

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrougb, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University M icrofilms International
A Beil & Howell Information C o m p a n y

3 0 0 North Z e e b R oad . Ann Arbor. Ml 4 8 1 0 6 -1 3 4 6 U SA
3 1 3 /7 6 1 -4 7 0 0 8 0 0 /5 2 1 -0 6 0 0

Order Number 9514440

A lgorithm s in fau lt-to lerant Clos networks

Lee, Hyunyeop, Ph.D.

New Jersey Institu te of Technology, 1994

Copyright ©1994 by Lee, Hyunyeop. All rights reserved.

U M I
3 0 0 N . Z eeb Rd.
Ann Arbor, MI 48106

ALGORITHM S IN
FAULT-TOLERANT CLOS NETW O R K S

by
Hyunyeop Lee

A D issertation
Subm itted to the Faculty of

New Jersey Institu te of Technology
Partial Fulfillment of the R equirem ents for the D egree

D octor of Philosophy

D epartm ent of Electrical and C om puter Engineering

October 1994

Copyright © 1994 by Hyunyeop Lee

ALL RIG H TS RESERVED

APPROVAL PAGE

ALGORITHMS IN
FAULT-TOLERANT CLOS NETWORKS

Hyunyeop Lee

Dr. John D. Carpinelli, Dissertation Advisor 	Date
Director of Computer Engineering
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Sotirios Ziavras, Committee Member 	 	Date
Assistant Professor of Electrical and Computer Engineering, MIT

Dr. Michael Palis, Committee Member 	 	Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Frank Hwang, Committee Member 	 Date
Member of Technical Staff, AT&T Bell Lab., Murray Hill, NJ

Dr. Vaclav Benes, Committee Member 	 Date
Research Associate

BIOGRAPHICAL SKETCH

Author: 	Hyunyeop Lee

Degree: 	Doctor of Philosophy

Date: 	October 1994

Undergraduate and Graduate Education:

o Ph. D. in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1994

o Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1990

o Bachelor of Science in Electrical Engineering,
Yonsei University, Korea, 1980

Major: 	Electrical Engineering

Presentations and Publications:

Hyunyeop Lee and John D. Carpinelli "Algorithms in Fault-tolerant Clos
Interconnection Networks," 1994 Conference on Information Sciences and
Systems, Princeton University, NJ

iv

This work is dedicated to
my family

v

A C K N O W L E D G M E N T

The au thor wishes to express his sincere appreciation to his advisor Dr. John

D. Carpinelli for his guidance and assistance throughout his research. His continued

friendship, and support throughout my career as a g raduate s tudent at the New

Jersey Ins ti tu te of Technology is greatly appreciated. Also, I would like to thank all

the com m ittee members, Dr. Ziavras. Dr. Palis and Dr. Benes of N JIT . and Dr.

Hwang of AT&;T Bell Lab., for sparing their precious time for this defense, and for

their valuable suggestions. Finally, the au thor wishes to thank his family for their

support, help and encouragement throughout his doctoral studies.

T A BL E O F C O N T E N T S

Chapter Page

1 IN TR O D U C TIO N ... 1

1.1 Motivation ... 1

1.1.1 Parallel Processing ... 1

1.1.2 Interconnection Networks in Multiprocessor Systems 5

1.2 B a c k g ro u n d ... 8

1.3 O u t l i n e ... 11

2 M ODELLING O F IN TE R C O N N E C T IO N N E T W O R K 13

2.1 In troduction ... 13

2.2 Interconnection Networks .. 13

2.2.1 R e p re s e n ta t io n ... 13

2.3 B ipartite Multigraphs... 18

2.4 Fault T o le r a n c e .. 20

2.5 Reliability ... 22

2.5.1 Fundamentals ... 22

2.5.2 System R e l ia b i l i ty ... 23

3 IM PLEM EN TA TION S O F MINS .. 26

3.1 Introduction ... 26

3.2 Design Factors of Interconnection Networks .. 27

3.3 Completely Connected Network .. 28

3.4 Crossbar N e tw o r k .. 29

3.5 Clos Interconnection Networks ... 29

3.5.1 Network Structures .. 30

3.5.2 Properties of the Clos Networks .. 30

3.6 Benes N e tw o rk s ...32

3.7 Discussions 33

C h a p t e r P a g e

4 D ECO M PO SITIO N OF CLOS MINS .. 37

4.1 Introduction .. 37

4.2 M atrix Decomposition .. 38

4.2.1 N eim an’s A lg o r i th m ... 38

4.2.2 R am anujam ’s Algorithm ... 40

4.2.3 Kubale’s Counterexample ... 42

4.2.4 Jajszczyk’s Algorithm ... 43

4.2.5 C ardo t’s Counterexample ... 44

4.3 Parallel Decomposition .. 45

4.3.1 Carpinelli’s A lg o r i th m .. 30

4.4 Edge Coloring and M a tc h in g .. 48

4.4.1 Introduction ... 49

4.4.2 Vizing’s Method ... 50

4.4.3 Euler P a r t i t io n s ... 51

4.4.4 Clabow’s Modified Algorithm ... 53

4.5 C ordon’s Algorithm ... 54

4.6 Discussion .. 58

5 FAULT T O L E R A N T MINS .. 59

5.1 Introduction 59

5.2 E x tra Stage Cube (ESC) N e tw o r k ... 60

5.3 Fault Tolerant Clos Networks (FTC) ... 64

5.3.1 Reconfiguration of the FTC ... 66

5.3.2 Examples ... 68

6 NOVEL ALGORITHM FO R CLOS MINS .. 72

6.1 Introduction ... 72

6.2 Failure of Gordon’s Algorithm ... 72

6.3 New Algorithm for Clos Networks ... 74

viii

C h a p t e r P a g e

6.4 Example .. 79

6.5 Worst-case Behavior ... 81

6.6 Discussion .. 83

7 ROUTING FAULT T O L E R A N T CLOS N E T W O R K S ... 84

7.1 Introduction .. 84

7.2 Routing the F T C .. 84

7.2.1 Routing F T C with Spare Switches in O uter Stages (Type I) . . . 85

7.2.2 Routing F T C with Spare Switches in the 2nd Stage (Type II) . 89

7.2.3 Routing F T C with Spare Switches in All Stages (Type I I I) 92

7.3 Worst-case Behavior of the Algorithm ... 98

7.4 Discussion .. 100

8 RELIABILITY O F FAULT T O L E R A N T CLOS N E T W O R K S 103

8.1 Introduction .. 103

8.2 Fault Detection and Location of the F T C ... 103

8.3 Reliability of the F T C Network ... 104

8.4 Effect of Spare Numbers on Reliability ... 106

8.5 Space Complexity of the F T C N e tw o r k ... 109

8.6 O ptim um N um ber of Spare Switches in the F T C Network I l l

8.7 Discussion .. 112

9 CONCLUSION .. 114

9.1 S u m m a r y .. 114

9.1.1 Routing for Clos Networks ... 114

9.1.2 Routing for F T C N e tw o rk s ... 115

9.1.3 O ptim um N um ber of Spare Switches in FT C 116

9.2 Open Problems ... 117

R EFER E N C E S .. 119

LIST OF F IG U R E S

Figure Page

1.1 Flynn's classification of m u l t ic o m p u te r s ... 4

1.2 Multiprocessor s y s te m ... 5

1.3 A shared bus s y s t e m .. 6

2.1 Switch settings of two 2 x 2 s w i t c h e s ... 16

2.2 Switch settings of three stage ne tw ork ... 19

2.3 A bipartite m u l t i g r a p h .. 20

2.4 Series, parallel, and series-parallel sy s te m s .. 23

3.1 The completely connected n e tw o rk .. 28

3.2 The N x N crossbar interconnection n e t w o r k .. 29

3.3 The three-stage Clos n e tw o rk ... 30

3.4 The three dimensional Clos interconnection network... 32

3.5 The 8 x 8 Benes n e tw o rk ... 33

3.6 An example of Looping A lg o r i t h m .. 34

3.7 The 8 x 8 W aksman n e tw o rk ... 36

4.1 Augmenting b ipartite multigraphs: (a) before, (b) a f t e r 51

4.2 Euler p a r t i t io n in g .. 52

4.3 Relations between the / / , 5 , and C m a t r i c e s ... 55

5.1 The Extra Stage Cube (ESC) n e t w o r k .. 61

5.2 The E x tra Stage Cube Network: (a) Stage 0 interchange switch (b) Stage
3 interchange switch (c) Stage 0 enabled (d) Stage 0 disabled (e) Stage
3 enabled (f) Stage 3 d isab led .. 62

5.3 The F T C with in = k — 3, and one ex tra switch in each s ta g e 65

5.4 The faulty F T C with A’(l.O), A '(2 .1), and A'(2,2) faulty sw itches 69

6.1 Worst case runtim e vs. k ... 82

7.1 The F T C network with extra switches in the outer stages (Type I) 86

x

F ig u r e

7.2 The FT C network with extra switches in the second stage (Type II) . . .

7.3 The F T C network with ex tra switches in all stages (Type I I I)

7.4 Worst case runtim e vs. num ber of y.spares for various k

7.5 Worst case run tim e vs. num ber of x.spares for various n

7.6 Average case runtim e vs. number of y.spares for various k

7.7 Average case runtim e vs. num ber of x.spares for various n

7.8 N umber of simple, next simple, and successive swaps vs. x .s p a r e s

8.1 Reliability vs. num ber of y.spare switches in Type 1 networks when k =
??. = 2 0 ..

8.2 Reliability vs. num ber of x.spare switches in Type II networks when
k = n = 2 0 ..;

8.3 Cost vs. number of spare switches in Type I networks when n = k = 20
and x = 0 ..

8.4 Cost vs. number of spare switches in Type II networks when n = k — 20
and ?/ = 0 ..

C H A P T E R 1

IN T R O D U C T IO N

1.1 M otivation

1.1.1 Parallel Processing

Many of i today ’s scientific and industrial problems require enormous processing

power, and the desire for faster com puters appears boundless as the complicated

applications th a t require the processing of enormous am ount of data emerge. Multi-

microprocessors are used in areas requiring one or more of the following:

• Verj' high com putational bandw idths an d /o r short response times

• High system resilience and fault-tolerance capabilities

• Ability to operate under adverse environmental conditions

• Geographically d istributed com puting with an associated need for effective

com munication between centers

• Storage and retrieval of large volumes of da ta within a relatively short period

of time

• Very close interactions between equipm ent and hum an beings

Advances in technology have achieved some increase in com puting power.

In tegrated circuit (IC) technology replaced conventional vacuum tubes and transistors

and improved performance both in speed, size, and density. T he improvements in

device technology, versatile instruction sets, large addressing ranges, and operating

systems also contributed to the increase in processing power. T he development of

microprocessor architectures, accompanied by bigger and more powerful instruction

1

sets, has enabled the overall th roughput provided by a single microprocessor to

increase by more than three orders of magnitude during the past few decades.

However, this development is approaching the limit where these technologies can

no longer keep up with the need for more speed. To meet these problems requires

deviation from the restriction of the von Neumann architecture which uses a single

processor to fetch instructions from memory and execute them one a t a time.

Long before the advent of microprocessor technology, designers had proposed

the concept of parallel systems as a mechanism to go beyond the upper bound

on performance attainable with a single processor. A single processor can fetch

instructions from memory and execute them one at a time. Parallel systems, however,

are based on the principle tha t more than one task can be performed simultaneously.

An evolutionary change such as parallel computer architectures and super fast micro

processors makes parallel processing feasible. Parallel processing can be realized

either at the software level or a t the hardware level or at both. At the software

level, parallelism is obtained by time-sharing the computer resources among different

programs. Here, the operating system divides the CPU time among the different

programs so tha t no one program monopolizes the CPU for a long time while others

are waiting. This technique has been used on computers with a single processor to

achieve parallelism in the form of multiprogramming, multitasking, multiuser and

ti me-sli ari ng c.apabi li ti es.

W hen parallelism is implemented at the hardware level, it can take place

at the com puter level, at the processor level, or at the subprocessor level. One

hardware strategy is the use of pipelining [12], The concept of pipeline processing in

a com puter is similar to assembly lines in an industrial plant. To achieve pipelining,

one must subdivide the input task (process) into a sequence of subtasks, each of

which can be executed by a. specialized hardware stage tha t operates concurrently

with other stages in the pipeline. Successive tasks are streamed into the pipe and

are executed in an overlapped fashion at the subtask level. The pipeline consists of a

cascade of processing stages. The stages are pure combinational circuits performing

arithm etic or logic operations over the data stream flowing through the pipe. The

stages are separated by high-speed interface latches. According to the levels of

processing, Handler has proposed the classification scheme of pipeline processors

as arithmetic pipelining, instruction pipelining, and processor pipelining [6]. Vector

pipelines are special form of pipelines which are specifically designed to handle vector

instructions over vector operands. Computers with vector instructions are called

vector processors.

Multiprocessor com puters include all systems th a t use more than one processor

to perform a. desired application. The spectrum of such systems ranges from low-cost

personal computers which frequently utilize a second microprocessor for decoding

the key depressed on the keyboard, to powerful supercomputers and array processors

which contain hundreds of processors working in parallel. These processors cooperate

to execute the instructions of a program. In the ideal case, a system with n identical

processors could offer n times the throughput available with a single processor. A lter

natively, the additional processors can be used as backups, on an automatic basis,

in case the primary processor malfunctioned.

Parallel computer systems can be grouped according to Flynn's classification

[5], which is based on the number of concurrent instruction and data streams in

a computer. An instruction stream is the sequence of instructions executed by a

computer. The data, s tream is the sequence of d a ta accessed to be processed by the

instructions. Flynn defines the four classes as

• SISD (single instruction single data stream)

• SIMD (single instruction multiple data stream)

• MISD (multiple instruction single data, stream)

4

I— S IS D -
OVERLAPPED _______
OPERATION VON NEUMANN

MACHINES
MULTIPLE A L U --------

MISD ----- PIPELINE PROCESSORS

— SIMD T ~ ARRAY PROCESSORS

ASSOCIATIVE PROCESSORS

MULTIPLE PROCESSOR
- TIGHTLY COUPLED --------- SYSTEM

*— MIMD- . MODERATELY COUPLED “ DISTRIBUTED SYSTEMS

. LOOSELY COUPLED -------- COMPUTER NETWORKS

F ig u r e 1.1 Flynn's classification of multi computers

• MIMD (multiple instruction multiple data stream)

Figure 1.1 shows Flynn's classification of parallel computers.

An array com puter [14] is a .synchronous array of parallel processors which

consists of many processing elements under the supervision of one control unit. An

array processor can handle single instructions and multiple data streams (SIMDl.

Each processing element (PE) consists of a processor with a local memory. Because

of its large numbers of PEs. the array com puter is suitable lor applications in image

processing, matrix manipulation, parallel sorting, and fast Fourier transform.

Another form of parallel processing is distributed processing, which is a l s o

called "computer networking ". A com puter network is a mult icompuler arrangement

where the computers communicate via special processor-to-processor data links. This

is a looser coupling than the shared memory communication of multiprocessing

systems. A network can link computers hundreds of miles or just a f e w fee t apart.

Ml M2 Mm-1 Mm

Pm- PmP2

Interconnection Network

F ig u r e 1.2 Multiprocessor system

Short-distance networks, perhaps contained in one building, are referred to as "local"

networks. Here the com putation load is distributed am ong more than one com puter.

Communications bet ween the different computers take place in the form of passing

messages to obtain data or exchange results. The advantage of the distributed

com puting system include fast response, high availability, fault tolerance, resource

sharing, high adaptability to the changes in the work load, and better expandability.

These advantages have been enhanced by the availability of low-cost microprocessors

and data link interfaces produced by LSI circuit techniques.

1 .1 .2 I n t e r c o n n e c t i o n N e tw o r k s in M u l t i p r o c e s s o r S y s te m s

C’learlv. using many processors in the same system yields more speed than using

one processor. Recent advances in VLSI technologies, coupled with the need for

fast computers, have made large-scale multiprocessor systems economically feasible.

In such systems, hundreds or even thousands of processors are used to carry out

the com putations of a program concurrently, thereby speeding up the execution of

6

Processor 1 Processor 3

Processor NProcessor N-l

Processor 2

F ig u re 1.3 A shared bus system

the program. Many applications can benefit from this enormous computing power.

The basic architecture of a multiprocessor system is shown in Figure 1.2. In this

configuration, the .V processors carry out computations on data stored in the M

memory modules. For the interaction between the processors and memory, there

must he a communications mechanism to enable any processor to access any memory

module in the shortest possible time. This communication channel is denoted as the

interconnection network which plays important roles in multiprocessor systems.

Interconnection networks were first proposed for use in telephone e x c h a n g e s to

allow subscribers to talk with one another. Some decades later, researchers began

to consider how networks could he incorporated into computers. Many different

approaches have been considered and some implemented. These include the use of

buses, hierarchies of buses, direct links, single stage networks, multistage networks

and crossbars. The shared bus is shown in Figure 1.3. When several processors are

connected together via a bus. these processors should be capable of communicating

with each other. It is obvious tha t, as the number of processors increases, the load on

the interface increases sharply. If one provides a different bus for each path, the cost

of such multiple-bus connections increases as the square of the number of processors.

On the other hand, if only one bus is used, the contention problem between different

messages may become critical. W ith more processors/memories, the bus becomes a

performance bottleneck. Most designers opt for multiple-bus solutions. The resulting

network is named on the basis of its geometry as a s tar, a cube, a hypercube, a

hvpertree, a cluster, and by other similar self-explanatory names. In all of these

cases, a few pairs of resources have direct links with each other, bu t other pairs must

communicate via one or more intermediate nodes, thus introducing time delays and

performance degradation. In order to reduce the load on the bus, it is now becoming

common for individual processors to have cache memories.

The next simplest form of interconnection mechanism is the crossbar [17], In

a crossbar switch, every input port can be connected to a free ou tpu t port without

blocking. This is simple, bu t impractical as the number of processors increases.

A more practical m ethod is the use of multistage interconnection networks (MINs)

which consist of small-sized crossbars and links between them in a way unique for

each MIN. Usually, a multistage network consists of more than one stage of switching

elements and is capable of connecting an arbitrary input terminal to an arbitrary

output terminal. These can be divided into three classes: blocking, rearrangeable.

and nonblocking. In blocking networks, simultaneous connections of more than one

terminal pair may result in conflicts in the use of network communication links.

Examples of this type of network include the da ta m anipulator [24], baseline [17].

SW banyan [23], omega [17], flip [25], and delta [28] networks. A network is called

a rearrangeable network if it can realize all possible connections between its inputs

and outputs by rearranging its existing connections so th a t a connection path for a

new input-output pair can always be established. A well-defined network, the Benes

network, belongs to this class. A network which can handle all possible connections

without blocking is called a nonblocking network; some varieties of the Clos network

are in this class.

As systems become more complex, the reliability of the system has become a

major concern because jus t one fault in the system can degrade system performance

or cause the system to fail completely. The function of fault-tolerance is to preserve

the delivery of expected system services in the presence of errors. There are two

major aspects to fault tolerance: (1) detecting and diagnosing faults; and (2) avoiding

known faults if such a capability exists. Techniques such as test pa tte rns , dynamic

parity checking, and write/rea.d-back/verify can be used in various interconnection

networks for detecting and diagnosing fault tolerance. In order to achieve fault

tolerance, the topology of the network can be modified, usually by adding spare links

and switches. O ther m ethod involve error-correcting codes, bit-slice implementation

with spare bit slices, and duplicating the entire network [57], Many of the known

interconnection network can be made fault tolerant. Some of the examples are the

E xtra Stage Cubes (ESC) [56], the m ultipa th omega network [59], the F-network

[63], the enhanced I ADM network [30], the merged delta [28], the extra stage gamma

network [58], the /?—network [66] and the INDRA network [61]. The fault tolerant

Clos network (FTC) has been proposed by Nassar [60]. Little about the properties

and routings of fault tolerance of the Clos networks is available in the literature.

1.2 Background

Interconnection networks have been widely studied since they play im portant roles

in telephone switching networks and other communication, data networks arid

computing systems. In multiprocessor systems, they are needed as a means of

interprocessor communications. The three-stage Clos network [31] served as a basis

for the Benes network [32] and the W aksman network [35]. Later, other networks

such as the omega, network [29], the baseline network [17] and the cube-connected

network [26], were proposed in order to simplify the Benes network.

Several control algorithms for Clos networks have been proposed. The earlier

algorithms were based mostly on m atrix decomposition methods. Neiman [33] has

proposed an 0 (n 2k 2) algorithm which consists of two phases: a relatively simple

preparatory phase, followed by a complex iteration phase. Here, n represents the

num ber of switches in the second stage, and k the num ber of switches in the outer

stage of the Clos network. Tsao-Wu [34] has presented two modifications to the

preparatory phase, which result in lowering the probability th a t the second phase

will be needed. However, this algorithm does not lower the worst case complexity of

N eim an’s algorithm. Waksman introduce another new algorithm [35], and Opferman

and Tsao-Wu suggested the Looping algorithm for the Benes network [32], A different

algorithm has been proposed by R am anujam [36]. However, Ivubale [37] showed that

R am anujam 's algorithm fails for some permutations. Also, the m atrix decomposition

algorithm suggested by Jajszczyk [38] has been proved to fail by Cardot [39]. These

algorithms select elements from the m atrix according to certain rules, and backtrack

when they are unable to obtain a perm utation matrix. These rules are ra ther intuitive

and do not work in some cases.

Many algorithms are based on the minimum edge coloring on a bipartite

multigraph. Hwang [40] suggested th a t edge coloring algorithms for bipartite graphs

can be adapted to decompose Clos networks. Vizing’s m ethod uses 0 (n 2k) time

to perform a complete coloring since it needs O(k) t im e to find the alternate

pa th to color an edge. The Euler partitioning approach to edge coloring uses a

divide-and-conquer technique and was formalized by Gabow and Kariv [46]. whose

algorithm runs in time 0 (n k * lg k). A modified version of the previous algorithm

was presented by Gabow [45], and it runs in time 0 { n k \ g k). Cole and Hofcroft

[47] also proposed an algorithm by preprocessing the edges while keeping the degree

10

of a vertex invariant. Lev, Pippenger and Valiant [52] developed parallel edge

coloring algorithms for routing on Clos networks. Recently, Gordon [43] introduced

an algorithm which runs in tim e 0 { n k z!2) with the aid of specification and count

matrices. Chiu [44] dem onstrated th a t Gordon's algorithm displays errors for some

permutations.

