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ABSTRACT

INVESTIGATION OF PARAELECTRIC PLT THIN FILMS 
USING REACTIVE MAGNETRON SPUTTERING

by
Hyun Hoo Kim

The study of methods to prepare paraelectric perovskite PLT (Pb]_x LaxTij -X /4 °3 i 

x=0.28) thin films has been important because thin films of this high dielectric strength 

material are required to make high density capacitors for dynamic random access memory. 

In this research, paraelectric PLT thin films were prepared on multi-layer (Pt/Ti/SiC^/Si) 

and MgO substrates in a unique way by the reactive magnetron sputtering method using a 

multi-component metal target. The individual control of each metal area on the sputtering 

target had considerable influence on the stoichiometry and electrical properties of the thin 

films. The effect of post-deposition annealing on as-deposited amorphous PLT films was 

studied as a fiinction of temperature in the range of 450 °C to 750 °C. The inter

dependent relationship of the composition, crystalline structure and surface morphology in 

the films was studied as a function of annealing conditions. The chemical composition of 

the as-deposited and annealed films was measured by Rutherford back-scattering (RBS) 

and Auger electron spectroscopy (AES). The composition of PLT (28) thin film was: Pb, 

0.73; La, 0.28; Ti, 0.88; O, 2.9.

The dielectric constant (sr) and dissipation factor (tan S) at low electric field 

measurement (500 V/cm) of the capacitors with the highest dielectric properties were 

1216 and 0.018, respectively. Single crystal film at 650 °C were smooth and had the 

lowest leakage current density, 0.1 pA/cm2, at the electric field o f 0.25 MV/cm. 

However, the highest dielectric constant, 1216, and the highest charge storage density,

12.5 pC/cm2, obtained with an annealing temperature of 750 °C. The research showed



that magnetron sputtering can be used to prepare paraelectric perovskite PLT (28) thin 

films with high dielectric constant, large charge storage density and relatively low leakage 

current for capacitor applications in active DRAM cells.
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CHAPTER 1

INTRODUCTION

The ferroelectric elements in integrated semiconductor devices can be utilized in a variety 

of ways based on the piezoelectric, pyroelectric, dielectric and electrooptic properties. 

Compound ceramic oxides, which are well known as ferroelectric materials of PT family 

systems, are PbTi03 (PT), Pb[Zr,Ti]03 (PZT), [Pb,La]Ti03 (PLT) and [Pb,La][Zr,Ti]03 

(PLZT). Particularly, PLT films through a proper choice of lanthanum (La) content can 

be used for various device applications, including piezoelectric sensors, dielectric devices 

and electrooptic storage cells [1,2].

Ferroelectric thin films of PT systems with a high dielectric constant and low 

leakage current density have received dramatic attention for the development o f memory 

devices [3], Ferroelectric films, in the non-volatile random access memory (NVRAM) 

application, use a large value of the remanent polarization in the hysteresis property of the 

polarization versus electric field. In the dynamic random access memory (DRAM) 

application, the high dielectric constant of ferroelectric materials can be exploited by using 

a thin film capacitor as the charge storage element. On the La modified PbTi03 solid 

solution system (Pb-La-Ti-0 system), PLT films with controllable composition and good 

crystallinity are highly desirable due to the relevant dependence of the memory devices. 

As the La content in the equilibrium phase diagram of the PLT system reaches 28 mol %, 

the ferroelectric tetragonal structure of PLT thin films is suddenly transformed into a 

paraelectric cubic phase. Paraelectric (non-ferroelectric) PLT films which offer good 

dielectric properties and extremely low leakage current density are, therefore, an excellent 

candidate for ULSI DRAM applications.

Several deposition methods have been used to synthesize ferroelectric ceramic thin 

films, including magnetron sputtering [4,5,6], ion beam sputtering [7,8], MOCVD [9],
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metalorganic decomposition (MOD)[ 10,11 ], sol-gel solution method [12,13], and excimer 

laser ablation [14,15], etc.. Magnetron sputtering (dc or rf) of various deposition 

techniques is the most popular growth processing for ceramic oxide materials, because the 

desired composition of ferroelectric films is obtained easily from the compound target or a 

multi-element metal target. Paraelectric PLT (28) thin films in our experiments are 

prepared by reactive magnetron sputtering deposition using a multi-component metal 

target. The deposited films experience the various conditions o f post-deposition annealing 

for the desired perovskite structure and good crystallinity.

The present work is organized into five parts. The first part describes the 

background and theory of ceramic oxide PLT material including the ferroelectric and 

paraelectric (non- ferroelectric) structures. The second part introduces the operation and 

advantages of a triode magnetron sputtering system, and explains the design and structure 

of a magnetron sputtering system and its calibration tests. The third part presents the 

preparation and experimental procedure of paraelectric PLT thin films. The PLT thin 

films are deposited on Pt/Ti/Si02/Si or Pt/MgO substrate by reactive magnetron sputtering 

using a multi-component metal target. The fabrication of ternary ceramic PLT thin films 

includes several conditions of post-annealing treatment for the desired perovskite phase 

with a high dielectric constant. The fourth part chiefly describes the material properties of 

PLT thin films. Paraelectric PLT (28) thin films are characterized for stoichiometric 

composition and cross-sectional profile by Rutherford back-scattering (RBS) and Auger 

electron spectroscopy (AES). They are analyzed for surface morphology by scanning 

electron microscopy (SEM), and evaluated for phase contents and crystallinity by X-Ray 

diffractometry (XRD). The fifth part introduces the electrical properties of these films 

which are analyzed by I-V plot, P-E measurement, V-t characteristics and dielectric 

measurements.



CHAPTER 2

BACKGROUND OF PLT MATERIALS

2.1 Ferroelectric State

Since Busch and Scherrer in Switzerland discovered the ferroelectric properties in 1935 

[16], there has been increasing interest in ferroelectric ceramic oxides such as PT systems 

(namely, PT, PZT, PLT and PLZT). Ferroelectrics are a subgroup of the pyroelectric 

materials, which are a subgroup of the piezoelectric materials. Ferroelectrics, therefore, 

possess fundamentally both pyroelectric and piezoelectric properties, in addition to their 

unique ferroelectric properties. Ferroelectric materials usually show hysteresis effects in 

the relationship between dielectric displacement (or polarization) and electric field. A 

ferroelectric oxide is characterized by a net spontaneous polarization (or electric dipole 

moment) which can be switched or reoriented by the applied electric field. The 

spontaneous polarization (Ps) has its origin in the noncentrosymmetric arrangement o f the 

B-site ions (i.e., Ti) in the unit cell [17].

In ferroelectric materials, there are regions of aligned electric dipoles, called 

domains, to produce the spontaneous polarization. The domains grow parallel to the field 

as an electric field is applied, and the polarization is increased as shown in Figure 2.1. The 

macroscopic polarization with an external field applied is composed of the aligned 

spontaneous polarization as well as electronic and ionic polarization generated by the 

external field. A maximum alignment of the spontaneous polarization occurs and the 

hysteresis curve saturates at maximum polarization (Pm) because additional electronic and 

ionic polarization produced by an increase in the field is quite small compared to the 

spontaneous polarization. The ionic and electronic polarization decrease to zero when the 

electric field is removed. The remanent polarization (Pr) is the spontaneous polarization 

that remains aligned with the previously applied field. In the hysteresis characteristic, the

3
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magnitude of the reverse electric field, which decreases the net polarization to zero, is 

called the coercive field Ec . At this point the net polarization reverses polarity if the 

reverse applied field is increased further.

Ferroelectric PLT materials have a number of properties which make them useful 

in a variety of application [18,19,20], for example,

(1) high piezoelectric constant

(2) high dielectric constant

(3) relatively low dissipation factor

(4) high electrical resistivity

(5) fairly high pyroelectric coefficient

(6) high optical transparency

(7) high electrooptic coefficient

Although all these properties do not simultaneously combine to produce an optimum 

effect in any application, a number of desirable properties can be achieved by adjustable 

control of the La content in PLT thin films.

The perovskite structure in the ferroelectric phase of PLT oxide material assumes 

one of three structural formations: tetragonal, orthorhomic, or rhombohedral. The PLT 

solid solution system is a series of compositions modified by the solubility of substantial 

amounts of lanthanum oxide (La20 3) in the crystalline lattice of lead titanate (PbTi03). 

PLT material possesses the perovskite crystal structure described by the general chemical 

formula AB03 [19] as shown in Figure 2.2. The A element (Pb and La) is a large cation 

situated at the comers of the unit cell and the B element (Ti) is a smaller cation located at 

the body center. The oxygen atoms are positioned at the face centers. The chemical 

formula of the PLT system [21,22] can be generally expressed in two forms depending on 

the type of vacancies:

(A) Pbj.xLajTij.j/^Oj

(B) P b ,^xLaxT i03
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where a  is called the vacancy distribution factor (or lead elimination factor) in the range 

0.75 < a  < 1.5, and essentially depends upon the partial pressure of the PbO, the amount 

o f lanthanum (La), substrate temperature, and the partial pressure o f oxygen [23], In 

these formula, La ions replace Pb ions in the A-site of the perovskite AB03 ionic 

structure. Since La3+ (added as La20 3) substitutes for Pb2+, electrical neutrality is 

maintained by the creation of lattice site vacancies. The actual location of these vacancies 

in either the A2+ sites or B4+ sites of the unit cell has not yet been completely reported 

despite numerous studies on the subject [19-23], It is most probable that vacancies exist 

in both A- and B-site [21]. If both A- and B-site vacancies are present in the lattice, it is 

expected that the above formulation would provide excess Pb2+ ions which are expelled 

from the lattice (PbO vapor) during the annealing process. In fact, this excess PbO 

contributes to achieving full dense material by eliminating residual porosity before it 

becomes entrapped within the grains. Lead titanate (PbTi03) is a tetragonal ferroelectric 

perovskite material with the Curie temperature (Tc) o f490 °C, and its tetragonality, c/a, is

1,06 at room temperature. The addition of La to the bulk ferroelectric PbTi03 causes a 

unit cell contraction [24], The c/a ratio and Tc decrease monotonically with increasing La 

concentration. Therefore, the effect of adding La of the PT system is to reduce the 

stability o f the ferroelectric phases (reducing the Curie temperature) in favor o f the 

paraelectric (non-ferroelectric) cubic phase.

The composition-structure relationship in the equilibrium phase diagram for the 

PLT system [23,25] at 1330 °C is given in Figure 2.3. Since the phase diagram in the 

Figure is applied only to films that form during deposition, it can not be directly formalized 

in PLT thin film using post-annealing treatment. Fox et al [26] discussed in detail that 

PLT films heat-treated by post-deposition annealing were evolved from the interdependent 

relationship between stoichiometric composition and crystallographic structure. A post

deposition annealing process is required for films deposited in the amorphous or partially 

amorphous state. The annealing parameters, that is, temperature, time and oxygen partial



Tetrag. perovskite 
Cubic perovskite  
Perovskite + PbO 
Perovskite+ LO2Ti20

cub. perov.

tetr. perov.

0.6 PbTiO, 0.4 0.20.3 0.1
—  PbO

Figure 2.3 Equilibrium phase diagram for the PLT system at 1330 °C
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pressure, have prominent influences upon crystallization and perovskite phase formation in 

PLT films [3], Surface microstructures of the deposited thin film have commonly been 

introduced by the structure zone model (SZM) [27], as shown in Figure 2.4. 

Microstructures and morphologies of the thin film are classified by the deposition 

temperature and argon operating pressure. There are three microstructure zones in the 

SZM. Zone I (T/Tm < 0.25 -  0.3) is a porous structure consisting of tapered crystallites 

separated by voids. Zone II (0.25 -  0.3 < T/Tm < 0.45) has columns with relatively 

smooth surfaces. Zone III (T/Tm > 0.45) shows the recrystallized grain structure. The 

transition zone (subzone T) at the border between zone I and zone II exhibits a tightly 

packed fibrous structure. The post-annealed films are different from the microstructure of 

as-deposited films because of thermally induced surface and bulk diffusion. It is supposed 

that the final microstructure of PLT thin films using the post-deposition annealing is 

exhibited by a superposition of various zone structures in the SZM model due to the 

interdependent processes of crystallization and composition change caused by lead 

volatility.

2.2 Paraelectric State

There are two ways to perceive the paraelectric state in the Pb-La-Ti-0 system. First, as 

the molar La content in the composition formula of the PLT system is equal to and higher 

than 0.28, the paraelectric phase with cubic perovskite structure appears in the PLT phase 

diagram as given in Figure 2.3. It is noted that its tetragonality (c/a) is unity and the Curie 

temperature is -25 °C [28]. Second, the ferroelectric behavior of PLT thin films 

disappears at a specific transition temperature with increasing temperature. The 

spontaneous polarization in ferroelectric film is a function of temperature. However, at 

high temperature, thermal energy destroys the domain structure of ferroelectricity. The 

specific temperature at which the spontaneous polarization disappears is called the 

ferroelectric Curie temperature. Above the Curie point (Tc), PLT material is suddenly
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changed from ferroelectric (or noncentrosymmetric) tetragonal phase to paraelectric (or 

centrosymmetric) cubic state in the perovskite structure. As shown in Figure 2.5 (a), the 

ferroelectric state (i.e., spontaneous polarization) exists at a temperature below Tc , and 

also the spontaneous polarization equals zero above Tc .

