0 .1 ... . .A ' — 1}. In

the actual network. Pi is the outlet to which inlet i is to be connected. In an ordinary 

Clos network, P  goes directly to the central routing unit where th e se t t in g s  of the 

individual switches are extracted and delivered to the switches for implementation. 

In the FTC . the same steps are to be taken with the exception that permutation 

P  is translated  before it goes to the central routing unit. Terminal relabelling is 

performed if a middle-stage switch fails.

As mentioned above. j \  affects the labelling of the outputs  of switches A’(c.2). 

0 < c < k +  1. Let these outputs and inputs be referred to as the inward terminals of 

the outer stages or just the inward terminals. In each of these switches, only m out 

of the /? inward terminals will be used, and will be referred to as the active terminals. 

Each active terminal will have two labels: a local one. to be used by the switch's 

control unit, and a global one, to be used by the central routing unit. The local label 

is an integer -. 0 < x < m.  and the global label is also an integer Z.  0 < Z  < r n ( k + 1). 

The active terminals will be labeled from top to bottom  locally, with respect to the 

switch, as the sequence 0 .1 .. . . .  7?? — 1. Globally, the active terminals tha t were labelled 

from top to bottom locally will be labelled from top to bottom, with respect to the 

stage, as 0 . 1 , . . . m {k  +  1) — 1. The labels are updated always after a fault occurs, and 

the current labels are used to implement the routing information received from the



control unit. More details about the terminal relabelling can be found in [60], The 

reconfiguration of the F T C  network can be illustrated more straightforward using 

the 5  and C  matrices, as can be seen in following examples.

5.3.2 Examples

To illustrate this, consider a perm utation P  of the F T C  with n =  k =  3. and one 

spare switch in each stage.

P  =
0 1 2 3 4  5 6 7 8  
1 4 5 0 8 7 3 2 6

Initially, let the unused switches be A"(3, 0), A '(3 ,1), and A (3.2) in each of the three 

stages of the FTC. Recall that this is the configuration suggested to be used under 

normal conditions. Then, perm utation Q, according to the rules set forth above, will 

be

Q =

The H  and 5' m atrix  representations of P  are

0 1 2 3 4 5 6 7 8 9  10 11 
3 4 8 7 6 1 2 5 0 .t  x  x

■ 0 2 1 ' '  1 1 2 ‘

II 1 0 2 S' = 2 2 0
2 1 0 J 0 1 0

■ 0 2 1 0 " ■ 1 1 2 * '
1 0 2 0

S
2 2 0 *

2 1 0 0 0 1 0 *
.  0 0 0 3 . .  # # #  .

On the other hand, the  H  and 5  m atrix  representations of Q are

H 3 =

T he size of the m atrix  H  increases by exactly one row and one column, and the S  

m atrix  also has an additional row and column. The additional paths due to extra 

switches in the outer stages are represented as pound characters, and asterisks for the 

extra switches in the middle stage, which are explained in greater detail in chapter

As another example, again consider a perm utation  of P  of the FT C  with n =  

k =  3, and one spare switch in each stage. Assume th a t  switches A'( 1. 0). A’( 2 .1) and
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A’(2. 2) suddenly failed, as shown in Figure 5.4. Due to the failure of A’( 2 .1). the 

inward terminals of stages 0 and 2 should be relabelled. Specifically, inward terminal 

number 2 of each switch should be left out in assigning the numbers. The failure 

of A (1 .0 ) .  and A '(2 ,2) affects the  perm utation  translation. Perm utation P.  given 

before, is translated  according to the rules laid down above to

Q  =
0 1  2 3 4 5 6 7 8 9  10 11
3 4 11 x x  x  2 5 0 10 9 1

The routing result will be implemented by all the  switches except those tha t are 

defective, namely, A '(l,  0), A’( 2 ,1) and A'(2. 2). The m atrix  representation of perm u­

tation Q above is
0 2 0 1 
0 0 3 0 
2 1 0  0 
1 0  0 2

In the previous example, the S  m atrix was be given by

1 1 2 *  
2 2 0 *  

0 1 0 * 
L #  #  #

Since A'(1,0) is defective and A’(3.0) is a spare switch, all input signals are moved 

to the extra switch, and A’(1,0) becomes unusable, which is denoted as dots.

1 1 2 * 1

S  =
0 1 0 *  
2 2 0 *

Also, the faulty condition of A '(2.1) forces the elements in column 2 to be bypassed 

to the spare switch A’( 3 . 1) which is represented as column 3. resulting in

1 1 . 2

S  =
0 1
9  9

Finally, the faulty condition of Ar(2 ,2) prevents the use of the second switch of in 

the third stage. Instead, the signals assigned to this switch must now use the spare
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switch which will be denoted as 3. Thus the resulting m atrix  is

1 1 . 3 1

5  =
0 1 
3 3

0
0

Representing the reconfiguration of the network using the S' m atrix  shown above 

presents complications because of the introduction of dots in the rows and columns 

of the matrix. In chapter 7, the reconfiguration m atrix  is introduced which retains 

all the information of each switch's use without swapping the rows or columns.



C H A P T E R  6

NOVEL A LGO RITH M  FOR CLOS MINS

6.1 Introduction

Although Gordon's algorithm is simple and fast, as discussed in chapter 4. his 

algorithm does not work for all perm utations. His algorithm has two special features. 

First, the  use of two matrices in the algorithm contributes to the  improvement of 

the tim e complexity since it helps to find the num ber of occurrences of each element 

directly. The next is the use of s,r(mod A’), which is the heart of the algorithm 

and makes the  algorithm very effective. In this chapter, it will be shown that 

Gordon's algorithm does not work for all cases, and a counterexample will be given 

in .section 6.2. Next, a new simple algorithm will be introduced. This algorithm 

is based on the G ordon’s algorithm. Three kinds of swaps by which this algorithm 

realizes the desired mapping are discussed: 1) simple swap. 2) next simple swap, 

and 3) successive swap. Also, we are going to prove tha t the new algorithm works 

for all perm utations. In section 6.4. the worst case and the average behavior of the 

algorithm are discussed in detail.

6.2 Failure of G ordon’s Algorithm

The algorithm given by Gordon is very simple, fast, and works well when the matrix 

size is m oderate. Although Chiu and Siu [44] claimed the incorrectness of the 

algorithm, it s tem m ed mainly from a typographical subscript reversal, which led 

to a m isunderstanding about the algorithm. Gordon reaffirmed in his reply that the 

algorithm is still valid. However, our research found tha t his algorithm may run into 

an infinite loop for k > 5. The heart of his algorithm lies in the repeated increment 

of s .r(m od  k) until .sfs.r.:] =  c.r as shown in step 3 of his algorithm. Recall that
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c.r represents a. row of C  which satisfies c[c.r.i/] =  0. This wav of setting .s.r is 

intended to prevent the algorithm from entering a loop in which the same elements 

are swapped repeatedly on successive passes. The setting of sx,  on the other hand, 

is influenced by the choice of ex. However, Gordon did not mention anything specific 

about the way of setting next cx after two elements in row s.r of 5  are swapped. This 

is especially true if row cx of C reaches k — 1 while column y of C  still contains zeros. 

It is quite possible th a t  the increment of cx (mod k) until c\cx.y] — 0 must have 

been used in the algorithm because this is the most easy and efficient way to choose 

the next value of ex. It is not likely that Gordon chose cx after some calculations 

because, if he had done tha t,  he certainly would have made it clear in the paper. W e 

have tested this algorithm on several possible cases. These include 1) increment of 

cx (mod k) after the swap. 2) decrement of cx, and reset to k — 1 when c.r < (J. and 

3) random choice of c.r. until c\cx,y) -- 0 for all three cases. An example for the first 

case is given below. The two elements of the C  m atrix  that have been swapped are 

marked by the incremented and decremented elements in S  are marked by +  and 

—. Suppose that currently, cx =  0, y — l . s . r  =  4. and

' 0 0 2 4 1 ‘ '  1 3 0 0 1 '

3 1 3 2 0 1 1 1 1 1
4 0 1 3 2 and C  = 1 1 1 1 1
1 0 4 1 4 1 0 2 1 1
2 2 3 4 3 _ 1 0 1 2 1

After the first repetition, cx =  1, y = 1. sx = 1, c =  2, and

'  0 0 2 4 1 ‘ '  1 3 0 0 1
3 3” r 2 0 1 o - 2+ i 1
4 0 l 3 2 and C — 1 1 1 i 1
1 0 4 1 4 1 1+ r l 1
2 2 3 4 3 _ 1 0 i 2 1

The second repetition yields cx =  4. y =  1. sx =  4. r  =  3. and
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' 0 0 2 4 1 ' '  1 3 0 0 1 '

3 3 1 2 0 1 0 2 1 1
4 0 1 3 2 and C  = 1 0" 1 2+ 1
1 0 4 1 4 1 1 1 1 1
2 4' 3 2* 3 _ _ 1 1 + 1 1~ 1 _

After t.he third repetition, c.r =  1. y = 1, s x  =  1. z = 2. and

'  0 0 2 4 1 ‘ '  1 3 0 0 1 '

3 1* 3* 2 0 1 1 + 1- 1 1
4 0 1 3 2 and C = 1 0 1 2 1
1 0 4 1 4 1 0" 2+ 1 1
2 4 3 2 3 1 1 1 1 1

The fourth repetition yields cx — 2. y =  1, s.r =  4, r  =  3, which reduces to the 

first m atrix  and enters into an infinite loop. When examining the above example, 

it can be clearly seen tha t the use of (mod k) incrementing of s.r does not always 

effectively prevent the process from repeatedly finding the same element in following 

passes. In most cases, this does not happen and the algorithm behaves well, especially 

when k  < o. However, as k  increases, the  algorithm has more chances to enter a 

loop independent of the ways of setting cx  as described above. Chiu and Siu [44] 

reported a new algorithm by modifying Gordon's algorithm without giving the time 

complexity and proof tha t it works for all permutations. Also, their algorithm is 

trivial, so it will not be covered in this thesis. In the next section, a new algorithm 

is introduced for decomposing Clos networks which is based on Gordon’s algorit hm. 