Parallel algorithms were proposed by Nassimi and Sahni [49]. The time bounds

of these algorithms may be reduced if all of the switch sizes are integral powers of

two. Another parallel algorithm was proposed by Carpinelli [50] which eliminates

backtracking by introducing the concept of partitioning. The Benes network control

algorithm for frequently used perm utations was reported by Lenfant [53].

The self-routability of Clos networks has been studied by Douglass and Oruc

[54]. This study shows th a t the Clos network is self-routing if and only if A’/??? < 2

or m = 1. Raghavendra [55] also reported self-routing algorithms in Benes and

shuffle-exchange networks.

Meanwhile, a great deal of effort has been directed to the fault tolerant

multistage interconnection network in order to make the network more reliable and

fault tolerant. A single fault in the interconnection network can cause a severe degra

dation in performance unless measures are provided to make the network tolerant

to such faults. W ith developments in VLSI technology, large scale multiprocessor

systems with fault-tolerant interconnection networks have become feasible. Many

fault tolerant interconnection networks have been proposed. However, few fault

tolerant Clos networks have been studied until Nassar [60], who provided alternate

paths by adding multiplexers and switches to the network.

Although several control algorithms have been proposed in order to reduce the

run time in the Clos interconnection network, little effort has been made in improving

the performance by extending the algorithm to the fault-tolerant cases. Nassar's

control algorithm [60] for the fault tolerant Clos network is based on Neiman's

11

algorithm, and has the same time complexity as Neiman's algorithm. Considering

th a t the spare switches can provide alternative paths in the system, his algorithm

could have been faster if he could utilize these paths during the routing process.

The ex tra switches in the fault-tolerant Clos (FTC) network have been found to

give great flexibility to the routing algorithms by providing alternative paths to the

system, and thus can be used to improve the run time significantly when the system

displays few or no faults. No studies have been made so far about the utilization of

the extra spare switches for the improvement of routing speeds in the fault tolerant

Clos network.

In this thesis, Gordon’s algorithm is shown to display errors in some perm u

tations. Then, the new simple algorithm which works for all perm utations for the

control of rearrangeable Clos networks is proposed, which is ba»sed on his algorithm.

The new algorithm is extended to the fault tolerant Clos (FTC) network. The extra

switches in the fault-tolerant Clos (FTC) network are used to improve the run time

significantly since they provide alternative paths to the system when the system

displays few or no faults. The effect of increasing the number of ex tra switches on

system routing time, reliability and cost in fault tolerant Clos networks is analyzed.

Finally, the optim um number of ex tra switches on the fault tolerant Clos network is

determined which will best satisfy the run time, reliability and cost constraints.

1.3 O utline

This research has dem onstrated th a t Gordon's algorithm displays errors for some

permutations. Next, a new algorithm is proposed for the Clos networks which is

based on Gordon’s algorithm. This algorithm is extended to the FTC networks, and

resulting run times are compared with the ordinary networks. The FTC network has

been classified into three types for the purpose of developing algorithms system at

ically. The reliabilities for these networks are examined, and the optim um number

12

of extra, switches which satisfies the reliability, run time and cost, constraints is

considered.

The rest of the thesis is organized as follows. In chapter 2, basic concepts and

relevant notation which will be used in the thesis are introduced. These include

the representation of interconnection networks, fault tolerance, and reliability of the

system. In chapter 3, the im plem entation of im portan t MINs such as the crossbar

network, Clos network and Benes network are examined. Routing algorithms based

on the m atrix decomposition, edge coloring and matching, and parallel decomposition

are discussed in Chapter 4. Next, Gordon’s algorithm is examined and then a counter

example is given which dem onstrates th a t his algorithm has a flaw. A new algorithm

for routing on ordinary Clos networks and three kinds of swaps used in the algorithm

are introduced in chapter 5. In chapter 6, some of the fault tolerant multistage inter

connection networks, such as E x tra Stage Cube (ESC) and Fault. Tolerant Clos (FTC)

networks, are addressed. In chapter 7, three types of F T C network are discussed,

and swapping rules and conditions in each case are considered. A new' algorithm for

the FT C network is proposed, which is extended from the algorithm illustrated in

chapter 5. Reconfiguration of the FT C network is considered next. In chapter 8.

reliabilities of the fault tolerant Clos network are considered and corresponding space

complexities are examined. Also, the fault detection and location of the FTC network

is considered. Finally, conclusions and open problems are presented in Chapter 9.

C H A P T E R 2

M ODELLING OF IN TER C O N N EC TIO N N ETW O RK

2.1 Introduction

The modelling of interconnection networks is im portan t in order to analyze them.

In this chapter, the concept of perm utations as well as basic definitions and notations

tha t are used in interconnection networks are introduced in section 2.2. These provide

a basis for representing interconnection networks in the various m atrix forms by

setting each of the stages of the network. Section 2.3 introduces b ipartite m ulti

graphs, which is another method of representing interconnection networks. These

can be used to route a perm utation for Clos network in edge coloring algorithms, as

will be shown in chapter 4. The concept of fault tolerance is described in section 2.4.

followed by the concept of reliability in section 2.5. These will be used to describe

the fault to lerant Clos network, which will be discussed in chapter 5.

2.2 Interconnetion Networks

2.2.1 Representation

A set is a collection of distinct elements. A mapping or a function from a set .4 into

a set B is a rule which assigns to each element a of A exactly one element b of B.

It is written as b=(a) f to imply tha t a is m apped to b by f . Let / be a mapping of

A into B. It is said to be one-to-one if, whenever ai ^ a 2, (a i) / ^ (a2) / and it is

said to be onto if for each b G B, there exists a £ A such th a t («) / — b. Let / be a

mapping of set A into set B and let g be a mapping of set B into set C . The mapping

/ • g . defined by (a) f ■ g = ({a) f)g = (b)g = c, a € A, b € B , c € . C , is called the

composition of / and g. A perm utation of a set S is a one-to-one mapping of 5 onto

13

14

itself. It is written as {x)P = y to imply tha t x is mapped onto y by perm utation

P. Both x and y belong to S.

A group is a set. G with a binary operation do t(') on G, where the binary

operation is associative, there is an identity element e in G such tha t e • x — x ■ e = x

for all x in G, and for each x in G, there is an inverse element x' in G with the

property tha t x' ■ x = x ■ x ’ = e. A subgroup of a group G is a subset of G which also

forms a group with respect to the group operation of G. The set of all perm utations

of N elements on S form the symmetric group, denoted as E/v • The cardinality of

Ea- is N\.

Two notations are used for representing perm utation P. In s tandard notation.

also called two-row m atrix form, there are two rows of elements; the first row contains

the source elements to be permuted and the second row contains the destination

elements that they are mapped onto. It is written as P = ('Tl 32 Xn] to
V 2/i 2/2 ■ ■ ‘ Vn J

imply tha t (x i)P = y u 1 < i < n, where S' = {.Ti,;r2,- • •,.?„} = {t/i,t/2. • • ••*/«}■
/ l 2 3 4 V

For example, I 0 j is a perm utation which maps 1 to 2, 2 to 4, 3 to itself

and 4 to 1, where S = {1 ,2 ,3 ,4}. In cyclic notation, the perm utation is of the

form (,ri ,.r2, • • •, x n) where .Ti is mapped onto .r2, ,r2 is mapped onto .73, and so on.

The final element x n is mapped onto the first element .Ti. It is written as P =

(.r i . .r2. • • •,.?•„) to imply tha t (x^)P = ,r2, [x2)P = x 3.- ■ •, {xn)P = .Ti. where x, G S.

5 = {.Tj. ,r2. • • •, .rn }. The previous example P = ^ ^ ^ ^ ^ will be represented

by the cycle (1 2 4). Any element which is m apped onto itself is not written explicitly,

so 3 is not included in the cycle (1 2 4). Particularly, the permutation e is called

the identity perm utation , and (x) t — x for all x £ S. For example, the perm utation

6 = (l ^ 3 4) m a Ps every element onto itself.

Given a switch with N inputs and N ou tputs, the setting can be expressed as

an N x N m atrix , K . The rows of the m atrix represent the inputs of the switch and

15

the columns represent its outputs. I \ [i , j] = 1 if the switch is set so th a t input ? is

connected to ou tpu t j ; otherwise, K [i , j] = 0.

The K m atrix can be used to represent a stage. A stage is a set of switches

which are disjoint, th a t is, there is no possible connection from the ou tpu t of one

switch to the inpu t of another in the set. Notice th a t the perm utations for the two

2 x 2 switches were combined to form one perm utation encompassing four elements.

The m atrix approach is similar; the 2 x 2 matrices corresponding to the switch

settings are embedded in a 4 x 4 m atrix which defines the setting of the entire stage.

Given the settings of two switches

' 0 1 ‘ r i o ‘
1 o

.
»

>. CO .fit II *o1

the 4 x 4 m atrix which results from their embedding is

' 0 1 0 0 '
1 0 0 0
0 0 1 0

. 0 0 0 1 .

In the perm utation notation, 1 and 2 had to be m apped amongst themselves, as

did 3 and 4. This is because the switches are disjoint, and the inpu t of one switch

cannot be mapped onto the ou tpu t of the other. In the m atrix this is accomplished

by setting the elements of the quadrants not on the main diagonal to zero. In this

example, rows 1 and 2 cannot have non-zero entries in columns 3 and 4. Figure 2.1

shows the resultant switch settings.

A multistage perm utation network consists of several stages of switches. The

ou tpu ts of one stage serve as the inputs to the next stage. T he mapping realized

by the network is derived from the mappings of the individual stages. If the maps

of each stage are represented as matrices, the m atrix representing the map of the

entire network is the ordered product of the stage matrices. As an example, consider

a three-stage network as shown in Figure 2.2. The matrices corresponding to the

stage settings are, respectively,

16

2

F ig u r e 2.1 Switch settings of two 2 x 2 switches

' 0 1 0 0 ' 0 0 1 0 ' 1 0 (J ft ■

1 u u u 0 u 0 1
a n d

0 1 u (J

0 t) 1 0 1 0 0 t) 0 t) u 1

. 0 0 0 1 . . u 1 0 0 . _ 0 0 1 u .

Their ordered product is

0 0 1 0
0 0 (J 1

1 U (J 0

0 1 0 0

The matrix of this kind becomes very sparse as the number of inputs increases.

For :Y inputs, a m atrix of this form has A'2 entries. In order to reduce this size,

a compacted m atrix is often used. The A’ x A’ m atrix is consolidated into a /,■ x /,-

matrix. . where in — X / k . The first row of 11,n is the sum of the first m nuv>

of the original matrix: the second row of 7 7 is the sum of the second in rows, and

so on. The columns are compacted in a similar manner. The 2 x 2 matrix. / / j .

corresponding to the ordered producl matrix derived above is

0 2
2 0

17

Not.e th a t the sum of the elements in each row and in each column is exactly 7 7 7 .

There is a trade-off th a t results from the savings in m atrix size; one compacted
0 2

m atrix may represent more than one mapping. The compacted matrix

represent any of the following matrices.
2 0

mav

• 0 0 1 0 ■ ■ 0 0 1 0 ■ ■ 0 0 0 1 ' ' 0 0 0 1 ■

0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0
1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0

. 0 1 0 0 . . 1 0 0 0 . . 0 1 0 0 . . 1 0 0 0 .

When dealing with com pacted matrices, additional information is required to

distinguish between mappings. The m atrix H m is the representation used by the

matrix decomposition class of algorithms for routing on Clos networks. The H m

m atrix is a typical way of representing the perm utation. However, as the m atrix

becomes sparse, further reduction in size can be possible with the use of S and C

matrices, which are called the specification m atrix , and the count matrix. In the .S’

m atrix , the k x k m atrix H m is consolidated into a k x 77 m atrix where ?? is the sum

of the elements in any row or column of H m. This is especially useful in representing

the Clos network as is explained in chapter 5. In order to obtain the S m atrix , let

P = [V ^ ̂] , where 0 < i < N — 1 and N = nk. For each
\ y 0 y 1 • • • y i • • • y N - i J

signal 7. calculate x and t where x — _i/n\ is the first-stage input switch a t which

the signal arrives, and t = [y i /n \ is the last-stage ou tpu t switch to which it should

be routed, and set any unassigned element which is the next unassigned element in

the 2 th row of S to t. On the o ther hand, each element of C, c[:r, y], 0 < x < k — 1.

0 < ?/ < 77 — 1, is the num ber of occurrences of the integer x in column y of S. As

an example, the perm utation m atrix is given as

P = 0 1 2 3 4 5 6 7 8 9 10 11
2 10 3 5 6 11 7 1 9 4 0 8

The H 3 m atrix is

H =

1 0 1 1
1 1 0 1
0 1 1 1
1 1 1 0

IS

The 5 and C matrices are

' 0 3 1 ' ' 1 2 0 '
1 2 3

and C =
2 0 1

2 0 3 1 1 1
. 1 0 2 . 0 1 2

S =

A m ultistage perm utation network consists of several stages of switches. The

o u tp u t of one stage m ust be connected to the inputs of the next stage. The perm u

ta tion realized by a. multistage network is the ordered composition of the perm u

ta tions realized by its stages. Consider a 4-input, 3-stage network. The first stage

realizes the perm uta tion ^ 9 1 4 3

/ 1 2 3 4 A / 1 2 3 4
I g j 9] , and the th ird stage the perm utation I ̂ 3 ‘> 4

stage perm utations in order, the first perm uta tion m aps input 1 onto output 2. This

ou tpu t 2 of the first stage is assigned to inpu t 2 of the second stage; the second

stage perm uta tion m ap routes this to ou tpu t 4 of the second stage. Finally, input

4 of the third stage is routed to o u tpu t 4, so the network routes input 1 to output

, the second stage realized the perm utation

Composing

4. R epeating this for the other inputs, the perm utation realized by entire network is
1 2 3 4
4 2 3 1 , as shown in Figure 2.2.

2.3 B ipartite M ultigraphs

The b ipartite multigraph also can be used to represent a perm uta tion for Clos

networks, which will be introduced in chapter 3. A graph G — (K E) is an ordered

pair of finite sets V and E. T he elements of V’ are called vertices, and the elements

of E are called edges. An edge (tk i d) is an unordered set of two distinct vertices. If

an edge (v. iv) can occur more than once. G is a multi-graph. Edge (v.u') is incident

to v and to w. and vertices v and w are adjacent. A subgraph of G is a graph whose

vertices and edges are in G. To delete edge e from G means to form the subgraph

G — t . consisting of all vertices of G and all edges of G except e. To delete vertex v

from G means to form the subgraph G — v , consisting of all vertices of G except v.

19

2

3

4

F ig u r e 2.2 Switch settings of three stage network

and all edges of G except those incident to r . A graph corresponding to a function

has the property that the vertex set can be partitioned into two disjoint subsets

f i and D {R corresponds to the set of range vertices and D to the set of domain

vertices) such that all edges in the graph join a vertex in D to one in R. There are

no edges that join two vertices in R or two vertices in D.

A graph whose vertex set can be partitioned in this way is called a biparlil<

graph. All graphs that correspond to functions are bipartite. The degree of a vertex

r is the number of edges incident to v. An example of a b ipartite multigraph is

shown in Figure 2.3. A graph is regular if all vertices have the same degree. A path

P is a sequence of edges (t>,. r 2). (to. t ’3) (r , T h e ends of P are vertices

C] and r„ . If tq ^ r„. P is open, otherwise P is closed. A graph is connected if

there is a path between any two distinct vertices. A connected component of a graph

is a maximal connected subgraph. A matching M of G is a set of edges, no two of

which are incident to the same vertex: M covers any vertex incident to an edge in

M. An edge coloring of G is an assignment of a color to each edge in G such that

20

F ig u r e 2 .3 A bipartite multigraph

no edges incident to a vertex have the .same color. Thus all edges of a given color

form a matching. A minimal edge coloring uses the fewest number of colors possible.

The application of coloring and matching to routing C'los network will he discussed

in Chapter 4.

2.4 F a u l t T o le r a n c e

A fault tolerant MIN is one that provides service even when it contains a faulty

component or components. A fault can be either permanent or transient. Fault

tolerance is defined only with respect to a chosen fault tolerance model, which has t wo

parts. The fault model characterizes all faults assumed to occur, stating the failure

modes for each network component. The fault tolerance criterion is the condition

that must be met for the network to be said to have tolerated a given fault or faults.

The fault model is the type of faults that can occur in the network. Implicitly,

the fault model specifies the type of faults that can be recovered from using t h e

proposed fault tolerance design. Different designs specify different fault m o d e l s . A

21

good design, however, is one whose fault, model includes as manj' fault types as

possible. To illustrate, a typical fault model is as follows.

• Any network component can fail: MINs are made up of two types of

components which are switches and links.

• Switches and links are likely to fail.

• The network is capable of recovering from any such fault.

• A link fails if it is open or short circuited. A switch fails due to some internal

malfunction.

The ex tra hardware added to provide fault tolerance to the network fails at

a lower ra te th an the network hardware. This assumption is usually made for two

reasons. First, if the extra hardware added to the network to make it fault tolerant

could be assumed to fail at any significant rate, then it would not be possible to

propose any fault tolerance design. In addition, this assumption can be justified for

MINs because these components usually remain idle under normal conditions. Thus

they can be expected to have higher lifetime than the actively working components

of the network.

The fault tolerance criterion is the condition tha t must be met in order for the

system to be called fault tolerant. The fault tolerance criterion for the networks is

mainly full-access retention. T h a t is, after a fault occurs, each processor must still

be able to com municate with any memory module. However, the two fault tolerant

designs can offer a higher criterion, i.e., full recovery. Full recovery is the ability of the

network to regain its pre-fault connectivity after a fault occurs. A network is single

fault tolerant if it can function as specified by its fault tolerance criterion despite

any single fault conforming to its fault model. Generally, if any set of i faults can

be tolerated, then a network is i-fault tolerant. A network th a t can tolerate some

22

instances of i faults is f-robust although not 7-fault tolerant. Many fault tolerant

systems require fault diagnosis such as fault detection and location to achieve their

fault tolerance. Techniques such as test patterns , dynamic parity checking, and

w rite/read-back/verify can be used in various interconnection networks.

Fault tolerance can be achieved at various level in a system. Techniques for fault

tolerant design can be categorized by whether they involve modifying the topology

of the system. Three well known methods th a t do not modify topology are error-

correcting codes [64], bit-slice implementation with spare bit slices [63], and dupli

cating an entire network [65].

2.5 Reliability

2.5.1 Fundamentals

The reliability of a system is defined as the probability th a t the system will perform

a required function under stated condition for a s ta ted period of time t. M a th em at

ically. the reliability', R , of a system is a function of A and t, where A is a constant

representing the failure rate (per unit time). To simplify the analysis in this thesis,

the time factor will be only implicit. In other words, when it is said tha t the relia

bility of a switch is it will mean the reliability of the switch over a given period of

time t. This is done because the focus will be on comparing reliabilities, ra ther than

obtaining the absolute reliability value. In comparing two networks, for instance,

the two networks should be under the same circumstances, including the period of

time, t , hence the omission of the time factor. Predicting reliabilities usually involves

dealing with probabilities. It stands to reason then th a t an overview of probability

theory should be given before discussing the fundamentals of reliability.

23

a) Series

b) Parallel

c) Series-parallel

F ig u r e 2.4 Series, parallel, and series-parallel systems

2 .5 .2 S y s te m R e l ia b i l i ty

Simple systems can generally be classified into three categories as shown in Figure

2.4: series, parallel, and series-parallel. A system can be broket) down into isolated

components. First, a series system is defined as a complex system of independent

units connected together, or interrelated, in such a way that the entire system will

fail if any one of the units fails. It is assumed that the failure of one component has

no effect on the probability of any other component failing. Titus, the system can

he no better than its weakest component,. Series reliability is calculated using the

product rule as

r . = n p .

1=1
where P, is the probability that a component i of the system will function properly.

W hen component reliabilities are equal, the reliability of the system is

/?, = (P i) n

24

The unreliability of the system is defined as 1—reliability. Thus, the unreliability of

a system is

U, = l - R t = l - f [P i
!=i

On the other hand, a parallel system is defined as a set of interrelated

components connected in such a way th a t a redundant, or standby part can take

over the function of a failed part to save the system. Redundancy refers to the use of

more than one part for the same function. The calculations for parallel reliability are

more complex than those for series reliability and include the concept of unreliability.

The parallel reliability of a system is

R P = 1 - n u >
!=i

For equivalent, component unreliability,

= 1 - (£ / , •) " = i - (i - < p . r

Parallel reliability increases as the num ber of components increases, which is the

opposite of the series systems. Parallel systems also display marginal proba

bility. which refers to the increase in reliability as components are added. As the

redundancy is increased in parallel systems, it is im portant to balance the costs

involved.

Mixing the two kinds of systems, there can be a series-parallel system which

includes both series and parallel components. Reliability for these systems can be

determined by computing the reliabilities separately, using the rules th a t apply to

either series or parallel systems, until the entire system is completed.

Sometimes a system has n parallel components but needs at least m of them

to remain operational. This problem is a binomial distribution. The reliability of

the system in this case can better be expressed as unity minus the probability of the

complementary event (tha t is, failure occurring from having between 0 and m — 1

operational components). The operational components are indistinguishable from

each other, and so are the non-operational components. Recall tha t the way to count

the number of wavs these components can be arranged together is a combination

problem. Thus the reliability of the system is

R = 1 ̂ ” j P ‘(l - P) n~l

This equation is used in chapter 8 to obtain the reliability of the fault-tolerant Clos

network.

C H A P T E R 3

IM PLEM ENTATIO NS OF M INS

3.1 Introduction

The overall performance of multiprocessor configurations is affected by the number

and the type of processors, the communication mechanism between the computing

sources, the characteristics of the com putational workload, and the control program.

Whereas the m ajor constraint in uniprocessor systems is the speed of the processor,

the critica.1 factor in multiprocessor systems is the speed of the interconnection

mechanism. The performance of the interconnection mechanism, on the other hand,

is determined by network structures and routing algorithms. A broad spectrum

of networks has been studied ranging from simple linear arrays to the completely

connected situation, with all o ther configurations falling in between. In many appli

cation, the choice of an appropria te interconnection network is a key issue in the

design of any system with multiple processing resources. Nonblocking networks

which work for all perm utations are particularly well suited in these purposes.

Rearrangeable nonblocking networks and their routing methods are also studied for

their potential uses.