The dielectric constant is not only a function of the electric field, but also a 

function of temperature. Figure 2.5 (b) shows the dielectric constant as a function of 

temperature. In the ferroelectric phase, the dielectric constant increases gradually as the 

temperature increases, and it becomes anomalously large at the Curie temperature. Above 

Tc, the dielectric constant can be frequently described by Curie-Weiss behavior:

1 _ T - T c 
e ~  C

where, C is the Curie constant and 

Tc is Curie temperature.

The dielectric constant, as a function of temperature, in the paraelectric phase of the PLT 

films can not be completely represented by the simple formula o f Curie-Weiss behavior. 

Keizer et al [29] have developed models to interpret the anomalous dielectric 

characteristics. The dependence of the dielectric constant on temperature for the 

paraelectric phase of PLT (28) thin films can be modified by the power series of the 

temperature as the following:

= c , - c ! ( 7 - - 7 ' „ ) - c J( 7 - - r ^ , ) i
S B°m a x

where, Cj, C2 and C3 are constants, depending on the stoichiometric composition.

Dey and Lee [30] discussed that the ferroelectric thin films with hysteresis effect 

exhibited a number of disadvantages for semiconductor memory applications. The time-
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Figure 2.5 The dependence of (a) spontaneous polarization and (b) relative 
dielectric constant on temperature (near Curie temperature).
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dependent polarization reversal processes in the saturation arm between Pr and Pm of a 

hysteresis loop are relatively slow. This processes, in terms of domain reorientation and 

phase switching, produce a potential fatigue (time-dependent degradation in charge 

storage density) and severely limit the charging and discharging speeds of the capacitors. 

Therefore, nonswitching cubic paraelectric films with high dielectric constant should offer 

outstanding advantages over switching ferroelectrics.

Figure 2.6 shows polarization versus electric field (or called P-E) characteristics 

for normal dielectric, paraelectric, and ferroelectric thin films. The typical P-E 

characteristic of a ferroelectric film exhibits the hysteresis loop with the positive and 

negative remanent polarization values. Conversely, paraelectric PLT film behaves like a 

normal dielectric material at a low electric field, and has no remanent polarization in the 

absence of an electric field. At a high electric field, the nonlinear behavior is demonstrated 

in paraelectric films. The dielectric and electrooptic effects o f ternary ceramic PLT thin 

films are greatly affected by the La content, and they reach maximum effect near the phase 

boundary (Jt = 0.28) between the ferroelectric tetragonal and the paraelectric cubic 

structure [22],

2.3 Potentials of PLT Material for DRAM Capacitor

With the successful development of dynamic random access memory (DRAM) 

technology, the reduction in cell size has required reducing the area of the planar storage 

capacitor. It is, therefore, necessary to increase the charge storage density on the 

capacitor to maintain adequate operation. The required increase in charge storage density 

has been achieved through improvements in processing technology, reduction of the 

dielectric thickness, and innovations in the cell design (31]. However, the thin dielectric 

materials such as conventional dielectrics as well as Ta20 5 and Si3N4/Si02 do not appear 

to be sufficient for ultra large scale integration (ULSI) DRAMs. As a result, a new
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dielectric material that permits a capacitor with higher charge storage per unit area and is 

compatible with ULSI processing is required for use in ULSI DRAMs.

Ferroelectric materials as an alternative dielectric with a higher dielectric constant 

have been widely considered by a large of number of researchers [31,32], There are 

numerous important requirements that have to be satisfied by the dielectric material for 

future generations of DRAMs and they are as follows:

( 1) high charge storage capacity per unit area,

(2) low leakage current density,

(3) low defect density,

(4) high reliability,

(5) compatibility with silicon integrated circuit processing technology, and

(6) stability with the two capacitor electrodes.

Table 2.1 shows key parameters required for the electrical properties of recent ULSI 

DRAMs.

Table 2.1 Key parameters required for the electrical properties of 64 and 256 Mb 
DRAMs.

Parameter 64 Mb 256 Mb Comment

Memory cell 
area (pm^)

0.7-1.0 0.25-0.34 —

Storage capacitor 2-6 0.7-2 Trench
area (pm^) 0.2-0.5 0.07-0.17 Planar

Storage charge 1-5 2-11 Trench
density (pC/cm^) 10-50 20-115 Planar

Leakage current 2-25 3-35 Trench
density (pA/cm^) 20-250 30-360 Planar

Dielectric thickness 
(nm)

10-200 10-200 —
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A DRAM memory circuit uses charge storage on a capacitor to represent binary 

data values. The most common DRAM memory cells are based on the one-transistor (1- 

T) design to reduce the size of DRAM. This has the advantages of a small memory cell 

area made possible by the use o f only one transistor and one storage capacitor in the 

circuit design. The 1 -T cell is also comparatively easy to fabricate, operates at less power, 

and is more reliable than other designs using multiple transistors. Figure 2.7 (a) shows a 

typical memory cell with a single transistor and capacitor for charge storage. The 1-T cell 

of the basic DRAM technology was invented by Dennard [33], Its concept is that the "0" 

and "1" binary information is stored on the capacitor by charging or discharging the 

capacitor through the transistor. The transistor connected to the word line isolates the 

storage capacitor from the bit line, and as soon as the transistor is turned on, the capacitor 

is connected to the bit line so that information is written and read. A cross-sectional 

structure of 1-T DRAM cell [34,35] with a paraelectric capacitor is shown in Figure 2.7 

(b). Similar to the conventional I-T memory cell, the single transistor as a pass transistor 

provides a path to the capacitor. During operation, a positive or zero voltage is on the bit 

line for the "1" or "0" state, respectively. However, the critical factor in the design of a 1- 

T DRAM cell is the charge storage density which fundamentally determines the 

effectiveness of the memory cell to maintain the distinction between "0" state and "1" 

state.

Recent researchers [36,37] suggest that the improvement in the relative dielectric 

constant using a thin insulating material such as tantalum pentaoxide (Ta20 5; 8r  ~ 20-25) 

and yttrium oxide (Y20 3; Er ~ 12-16) is 3 to 6 times over that o f Si02, while the net gain 

in charge storage density is only a factor of two at best. This is due to higher leakage 

current and lower dielectric breakdown strength. The requirement for high charge storage 

capacity per unit area is focused on dielectric material with an extremely high dielectric 

constant. The ability of the dielectric constant with the use of new dielectrics can
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Figure 2.7 (a) Circuit elements of one-transistor (1-T) DRAM cell, and 
(b) Cross-sectional structure of 1-T cell involving paraelectric 
capacitor.
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withstand a sufficiently large electric field, because the charge storage capacity is 

proportional to the dielectric constant and the applied electric field.

In recent reports for DRAM operation [38], a PZT film of 400 nm thick is 

equivalent to a 1.6 nm Si02 film subjected to a 2.5 V voltage (5.5 pC/cm2). The 200 nm 

film has a polarization of 9 pC/cm2 equivalent to a 1.0 nm Si02 film with a 2.5 V voltage. 

Paraelectric PLT (28) films of 500 nm thick have a polarization of 5.7 pC/cm2 with a 2 V 

voltage. The largest charge storage capacities reported for ONO (oxide/nitride/oxide) and 

Ta20 5 dielectrics correspond to a 2.5 nm Si02 film. The film thickness of the dielectric 

has been reduced to less than 10 nm in order to retain a sufficient charge storage in current 

DRAM technologies. A further reduction in thickness may have a deleterious impact such 

as a direct tunneling through thin dielectric films and has reached the fundamental limit in 

processing technology.

Another important capacitor dielectric requirement for any potential DRAM is low 

leakage current density. High leakage current has limitation in the operation since the 

cells require more frequent refreshing, use more power, and limit the maximum field that 

may be applied across the device. Figure 2.8 shows the leakage current density as a 

function of the electric field for the various dielectric materials [39,40], The PZT and PLT 

films exhibit superior leakage characteristics compared to other dielectric films at high 

fields.

Charge storage density, in ferroelectric thin film, corresponds to the difference 

between the maximum polarization and the remanent polarization in hysteresis loop. The 

ferroelectric PZT films for DRAM operation present some disadvantages such as time 

dependent polarization reversal processes in the saturation of the hysteresis loop. These 

processes not only cause a potential fatigue (time-dependent degradation of Qc) problem 

but can also increase loss tangent and seriously limit the switching speed of the capacitors. 

The hysteresis property is not actually desirable in DRAM application, and the capacitor 

operates only as a linear capacitor. Therefore, paraelectric cubic PLT films with extremely
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high dielectric constant and normal dielectric characteristics should offer significant 

advantages over ferroelectric films.

Charge storage densities, leakage current densities, and dielectric thickness in 

recent ULSI DRAM technologies with planar capacitor are basically required to be in the 

range of 20-115 pC/cm2, 30-36 pA/cm2, and 0.01-0.2 pm, respectively [41], 

Paraelectric PLT thin films are a potentially attractive candidate for the storage dielectric 

capacitor in future DRAMs. Nonswitching cubic paraelectric PLT thin films with a linear 

dielectric characteristic offer significant advantages over conventional dielectrics and are 

also preferable to nonlinear switching ferroelectric thin films for the operation of ULSI 

DRAMs.

2.4 Objectives of Research

Ferroelectric thin films have been developed in semiconductor memories that are 

optimized for a variety of applications. These are static random access memories 

(SRAMs) that are required for high speed applications; dynamic RAMs (DRAMs) that are 

designed for computer storage; and nonvolatile RAMs (NVRAMs) that are used for read- 

only-memory. The important characteristics of ferroelectric materials are specified by 

special properties for all types of memory devices of the memory application as follows. 

Nonvolatile ferroelectric memories utilize a ferroelectric thin film capacitor as a 

nonvolatile storage element and make use o f the hysteresis property of polarization versus 

voltage characteristics. The high dielectric constant o f ferroelectric materials can be 

exploited by a thin film capacitor as the storage element in DRAM devices. Here, the 

hysteresis property of ferroelectric is not desirable, and the capacitor operates similar to a 

linear capacitor of normal dielectric for charge storage. Consequently, the paraelectric 

PLT (28) thin films with excellent dielectric properties are expected to offer significant 

advantages for ULSI DRAM technology.



21

Many researchers have used various deposition techniques for preparation of 

ferroelectric oxide thin films. Adachi et al [42] succeeded in the epitaxial PLZT thin films 

on sapphire and MgO substrates by rf magnetron sputtering method from an oxide powder 

target. Schwartz et al [43] prepared ferroelectric PLT thin films by the sol-gel solution 

method. Watanabe et al [44] fabricated amorphous PLT (15) thin films by metal organic 

chemical vapor deposition (MOCVD) at low temperature. Quin et al [45] and Fox et al 

[46] also made ferroelectric PLT thin films by a multi-ion-beam reactive co-sputtering 

technique. The common interests in preparing PLT thin films of high quality by different 

deposition methods include stoichiometry control, suitable microstructure, uniformity, 

reproducibility, and process compatibility with semiconductor technology.

To date, preparation of PLT thin films with correct composition is so difficult that 

their electrical properties for memoiy device technologies have not been investigated 

sufficiently. Thus, this study begins with a development of high dielectric properties in 

ferroelectric oxide materials for ULSI DRAM application. The first purpose of the 

present research work is to prepare paraelectric PLT thin films by a multi-component 

metal target of triode magnetron sputtering technique which is designed in our laboratory. 

Subsequently, a post-deposition annealing treatment for the as-deposited films is carried 

out to crystallize into the desired perovskite phase. The material and electrical 

characteristics of the films are also investigated by a variety of analytic methods. RBS and 

AES are used in order to achieve the desired stoichiometric composition of PLT (28) thin 

films. XRD is also used to determine the crystalline structure and lattice constant of PLT 

thin films. The surface microstructure is analyzed by SEM topography. The dielectric and 

electrical characteristics such as P-E, I-V and V-t measurements are investigated to 

illustrate the potential use of PLT (28) thin films in DRAM application.



CHAPTER 3

TRIODE MAGNETRON SPUTTERING SYSTEM

3.1 Introduction

Presently, the most important factor in the preparation of ferroelectric oxide films is the 

deposition method. In the ferroelectric thin film (FTF) growth processes, Krupanidhi [47] 

reported that the deposition techniques could be primarily specified in terms of the growth 

processes with and without the presence of low energy bombardment during deposition. 

The growth processes with low energy bombardment included, magnetron sputtering, ion 

beam sputtering, excimer laser ablation, electron cyclotron resonance plasma-assisted 

growth, and plasma-enhanced chemical vapor deposition (PECVD). The deposition 

techniques without bombardment included sol-gel synthesis, metalorganic decomposition 

(MOD), thermal and e-beam evaporation, CVD, MOCVD, and MBE. Table 3.1 

summarizes the various growth techniques for recent FTF processing o f PT systems [47], 

Sol-gel processing in chemical solution methods and magnetron sputtering of the 

above mentioned methods have been reported as successful preparation techniques 

because of better control of the film composition. The sol-gel technique has received 

significant attention due to easier fabrication of a large area, excellent lateral uniformity 

and low cost. However, sol-gel deposition has a number of disadvantages such as the 

inability of exact thickness control for thin films and difficulty of small feature deposition. 

Due to the recent requirements for ultra large scale integration (ULSI) o f ferroelectric 

oxide/semiconductor thin film-based devices, rf or dc magnetron sputtering of physical 

deposition techniques have received dramatic attention [18,47], The multi-component 

target sputtering, or multiple targets sputtering, appears to be a suitable method to deposit 

stoichiometric thin films with controllable thickness and high growth rate.