This can be done by scanning the C  m atrix  row-by-row, and by a class of swaps, 

which will be explained later.

6.3 New Algorithm for Clos Networks

Although G ordon's algorithm is simple and fast, his algorithm has been demonstrated 

to have errors in some perm utations as shown in the previous section. In this section, 

a new algorithm will be discussed which is based on Gordon’s algorithm, but uses 

a different approach. In order to describe the algorithm, we shall use the notation



proposed by Neiman in reference to the Clos network. The necessary connections 

are assumed and expressed as a permutation:

P = 0 1 i
7r(?)

N  -  1 
w{N - 1;7r( 0 )  7 T ( 1 )

where inlet i is to be connected to outlet 7r(?*). 0 < / <  N  — 1, and N  =  ink.  

This algorithm uses two k x n matrices S and C.  called the specification and count 

matrices, which were described in chapter 2. In order to obtain the 5' matrix  from 

the perm utation m atrix , the following step m ust be taken. Initially, all elements of 

S are unassigned. Then for each signal ?. 0 <  ? <  A' — 1. calculate .r and 1 where 

,r =  [_?’/??J is the first-stage input switch at which signal arrives, and / =  [7r(/)/;?J is 

the la.st-st.age ou tpu t switch to which it should be routed, and set the next unassigned 

element in the ,rth row of S  to t. The first stage switches are denoted by x. and the 

second stages are represented by y. Each element of s[.r. j/] is the destination switch 

in the third stage. Each element of C. c[a\?/], 0 <  x  <  k — 1. 0 <  y < n — 1. is 

initialized to the num ber of occurrences of the integer ,r in column y of S.

As an example, a perm utation P  and the 5  and C  matrices when k =  4 and 

11 =  3 is as follows.

P = 0 1 2 3 4 5 6 7 8 9 10
2 10 3 5 6 11 7 1 9 4 0

' 0 3 1 ' ' 1 2 0 ■
= 1 2 3

and C =
2 0 1

2 0 3 1 1 1
1 0 2 0 1 2

In order to explain the algorithm, it is necessary to define some of the term s that 

are going to be used.

D e f in i t io n  1: A column of C  is cl-missing if th a t  column does not contain any d. 

On the other hand, a column of C  is d-excessive if there are more than one d in that



column.

Definition 2: When a column y in the C  m atrix  is d-excessive and a column c is 

d-missing. an element which satisfies s[s:r,g/] =  d in the 5  matrix  for 0 <  sx  <  A’ — 1. 

is called a swapping element and s[s.r, ~] is called the swapped element.

Definition 3: When s[.s;r,y] is a swapping element and s[s,r. r] is a swapped element , 

then two elements .s[s.T,t/] and s[sa-.c] are simply swappable if s[sx.?/] < a[a.r. c] and 

c[cx. y } — c[cx, r] =  1 for 0 <  cx <  s[sx, y].

Definition 4: When c] is a  swapped element and s [s .t . y] is a swapping element , 

then two elements c[cx.y] and c[cx,z] are successively swappable if s[.s;r, y] > s[^.r.r] 

and c[c.r, y] = c[c.r, ~] =  1 for 0 < cx < s[.s;r, j/].

Definition 5: When two elements ,s[.s.r.?/], and a[.s.r.c] are swapped because of 

being successively swappable, an element sfsxi.j/] which satisfies .s[s.r].y] =  s[s.r. g/] 

is called a [air. y]-alternative.

The new algorithm is illustrated as follows.

Algorithm: Initially sir is set to zero.

Step 1: Find a column ex. in a row y of C such th a t  c[c.r,y] > 1 .  If no such element 

can be found then increment cx until either such an element can be found or all rows 

are satisfied, in which case the algorithm stops with a solution. If the algorithm lias 

not stopped, it must have found c[cx,y] > 1. Set r  =  0.

Step 2: Increment r  until c[c.r, ~] =  0. This follows since there are exactly » copies of 

each element (0 to n — 1) in each row, so a repeated element in one column implies a 

missing element in another. We now have a column c of 5  th a t  contains no element 

c x .

Step 3: (Simple Swap) Repeatedly increment .sir(mod k) until s[s.r.j/] =  cx. If 

s[s;r.r] < c.r, go to Step 2. Otherwise, swap the elements .s[a.T. y] and a[a.r. r] thus 

removing the repeated element cx =  a[a.r,j/] in column y of .S'. This will, as a side 

effect, increase the num ber of occurrences of element cx in column r  of S.  Increment



c[c.r.c] and c{s [s.r. ~], y )  and decrement c[c.r,j/] and c[.s[.s.r. r], r]. It is easily seen 

tha t these four simple changes restore the count, property. If swapped, go to .Step 1. 

Step f.  (Next simple swap) Repeat Step 3. thus providing one more chance to simply 

swap two elements in another row. If swapped, go to Step 1. This step is done only 

once before c\cx.y] becomes 1.

Step 5: (Successive Swap) Swap .s[s.r.?/], s[s.r.^]. and update C  as in Step 3. If 

s [s .r ,2/] >  c.r. go to Step 1. Otherwise, increase s.r(mod k ) for another s[sa.'.y] and 

repeat Step 5.

This algorithm works for all permutations, which can be proved using the following 

t hree theorems.

T h e o r e m  1: Given two sets Se and S m  which are i -excessive and V-missing. 

respectively, let A’e(/). and X m ( i )  be numbers with the value i in the sets S t  and 

S m . where 0 <  i < Y . If the number of l'"s in S t  is two. it is always possible to 

reduce the number of V in Se  to one without any cha.nge in the occurrence of AT 

and A'???.

P r o o f : Arranging the elements of the set Se  and S m .

A’e(O) A'm(O)

A’e ( l )  A ' m ( l )

A’e(2) A'?7) (2)

Ye

Ye

Z t  Z m

Ze Z m

Z m

There are two possible cases for Ye  to be swapped with an element in the set S m .
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First, if Ve and Z m  are in the same row, then two elements can be swapped, resulting 

the reduction of num ber of Y e  in the set Se  to be one without any change in the 

number of occurrences in A’e or X m .  However, if Y e  and X m  are on the same row. 

h e and any one of X m ( i ) ,  0 < i < Y  should be swapped. The index i is used in 

order to distinguish the elements of A'e and X m  which have the same value i. As a 

result, two identical numbers A’e( V — 1) and X m ( Y — 1) are on the same Ve-excessive 

column. Now take A’e(V — 1), which is an X m ( Y  — 1 )-alternative. Again, there are 

two possibilities. If A'e(V — 1) is in the same row with Z m ,  the number of Ye  in 

the Ve-excessive column can be reduced to one without any change in the number of 

occurrences in A'. However, if A"e(V — 1) is in the same row with X m ( ] ’ — 2). we need 

to swap A’e(V — 1) and X m ( Y  — 2). and then find the X r n ( ) ' — 2)-alternative which 

is X e { Y  — 2). In worst case, this process continues until A’m ( l )  finds its alternative 

A'e(O). Since other A'???s are not in the same row with A e(0). A*e(0) must select 

Z m .  which leads to the proof of the theorem. □

Theorem  2: Given two sets of Se  and S m  which are 1''-excessive and V-missing. 

respectively, let A’e(f), and X m ( i )  be numbers with the  value i in sets Se arid S m .  

where 0 <  i < Y .  If the number of Vs in Se  is three, it is always possible to reduce 

the  number of Y  in Se to  one by applying simple and successive swaps.

Proof : Any Y e  in the Ve-excessive column can be swapped into the Vc-missing 

column without any change of occurrences of A's, which can be proved using the 

same procedure as in Theorem 1. Once the number of Ve's is reduced to two. 

Theorem 1 can be applied, .so the number of V s  can be reduced to one.D 

Theorem 2 can be generalized to the case when the number of Ve's is arbitrary. 

Theorem  3: Given an arbitrary  permutation of the S  matrix , it is always possible 

to decompose the m atrix  if the C  m atrix is scanned row-by-rovv from top-to-bottom. 