In this chapter, design factors for interconnection networks are discussed in

section 3.2. In next two sections, the fully-connected and crossbar networks, which

are the most straightforward in design, are examined. In section 3.5, the construction

of the Clos network capable of m apping its N input term inal to its N output terminal

is described. Finally, the Benes network is discussed in section 3.6, followed by

discussion in section 3.7.

26

27

3.2 Design Factors of Interconnection Networks

There are fundamental decisions in determining the appropriate architecture of an

interconnection network. The decisions are the operation mode, control strategy,

switching m ethod, and network topology [17]. Among the four decisions, network

topology is a key factor in determining a suitable architectural structure. A network

can be depicted by a graph in which nodes represent switching points and edges

represent communication links. The topologies of interconnection networks tend to

be regular and can be classified into the following two categories: static networks

and d y n a m ic . networks. In a static network, links between two processors are

passive and dedicated buses th a t cannot be reconfigured for direct connections to

other processors. Topologies in the static category can be classified according to

the dimensions required for layout, for example, one-dimensional, two-dimensional,

three-dimensional and hypercube. In a dynamic network, links can be reconfigured

by setting the network’s active switching elements.

There are three topological classes in the dynamic network: single-stage,

multistage, and crossbar. A single-stage network is composed of a stage of switching

elements cascaded to a link connection pattern . The shuffle-exchange network is

a single-stage network based on a perfect-shuffle connection cascaded to a stage

of switching elements. A multistage network consists of more than one stage of

switching elements and is usually capable of connecting an arbitrary input terminal

to an arbitrary ou tpu t terminal. M ultistage networks can be one-sided or two-sided.

The one-sided networks have input-output ports on the same side. The two-sided

networks have separate input and ou tp u t sides.

The control-setting function can be managed by a centralized controller or by

the individual switching element. T he la tter strategy is called distributed control

and the first strategy is called centralized control. Generally, the centralized control

is simple, bu t takes a longer time. In contrast, the distributed control is fast bu t

28

F ig u r e 3.1 The completely connected network

requires additional computing .sources in each switch. The typical operation modes

of interconnection networks can be classified into three categories: synchronous,

asnychronous. and combined. Also, three switching methodologies can be identified

as circuit switching, packet switching, and integrated switching, which are not

covered in this thesis.

3 .3 C o m p l e te ly C o n n e c t e d N e tw o r k

The ideal situation would be to link directly each processor to every other processor

so that the system is completely connected as shown in Figure 3.1. 1'nfort uriat ely.

this is highly impractical for large N because it requires ;Y — 1 connections for each

processor, and the total number of connections needed in the network would reach

A ' (A — 1). For example, if A' = 2 y. then 2 y(2 y — 1) - 2 6 1 . 6 3 2 links would b e n e e d e d .

3.4 C r o s s b a r N e tw o rk

The simplest connection network is the Crossbar network, which has one switch lor

each possible input-output connection. Given A ’ inputs and A" outputs, a crossbar

29

u ------

1 ...

------- , h---------------- j

2

r

•
•
•

N -l ... ---------------- O

• 9 •

0 1 2 N-l

F ig u r e 3.2 The :Y x A’ crossbar interconnection network

network would have A'2 switches and 0(A'2) area. The routing algorithm to set the

switches is trivial. The A’ x A' Crossbar network is shown in Figure 3.2. All Crossbar

networks are strictly non-blocking. The difficult}- with crossbar networks is that the

cost of the network or the number of crosspoint switches which grows with A"2. This

makes the crossbar network infeasible for large systems.

3.5 C los I n te r c o n n e c t i o n N e tw o rk s

The interconnection networks shown above are impractical as the number of i n p u t s

increases. .Many other networks are reported in the literature. Most of them are

blocking networks which can not implement all the permutations. Rearrangeable

nonblocking networks such as the Clos network and cellular networks are networks

without blocking properties. The three-stage C'los interconnection network, which is

illustrated in this section, is shown in Figure 3.3.

gu
re

3.3

1 l

ie
! h

ro
r-

s)
 a

sc

('
lo

s
n

m
v

o
rk

31

3.5.1 Network Structures

The three-stage Clos network [31] consists of two symmetrical outer stages of

rectangular switches, with an inner stage of square switches. It is completely

determined by the integer param eters n, m,and k tha t give the switch dimensions.

The first stage contains k switches, each of which has m inputs and n outputs. Each

switch is actually' a simple crossbar switch which can realize any mapping of its

inputs onto its outputs on a one-to-one basis. The second stage consists of n k x k

switches, each of which receives exactly one input from each first-stage switch. The

ou tpu t stage has k n x m switches, each of which receives exactly one input from

each second stage switch. The num ber of inputs to the network is N = mk. Inputs

and outputs to the first-stage switch or third-stage switch i are numbered from

(?' — 1) ??? + 1 to 7?77. 1 < ?' < k. The Clos network can reduce the area of the

crossbar switches for the same number of inputs. For example, when A” = 12 with

?7 = ?77 = 3 and k = 4. the number of cross points in the crossbar is 122 = 144, while

in the Clos network, total num ber of cross points is 2 x 4 x 32 + 3 x 42 = 120. The

Clos network is much easier to visualize when it is illustrated in three dimensions as

shown in Figure 3.4.

3.5.2 Properties of the Clos Networks

In contrast to most other interconnection networks, the Clos network satisfies some

im portan t characteristics. One of the properties of the Clos network is the rearrange-

ability if the network satisfies the condition n > m . The interconnection network

is rcarrangtablt if it can connect any idle input to any idle output by possible

rearrangement of its existing paths. If the network satisfies m = n = k. then

at most /? — 1 existing calls need be moved in the Clos network in order to connect

an idle input-output pair. Also, Clos showed tha t for m > 2n — 1. the network is

nonblocking in the strict sense [31]. The network is strictly nonblocking if it is always

32

F ig u r e 3.4 The three dimensional Clos interconnection network.

possible to connect together an idle pair of input-outputs without disturbing the

routing already established, no m atter in what state the network may be. Note here

that the network is nonblocking in the wide sense when putting up new calls results

in avoiding all the blocking states, so that the system is effectively nonblocking.

3 .6 B e n e s N e tw o r k s

Benes considered the class of rearra.ngea.ble 3-st.a.ge Clos networks with n — in — 2

and /.' = 2' for some positive integer i. He showed that any such network can he

recursively decomposed into 2/ -f 1 stages, each consisting of .'Y/ 2 2 x 2 cells. Benes

networks have 2(lg A') — 1 stages and 0 (N lg A') crossbars, where A’ — ink =

2 '+ l . To illustrate Benes’s decomposition, consider the 3-stage Clos network with

n = in = 2 and k — 4 which is depicted in Figure 3.5. The first and last stages

consist of four 2 x 2 crossbars, and the center stage consists of two 4 x 4 cells. These

cells are decomposed into 2 x 2 crossbars and the total number of stages is live, each

of the stage consists of four switches, This yields the final S x 8 Benes network.

ur
e

3.
5

I l
ie

s
x

n
 B

er
n'

s
ne

iw
ur

3 4

0 1 2 3 4 5 6 7

0 > D
s /

1 □
2 > □

3 □
4 □

/ \ \ /
5 S / □
6 □

7 D <

F ig u r e 3 .6 An example of Looping Algorithm

Sequential routing algorithms [42] need 0(.A’log A) steps where A is the

network size. O ther methods such as the parallel processing m ethod, heuristic

method, or recursive approach are used to improve this time complexity. One ol

the basic algorithms is the looping algorithm. In order to illustrate the looping

algorithm, consider a permutation matrix P

0 1 2 3 4 5 6 7
P 1 3 7 4 0 2 (i 1 o

The looping algorithm starts recording the perm utation. P as shown in Figure Tti.

The two output numbers of a switching element in the output stage are shown

in the same column, and the two input numbers of a switching element in the input

stage are shown in the same row. Then choose an arbitrary entry in the chart as

a starting point. For example, starting at row 23 and column Ul. then look for a

same-row or column entry to form a loop and choose row 23 and column -13. The

process continues until a loop is obtained by re-entering row 23 and column 01. 1 lie

loop's member entries are then assigned "a" and “b" alternately. The second loop

can be formed in the same way. Then, assign input and output l i n e s named "a lu

35

subnetwork “a" and those named “b” to subnetwork “b” . The looping algorithm can

be applied recursively to the two subnetworks. Figure 3.6 shows an 8 x 8 Waksman

network [35].

3.7 Discussion

T he Clos network is nonblocking and rearrangeable. Any idle input terminal of

the network can always be connected to any idle ou tpu t term inal by rerouting the

existing connections if necessary. Also, the Clos network has an area complexity

less than 0 (N 2). For systems with a large number of processors, the Clos network

has the advantage of area complexity when compared with crossbar switches. The

propagation delay is also an im portan t consideration in perm utation network design.

Clos networks have propagation delays ranging from 0 (lg N) to O (N) . depending

on the values of the design parameters. O ther networks such as Benes networks

are of importance. Various methods of implementing control algorithms have been

developed, and will be discussed in chapter 4.

O — (N m m \D

o (N m

Fi
gu

re

3.7

Th
e

8x
8

W
ak

su
ia

n
ne

tw
or

k

C H A P T E R 4

D E C O M P O S IT IO N OF CLOS M IN S

There are many algorithms reported in the literature for routing the Clos network.

These algorithms can be classified basically in three categories: m atrix decompo

sition, edge coloring and matching, and parallel decomposition. These algorithms

determine the setting of the switches of a perm utation network to realize a given

perm utation, or a connection pa tte rn of every stage from the inputs to the outputs.

First, in this chapter, the m atrix decomposition algorithms of Neiman, Ramanujam,

and Jajszczvk are studied. Also, the counter examples of Kubale and Cardot are

considered. The class of routing algorithms for Clos networks which make use of

edge coloring on bipartite graphs are presented. These two decomposition methods

are reported to be basically the same [50]. Also, the parallel algorithms of Carpinelli

are examined. Finally, Gordon's algorithm is discussed, which is a basis of the new

algorithm tha t will be introduced in chapter 6 .

4.1 Introduction

In the Clos network, central routing units are required whose function is to receive

a perm utation, and to find the corresponding settings for each individual switch

to realize tha t permutation. Many routing algorithms have been developed for the

Clos networks. But routing processes of the Clos network are extremely serial in

natu re and there often occur routing conflicts, which result in backtracking. The

backtracking is going back to the previous steps when the conflict occurs in order

to keep decomposing the m atrix . The basic approach in routing the Clos network is

to find the switch settings of the second stage switches, and from there, set the first

and th ird stages switches accordingly. Once we know the second stage settings, we

37

38

can set the rest of the switches very easily, without any calculations. However, this

is not true if we try to decide the switch settings from outside to inside. Also, setting

the second stage switches involves conflicts and the algorithm must backtrack to find

the right switch settings. This keeps the algorithm relatively slow, and make the

algorithm highly sequential. This is one of the reasons why few parallel algorithms

have been developed so far. For this reason, Carpinelli's [50] parallel algorithm checks

the possibility of backtracking using a partitioning technique before decomposing the

matrix. One of the ways to improve the speed of the algorithm is preprocessing, which

arranges the switch settings to be closer to the final settings before the algorithm

starts, so the total workload can be reduced. Three approaches have been explored

in the litera ture for decomposing the matrix: the m atrix decomposition approach,

the coloring and matching approach and the parallel approach, which are covered in

this chapter.

4.2 M atrix D ecom position

4.2.1 N eim an ’s Algorithm

N eiman's algorithm consists of two stages. The first step tries to m ark all k elements

from the m atrix . If the first step could not mark all k elements, then the second step

takes over and finishes marking the elements. The algorithm is illustrated as follows.

Step 1: S tarting with the left-most, column, m ark a non-zero element which has no

marked elements in its row. Repeat this process on the next column, continuing

until all columns are processed. If during this marking process, a column is found

to have no non-zero entry whose previous entries in its row are not marked, then

the algorithm proceeds to the next column without- marking any elements in tha t

column. If k elements are marked, then the algorithm is done; otherwise, Step 2

must be performed once for each column with no marked elements.

Step 2: If the num ber of marked elements in Step 1 is x, then the num ber of unmarked

39

elements must be k — x. Mark a non-zero entry in a column with no marked elements,

say Unmark the other marked element in this row, H m[i,j\. Mark another

non-zero element in this column, H m[i,j\, following the rule th a t once this stage

m arks an element in a row or column, no other element may be marked in that row

or column until this iteration of Step 2 is completed. Continue to unm ark and m ark

elements until no row or column has more than one marked element. This will result

in a matrix with exactly one more marked element than before executing Step 2.

The k marked elements represent the setting for one of the m switches of stage

2. A marked element in a. row i and column j represents th a t the input, i of the

switch is to be connected to ou tp u t j of the same switch. Each marked element in

H m is then decremented by one to obtain H m- \ . Next the algorithm is applied to

H m- 1 to obtain the setting for another switch in stage 2, and this process is repeated

until H\ is obtained.

As an example, consider a Clos network with m = n = 3 and k = 4 with a

perm utation matrix

/ 1 2 3 4 5 6 7 8 9 10 11 12 \
I 2 7 8 1 5 11 6 3 9 12 4 10

The corresponding H m atrix is

H 3 =

1 0 2 0
1 1 0 1
1 1 1 0
0 1 0 2

The first stage arbitrarily m arks a non-zero element in the first column. H 3[2. 1]. The

next columns are also marked without any duplications of rows or columns which

have been already marked. Here, H 3[4,2] and ^ 3[1,3] are marked arbitrarily. Next,

we need to mark i / 3[3,4], bu t column 4 has no non-zero entry in a row with no

marked elements, so no element is marked in this column. Since there is no marked

element in the fourth column, the second step must be executed. The matrix, with

40

asterisks representing marked elements, is

3 =

1 0 2* 0
1* 1 0 1
1 1 1 0
0 1* 0 2

The second stage successively marks and unmarks elements of H3 until it has four

elements, no two of which reside in the same row or column. Arbitrarily m ark a

non-zero element in column 4 with no marked elements, / / 3[2,4]. U nmark the other

marked element in this row, i / 3[2 , l], and m ark a non-zero entry in the column of the

unmarked element, column 1. One choice can be /Z3[l , l] . This process is repeated

until one more element is marked than was the case in Step 1. Continuing the process

of unmarking and marking elements, /i/3[1,3] would be unmarked and 7/3(3, 3] would

be marked. Since four elements are now marked, and no two reside in the same

row or column, the algorithm terminates. The m atrix £3 can be extracted from the

marked elements of H :i as shown below'

H« =

■ 1* 0 2 0 ' ' 1 0 0 0 '
1 1 0 1* and £3 —

0 0 0 1
1 1 1* 0 0 0 1 0
0 1* 0 2 . 0 1 0 0 .

The H 2 m atr ix is obtained by subtracting £3 from / / 3 matrix, and H 2 can also

be decomposed using the same method described above, which would leave another

two solutions, £ 2 and £ 1. The time complexity of Neiman's algorithm is known to

be 0 (n k 2) for pass 1 and 0 (n 2k 2) for all. For large 7, Neiman's algorithm displays

high time complexity, although his method holds for every possible perm utation .

4.2.2 R am anujam ’s Algorithm

Ram anujam [36] uses a different matrix than the other algorithms in this class, but

it is related to the / / matrix. He uses the allocator matrix M which has dimension

k x A-, and M \i , j] is the set of all destinations of inputs to first-stage switch j which

are output at third-stage switch i. It is actually the transpose of Hm. with the entries

41

listed ra ther than counted. The phase of the algorithm which extracts the desired

m atrix operates as follows. Set up a k x k m atrix 7 \ where T[i . j] is the maximum

element of M [i , j] , or 0 of M [i, j] is empty. The largest element of T is marked, and

its row and column are crossed off. This is repeated on the subm atrix left in T until

T is null or contains all zeros. If T is null, the marked elements define a m atrix for

extraction. These elements are deleted from M , and the process is repeated until

M is null. If T is not null, reform T, replacing the largest value with a zero, and

repeat this stage, choosing the largest element of T. The marked elements form the

£ m atrix . As an example, consider the Clos network with m = n = 3. and k = 4.

The perm utation to be realized is given as

P =
0 1 2 3 4 5 6 7 8 9 10 11
2 3 8 7 9 5 11 6 1 10 0 4

The allocator m atrix M and the T m atrix are

r {2} $ {1} {0} 1 ' 2 <E> 1 0 ‘

M = {3}
{8}

{3}
{7}

$
{6}

{4}
$ and T —

3
8

5
7

$
6

4
$

$ {9} {11} { 10} J . $ 9 11 1 0 .

From the T m atrix , it can be seen tha t the largest element is T[3.2]. Mark this

element, and then delete the row 3 and column 2. Since the largest remaining

element is 8 , m ark T[2,0] and then delete row 2 and column 0. Continuing the same

procedure, T [l , l] and T[0,3j can be chosen. Marking each of the chosen elements

with asterisk, the resulting M is

M =

{2} $ {1} {0}*
{3} {5}' $ {4}
{8}* {7} {6} <&

$ {9} {11}* {10} J

From the marked M matrix, extract one of the solution matrix £3

£ 3 =

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

42

The other two solution matrices E-\ and E 2 can be obtained in the same manner.

■ 0 0 1

10

' 1 0 0 0 '
1 0 0 0

and E 2 —
0 0 0 1

0 1 0 0 0 0 1 0

1 ' 0 0 0 1 . . 0 1 0 0 .

4.2.3 Kubale’s Counterexample

Ram anujanTs algorithm decomposes a k x k m atrix M of sets of integers, called

the allocator m atrix , into n matrices having exactly one nonzero integer in each row

and column. Ivubale [37], however, noticed th a t the algorithm is incorrect for k > 4

because it may run into an endless loop in Step 3, although it works well for k < 4.

For example,

P =
0 1 2 3 4 5 6 7
2 4 0 3 1 5 6 7

with n = 2 and k = 4. From the step described above, the allocator m atrix M

becomes as follows:

M =

’ $ {0} {1} $
{2} {3} 4> $
{4} $ {5} 4>
$ $ $ {6,7}

By choosing the m axim um integer in each of the sets m i j we obtain an integer m atrix

$ {0 } { 1} $
{2} {3} $ $
{4} 4> {5} $
$ $ $ {7} _

Since 7 is the largest element, T[3, 3] is marked, and row 3 and column 3 are removed,

leaving
* {0} { 1} .

{2} {3} $.
{4} $ {5} .

T =

T =

The next largest element is 5, and T[2, 2] is marked. T t hen becomes

{ 0 } . .

T = {2} {3}

43

From the above m atrix , it is obvious th a t the invalid choice is made by selecting

T fl , 1] and then, TfO, 0], which has no elements. Since we are unsuccessful in selecting

four nonzero integers, we must set the largest element of the original T m atrix to

zero and go back to previous steps. Then the T m atrix becomes

T =

$ {0} {1} $ '
{2} {3} $ $
{4} $ {5} $
$ $ $ $

However, going back to previous steps is of no effect here because constructing the

new T is based on same m atrix M , and the algorithm loops indefinitely, thus showing

that the R am anujam 's algorithm does not work in all cases.

4.2.4 Jajszczyk’s Algorithm

Neiman has shown tha t the control of the rearrangeable switching network can be

interpreted as a procedure of finding a set of E matrices which can be subtracted, one

at a time, from some given H m, and the E matrices are perm utations to be realized

by the middle-stage switches, which a one denoting a crosspoint to be closed and a

zero to be open. Jajszczyk [38] used another approach to find a set of E matrices,

which is illustrated as follows.

Step 1: For each row and column of the m atrix H m, find the number of zeros.

Step 2: Find the row or column with the m aximum number of zeros and mark an

arbitrarily chosen nonzero element in this row or column.

Step 3: Cross out the row and the column containing the marked element. The

size of the matrix is essentially reduced by one. although the indices of the elements

remain unchanged.

Step Repeat the procedure m — 1 times, starting from step 1. for the reduced

matrix. The last element is always a nonzero element and is marked after in — 1

repetitions of the procedure.

44

Step 5: Form an elem entary perm utation m atrix E with the elements E[i, j] given

by
jpr • l _ J if hi,j is n° t marked

| 1, if h i j is marked

The obtained E m a tr ix is then subtracted from the H m m atrix , and the procedure

is repeated for the resultant m a tr ix / f m_, (0 < i < m. — 1), until the m atrix H\ is

obtained. Notice th a t the m atrix H \ is equal to m a tr ix E\ . Jajszczyk's algorithm

is simple and the tim e complexity of the algorithm is 0 (n k 2), which is fast among

the m atrix decomposition algorithms.

4.2.5 Cardot’s Counterexample

Jajszczyk's algorithm is very efficient and works p re tty well. However, Cardot [39]

has found some errors in this algorithm. For example, the H 4 matrix with k = 10 is

given below.
0 0 1 0 1 0 0 0 0 2
0 0 0 0 1 0 1 2 0 0
0 0 0 0 0 3 0 0 1 0
1 0 0 0 1 1 0 0 0 1
0 0 0 2 0 0 0 2 0 0
2 0 2 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 2 0
0 2 0 1 0 0 0 0 1 0
1 0 0 0 0 0 2 0 0 1
0 2 0 0 1 0 1 0 0 0

According to Steps 1 to 3 of Jajszczyk's a lgorithm , the elements H [3, 6], H\o, 7], H [6.1]

and f/[8,2] can be m arked, and all the rows and columns containing the marked

elements are crossed out. leaving

45

. 1 0 1 0 0 2

. 0 0 1 1 0 0

. 0 0 1 0 0 1

. 1 1 0 0 2 0

. 0 0 0 2 0 1

. 0 0 1 1 0 0 _

Suppose we choose the element H [3, 7] which has m axim um five zeros in its column.

At the next step, column 9 will be em pty, so the algorithm is blocked, which means

there is a flaw in Jajszczyk's algorithm.