This chapter briefly introduces the theoretical background and construction of

22
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triode magnetron sputtering which was designed in our laboratory, and the basic tests for 

its calibration. Finally, the ternary ceramic oxide of PLT thin film with a high dielectric 

constant and a low leakage current is deposited reactively by our triode magnetron 

sputtering.

3.2 Triode Magnetron Sputtering

3.2.1 Magnetron Sputtering

Sputtering is an atom-by-atom process. Atoms are ejected from the surface of a target 

under ion bombardment and subsequently deposit to the substrate. Sputtering as a 

phenomenon was first observed to coat mirrors in the 1850s [48], In the 1940s, sputtering 

was used to a significant extent as a commercial deposition process. A typical magnetron 

sputtering process shown in Figure 3.1 has a shaped and closed path magnetic field to trap 

and concentrate the electrons produced in the discharge at the target surface. The 

electrons are confined to above the target materials. The high density cloud of electrons 

promotes ionization of the sputtering gas in the region close to the target surface, and the 

target is negatively biased to attract ions to the target. The high energy impact of these 

ions on the target dislodges atoms from the material which are collected on the substrate 

surface. Due to the high ionization efficiency of this process, low power levels may be 

used, and at the same time high deposition rates are achieved. Because electron leakage is 

restricted by the magnetic field, bombardment of the substrate is minimized and heating of 

the growth film and substrate is substantially reduced.

The magnetron sputtering process has many advantages [48,49], The primary 

advantages are:

(1) high deposition rate,

(2) ease of sputtering any metal, alloy, or compound,

(3) high-purity of the deposited films,
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Figure 3.1 Basic operation of magnetron sputtering system
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(4) extremely high adhesion of films,

(5) excellent coverage of steps and small features,

(6) ability to coat heat sensitive substrates,

(7) ease of automation, and

(8) excellent uniformity on large area substrates.

Magnetron sputtering, because of the above advantages, is a very powerful technique 

which can be used in a wide range of applications.

The advantages of a triode technique in a triode magnetron sputtering are that a 

very high ion density is produced, the processing pressure is relatively low and the plasma 

current density for the deposition films can be controlled independently with the plasma 

voltage. Therefore, the deposition rate of triode magnetron sputtering is higher than that 

o f diode magnetron sputtering. There are also some disadvantages in terms o f the heated 

filament. First, the thermionic filament is impractical in the reactive sputtering process. 

Second, the filament of the refractory metal contributes to contaminate the deposited 

films. The filament is subject to burnout and its power dissipation adds heat to the 

chamber area.

3.2.2 Construction of Triode Magnetron Sputtering System

Figure 3.2 shows a frontal picture of a triode magnetron sputtering system, including the 

vacuum chamber, power supply, and system control console. The block diagram of the 

sputtering system is shown in Figure 3.3. In this section, the triode magnetron sputtering 

system is discussed in terms of its structure and the details of its construction. A 

generalized magnetron sputtering system consists of a high vacuum system, a sputtering 

source assembly, and a substrate holder in its basic formation. The design and 

characterization of a triode magnetron sputtering system will be presented.

The vacuum system used for this triode magnetron sputtering system was 

previously an asymmetrical reaction ion etch system, model 640, built by Plasma-Therm,
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Inc [50], The dimension of bell jar chamber is 32-inches high by 24-inches outer diameter. 

The vacuum system consists of a turbomolecular pump, rough and process mechanical 

pump. A residual gas analyzer (Leybold-Heraeus, Inficon, Quadrex 200) is attached to a 

flange between the base of the bell jar and the turbomolecular pump. It is used to monitor 

vacuum chamber performance, such as, various residual gases, and to detect vacuum leaks 

and contaminants. The lowest base pressure observed in the vacuum chamber has been 

2.5x1 O'6 Torr. The partial pressures of residual gases in the vacuum chamber is shown in 

Table 3.2.

The target source assembly is a TRI-MAG, model 383, sputtering source by 

L.M.Simard, Inc., and TRI-MAG stands for triode and magnetron sputtering system. 

This sputtering source has an exceedingly high deposition rate for thin film research. In 

the triode system, ions are generated in low voltage (50-70 V) and high current (2-15 A) 

arc discharge between a thermionic filament (tantalum) and a main anode. The magnetic 

field design is the key factor governing the operation of the magnetron in the planar 

magnetron system. It is responsible for the effective trapping of the electrons and the 

uniform erosion of the target material. Unique characteristics of thin film deposition is 

given by an ExB field for plasma confinement close to the target surface. The magnetic 

structure under ExB field is configured to give exceptionally uniform target erosion and to 

permit the sputtering of insulators as well as magnetic materials. The source of the 

permanent magnets for the magnetron system is a ferrite, so called "ceramic 8", and its 

magnetic flux strength is around 250 Gauss [51]. Figure 3.4 shows the entire sputtering 

source assembly, including the water lines and the electrical connections, based on the 

above essential limitations. The power block diagram of the triode magnetron sputtering 

source is given in Figure 3.5. The substrate holder is located above the sputtering source 

assembly so that the deposited thin films have a high purity due to the sputtering-up 

position. The substrate holder is made of a 4 inch diameter copper disk.



30

CONTROL
S MASS ROW  
PROCESS GAS 
2 ROTOMETER

PROCESS 
CAS ROW  
CONTROL

I______ -A______ J
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3.3 Calibrating Tests of Triode Magnetron Sputtering

In order to calibrate the rf triode magnetron sputtering system for thin film deposition 

processes, the effects of different glow discharge conditions were investigated in terms of 

the deposition rate measurements. The basic parameters for calibrating experiment in our 

rf triode magnetron sputtering were rf power input, gas pressure, plasma current, and 

target to substrate distance. Because a knowledge of the deposition rate is necessary to 

control film thickness and to evaluate optimal conditions which are an important 

consideration in preparing better thin films, the deposition rates of copper as a testing 

material under the various sputtering conditions were investigated.

3.3.1 RF Power Effect

The deposition rates dependent on the rf power are shown in Figure 3.6, and the 

deposition rates increase linearly with increasing rf power input. The sputtering conditions 

were: 70 mm distance between target and substrate, 20 mTorr argon gas pressure, 5 A 

plasma current, and 60 minutes deposition time. In this Figure, the curve "a" shows the 

deposition rate of a sample in the center location "1" on the substrate holder. The curve 

"b" demonstrates the average value of deposition rates at four positions "2", "3", "4", and 

"5" whose distance from the substrate center is 25 mm, respectively. Each deposition rate 

on location "2", "3", "4", and ”5" was with maximum 5 % range o f the average value on 

the curve "b". The temperatures of the substrate holder caused by ion bombardments of 

sputtered atoms and thermionic filament in a triode system also increase with increasing rf 

power. It is expected that the linear increasing curve of substrate temperatures occurs 

mainly by ion bombardment with increasing rf power, because the plasma current causing 

the thermionic filament is a fixed parameter during the growing processes.

3.3.2 Target to Substrate Distance Effect

Figure 3.7 shows the effect of distance between the target and substrate in the deposition
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rate curve. The deposition rates as shown in this Figure decrease with the increasing 

target to substrate distance. This means that the deposition rates are inversely 

proportional to the transit distance of copper atoms, and the probability o f deposition on 

the substrate gradually becomes low with increasing transit distance. The measurements 

of substrate temperature is similar to the curve of the deposition rates under the same 

sputtering conditions.

3.3.3 Plasma Current Effect

The advantages of a triode system is that a high ion density is produced and the plasma 

current density for the deposition films can be controlled independently with the plasma 

voltage. Figure 3.8 shows the deposition rates as a function of the plasma current. The 

sputtering conditions were: 70 mm distance between target and substrate, 20 mTorr argon 

gas pressure, 100 W rf power input, and 60 V plasma voltage. The deposition rates 

increase linearly with increasing plasma current. As the plasma current is gradually 

increased, electrons caused by a thermionically heated filament are increased. These 

electrons accelerate toward the main anode where they then ionize a large portion of 

argon gas molecules. The process occurring in the triode system relies on the abundance 

of electrons generated by the thermionic filament to ensure sufficient ionizing collisions. 

Thus, the ion population at the target surface is increased with increasing electrons, and 

the deposition rates increase. The surface temperatures on the substrate holder depend 

effectively on the plasma current in the triode system and this is shown in this Figure. The 

curve of the substrate temperature increases with increasing plasma current, and it is 

expected that the increasing temperature on the substrate is caused by the sputtering 

deposition and by the thermionically heated filament.

3.3.4 Argon Sputtering Pressure Effect

Figure 3.9 shows the deposition rates with the different sputtering pressure of argon gas at
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70 mm distance between target and substrate, and 125 W rf power input. As the 

sputtering pressure of argon gas is increased, the deposition rates decrease due to the 

scattering between the argon gas and the sputtering particles. The mean free path 

conspicuously decreases at higher sputtering pressures. Thus, the probability of collision 

between argon atoms and sputtering atoms increases with a higher argon sputtering 

pressure, and the probability of a sputtering atom reaching the substrate without colliding 

with an argon atom is reduced.

Figure 3.10 shows the residual gas with the variance of the argon sputtering 

pressure after 60 minutes from the starting of the sputtering deposition process. The 

sputtering conditions are same with the Figure 3.9. Mass 18 is the water (H20 )  peak. 20 

and 40 AMU in mass axis are Ar++ and Ar+ ions, respectively. As shown in this Figure, 

the peaks of Ar++ and Ar+ ions increase absolutely at a higher Ar sputtering pressure. 

Conversely, the water peaks keep almost constant with a rising sputtering pressure.

3.4 Simulation of Magnetron Sputtering System

A triode magnetron sputtering system which was designed in our laboratory was simulated 

by the SIMION program [52], and the simulation of electron trajectories in the sputtering 

system is given in Figure 3.11. The two dimensional structure of the sputtering source 

assembly in the triode magnetron sputtering system was reduced by half scale to the actual 

system. The magnetic flux strength of the system was 250 Gauss. The potential of the 

main anode was a positive 50 voltages, and the substrate holder and housing of the target 

assembly were grounded. It was assumed that Ar gas was not introduced into the 

chamber in order to analyze the electron trajectories toward the main anode without 

collision. The electron trajectories in the sputtering system are confined directly above the 

target surface, as shown in this Figure. It shows that the electrons are trapped to the 

target surface by the force of the ExB field as shown in Figure 3.1. An electron, emitted 

from the filament, travels toward the main anode with the helical path. High electron
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density magnetically confined near the target produces more ionization in terms of its 

bombardment.

The height of the electron trajectory from the target surface is closely related to 

the magnetic field and electric field. We can assume that the action of a magnetic field 

(along the Z axis) perpendicular to the electric field (along the Y axis) is to produce 

electron motion along an X axis. The equations of motion will then be [53]:

where, E  is the electric field,

B  is the magnetic field strength, 

e is the magnitude of electronic charge, and 

m is the electron mass.

After substituting in the y dependencies of E  and x,  the differential equation will be:

y  = - [ E ( y ) - B x ]  
m

m

x  = — By
m

Thus, the resulting differential equation can be solved:

2 eEa e2B2 where, (o -  — -  + — — 
md m
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and d  is the thickness of dark space. In the absence of the electrical field, a> is equal to 

eB/m. This is known as the cyclotron frequency [53], It is noted that the traveling height 

of an electron is also related to the thickness of dark space from this solution of the above 

equation. The maximum height, ymax> ° f  the electron from the target surface, assuming 

no collisions, can be found by considering the gains and losses of potential and kinetic 

energy [54]:

where, VT is the negative target voltage and F is the potential at y max. Since x  = Bey Im, 

then y max can be obtained:

y max
2m (V -V T)

1/2

This expression holds both within and without the dark space, and is a better 

approximation at lower pressures.

Figure 3.12 shows the trajectories of argon ions with the changes of their location 

after bombardment by electrons. The sputtering conditions are same with the procedure 

of Figure 3.11, and the target potential is a negative 200 voltages. Argon trajectories are 

concentrated largely upon the center of the target surface and slightly closer to the 

filament. The erosion profile of the target surface caused by Ar ion bombardment is 

shown in Figure 3.13, and thoroughly corresponds with the results of simulation that 

shows the collision of Ar trajectories. This erosion shape is mainly dependent on magnetic 

field strength, magnetic field shape and target material, and is controlled primarily by the 

magnetron design. It is known that the position and shape of this erosion directly affects 

the thickness distribution of deposited film on the substrate. Therefore, the geometry of
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the magnetron source is an important parameter for a magnetron sputtering system.

3.5 Discussion

The results of calibration tests with four different sputtering conditions demonstrates that 

the deposition rate of rf triode magnetron sputtering is relatively higher than that of the 

conventional sputtering system. This means that the higher deposition rate is probably 

caused by a high ion density in the triode and magnetron system. The surface 

temperatures, in the substrate holder, are particularly increased with increasing plasma 

current in a triode system. It is evident that the results of electron and Ar ion trajectories 

simulated by the SIMION program correspond well with the actual processes of triode 

magnetron sputtering and the erosion profile of the target surface. The erosion area 

bombarded by Ar ion is sputtered widely on the whole target except on both magnet-sides. 

Therefore, rf triode planar magnetron sputtering, which was designed in our laboratory, is 

a powerful deposition system.