P r o o f : For an arbitrary c[c.r, y] in a row cx being scanned which satisfies c[cx.y] > 1. 

it is always possible to make c[c.r,y] =  1 by applying Theorems 1 and 2. Thus, all
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elements in the C  m atrix which are greater than one can be reduced to one. □ 

L e m m a  1: The maximum number of swaps in the success!ve-swap is k — 1.

Proof: All k elements in the Ve-excessive and Ve-missing columns can be swapped 

except the remaining Yc .  which is at least one.D .

6.4 Example

To illustrate the algorithm clearly, consider a three-stage Clos network having n =  3 

and k  =  5 with an H  m atrix  as shown below.

Hs =

2 0 1 0  0 
0 1 0  0 2 
0 1 1 1 0  
0 1 1 1 0  
1 0  0 1 1

The 5  and C  matrices derived from the H  matrix are shown below.

' 0  0 2 ' ' i l l '
1 4 4 1 1 1
3 1 2 C = 1 0 2
2 3 1 2 1 0
3 4 0 0 2 1

5  -

Now check the C  matrix for an element tha t is greater than 1. which implies that more 

than two edges incident to the corresponding ou tpu t node are colored identically. 

Since C'[2.2] >  2 and C[2. l] =  0, the C  matrix is 2-excessive in column 2 and 2- 

missing in column 1. Since c.r =  2, we find cx in the S  m atrix  at .$.r =  0 because .s.r 

was first set to zero. Thus, we find that 5[s.r. y] = 2. and .S'[s.r. r] =  0. These two 

elements are not simply-swappable because S’[.sa\ y] > .5'[.sx.c], so we move to the 

next row. 2, in the S' matrix. Since ,S'[2,1] < .S'[2.2] in this case, they too are not 

simply-swappable. thus a forced-swap must be applied. This is done by swapping the 

first two elements 5[0. 1] and .S'[0. 2], and then updating the C  matrix by incrementing 

C[0.2] and C'[2.1] and decrementing C [0 ,1] and C[2.2].
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'  0 2 0 * '  1 0 2
1 4 4 1 1 1
3 1 2 c  = 1 1 1
2 3 1 2 1 0
3 4 0 _ 0 2 1 _

Since the swapped element 5[0,2] in column y is 0 which is less than c.r, next find 

the 0-aJterna.tive in column 2, which is 5[4.2]. Now, F fs r .y ]  — .?[4.2] and 5'f^.r.r] =  

5[4. 1]. These two elements are simply-swappable since S[4. 2] < 5 [ 4 .1] and thus can 

be swapped. This finishes the successive swap for C[2. 2] and results in

' 0 2 0 * ' 1 1 1 '
1 4 4 1 1 1
3 1 2 C = 1 1 1
2 3 1 2 1 0
3 0 4 _ 0 1 2

Next, we proceed to C[3.0], which is greater than  1. From the S  m atrix , we 

find that S'[2. 0] is not simply-swappable with S [2 .2], so we move to the next 3 in the 

4th row. For 5[4,0] < 5[4, 2], we can now swap two elements and the two matrices 

are shown below.

' 0 2 O ' ' i l l '
1 4 4 1 1 1
3 1 2 C = 1 1 1
2 3 1 1 1 1
4 0 3 1 1 1

Finally, the  program term inates since all the elements in the C  m atrix  are

1. The resulting three columns of the S m atrix denote the completely decomposed 

switch settings of the second-stage switches, and first and third stage switch settings 

can be derived from this. The basic idea of the algorithm is to make the C m atrix all 

l 's  by using three kinds of swaps. This means tha t there are no identical elements in 

each column of .S' when completely decomposed. Steps 1 and 2 find the two columns 

ru and y0 which are c.r-missing and cr-excessive from the C  matrix. The cx is. on the
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other hand, the element in F  which is missing or excessive in the same two columns 

of 5. Then, swaps are performed from Steps 3 to 5 until all c[cx.y] become 1.

6.5 Worst-case Behavior

This algorithm is simple, but deriving the exact tim e complexity of the algorithm 

is very complicated. Gordon reported the tim e complexity of his algorithm in his 

paper without giving any proof. He just mentioned tha t the time complexity is 

roughly proportional to the num ber of swaps. The basic difficulty in deriving the time 

complexity of the algorithm is as follows. First, the runtim e is proportional to the 

num ber of swaps. However, it is difficult to calculate the  number of swaps for a given 

perm utation. For a given c[cx.y] > 1, the number of swaps to be performed must 

be c[c.r.f/j — 1. But, I^(c[c.r.y] — 1) does not necessarily represent the total number 

of swaps, because one swap results in the change of four elements of c[c.t.;i/]. two of 

them  increase, and two of others decrease. Secondly, for an element c[cx.y\ > 1. it 

is difficult to know analytically what kind of swaps must be performed in the worst 

case for a given permutation.

Considering the difficulty of analytic approaches, the next possible method 

is simulation. The com puter simulation usually cannot prove all the possible 

cases as the problem becomes complex. However, it helps to narrow the bound of 

t im e complexities. For th a t  reason, the new algorithm has been programmed and 

simulated for various values of n and k. Figure 6.1 shows the worst case runtim e 

vs. k with respect to various values of n. The graph shows th a t  the runtim e of 

setting the Clos network increases as k increases. For a fixed k. the runtime also 

increases as n increases. A closer look a.t the graph show's tha t the runtime is roughly 

proportional to n, but in case of k , the runtime is proportional to kx for some values 

of ,r. In order to exactly obtain the tim e complexity of the algorithm, these curves 

were fitted to the a rb itrary  non-polynomial function. The result of the curve fitting
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F ig u r e  6.1 Worst case runtime vs. k

shows that the time complexity of the algorithm is proportional to n k :̂ 2. that is

The simple swap dominates the other two kinds of swaps, and the next simple 

swap also dominates successive swaps. Simple swaps do not require much time to  

swap two elements. The successive swaps, on the other hand, are not frequent, but 

take relatively long since up to k — 1 swaps must be made in order to reduce c[c.r.ij} 

by one. As a result, successive swaps still have considerable effects on the overall 

runtim e although they are less frequent. Another thing to mention here is that the 

runtim e is linearly proportional to just the number of columns n. but not to the 

number of rows k. This is mainly due to the use of s.r (mod k) and the effect o f  

successive swaps.

6.6 D iscu ss io n

In this chapter. Gordon's algorithm has been dem onstrated to display some errors 

in some oi the permutations. A new algorithm for decomposing the Clos network



which is based on Gordon's algorithm has been introduced. In this algorithm, the 

same S' and C  matrices are used to represent, the  Clos network, which help to speed 

up routings by checking C  in order to calculate the number of occurrences of each 

element in S  in each column. The basic difference between Gordon's algorithm 

and the new algorithm lies in the scanning direction in the C  matrix. In Gordon's 

algorithm, it is scanned column by column, removing columns once all elements 

are nonidentical in each column. Swapping elements can take place between a not- 

vet-decomposed leftmost column and the rest of the columns. However, the new 

algorithm scans the C  m atrix row-by-row, and swapping elements are restricted to 

two columns for the successive swap. This gives an obvious advantage in proving 

that, it works for all permutations, but. in Gordon's algorithm, it is difficult t.o prove. 

Another advantage to the new algorithm is th a t  it has the potential to be run in 

parallel since only two columns are involved in the successive swap and other pairs 

of two columns can be swapped at the same time.



C H A P T E R  7

R O U T IN G  FAULT TO L ER A N T CLOS NETW O RK S

7.1 Introduction

T he Clos network can not realize all possible perm utations when a fault occurs in 

the system. Thus, ex tra  switches are added to the ordinary Clos network in order 

to achieve fault tolerance. The algorithm for the ordinary Clos network needs to 

be extended to the  fault-tolerant cases for following reasons. First, the s truc tu re  of 

the FTC is basically same as the ordinary Clos network except for added switches. 

Because of this, the representation of the network does not become complicated. 

Second, the spare switches can greatly simply the routing process, which is an obvious 

advantage when there are few or no faults in the system. Third, the same routing 

algorithm for the F T C  can be used for the ordinary Clos network, which is a special 

case of the fault tolerant network. A new routing algorithm for the  F T C  will be 

introduced in section 7.2, which utilizes extra  switches in all stages. For clarity, the 

F T C  is classified into three types of networks, and in each case, the representation 

of the network, and routing rules are considered. In the last section, the simulation 

of the runtim e for the FTC  is discussed.

7.2 Routing the FTC

In chapter 6, we introduced a new routing algorithm for the Clos network. The 

algorithm for the ordinary Clos network can be extended to the fault-tolerant C'los 

network discussed in chapter 5. Recall th a t  the F T C  has extra switches in all stages 

and they provide alternative paths when faults occur in the network. However, when 

there are no faults in the system, these extra, switches can be utilized as additional 

routing paths, which simplify the requirements of the routing process and reduce the

84
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runtime. The outer stage spare switches generate additional rows in the .S' m atrix  

and the second stage spare switches creates additional columns. Additional paths 

introduced by the two types of spare switches are very flexible during the routing 

process, but they have different, characteristics. In- order to develop the new routing 

algorithm for the FT C , it is required to know the properties of these two types of 

spares and, for th a t  reason, the fault-tolerant Clos network will be classified into 

three possible configurations:

I. networks with spare switches in each of the outer stages only.

II. networks with spare switches in the second stage only.

III. networks with spare switches in all stages.

In the following subsections, the networks and representation of the extra switches

are discussed for all three possible cases. The rules and conditions for swapping the 

elements are considered, which will be the basis of the new algorithm for the FTC.