4 .3 P a r a l l e l D e c o m p o s i t i o n

4 .3 .1 C a r p i n e l l i ’s A l g o r i t h m

R am an u jam ’s algorithm and Jajszczyk 's algorithm fail because they could not predict

the partitionability of the given perm uta tion m atrix in advance. Any algorithm to

perform a m atrix extraction m ust have the capability to determ ine whether a p a r t i

tioning exists. Neiman's algorithm achieves partitioning by convolving the marked

elements until the partitions are accounted for although he never explicitly checked

for them. Carpinelli’s algorithm [50] introduces a concept of partitioning which

accounts for the failure these m atrix decomposition algorithms. An algorithm to

recognize this partitioning is given below.

p a r t i t i o n (i / m£'m)

{

int. H'm, partiiion.erists, M \ . A/2;

H ' m = E m = 0 ;

while [H'm 1 = 0) {

partit ion_ exists— NO;

46

generate_partition(, partition-exists, M i , M 2)',

if (parti t ion-exists==NO) {

pick i, j such tha t ^ 0;

£ m [. , i] = l ;

)

else {

partition (M i, E i J;

partition (M 2, E 2)',

E m — E m -j- Ei -f E^, H'm — 0;

}

}

}

First, the algorithm initializes the variables H'm and E m. The while loop

adds elements to E m until it becomes a perm utation matrix. T he subroutine

gcnerate-partition() is to check if the partition exists. If a partition exists, the

subroutine forms the submatrices and returns them in Mj and M 2. If a partition

does not exist, i and j are chosen to m ark an arbitrary non-zero element. If a

partition exists, two partition submatrices are processed recursively. The subroutine

generatt-parti t ion() is shown below, which is a heart of the algorithm.

g e n e ra te _ p a r t i t io n (M ^ ,, partition .exists, M i, M 2)

{

int. R, C;

Mi = 0; M 2 = 0;

parfor (each possible set of rows of H'm) {

R =set. of rows of H'm \

C = se t of all columns of H'm th a t have a t least one non-zero in a row of R;

47

if (1*1= \ C \) {

Mi = rows and columns of H'm in R and C;

M 2 = rows and columns of H'm not in R and C\

partit ion_ exists=Y E S ;

}

}

This subroutine generates all the possible sets R in parallel, and checks all

possible partitions. F irs t, the subroutine initializes the variables, and checks the

partitionability in parallel. The condition of the partitionability can be checked by

extracting the sets R and C and checking the num ber of elements in the two sets.

If the number of elements in the two sets is the same, this means tha t a partition

does exist, and parti tion submatric.es M i and M 2 are formed and the flag is set.

Once a partition is found, parallel executions are term inated , and the subroutine

exits, returning the values obtained. Return ing to the subroutine parti t ion(J, two

partition submatrices are recursively processed and partial E matrices are created.

A partial matrix is a m atrix with one or more rows of all zero elements. Then, these

partial E matrices are combined together to form E m.

For example, consider the matrix

H m =

1 0 2 0
0 2 0 1
2 0 1 0
0 1 0 2

First, variables are initialized by setting H'm = H m and Ern = 0, and starts pa r t i

tioning. Then partit ion-exists is set to NO and calls subroutine generate-partition ().

One of these execution has R = {1,3} and C — {1-3}. Since |/?| = |C | — 2.

48

partit ion.exists is set to YES, and Mi and M 2 become

' 1 2 '

2 1
and M 2 =

2 1

1 2

Since a partition does exist, Step 3b recursively processes M\ and M 2, resulting in

two E i , £2 matrices

' 1 0 0 0 ' ‘ 0 0 0 0 ■

0 0 0 0
and £2 =

0 0 0 1
0 0 1 0 0 0 0 0

1 O 0 0 0 . . 0 1 0 0 .

These two matrices are added, resulting in the final m a tr ix E m

' 1 0 0 0 '

0 0 0 1
m ~ 0 0 1 0

. 0 1 0 0 .

4.4 Edge coloring and Matching

So far, m atrices are used to represent the Clos network and the decomposition has

taken place on th a t basis. A nother approach to represent a perm utation network is

by using the b ipartite m ultigraph. The b ipartite m ultigraph G can be expressed as

a trip let {V'i, V2, £ } . where V'i and l-r2 are sets of vertices and E is the multiset of all

edges of the multigraph. T he coloring is the process of assigning tags, or colors to

each edge such th a t no vertex has m ore than one edge of a given color incident to

it. This is actually a means of minimizing the num ber of colors used. The m atching

is the process of creating a set of edges such th a t no two are incident to a common

vertex. The following algorithms make use of coloring and m atching to effectively

decompose the perm utation .

4.4.1 Introduction

The graph theoretic approach to finding the setting of the switches of stage 1 s ta r ts

by trea ting each switch in stages 0 and 2 as a vertex in a multigraph G. Let the set

of switches of stage 0 be denoted as V’O and the set of switches of stage 2 be denoted

as V’2. Then, given a perm utation P, an edge is added between vertex i and vertex

j if an inlet a ttached to switch i of stage 0 is to be routed to an outlet attached to

switch j of stage 2. The result of this is the b ipartite multigraph G = (V’O, V’2. E).

where E is the set of edges between V’O and V2. G is a m ultigraph since multiple

edges between vertices are allowed, and is b ipartite since each edge in G is incident

to two vertices, one in VO and the other in V2. The degree of G, which is the

num ber of edges incident on any vertex, is clearly m. The graph theoretic approach

then decomposes G into m subgraphs, each of degree 1. Each such subgraph will

represent the setting of one of the m switches of stage 1. An edge in a subgraph

between vertex i, i £ V’O, and vertex j . j £ V’2, indicates th a t an input to switch

•i is to be connected to an ou tpu t of switch j . These settings insure th a t no conflict

will occur in stage 1 and all required paths specified by the perm utation will be

accommodated.

Many algorithms have been proposed to decompose G in the general case

[40]. Hwang's algorithm runs in 0 { k 5̂ 2) time. O ther algorithms also exist where

techniques such as edge coloring and Euler partitioning are used. The graph

based algorithms are outside the scope of this thesis. The two routing approaches

mentioned above have been discussed extensively in the literature and the graph

theoretic techniques have always been described as more efficient. However, it has

been found th a t both edge coloring and direct matrix decomposition approaches are

equivalent [51]. This finding may well lead to a new, unified routing algorithm that

makes Clos network particularly suitable for processor interconnection in large-scale

multiprocessor systems.

50

4.4.2 V izing’s M ethod

Vizing's m ethod [48] of coloring a b ipartite multigraph uses the method of alternating

path. The m ultigraph is initially uncolored, and each iteration adds one more colored

edge to the multigraph. Assume th a t edge { i . j) which is incident to vertices ?' and j

is uncolored. In the multigraph for Clos networks, each vertex has degree m. Since

this edge is uncolored, vertices i and j are each missing at least one color. Assume

that vertex i is missing color a and vertex j is missing color b. If they both miss

the same color, th a t edge can be colored by the missing color. Color edge (i , j) with

a. This now' leaves two edges incident to vertex j with color a and none with the

color b, so change the color of the other edge from a to b. If this causes another

vertex to have two edges colored 6, change the color or the other edge from b to a.

and continue until the coloring is valid. Since the multigraph is b ipartite , and both

vertex sets have the same cardinality, there m ust be at least one other vertex which

needs color a. T he alternating path, the pa th of edge color changes, will eventually

find this vertex. An algorithm based on Vizing’s method which was formalized by

Gabow and Kariv [46] is shown below'.

a u g m e n t ()

{

let vertex i miss color a and vertex j miss color b\

let S be the subgraph of edges colored a or 6;

let P be a connected components of 5 incident to i or j \

interchange color a and b on the edges of P\

color edge (i, j);

}

As an example, consider Figure 4.1. First, edge (x \ , y \) is selected. Since

vertex a-] does not have color a and y i misses color 6, an alternating path of colors

a and b will be formed. Then color edge (X \ . y \) with a. The time complexity

51

YI XI

X2 Y2 X2 Y2

X3 Y3 X3 Y3

a)

F ig u r e 4.1 Augmenting bipartite multigraphs: (a) before, (b) after

of this algorithm for the complete coloring is 0 (|V ’| • IjE|) where |F | is the number

of vertices in the multigraph, and \E\ is the number of edges. Since | l ' j = 2k. and

\E\ = m k for the C’los network, the time complexity is again O (n k ’). Likewise, t he

space complexity is 0 (|V | + l-EI). which reduces to 0 (n k) .

4 .4 .3 E u l e r P a r t i t i o n s

The Euler partition uses a divide-and-conquer technique. This partitions the edges

of (i into open and closed paths, so that each vertex of odd/even degree is the end

of exactly one/zero open paths. Figure -1.2 shows the Euler partitioning of a graph.

The partition enables the division of G into two edge-disjoint subgraphs G\ and

A path can be found by starting at a vertex of odd or even degree and selecting an

edge. Add it to the path, traverse the edge from the original vertex to the other

vertex it is incident to. and remove it from G. Repeat the process until a vertex ol

zero degree is readied. If E ^ <I> t hen repeat t he ent ire process. Once I he mull igraph

is reduced to a set of paths, the subgraphs can be determined. This procedure can

be formalized as the following recursive algorithm.

F i g u r e 4 . 2 Euler parti tioning

BEGIN

1. Lei 6 be the maximum degree in G';

2. If S = 1 TH EN color all edges in G using a new color

ELSE

BEGIN

.'i. Form G] and G'2 using an Euler partition such that neither

subgraph has degree > |"b/2"|:

4. Euler-color(G'i);

o. Euler-color (G'2):

END:

END

4.4 .4 G a b o w ’s M o d if ie d A lg o r i t h m

Ciahow [45] presents a modified version of the previous algorithm which always

determines a minimal edge coloring. If the degree of the vertex is odd. the algorithm

53

finds a matching of all vertices having m aximum degree. The edges in this matching

are colored and removed from the multigraph. This reduces the degree of the

multigraph by one, and the degree now becomes even. The rest of the algorithm

follows the same procedure as the previous one, as illustrated below.

P R O C E D U R E EC (G J) -

BEGIN

PR O C E D U R E REC(G,^);

BEGIN

1. IF 8 is odd THEN

BEGIN

2. IF 6 = 1 TH EN M := G ELSE M D (6’.M);

3. Let c be a new color;

4. FOR each edge e E M DO

BEGIN

5. color(e) := c;

6. Delete e from G;

END;

END;

7. EP(G\ P);

8. IF P is not em pty TH EN

9. Make L\ and L 2 em pty lists;

10. For each path p in P DO

BEGIN

11. Let p be the sequence of edges e j , • ■ •, er ;

12. For i := 1 to r DO

13. IF ? is odd TH EN put e, in L\ ELSE put e,- in L 2\

54

END:

14. FO R i:= 1,2 DO

BEGIN

15. Let G{ be the multigraph consisting of the edges in L, and the

vertices incident to them;

16. REC(G,-, [<5/2j);

END;

END:

END (REC);

17. Delete all vertices of degree 0 from G\

18. Let S be the maximum degree of a vertex;

19 REC(G .d);

END(EC);

MD is a procedure which finds M which is a matching of all vertices of maximum

degree. EP forms P. the set of paths needed to derive the Euler partition. G a b o v ’s

algorithm runs in time 0 { n k 3̂ 2 lg k) for the Clos network where m = n.

4.5 Gordon’s Algorithm

Unlike the above algorithm, Gordon [43] uses a unique method to decompose the

matrix, although the nature of his algorithm is the same as the coloring decompo

sition. He defined two k x n matrices S and C, called the specification and count

matrices, respectively. The relations between the H , S. and C matrices can be seen

in Figure 4.3. If we use the notation proposed by Neiman in reference to the Clos

network, then the necessary connections are assumed and expressed as a perm utation

S matrix

0 1 2 2

1 3 2 0

0 4 4 3

3 3 0 4

2 4 1 1

1 1 2 0 0

1 1 1 1 0

1 0 0 1 2

1 0 0 2 1

0 2 1 0 1

C matrix

2 0 1 1

1 1 1 1

1 0 2 1

1 2 0 1

0 2 1 1

H matrix

F ig u r e 4 .3 Relations between the H . S . and (’ matrices

/ C l 1 ... ; v - 1
 ̂ TT(O) “ (I) ... *(,'] ... "(A - 1)

where inlet /’ is to be connected to outlet 7r(/). (J < i < A — 1. and A = ink. Initially.

.S' is set to represent the specification in the following way. All elements of 5 are

unassigned. Then for each signal i. 0 < / < A' —1. calculate .r and / where .r = [i/ n \ is

the first-stage input switch at which signal arrives, and / = is the last-stage

output switch to which it should be routed, and set the next unassigned element in

the .rth row of .S’ to /. On the other hand, each element of C . cj.r. //]. 0 < ,r < /.• - 1.

b < // < » - 1. is initialized to the number of occurrences of the integer ./• in column

fl of .S'. The]jointers c.r and s.r represent rows of C and .S' matrices respectively, and

!/ and r represent columns of the .S' or C' matrix. As an example, a sample / ‘ matrix

and result ing .S’ and C matrices when k = 4 and n — 3 are

5 6

P = 0 1 2 3 4 5 6 7 8 9 10 11
2 10 3 5 6 11 7 1 9 4 0 8

' 0 3 1 ' ' 1 2 0 '
1 2 3

and C =
2 0 1

2 0 3 1 1 1
. 1 0 2 . 0 1 2

5 =

Algorithm: Initially, sx is set to zero.

Step 1: Find a row c.r, in column y of C such tha t c[ca-,?/] = 0. If no such element

can be found then increment y until either such an element is found or all columns

are satisfied, in which case the algorithm halts with a solution.

Step 2: If we have not halted we must have found e{cx,y\ = 0. There must therefore

be another column z (greater than y since we are leaving only satisfied columns to

the left), such th a t c\c.x,z] > 1. This follows since there are exactly n copies of each

element (0 to 7? — 1) in each row. so a missing element in one column implies a repeated

element in another. We increment z, from the initial value y, until c[c.r,c] > 1.

Step 3: We now have a. column z of S th a t contains more than one copy of the missing

element ex. Repeatedly increment .sr (mod k) until s[s.r, z] = ex. As explained later,

this way of setting sx prevents the algorithm from entering a loop in which the same

elements are swapped repeatedly on successive passes.

Step J,: Swap the elements s [sr ,y] and s[s.r,r] . thus inserting the missing element

s[s.r.r] into column c of S. This will as a side effect reduce the number of elements

s[s.r.r].

Step 5: Increm ent c[cr,y] and c{s[s.r,7/].r} and decrement c[c.r. r] and c{s[.sa. ;;/],(/}.

Step 6: Increm ent ex (mod k) and go to Step 1.

Example: T he application of Gordon’s algorithm is illustrated by the following

sequences of m atrices for the example. The two elements of the scheduling matrix

that have been swapped are marked by *; the incremented and decremented elements

in C are marked by + and —. The P m atr ix is given as

5 7

P =
0 1 2 3 4 5 6 7 8 9 1 0 11
4 1 2 11 6 8 9 7 10 0 3 5

The 5 and C matrices are

' 1 0 0 2 ' ' 0 2 2 0 ‘

5 = 1 2 2 1 and C = 2 0 0 2
2 0 0 1 , _ 1 1 1 1 _

In the first iteration, cx = 0, y = 0, c = 1, and sx = 2. The resulting matrices are

as follows with the swapped elements marked with asterisks.

1 0 0 2 ' ’ 1 + 1“ 2 0 ‘
.S' = 1 2 2 1 and C = 2 0 0 2

0“ 2* 0 1 _ 0" 2+ 1 1 _

In the second iteration, cx = 2, y = 0, ~~ = 1. and s x = 1.

1 0 0 2 ■ 1 1 2 0 ‘
5 = 2- r 2 1 and C = 1“ 1+ 0 2

0 2 0 1 1 + 1“ 1 1 _

In the third iteration cx = 1 . y = 2, x = 3 and s.r = 2.

' 1 0 0 2 ' 1 1 1" 1+ ‘
S = 2 1 2 1 and C = 1 1 1 + 1"

0 2 1' 0“ 1 1 1 1

In this example, S becomes the solution m atrix after the th ird step of the algorithm.

The run time is dom inated by the number of swaps, which has time complexity

0 (n k 3/ 2). Gordon's algorithm is basically a special kind of edge coloring algorithm.

Each column of the decomposed .S' matrix determines the switch setting of a second

stage switch whose destination is given by elements in tha t column. Since the

Clos network has connections from each center-stage switch to each of the last-

st.age switch, elements in each column of the 5 m atrix are not identical. G ordon’s

58

algorithm, however, has been found t.o display errors which will be discussed in

chapter 6.

4.6 Discussion

Neiman's algorithm, which consists of two stages, works for all permutation.

However, the m atrix algorithms of Jajszczvk and Ram anujam are faster, but do

not work for all permutations. This is due to the improper choice of elements in

the H matrix which leads to errors in the algorithms. This can be prevented using

the partitioning, which works for all perm utation and does not require backtracking.

Gordon's algorithm uses two matrices for the decomposition. However, his algorithm

is closer to the coloring algorithms in na tu re because elements in each column of

the decomposed .S m atrix can be considered as edges colored with one of n different

colors. The H . 5, and C matrices are closely related, and each m atrix has its own

characteristics. Although the H m atrix and bipartite m ultigraphs are basically

the same, edge coloring algorithms usually work faster than m atrix decomposition

algorithms without any errors. Gordon's algorithm does not work for all cases: this

will be discussed in chapter 6. Also, a new routing algorithm is introduced based

on Gordon's algorithm. The routing algorithms for fault to lerant Clos networks are

discussed in chapter 7.

C H A P T E R 5

FAULT TO LER A N T MINS

5.1 Introduction

In chapter 3, we reviewed the interconnection networks tha t can be applied for

parallel/d istributed computer systems and switching networks. However, these

interconnection networks provide only one pa th from a given network input to a given

output. Hence, if there is a single hardware fault, fault-free communication will not

be possible between some network in p u t /o u tp u t pairs. Different approaches to fault

tolerant multistage interconnection networks have been studied. In general. MINs

can be made fault tolerant by adding ex tra hardware such as switches, interstage

links and multiplexers/demultiplexers. Adding extensive hardware usually decreases

performance degradation under faulty condition, but increases the cost and size.

Adding little hardware, on the other hand, increases performance degradation under

faulty conditions but keeps the cost and size down. As a consequence, a compromise

must be made where the trade-offs are weighed carefully and the best design is

reached. A good fault tolerance technique is one tha t needs minimal hardware and

causes minimal performance degradation under faulty conditions. Any fault tolerance

technique should cause no performance degradation under normal conditions. As

the extreme case, the duplication provides two networks in parallel, with one being

active and the other being standby. If a fault occurs, the standby network is switciied

in and the faulty network is switched out, and normal operation resumes. This

approach provides the same performance in fault}' conditions as in normal conditions,

but increases the cost, and size of the system.

A number of fault, tolerant MINs have recently been reported for m ultipro

cessor systems. The details of these techniques depend mainly on the type of network

59

60

and the fault tolerance model used. Fault, tolerance has also been provided for some

o ther network architectures through various approaches. In this chapter, some of the

fau lt 'to le ran t MINS are discussed including the Extra-Stage Cube (ESC) and fault-

tolerant Clos network (FTC). The advantages and disadvantages of each network

will be discussed. This will help explain the problem of fault tolerance, and thus will

facilitate its solution. The reconfiguration of the fault tolerant networks when faults

occur is considered.

5.2 Extra Stage Cube (ESC) Network

The ESC network is formed from the generalized cube (GC) network by adding one

extra stage and multiplexers/dem ultiplexers to activate the bypass extra stage (.stage

3) or the output stage (stage 0) [56]. An ESC network for N = 8 inputs is shown in

Figure 5.1. The stages are numbered in decreasing order from 3 to 0 s tarting from

the extra stage. Stage 3 offers t.wo types of pa ths depending on the s ta tes of the

multiplexers. This results in an additional pa th being available from each source to

each destination. A stage is enabled when its interchange switches provide paths to

the next stage. It is disabled when its interchange switches are bypassed. Enabling

and disabling of stages 3 and 0 is accomplished by having dual in p u t /o u tp u t ports,

and multiplexers and demultiplexers to select between the in p u t /o u tp u t lines. Figure

5.2 details interchange switches for stages 3 and 0. At. stage 3. a m ultiplexer selects

between two sets of identical input lines, one of which bypasses the stage 3 switch and

the other of which routes through the switch. At stage 0. a demultiplexer provides

the option of bypassing the switch or routing data through it. Failures may occur

in network interchange switches, links between interchange switches, and network

in p u t /o u tp u t lines. Failed components of the network are considered unusable until

replaced or repaired.

6 1

e<D
a

g & t n
<D
Q

x — x

X x x x E ^ e

5 E r î tixFi F t i rx n
Fi

gu
re

5.1

Th

e
Ex

tra

St
ag

e
C’

ul
x-

 (
ES

C
)

ne
tw

or
k

6 2

Interchange switch

Multiplexer Demultiplexer

F ig u r e 5.2 The Extra Stage Cube Network: (a) Stage (J interchange switch (b) St age
3 interchange switch (c) Stage (J enabled (cl) Stage 0 disabled (e) Stage 3 enabled (f)
Stage 3 disabled

Once a fault occurs in the network, the network is recovered in the following

ways. It is assumed tha t the ESC network can be tested to determ ine the existence

and location of faults. If an input line connected to a stage 3 multiplexer fails, stage

3 is enabled and the nonfaulty input line is used instead. If the fault is on an input

line to a stage 3 interchange switch, that line is unused and the system continues to

ignore the faulty line. If an output line from a stage 0 switch to a PE is faulty, the

network is reconfigured as if stage 0 is faulty. If the fault is on an output line lrorn

a demultiplexer, that line is unused and the system continues to ignore the faulty

line. Stage 3 and U enabling and disabling may be performed by a system control

unit. In normal operation, stage 3 is disabled and stage tl is enabled. This fault-free

ESC is topologically identical to a C!C. If after running fault detection and location

tests a fault is found, the network is reconfigured. If the fault is in stage 0. stage 3 is

enabled and stage 0 is disabled. For faults in a link or switch in stages 2 or 1. both

stages 3 and 0 will be enabled. Stage 3 of the ESC network allows access to two

63

distinct stage 2 inputs. Stages 2 to 0 of the ESC network form a GC topology, so

each of the two stage 2 inputs has a single pa th to the destination, and these paths

are distinct except for the stage 3 and 0 switches, which are fault-free in this case.

Thus, at least one fault-free path m ust exist.

The ESC uses a routing tag scheme for the control of the network, which is

similar to the exclusive-or tag scheme for the GC network. The ESC network uses

4-bit routing tag T = f°r th e one-to-one source to destination connection.

