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A B ST R A C T

Human Visual System  M odeling:
A nalysis o f Evoked Potential D ynam ics

by
Zongqi Hu

T he visual evoked po ten tial (V EP) reflects th e  electrical activ ity  in th e  cerebral 

cortex due to  visual stim ulation. I t contains inform ation on signal processing in the 

visual pathways from  th e  retina, th rough th e  la te ra l geniculate nucleus (LGN ) to  the 

cortical level. A lthough th e  V EP is generated by various sources in the  m ulti-layer 

neural network, the  functions of some neuronal m echanisms and the transfer char

acteristics of particu la r pathw ays can be revealed and analyzed by use of carefully 

designed stimuli (Zemon &: Ratliff, 1984; Zemon, V ictor & Ratliff, 1986). This dis

serta tion  focuses on studies of th e  visual evoked potential as a com posite of neuronal 

activities such as d irect-through excitation, local la teral inhibition and con trast gain 

control.

T he  work concentrates on th e  sandwich model, a th ree  stage com bination of 

linear-nonlinear-linear elem ents, introduced in 1970 by Spekreijse & Oosting, to  repre

sent signal flow in the  visual pathw ays. Previous efforts to  identify th e  th ree  elements 

involved stim ulation w ith  con trast reversing spatia l pa tte rn s  using a two-sinusoid 

tem poral signal (Spekreijse & R eits, 1982; Zemon & Ratliff, 1984; Zemon, V ictor &: 

Ratliff, 1986). Results of these studies are lim ited to  am plitude and phase character

istics of th e  two linear elem ents in term s of sum  and difference frequency com ponents 

of th e  VEP.

In th e  current work, transfer functions were sought for the  two linear elements 

in the  original three-stage sandwich system  in order to  ob ta in  an analytic description 

of th e  system . The goal was to  represent the  frequency responses, including those 

for sum  and difference frequencies obtained from two-sinusoid stim ulation, as well 

as transien t responses elicited by step  (square-wave) con trast reversals. D a ta  from



ten norm al subjects were analyzed. To fit th e  observed d a ta  collected from those 

subjects, it was found th a t th e  first linear element in th e  sandw ich system  m ust be a  

non-m inim um  phase function w ith  zeros in the  right half s-plane.

Based on prior investigations of single-cell responses in th e  cat re tina  (Shapley 

k. V ictor, 1978; 1981; V ictor, 1981) and th e  V EPs in  hum ans studied w ith  a  two- 

sinusoid contrast reversing p a tte rn  (Zemon, V ictor & Ratliff, 1986; Zemon, C onte k  

Cam isa, 1987), it  appears th a t the  am plitude-phase relation of the  V EP frequency 

response to  two-sinusoid stim ulation depends on two inhib itory  mechanisms, contrast 

gain control and lateral interaction. T he phenom ena of th e  inh ib itory  processes in 

the V E P  were dem onstrated in th e  current work by tests th a t  included three-sinusoid 

stim ulation, which enabled th e  investigation of d irect-through excitatory  and lateral 

inhibitory interactions simultaneously.

A new m odel has been proposed based on the  sandwich system  w ith em phasis 

on its physiological in terpreta tion . This extended model incorporates contrast gain 

control and  la teral inhibitory  m echanism s in an inhibitory parallel path , which per

mits th e  analysis of separate excita to ry  and  inhibitory  processes. T he effects of these 

inhibitory mechanisms are represented in term s of p aram eter control in the  basic 

sandwich m odel. System identification procedures have been developed, and  model 

param eter estim ation and validation were performed for two individual subjects.

In th e  first modified model, the  param eter control has been designed to  repre

sent steady -sta te  operation. This model provides a  good fit for th e  V EP frequency 

responses corresponding to  th e  two-sinusoid and single sinusoid stim ulation, bu t fails 

to represent the  V EP transient response. F urther m odifications resulted in a  second 

model incorporating dynam ic param eter control. T he second m odel provides a good 

fit for th e  V EP transien t response; a t th e  expense of som ew hat poorer fit of the 

frequency responses.
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C H A PT E R  1 