CHAPTER 4

EXPERIMENTAL PROCEDURE

4.1 Substrate Preparation

Substrates of PLT thin films were typical MgO or Pt/Ti/Si02/Si multi layer which 

consisted of ( 100) n-type Si with 500 nm thermally grown Si02, 50 nm Ti, and 200 nm Pt 

metal. Prior to the fabrication o f multi layer substrates, n-type Si (100) of 1 Ocm 

resistivity was degreased in trichloroethylene for 5 min, and rinsed in acetone. The 

substrates were dipped in dilute HF solution (HF : H20  =1 : 10) for 30 sec, and rinsed in 

deionized water for 5 min. Table 4.1 shows the growth conditions of thermally steam 

oxidation for Si02 layer. Table 4,2 illustrates the sputtering conditions for Ti as an 

isolation barrier and Pt metal as a buffer layer and a lower electrode.

The electrical characteristics o f a metal-dielectric-metal (MDM) capacitor for 

DRAM cells are dependent upon the properties of the ferroelectric material and electrode. 

There are numerous important requirements, regarding the MDM capacitor, that must be 

satisfied by the correct choice of lower electrode materials, and these include [55]:

(1) low resistivity

(2) suitable electrical properties of the metal/dielectric interface

(3) good adhesion with underlayer

(4) thermal and morphological stability

(5) excellent action as a buffer barrier

High temperature post-annealing treatment, in order to transform the amorphous 

pyrochlore state of deposited PLT (28) thin films to cubic perovskite phase with excellent 

dielectric properties, can sometimes cause an undesirable interdiffusion and chemical 

reaction between lower electrode and PLT oxide. To reduce the interfacial problems, Pt is 

commonly used as the electrode materials. However, the Pt layer on the Si substrate has a

47
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Table 4.1 Growth conditions of thermally oxidation for Si02 
layer on Si.

Oxidation Step Conditions

Pre-Cleaning H20:H F= 100:1
1 min.

Rinse DI Water, 1 min.

Spin Dry Under N2 Gas

Steam Oxidation
Bubbler 530 SCCM
0 2 Flow 7.5 //min.
Temperature 1050 °C
Time 115 min.

Thickness 475 nm
Good Uniformity

Refractive Index 1.45

Table 4.2 Typical sputtering conditions for isolation barrier of Ti and buffer layer of Pt.

Sputtering conditions Ti Pt

Power density (W/cm2) 0.92 0.78

Gas pressure (mTorr) 20 20

Distance (mm) 5 5

Sputtering gas Ar Ar

Sputtering Time (min) 20 40

Thickness (nm) 50 200

Temperature (°C) 55 70

Triode supply
Plasma voltage (V) 55 55
Plasma current (A) 3 3
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serious adhesion problem, a peeling-off phenomena due to its high thermal expansion 

coefficient. It is usual to use Ti, Ti02, or Ta thin layer to solve the problems of thermal 

and interfacial stability. Currently, Sreenivas et al [56] have studied the stable 

metallization of Pt/Ti bilayer under the various environments for ferroelectric thin film 

capacitors. Kondo et al [57] and Olowolafe et al [58] reported that the material behavior 

of Ti and Pt was investigated to improve the adhesion with the substrate.

4.2 Target Design

The target sources of magnetron sputtering technique for multi-component ferroelectric 

thin films are generally specified in 3 ways as shown in Figure 4.1. Magnetron sputtering 

has special and considerable advantages in the range of usable plasma pressure, and in 

limiting electron bombardment of the film. Figure 4.1 (a) shows the rf sputtering method 

of a ceramic oxide pallette or mixed powder oxide target. Since the components of 

powder oxide may have widely different sputtering yields, the target composition must be 

adjusted by the amount of each component, as well as the additional PbO which is 

normally added to the target to compensate for loss of Pb from the sputtered thin films. 

However, the powder target process shows a number of disadvantages including [59,60]:

( 1) difficulty in pressing a large-diameter disk,

(2) target cracking due to heating during sputtering,

(3) reproducibility problem in terms of oxygen deficiency and stoichiometric variations on 

the target surface, and

(4) low sputtering rate.

As described above, there is a limit in the strict control of film composition for such a 

sputtering system with powder target. Figure 4 .1 (b) shows dc or rf reactive sputtering of 

a multi component metal target, while Figure 4.1 (c) shows the reactive sputtering using 

multiple metal targets. It is known that the sputtering rate of a metal target is higher than 

the rate of oxides and insulators [59], Although the evidence is not yet conclusive, the
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sputtering rate for metal targets or a multi-component target is a factor o f 2 or 3 higher 

than for a ceramic powder target, and lower substrate temperature processing is possible. 

The multi-component metal target offers a number o f advantages. They include [61,62]:

( 1) the potential for higher sputtering rates due to smaller binding energy.

(2) the possibility for larger area target,

(3) high stability and purity of target,

(4) convenience of modification of the target composition, and

(5) the ability to incorporate dopant metal such as a La o f lead titanate.

A reactive magnetron sputtering system that can control the target areas of individual 

metal elements is highly desirable for the preparation of the complex compound films. In 

order to control, interdependently, each metal element in PLT thin films, a reactive 

magnetron sputtering system with a multi-component metal target is used for the PLT 

deposition in this study.

The task, to deposit high-quality material, is to produce films with low impurity 

and correct stoichiometric composition. Target metals of multi-component film should be 

extremely pure. The original metals of the multi component target consist o f Pb 

(99.999%), La (99.9%), and Ti (99.97%). Several sectors of La, and a thin circular plate 

of Pb, are located on a 2.25 inch diameter and 0.25 inch thick disk-shaped Ti target. A 

typical schematic diagram of the multi component metal target is given in Figure 4.2. The 

number of atoms deposited onto a unit area on the substrate is determined not only by the 

target configuration, the incident ion energy, sputtering yield, and magnetron design, but 

also by complex scattering phenomena within the plasma. Thus, the simple expression of 

the number of atoms, n, modified by Ochiai et al [63] is written as:

n = agYt

where, a  is a constant depending on the sputtering conditions (gas pressure, target power,
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and plasma current, etc.) 

g  is a geometric factor,

7  is the sputtering yield (atoms/ion), and 

t is the sputtering time.

The content of an element in the deposited films is proportional to the fraction o f the 

element in the multi-metals target. As proposed by Fukami et al [64] and Hase et al [65], 

the ratio of the Pb/La area on Ti disk target is actually determined by the modified 

Sigmund's method [66,67] which considers (1) sputtering yield for Pb, La, and Ti metal,

(2) Ti diameter due to (Pb+La)/Ti = 1/1, (3) composition ratio of Pb/La on the deposited 

thin films. The film composition predicted for the /th element (C/) is given by:

C, = -= ~ —  x 100 (atom %)

where, i corresponds to Pb, La, and Ti for PLT material,

Y: is the sputtering yield, and 

Ai is the occupied area on the target.

The area ratio of each metal element on the target surface is estimated from the above 

formula. The relative composition for the paraelectric PLT (28; i.e., Pb0 72Lao.28̂ 0.93O3) 

film is calculated to be:

Pb : La : Ti = 14.08 : 11.70:74.22

in the target area of each metal. The exact chemical composition of post-annealed PLT 

thin films is characterized by Rutherford backscattering (RBS) and Auger electron 

spectroscopy (AES).
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4.3 Sputtering Conditions

A reactive magnetron sputtering is carried out by introducing an oxygen (purity 99.99 %) 

and argon (99.999 %) gas mixture. Sputtering parameters such as power, sputtering 

pressure, gas composition, substrate-target distance and substrate temperature thoroughly 

affect the physical and chemical characteristics of the deposited PLT films. The details of 

the multi-component target and sputtering conditions used in this experiment are 

summarized in Table 4.3. The substrate temperature was measured by a chromel-alumel 

thermocouple attached to the substrate holder. Table 4.4 shows partial pressures in the 

chamber during PLT deposition using magnetron sputtering with a multi-component metal 

target.

The primary factors, in the preparation and crystallization of PLT thin films, are 

the adjustable control of oxidation kinetics and of the Pb content of the films, because Pb 

tends to re-evaporate from the substrate at high temperature. Generally, the sputtering 

rate in reactive sputtering deposition decreases rapidly with increasing oxygen partial 

pressure. When the oxygen partial pressure is high, the surface of the target metals is 

oxidized and an altered thin layer is formed. Oxygen gas pressure, dependent on the 

sputtering rate, is completely different among Pb, La, and Ti metals. The oxidation 

decreases with an increase in sputtering power and increases with an increase in partial 

pressure of oxygen. The applied power must be greater than the threshold for each 

component in order to maintain constant sputtering conditions and uniform composition in 

the final films for a multi-component metal target [68],

In plasma processing techniques such as a reactive magnetron sputtering 

technique, various target-substrate geometries can affect the deposition process of multi- 

component oxide films. Consequently, there are several control problems which should be 

considered in the stoichiometry of multi-component thin films using a reactive magnetron 

sputtering method [69,70].
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Table 4.3 Optimized sputtering conditions for PLT deposition.

Sputtering conditions PLT thin films

Power density (W/cm2) 0.86

Gas pressure (mTorr) 20

Target-substrate distance (cm) 4

Sputtering gas % P II o o

Deposition rate (nm/min) 2.8

Thickness (nm) 200

Substrate temperature (°C) 160

Triode supply
Plasma voltage (V) 60
Plasma current (A) 3

Table 4.4 Partial pressure in the sputtering chamber after introducing the gases.

Material / Mass Factor Torr

Hydrogen 2.319 2.4 E - 8

Helium 7.143 NA

Water 1.333 4.6 E - 7

Nitrogen / CO 1.029 8.0 E - 8

Oxygen 1.053 2.5 E - 6

Argon 0.947 2.7 E - 6

Emulation 1.20 KV Total pressure 2.5 E - 5
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(1) The formation of an altered layer at the target surface due to the different sputtering 

yields in the multi-component target, the different diffusion coefficients, the concentration 

gradient, and the temperature gradient

(2) The different composition between the target surface and the deposited film due to the 

complex sputtering phenomena, particularly reactive processing

(3) Resputtering in terms of negative ion effects

(4) Electron bombardment effect by secondary electrons emitted from the oxide target 

Many technical methods have been proposed in order to improve these disadvantages in a 

magnetron sputtering process. Adachi et al [71] increased the operating pressure to 

reduce the energy of the neutralized negative ions in terms of causing multiple collisions 

for the plasma procedure. Sandstrom et al [72] and Terada et al [73] reported 

unconventional sputtering geometries (so called, off-axis sputtering) to minimize the 

bombardment of growing films by secondary electrons and ions emitted from the target. 

The bias sputtering mode, in addition, is able to influence the properties of the deposited 

films by changing the sputtering flux and energy of incident particles [74], The charged 

particles are controlled by changing the electric field of bias sputtering. In multi- 

component oxide sputtering, the constituent elements arriving at the surface of the 

substrate usually have different sticking coefficients, especially if the elements have large 

differences in vapor pressure. The sticking coefficients can also be changed by low energy 

ion bombardment of the growing film by applying a small bias to the substrate [53], and 

this bias sputtering is important in small adjustments of the stoichiometry.

The reactive sputtering deposition for good oxide films is governed by the 

processes [75,76]:

(1) formation of a reproducible oxide layer on the target surface,

(2) the stability of the oxide species formed during transport in the plasma, and

(3) nucleation and growth on the substrate surface.
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In this study, the specific techniques, such as off-axis sputtering and bias sputtering, are 

not taken into consideration, owing to the low deposition rate and intricate plasma process 

in the reactive sputtering method with triode and magnetron system. The operating 

pressure used, 20 mTorr, is known to be a relatively high pressure in the magnetron 

sputtering processes, to suppress the energy of negative ions as discussed by Adachi et al 

[71]. In order to control the composition of deposited PLT films in spite of the different 

composition between target surface and growth films, the modified Sigmund's method is 

used under the optimizing sputtering conditions.

4.4 Post-Annealing Conditions

The most difficult factor to control in the stoichiometric composition of PLT films is the 

Pb concentration, A non-stoichiometry of Pb content results from evaporation by heat 

treatment such as substrate temperature during the deposition or post-deposition annealing 

method. The heated substrate process influences the overall plasma phenomena of 

reactive sputtering, and consequently an excess Pb content is required in the target 

composition. Therefore, the post-deposition annealing for as-deposited PLT thin films is 

not only more preferential treatment, but it also can achieve a chemically stable compound 

by the similar method with the formation of ceramic bulk films. PLT thin films deposited 

reactively by magnetron sputtering are in the amorphous or partially amorphous state, and 

the as-deposited films subsequently require a post-annealing heat treatment. Since 

ferroelectric compound oxide films are normally processed at a very high temperature, 

their characteristics such as structural, electrical and mechanical properties, change 

especially with the annealing conditions during the cooling-down step. A heat treatment 

followed by a slow cooling-down at high temperature can considerably relieve the internal 

stresses of as-deposited thin films. The post-annealing process for perovskite structure of 

paraelectric PLT film can strongly affect the film composition due to lead volatility. Pb 

evaporation during annealing treatment can be particularly influenced by the annealing
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conditions such as annealing temperature, annealing time, oxygen partial pressure and 

starting composition. The post-deposition heat treatment introduces an interdependency 

between composition and crystalline structure evolution. Simultaneous crystallization and 

Pb vaporization produce a relation between composition and the crystallographic structure 

that is dependent on the kinetic mechanism of two processes. The structural phases within 

the PLT thin film after post-deposition annealing depend on the starting composition, the 

amount o f crystallization, and the quality of lead oxide volatility [26],

In our experiments, the substrate heat has not been used during the reactive 

magnetron sputtering deposition of PLT in order to minimize the unbalanced effect in the 

deposition rate of each metal element [61,62], suppress the Pb evaporation and reduce the 

inter-reaction between the PLT film and substrate. The PLT thin films were annealed in a 

fused quartz tube furnace with flowing oxygen at a flow rate of 0.2 //min. In the annealing 

profile for all PLT films, the heating rate was 15 °C/min and the cooling rate was 5~6 ° 

C/min. The ranges of the annealing temperature and annealing time for this experiment 

were 450~750 °C and 5~60 min, respectively.