The tag values depend on whether the ESC network has a fault, as well as the source

and destination addresses, which need to be computed. If the network is fault free,

stage 3 is disabled and the routing tag is T = t%t2Mo- where t3 is ignored and can

take any value. If there is a fault in a network link or switch in stages 2 to 1. stage 3

is enabled, and bit 3 of the tags can be used to control stage 3 and select between the

one of two paths. The primary path is used if it is not faulty. However, if it is faulty,

the secondary path is used. For routing tags, T = 0 / 2M o yields the prim ary path

and T = 1 t 2M o the secondary path. Stage 0 uses t 0 instead of t0 to compensate for

the swap already performed by stage 3. If the fault is in stage 0. stage 3 is enabled

and stage 0 disabled. A routing can be accomplished by substitu ting stage 3 for

stage 0. because both stage 0 and stage 3 perform same functions. In this case, the

tag is T - toUtiio- where tg is ignored because stage 0 is disabled. The /3 is now set

as /0, and stage 3 performs the function of stage 0.

The fault size of the ESC is 1. and any inputs must remain capable of accessing

any outputs after the ESC recovers from a fault. The ESC is robust in the presence

of multiple faults. The ESC offers a straightforward routing method. In addition,

the multiplexers and demultiplexers need to be set only after a fault occurs. Also,

the ESC does not need specially designed switches. Simple binary switches and

1 x 2 multiplexers/demultiplexers are used in order to form the ESC along with

interstage links. On the other hand, the ESC requires N / 2 extra switches in addition

64

to A’ multiplexers and N demultiplexer to achieve fault, tolerance for a MIN of size

N . Also, there must be an external hardware unit to set all the multiplexers and

demultiplexers so tha t d a ta is routed through stage 3 ra ther than being bypassed

when a fault occurs. Furthermore, after recovering from a fault, additional time is

needed to find if the fault lies on the primary path or on the secondary path before

generating a new routing tag. This time constitutes performance degradation, as it

slows down the system. Although the ESC has many advantages and drawbacks,

this network is considered one of the best fault tolerant MINs reported.

5.3 Fault tolerant Clos Networks (FTC)

The fault tolerant Clos network adds fault tolerance to the ordinary Clos network

by using extra switches and multiplexers/demultiplexers [60]. Recall tha t the Clos

network of size N must have k = N / m switches of size n? x n in stage 0. and k

switches of size n x m in stage 2. The n switches of stage 1 must be of size k x k.

An ordinary Clos network has n = in. However, when n > in, some degree of fault

tolerance is obtained since ex tra paths exist in the network.

The F T C achieves fault tolerance in the following wavs. To make the outer

stages fault-tolerant. ksp extra switches are added to each of these two stages. Also.

n sp extra switches a.re added to the middle stage in order to make it fault, tolerant.

In the FTC. each inlet is connected by a demultiplexer to 1 + n sp distinct switches in

stage 0. Also, each outlet is connected by a multiplexer to 1 + n sp distinct switches in

stage 2. These multiplexers and demultiplexers serve as a fault, recovery mechanism

iri case of a fault in either of the two outer stages. Figure 5.3 shows the FTC with

n = k — in — 3. and ksp — n sp = 1.

An FTC with A' = ink is formed from an ordinary Clos of size A’ as follows.

First., use k + kap switches with size m x (n + n sp) in each of the outer stage. Then

the original center stage switches must be enlarged from k x k to (k + kap) X (k + ksp).

6 5

□ □ □ □ □

DP □ O

F
ig

u
re

5.3

J

Ik
-

FI

(
w

it
h

>n
=

/■
=

.‘j.

an
d

ou
r

ex
tr

a
sw

it
ch

in

ea
ch

st

a«
<

66

Connect the network inlets to the inputs of the first stage switches via 1 x (nsp + 1)

demultiplexers, and the network outlets to the ou tpu ts of the third stage switches

via 1 x {n3p + 1) multiplexers.

For the FTC . the fault model is defined as follows.

1. Any switch can fail.

2. Any interstage link can fail.

3. External links and multiplexers/dem ultiplexers cannot fail.

It should be mentioned th a t the faults are assumed to occur independently, and that

faulty components are unusable. The fault tolerance criterion of the FTC' is complete

recovery, th a t is. regaining pre-fault connectivity after a fault occurs.

5.3.1 Reconfiguration of the FTC

It is im portant for the FT C to be reconfigured in case of faults in order to regain

its pre-fault connectivity. Consider an FTC network with n 3p — k3p = 1. Let three

switches be A ?’), 0 < ? < 2. where f 0, /] . and J2 are unused switches of the first,

second, and third stage, respectively. The configuration of the FT C at any tim e is

a function of the present values of /o. .A, and A. In general, the reconfiguration of

the FTC can be performed through one or more of the following operations:

• Setting the multiplexers and demultiplexers

• Terminal relabelling

• Perm utation translation

As will be seen below, the value of .A affects the term inal relabelling, while the

values of f 0 and .A affect the settings of multiplexers/dem ultiplexers and perm utation

67

translation. The multiplexer/demultiplexer setting is performed if an outer stage

switch fails.

When the FTC is not faulty, one switch in each stage will be unused. This

unused switch can be any switch, but for convenience it will be assumed to be the last

switch in each stage, i.e., X[k . 0), X (n — 1,1). and X(k , 2) . This choice is convenient

because it makes the multiplexers and demultiplexers remain in s ta te 0 under normal

conditions. When a fault occurs, they can switch to s ta te 1, thereby avoiding the

defective switch. Perm utation translation is also performed if an outer stage switch

fails. Let P -- {Po, P] ,P/v_i} be an arbitrary perm utation of { 0 .1A ' — 1}. In

the actual network. Pi is the outlet to which inlet i is to be connected. In an ordinary

Clos network, P goes directly to the central routing unit where th e se t t in g s of the

individual switches are extracted and delivered to the switches for implementation.

In the FTC . the same steps are to be taken with the exception that permutation

P is translated before it goes to the central routing unit. Terminal relabelling is

performed if a middle-stage switch fails.

As mentioned above. j \ affects the labelling of the outputs of switches A’(c.2).

0 < c < k + 1. Let these outputs and inputs be referred to as the inward terminals of

the outer stages or just the inward terminals. In each of these switches, only m out

of the /? inward terminals will be used, and will be referred to as the active terminals.

Each active terminal will have two labels: a local one. to be used by the switch's

control unit, and a global one, to be used by the central routing unit. The local label

is an integer -. 0 < x < m. and the global label is also an integer Z. 0 < Z < r n (k + 1).

The active terminals will be labeled from top to bottom locally, with respect to the

switch, as the sequence 0 .1 7?? — 1. Globally, the active terminals tha t were labelled

from top to bottom locally will be labelled from top to bottom, with respect to the

stage, as 0 . 1 , . . . m {k + 1) — 1. The labels are updated always after a fault occurs, and

the current labels are used to implement the routing information received from the

control unit. More details about the terminal relabelling can be found in [60], The

reconfiguration of the F T C network can be illustrated more straightforward using

the 5 and C matrices, as can be seen in following examples.

5.3.2 Examples

To illustrate this, consider a perm utation P of the F T C with n = k = 3. and one

spare switch in each stage.

P =
0 1 2 3 4 5 6 7 8
1 4 5 0 8 7 3 2 6

Initially, let the unused switches be A"(3, 0), A '(3 ,1), and A (3.2) in each of the three

stages of the FTC. Recall that this is the configuration suggested to be used under

normal conditions. Then, perm utation Q, according to the rules set forth above, will

be

Q =

The H and 5' m atrix representations of P are

0 1 2 3 4 5 6 7 8 9 10 11
3 4 8 7 6 1 2 5 0 .t x x

■ 0 2 1 ' ' 1 1 2 ‘

II 1 0 2 S' = 2 2 0
2 1 0 J 0 1 0

■ 0 2 1 0 " ■ 1 1 2 * '
1 0 2 0

S
2 2 0 *

2 1 0 0 0 1 0 *
. 0 0 0 3 . . # # # .

On the other hand, the H and 5 m atrix representations of Q are

H 3 =

T he size of the m atrix H increases by exactly one row and one column, and the S

m atrix also has an additional row and column. The additional paths due to extra

switches in the outer stages are represented as pound characters, and asterisks for the

extra switches in the middle stage, which are explained in greater detail in chapter

As another example, again consider a perm utation of P of the FT C with n =

k = 3, and one spare switch in each stage. Assume th a t switches A'(1. 0). A’(2 .1) and

6 9

□ 0 0 d u d

&
303Un

Fi
gu

re

5.4

Tl
ie

fa
ul

ty

FT
C

wi
th

A

'(l
.O

).

A’
('J

.
1)

.
an

d
A

'(‘2
.2

)
fa

ul
ty

sw

itc
lie

:

70

A’(2. 2) suddenly failed, as shown in Figure 5.4. Due to the failure of A’(2 .1). the

inward terminals of stages 0 and 2 should be relabelled. Specifically, inward terminal

number 2 of each switch should be left out in assigning the numbers. The failure

of A (1 .0) . and A '(2 ,2) affects the perm utation translation. Perm utation P. given

before, is translated according to the rules laid down above to

Q =
0 1 2 3 4 5 6 7 8 9 10 11
3 4 11 x x x 2 5 0 10 9 1

The routing result will be implemented by all the switches except those tha t are

defective, namely, A '(l, 0), A’(2 ,1) and A'(2. 2). The m atrix representation of perm u

tation Q above is
0 2 0 1
0 0 3 0
2 1 0 0
1 0 0 2

In the previous example, the S m atrix was be given by

1 1 2 *
2 2 0 *

0 1 0 *
L # # #

Since A'(1,0) is defective and A’(3.0) is a spare switch, all input signals are moved

to the extra switch, and A’(1,0) becomes unusable, which is denoted as dots.

1 1 2 * 1

S =
0 1 0 *
2 2 0 *

Also, the faulty condition of A '(2.1) forces the elements in column 2 to be bypassed

to the spare switch A’(3 . 1) which is represented as column 3. resulting in

1 1 . 2

S =
0 1
9 9

Finally, the faulty condition of Ar(2 ,2) prevents the use of the second switch of in

the third stage. Instead, the signals assigned to this switch must now use the spare

71

switch which will be denoted as 3. Thus the resulting m atrix is

1 1 . 3 1

5 =
0 1
3 3

0
0

Representing the reconfiguration of the network using the S' m atrix shown above

presents complications because of the introduction of dots in the rows and columns

of the matrix. In chapter 7, the reconfiguration m atrix is introduced which retains

all the information of each switch's use without swapping the rows or columns.

C H A P T E R 6

NOVEL A LGO RITH M FOR CLOS MINS

6.1 Introduction

Although Gordon's algorithm is simple and fast, as discussed in chapter 4. his

algorithm does not work for all perm utations. His algorithm has two special features.

First, the use of two matrices in the algorithm contributes to the improvement of

the tim e complexity since it helps to find the num ber of occurrences of each element

directly. The next is the use of s,r(mod A’), which is the heart of the algorithm

and makes the algorithm very effective. In this chapter, it will be shown that

Gordon's algorithm does not work for all cases, and a counterexample will be given

in .section 6.2. Next, a new simple algorithm will be introduced. This algorithm

is based on the G ordon’s algorithm. Three kinds of swaps by which this algorithm

realizes the desired mapping are discussed: 1) simple swap. 2) next simple swap,

and 3) successive swap. Also, we are going to prove tha t the new algorithm works

for all perm utations. In section 6.4. the worst case and the average behavior of the

algorithm are discussed in detail.

6.2 Failure of G ordon’s Algorithm

The algorithm given by Gordon is very simple, fast, and works well when the matrix

size is m oderate. Although Chiu and Siu [44] claimed the incorrectness of the

algorithm, it s tem m ed mainly from a typographical subscript reversal, which led

to a m isunderstanding about the algorithm. Gordon reaffirmed in his reply that the

algorithm is still valid. However, our research found tha t his algorithm may run into

an infinite loop for k > 5. The heart of his algorithm lies in the repeated increment

of s .r(m od k) until .sfs.r.:] = c.r as shown in step 3 of his algorithm. Recall that

72

c.r represents a. row of C which satisfies c[c.r.i/] = 0. This wav of setting .s.r is

intended to prevent the algorithm from entering a loop in which the same elements

are swapped repeatedly on successive passes. The setting of sx, on the other hand,

is influenced by the choice of ex. However, Gordon did not mention anything specific

about the way of setting next cx after two elements in row s.r of 5 are swapped. This

is especially true if row cx of C reaches k — 1 while column y of C still contains zeros.

It is quite possible th a t the increment of cx (mod k) until c\cx.y] — 0 must have

been used in the algorithm because this is the most easy and efficient way to choose

the next value of ex. It is not likely that Gordon chose cx after some calculations

because, if he had done tha t, he certainly would have made it clear in the paper. W e

have tested this algorithm on several possible cases. These include 1) increment of

cx (mod k) after the swap. 2) decrement of cx, and reset to k — 1 when c.r < (J. and

3) random choice of c.r. until c\cx,y) -- 0 for all three cases. An example for the first

case is given below. The two elements of the C m atrix that have been swapped are

marked by the incremented and decremented elements in S are marked by + and

—. Suppose that currently, cx = 0, y — l . s . r = 4. and

' 0 0 2 4 1 ‘ ' 1 3 0 0 1 '

3 1 3 2 0 1 1 1 1 1
4 0 1 3 2 and C = 1 1 1 1 1
1 0 4 1 4 1 0 2 1 1
2 2 3 4 3 _ 1 0 1 2 1

After the first repetition, cx = 1, y = 1. sx = 1, c = 2, and

' 0 0 2 4 1 ‘ ' 1 3 0 0 1
3 3” r 2 0 1 o - 2+ i 1
4 0 l 3 2 and C — 1 1 1 i 1
1 0 4 1 4 1 1+ r l 1
2 2 3 4 3 _ 1 0 i 2 1

The second repetition yields cx = 4. y = 1. sx = 4. r = 3. and

74

' 0 0 2 4 1 ' ' 1 3 0 0 1 '

3 3 1 2 0 1 0 2 1 1
4 0 1 3 2 and C = 1 0" 1 2+ 1
1 0 4 1 4 1 1 1 1 1
2 4' 3 2* 3 _ _ 1 1 + 1 1~ 1 _

After t.he third repetition, c.r = 1. y = 1, s x = 1. z = 2. and

' 0 0 2 4 1 ‘ ' 1 3 0 0 1 '

3 1* 3* 2 0 1 1 + 1- 1 1
4 0 1 3 2 and C = 1 0 1 2 1
1 0 4 1 4 1 0" 2+ 1 1
2 4 3 2 3 1 1 1 1 1

The fourth repetition yields cx — 2. y = 1, s.r = 4, r = 3, which reduces to the

first m atrix and enters into an infinite loop. When examining the above example,

it can be clearly seen tha t the use of (mod k) incrementing of s.r does not always

effectively prevent the process from repeatedly finding the same element in following

passes. In most cases, this does not happen and the algorithm behaves well, especially

when k < o. However, as k increases, the algorithm has more chances to enter a

loop independent of the ways of setting cx as described above. Chiu and Siu [44]

reported a new algorithm by modifying Gordon's algorithm without giving the time

complexity and proof tha t it works for all permutations. Also, their algorithm is

trivial, so it will not be covered in this thesis. In the next section, a new algorithm

is introduced for decomposing Clos networks which is based on Gordon’s algorit hm.

This can be done by scanning the C m atrix row-by-row, and by a class of swaps,

which will be explained later.

6.3 New Algorithm for Clos Networks

Although G ordon's algorithm is simple and fast, his algorithm has been demonstrated

to have errors in some perm utations as shown in the previous section. In this section,

a new algorithm will be discussed which is based on Gordon’s algorithm, but uses

a different approach. In order to describe the algorithm, we shall use the notation

proposed by Neiman in reference to the Clos network. The necessary connections

are assumed and expressed as a permutation:

P = 0 1 i
7r(?)

N - 1
w{N - 1;7r(0) 7 T (1)

where inlet i is to be connected to outlet 7r(?*). 0 < / < N — 1, and N = ink.

This algorithm uses two k x n matrices S and C. called the specification and count

matrices, which were described in chapter 2. In order to obtain the 5' matrix from

the perm utation m atrix , the following step m ust be taken. Initially, all elements of

S are unassigned. Then for each signal ?. 0 < ? < A' — 1. calculate .r and 1 where

,r = [_?’/??J is the first-stage input switch at which signal arrives, and / = [7r(/)/;?J is

the la.st-st.age ou tpu t switch to which it should be routed, and set the next unassigned

element in the ,rth row of S to t. The first stage switches are denoted by x. and the

second stages are represented by y. Each element of s[.r. j/] is the destination switch

in the third stage. Each element of C. c[a\?/], 0 < x < k — 1. 0 < y < n — 1. is

initialized to the num ber of occurrences of the integer ,r in column y of S.

As an example, a perm utation P and the 5 and C matrices when k = 4 and

11 = 3 is as follows.

P = 0 1 2 3 4 5 6 7 8 9 10
2 10 3 5 6 11 7 1 9 4 0

' 0 3 1 ' ' 1 2 0 ■
= 1 2 3

and C =
2 0 1

2 0 3 1 1 1
1 0 2 0 1 2

In order to explain the algorithm, it is necessary to define some of the term s that

are going to be used.

D e f in i t io n 1: A column of C is cl-missing if th a t column does not contain any d.

On the other hand, a column of C is d-excessive if there are more than one d in that

column.

Definition 2: When a column y in the C m atrix is d-excessive and a column c is

d-missing. an element which satisfies s[s:r,g/] = d in the 5 matrix for 0 < sx < A’ — 1.

is called a swapping element and s[s.r, ~] is called the swapped element.

Definition 3: When s[.s;r,y] is a swapping element and s[s,r. r] is a swapped element ,

then two elements .s[s.T,t/] and s[sa-.c] are simply swappable if s[sx.?/] < a[a.r. c] and

c[cx. y } — c[cx, r] = 1 for 0 < cx < s[sx, y].

Definition 4: When c] is a swapped element and s [s .t . y] is a swapping element ,

then two elements c[cx.y] and c[cx,z] are successively swappable if s[.s;r, y] > s[^.r.r]

and c[c.r, y] = c[c.r, ~] = 1 for 0 < cx < s[.s;r, j/].

Definition 5: When two elements ,s[.s.r.?/], and a[.s.r.c] are swapped because of

being successively swappable, an element sfsxi.j/] which satisfies .s[s.r].y] = s[s.r. g/]

is called a [air. y]-alternative.

The new algorithm is illustrated as follows.

Algorithm: Initially sir is set to zero.

Step 1: Find a column ex. in a row y of C such th a t c[c.r,y] > 1 . If no such element

can be found then increment cx until either such an element can be found or all rows

are satisfied, in which case the algorithm stops with a solution. If the algorithm lias

not stopped, it must have found c[cx,y] > 1. Set r = 0.

Step 2: Increment r until c[c.r, ~] = 0. This follows since there are exactly » copies of

each element (0 to n — 1) in each row, so a repeated element in one column implies a

missing element in another. We now have a column c of 5 th a t contains no element

c x .

Step 3: (Simple Swap) Repeatedly increment .sir(mod k) until s[s.r.j/] = cx. If

s[s;r.r] < c.r, go to Step 2. Otherwise, swap the elements .s[a.T. y] and a[a.r. r] thus

removing the repeated element cx = a[a.r,j/] in column y of .S'. This will, as a side

effect, increase the num ber of occurrences of element cx in column r of S. Increment

c[c.r.c] and c{s [s.r. ~], y) and decrement c[c.r,j/] and c[.s[.s.r. r], r]. It is easily seen

tha t these four simple changes restore the count, property. If swapped, go to .Step 1.

Step f. (Next simple swap) Repeat Step 3. thus providing one more chance to simply

swap two elements in another row. If swapped, go to Step 1. This step is done only

once before c\cx.y] becomes 1.

Step 5: (Successive Swap) Swap .s[s.r.?/], s[s.r.^]. and update C as in Step 3. If

s [s .r ,2/] > c.r. go to Step 1. Otherwise, increase s.r(mod k) for another s[sa.'.y] and

repeat Step 5.

This algorithm works for all permutations, which can be proved using the following

t hree theorems.

T h e o r e m 1: Given two sets Se and S m which are i -excessive and V-missing.

respectively, let A’e(/). and X m (i) be numbers with the value i in the sets S t and

S m . where 0 < i < Y . If the number of l'"s in S t is two. it is always possible to

reduce the number of V in Se to one without any cha.nge in the occurrence of AT

and A'???.

P r o o f : Arranging the elements of the set Se and S m .

A’e(O) A'm(O)

A’e (l) A ' m (l)

A’e(2) A'?7) (2)

Ye

Ye

Z t Z m

Ze Z m

Z m

There are two possible cases for Ye to be swapped with an element in the set S m .

78

First, if Ve and Z m are in the same row, then two elements can be swapped, resulting

the reduction of num ber of Y e in the set Se to be one without any change in the

number of occurrences in A’e or X m . However, if Y e and X m are on the same row.

h e and any one of X m (i) , 0 < i < Y should be swapped. The index i is used in

order to distinguish the elements of A'e and X m which have the same value i. As a

result, two identical numbers A’e(V — 1) and X m (Y — 1) are on the same Ve-excessive

column. Now take A’e(V — 1), which is an X m (Y — 1)-alternative. Again, there are

two possibilities. If A'e(V — 1) is in the same row with Z m , the number of Ye in

the Ve-excessive column can be reduced to one without any change in the number of

occurrences in A'. However, if A"e(V — 1) is in the same row with X m (] ’ — 2). we need

to swap A’e(V — 1) and X m (Y — 2). and then find the X r n () ' — 2)-alternative which

is X e { Y — 2). In worst case, this process continues until A’m (l) finds its alternative

A'e(O). Since other A'???s are not in the same row with A e(0). A*e(0) must select

Z m . which leads to the proof of the theorem. □

Theorem 2: Given two sets of Se and S m which are 1''-excessive and V-missing.

respectively, let A’e(f), and X m (i) be numbers with the value i in sets Se arid S m .

where 0 < i < Y . If the number of Vs in Se is three, it is always possible to reduce

the number of Y in Se to one by applying simple and successive swaps.

Proof : Any Y e in the Ve-excessive column can be swapped into the Vc-missing

column without any change of occurrences of A's, which can be proved using the

same procedure as in Theorem 1. Once the number of Ve's is reduced to two.

Theorem 1 can be applied, .so the number of V s can be reduced to one.D

Theorem 2 can be generalized to the case when the number of Ve's is arbitrary.