7.2.1 Routing FTC with Spare Switches in Outer Stages (Type I)

The first type of FTC  has extra spare switches in outer stages only along with 

multiplexers and demultiplexers. In this configuration, signals are bypassed to the 

spare switches through the multiplexer/dem ultiplexers in case of faults which occur 

in the outer stages. Figure 7.1 shows the Type I FTC  network which has one extra 

spare switch in each outer stage.

The 5  and C  matrices are the same as those of the ordinary Clos network except 

tha t extra  rows are added which account for the ex tra  outer stage switches and 

multiplexer/demultiplexers. The elements in the .rth row of .S' represent the signals 

passing through the r t h  switch of the first stage whose destination switches are 

s[.r.g], where 0<  y <  ?? — 1. T he elements in the y th  column of S  are the signals 

passing through the j/th second stage switch whose destinations are .s[.r.?y]. where
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0<  x < k — 1. Each element of the S  matrix represents the signal directed to the last 

stage switch s [ r ,y ]  through the y th  second stage switch. Let ksp be the number of 

spare switches in the first or third stage. If the number of spare switches are not equal 

in those stages, then the smaller num ber will be taken as ksp. The ksp spare switches 

at the outer stages create ksp additional rows in the S  m atrix , and each element can 

serve as an alternative path during the routing process. The to tal number of extra 

paths is n k sp. All the redundant paths due to the spare switches are denoted as #

for convenience. Initially, the elements of 5 ,  s [r ,y ] ,  where k <  x < k + ksp 1.

0 < y <  n — 1. are initialized to spares # .  Also, each c[r,y] of the C  matrix, where 

U < x  <  k — 1. 0<  y < ?7 — 1 is initialized to the num ber of occurrences of the 

integer x  in column y  of 5. The num ber of spares in the S  m atrix  is-not considered 

in the C  matrix. For example, the S  and C  matrices for a Type I Clos network with 

n — k = 3. and 2 spare switch in each of the outer stage can be given as.

S  =

1 0 1 
1 2 0 
0 2 2 
#  #  #  
# # #

an d C =
1 1 1 
2 0 1 
0 2 1

To consider the reconfiguration of faulty switches in the outer stages, faulty 

switches and interstage connections must be taken into account. Recall that we have 

assumed no multiplexers/demultiplexers are defective. If the .rth switch at the first 

stage is faulty, the .rth multiplexer is set so tha t each signal in the .rth switch is 

bypassed to the available spare switches. One of the spare switches, the r-th spare 

switch, is assigned to these signals in order to provide alternative paths. The r th  

row of the S  m atrix  is simply cleared which is denoted as dots. Now define a new 

m atrix , the  reconfiguration matrix , R.  The R  matrix is a k x  .3 matrix , where each 

row y represents the yth switch in one stage, and each column r  denotes the .rth 

stage. The element /?[y,r] shows th a t  the  i?[j/.r]th spare switch in the r t h  stage is 

assigned instead of the yth switch in the r t h  stage. For example, if the 0th switch in
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the first stage is defective in the above example, the S,  C.  and R  matrices would be

' 1 0  1 '
1 2 0 ' 1 1 1 '

1---O0
 

CO1

= 0 2 2 C = 2 0 1 and R  = 1 1 1
#  #  # „ 0 2 1 .

2 2 2

Notice th a t  the elements in the Oth row of 5  remains same, but the #  spares in the 

last, row are no longer available. These spares are now assigned to the signals in 

the 0th row, which can be seen in the  R  m atrix  where ?'[0, 0] =  3. Note that other 

elements in R  show tha t other switches are not reconfigured, and remain the same. 

Dots in the S  m atrix  mean that there are no paths available in the Oth input switch, 

and they are simply ignored during the decomposition process. On the other hand, 

if the .rth switch at the third stage is faulty, the .rth demultiplexer is set so that 

rerouted signals from the third-stage spare switches can be bypassed to reach out lets 

of the .rth switch. For example, if the Oth switch in the third stage is also defective, 

and the 4th spare switch is used instead for the above matrices, the resulting 5. C. 

and R  matrices would be

1 0 1
1 2 0 '  1 1 1 ' ' 3 0 4 '

- 0 2 2 C - 2 0 1 and R  -- 1 1 1
# # # 0 2 1 _ 2 2 2

Perm utation  translation can also be used as was shown in chapter 5 for the 

reconfiguration due to the failure of outer stage switches. Faults due to the interstage 

links can be modeled as a switch failure and the network can be reconfigured in the 

same way described above. The rules and conditions for swapping elements in the 

ordinary Clos networks can be applied in the FTC. since the basic structures remain 

the same. Recall tha t,  in the Clos network, any two elements except spares in a 

row .r of S  can be swapped. This is due to the fact that inlets input to each of the 

first-stage switches can be fully connected within the switch. Each first-stage switch 

is represented by a row of S.  and each element in a row of S  corresponds to the inlets
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to a switch which flows to the third stage switch s[.r,?/]. Each column must have no 

identic.a.1 elements except spares when completely decomposed. This is because each 

second-st.age switch has only one connection to each third-stage switch.

The introduction of #  spares has the following features. First. #  spares in a 

column y  of S  can be swapped with any elements in tha t column. This is due to 

the multiplexers and demultiplexers along with spare switches in outer stages which 

can bypass input signals to the spares switches. Second, spares in a. column y can be 

swapped with any element in another column r  as long as both  columns maintain 

the same number of #  spares since the number of outer spare switches is fixed in the 

network. When the matrix is fully decomposed, then all the elements in C' matrix 

must be one. The zeros in the C  m atrix  indicate that these elements are swapped 

with the #  spares in the same column. The total number of spares in each column 

is restricted to ksp. which does not change during the routing process.

7.2.2 Routing FTC with Spare Switches in the 2nd Stage (Type II)

In contrast to the first type, the second type of FTC has extra spare switches in 

the second stage. In this configuration, signals are bypassed to the extra switches in 

case of faults in the second stage switch y.  where 0 <  y < ?? — 1. Figure 7.2 shows 

the Type II FTC network with one extra spare switch in the second stage. In 

the Type II FTC, the S  m atrix is represented in a  different way from the Type I 

FTC. Let n sp be the  number of spare switches in the second stage. The n sv spare 

switches at the middle stages create n sp additional columns in the S  matrix, and 

each element in the additional column can serve as an alternative path during the 

routing process. The total number of extra  paths is k n ap. All the initial elements in 

the spare columns of S' are denoted as asterisks (*) for convenience. These spares 

are wild cards, like the #  spares, but different in characteristics. Also, the C  matrix 

is defined as in the ordinary Clos network except that extra columns are added. The
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e[.r. ;(/] of the C  m atrix , where 0 < x  <  k — 1, 0< y <  n + n sp — 1 are initialized to t lie 

number of occurrences of the integer x  in column y of S. Each extra  spare switch in 

the second stage generates one ex tra  column in the 5  and C  matrices. T he elements 

in the j/th column of 5  represent the signals moving to destination switches .s[.r. t/]. 

0 < x < k  — 1 through the ,yth second stage switch. For example.

' 1 0 1 * * ' 1 1 1 0

1o

1 2 0 * * and C = 2 0 1 0 0o
1 2 2 * * I O 2 1 0 0 _

The right two columns of C  are all zero because there are no elements between 0 to 2 

in those columns, only * are in these columns. If the .rth switch of the middle stage 

is faulty, the term inal relabelling described in chapter 5 must be performed. In the 

$  matrix, the term inal relabelling can be achieved by clearing the r th  column of .F. 

and assigning these spares for the faulty .rth second stage switch. The cleared r th  

column of S  will be denoted as dots. The relationship between the faulty switch and 

spare switches will be noted in the reconfiguration matrix R  as in the Type I FTC. 

The R  m atrix  is used to perform the  term inal relabelling of the inward terminals of 

the outer stages. For example, if the first switch in the middle stage in the above 

example is defective, and the 4th spare switch is used instead, the resulting S.  C.  

and R  matrices would be

■ 1 0 1 * . ' 1 1 1 0 0 ■ ' 0 0 0 ‘
= 1 2 0 * . C = 2 0 1 0 0 and R  — 1 4 1

0 2 2 * . 0 2 1 0 0 _ 2 o 2

Notice tha t the elements in the first column of S  remain the same, but the * spares in 

the last column are no longer available. These spares are assigned now to the signals 

in the first column, which can be seen in the R  m atrix where r [ l ,  l] =  4. Dots in the 

S  matrix mean tha t there are no paths available in the first second-stage switch, and 

they are simply ignored during the decomposition process. The rules and conditions 

for swapping elements and * spares are as follows. First, any two elements including 

spares {*"') in a row x  of S  can be swapped with any element. After the swap, the
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swapped elements are again free for any other swaps. This flexibility of * spares 

makes the routing processes very simple. However, spares in a column y can not be 

swapped with any elements in th a t  column. Secondly, each column of 5  m ust have 

no identical elements except * spares when completely decomposed. This is because 

the second-stage switch has only one connection to each of the third-stage switches. 