4.5 Metal-Dielectric-Metal Capacitor

Metal-dielectric-metal (MDM) structures for electrical and dielectric measurements are 

fabricated on multi-layer (Pt/Ti/Si02/Si) and MgO substrates as shown in Figure 4.3 (a) 

and (b). Through a suitable choice of the electrode material and the deposition method for 

the ferroelectric ceramic oxides, it is possible to control the electrical properties o f the 

MDM structure and in particular to influence the electrical resistance. The effect o f the 

electrode material, on the electrical properties of ferroelectrics, has not been completely 

studied yet.

However, contact between the electrode metal and the ferroelectric oxides is 

generally specified by neutral, ohmic and barrier type [77,78], In the case o f neutral 

contact, the electronic work functions o f the metal (Wm) and the ferroelectric oxides (Wf)
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are equal, while the conditions o f ohmic and barrier contacts are Wm>Wf and Wm<Wf, 

respectively. The barrier contacts form a high specific electrical resistance, owing to a 

depletion layer occurring at the metal-ferroelectrics interface. This is the reason for 

nonlinearity in the current-voltage characteristic curves. Therefore, the electrodes on 

MDM capacitor should be of ohmic contact, so that they present a small electrical 

resistance and good adhesion at the interface, and do not cause changes in the electrical 

properties of the ferroelectric oxides. Magnetron sputtering to obtain ohmic electrodes 

for paraelectric PLT thin films is a known deposition method. Among the various 

electrode materials, Pt as a top and bottom electrode is also used because of the potential 

advantages in its electrical characteristics.



CHAPTER 5

MATERIAL ANALYSIS AND DISCUSSION

Paraelectric lead lanthanum titanate (PLT; 28 mol %) thin films are prepared by a multi- 

component metal target using the previously described magnetron sputtering system. The 

as-deposited amorphous films are crystallized into the cubic (or paraelectric) perovskite 

structure by a heat treatment at an annealing temperature ranging from 450 to 750 °C. 

The post-annealing treatment, used for crystallizing the films in this study, affects the film 

composition due to Pb evaporation. The electrical properties o f the perovskite PLT thin 

films are strongly dependent upon the stoichiometric composition and crystalline structure. 

The dielectric properties of the films reach maximum values near the ferroelectric- 

paraelectric phase boundary (La content o f 28 mol %) in the equilibrium phase diagram of 

PLT system as previously mentioned in Chapter 2. Therefore, it is necessary to analyze 

the material characteristics of PLT thin films such as chemical composition, crystalline 

structure and surface microstructure.

The primary concern in PLT (28) thin film deposition is the stringent control of 

stoichiometric composition. AES (Perkin-Elmer, PHI 660, scanning Auger microscopy) 

and RBS (General Ionex, model 4117, Tandetron ion accelerator) measurements are used 

for analyzing the relative composition ratio of Pb, La, Ti and O of the PLT thin films. The 

depth profiles of the films are also measured using AES, and the exact thickness o f PLT 

(28) thin films is identified by RBS analysis. The crystalline phases and lattice parameters 

of thin films is characterized by an X-ray diffractometer (Rigaku, D/MAX system and 

philips, vertical diffractometer) using CuKa radiation. The microstructure of the films is 

also investigated by SEM (ISI, SIII-A(K)).
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5.1 Chemical Composition Analysis

5.1.1 Stoichiometric Composition by AES

The chemical compositions of PLT thin films are identified by a semiquantitative Auger 

electron microscopy (AES) analysis using a Perkin-Elmer PHI 660 scanning Auger 

microscopy (SAM). A primary electron beam of 5 KeV is utilized to stimulate Auger 

transitions within the films. The AES system is evacuated to a base pressure of 1 x IO-10 

Torr by an ion pump and turbomocular pumps, and the pressure is then raised to 5 x 10' 8 

Torr by Ar gas. A 4 KeV Ar+ ion beam for 2 min is also used to simultaneously remove 

surface contaminations on the films. This is done to insure that the films have been 

sputter-cleaned prior to the AES analysis. All signals are clearly labeled, along with 

intensity values for relevant peaks used for quantitation. The detailed conditions of the 

AES analysis are summarized in Table 5.1.

It is necessary to evaluate the effect of instrumental parameters on the measured 

Auger signal in order to determine the relationship between the Auger electron signal and

Table 5.1 AES analysis conditions

Primary electron beam voltage 

Primary electron beam current 

Ion beam voltage 

Base pressure 

Scanning speed 

Surface cleaning

5 KeV 

1 ± 0.02 pA 

4 KeV 

lxlO-10 Torr 

100 eV/sec

4 KeV Ar1- ion bombardment 
at 5x10'8 Torr
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the atomic concentration. The important instrumental variables are the primary electron 

beam current, the primary beam energy and the dN(E)/dE spectrum. Figures A.l, A.2 and

A.3 are Auger energy spectra of each pure Pb, La or Ti metal. These values are very 

similar to the data values of pure elements tabulated in a handbook of Auger electron 

spectroscopy [79]. In Figure A. 1, the Auger spectrum of pure Pb shows only a Pb peak at 

93 eV. Ti Auger signals, as shown in Figure A.3, are detected at 386 eV and 417 eV. 

However, the Auger spectrum of pure La, as shown in Figure A.2, indicates La signals at 

82 and 631 eV, and an intense O signal at 516 eV because La oxidizes rapidly in air. The 

surface of pure La metal is quite rough and appears to be porous.

A simple approximation of quantitative analysis can be accomplished by a 

comparison of Auger signal intensity in the test sample to that of the pure elemental 

standard. The elemental atomic concentration of element, Cx, in the test sample is 

expressed as:

c  Ix(test)
* Ix (standard)

where Ix (test) and Ix (standard) are the peak-to-peak Auger signal intensity from the film 

and standard, respectively. The atomic concentrations of PLT thin film, however, can not 

be calculated directly from the Auger energy spectra of pure elements. There are several 

inherent sources of error in the above formula. The most important factors are: (1) matrix 

effects on the Auger electron escape depth and backscattering factors, (2) chemical effects 

on peak shapes, and (3) surface topography [79,80], The Auger electron escape depth in 

the test film may be different from that of the pure elemental standard. Since the 

magnitude of the Auger signal is proportional to the number of atoms in the analysis 

volume, a larger escape depth will cause a corresponding increase in the Auger signal. 

Chemical effects can change the peak shape and thus lead to an error when using peak-to-
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peak heights in the differentiated spectrum for a measurement o f the Auger signal. A 

smooth surface generally produces a larger Auger signal than a rough surface [80], 

Besides, surface roughness on the films will degrade the Auger signal intensity. This 

effect is minimized by determining concentrations from the above equation since surface 

roughness is expected to decrease all Auger peaks.

A standard of known composition, which is close to that of the actual films, should 

be used to obtain the highly accurate quantitative analysis. Figure A.4 shows the energy 

spectrum and relative composition o f a perovskite PLT thin film analyzed by Rutherford 

backscattering spectrometry measurement. RBS results o f PLT ceramic oxides, which are 

chosen as a composition standard, are used to calibrate the Auger transition intensities, in 

order to increase the semiquantitative accuracy of the Auger technique. Figure A. 5 

presents the Auger spectrum for the same PLT film with the result of RBS analysis. 

Elemental relative sensitivity factors of the perovskite PLT thin films for semiquantitative 

analysis are calculated from AES analysis based on the RBS results. The atomic 

concentration for each element in a PLT film can be obtained by multiplying the peak-to- 

peak height by an elemental relative sensitivity factor. Table 5.2 shows relative Auger 

peak-to-peak height and relative sensitivity factors for a PLT film. These values are

Table 5.2 Relative Auger peak heights and relative sensitivity factors for a standard
PLT film.

Elements and 
peak voltage (eV)

Peak-to-peak
height

Atomic
concentration

Relative sensitivity 
factor (RSF)

Pb, 93 175.6 0.144 1.182

La, 626 19.2 0.044 0.511

Ti, 418 56.4 0.132 0.555

O, 511 248.9 0.680 0.400
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considerably different from the previous AES results of pure elements utilized in an Auger 

electron spectroscopy handbook [79].

Figure A.6 shows the AES analysis of an as-deposited PLT film prepared under 

the same conditions as the film that is used as a standard for the calibration of AES data. 

All Auger signals of Pb, La, Ti and O are detected within the PLT films. No impurity 

element is observed in the Auger spectrum, except a small contamination of the carbon 

signal which comes from the KL2L2 transition at 271 eV. It seems that the carbon 

contamination on the film surface is largely caused by handling. The chemical composition 

of the as-deposited PLT film is analyzed by Auger peak-to-peak height and the relative 

sensitivity factor from the Table 5.2, resulting in a composition of Pb] 44Lao 28Tio.s2O4.6- 

It seems that a relatively large amount of Pb element is detected in the composition of the 

as-deposited PLT film without a heat treatment.

Figure A. 7 (a) and (b) show the typical results of Auger analysis on the perovskite 

PLT (28) thin films annealed at 650 °C for 5 min, The observed signals o f all elements are 

Pb N670 450 45 at 93 eV, La MSN4>5N4>5 at 627 eV, Ti L3M2>3M4i5 at 418 eV, and O

KL2 3L2 3 at 512 eV. The Auger signals of Ti consist of Ti L3M23M2 3 at 386 eV and Ti

L3M2i3M4 5 at 418 eV. The peak of Ti L3M2i3M4)5 at 418 eV, which is not sensitive to 

the bonding state, is used to obtain the chemical composition of the PLT film. The 

stoichiometric compositions in Figure A. 7 (a) and (b) are:

(a) Pb : La : T i : O = 0.72 : 0.28 : 0.88 : 2.9

(b) Pb : La : Ti : O = 0.72 : 0.28 : 0.75 : 3.1

In compositional analysis o f the paraelectric PLT films, the ratio o f Pb and La is the most 

important quantity, because the evaporation of Pb depends upon the conditions of the 

post-annealing treatment. It is also suggested that its ratio has tremendous effects on the 

electrical properties of the PLT films, and the relationship between the chemical 

composition and the electrical properties will be discussed in next chapter.
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5.1.2 AES Depth Profile

Auger electron microscopy is also used to check the carbon contamination and the 

composition uniformity across the thickness of paraelectric perovskite PLT thin films. 

The Auger depth profile of the as-deposited PLT film on Pt/Ti/SiC^/Si, as a function of 

etching time, is shown in Figure A.8. The amorphous PLT film is nonuniform near the 

film surface, and the Auger data shows a Pb enrichment on the surface of the as-deposited 

film. Although the higher Pb concentration in the near-surface region of the film can not 

be explained precisely, the sputtering rate of Pb has been reported to be higher than that of 

La or Ti metal [62,64], It would lead to an increasing slope in the Pb profile near the film 

surface. A Pb enrichment on the surface region has also been observed from rf-magnetron 

sputtering using a multi-target by Adachi et al [68], It seems that this effect is a general 

phenomenon of the as-deposited film and is not related to a specific deposition method. 

Carbon contamination is not observed in the depth profile of the amorphous PLT film 

except for the carbon absorption on the film surface as shown in Figure A. 8.

The AES depth profiles for the post-annealed films are shown in Figure A.9 (a) 

and (b). The AES profiles for PLT thin films annealed at 650 °C for 5 min are remarkably 

different from that of the as-deposited film near the surface region. The Pb content o f the 

heat-treated films decrease at the surface, suggesting that this fact is due to the 

evaporation of Pb from the surface during the post-annealing process. The typical depth 

profile shows relatively uniform distribution of the components (Pb, La, Ti and O) into the 

depth of the film.

5.1.3 Rutherford Back-scattering Analysis

Rutherford back-scattering is used to investigate the stoichiometry of PLT thin films, as 

well as to calibrate the Auger spectrum signal to an elemental concentration of AES 

characterization. Figure A. 10 (a), (b), (c) and (d) illustrate the RBS spectra of the PLT 

thin films with the different area ratio of a multi-component metal target. An annealing-
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heat treatment for all PLT films is applied under the same condition at an annealing 

temperature of 650 °C for 5 min. The changes o f the normalized compositions as shown 

in the spectrum analysis of the RBS for each metallic components of PLT thin films shows 

a similar tendency with the relative composition ratio in target area of metal elements. It 

is mentioned that the content of an element in the deposited PLT films is proportional to 

the fraction of the element in the target metal. It is noted that the relatively big signal of 

oxygen is detected due to the inherent sensitivity of the RBS system.

5.1.4 Discussion

The atomic concentrations in ternary ceramic PLT films, as the results of compositional 

analysis, could not be directly estimated by the comparison with the Auger spectra o f pure 

Pb, La, and Ti as shown in Figure A.l, A.2 and A.3. The Auger signal of each element in 

the PLT films is observed to be slightly shifted in comparison with the value of pure metal. 