Theorem 3: Given an arbitrary permutation of the S matrix , it is always possible

to decompose the m atrix if the C m atrix is scanned row-by-rovv from top-to-bottom.

P r o o f : For an arbitrary c[c.r, y] in a row cx being scanned which satisfies c[cx.y] > 1.

it is always possible to make c[c.r,y] = 1 by applying Theorems 1 and 2. Thus, all

7 9

elements in the C m atrix which are greater than one can be reduced to one. □

L e m m a 1: The maximum number of swaps in the success!ve-swap is k — 1.

Proof: All k elements in the Ve-excessive and Ve-missing columns can be swapped

except the remaining Yc . which is at least one.D .

6.4 Example

To illustrate the algorithm clearly, consider a three-stage Clos network having n = 3

and k = 5 with an H m atrix as shown below.

Hs =

2 0 1 0 0
0 1 0 0 2
0 1 1 1 0
0 1 1 1 0
1 0 0 1 1

The 5 and C matrices derived from the H matrix are shown below.

' 0 0 2 ' ' i l l '
1 4 4 1 1 1
3 1 2 C = 1 0 2
2 3 1 2 1 0
3 4 0 0 2 1

5 -

Now check the C matrix for an element tha t is greater than 1. which implies that more

than two edges incident to the corresponding ou tpu t node are colored identically.

Since C'[2.2] > 2 and C[2. l] = 0, the C matrix is 2-excessive in column 2 and 2-

missing in column 1. Since c.r = 2, we find cx in the S m atrix at .$.r = 0 because .s.r

was first set to zero. Thus, we find that 5[s.r. y] = 2. and .S'[s.r. r] = 0. These two

elements are not simply-swappable because S’[.sa\ y] > .5'[.sx.c], so we move to the

next row. 2, in the S' matrix. Since ,S'[2,1] < .S'[2.2] in this case, they too are not

simply-swappable. thus a forced-swap must be applied. This is done by swapping the

first two elements 5[0. 1] and .S'[0. 2], and then updating the C matrix by incrementing

C[0.2] and C'[2.1] and decrementing C [0 ,1] and C[2.2].

8 0

' 0 2 0 * ' 1 0 2
1 4 4 1 1 1
3 1 2 c = 1 1 1
2 3 1 2 1 0
3 4 0 _ 0 2 1 _

Since the swapped element 5[0,2] in column y is 0 which is less than c.r, next find

the 0-aJterna.tive in column 2, which is 5[4.2]. Now, F fs r .y] — .?[4.2] and 5'f^.r.r] =

5[4. 1]. These two elements are simply-swappable since S[4. 2] < 5 [4 .1] and thus can

be swapped. This finishes the successive swap for C[2. 2] and results in

' 0 2 0 * ' 1 1 1 '
1 4 4 1 1 1
3 1 2 C = 1 1 1
2 3 1 2 1 0
3 0 4 _ 0 1 2

Next, we proceed to C[3.0], which is greater than 1. From the S m atrix , we

find that S'[2. 0] is not simply-swappable with S [2 .2], so we move to the next 3 in the

4th row. For 5[4,0] < 5[4, 2], we can now swap two elements and the two matrices

are shown below.

' 0 2 O ' ' i l l '
1 4 4 1 1 1
3 1 2 C = 1 1 1
2 3 1 1 1 1
4 0 3 1 1 1

Finally, the program term inates since all the elements in the C m atrix are

1. The resulting three columns of the S m atrix denote the completely decomposed

switch settings of the second-stage switches, and first and third stage switch settings

can be derived from this. The basic idea of the algorithm is to make the C m atrix all

l 's by using three kinds of swaps. This means tha t there are no identical elements in

each column of .S' when completely decomposed. Steps 1 and 2 find the two columns

ru and y0 which are c.r-missing and cr-excessive from the C matrix. The cx is. on the

81

other hand, the element in F which is missing or excessive in the same two columns

of 5. Then, swaps are performed from Steps 3 to 5 until all c[cx.y] become 1.

6.5 Worst-case Behavior

This algorithm is simple, but deriving the exact tim e complexity of the algorithm

is very complicated. Gordon reported the tim e complexity of his algorithm in his

paper without giving any proof. He just mentioned tha t the time complexity is

roughly proportional to the num ber of swaps. The basic difficulty in deriving the time

complexity of the algorithm is as follows. First, the runtim e is proportional to the

num ber of swaps. However, it is difficult to calculate the number of swaps for a given

perm utation. For a given c[cx.y] > 1, the number of swaps to be performed must

be c[c.r.f/j — 1. But, I^(c[c.r.y] — 1) does not necessarily represent the total number

of swaps, because one swap results in the change of four elements of c[c.t.;i/]. two of

them increase, and two of others decrease. Secondly, for an element c[cx.y\ > 1. it

is difficult to know analytically what kind of swaps must be performed in the worst

case for a given permutation.

Considering the difficulty of analytic approaches, the next possible method

is simulation. The com puter simulation usually cannot prove all the possible

cases as the problem becomes complex. However, it helps to narrow the bound of

t im e complexities. For th a t reason, the new algorithm has been programmed and

simulated for various values of n and k. Figure 6.1 shows the worst case runtim e

vs. k with respect to various values of n. The graph shows th a t the runtim e of

setting the Clos network increases as k increases. For a fixed k. the runtime also

increases as n increases. A closer look a.t the graph show's tha t the runtime is roughly

proportional to n, but in case of k , the runtime is proportional to kx for some values

of ,r. In order to exactly obtain the tim e complexity of the algorithm, these curves

were fitted to the a rb itrary non-polynomial function. The result of the curve fitting

82

R untim e
R u n tim e vs. k

60(10

5000 -

4 0 0 0 -

3000 -

2000 -

1000-

2012 157 105

F ig u r e 6.1 Worst case runtime vs. k

shows that the time complexity of the algorithm is proportional to n k :̂ 2. that is

The simple swap dominates the other two kinds of swaps, and the next simple

swap also dominates successive swaps. Simple swaps do not require much time to

swap two elements. The successive swaps, on the other hand, are not frequent, but

take relatively long since up to k — 1 swaps must be made in order to reduce c[c.r.ij}

by one. As a result, successive swaps still have considerable effects on the overall

runtim e although they are less frequent. Another thing to mention here is that the

runtim e is linearly proportional to just the number of columns n. but not to the

number of rows k. This is mainly due to the use of s.r (mod k) and the effect o f

successive swaps.

6.6 D iscu ss io n

In this chapter. Gordon's algorithm has been dem onstrated to display some errors

in some oi the permutations. A new algorithm for decomposing the Clos network

which is based on Gordon's algorithm has been introduced. In this algorithm, the

same S' and C matrices are used to represent, the Clos network, which help to speed

up routings by checking C in order to calculate the number of occurrences of each

element in S in each column. The basic difference between Gordon's algorithm

and the new algorithm lies in the scanning direction in the C matrix. In Gordon's

algorithm, it is scanned column by column, removing columns once all elements

are nonidentical in each column. Swapping elements can take place between a not-

vet-decomposed leftmost column and the rest of the columns. However, the new

algorithm scans the C m atrix row-by-row, and swapping elements are restricted to

two columns for the successive swap. This gives an obvious advantage in proving

that, it works for all permutations, but. in Gordon's algorithm, it is difficult t.o prove.

Another advantage to the new algorithm is th a t it has the potential to be run in

parallel since only two columns are involved in the successive swap and other pairs

of two columns can be swapped at the same time.

C H A P T E R 7

R O U T IN G FAULT TO L ER A N T CLOS NETW O RK S

7.1 Introduction

T he Clos network can not realize all possible perm utations when a fault occurs in

the system. Thus, ex tra switches are added to the ordinary Clos network in order

to achieve fault tolerance. The algorithm for the ordinary Clos network needs to

be extended to the fault-tolerant cases for following reasons. First, the s truc tu re of

the FTC is basically same as the ordinary Clos network except for added switches.

Because of this, the representation of the network does not become complicated.

Second, the spare switches can greatly simply the routing process, which is an obvious

advantage when there are few or no faults in the system. Third, the same routing

algorithm for the F T C can be used for the ordinary Clos network, which is a special

case of the fault tolerant network. A new routing algorithm for the F T C will be

introduced in section 7.2, which utilizes extra switches in all stages. For clarity, the

F T C is classified into three types of networks, and in each case, the representation

of the network, and routing rules are considered. In the last section, the simulation

of the runtim e for the FTC is discussed.

7.2 Routing the FTC

In chapter 6, we introduced a new routing algorithm for the Clos network. The

algorithm for the ordinary Clos network can be extended to the fault-tolerant C'los

network discussed in chapter 5. Recall th a t the F T C has extra switches in all stages

and they provide alternative paths when faults occur in the network. However, when

there are no faults in the system, these extra, switches can be utilized as additional

routing paths, which simplify the requirements of the routing process and reduce the

84

8 5

runtime. The outer stage spare switches generate additional rows in the .S' m atrix

and the second stage spare switches creates additional columns. Additional paths

introduced by the two types of spare switches are very flexible during the routing

process, but they have different, characteristics. In- order to develop the new routing

algorithm for the FT C , it is required to know the properties of these two types of

spares and, for th a t reason, the fault-tolerant Clos network will be classified into

three possible configurations:

I. networks with spare switches in each of the outer stages only.

II. networks with spare switches in the second stage only.

III. networks with spare switches in all stages.

In the following subsections, the networks and representation of the extra switches

are discussed for all three possible cases. The rules and conditions for swapping the

elements are considered, which will be the basis of the new algorithm for the FTC.

7.2.1 Routing FTC with Spare Switches in Outer Stages (Type I)

The first type of FTC has extra spare switches in outer stages only along with

multiplexers and demultiplexers. In this configuration, signals are bypassed to the

spare switches through the multiplexer/dem ultiplexers in case of faults which occur

in the outer stages. Figure 7.1 shows the Type I FTC network which has one extra

spare switch in each outer stage.

The 5 and C matrices are the same as those of the ordinary Clos network except

tha t extra rows are added which account for the ex tra outer stage switches and

multiplexer/demultiplexers. The elements in the .rth row of .S' represent the signals

passing through the r t h switch of the first stage whose destination switches are

s[.r.g], where 0< y < ?? — 1. T he elements in the y th column of S are the signals

passing through the j/th second stage switch whose destinations are .s[.r.?y]. where

8 6

□ □□ □ □□

□ □□

0/u.C3a
GO

• * ©

V
cda-C/2

• • ©

l-
0/
a
bO

Ui

I
lie

F'
J

C
ne

lw
or

k
wi

th

ex
tr

a
sw

it
ch

es

in
th

e
ou

te
r

st
aa

.e
s

(T
yp

e
1)

8 7

0< x < k — 1. Each element of the S matrix represents the signal directed to the last

stage switch s [r ,y] through the y th second stage switch. Let ksp be the number of

spare switches in the first or third stage. If the number of spare switches are not equal

in those stages, then the smaller num ber will be taken as ksp. The ksp spare switches

at the outer stages create ksp additional rows in the S m atrix , and each element can

serve as an alternative path during the routing process. The to tal number of extra

paths is n k sp. All the redundant paths due to the spare switches are denoted as #

for convenience. Initially, the elements of 5 , s [r ,y] , where k < x < k + ksp 1.

0 < y < n — 1. are initialized to spares # . Also, each c[r,y] of the C matrix, where

U < x < k — 1. 0< y < ?7 — 1 is initialized to the num ber of occurrences of the

integer x in column y of 5. The num ber of spares in the S m atrix is-not considered

in the C matrix. For example, the S and C matrices for a Type I Clos network with

n — k = 3. and 2 spare switch in each of the outer stage can be given as.

S =

1 0 1
1 2 0
0 2 2

#

an d C =
1 1 1
2 0 1
0 2 1

To consider the reconfiguration of faulty switches in the outer stages, faulty

switches and interstage connections must be taken into account. Recall that we have

assumed no multiplexers/demultiplexers are defective. If the .rth switch at the first

stage is faulty, the .rth multiplexer is set so tha t each signal in the .rth switch is

bypassed to the available spare switches. One of the spare switches, the r-th spare

switch, is assigned to these signals in order to provide alternative paths. The r th

row of the S m atrix is simply cleared which is denoted as dots. Now define a new

m atrix , the reconfiguration matrix , R. The R matrix is a k x .3 matrix , where each

row y represents the yth switch in one stage, and each column r denotes the .rth

stage. The element /?[y,r] shows th a t the i?[j/.r]th spare switch in the r t h stage is

assigned instead of the yth switch in the r t h stage. For example, if the 0th switch in

88

the first stage is defective in the above example, the S, C. and R matrices would be

' 1 0 1 '
1 2 0 ' 1 1 1 '

1---O0

CO1

= 0 2 2 C = 2 0 1 and R = 1 1 1
„ 0 2 1 .

2 2 2

Notice th a t the elements in the Oth row of 5 remains same, but the # spares in the

last, row are no longer available. These spares are now assigned to the signals in

the 0th row, which can be seen in the R m atrix where ?'[0, 0] = 3. Note that other

elements in R show tha t other switches are not reconfigured, and remain the same.

Dots in the S m atrix mean that there are no paths available in the Oth input switch,

and they are simply ignored during the decomposition process. On the other hand,

if the .rth switch at the third stage is faulty, the .rth demultiplexer is set so that

rerouted signals from the third-stage spare switches can be bypassed to reach out lets

of the .rth switch. For example, if the Oth switch in the third stage is also defective,

and the 4th spare switch is used instead for the above matrices, the resulting 5. C.

and R matrices would be

1 0 1
1 2 0 ' 1 1 1 ' ' 3 0 4 '

- 0 2 2 C - 2 0 1 and R -- 1 1 1
0 2 1 _ 2 2 2

Perm utation translation can also be used as was shown in chapter 5 for the

reconfiguration due to the failure of outer stage switches. Faults due to the interstage

links can be modeled as a switch failure and the network can be reconfigured in the

same way described above. The rules and conditions for swapping elements in the

ordinary Clos networks can be applied in the FTC. since the basic structures remain

the same. Recall tha t, in the Clos network, any two elements except spares in a

row .r of S can be swapped. This is due to the fact that inlets input to each of the

first-stage switches can be fully connected within the switch. Each first-stage switch

is represented by a row of S. and each element in a row of S corresponds to the inlets

8 9

to a switch which flows to the third stage switch s[.r,?/]. Each column must have no

identic.a.1 elements except spares when completely decomposed. This is because each

second-st.age switch has only one connection to each third-stage switch.

The introduction of # spares has the following features. First. # spares in a

column y of S can be swapped with any elements in tha t column. This is due to

the multiplexers and demultiplexers along with spare switches in outer stages which

can bypass input signals to the spares switches. Second, spares in a. column y can be

swapped with any element in another column r as long as both columns maintain

the same number of # spares since the number of outer spare switches is fixed in the

network. When the matrix is fully decomposed, then all the elements in C' matrix

must be one. The zeros in the C m atrix indicate that these elements are swapped

with the # spares in the same column. The total number of spares in each column

is restricted to ksp. which does not change during the routing process.

7.2.2 Routing FTC with Spare Switches in the 2nd Stage (Type II)

In contrast to the first type, the second type of FTC has extra spare switches in

the second stage. In this configuration, signals are bypassed to the extra switches in

case of faults in the second stage switch y. where 0 < y < ?? — 1. Figure 7.2 shows

the Type II FTC network with one extra spare switch in the second stage. In

the Type II FTC, the S m atrix is represented in a different way from the Type I

FTC. Let n sp be the number of spare switches in the second stage. The n sv spare

switches at the middle stages create n sp additional columns in the S matrix, and

each element in the additional column can serve as an alternative path during the

routing process. The total number of extra paths is k n ap. All the initial elements in

the spare columns of S' are denoted as asterisks (*) for convenience. These spares

are wild cards, like the # spares, but different in characteristics. Also, the C matrix

is defined as in the ordinary Clos network except that extra columns are added. The

91

e[.r. ;(/] of the C m atrix , where 0 < x < k — 1, 0< y < n + n sp — 1 are initialized to t lie

number of occurrences of the integer x in column y of S. Each extra spare switch in

the second stage generates one ex tra column in the 5 and C matrices. T he elements

in the j/th column of 5 represent the signals moving to destination switches .s[.r. t/].

0 < x < k — 1 through the ,yth second stage switch. For example.

' 1 0 1 * * ' 1 1 1 0

1o

1 2 0 * * and C = 2 0 1 0 0o
1 2 2 * * I O 2 1 0 0 _

The right two columns of C are all zero because there are no elements between 0 to 2

in those columns, only * are in these columns. If the .rth switch of the middle stage

is faulty, the term inal relabelling described in chapter 5 must be performed. In the

$ matrix, the term inal relabelling can be achieved by clearing the r th column of .F.

and assigning these spares for the faulty .rth second stage switch. The cleared r th

column of S will be denoted as dots. The relationship between the faulty switch and

spare switches will be noted in the reconfiguration matrix R as in the Type I FTC.

The R m atrix is used to perform the term inal relabelling of the inward terminals of

the outer stages. For example, if the first switch in the middle stage in the above

example is defective, and the 4th spare switch is used instead, the resulting S. C.

and R matrices would be

■ 1 0 1 * . ' 1 1 1 0 0 ■ ' 0 0 0 ‘
= 1 2 0 * . C = 2 0 1 0 0 and R — 1 4 1

0 2 2 * . 0 2 1 0 0 _ 2 o 2

Notice tha t the elements in the first column of S remain the same, but the * spares in

the last column are no longer available. These spares are assigned now to the signals

in the first column, which can be seen in the R m atrix where r [l , l] = 4. Dots in the

S matrix mean tha t there are no paths available in the first second-stage switch, and

they are simply ignored during the decomposition process. The rules and conditions

for swapping elements and * spares are as follows. First, any two elements including

spares {*"') in a row x of S can be swapped with any element. After the swap, the

92

swapped elements are again free for any other swaps. This flexibility of * spares

makes the routing processes very simple. However, spares in a column y can not be

swapped with any elements in th a t column. Secondly, each column of 5 m ust have

no identical elements except * spares when completely decomposed. This is because

the second-stage switch has only one connection to each of the third-stage switches.

Finally, the num ber of * spares in a column can take any value i, where 0 < i < k — 1.

7.2.3 Routing FTC with Spare Switches in All Stages (Type III)

The last type of F T C is the one with ex tra spare switches in outer stages, along

with multiplexers a.nd demultiplexers, as well as in the second stage. In this FTC.

alternative paths are provided regardless of faults in any of the three stages. Figure

7.3 shows the type III of the FTC network with one extra spare switch in each stage.

In this type of network, there are k sp spare switches in each outer stage and

n sp spare switches in the middle stage. The ksp spare switches in the outer stages

create ksp additional rows in the 5 m atrix , which has a total of n k sp extra paths.

Also, the n sp spare switches in the middle stage create n sp additional columns in the

S' matrix, and this can generate a tot.al of k n sp extra paths. Initially, the elements

of S', s[.r.j/j, where k < x < k + ksp — I. 0 < y < n — 1, are initialized to # spares

and s[.r.</]. 0< x < k — 1, ?? < y < n + nsp — 1 are initialized to * spares. The

elements of ,S. s[.r,y], where k < x < k + ksp — 1. n < y < n ■+ n sp — 1. are denoted

as blanks because spares in this area are not used as will be illustrated later in the

new algorithm. Note that this area could have been initialized to * spares. Also,

the C matrix has n sp additional columns due to the second stage spare switches,

but there are no additional rows in the matrix. The c[.r.?/] of the C m atrix , where

0 < x < k — 1. 0 < y < n ■+ n ap — 1 are initialized to the number of occurrences of the

integer x in column y of 5. Each ex tra spare switch in the second stage generates

93

ooo 00 0 0

oucdC-

• 0 0

<D
c3O-CO

0 0 0

00 00 0 0

ucd
C L(/)

0 0 0

.5?

ur
e

7.3

1 h
r

FT
C

ne
tw

or
k

wi
th

ex

tra

sw
itc

he
s

in
all

 s
ta

ge
s

(T
yp

e
III

 I

94

one extra column in the .? and C matrices. For example, when n sp — ksp —

S =

1 0 1 * *
1 2 0 * *

0 2 2 * *

#
#

and C =
1 1 1 0 0
2 0 1 0 0
0 2 1 0 0

Since this type of F T C has extra switches in all stages, all the defective switches

need to be considered for the reconfiguration. If the x th switch in the first stage is

faulty, the .rth multiplexer is set so that, each signal in the r t h switch is bypassed

to the available spare switches. One of the spare switches, the r th spare switch, is

assigned to these signals in order to provide alternative paths. The r t h row of the

5’ m atrix is simply cleared, which is denoted as dots. Set the R matrix with r = 0

as in the Type I FTC , where the element r [y .r] represents tha t the r[?/.r]th spare

switch in the r th -s tage is assigned instead of the j/th switch in the .rth-stage. If

the r t h switch in the middle stage is faulty, clear the r th column of 5 , and assign

these spares for the faulty r t h second stage switch. The cleared r th column of S

will be denoted as dots. The R matrix is used to perform the terminal relabelling of

the inward terminals of the outer stages. For example, if the Oth switch in the first

stage and the 1st switch in the middle stage in the above example are defective, the

resulting 5 , C\ and R matrices would be

1 0 1 * . '

1 2 0 * . " 1 1 1 0 0 " " 4 0 0 '

= 0 2 2 * . C = 2 0 1 0 0 and R - 1 4 1
0 2 1 0 0 2 2 2

The rules and conditions for swapping elements and * or # spares are as follows.

First. # spares in a column y of S can be swapped with any elements in th a t column

except * spares because the multiplexers and demultiplexer along with spare switches

in outer stages can bypass signals. Also, spares in a column y can be swapped with

an}- elements in another column z as long as both columns maintain the same number

of # spares. Secondly, any two elements including * spares in a row .r of .S' can be

95

swapped with any element except # spares. After the swap, the swapped elements

are again free to perform any other swaps. This flexibility' of * spares makes the

routing process very simple. However, * spares in a column y can not be swapped

with any elements in that, column. Third, each column of S must have no identical

elements except # or * spares when completely decomposed. This is because the

second-stage switch has only one connection to each third-stage switch. Finally, the

number of * spares in a column is not restricted to n sp, bu t can take any value /.

0 < i < k T 7isp — 1. However, the number of # spares in a column must remain k sp.