Finally, the num ber of * spares in a column can take any value i, where 0 <  i < k — 1.

7.2.3 Routing FTC with Spare Switches in All Stages (Type III)

The last type of F T C  is the one with ex tra  spare switches in outer stages, along 

with multiplexers a.nd demultiplexers, as well as in the second stage. In this FTC. 

alternative paths are provided regardless of faults in any of the three stages. Figure

7.3 shows the type III of the FTC network with one extra spare switch in each stage.

In this type of network, there are k sp spare switches in each outer stage and 

n sp spare switches in the middle stage. The ksp spare switches in the outer stages 

create ksp additional rows in the 5  m atrix , which has a total of n k sp extra paths. 

Also, the n sp spare switches in the middle stage create n sp additional columns in the 

S' matrix, and this can generate a tot.al of k n sp extra paths. Initially, the elements 

of S', s[.r.j/j, where k <  x  < k +  ksp — I. 0 < y < n — 1, are initialized to #  spares 

and s[.r.</]. 0<  x < k — 1, ?? < y < n +  nsp — 1 are initialized to * spares. The 

elements of ,S. s[.r,y], where k < x  < k +  ksp — 1. n < y <  n ■+ n sp — 1. are denoted 

as blanks because spares in this area are not used as will be illustrated later in the 

new algorithm. Note that this area could have been initialized to * spares. Also, 

the C matrix has n sp additional columns due to the second stage spare switches, 

but there are no additional rows in the matrix. The c[.r.?/] of the C m atrix , where 

0 <  x <  k — 1. 0 <  y < n ■+ n ap — 1 are initialized to the number of occurrences of the 

integer x  in column y of 5. Each ex tra  spare switch in the second stage generates
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one extra column in the .? and C  matrices. For example, when n sp — ksp —

S  =

1 0 1 * *
1 2  0 *  *  

0 2 2 *  *

# # #
# # #

and C =
1 1 1 0  0 
2 0 1 0  0 
0 2 1 0  0

Since this type of F T C  has extra switches in all stages, all the defective switches 

need to be considered for the reconfiguration. If the x th  switch in the first stage is 

faulty, the .rth multiplexer is set so that, each signal in the r t h  switch is bypassed 

to the available spare switches. One of the spare switches, the r th  spare switch, is 

assigned to these signals in order to provide alternative paths. The r t h  row of the 

5’ m atrix  is simply cleared, which is denoted as dots. Set the R  matrix  with r  =  0 

as in the Type I FTC , where the element r [y .r ]  represents tha t the r[?/.r]th  spare 

switch in the r th -s tage  is assigned instead of the j/th switch in the .rth-stage. If 

the r t h  switch in the middle stage is faulty, clear the r th  column of 5 , and assign 

these spares for the  faulty r t h  second stage switch. The cleared r th  column of S  

will be denoted as dots. The R  matrix  is used to perform the terminal relabelling of 

the  inward terminals of the outer stages. For example, if the Oth switch in the first 

stage and the 1st switch in the middle stage in the above example are defective, the 

resulting 5 ,  C\ and R  matrices would be

1 0 1 * . '

1 2 0 * . " 1 1 1 0 0 " " 4 0 0 '

= 0 2 2 * . C = 2 0 1 0 0 and R  - 1 4 1
# # # 0 2 1 0 0 2 2 2

The rules and conditions for swapping elements and * or #  spares are as follows. 

First. #  spares in a column y  of S  can be swapped with any elements in th a t  column 

except * spares because the multiplexers and demultiplexer along with spare switches 

in outer stages can bypass signals. Also, spares in a column y can be swapped with 

an}- elements in another column z as long as both columns maintain the same number 

of #  spares. Secondly, any two elements including * spares in a row .r of .S' can be
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swapped with any element except #  spares. After the swap, the swapped elements 

are again free to perform any other swaps. This flexibility' of * spares makes the 

routing process very simple. However, * spares in a  column y can not be swapped 

with any elements in that, column. Third, each column of S  must have no identical 

elements except #  or * spares when completely decomposed. This is because the 

second-stage switch has only one connection to each third-stage switch. Finally, the  

number of * spares in a column is not restricted to n sp, bu t can take any value /. 

0 <  i < k T  7isp — 1. However, the number of #  spares in a column must remain k sp. 

Based on the above rules and conditions, the algorithm for the FTC network is 

introduced as follows. The S  and C  matrices in the FTC  are the same as in the 

ordinary Clos network except th a t  two kinds of spares are considered. First, the 

elements of 5, -s[.r,i/], where k < x < k + ksp — 1, 0 <  y < n — 1. are initialized to #  

spares. Also. s[.r, y] is initialized to * spares where 0<  x < k — 1.7? <  y < n + n sp — 1. 

The c[.r. y] of the C  matrix , where 0 <  x < k — 1. n <  y <  7) -f n sp — 1 are initialized 

to  the number of occurrences of the integer x  in column y of S.

Algorithm:  Initially sx  is set to zero.

Step 1: Find a column ex.  in a row y of C  such that c[c.r.y] >  1. If no such element 

can be found then increment, cx until either such an element can be found or all rows 

are satisfied, in which case the algorithm term inates with a solution. If the algorithm 

has found c\cx. y] > 1. set r  =  0.

Step 2: (W ild Swap) Check whether spares are available in column y. If available, 

increment ,sx(mod k) until s[.s,t,;i/] =  c.r, then swap s[.s.r,y] with a #  spare in the 

column y. and go to Step 1. If not available, then check the * spare in the row a.r. If 

the  * spare is available, increment s.r(mod k) until s[.s.r.y] =  cx, then swap s[.s.r. y] 

with a spares in the row sx  and go to Step 1.

Step 3\ Increment. :(m od  k) until c[c.r,c] =  0.

Step (Simple Swap) Repeatedly increment s.r(mod k) until s[s.r.y] =  ex. If
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s[.s,r.r] < .s[.s.t ,?/], go to Step 3. If s[s.r.;(/] <  or ,s[.s.t . r] is *, swap the

elements s[s.r.?y] and s[s.r. r] and update  the C  m atrix . If swapped, go to Step 1. 

Step 5: (Next simple swap) Repeat Step 4, thus providing one more chance to simply 

swap two elements in another row. If swapped, go to Step 1. This step is done only 

once before c[cx,y] becomes 1.

Step 6: (Successive Swap) Swap s[s.r,7/] and s[sa:.r], and update  C  as in Step 4. If 

s[s.r.t/] >  cx or s[sa\ y] is *, go to Step 1. Otherwise, increase s.r(mod k)  for another 

s[s'.t, ?/] and repeat Step 6.

Example:  For a given S' and C  m atrix  below when 77 =  k — 4 and ksp = n sp =  1.

5  -

1 1 2  3 *
1 3 2 0 *
2 0 2 3 *
1 0 0 3 *
# # # #

and C  =

0  2 1 1 0 *  

3 1 0 0 0
1 0 3 0 0
0 2 0 3 0

First repetition: Wild swap continuously while scanning the C  m atrix  row by row.

* 1 2 3 1
1 3 #  0 *

5  =  2 #  * 3 2
#  0 0 3 *
1 0  2 #

* 1 2 3 1
1 3 #  0 *

5  =  2 #  * 3 2
# 0 0 # *  
1 0  2 3

Third repetition: cx = 3. y — 3. sx  — 0. and r  — 0

S' =

The wild swap greatly reduces the number of next swaps or successive swaps 

which take much time, since at most k — 1 swaps are needed in order to find the

' 0 1 1 1 0 ‘
1 1 0 0 1

and C  =
1 0 1 0 1

.  0 1 0 3 0 .

cx =  3. sx 3- J = 3

' 0 1 1 1 0 '
1 1 0 0 1

and C —
1 0 1 0 1
0 1 0 2 0

' 3 1 2 * 1 ' ' 0 1 1 1 0 '
1 3 # 0 *

and C —
1 1 0 0 12 # * 3 2
1 0 1 0 1

# 0 0 # *
.  1 1 0 1 0 .

1 0 2 3
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alternative paths. The number of simple swaps is also reduced. As the num ber of 

extra rows and columns increases, the algorithm has more chances to suppress the 

simple and successive swaps and thus improve the run time. The new algorithm 

works for all perm utations, which can be proved using the following three theorems. 

T h e o r e m  4: Given two sets of S t  and S m  which are Y’-excessive and Y'-missing. 

respectively, let A‘e(?), and X m ( i )  be numbers with the value i in the set S t  and 

S m .  where 0 <  i < Y .  Each set contains the same num ber of #  wild cards, bu t the 

number of * wild cards may be different. If the number of Y 's  in Se  is two. it is 

always possible to reduce the number of Y  in Se  to one without any change in the 

occurrence of AT and Abu.