It is expected that the shift of the Auger peak signal is caused by matrix effects. 

Therefore, the relative sensitivity factor for each element is calculated, and the results are 

summarized in Table 5.2.

Compositional control of the PLT thin films is accompanied with the changes in 

relative area ratio of the multi-component metal target. Figure 5.1 shows the relationship 

between the relative composition of the perovskite PLT thin films and the corresponding 

area ratio of the multi-component metal target specified by six different types. The black 

star means the ideal composition ratio of paraelectric PLT (Pbo^Lag 2gTi0.93O3) thin film 

in a ternary oxide Pb-La-Ti-0 system. The white star expresses the compositional area 

ratio o f target element estimated by the modified Sigmund's method. Table 5.3 

enumerates in detail the schematic results of Figure 5.1 analyzed by AES and RBS 

measurements. The content of La is the important factor, in this study, because the 

paraelectric state of the PLT thin films is determined by the La content in the phase 

diagram of Pb-La-Ti-0 system as shown in Figure 2.3. The dielectric and electrical
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Optimal composition 

•  Type A 

O Type B

V  Type C

V Type D 

□ Type E 

B Type F

PLT film 
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Ti
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Figure 5.1 Relationship between the relative composition of sputtered PLT films and 
the corresponding area ratio of multi-component metal target.
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characteristics, consequently, depend on the paraelectric perovskite phase. In order to 

compare the AES analysis of the PLT thin films with the chemical composition by the 

general formula of the PLT system (Pbj.xLaxTij.^C^; La content of 28 mol %), the 

accurate coefficients of the stoichiometric composition (Pb, La, Ti and O) for the 

perovskite structure (AB03) should be 0.72, 0.28, 0.93 and 3, respectively. The close 

composition of PLT films, as shown in Figure A.7 (a), is Pb of 0.73, La of 0.28, Ti of 0.88 

and O of 2.9. In conclusion, the observed composition of the AES analysis shows that the 

PLT (28) film deposited reactively by the multi-component metal target using a magnetron 

sputtering system has a close stoichiometric composition. Furthermore, the criterion of 

RBS analysis provides accurate quantitation in chemical composition of the paraelectric 

PLT films to act as standards for AES characterization.

5.2 Crystalline Structure Analysis

5.2.1 Annealing Temperature Effect

The crystalline structure of the films is examined by X-ray diffractometer (XRD; 30 KV, 

20 mA) using Cu K a radiation. The effect of a post-annealing treatment on XRD patterns 

of paraelectric PLT thin films is presented in Figure A. 11. The preparation o f these films 

is of the same thickness (200 nm) and annealed for the same time (5 min). The accurate 

composition of these films belongs to the type D as shown in Table 5.3. As-deposited 

PLT films produce XRD spectrum consistent with an amorphous structure. The 

formation of a broad hump in the films treated annealing temperature below 450 °C shows 

around 20 = 30 ° as shown in Figure A.l 1 (a). It has been reported that the structure of 

PLT films under a heat treatment of low temperature may correspond to the metastable 

pyrochlore phase [42,81]. The general formula of the pyrochlore is A2B20 7. The (100) 

and (110) peaks do not appear clearly in as-deposited films. After PLT films are annealed 

at a temperature above 550 °C, XRD patterns exhibit the formation o f the stable
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perovskite phase as shown in Figure A. 11 (b), (c) and (d). Tetragonal splitting peaks of 

perovskite structure are not observed on the XRD spectra of PLT films. Typical 

diffraction peaks of the cubic perovskite phase such as ( 100), ( 110), (200) and (211) 

orientation arise completely in all PLT films. The other peaks are identified as related to 

the substrate, either Pt or Si. It seems that the intensity of each peak in XRD patterns 

increases up to the highest temperature of 750 °C. The numerical data of XRD patterns, 

as shown in Figure A.l 1, are also summarized in Table 5.4. The effect o f heat treatment 

with increasing annealing temperature results in the increasing intensity for each peak, 

while FWHM of each diffraction peak seems to be gradually reduced. Also, it is certainly 

observed that the angular shifting of all difif action peaks trends toward a higher angle with 

an increase of post-annealing temperature. It is expected that the films may be influenced 

by changes of internal stress with increasing temperature [82] or by reduction of the 

amount of Pb element incorporated within the cubic perovskite structure [22],

Figure A. 12 shows the XRD spectra of the paraelectric PLT films as a function of 

annealing temperature for crystallization. The preparation conditions of these films are the 

same; i.e., same thickness (200 nm) and same annealing time (5 min). The chemical 

composition of these films belongs to the type A as illustrated in Table 5.3, and in 

particular the film annealed at 650 °C exhibits the diffraction pattern with the 

stoichiometric composition of Pbo.73Lao 28Tio.88O2.9- As-deposited PLT film presents the 

broad amorphous pattern, and the (111) main peak and (200) peak of platinum (Pt) are 

uniquely observed. Schwartz et al [43] and Dana et al [83] found that the (200) peak of 

Pt was also detected in the XRD spectrum of the as-deposited PLT thin films with a 

thickness of about 400 nm. On the contrary, Shimizu et al [81] reported that the Pt (200) 

peak was not observed in the as-deposited PLT films with a thickness greater than 500 

nm, and conversely the (200) peak of the perovskite PLT structure appeared only around 

20 = 45.5 with a heat treatment of high temperature (up to 900 °C). It is expected, as a
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result of this study, that Pt (200) peak and PLT (200) peak of the XRD patterns may be 

overlapped like the results of Schwartz et al and Dana et al.

The paraelectric perovskite phase according to the XRD patterns is detected for all 

films in the temperature range of 550 to 750 °C. The trend of these XRD patterns 

corresponds relatively to those of Figure A. 11. The film annealed at 650 °C shows a small 

(210) orientation peak of the cubic perovskite structure. Also, the intensity o f each 

diffraction peak is directly proportional to the effect of rising annealing temperature. The 

sharpness of the peaks indicates good crystallinity in the perovskite PLT films. The heat 

treatment of PLT (28) thin films at 650 °C for 5 min results in the formation of the 

paraelectric perovskite structure with a lattice constant of a = c=  0.394 nm and oxygen- 

to-oxygen distance of 0.279 nm.

Figure A. 13 demonstrates XRD step scans over the angular range from 20 = 54 to 

20 = 59 in order to observe the (211) peak shift of the films annealed at 550, 650, and 750 

°C. This peak shifts ffom d  = 0.1633 nm to d  = 0.1609 nm with a rise of annealing 

temperature. It seems that the slight shift is due to the changes of compressive stress in 

the internal film and Pb evaporation within the perovskite phase with increasing 

temperature.

Figure A. 14 presents the diffraction pattern as a function of temperature for the 

PLT films of a chemical composition type B as shown in Table 5.3. At 550 and 650 °C, 

both PbO around 20 = 30 and polycrystalline perovskite phases coexist, because of the 

excess Pb content as shown in Figure 5.1. The perovskite peaks are observed at 750 °C 

only, and the PbO peaks completely disappear at high temperature. Sayer [61] reported 

that the crystallization of amorphous ferroelectric films was initiated around 400 °C and 

completed between 600 and 700 °C, depending on the film preparation method and 

annealing conditions. It is suggested that, for a good characteristic of PLT thin films, the 

relationship between the composition and the crystal structure caused by Pb evaporation is 

interdependent.
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Figure A. 15 illustrates the XRD spectra of PLT thin films on a single-crystal MgO 

(100) substrate. As-deposited film shows only one peak of MgO substrate and amorphous 

phase along the diffraction spectrum. Two peaks o f the perovskite PLT film appear, and 

their intensities are increased with changes o f annealing temperature. It is thought that 

the PLT films deposited on MgO substrate suffer compressive stress along the crystalline 

plane of the films by an annealing heat treatment. Hence, this stress may transform the 

polycrystalline films into c-axis and a-axis oriented films [84].

5.2.2 Annealing Time Effect

Figure A. 16 shows the XRD patterns of the perovskite films as a function of annealing 

time at the annealing temperature of 650 °C. As-deposited film is obviously amorphous, 

and the (111) peak of platinum and other substrate peak is observed. In the PLT (28) thin 

films annealed at 650 °C, an elevated annealing time shows only the typical formation of 

the perovskite phase, and the intensity of the diffraction peaks increases further. It is 

apparent that the slight shift o f typical PLT peaks occurs in the films annealed for a 

prolonged annealing period.

5.3 Surface Microstructure Analysis

It is known that as-deposited thin film presents microstructures of densely packed fiber 

with a smooth surface as shown in SZM zone I or zone T of Figure 2.4 [27], The as- 

deposited PLT film is smooth and shows a featureless surface as exhibited in Figure A. 17. 

This shiny morphology of the as-deposited films is expected to be modified by a post

annealing treatment. Figure A. 18 presents a typical SEM topography for the PLT thin 

film annealed at 650 °C for 5 min. It is likely that the film surface is also relatively 

smooth, and belongs to the SZM zone II. The segregation phenomena on the delimiting 

surface of the PLT (28) thin film annealed at 750 °C for 5 min are shown in Figure A. 19. 

Murakami et al [85] and Opila [86] have reported that the segregation along grain



75

boundary appears frequently in Pb-based ceramic films in the presence of oxygen due to 

Pb evaporation. It is suggested that this phenomena occurs to reduce thermal strain within 

the film during post-annealing treatment. However, the films deposited by substrate heat 

treatment shows relatively less segregation because the phase formation grows slowly 

without the evidence of a remarkable grain boundary.

Figure A.20 (a) and (b) show cracking on the multi-layer substrate and a lack of 

adhesion on MgO substrate in terms of the post-annealing treatment o f high temperature 

at 750 °C for 60 min. High temperature annealing, in particular, results in thermal 

segregation by Pb evaporation and grain densification, and finally leads to the formation of 

hillocks or craters. The serious crack, caused by the prolonged heat treatment, is 

accelerated by thermal stress in terms of a mismatch in thermal expansion coefficients 

between PLT film and substrate.



CHAPTER 6

ELECTRICAL ANALYSIS AND DISCUSSION

All electrical measurements for DRAM application are performed utilizing a MDM 

configuration capacitor using the paraelectric PLT (28) thin films of 200 nm thick as a 

dielectric layer. Dielectric measurements are carried out on a Boonton 7200 capacitance 

meter with a peak voltage of 10 mV (i.e. 500 V/cm) and a frequency of 1 KHz. The most 

frequently used test to characterize ferroelectric or paraelectric PLT thin films is a typical 

Sawyer-Tower circuit [87], This is an excellent measurement technique for establishing 

the relationship of polarization to electric field. Polarization-electric field (P-E) 

characteristics for charge storage density is investigated by an HP54501A digitizing 

Oscilloscope and Wavetek (Model 270) Function Generator. Additional electrical 

characteristics such as, current-voltage (I-V) plot for leakage current density and voltage

time (V-t) measurements for charging transient, are of interest for a capacitor dielectric of 

the 1-T DRAM cell. These topics are the subject of reliable characteristics and the 

transient behavior o f paraelectric PLT (28) thin films. The current-voltage characteristics 

for leakage current density are measured by an HP4145B Semiconductor Parameter 

Analyzer.

6.1 Dielectric Characteristics

6.1.1 Effect of post-annealing temperature

The dielectric constant and dissipation factor (loss tangent) as a function of post-annealing 

temperature are presented in Figure 6.1. The dielectric constant increases significantly and 

the dissipation factor decreases slightly, as the annealing temperature is increased. The 

dielectric properties are dependent on the changes in the stoichiometric composition as
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well as in relative quantities of amorphous and crystalline structures with variation of 

annealing heat treatment. Thus, with a rise in annealing temperature, the amorphous 

phase and the excess PbO structure with poor dielectric properties disappear and are 

transformed to the ciystalline structure, i.e., the paraelectric perovskite PLT phase. 

Conversely, the dissipation factor reduces from 0.051 to 0.018 with the increasing 

annealing temperature, and with the dependence on the existence of the amorphous and 

excess PbO phases.

The dielectric constant of the PLT thin films, in this study, is sometimes difficult to 

measure, because of the low resistance of the films and the presence of microcracks and 

porosity caused by high temperature treatment. Fox et al [88] have commented that the 

dielectric properties can be expressed by morphological conditions of the thin films with 

coexistence of the three phases such as perovskite PLT phase, excess PbO and air. The 

excellent dielectric properties of PLT thin films are achieved by the continuity o f the 

perovskite PLT phase. The PbO phase and porosity resulting from Pb evaporation give 

rise to the discontinuity of the perovskite PLT phase in the thin films. The PbO phase has 

a higher conductivity than the perovskite PLT phase. The dielectric constant decreases 

and the dissipation factor increases due to the presence of excess PbO phases in the films 

annealed at lower annealing temperature.

6,1.2 Effect of temperature

Figure 6.2 shows the relative dielectric constant of the PLT film annealed at 650 °C and 

for 5 min at the temperature range of 30~120 °C. The dielectric constant of paraelectric 

PLT (28) thin film decreases slightly as a fiinction of temperature. The peak of dielectric 

constant, the so called Curie temperature, is not observed in this temperature range. It is 

expected that the dielectric peak of the film with the change of temperature is similar to 

the Curie temperature reported by Keizer et al [29],
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6.1.3 Effect of La content in PLT films

The dependence of the dielectic constant on various La concentrations of PLT thin films is 

demonstrated in Figure 6.3. All PLT films are annealed by the same condition of post

deposition heat treatment at 650 °C for 5 min. The dielectric constant increases with a 

rise in La concentration. This phenomenon results from the lowering of the Curie 

temperature, as shown in the results of Adachi et al [42]. This is due to the La content 

increases slightly in the chemical composition of the PLT films. The dielectric properties 

are closely related to the changes in chemical composition of PLT thin films. The 

dielectric constant and dissipation factor of PLT (28) thin film are around 904 and 0.023, 

respectively.