IN TR O D U C T IO N

Visual system  research is one of th e  branches of neuroscience th a t involves studies 

of th e  electrical networks of the  brain. The goal of th is research is to  learn about 

s truc tu re  and function of th e  neuronal pathw ajrs in th e  brain , including its  relation 

to  learning and perception. One approach em ployed in visual system  research is to 

exam ine th e  electric activ ity  a t different neural stages elicited by stim ulation of the  

retina. T he techniques used range from  the  m icrophysiological level, where th e  electric 

activ ity  of a single neuron is recorded, to  global level studies of electric activ ity  from 

large populations of neurons recorded from th e  scalp, such as th e  electroencephalo

gram  (EEG ) or the visual evoked potential (Y EP). T he present study is concerned 

w ith the  application of system  analysis to  characterize and m odel the  p rim ary  visual 

pathw ay in hum ans th a t begins w ith photoreceptors in th e  re tin a  of th e  eye and ends 

in th e  occipital cortex of th e  brain. The investigations are electrophysiological in 

n a tu re  and utilize the  V E P  as a noninvasive m easure of cortical function.

1.1 Visual System : A natom y and Physiology

T he discussion of th e  visual system  in this d issertation  is lim ited to  aspects d irectly  

rela ted  to  our investigation. W ell-docum ented reviews of the  anatom y and physiol

ogy of the  hum an visual system  can be found in th e  basic visual litera tu re , such as 

Principles o f Neural Science by K andel, Schwartz & Jessell (1991) and a standard  

te x t book Adler's Physiology o f the Eye  edited by H art (1992).

1.1.1 Prim ary Visual Pathway

Basically, th e  prim ary visual pathw ay includes th ree  stages, re tina , la teral geniculate 

nucleus (LGN) and visual cortex (Figure 1.1). W hen a  light im age projects on th e  

retina, it is converted to  electrical activ ity  by th e  photoreceptors (cones and  rods) 

and m ediated  through th e  bipolar cells to  th e  retinal ganglion cells. The axons of

1



the ganglion cells, to talling  some 106 fibers, form  th e  optic nerve, which transm it 

pulse-train signals to  the  visual cortex via th e  LGN. The to ta l num ber of ganglion 

cells is about one hundred th  lower than  th e  to ta l num ber of the  receptors. On the 

average, one ganglion cell is connected to  seven cones or to 320 rods, so th a t the  

in itia l set of signals m ust be compressed to  a  m uch sm aller set prior to  transm ission 

via the  optic nerves. T he neural connections, however, are not homogeneous across 

the  retina. T he foveal area in the central re tina , which is responsible for detailed 

form vision, has a 1 : 1 or 1 : 2 ratio  of photoreceptors to  bipolar and ganglion cells. 

This divergent connectivity is transform ed in to  g reater and greater convergence w ith 

increase in retinal eccentricity  (in the present stud}’, the  foveal and parafoveal regions 

of retina are s tim ulated  and therefore form the  connections of in terest).

The stru c tu re  and processing properties of th e  re tina  have th e  effect of creating 

a discontinuous representation  of the  re tina  im age by dividing it in to  small elem ents, 

which play a fundam ental role in the perception of contrast and form.

The neural connections between each level are organized in a retinotopic fashion, 

th a t is. a given retinal point projects to  a given region of the la teral geniculate, and 

then  to  a given region of th e  visual cortex. Even though the signals from  m any retinal 

photoreceptors m ay u ltim ately  converge on a single ganglion cell, th e  signals from  a 

single receptor m ay influence m ore th a n  one ganglion cell, and the  sam e principles 

of convergence and divergence apply to  th e  connections a t the geniculate and cortex, 

the  principle of retinotopic organization is m ain tained  in a  general way.

1.1.2 R eceptive Field Organization

One im portan t feature of visual neurons is the ir receptive field  property. A cell will 

only respond when visual stim uli appear in a  particu la r part of the  v isual field. T h a t 

p a rt of the visual field th a t  influences th e  firing of the  neuron under study  is called 

th e  cell's receptive field.

Kuffler (1952; 1953), recording from  ganglion cells in the re tin a  of th e  cat, dis

covered th a t the  receptive field of the  ganglion cells consists of a roughly circular
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center, surrounded by a  ring. A spot of light presented to  th e  center field (center) 

produced a. burst of un it activity. However, when the  spot is moved to  th e  surround

ing field (surround), th e  cell ceases firing, b u t begins firing vigorously when th e  spot 

of light is tu rned  off. T he cells, responding in a center-on, surround-off m anner, thus, 

are referred to  as on-center cells. A nother type of cell, responding in an antagonistic 

way, inhibition when th e  center is illum inated, and excitation when th e  surround

ing field is illum inated, are called off-center cells, sim ultaneous representation  of a 

stim ulus to both center and surround of e ither type  of the  cell produces little  or no 

response. These type of ganglion cells com pare th e  brightness of the  center spot with 

its surround, giving th e  greatest response when the  contrast is m axim al.