P r o o f : Arranging elements of the set Se  and S m ,

A’e(O) A’m(O)

A*e(l) A’m(l)

A’e(2) A’m(2)

Ye

Y e

Z t  Z  m.

Z t  Z  m

Z m

# #
* *

The proof is basically the same as Theorem 1. There are two possible cases for Ye 

to be swapped with an element in the set S m .  First, if Y e and Z m  (or *) are in 

the same row, then two elements can be swapped, resulting in the reduction of the 

num ber of Y e  in the  set Se  to one without any change in the number of occurrences
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in X e  or X m .  However, if Ye  and X m  are on the same row. ) t and any one of 

X m ( i ) .  0 <  ? < Y  should be swapped. The index ? is used in order to distinguish 

the elements of X t  and X m  which have the same value i. As a result, two identical 

numbers A"e(l’ — 1) and X m ( Y  — 1) are in the same V e-excessi ve column. Now take 

A’e(V’ — 1). which is an X m ( Y  — l)-alternative. Again, there are two possibilities. If 

A’e(V — 1) is in the  same row with Z m  (or *), the  num ber of Ye  in the  T'e-excessive 

column can be reduced to one without any change in the number of occurrences in A'. 

However, if X e ( Y  — 1) is in the same row with X m ( Y  — 2 ), we need to swap A’e(V’ — 1) 

and X m ( Y  — 2). and then find the X m ( Y  — 2 )-alterna.tive. which is A’e (T  — 2). In 

the worst case, this process continues until A*???(l) finds its alternative A’e(O). Since 

other A ms are not in the same row with .Ae(0), A’e(O) must select Z m  (or *). which 

leads to the proof of the theorem. □.

Theorems 2 and 3 in chapter 6 can be used similarly to prove tha t the algorithm for 

the FTC holds for all permutations.

7.3 Worst-case Behavior of the Algorithm

The new algorithm for the F T C  network is similar to tha t of the ordinary Clos 

network, so deriving the exact time complexity7 of the algorithm with respect to the 

number of extra switches is a very complicated m atter. In this case, the run time is 

dominated by the num ber of swaps, which consist of simple swaps, next simple swaps, 

successive swaps and wild swaps. Wild and simple swaps do not require much time 

to swap two elements. The successive swaps on the other hand, are not frequent, but 

take a relatively long time since they are continued until the alternative paths are 

found. For the F T C  algorithm, the basic difficulty of deriving the time complexity 

of the algorithm remains the same as was explained in chapter 6. These are 1) 

£!(c[c.r. y] — l)  does not necessarily represent the total number of swaps, because one 

swap results in the change of four elements of c[ca',y], two of which increase and two
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F ig u r e  7.4 Worst case runtime vs. number oi y.spnres ior various /.’

of which decrease. 2 ) For an element c:[c.r.</] > 1. it is difficult to predict analytically 

what kind of swaps must be performed in the worst case for a given perm utation. For 

that reason, the new algorithm for the F T C  network has been simulated to obtain the 

runtim e of the algorithm with respect to various numbers ol extra switches, f igure

7.4 shows the worst case runtime vs. </_.$pc/re for various values of /,'. The graph 

shows that the runtim e of the algorithm for the FTC  network decreases as y. spor t  

increases. This is continued until y . s j m r t  reaches about kj '2.  where the runtime is 

saturated to a certain value. Runtime can he reduced to lar less than half ol that 

when there are no extra switches in the network.

Figure 7.5 shows the worst case runtime vs. . repor t  for various values of u. As in 

the previous figure, the graph shows that the runtim e of the algorithm for the FJ C 

network decreases as x.spare  increases. This is continued until .rspan-  reaches about 

i:/2. But. the runtim e decreases more slowly in this case, and it is reduced to slightly 

more than half of that when there are no extra switches in the network. Figures

7.6 and 7.7 show the average runtime versus the number of extra switches y . s p a r t
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(.v-xjian ) for the various k(ri). Figure 7.8 shows the number of each swap with 

respect to .vsjxrrt .  As can be seen from the figure, the wild swap increases steadily 

with in creases in ,v_s par t ,  but other simple swaps and successive swaps decrease, 

which explains the improvement in runtime.

7.4 D is c u s s io n

In this chapter, a novel algorithm for routing in the fault tolerant Clos network 

has been introduced. Clos networks are used mainly to realize permutations. 

Without any fault tolerance, if a switch in the  network fails, the net work is rendered 

inoperative and the system has to be interrupted to put the network back to work. 

The FTC network can continue its work uninterrupted during the presence of a 

fault because the FTC  network can reconfigure itself dynamically, by changing the 

settings of the multiplexers and demultiplexers and using the adaptive permutation 

translation scheme which can be facilitated by the use of the reconfiguration matrix 

R. The defective item can then be repaired during the lime at which the system
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is unused. The spare switches introduce two types of wild cards depending on the 

location of spare switches in particular stages. In the Type I FTC network, two extra 

spares along with multiplexers/demultiplexers are required in order to create one 

additional row in the specification matrix. The Type II FTC  network requires less 

hardware to create one additional column in the matrix, and the wild cards are much 

more flexible than in the Type I FTC network. In designing the routing algorithm, 

any wild cards can be used at any time during the decomposition. However, it is 

preferable t,o use the type 1 extra spares first and then type II spares next, since 

type II spares are more flexible. As in the previous algorithm, the new algorithm 

scans the C  m atrix  row by row. and swapping elements are restricted to two columns 

for the successive swap, which gives the obvious advantage in proving that it works 

for all permutations. Another advantage to the new algorithm is that it has the 

potential to be run in parallel since only two columns are involved in the successive 

swap and other pairs of two columns can be swapped at the same time.



C H A P T E R  8

R E L IA B IL IT Y  OF FAULT T O L E R A N T  CLOS N E T W O R K S

8.1 Introduction

So far we have discussed the  new routing algorithms in ordinary and fault, tolerant 

Clos networks. Also, we considered the runtim e with respect to the number of extra 

switches in the outer and middle stages. Another im portant factor in the FTC 

network is the reliability and space complexity with respect to the number of extra 

switches. The reliability and space complexity are dependant on the number of 

spare switches in the outer and middle stage switches, and these switches generate 

additional extra rows and columns in the specification matrix  which contribute to 

the improvement in runtime. Thus, it is im portant to  understand exactly how these 

factors are related, and design the F T C  network accordingly. In section 8.2, the fault 

detection and location for the F T C  network is discussed briefly. Next, the reliability 

and space complexity of the  FT C  network, which are im portant factors in designing 

the fault tolerant Clos networks, are considered. Finally, in the last section, the 

optim um  number of extra switches for the fault tolerant Clos network is considered 

which will best balance the runtime, reliability and cost.

8.2 Fault Detection and Location of the FTC

The work of any fault tolerant MIN generally depends on two things: fault detect ion 

and fault location. Two techniques have been proposed in the literature for fault 

detection and location. First, fault detection and location can be performed off­

line by applying prescribed test patterns to the inlets and comparing the output at 

the outlets with the expected values. Second, faults can be detected and located 

dynamically online through either parity checking or data bit checking. As good as
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the online techniques may sound, the}- require a special switch design with built-in 

hardware to carry out the dynam ic checking. This online fault detection and location 

technique is the mechanism th a t  can be applied to many MINs. However, the FTC  

network does not require any particular mechanism; rather it requires only that the 

processors be notified of the location of the fault, if any. For the work done in this 

thesis, it is assumed tha t there is some mechanism to detect and locate faults and 

notify the processors of the location of the fault.

8.3 Reliability of the FTC Network

The reliability of both the ordinary Clos network and the F T C  net work are dependent 

on the reliability of each switch and link of the networks. In chapter'5 , multiplexers 

and demultiplexers are assumed to have high reliability when compared with switches 

and links in the FTC  network, Rigorous reliability analysis is possible which considers 

the reliabilities of both multiplexers and demultiplexers. However, they are not 

considered in this thesis for analytical simplicity. First, define the reliability, r. of a 

single switch as the probability that, the switch does not. fail over a period of time 

r .  Then. /  =  1 — r  is the probability that the switch fails in the same period r. 

Similarly, define the reliability R  of the network, ordinary or FTC . as the probability 

that the network does not fail over a period of time r. Then F  — (1 — /?) is the 

probability th a t  the network fails in the same period r.  A switch fails if it cannot 

realize, partially or completely, a mapping of its inputs onto its outputs. Similarly, 

a network fails it cannot realize, partially or completely, a mapping of its inlets onto 

its outlets. For the ordinary Clos network to be fully operational over the period of 

time r .  all of its switches m ust be operational over the same period of time r.  For 

simplicity, assume that all the switches have the same reliability r. Therefore, the 

reliability of the ordinary network, assuming statistical independence (independent 

failure events), is
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Rord =  r 2k+™

where 2k +  m  is the number of switches in the ordinary Clos network.

For the FTC with one extra switch in each stage, the network will remain 

fully operational if up to one switch in every stage fails. Let /?0, Ri  and R 2 be 

the reliabilities of stages 0, 1, and 2, respectively. Clearly, the three stages are 

statistically independent. Thus, the reliability of the network is

R f t c  =  R qR i R?