6.1.4 Discussion

The perovskite PLT phase, from the results o f various effects mentioned above, primarily 

exhibits (100) orientation for nearly stoichiometric composition. However, it may be 

noted that small changes of the composition and crystallinity produce substantial changes 

in the dielectric characteristics of the PLT thin film. The main reason for a poor dielectric 

properties at low annealing temperature may be explained by low crystalline phases of the 

PLT films. Since the intensities of the perovskite phases increase with an increase in post

annealing temperature as illustrated by the results of XRD patterns, it is expected that the 

dielectric characteristics of paraelectric PLT thin films correspond well with the crystalline 

structure and the excellent dielectric properties of PLT thin films are achieved by the 

continuity of the perovskite structure. The best results of dielectric constant and 

dissipation factor at low field measurement (500 V/cm), as shown in Figure 6.1, are 

approximately 1216 and 0.018 in Pt/Ti/Si02/Si substrate, respectively. Actually, the 

measured dielectric constant is tremendously different from the value of bulk PLT films 

reported by Hennings et al [22], It is supposed that porosity and the segregation
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phenomena produced by Pb evaporation considerably affect the dielectric properties of 

PLT thin films.

6.2 Polarization-Electric Field Characteristics

The polarization-electric field (P-E) characteristics of the paraelectric PLT (28) thin films 

are measured using a typical Sawyer-Tower circuit with a 500 Hz sine wave as shown in 

Figure 6.4. The P-E measurements of the films under different peak voltages are 

presented in Figure B. 1. The paraelectric PLT (28) thin film is annealed at 650 °C for 5 

min. The P-E curve at low peak voltage of 1 V (50 KV/cm) is similar with the linear 

behavior of a normal dielectric material as shown in Figure B.l (a). The P-E 

characteristics are gradually developed to the paraelectric state of nonlinear behavior, as 

the peak voltage increases enough. The charge storage density (or polarization) is around

10.3 pC/cm2 at the peak voltage of 4 V (200 KV/cm). The polarization is proportional to 

the electric field, and the relative dielectric constant is constant by means of the formula, 

P=£0(Sr-1 )E, only at a low field. The polarization is gradually saturated with the 

increasing peak voltages, due to the paraelectric characteristics, and the above equation 

for dielectric properties can not be automatically applied to the paraelectric phase. The 

approximation of dielectric constant with different peak voltage is obtained by the 

effective dielectric constant, Kep  defined as the following [20]:

K -
~  rr

max

where, Q'c is the charge storage density, and Emax is the maximum electric field. The 

above mentioned equation shows that the effective dielectric constant is approximately 

580 at a peak voltage of 4 V.
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Function
generator

peak voltage: 
1,2 and 4 V 
at 500 Hz

-O V,

'P E

-o  V.

Thickness : 200 nm 
Area : 3.14 x 104 pm2 
CPE: 1.26 and 1.69 nF 
C0 : 68.7 nF

Function generator : Wavetek Model 270 
Digitizing Oscilloscope: HP54501A

Figure 6.4 Typical Sawyer-Tower circuit for polarization-electric field 
measurement.
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Figure B.2 shows the P-E characteristics with different peak voltage for the PLT 

(28) film heat-treated at 750 °C for 5 min. The P-E curve at a peak voltage of 2 V 

presents the prominent paraelectric nonlinear behavior. The charge storage density at the 

peak voltage of 4 V (200 KV/cm) is around 12.5 pC/cm2 as shown in Figure B.2 (c), and 

the effective dielectric constant is about 706. Figure B.3 describes the P-E characteristics 

as a function of annealing temperature at the same peak voltage of 4 V. The formation of 

the paraelectric state in PLT (28) films with increasing post-annealing temperature is 

obvious at a glance from this Figure. It is expected that some degree of crystallinity, with 

different annealing temperature, has an influence upon the paraelectric nonlinear 

characteristics of the films.

Recently, Adachi et al [1] reported that the polarization of PLT (28) thin films 

exhibited a slim hysteresis loop. But the La contents of 28 mol % in their films were the 

chemical composition in the powder target of rf-magnetron sputtering. Therefore, the La 

contents of PLT thin films were practically lower than those of target material, and their 

P-E hysteresis with slim loop obviously showed the ferroelectric behavior of PLT thin 

films.

6.3 Leakage Current Characteristics

The leakage current density is one of important limiting factors for the DRAM capacitor 

dielectric. High leakage current places important limitation in the operation of a unit cell. 

It is necessary, to prevent the capacitor from discharging between refreshing cycles, that 

the leakage current per unit area should be low. There are several transport mechanisms 

of leakage current in a MDM capacitor [38,89], and also there are two distinct regions 

specified by the electric field. Ohmic behavior is the dominant process at low electric 

fields. The leakage current density of ohmic characteristics is expressed:
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where, E  is the applied electric field,

A is a constant related to thermally excited electron hopping, and 

Ea  is the activation energy.

Under high fields, the leakage current exhibits exponential behavior which is governed by

oxygen vacancy diffusion, space charge limit current injection, grain boundary potential 

barrier, tunneling, Schottky emission, or Poole-Frenkel emission [90], The leakage 

current characteristics of PLT thin films vary exponentially with the square root of the 

electric field. This is mainly due to Schottky emission or Poole-Frenkel emission of the 

various mechanisms at high electric fields. Schottky emission occurs at the contact 

interface between the paraelectric film and electrode, and Poole-Frenkel emission occurs 

largely in the bulk film. The Schottky emission is analogous to thermionic emission and 

governed by the following equation [89]:

cj>3 is the Schottky barrier height,

E is the applied electric field, and

£j is the dynamic permittivity of insulator.

The leakage current density as a function of post-annealing temperature is shown in Figure

B.4. The leakage current density diminishes slightly except at 750 °C, as the post

annealing temperature increases. The lowering trend of leakage current with different

annealing temperature at the electric field of 150 KV/cm (3 V) is presented in Figure 6.5.

It is noted, from the XRD patterns analysis as shown in Figure A. 12, that the leakage

where, A is the effective Richardson constant,
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current density with the increasing annealing temperature is closely related to the degree 

of crystallinity. Since the intensity of each diffraction peak is proportional to the effect of 

a rise in post-annealing temperature, the paraelectric PLT (28) thin films are further 

crystallized into the cubic perovskite phase. The PLT thin film annealed at 750 °C exhibits 

larger leakage current density than that at 650 °C. This elevation in leakage current 

observed at high heat treatment shows a similar tendency with the results from 

Chikarmane et al [91], suggesting that the vaporization of Pb at high annealing 

temperature leads to the augmentation of oxygen vacancies. It is almost certain, from the 

results mentioned above, that the optimization between minimum leakage current density 

and maximum charge storage density is essentially adjusted by the conditions of the post

deposition annealing process.

Figure B.5 shows the dc voltage-induced resistance degradation and the dielectric 

breakdown in the paraelectric PLT thin film (200 nm) annealed at 650 °C. The leakage 

current is 85 nA (2.5 pA/cm2) at a reference voltage of 5 V. The resistance degradation 

starts slowly at 5 V (250 KV/cm) prior to the dielectric breakdown at 13.5 V (675 

KV/cm). Waser et al [92] and Baiatu et al [93] have shown that the resistance 

degradation in the perovskite-type titanates under dc voltage stress is closely related to the 

field-induced segregation of oxygen vacancies and the specific defect structure in the 

films. The oxygen vacancies, since they are positively charged, tend to segregate toward 

the cathode under dc voltage stress. According to the theory proposed by Waser et al., 

such a field-induced segregation results in the growth of the n-conducting cathodic region 

toward the anode, and then leads to resistance degradation. A positive polarity in the top 

electrode leads to a rapid reduction of the oxygen vacancies, and this results in the fast 

growth of the cathodic n-type region toward the top electrode. It is supposed that the dc 

voltage-induced resistance degradation, in this study, is observed at a somewhat low 

electric field because the top electrode is biased positively.
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Figure B .6 shows the static current-voltage curves for different delay times with a 

5 second interval. The I-V characteristics are carried out by a non-switching static current 

measurement using a HP4145B Semiconductor Parameter Analyzer. The static current is 

measured by applying a dc bias from 0 to 20 V, and increasing in 0.09 V steps. These 

measurements are typical of a virgin PLT thin film with a paraelectric perovskite structure. 

The films are heat-treated at 650 °C for 5 min and its thickness is 200 nm. The static 

current with repeating delay time decreases at a region of the electric field lower than 2 V 

(100 KV/cm). However, the static current increases at a moderately high electric field 

above 2 V. The decreasing static current with a prolonged delay time is due to the fast 

response at the low voltage under 2 V. The leakage current at the higher voltage is 

slightly increased, because the PLT thin film is degraded by fatigue effects of the unipolar 

stress. Duiker et al [94] has observed that this fatigue effect is caused by the increase of 

the space-charge regions near the electrodes or the oxygen-deficient dendrite growth.

6.4 Voltage-Time Measurements

Voltage-time (V-t) characteristics are another method used to estimate the charge storage 

density which is calculated from the transient response of a MDM capacitor using the 

unipolar pulse measurement technique. The switching voltage is monitored with an 

oscilloscope by measuring the voltage drop across a grounded resistor in series with the 

film capacitor. Figure 6.6 (a) shows the schematic test circuit with a peak voltage of the 

unipolar pulse and a 1 KQ load resistor as a series resistance to simulate the transistor o f 

the DRAM unit cell. The charge storage density is gained by the estimation of the 

triangular area as shown in Figure 6.6 (b). The switching time (ts) is defined as the time 

that decays to a point 90 % down from the maximum current transient value. The simple 

approximation for the charge storage density is estimated as the following [20]:
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(a)
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(b)

Figure 6.6 (a) Schematic test circuit with a peak voltage of unipolar pulse and 
a load resistor, (b) the estimation of triangular area from transient 
response of I-t curve shows charge storage density.



where, Vmax is the maximum response voltage,

Rl is the load resistance, and 

A is the area of the paraelectric MDM capacitor.

The transient response is nearly exponential as shown in Figure 6.6 (b).

Figure B.7 presents the voltage-time curves with the different peak voltage of the 

unipolar pulse experiments for the estimation of charge storage density and charging time. 

The triangular area (i.e., charge storage density) is also increased, as the peak voltage of 

unipolar pulse increases. The detailed results, compared with the data of P-E 

measurements, are summarized in Table 6.1. It is noted that the charge storage density is 

11.3 pC/cm2 at 4 V (200KV/cm) peak voltages. The charge storage density estimated by 

the above equation produces an inaccuracy of about 9.7 % by comparison with the P-E 

characteristics. The charging and discharging times are an important parameter in 

determining the speed of a MDM capacitor in a DRAM unit cell. The total charging time 

(tT) of the capacitors using paraelectric PLT thin films is expressed by:

tT = t c  + t p  — 2.303{RLCejgr ) + t p  

where, Ctff -  £'£° ^ E -,

and tp is the time of parasitic capacitance due to test setup. Lee et al [40] reported that 

tp was estimated to be 0.7 psec for a capacitor area of 10000 pm2. The charging and 

discharging times are dependent significantly on the electrode area, so that the switching
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time decreases with a decrease o f the electrode area. Larsen et al [95] reported that it was 

difficult to take measurements for the small capacitor area o f a MDM capacitor due to the 

above-mentioned parasitic capacitance as well as the limitation of the measuring system's 

respond time.

Figure B.8 shows the switching time response characteristics as a function of load 

resistance under the same peak voltage of 4 V (200 KV/cm). The smaller the load 

resistance, the faster the switching time response as shown in this Figure. The transient 

response is governed by the following:

/(/) = / ,  exp

where, tT = 2.303RLCeff +tP and Ip is the maximum current. The switching time response 

in Figure B.8 appears to correspond to the above equation.



CHAPTER 7

SUMMARY AND CONCLUSIONS

7.1 Summary

Since thin film material with extremely high dielectric constant was required in high 

density capacitor of ULSI DRAM cell, lanthanum modified lead titanate (PLT; Pbj_x 

LaxTii.x/403) thin films prepared by various deposition techniques have been 

concentrated as an attractive candidate. In this research, paraelectric PLT thin films were 

fabricated in a unique way by reactive magnetron sputtering system using a multi- 

component metal target which was designed in our laboratory. The content of Pb in the 

sputtering target appeared to play an important role in the film growth. As-deposited PLT 

thin films were annealed to cause crystallization into paraelectric perovskite structure at 

temperatures ranging from 550 to 750 °C.

The chemical composition, crystalline structure and surface morphology of the 

films were extensively investigated. The semi quantitative analysis of stoichiometric 

composition, based on RBS data for a standard PLT film, were measured by AES. The 

best stoichiometric composition observed by AES analysis was Pb, 0.73; La, 0.28; Ti, 

0.88; and O, 2.9. The relations of composition, crystalline structure and microstructure in 

paraelectric PLT thin films annealed by a heat treatment appeared simultaneously 

important from the results of XRD and SEM. The as-deposited films were altered during 

post-deposition annealing by the inter-dependent relationship between composition and 

crystalline structure through Pb evaporation.