Enroth-C'ugell and Robson (1966), studying th e  retina of the cat, found th a t not 

all retina ganglion cells show this cancellation effect. They classified those showing a 

null position (center +  surround stim ulation counterbalancing each o ther) as A' cells, 

and those th a t did not as Y  cells. The V  cell responds when either its receptive 

field stim ulation is turned-on  or turned-off. F u rther studies of the  re tin a  ganglion 

cells (Shapley, 1982) revealed th a t the  X  cell pathw ay is simple and involves linear 

sum m ation of center and surround signals; T he Y  cell receives two inputs. O ne is a 

linear center-surround signal like th a t sent to  the  X  cells. A nother inpu t to  Y  cells 

is the  ensemble of excitatory  subunits. The signals from those subunits have passed 

through a nonlinear process like a rectification, and thus form  even order harm onics 

of the  inpu t frequency.

T he lateral geniculate nucleus (LGN) on each side of the  brain  contains six 

layers of neurons. Each layer receives inpu t from  only one eye: layer 2, 3 and 5 

from  the  ipsilateral eye, and layer 1, 4 and 6 from  th e  contralateral eye. In the  

LGN, receptive fields are arranged in such a way th a t neighboring geniculate cells 

connect to  the  neighboring regions of the  retina, so th a t  th e  receptive fields of adjacent 

neurons overlap over m ost of their area. T he concentric receptive fields of cells in 

LGN resemble those of ganglion cells in the  re tina , representing the types of X  and 

Y (Kuffler Nicholls, 1976).
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T he prim ary  visual cortex consists of six principal layers (and several sublayers), 

arranged in bands parallel to th e  surface and separated by relatively cell-free zones 

containing prim arily  the  dendritic and axonal processes of th e  cells. Axons from the  

lateral geniculate nucleus te rm inate  for th e  m ost p a rt on layer IV.  T he cortical cells, 

according to  the ir receptive field property, are classified as simple cells and complex 

cells (Spitzer &z Hochstein, 1985a; b). The simple cells have th e  sam e receptive field 

form ation as th a t of the  X  ganglion cells, composed of a center and a  surround. 

Complex cells have more than one subunit, and the  receptive fields of these subunits 

overlap or sca tte r in the  visual field.

1.1.3 Functional Pathways

In the visual system , neuronal connectivities can also be classified in term s of the  

functions they  play. In addition to  the  “direct-through” pathw ays w ithin the visual 

system , which transm it excitatory  signals from  one neural level to  th e  nex t neural 

level, there  exist la teral pathways (e.g. form ed by horizontal cells in the  re tina), which 

transm it inh ib itory  signals w ithin a neural level. It is also known th a t different type- 

s of cells and connections form separate  (independent) parallel pathw ays th a t lead 

from th e  re tina  to  the lateral geniculate nucleus of the tha lam us (LG N ), and then  

to  the  p rim ary  visual cortex in th e  occipital lobe of the brain  (e.g. Shapley, 1990). 

One pair of parallel pathways, labeled “ON ” and “O FF ” based on the ir physiolog

ical properties, is thought to  segregate brightness (positive-contrast) and darkness 

(negative-contrast) inform ation respectively. A nother pair of parallel pathw ays, la

beled “m agnocellular” and “parvocellular” , process low and high contrast inform ation 

differentially, as well as segregating o ther type of visual inform ation (e.g. chrom atic 

signals). This la tte r  pair of pathw ays from  th e  LGN is known to  p ro jec t to  different 

layers of th e  visual cortex (Livingstone & Hubei, 1988).
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1.2 VEP: A Noninvasive Physiological M easure of 
Cortical Function

1.2.1 E lectrogenesis and Features

In the  cerebral cortex, one type of neuron, according to  its dendritic (branch) a r

rangem ent, is called stellate cells, which can be fu rth er subdivided into those th a t 

have sm all spines arising from  the  dendrites and those th a t do not. T he spiny stellate 

cells are restric ted  to  cortical layer I V  (Pearlm an, 1975), which receives m ost of the 

la teral geniculate afferents, and p ro ject to  pyram idal cells, located in layer II, III. 