The reliability of the first stage, Ro is the probability that at least k out of the k + 1 

first stage switches, will be operational. Alternatively, if F0 is the probability tha t 

the first stage fails, then

Ro — 1 — Ro

For stage 0 to fail, given th a t  there is one ex tra  switch, at least two switches will 

have to fail, or less than k switches will have to function properly. This is a case of 

binomial distribution or Bernoulli trials, for which F0 can be written as

Fo = £  ( k * 1 )  * 1 )  ^  -  r )"+1_'

where ^  ̂ "t  ̂ j  is the combination of k + 1 taken i at a time. Substituting F0 

to Ro = 1 — Fo and realizing th a t  Ro -- R 2 since the outer stages are the same, it 

follows that

/?0 = /?2 = l-g^ /l' + !
A similar analysis shows that the reliability of the middle stage is
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1 = 0

Substituting these two equations yields.

r>v. = (1 - E ( k t 1 ) '-'O - (i - i  ( "71 ) r'(> - r>"'+,_'
When more than one switch is added to every stage, additional alternative 

paths are created and thus, greater reliability is expected. To verify that, the previous 

equation will be generalized to the case where x  switches are added to each of stages 

0 and 2. and y switches are added to stage 1. Using the  same procedure as above, 

it can be shown th a t  the reliability of the new network. R f t c  is

R f t c r‘(l -  r)***")’ ( l  -  £  (  ™ + » ) r'(l -  r)— -

8.4 EflFect of Spare Numbers on Reliability

The above equation can be used to show the reliability of a fault tolerant Clos net work 

with respect to the num ber of spares switches x  or y. Figure 8.1 shows the reliability 

of a fault tolerant Clos network with respect to the number of extra switches in the 

first or third stage in the Type I FTC  network, when the  reliability of the switch r 

is 0.9, 0.96, 0.98, and 0.99, respectively, and n =  k = 20.

As shown in the figure, the reliability of the system depends on the number of 

extra switches, and just one or two extra switches are needed in each stage in order 

to improve the reliability of the system considerably especially when r is high. The 

high system reliability can be obtained as the reliability of the switch r increases. 

It can be seen that if r is large, the addition of more than  one switch per stage is 

not needed and the reliability approaches 1. However, when the reliability of the
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switch r is low or when switches with high reliability are used lor a long time, the 

system reliability increases slowly with respect to the number of spare switches. In 

this case, more switches are needed in order to obtain the better reliability ol the 

system. Also, the relatively low system reliability is obtained when r is low.

Figure 8.2 shows the reliability of a fault tolerant Clos network with respect 

to the number of extra switches in the second stage in the Type II FI C network 

when the reliability of the switch r is 0.9. 0.96, 0.98. and 0.99. respectively, and 

11 =  k -  20. As in the Type 1 network, the reliability of the system depends on the 

number of extra switches, and just one or two extra switches are needed to improve 

the reliability of the system considerably when r is high. The high system reliability 

can be achieved as the reliability of the switch r increases, but it takes on a lower 

value than in Type I networks for the same reliability of the switch r. This is t r u e  

when the reliability of the switch is low, where the system reliability increases slowly 

with respect to the number of spare switches, but with a much lower value. The
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main reason for this is that the Type I network has extra switches in both the first 

and third stages, while in Type  II networks the extra switches are available only 

in the second stage, so the total number of extra switches is about the half that 

of the Type ] network. Note, in the above two figures, that the network reduces 

to an ordinary Clos network and the reliability is same in both types of network 

when .v-xpart  =  y s p a r e  =  (J. Generally, the addition of extra switches increases the 

overall reliability of the network by orders of magnitude when the reliability r is low. 

while the addition of same number of switches increases the overall reliability of the 

network only slightly when r  is high.

Therefore, it can be concluded tha t  when the reliability r of the individual 

switches is high, there is no need for adding excessive hardware, especially when 

the total number of switches is small. That is because the higher the number ol 

switches in the network, the higher its vulnerability to failure. The existence ol 

small numbers of switches with a few extra switches in the FTC' makes a failure in
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the network insignificant. Adding more switches per stage can be seen to increase 

the overall reliability of the network. However, reconfiguration of the net work would 

be more difficult and time consuming. Moreover, the ex tra  switches would increase 

the hardware of the network and complicate its design. The reliability of the FTC 

is generally greatly higher than tha t of the ordinary network and the FT C  is more 

beneficial for networks with poor switch reliabilities. When r  =  1. there is clearly no 

need for any fault tolerance.

8 .5  S p a c e  C o m p l e x i t y  o f  t h e  F T C  N e tw o r k  

We will now consider the space complexity of the FTC network. The addition of the 

extra switches in the first and third  stages causes an increase in the number of inputs 

and outputs  in each of the second stage switches. This is the same as when extra 

switches are added in the second stage, which results in the increase of the number 

of inputs and ou tpu ts  in the first and third stage switches. Note that the addition of 

spare switches in the second stage results in the increase of switch areas in both the 

first and third stages, while the changes in the outer stages result in an increase only 

in the second stage. Since the switches are actually crossbar switches, the area of 

the switches, or the number of cross points is generally proportional to the product 

of the number of inputs and outputs  of the switch. Here, we assume that the area of 

multiplexers/demultiplexers are not significant for the simplicity of analysis. Also, 

it is assumed here that the costs for the F T C  networks are proportional to the area 

of the total num ber of switches.

Let x  and y again be the number of extra  switches in the second stage and 

first (or third) stage, respectively. Then the total number of switches in the second 

stage is n + x,  while it is k 4- y in the first (or third) stage. The number of inlets 

in the first stage switch is n, and the number of outlets is n +  x. In the second 

stage switch, the number of inlets or outlets is k +  y. Since the first and third
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stag/'s are identical, the total area of the outer stages is twice t lie area of eit her 

outer stage. The space complexity or the cost of the FTC network is proportional to 

2f /.■ ~  .//)/? ( 11 4- . r ) 4- ( n +  x )(/: 4- // )v Figure 8.3 shows the cost vs. the number of ext ra 

!!..•> pa r< > in lype  1 networks when n =  k = 20 and .r.sport =  0. As can be seen in 

the ligure. the cost increases monotonically as the number of //_.s/>r//c increases.

F i g u r e  8.4 s h o w s  t h e  cost  vs. n u m b e r  o f  .r_s/u/;-( s in T y p e  11 n e t w o r k s  w h e n  

n — k — 20 a n d  t j-spart  =  0. A s  in T y p e  I n e t w o r k s ,  t h e  cost a lso  i n c re a s e  s t e a d i l y  

w i t h  th e  i n c r ease  in  .r_,sp a n .  H o w e v e r ,  i n t h i s  case,  t h e  cost is less t h a n  in  T y p e  I 

n e t w o r k s .  N o t e  t h a t  t h e  i n c re ase  in i / s p a r t  i n  T y p e  1 n e t w o r k s  a c t u a l l y  a d d s  t w i c e  

I l ie n u m b e r  ol  e x t r a  s w i t c h e s  l o  t h e  n e t w o r k ,  a l t h o u g h  t h e  n u m b e r  o f  e x t r a  s w i t c h e s  

is t h e  n u m b e r  o f  . r . s / w / u  in T y p e  I I  n e t w o r k s .  It can  be  seen f r o m  t h e  f ig u re s  t h a t  

t h e  l y p e  I n e t w o r k  is in  g e n e ra l  m o r e  e x p e n s i v e  t h a n  Typ e  I I  n e t w o r k s ,  b u t  d u e s  

not  d o u b l e  t h e  cost  o f  t h e  T y p e  I I  n e t w o r k s  for  t h e  s a m e  n u m b e r  o f  ./■_.->/«//•< an d
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//.s /a /rt.  However, it can achieve better reliability than the Type II network since 

there are more extra switches.

8 .6 O p t im u m  N u m b e r  o f  S p a re  S w i tc h e s  in th e  F T C  N e tw o rk  

So far we have examined the runtime, reliability, and cost with respect to the number 

of spare switches x. and ij. As was seen in chapter 7. the runtime is roughly the same 

in buth the Type 1 and Type 11 FTC networks. More specifically, the I ype II net wurk 

is fast er when the number of spare switches is small. However, as t he number of spares 

increases, the runtime is slower than the Type I network since it needs extra tim e 

to lind the location of spares and to make sure that there are no identical element.' 

in the specification matrix  S.  The number of spares needed in Type I networks for 

generating additional rows in the 5  matrix is twice the number ol spares in the 1 ype 

11 network for creating the same number of additional columns. On the other hand, 

the Type 1 network can achieve belter reliability than the Type 11 network, but it
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requires twice the number of extra switches. Because of this, the Type I network 

is more expensive than the Type II network, but it does not double the cost of the 

Type II network when r s p a r e  and y. spare  are the same. The optim um  number 

of spare switches in each stage of the FT C  network can not be determined exactly, 

rather it depends on the availability of the  resources and requirements of the system. 