Based on the above rules and conditions, the algorithm for the FTC network is

introduced as follows. The S and C matrices in the FTC are the same as in the

ordinary Clos network except th a t two kinds of spares are considered. First, the

elements of 5, -s[.r,i/], where k < x < k + ksp — 1, 0 < y < n — 1. are initialized to #

spares. Also. s[.r, y] is initialized to * spares where 0< x < k — 1.7? < y < n + n sp — 1.

The c[.r. y] of the C matrix , where 0 < x < k — 1. n < y < 7) -f n sp — 1 are initialized

to the number of occurrences of the integer x in column y of S.

Algorithm: Initially sx is set to zero.

Step 1: Find a column ex. in a row y of C such that c[c.r.y] > 1. If no such element

can be found then increment, cx until either such an element can be found or all rows

are satisfied, in which case the algorithm term inates with a solution. If the algorithm

has found c\cx. y] > 1. set r = 0.

Step 2: (W ild Swap) Check whether spares are available in column y. If available,

increment ,sx(mod k) until s[.s,t,;i/] = c.r, then swap s[.s.r,y] with a # spare in the

column y. and go to Step 1. If not available, then check the * spare in the row a.r. If

the * spare is available, increment s.r(mod k) until s[.s.r.y] = cx, then swap s[.s.r. y]

with a spares in the row sx and go to Step 1.

Step 3\ Increment. :(m od k) until c[c.r,c] = 0.

Step (Simple Swap) Repeatedly increment s.r(mod k) until s[s.r.y] = ex. If

9 6

s[.s,r.r] < .s[.s.t ,?/], go to Step 3. If s[s.r.;(/] < or ,s[.s.t . r] is *, swap the

elements s[s.r.?y] and s[s.r. r] and update the C m atrix . If swapped, go to Step 1.

Step 5: (Next simple swap) Repeat Step 4, thus providing one more chance to simply

swap two elements in another row. If swapped, go to Step 1. This step is done only

once before c[cx,y] becomes 1.

Step 6: (Successive Swap) Swap s[s.r,7/] and s[sa:.r], and update C as in Step 4. If

s[s.r.t/] > cx or s[sa\ y] is *, go to Step 1. Otherwise, increase s.r(mod k) for another

s[s'.t, ?/] and repeat Step 6.

Example: For a given S' and C m atrix below when 77 = k — 4 and ksp = n sp = 1.

5 -

1 1 2 3 *
1 3 2 0 *
2 0 2 3 *
1 0 0 3 *
#

and C =

0 2 1 1 0 *

3 1 0 0 0
1 0 3 0 0
0 2 0 3 0

First repetition: Wild swap continuously while scanning the C m atrix row by row.

* 1 2 3 1
1 3 # 0 *

5 = 2 # * 3 2
0 0 3 *
1 0 2 #

* 1 2 3 1
1 3 # 0 *

5 = 2 # * 3 2
0 0 # *
1 0 2 3

Third repetition: cx = 3. y — 3. sx — 0. and r — 0

S' =

The wild swap greatly reduces the number of next swaps or successive swaps

which take much time, since at most k — 1 swaps are needed in order to find the

' 0 1 1 1 0 ‘
1 1 0 0 1

and C =
1 0 1 0 1

. 0 1 0 3 0 .

cx = 3. sx 3- J = 3

' 0 1 1 1 0 '
1 1 0 0 1

and C —
1 0 1 0 1
0 1 0 2 0

' 3 1 2 * 1 ' ' 0 1 1 1 0 '
1 3 # 0 *

and C —
1 1 0 0 12 # * 3 2
1 0 1 0 1

0 0 # *
. 1 1 0 1 0 .

1 0 2 3

97

alternative paths. The number of simple swaps is also reduced. As the num ber of

extra rows and columns increases, the algorithm has more chances to suppress the

simple and successive swaps and thus improve the run time. The new algorithm

works for all perm utations, which can be proved using the following three theorems.

T h e o r e m 4: Given two sets of S t and S m which are Y’-excessive and Y'-missing.

respectively, let A‘e(?), and X m (i) be numbers with the value i in the set S t and

S m . where 0 < i < Y . Each set contains the same num ber of # wild cards, bu t the

number of * wild cards may be different. If the number of Y 's in Se is two. it is

always possible to reduce the number of Y in Se to one without any change in the

occurrence of AT and Abu.

P r o o f : Arranging elements of the set Se and S m ,

A’e(O) A’m(O)

A*e(l) A’m(l)

A’e(2) A’m(2)

Ye

Y e

Z t Z m.

Z t Z m

Z m

#
* *

The proof is basically the same as Theorem 1. There are two possible cases for Ye

to be swapped with an element in the set S m . First, if Y e and Z m (or *) are in

the same row, then two elements can be swapped, resulting in the reduction of the

num ber of Y e in the set Se to one without any change in the number of occurrences

9 8

in X e or X m . However, if Ye and X m are on the same row.) t and any one of

X m (i) . 0 < ? < Y should be swapped. The index ? is used in order to distinguish

the elements of X t and X m which have the same value i. As a result, two identical

numbers A"e(l’ — 1) and X m (Y — 1) are in the same V e-excessi ve column. Now take

A’e(V’ — 1). which is an X m (Y — l)-alternative. Again, there are two possibilities. If

A’e(V — 1) is in the same row with Z m (or *), the num ber of Ye in the T'e-excessive

column can be reduced to one without any change in the number of occurrences in A'.

However, if X e (Y — 1) is in the same row with X m (Y — 2), we need to swap A’e(V’ — 1)

and X m (Y — 2). and then find the X m (Y — 2)-alterna.tive. which is A’e (T — 2). In

the worst case, this process continues until A*???(l) finds its alternative A’e(O). Since

other A ms are not in the same row with .Ae(0), A’e(O) must select Z m (or *). which

leads to the proof of the theorem. □.

Theorems 2 and 3 in chapter 6 can be used similarly to prove tha t the algorithm for

the FTC holds for all permutations.

7.3 Worst-case Behavior of the Algorithm

The new algorithm for the F T C network is similar to tha t of the ordinary Clos

network, so deriving the exact time complexity7 of the algorithm with respect to the

number of extra switches is a very complicated m atter. In this case, the run time is

dominated by the num ber of swaps, which consist of simple swaps, next simple swaps,

successive swaps and wild swaps. Wild and simple swaps do not require much time

to swap two elements. The successive swaps on the other hand, are not frequent, but

take a relatively long time since they are continued until the alternative paths are

found. For the F T C algorithm, the basic difficulty of deriving the time complexity

of the algorithm remains the same as was explained in chapter 6. These are 1)

£!(c[c.r. y] — l) does not necessarily represent the total number of swaps, because one

swap results in the change of four elements of c[ca',y], two of which increase and two

99

R untime Runtime vs. y_spare (n=20)

6 0 0 0

5 0 0 0 X

4 0 0 0 ■ -

3 0 0 0 +

2 0 0 0 • S’

1000

0 7 10 12 155

y_spare

F ig u r e 7.4 Worst case runtime vs. number oi y.spnres ior various /.’

of which decrease. 2) For an element c:[c.r.</] > 1. it is difficult to predict analytically

what kind of swaps must be performed in the worst case for a given perm utation. For

that reason, the new algorithm for the F T C network has been simulated to obtain the

runtim e of the algorithm with respect to various numbers ol extra switches, f igure

7.4 shows the worst case runtime vs. </_.$pc/re for various values of /,'. The graph

shows that the runtim e of the algorithm for the FTC network decreases as y. spor t

increases. This is continued until y . s j m r t reaches about kj '2. where the runtime is

saturated to a certain value. Runtime can he reduced to lar less than half ol that

when there are no extra switches in the network.

Figure 7.5 shows the worst case runtime vs. . repor t for various values of u. As in

the previous figure, the graph shows that the runtim e of the algorithm for the FJ C

network decreases as x.spare increases. This is continued until .rspan- reaches about

i:/2. But. the runtim e decreases more slowly in this case, and it is reduced to slightly

more than half of that when there are no extra switches in the network. Figures

7.6 and 7.7 show the average runtime versus the number of extra switches y . s p a r t

1 0 0

R untim e

6 0 0 0 r -

Runtimc vs. x_spare (k=20)

5 0 0 0
n = 2

4 0 0 0 - •

3 0 0 0

2000

1000

0
0 2 5 7 10

x_sp are

F ig u r e 7.5 Worst case runtime vs. number of .r.spare:^ for various n

(.v-xjian) for the various k(ri). Figure 7.8 shows the number of each swap with

respect to .vsjxrrt . As can be seen from the figure, the wild swap increases steadily

with in creases in ,v_s par t , but other simple swaps and successive swaps decrease,

which explains the improvement in runtime.

7.4 D is c u s s io n

In this chapter, a novel algorithm for routing in the fault tolerant Clos network

has been introduced. Clos networks are used mainly to realize permutations.

Without any fault tolerance, if a switch in the network fails, the net work is rendered

inoperative and the system has to be interrupted to put the network back to work.

The FTC network can continue its work uninterrupted during the presence of a

fault because the FTC network can reconfigure itself dynamically, by changing the

settings of the multiplexers and demultiplexers and using the adaptive permutation

translation scheme which can be facilitated by the use of the reconfiguration matrix

R. The defective item can then be repaired during the lime at which the system

1 0 1

Runtim e
Runtim e vs. y_spare (x_sparc=0, n=20)

4 0 0 0

3 5 0 0 --

3 0 0 0 ■■

2 5 0 0 ■-

2000 - -

1500 T

1000 - ■

-o-

20 10 205
y_sp are

F ig u re 7 .6 Average case runtim e vs. number of y.spa res for various k

R u n tim e vs. x s p a r e (y_sp are= 0 , k = 2 0)
R untim e

4 0 0 0

3 0 0 0 ■-

2 5 0 0

5 0 0 +'

1000 f

0 3 10 205

x_spare

F ig u re 7 .7 Average case runtime vs. number of x.spares for various u

1 0 2

, No. o f swan vs. x spare (k=n=20)
Swap number "

160

140-•

120

100 - ■

80 -•

60 - ■

40 -■

20

0 5 7 10

 ■ w i l d

s i m p l e

n e x t

 * t o t a l

x s p a r e

F ig u r e 7.8 N umber of simple, next simple, and successive swaps vs. x .spnn*

is unused. The spare switches introduce two types of wild cards depending on the

location of spare switches in particular stages. In the Type I FTC network, two extra

spares along with multiplexers/demultiplexers are required in order to create one

additional row in the specification matrix. The Type II FTC network requires less

hardware to create one additional column in the matrix, and the wild cards are much

more flexible than in the Type I FTC network. In designing the routing algorithm,

any wild cards can be used at any time during the decomposition. However, it is

preferable t,o use the type 1 extra spares first and then type II spares next, since

type II spares are more flexible. As in the previous algorithm, the new algorithm

scans the C m atrix row by row. and swapping elements are restricted to two columns

for the successive swap, which gives the obvious advantage in proving that it works

for all permutations. Another advantage to the new algorithm is that it has the

potential to be run in parallel since only two columns are involved in the successive

swap and other pairs of two columns can be swapped at the same time.

C H A P T E R 8

R E L IA B IL IT Y OF FAULT T O L E R A N T CLOS N E T W O R K S

8.1 Introduction

So far we have discussed the new routing algorithms in ordinary and fault, tolerant

Clos networks. Also, we considered the runtim e with respect to the number of extra

switches in the outer and middle stages. Another im portant factor in the FTC

network is the reliability and space complexity with respect to the number of extra

switches. The reliability and space complexity are dependant on the number of

spare switches in the outer and middle stage switches, and these switches generate

additional extra rows and columns in the specification matrix which contribute to

the improvement in runtime. Thus, it is im portant to understand exactly how these

factors are related, and design the F T C network accordingly. In section 8.2, the fault

detection and location for the F T C network is discussed briefly. Next, the reliability

and space complexity of the FT C network, which are im portant factors in designing

the fault tolerant Clos networks, are considered. Finally, in the last section, the

optim um number of extra switches for the fault tolerant Clos network is considered

which will best balance the runtime, reliability and cost.

8.2 Fault Detection and Location of the FTC

The work of any fault tolerant MIN generally depends on two things: fault detect ion

and fault location. Two techniques have been proposed in the literature for fault

detection and location. First, fault detection and location can be performed off

line by applying prescribed test patterns to the inlets and comparing the output at

the outlets with the expected values. Second, faults can be detected and located

dynamically online through either parity checking or data bit checking. As good as

103

104

the online techniques may sound, the}- require a special switch design with built-in

hardware to carry out the dynam ic checking. This online fault detection and location

technique is the mechanism th a t can be applied to many MINs. However, the FTC

network does not require any particular mechanism; rather it requires only that the

processors be notified of the location of the fault, if any. For the work done in this

thesis, it is assumed tha t there is some mechanism to detect and locate faults and

notify the processors of the location of the fault.

8.3 Reliability of the FTC Network

The reliability of both the ordinary Clos network and the F T C net work are dependent

on the reliability of each switch and link of the networks. In chapter'5 , multiplexers

and demultiplexers are assumed to have high reliability when compared with switches

and links in the FTC network, Rigorous reliability analysis is possible which considers

the reliabilities of both multiplexers and demultiplexers. However, they are not

considered in this thesis for analytical simplicity. First, define the reliability, r. of a

single switch as the probability that, the switch does not. fail over a period of time

r . Then. / = 1 — r is the probability that the switch fails in the same period r.

Similarly, define the reliability R of the network, ordinary or FTC . as the probability

that the network does not fail over a period of time r. Then F — (1 — /?) is the

probability th a t the network fails in the same period r. A switch fails if it cannot

realize, partially or completely, a mapping of its inputs onto its outputs. Similarly,

a network fails it cannot realize, partially or completely, a mapping of its inlets onto

its outlets. For the ordinary Clos network to be fully operational over the period of

time r . all of its switches m ust be operational over the same period of time r. For

simplicity, assume that all the switches have the same reliability r. Therefore, the

reliability of the ordinary network, assuming statistical independence (independent

failure events), is

1 0 5

Rord = r 2k+™

where 2k + m is the number of switches in the ordinary Clos network.

For the FTC with one extra switch in each stage, the network will remain

fully operational if up to one switch in every stage fails. Let /?0, Ri and R 2 be

the reliabilities of stages 0, 1, and 2, respectively. Clearly, the three stages are

statistically independent. Thus, the reliability of the network is

R f t c = R qR i R?

The reliability of the first stage, Ro is the probability that at least k out of the k + 1

first stage switches, will be operational. Alternatively, if F0 is the probability tha t

the first stage fails, then

Ro — 1 — Ro

For stage 0 to fail, given th a t there is one ex tra switch, at least two switches will

have to fail, or less than k switches will have to function properly. This is a case of

binomial distribution or Bernoulli trials, for which F0 can be written as

Fo = £ (k * 1) * 1) ^ - r)"+1_'

where ^ ̂ "t ̂ j is the combination of k + 1 taken i at a time. Substituting F0

to Ro = 1 — Fo and realizing th a t Ro -- R 2 since the outer stages are the same, it

follows that

/?0 = /?2 = l-g^ /l' + !
A similar analysis shows that the reliability of the middle stage is

106

1 = 0

Substituting these two equations yields.

r>v. = (1 - E (k t 1) '-'O - (i - i ("71) r'(> - r>"'+,_'
When more than one switch is added to every stage, additional alternative

paths are created and thus, greater reliability is expected. To verify that, the previous

equation will be generalized to the case where x switches are added to each of stages

0 and 2. and y switches are added to stage 1. Using the same procedure as above,

it can be shown th a t the reliability of the new network. R f t c is

R f t c r‘(l - r)***")’ (l - £ (™ + ») r'(l - r)— -

8.4 EflFect of Spare Numbers on Reliability

The above equation can be used to show the reliability of a fault tolerant Clos net work

with respect to the num ber of spares switches x or y. Figure 8.1 shows the reliability

of a fault tolerant Clos network with respect to the number of extra switches in the

first or third stage in the Type I FTC network, when the reliability of the switch r

is 0.9, 0.96, 0.98, and 0.99, respectively, and n = k = 20.

As shown in the figure, the reliability of the system depends on the number of

extra switches, and just one or two extra switches are needed in each stage in order

to improve the reliability of the system considerably especially when r is high. The

high system reliability can be obtained as the reliability of the switch r increases.

It can be seen that if r is large, the addition of more than one switch per stage is

not needed and the reliability approaches 1. However, when the reliability of the

R eliab ility vs. y_sparc (x_sp are= 0 , k = n = 2 0)
R eliab ility

0 .9 T

0.8 - - -o-

0 .7 --

0.6 - - — ■— r=0 9 0

0 .9 6

0 .4 -- 0 98

0 99

0.2 - -

v_spare

F ig u r e 8.1 Reliability vs. number of yspare switches in Type I networks when
k = » = 20

switch r is low or when switches with high reliability are used lor a long time, the

system reliability increases slowly with respect to the number of spare switches. In

this case, more switches are needed in order to obtain the better reliability ol the

system. Also, the relatively low system reliability is obtained when r is low.

Figure 8.2 shows the reliability of a fault tolerant Clos network with respect

to the number of extra switches in the second stage in the Type II FI C network

when the reliability of the switch r is 0.9. 0.96, 0.98. and 0.99. respectively, and

11 = k - 20. As in the Type 1 network, the reliability of the system depends on the

number of extra switches, and just one or two extra switches are needed to improve

the reliability of the system considerably when r is high. The high system reliability

can be achieved as the reliability of the switch r increases, but it takes on a lower

value than in Type I networks for the same reliability of the switch r. This is t r u e

when the reliability of the switch is low, where the system reliability increases slowly

with respect to the number of spare switches, but with a much lower value. The

1 0 8

R eliab ility vs. x_spare
R eliab ility

0 .7 -r

0.6 - •

0 .5 -•

0 .4 --

0.2 - ■ «— r=0 <>

0%
0 OS

x_spare

F i g u r e 8.2 Reliability vs. number of .v,spare switches in Type II networks when
k = u = 20

main reason for this is that the Type I network has extra switches in both the first

and third stages, while in Type II networks the extra switches are available only

in the second stage, so the total number of extra switches is about the half that

of the Type] network. Note, in the above two figures, that the network reduces

to an ordinary Clos network and the reliability is same in both types of network

when .v-xpart = y s p a r e = (J. Generally, the addition of extra switches increases the

overall reliability of the network by orders of magnitude when the reliability r is low.

while the addition of same number of switches increases the overall reliability of the

network only slightly when r is high.

Therefore, it can be concluded tha t when the reliability r of the individual

switches is high, there is no need for adding excessive hardware, especially when

the total number of switches is small. That is because the higher the number ol

switches in the network, the higher its vulnerability to failure. The existence ol

small numbers of switches with a few extra switches in the FTC' makes a failure in

109

the network insignificant. Adding more switches per stage can be seen to increase

the overall reliability of the network. However, reconfiguration of the net work would

be more difficult and time consuming. Moreover, the ex tra switches would increase

the hardware of the network and complicate its design. The reliability of the FTC

is generally greatly higher than tha t of the ordinary network and the FT C is more

beneficial for networks with poor switch reliabilities. When r = 1. there is clearly no

need for any fault tolerance.

8 .5 S p a c e C o m p l e x i t y o f t h e F T C N e tw o r k

We will now consider the space complexity of the FTC network. The addition of the

extra switches in the first and third stages causes an increase in the number of inputs

and outputs in each of the second stage switches. This is the same as when extra

switches are added in the second stage, which results in the increase of the number

of inputs and ou tpu ts in the first and third stage switches. Note that the addition of

spare switches in the second stage results in the increase of switch areas in both the

first and third stages, while the changes in the outer stages result in an increase only

in the second stage. Since the switches are actually crossbar switches, the area of

the switches, or the number of cross points is generally proportional to the product

of the number of inputs and outputs of the switch. Here, we assume that the area of

multiplexers/demultiplexers are not significant for the simplicity of analysis. Also,

it is assumed here that the costs for the F T C networks are proportional to the area

of the total num ber of switches.

Let x and y again be the number of extra switches in the second stage and

first (or third) stage, respectively. Then the total number of switches in the second

stage is n + x, while it is k 4- y in the first (or third) stage. The number of inlets

in the first stage switch is n, and the number of outlets is n + x. In the second

stage switch, the number of inlets or outlets is k + y. Since the first and third

110

Cost Cost vs. y_spare (n=k=20, _sparo=0)

4
8 * 1 0

4
6*10

4
4*10

4
2 * 1 0

200 10

\ _ s p a r c

F ig u re 8 .3 Cost vs. number of spare switches in Type 1 networks when // = /.• = "Jll
and .r = 0

stag/'s are identical, the total area of the outer stages is twice t lie area of eit her

outer stage. The space complexity or the cost of the FTC network is proportional to

2f /.■ ~ .//)/? (11 4- . r) 4- (n + x)(/: 4- //)v Figure 8.3 shows the cost vs. the number of ext ra

!!..•> pa r< > in lype 1 networks when n = k = 20 and .r.sport = 0. As can be seen in

the ligure. the cost increases monotonically as the number of //_.s/>r//c increases.

F i g u r e 8.4 s h o w s t h e cost vs. n u m b e r o f .r_s/u/;-(s in T y p e 11 n e t w o r k s w h e n

n — k — 20 a n d t j-spart = 0. A s in T y p e I n e t w o r k s , t h e cost a lso i n c re a s e s t e a d i l y

w i t h th e i n c r ease in .r_,sp a n . H o w e v e r , i n t h i s case, t h e cost is less t h a n in T y p e I

n e t w o r k s . N o t e t h a t t h e i n c re ase in i / s p a r t i n T y p e 1 n e t w o r k s a c t u a l l y a d d s t w i c e

I l ie n u m b e r ol e x t r a s w i t c h e s l o t h e n e t w o r k , a l t h o u g h t h e n u m b e r o f e x t r a s w i t c h e s

is t h e n u m b e r o f . r . s / w / u in T y p e I I n e t w o r k s . It can be seen f r o m t h e f ig u re s t h a t

t h e l y p e I n e t w o r k is in g e n e ra l m o r e e x p e n s i v e t h a n Typ e I I n e t w o r k s , b u t d u e s

not d o u b l e t h e cost o f t h e T y p e I I n e t w o r k s for t h e s a m e n u m b e r o f ./■_.->/«//•< an d

I l l

Cost Cost vs. x_sp (n=k=20, y_spare=0)
4

5*10

4
4* 10

4
3*10

4
2*10

0 10 20

x s p a r e

F ig u r e 8 .4 Cost vs. number of spare switches in Type II networks when n = /,■ = 20
and // = 0

//.s /a /rt. However, it can achieve better reliability than the Type II network since

there are more extra switches.