The dielectric and electrical characteristics o f paraelectric perovskite PLT thin 

films were conducted under different post-annealing conditions. The dielectric constant 

increased significantly and the dissipation factor decreased slightly, as the post-annealing 

temperature increased. The dielectric properties of PLT films were also exhibited as a

93



94

function of La content in the general formula of Pb-La-Ti-0 system. The dielectric 

constant increased with a rise in La concentration. The best results of dielectric constant 

and dissipation factor in the paraelectric capacitor, at low field measurement of 500 V/cm 

(10 mV), were 1216 and 0.018, respectively. The measured dielectric constant was 

tremendously different from the value of PLT bulk films reported by Hennings et al [22], 

This is due to porosity and segregation phenomena caused by Pb evaporation in post

deposition annealing treatment.

The charge storage density (Qc) of the film annealed at 650 °C was 10.3 pC/cm2 at 

the peak voltage of 4 V. The charge storage density at 750 °C was 12.5 pC/cm2, and then 

the effective dielectric constant was about 706. The leakage current density was ordinarily 

observed to decrease as the annealing temperature increased. But the leakage current for 

PLT film annealed 750 °C was higher than that of the film heat-treated at 650 °C. The 

optimal relationship between minimum leakage current density and maximum charge 

storage density was chosen by the adjustable conditions of the post-annealing technique. 

Voltage-time (V-t) measurement was also an important tool to determine the charge 

storage density and the transient response of the paraelectric PLT capacitor. The charge 

storage density was approximately 11.3 pC/cm2 at 4 V peak voltage. This estimated value 

produced an inaccuracy of about 9.7 % in comparison with the value of P-E measurement. 

The electrical characteristics of paraelectric PLT thin films for the capacitor dielectric of a 

DRAM cell were compared in Table 7.1 with the results published by other researchers. 

The results of dielectric constant and leakage current density in PLT films were generally 

better than those of PZT films for ULSI DRAM applications. But it seemed that the 

charge storage density of PLT and PZT thin films was somewhat less than the value 

required in the planar capacitor of 1-T DRAM cell.

In summary, fabrication of the ternary compound PLT thin film could be easily 

controlled by each metal element on the target. Post-annealing treatment should be 

optimized as significant factors to improve the dielectric properties and electrical



Ta
bl

e 
7.1

 
El

ec
tri

ca
l 

Ch
ar

ac
te

ris
tic

s 
in 

re
ce

nt
 r

es
ea

rc
he

s 
of 

PT 
fam

ily
 

for
 D

RA
M 

ap
pl

ic
at

io
ns

.

95

CM

t i l l
3

13
@

0.
5M

V
/c

m
15

@
0.

2M
V

/c
m

N
.A

.

N
.A

.

luo/A
W

SZO
©

III 15
@

0.
1M

V
/c

m
19

.6
@

0.
1M

V
/c

m

81 42
@

0.
6M

V
/c

m
15

@
0.

12
5M

V
/c

m
29

.3
@

1.
2M

V
/c

m E
o  §

o
®

12
.5

@
0.

2M
V

/c
m

.*1=

3

N
.A

.

0.
1

@
5M

V
/c

m
N

.A
.

N
.A

.

N
.A

.

u»/A
m

@
 

10 0.
1

@
0.

2M
V

/c
m

N
.A

.

N
.A

.

25
@

2M
V

/c
m

0.
5

@
lM

V
/c

m
N

.A
.

uw
/A

W
SZO

®
10

1

to*

33
0

0.
04

15
00

0.
01

5
13

00
0.

02
80

00
N

.A
. £00

069 13
00

N
.A

.
N

.A
. 100

098

6100
O

Sll 57
7

N
.A

.
N

.A
.

82
0

0.
2

12
16

0.
01

8

Th
ic

kn
es

s
G

un
)

0.
25 0.
5

0.
35 0.
4

0.
4

0.
2-

0.
6

0.
4

0.
3-

1 00
o1<N
o' 0.

2-
0.

6

0.
04

-0
.1

5

1-
3.

5

M
at

er
ia

l
(L

a/
Zr

)

H O>—1 (DA* — PL
T

(2
8/

0)
PL

T
(2

8/
0)

PL
T

(0
-4

2/
0)

PL
T

(2
5/

0)
PZ

T
(0

/5
0)

PZ
T

(0
/6

5)
PZ

T
(0

/5
2)

PZ
T

(0
/5

0-
56

)
PZ

T
(0

/5
0)

PZ
T

(0
/5

0)
PZ

T
(0

/5
2)

PL
T

(2
8/

0)

D
ep

os
iti

on

M
O

C
V

D

So
l-G

el

M
O

D

rf-
M

ag
.

Sp
ut

te
r

M
O

D

So
l-G

el

dc
-M

ag
.

Sp
ut

te
r

K
rF

Ex
ci

m
er

M
IB

ER
S

So
l-G

el

So
l-G

el

dc
-M

ag
.

Sp
ut

te
r

dc
-M

ag
.

Sp
ut

te
r

WmCG<D
£
<u

pS

W
ata

na
be

 
(4

4)
 

19
93

De
y 

(3
0)

 
19

92
Kh

an
 

(2
2)

 
19

92
A

da
ch

i 
(1

) 
19

91
Sc

hw
ar

tz 
(4

1)
 

19
91

M
oa

zz
am

i 
(3

8)
 

19
92

Ch
ik

am
an

e 
(3

) 
19

92
Ro

y 
(1

5)
 

19
92

K
ru

pa
ni

dh
i 

(8
) 

19
92

Ca
rra

no
 

(2
0)

 
19

91
M

ad
er

ic 
(9

6)
 

19
91

Sr
ee

ni
va

s 
(6

2)
 

19
88

N
JI

T
19

94



96

characteristics of the paraelectric capacitor. Thus, paraelectric perovskite PLT (28) thin 

films offer critical advantages over the conventional dielectrics (e.g. silicon oxide, silicon 

nitride and Z r02), and the ferroelectric thin films for ULSI DRAM applications.

7.2 Conclusions

The research showed that multi-component metal target sputtering was a promising 

deposition technique to grow PLT thin films with the paraelectric perovskite structure. 

The results of this investigation are described as follows.

(1) The paraelectric PLT thin films for the capacitor dielectric of DRAM memory 

cells were successfully prepared by reactive magnetron sputtering using a multi- 

component metal target. The individual control of each metal area on the sputtering target 

had considerable influence on the stoichiometry and electrical properties of the thin films. 

The relative ratio of each component area on the multi-component metal target was 

estimated by the base on the chemical composition of the deposited thin films, the 

sputtering yields for Pb, La and Ti metals and sticking coefficient in substrate.

(2) A post-deposition annealing treatment for the as-deposited PLT thin films 

affected composition, crystalline structure and surface morphology due to Pb evaporation. 

Single crystal film at 650 °C were smooth and the PLT thin films annealed at high 

temperature (750 °C) frequently exhibited segregation phenomenon along the grain 

boundary on the film surface. Finally, the annealing treatment for a prolonged period of 

high temperature led to the formation of serious microcrack and craters.

(3) The dielectric characteristics were essentially dependent on the changes in the 

chemical composition and crystalline phase with variation o f annealing heat treatment. 

The dielectric constant increased significantly and the dissipation factor decreased slightly, 

as the post-annealing temperature increased. The dielectric constant also increased with a 

rise in La concentration. The best results of dielectric constant and dissipation factor in 

the paraelectric PLT film annealed at 750 °C were 1216 and 0.018, respectively.
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(4) The best value of the charge storage density in the 200 nm PLT (28) thin film 

annealed at 750 °C was approximately 12.5 pC/cm2, and the effective dielectric constant 

was about 706. The P-E plot at low electric field was similar with the linear behavior of a 

normal dielectric material, while P-E characteristics were developed to the paraelectric 

state of nonlinear behavior at high electric field.

(5) The leakage current density in the paraelectric PLT thin film annealed at 650°C 

was around 0.1 pA/cm2 at the electric field of 0.25 MV/cm. The charge storage density 

by V-t measurement was about 11.3 pC/cm2 at 4 V peak voltage. This estimated value 

produced an inaccuracy of around 9.7 % in comparison with the value of P-E 

measurement.

From the above results, the dielectric constant and charge storage density o f paraelectric 

PLT thin films annealed at 750 °C were higher than those of the PLT films annealed at 

650 °C. The leakage current density of the films annealed at 750 °C was worse value than 

that of the films annealed at 650 °C. Therefore, the optimization among maximum 

dielectric constant, maximum charge storage density and minimum leakage current density 

for the capacitor dielectric of a DRAM cell was essentially adjusted by the conditions of 

the post-deposition annealing treatment.

In conclusion, a large charge storage density, high dielectric constant and relatively 

low leakage current density have been illustrated in the paraelectric perovskite PLT thin 

films annealed under optimal conditions of post-deposition annealing treatment. 

Therefore, it is expected that the paraelectric PLT capacitor is an attractive candidate for 

potential application as capacitor dielectrics in ULSI DRAM cells.
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TEST RESULTS OF PLT THIN FILM ANALYSIS
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Sub.

( 110)

(100) (211)

_ ^ / l
(c) 650 °C

(210)

(b) 550 °C

(a) As-dep.

6050403020

TWO THETA

Figure A. 12 XRD spectra of the paraelectric PLT (28) thin films as a function of post- 
annealing temperature. These PLT films belong to the type A in Table 5.3
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750 °C

650 °C

550 °C

TWO THETA

Figure A.13 XRD step scans to observe the (211) peak shift of PLT (28) films at 550, 
650, and 750 °C for 5 min
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Figure A.14 XRD patterns as a function of annealing temperature for PLT thin films of  
chemical composition type B in Table 5.3
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Figure A.15XRD spectra of PLT thin films on single-crystal MgO (100) substrate
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Figure A. 16 XRD patterns of the paraelectric PLT (28) thin films as a function of 
annealing time at 650 °C



Figure A. 17 Typical SEM of as-deposited PLT film with smooth surface

Figure A.18Tvpicai SEM of PLT thin film annealed at 650 °C for 5 min
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Figure A.19 Segregation of grain boundary in PLT films due to Pb evaporation
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Microcrack

Figure A.20 SEM of typical defects on PLT films annealed at 750 °C for 60 min:
(a) crack and (b) craters and holes



APPENDIX B 

TEST RESULTS OF ELECTRICAL ANALYSIS

X: 100 KV/cm/Div.
Y: 10.94 |aC/cm2/Div. ................ ....... ;....- ......-............ ;............
C0: 68.7 nF

........................ -............ :............ -............ ............-........-.. .......................-...............

(a)V p = l  V

X: 100 KV/cm/Div.
Y: 10.94 (iC/cn^/Div. ................r............ : -.... .....1......- -------------
C0: 68.7 nF

............. -......... . - ... '...........  .........

(b) Vp = 2 V

X: 100 KV/cm/Drv. 
Y: 10.94 fiC/cm^/Div. 
Cn: 68.7 nF

(c) Vp = 4 V

Figure B.l P-E characteristics as a function of peak voltage for 200 ran PLT (28) thin 
film at 650 °C for 5 min
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X: 100 KV/cm/Div. 
Y: 10.94 fiC/cm2/Div.
C0: 68.7 nF

(a)VD= l  V

X: 100 KV/cm/Div. 
Y: 10.94 |iC/cm2/Div, 
C„: 68.7 nF

X: 100 KV/cm/Div. 
Y: 10.94 fiC/cm2/Div 
Cn: 68.7 nF

Figure B.2 P-H characteristics with different peak voltages for 200 nm PLT (28) thin film 
at 750 °C for 5 min
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X: 100 KV/cm/Div.
Y: 10.94 |iC/cm2/Div. ... 
C„: 68.7 nF

(a) 550 °C

X: 100 KV/cm/Div. 
Y: 10.94 |tC/cm2/Div. 
Cft: 68.7 nF

(b) 650 °C

X: 100 KV/cm/Div. 
Y: 10.94 (j.C/cm2/Div. 
C„: 68.7 nF

(c) 750 °C

Figure B.3 P-E characteristics as a function of annealing temperature for PLT films at the 
same peak voltage of 4 V (200 KV/cm)
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X: 1 jisec/Div. Vp =  l  V
Y: 1 V/Div.
Rl : 1 K Q

4
v

i

X: 1 fxsec/Div. Vp = 2 V
Y: 1 V/Div.
Rl : I K n  »

X: 1 usec/Div. v D = 3 V
Y: 1 V/Div. P
Rl : 1 K Q  r

X: 1 ^sec/Div. Vp =  4 V
Y: 1 V/Div.
R , : 1 K Q

Y: 1 V/Div. 
R l : 1 KD.

a L .  x
! V

X: 1 iisec/Div. y  =  5 V
i P

Figure B.7 Voltage-time characteristics of PLT (28) MDM capacitors with different 
peak voltage of unipolar pulse
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X: 2 jisec/Div. ,
Y: 1 V/Div. E  V p = 4 V
Rl : 10 K n

X: 1 jisec/Div.
Y: 1 V/Div. V p =  4 V
RL: 1 KH %

X: 0.5 fisec/Div. _
Y: 1 V/Div. v p = 4 v
Rl : 0.5 K D

Figure B.8 Switching time response characteristics as a function of load resistance under 
the same peak voltage of 4 V (200 KV/cm)
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