The general approach would be to decide the above factors first and then adjust the 

number of spare switches in the outer stages and in the middle stage.

The research so far has shown the following results for det ermining the number 

of spare switches in each stage. When the reliability of the switches is high, just one 

or two extra switches are needed in each stage in order to improve the reliability of 

the system. In this case, the  fault tolerant routing algorithm is not efficient, and the 

runtim e approaches the speed of an algorithm for the ordinary Clos network. No 

additional costs are required. However, when the reliability of the switches are not 

high, more than two extra  switches are required in order to improve the reliability. 

High reliability can be achieved by adding more switches in outer stage, but with 

the increase in cost. Adding more extra switches in the middle stage is less costly 

in improving the run tim e than  adding spares in the outer stages. However, better 

reliabilities are possible in the la tte r  case. In both cases, the introduced fault tolerant 

routing algorithm utilizes extra  switches to improve the runtime, which is roughly 

the same in both types of FTC.

8.7 Discussion

Besides the fault tolerance the F T C  provides, the reliability of the network is greatly 

enhanced. High reliability' means more system availability with uninterrupted 

operations. It is seen from the analysis that using this fault tolerance approach is 

most beneficial when the reliability of the individual switches is poor, or the number 

of switches in the network is large. As far as reliability is concerned, larger numbers



of extra switches are needed in order to increase the reliability. This num ber depends 

on the num ber of switches in the network and the reliability of the individual switch, 

and can be determ ined for an op tim um  value. However, pu tt ing  a large number 

of ex tra  switches per stage adds significantly to the network hardw are and routing 

complexity. High reliability can be achieved by adding more switches in any of 

the stages. B u t adding switches in the  outer stage increases the cost and system 

hardware more rapidly. The same improvements in runtim e can be obtained by 

adding more ex tra  switches in the m iddle stage, which is less costly in improving 

the run time, bu t relatively low improvements can be achieved in reliability.
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CONCLUSION  

9.1 Summ ary

This thesis has demonstra.ted the failure of G ordon's algorithm which uses two 

matrices for improving the runtime. A new simple algorithm for the  control of 

rearrangeable Clos networks which runs in tim e 0 ( n k 3^2) is proposed based on his 

algorithm. The new algorithm is extended to the  fault tolerant Clos (FT C ) network, 

which can further improve the run time when there are relatively few or no faults in 

the system. In order to achieve this, the F T C  network has been classified into three 

types to find the swapping rules and conditions of extra elements. The optim um  

number of extra  switches on the fault tolerant Clos network is considered which 

will best satisfy the run time, reliability and cost constraints. The result of each 

perspectives are summarized below.

9.1.1 R outing for Clos Networks

Although Gordon's algorithm is simple and fast, this research has shown tha t his 

algorithm displays errors in some of the perm utations, especially when k > 5. The 

new algorithm is based on Gordon's algorithm where the  Clos network is represented 

by the specification m atrix  and count m atrix . As in Gordon's algorithm, the new 

algorithm has the advantage of speeding up routings by just checking the C  m atrix 

in order t.o calculate the number of occurrences of each element in each column of 

the S  m atrix . The new algorithm consists of three kinds of swaps: simple swap, 

next simple swap, and successive swap. The successive swap can be compared with 

the iteration phase of N eim an’s algorithm, where the algorithm backtracks in order 

to select all elements which are not in the same rows and same columns. The time
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complexity of the new algorithm for the ordinary Clos network has been found to be 

0 { n k 3/ 2).

The basic difference between Gordon's algorithm and new algorithm lies in 

the scanning direction in the C  matrix. In Gordon's algorithm, it is scanned column 

by column, removing columns once all elements are nonidentical in each column. 

Swapping elements can take place between a not-vet-decomposed leftmost column 

and the rest of the columns. However, the new’ algorithm scans the C  matrix row-by- 

row. and swapping elements a re  restricted to two columns for the successive swap. 

This gives an obvious advantage in proving th a t  it works for all permutations, but. in 

Gordon's algorithm, this is hard to prove. Another advantage to the new algorithm 

is that it has the potential to be run in parallel since only two columns are involved 

in the successive swap, and other pairs of columns can be swapped at the same time. 

Also, the simple, next simple, and successive swaps can easily be extended to the 

fault tolerant Clos network, which is yet another advantage.

9.1.2 Routing for FTC Networks

The new algorithm for FTC networks shows tha t the previous algorithm for the 

ordinary Clos network can be easily extended to the fault-tolerant cases. It has been 

shown that the original matrices can be modified using extra rows and columns in the 

specification matrix so tha t they can represent the extra spare switches in the FTC 

network. Extra switches generates wild cards in the matrix, which provide flexibility 

during the decomposition process. The wild swaps employed in the algorithm, in 

addition to three kinds of swaps in the ordinary case, were found to be important 

since they can reduce the chances of entering into the time-consuming next simple 

swaps or successive swaps. The spare switches introduce t.wo types of wild cards 

depending on the location of spare switches in the network. In Type 1 networks, two 

extra spares along with multiplexers/demultiplexers are required in order to create
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one additional row in the specification matrix . The Type II network requires less 

hardware to create one additional column in the matrix , a.nd the wild cards are 

much more flexible than  in the Type I network. It was shown tha t the addition of 

extra switches to the  network considerably decreases the  runtim e of the algorithm. 

The failure in the switch is reflected in the reconfiguration matrix , which helps to 

reconfigure the network dynamically by changing the settings of the multiplexers 

and demultiplexers and using extra switches. As in the ordinary Clos network, 

the new algorithm realizes every perm utation  because of its scanning the C  matrix 

row-by-row and restricting swapping elements to two columns in the successive swap.

9.1.3 Optimum Numbers of Spare Switches in FTC

Optim um  numbers of ex tra  switches in FT C  networks can be determined with respect 

to the reliability, run tim e and cost. The research so far has shown the following 

results for determ ining t.he number of spare switches in each stages. When the relia­

bility of the switches is high, just one or two ex tra  switches are needed in each stage in 

order to improve the reliability of the system. In this case, the fault tolerant, routing 

algorithm is not efficient, and the runtime approaches the speed of the algorithm for 

the ordinary Clos network. No additional costs are required. However, when the 

reliability of the switches is not high, more than  two extra switches are required in 

order to improve the reliability. High reliability can be achieved by adding more 

switches in outer stages, but with an increase in cost. Adding more ex tra  switches 

in the middle stage is less costly in improving the run time than adding spares in 

the outer stages. However, better reliabilities are possible in the la tter  case. The 

runtime is improved by roughly the same amount in both types of FT C  networks. 

The optimum num ber of spare switches in each stage of the FTC  network can not 

be determined exactly, bu t rather it depends on the availability of the resources and 

requirements of the system. The general approach would be to decide the above
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factors first and then adjust, the number of spare switches in the outer stages and in 

the middle stage.

9.2 Open Problems

This research has covered the routing issues in the ordinary as well as fault tolerant 

Clos networks in depth. In spite of the progress made in some areas, some problems 

have been observed and some encouraging ideas th a t  need further research have 

been discovered. Those will altogether contribute to establish the sound bases of 

the research by continuing the study more deeply. First, the  current algorithm 

for decomposing the  Clos network requires that, no identical elements be present 

in a column of S  except spares in order to completely decompose the matrix . This 

condition is due to the structure of the Clos network in which each of the second stage 

switches is connected to every third-stage switch. Also, swaps are allowed only for 

the elements in the  same row. This is also due t.o the first.-st.age switches’ connect ion 

to each of the second-stage switches. These conditions look straightforward, but 

in fact, they requires extremely serial decomposition and frequent backtracking. 

However, by modifying the Clos network somehow, the current conditions might 

be alleviated in a way that could lead to a much faster, straightforward routing 

strategy. The question here is: Is there any modified structure of the Clos network 

which could lead to the much faster routing th a t  can be performed in a serial as well 

as in a parallel method? And if so. how can we find tha t structure, and how much 

difference can we expect?

Meanwhile, this research has developed a new algorithm for decomposing the 

Clos interconnection network. This algorithm can be applied t.o Benes and other 

similar interconnection networks which are derived from the Clos network. Then, 

can we apply this algorithm to other multistage interconnection networks such as 

the shuffle-exchange, banyan, and omega networks? Also, can the algorithm for the
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F T C  network be applied t.o other fault to lerant interconnection networks such as the 

ESC?

Also, the newly introduced algorithm decomposes the specification m atrix  

row by row, while Gordon's algorithm decomposes it column by column. The 

potential advantage of decomposing the m atrix  column by column is the reduction 

of the dimension of the specification m a tr ix  as the routing progresses, since each 

decomposed column can be removed from the matrix . Gordon’s algorithm  has been 

dem onstrated  to display errors for some perm utations, but can we explain why his 

algorithm fails? Also, can we really find an algorithm which decomposes the  m atrix  

in column by column bases?

This thesis assumed that the F T C  has an ability for the detection and location 

of faults. F urther research is required in this area. In addition, another study needs 

to be performed on the reconfiguration problems due to the failure of interstage 

connections, and the  analysis of the tim e complexity of new algorithms.
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