8 .6 O p t im u m N u m b e r o f S p a re S w i tc h e s in th e F T C N e tw o rk

So far we have examined the runtime, reliability, and cost with respect to the number

of spare switches x. and ij. As was seen in chapter 7. the runtime is roughly the same

in buth the Type 1 and Type 11 FTC networks. More specifically, the I ype II net wurk

is fast er when the number of spare switches is small. However, as t he number of spares

increases, the runtime is slower than the Type I network since it needs extra tim e

to lind the location of spares and to make sure that there are no identical element.'

in the specification matrix S. The number of spares needed in Type I networks for

generating additional rows in the 5 matrix is twice the number ol spares in the 1 ype

11 network for creating the same number of additional columns. On the other hand,

the Type 1 network can achieve belter reliability than the Type 11 network, but it

112

requires twice the number of extra switches. Because of this, the Type I network

is more expensive than the Type II network, but it does not double the cost of the

Type II network when r s p a r e and y. spare are the same. The optim um number

of spare switches in each stage of the FT C network can not be determined exactly,

rather it depends on the availability of the resources and requirements of the system.

The general approach would be to decide the above factors first and then adjust the

number of spare switches in the outer stages and in the middle stage.

The research so far has shown the following results for det ermining the number

of spare switches in each stage. When the reliability of the switches is high, just one

or two extra switches are needed in each stage in order to improve the reliability of

the system. In this case, the fault tolerant routing algorithm is not efficient, and the

runtim e approaches the speed of an algorithm for the ordinary Clos network. No

additional costs are required. However, when the reliability of the switches are not

high, more than two extra switches are required in order to improve the reliability.

High reliability can be achieved by adding more switches in outer stage, but with

the increase in cost. Adding more extra switches in the middle stage is less costly

in improving the run tim e than adding spares in the outer stages. However, better

reliabilities are possible in the la tte r case. In both cases, the introduced fault tolerant

routing algorithm utilizes extra switches to improve the runtime, which is roughly

the same in both types of FTC.

8.7 Discussion

Besides the fault tolerance the F T C provides, the reliability of the network is greatly

enhanced. High reliability' means more system availability with uninterrupted

operations. It is seen from the analysis that using this fault tolerance approach is

most beneficial when the reliability of the individual switches is poor, or the number

of switches in the network is large. As far as reliability is concerned, larger numbers

of extra switches are needed in order to increase the reliability. This num ber depends

on the num ber of switches in the network and the reliability of the individual switch,

and can be determ ined for an op tim um value. However, pu tt ing a large number

of ex tra switches per stage adds significantly to the network hardw are and routing

complexity. High reliability can be achieved by adding more switches in any of

the stages. B u t adding switches in the outer stage increases the cost and system

hardware more rapidly. The same improvements in runtim e can be obtained by

adding more ex tra switches in the m iddle stage, which is less costly in improving

the run time, bu t relatively low improvements can be achieved in reliability.

C H A P T E R 9

CONCLUSION

9.1 Summ ary

This thesis has demonstra.ted the failure of G ordon's algorithm which uses two

matrices for improving the runtime. A new simple algorithm for the control of

rearrangeable Clos networks which runs in tim e 0 (n k 3^2) is proposed based on his

algorithm. The new algorithm is extended to the fault tolerant Clos (FT C) network,

which can further improve the run time when there are relatively few or no faults in

the system. In order to achieve this, the F T C network has been classified into three

types to find the swapping rules and conditions of extra elements. The optim um

number of extra switches on the fault tolerant Clos network is considered which

will best satisfy the run time, reliability and cost constraints. The result of each

perspectives are summarized below.

9.1.1 R outing for Clos Networks

Although Gordon's algorithm is simple and fast, this research has shown tha t his

algorithm displays errors in some of the perm utations, especially when k > 5. The

new algorithm is based on Gordon's algorithm where the Clos network is represented

by the specification m atrix and count m atrix . As in Gordon's algorithm, the new

algorithm has the advantage of speeding up routings by just checking the C m atrix

in order t.o calculate the number of occurrences of each element in each column of

the S m atrix . The new algorithm consists of three kinds of swaps: simple swap,

next simple swap, and successive swap. The successive swap can be compared with

the iteration phase of N eim an’s algorithm, where the algorithm backtracks in order

to select all elements which are not in the same rows and same columns. The time

114

1 1 5

complexity of the new algorithm for the ordinary Clos network has been found to be

0 { n k 3/ 2).

The basic difference between Gordon's algorithm and new algorithm lies in

the scanning direction in the C matrix. In Gordon's algorithm, it is scanned column

by column, removing columns once all elements are nonidentical in each column.

Swapping elements can take place between a not-vet-decomposed leftmost column

and the rest of the columns. However, the new’ algorithm scans the C matrix row-by-

row. and swapping elements a re restricted to two columns for the successive swap.

This gives an obvious advantage in proving th a t it works for all permutations, but. in

Gordon's algorithm, this is hard to prove. Another advantage to the new algorithm

is that it has the potential to be run in parallel since only two columns are involved

in the successive swap, and other pairs of columns can be swapped at the same time.

Also, the simple, next simple, and successive swaps can easily be extended to the

fault tolerant Clos network, which is yet another advantage.

9.1.2 Routing for FTC Networks

The new algorithm for FTC networks shows tha t the previous algorithm for the

ordinary Clos network can be easily extended to the fault-tolerant cases. It has been

shown that the original matrices can be modified using extra rows and columns in the

specification matrix so tha t they can represent the extra spare switches in the FTC

network. Extra switches generates wild cards in the matrix, which provide flexibility

during the decomposition process. The wild swaps employed in the algorithm, in

addition to three kinds of swaps in the ordinary case, were found to be important

since they can reduce the chances of entering into the time-consuming next simple

swaps or successive swaps. The spare switches introduce t.wo types of wild cards

depending on the location of spare switches in the network. In Type 1 networks, two

extra spares along with multiplexers/demultiplexers are required in order to create

116

one additional row in the specification matrix . The Type II network requires less

hardware to create one additional column in the matrix , a.nd the wild cards are

much more flexible than in the Type I network. It was shown tha t the addition of

extra switches to the network considerably decreases the runtim e of the algorithm.

The failure in the switch is reflected in the reconfiguration matrix , which helps to

reconfigure the network dynamically by changing the settings of the multiplexers

and demultiplexers and using extra switches. As in the ordinary Clos network,

the new algorithm realizes every perm utation because of its scanning the C matrix

row-by-row and restricting swapping elements to two columns in the successive swap.

9.1.3 Optimum Numbers of Spare Switches in FTC

Optim um numbers of ex tra switches in FT C networks can be determined with respect

to the reliability, run tim e and cost. The research so far has shown the following

results for determ ining t.he number of spare switches in each stages. When the relia

bility of the switches is high, just one or two ex tra switches are needed in each stage in

order to improve the reliability of the system. In this case, the fault tolerant, routing

algorithm is not efficient, and the runtime approaches the speed of the algorithm for

the ordinary Clos network. No additional costs are required. However, when the

reliability of the switches is not high, more than two extra switches are required in

order to improve the reliability. High reliability can be achieved by adding more

switches in outer stages, but with an increase in cost. Adding more ex tra switches

in the middle stage is less costly in improving the run time than adding spares in

the outer stages. However, better reliabilities are possible in the la tter case. The

runtime is improved by roughly the same amount in both types of FT C networks.

The optimum num ber of spare switches in each stage of the FTC network can not

be determined exactly, bu t rather it depends on the availability of the resources and

requirements of the system. The general approach would be to decide the above

117

factors first and then adjust, the number of spare switches in the outer stages and in

the middle stage.

9.2 Open Problems

This research has covered the routing issues in the ordinary as well as fault tolerant

Clos networks in depth. In spite of the progress made in some areas, some problems

have been observed and some encouraging ideas th a t need further research have

been discovered. Those will altogether contribute to establish the sound bases of

the research by continuing the study more deeply. First, the current algorithm

for decomposing the Clos network requires that, no identical elements be present

in a column of S except spares in order to completely decompose the matrix . This

condition is due to the structure of the Clos network in which each of the second stage

switches is connected to every third-stage switch. Also, swaps are allowed only for

the elements in the same row. This is also due t.o the first.-st.age switches’ connect ion

to each of the second-stage switches. These conditions look straightforward, but

in fact, they requires extremely serial decomposition and frequent backtracking.

However, by modifying the Clos network somehow, the current conditions might

be alleviated in a way that could lead to a much faster, straightforward routing

strategy. The question here is: Is there any modified structure of the Clos network

which could lead to the much faster routing th a t can be performed in a serial as well

as in a parallel method? And if so. how can we find tha t structure, and how much

difference can we expect?

Meanwhile, this research has developed a new algorithm for decomposing the

Clos interconnection network. This algorithm can be applied t.o Benes and other

similar interconnection networks which are derived from the Clos network. Then,

can we apply this algorithm to other multistage interconnection networks such as

the shuffle-exchange, banyan, and omega networks? Also, can the algorithm for the

118

F T C network be applied t.o other fault to lerant interconnection networks such as the

ESC?

Also, the newly introduced algorithm decomposes the specification m atrix

row by row, while Gordon's algorithm decomposes it column by column. The

potential advantage of decomposing the m atrix column by column is the reduction

of the dimension of the specification m a tr ix as the routing progresses, since each

decomposed column can be removed from the matrix . Gordon’s algorithm has been

dem onstrated to display errors for some perm utations, but can we explain why his

algorithm fails? Also, can we really find an algorithm which decomposes the m atrix

in column by column bases?

This thesis assumed that the F T C has an ability for the detection and location

of faults. F urther research is required in this area. In addition, another study needs

to be performed on the reconfiguration problems due to the failure of interstage

connections, and the analysis of the tim e complexity of new algorithms.

REFER ENCES

1. J. Baer. "Multiprocessing Systems." IEEE Transactions on Computers, vol. C-
25. no. 12, pp. 613-641. December 1976.

2. L. Bhuyan. "A Combinatorial Analysis of Multibus Multiprocessors."
Proceedings of 1984 International Conference on Parallel Processing, pp.
225-227, August 1984.

3. H. Lorin. Parallelism in Hardware and Software, Prentice-Hall. Englewood
Cliffs. NJ. 1972.

4. M. Flynn. “Very High-Speed Computing Systems." Proceedings of the IEEE.
vol. 54, pp. 1901-1909, December 1966.

5. M. Flynn, “Some Computer Organization and Their Effectiveness." IEEE
Transactions on Computers, C-21, no. 9. pp. 948-960. September 1972.

6. W. Handler. "The Impact of Classification Schemes on C om puter Architecture."
Proceedings of 1977 International Conference on Parallel Processing, pp.
7-15. 1977.

7. W. Davis. Operating Systems: A Systematic View. 2nd Edition. Addison Wesley.
Reading. MA. 1983.

8. M. Ma.no. Computer System Architecture, 2nd edition. Prentice-Hall, Englewood
Cliffs, NJ. 1982.

9. T. Hallin and M. Flynn. “Pipelining of Arithmetic Functions." IEEE Trans
actions on Computers, vol. C-21. no. 8. pp. 880-886. August 1972.

10. T. Mudge et. a.l.. "Analysis of Multiple Bus Interconnection Networks."
Proceedings of the 1984 International Conference on Parallel Processing.
pp. 228-232, August 1984.

11. T. Mudge. J. Haves and D. Winsor, “Multiple Bus Architectures." Computer.
pp. 42-48, June 1987.

12. T. Chen, “Parallelism. Pipelining, and Com puter Efficiency." Computer Design.
pp. 69-74. vol. 10. no. 1, January 1971.

13. P. Wayner, “Processor Pipelines," Byte. vol. 17. pp. 305-306. January 1992.

14. D. Lawrie. “Access and Alignment of D ata in an Array Processor." IEEE Trans
actions on Computers, vol. 24, no. 12, pp. 1145-1155. December 1975.

15. W. Chu, “Advances in Com puter Communications and Networking," Artech
House, Dedham, MA, 1979.

119

120

16. Chuan-lin Wu and Tse-Yun Feng, “On a Class of Multistage Interconnection
Networks,” IE E E Transactions on Computers , vol. C-29. no. 8, pp. 694-
702, August 1980.

17. T. Feng, "A Survey of Interconnection Networks," Computer, vol. 14. no. 12.
pp. 12-27. December 1981.

18. H. Siegel. “Interconnection Networks for SIMD Machines.” Computer, vol. 12.
pp. 57-65, June 1979.

19. Yao-Ming Yeh and Tse-Y'un Feng. “On a Class of Rearrangeable Networks.”
IE E E Transactions on Computers , vol. 41, no. 11. pp. 1361-1379.
November 1992.

20. F. I\. Hwang. “On the Rearrangeabilit.y of Some Multistage Connecting
Networks.” Belt Systems Technical Journal, vol. 55, No. 9. pp. 1411-1422.
November 1976.

21. F. I\. Hwang and A. Jajszczyk, “On Nonblocking Multiconnection Network."
IE E E Transactions on Communications , vol. COM-34, no. 10. pp. 1038-
1041. October 1986.

22. B. Douglass. “Rearrangeable Three-Stage Interconnection Networks and Their
Routing Properties," IE E E Transactions on Computers, vol. 42. no. 5.
pp. 559-567. May 1993.

23. G. Goke and G. Lipovski, “Banyan Networks for Partitioning Multiprocessor
Systems.” First Annual Symposium on Computer Architecture, pp. 21-
28, December 1973.

24. M. Leland, “On the Power of the Augmented D ata M anupulator Network." 19S5
International Conference on Parallel Processing, pp. 74-78, August 1985.

25. K. Batcher. “The Flip Network in STARAN.” Proceedings of the 1976 Interna
tional Conference on Parallel Processing, pp. 65-71. 1976.

26. H. Siegel and R. McMillen, “The Multistage Cube: A Versatile Interconnection
Network,” Computer , pp. 65-76, December, 1981.

27. F. Lombardi and C'. Feng, “Detection and Location of Multiple Faults in
Baseline Interconnection Networks,” IE E E Tra nsact ions on Computers.
vol. 41. pp. 1340-1344. October 1992.

28. M. K um ar and J. R. Jum p, “Generalized Delta Networks.” Proceedings of the
19S3 International Conference on Parallel Processing, pp. 10-18. August
1983.

29. Z. Cvetanovic, “Best and Worst Mapping for the Omega Network." IBM Journal
of Research and Development. , vol. 31, pp. 452-463. July 1987.

121

30. D. R.au. J. Fortes and H. Siegel, “Destination Tag Routing Techniques Based
on a State Model for the IADM Network." IEEE Transactions■: on
Computers, vol. 41, no. 3, pp. 274-285. March 1992.

31. Charles Clos, “Study of Non-blocking Sw itching Networks." Bell Systems
Technical Journal, vol. 32, no. 2. pp. 406-424, March 1953.

32. V. E. Benes, “On Rearrangeable Three-Stage Connecting Network." Bell
Systems Technical Journal vol. XLI. no. 5, pp. 117-125, September 1962.

33. V . 1. Neiman. “S tructure e t commande optimales des reseaux de connexion sans
blocage," Annal.es des Telecommun., pp. 232-238, Julv/August. 1969.

34. Nelson T. Tsao-W u, “On Neiman's Algorithm for the Control of Rearrangeahle
Switching Networks," IEEE Transactions on Communications, vol.
COM-22, no. 6. pp. 737-742, June 1974.

35. Abraham Waksman. “A Perm utation Network." Journal of the ACM. vol. 15.
no. 1. pp. 159-163. January 1968.

36. H. R. Ram anujam , “D ecom position of Perm utation Networks." IEEE Trans
actions on Computers, vol. C-22. no. 7. pp. 639-643, July 1973.

37. Marek Kubale, “Com m ents on Decomposition of Perm utation Networks." vol.
C-31. no. 3, p. 265, March 1982.

38. Andrzej Jajszczyk. “A Simple Algorithm for the Control of Rearrangeable
Switching Networks.” IEEE Transactions on Communications, vol. COM-
33, no. 2, pp. 169-171, February 1985.

39. Claude Cardot, “Comments on a Simple Algorithm for the Control of
Rearrangeable Switching Networks." IEEE Transact ions on Communi
cations. vol. COM-34, no. 4, p. 395. April 1986.

40. Frank I\. Hwang, “Control Algorithms for Rearrangeable Clos Networks," IEEE
Transactions on Communications, vol. COM-31, no. 8. pp. 952-954.
August 1983.

41. D. G. Opferman and N. T. Tsao-Wu, “On a Class of Rearrangeable Switching
networks. P art I: Control Algorithm." Bell Systems Technical Journal.
vol. 50. no. 5. pp. 1579-1600, May-June 1971.

42. St.einar Andresen. “The Looping Algorithm Extended to Base 2'." IEEE Trans
actions on Communications, vol. COM-25, no. 10. pp. 197-203. October
1977.

43. J. Gordon and S. Srikanthan, “Novel Algorithm for Clos-Tvpe Networks."
Electronic Letters, vol. 26, no. 21, pp. 1772-1774. October 1990.

122

44. Y. K. Chiu and W. C. Siu, “Comment: Novel Algorithm for Clos-Type
Networks,'" Electronic Letters. vol. 27, no. 6, pp. 524-526. March 1991.

45. Harold Gabow, “Using Euler Partitions to Edge Color B ipartite Graphs
and M ultigraphs,’' International Journal o f Computer and Information
Sciences , vol. 5. no. 4, pp. 345-355, 1976.

46. H. Gabow and Oded Kariv, “Algorithm for Edge Coloring B ipartite Graphs and
M ultigraphs," S I A M Journal on Computing, vol. 11. no. 1, pp. 117-129,
February 1982.

47. Richard Cole and John Hopcroft, “On Edge Coloring B ipartite Graphs.'1 S IA M
Journal on Computing , vol. 11, no. 3, pp. 540-546. August 1982.

48. V. Yizing, “On an Estim ate of the Chromatic Class of a p-graph." Diskret.
Analiz., no. 3, pp. 25-30. 1964.

49. D. Nassimi and S. Salmi, “A Self-routing Benes Network and Parallel Perm u
tation Algorithms." IE E E Transactions on Computers, vol. C-30, no. 5.
pp. 332-340. May 1981.

50. John D. Carpinelli and A. Ya.vuz Oruc, “A Non-backtracking Decompo
sition Algorithm for Routing on Clos Networks." IE E E Transactions on
Communications , vol. 41. no. 8. pp. 1245-1251. August 1993.

51. J. Carpinelli, Interconnection Networks: Improved Routing Methods fo r Clos and
Benes Networks, Ph.D. Thesis, Rensselaer Polytechnic Institute. Troy.
NY. August 1987.

52. G. Lev, N. Pippenger and L. Valiant, “A Fast Parallel Algorithm for Routing
in Perm utation Networks." IE E E Transactions on Computers, vol. C-30.
no. 2. pp. 93-100. February 1981

53. J. Lenfant, “Parallel Permutations of Data: A Benes Network Control Algorithm
for Frequently Used Perm utations." IE E E Transactions on Computers.
vol. 27, no. 7, pp. 637-647, July 1978.

54. B. G. Douglass and A. Y. Oruc, “On Self-Routing in Clos Connection Networks."
I E E E Transactions on Communications, vol. 41, no. 1, pp. 121-124.
January 1993.

55. C'. Raghavendra and R. Boppana. “On Self-Routing in Benes and Shuffle-
Exchange Networks," IE E E Transactions on Computers, vol. 40. no. 9.
pp. 1057-1064, September 1991.

56. G. Adams and IT Siegel, “The Extra Stage Cube: A Fault-Tolerant Intercon
nection Network for Supersystems.’’ IE E E Transact ions on Computers.
vol. C-31. no. 5. pp. 443-454, May 1982.

123

57. G. Adams, D. Agrawal and H. Siegel. “A Survey and Comparison of Fault -
tolerant Multistage Interconnection Networks." Computer . pp. 14-27.
June 1987.

58. I\. Yoon and W. Hegazy, “The E xtra Stage G am m a Network." Proceedings of
the 13th A nnual Symposium on Computer Architecture, pp. 175-182, 1986

59. K. Padmana.bhan and D. Lawrie, “A Class of Redundant Pa th M ultistage In ter
connection Networks,’' I E E E Transactions of Computers, pp. 1099-1108.
December 1983.

60. H. Nassar. Fault-Tolerant Interconnection Networks f o r Multiprocessor Systems.
Ph.D. Thesis, New Jersey Institu te of Technology, Newark, NJ. 1989.

61. C. Raghavendra and A. Varma. “INDRA: A Class of Interconnection Networks
with Redundant Pa ths ,” Proceedings o f the 1981, Heal Time Systems
Sympos ium , pp. 153-164. 1984.

62. T. Feng and C'. Wu. '‘Fault-Diagnosis for a Class of M ultistage Interconnection
Networks,” IE E E Transactions on Computers . vol. C-30. no. 10. pp.
743-758, October 1981.

63. D. Agrawal . “Testing and Fault Tolerance of M ultistage Interconnection
Networks," Computer , pp. 41-53, April 1982.

64. J. Lilienkamp. D. Lawrie and P. ’lew , “A Fault Tolerant Interconnection
Network Using Error Correcting Codes.” The Proceedings of the 1982
International Conference on Parallel Processing, pp. 123-125. 1982.

65. D. Agrawal and D. Kaur. “Fault Tolerant Capabilities of Redundant
M ultistage Interconnection Networks.” The Proceedings of Real-time
Systems Symposium, pp. 119-127. December 1983.

66. J. P. Shen, “Fault Tolerance o f 0 -networks in Interconnected Mult icomputer
System. Ph.D. Dissertation. D epartm ent of Electrical Engineering.
Lhiiversity of Southern California, CA. August 1981.

67. W. Fuchs. J. Abraham and K. Huang, "Current Error Detection in VLSI Inter
connection Networks.” The Proceedings o f the 10th Annual Inter national
Symposium on Computer Architecture , pp. 309-315. 1983.

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Modelling of Interconnection Network
	Chapter 3: Implementations of Mins
	Chapter 4: Decomposition of Clos Mins
	Chapter 5 : Fault Tolerant Mins
	Chapter 6: Novel Algorithm for Clos Mins
	Chapter 7: Routing Fault Tolerant Clos Networks
	Chapter 8: Reliability of Fault Tolerant Clos Networks
	Chapter 9: Conclusions
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)