VI and VII  (Lund. 1973). T he pyram idal cells have a cell body shaped som ething 

like a pyram id. The apex of the pyram id points tow ard th e  cortical surface; a single 

dendrite arises from it and is called the  apical dendrite . Theoretical and em pirical 

evidence has shown th a t th e  visual evoked po ten tial (V E P ), recorded a t the  cortical 

surface, m ainly results from  the  sum  of postsynap tic  po ten tials  occurring on apical 

dendrites of the pyram idal cells (Eccles, 1951; P u rp u ra , 1959; C reutzfeldt & K uhnt, 

1973).

A lthough evoked potentials in hum ans have becom e accessible for about twenty 

years, the study of these brain  phenom ena was begun when it was discovered th a t 

a poten tial could be recorded on th e  occipital cortex in response to  visual or elec

trical stim ulation of the  optic tra c t (B artley & Bishop, 1933). A fter th a t discovery, 

significant progress in V EP research was achieved. This included th e  perfection of 

m icroelectrode recording from  single cells in the  cortex (cf. P u rpu ra , 1959), a  dem on

stra tion  th a t th e  V E P can be recorded from m an’s scalp (Dawson, 1947), the  adoption 

of s ta tis tica l m ethods of signal analysis (Dawson, 1947, 1950) and th e  developm ent 

of com puter techniques to  aid the  recording and analysis of evoked potentials (e.g. 

Barlow, 1957).

Nowadays, the  V EP is rapidly  gaining an im portance in neurophysiology, psy

chophysics and clinical neuro-ophthalm ology, for th e  following reasons:

1. T he visual evoked poten tials (V EP) can be easily recorded from  the scalp. It 

provides a noninvasive and risk-free m eans of investigating brain  function.



2. T he V EP contains inform ation involving neuronal electrical activ ity  in m any func

tional structu res and pharm acological pathw ays and may be capable of revealing 

a wide variety of neural abnorm alities w ithin th e  visual system . T he V E P as a 

diagnostic tool has been discussed in a large num ber of publications (e.g. Cobb 

k  M orocutti, 1967; Halliday, M cDonald k  M ushin, 1973; A sselm an, Chadwick 

k  M arsden, 1975; Mj'slobodsky, 1976; Bodis-W ollner k  O nofrj, 1982; R atliff k  

Zemon, 1984. Heckenlively k  A rden, 1991).

3. There is a certain  relation between the  cortical surface poten tials and th e  electric 

signals recorded from  single cells. Like a new spaper photograph th a t is composed 

of a m u ltitude  of tiny dots, neural netw ork activ ity  is composed of th e  activities 

of whole populations of cells. Single-neuron recording reflects a view from  a  close 

range where we can see a few dots at any one tim e b u t cannot see th e  overall picture, 

while the  evoked potential viewpoint is ra th e r d is tan t so th a t im po rtan t features 

of the p icture b lur and merge. A judicious use of bo th  techniques, therefore, m ight 

guide us tow ards the “correct d istance” to  view th e  b rain 's  function (perception 

of shape, m ovem ent, direction, etc.) (Regan, 1989).

4. V EP responses m easured under given te st conditions are s tatistically  reproducible 

(Elul, 1969; Regan, 1989).

1.2.2 Transient and Steady-State R esponses

V EPs under s tud j? are classified as transien t response and steady-sta te  response. In 

both cases, periodic stim uli are applied.

For the  transien t V EP, the period between consecutive stim uli is sufficiently 

large so th a t the  visual system  returns its in itia l s ta te  before the  nex t stim ulus occurs. 

For exam ple, low frequency equare-wave stim ulation  is used to  ob ta in  th e  V E P step 

response.

The steady-sta te  V EP is m easured a t several stim ulus frequencies. Here, the 

response to  one stim ulus has not died away before th e  next stim ulus is delivered. 

T he m inim um  stim ulation ra te  for s teady-sta te  is usually th a t for which appreciable
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overlap occurs between the response to  one stim ulus and th e  occurrence of the next 

stim ulus.

A transien t evoked potential is usually represented as a graph of voltage versus 

tim e. T he evoked potential is com m only invisible in recordings taken directly from 

the  scalp (i.e. the  signal is buried in noise). T he signal to  noise ra tio  can be increased 

by breaking the response into several records in term s of th e  stim ulation  period, and 

then averaging th e  records to  form an im proved transien t response.

Analysis of th e  transient response is com m only aimed at decom posing the wave

form into elem entary constituents of ‘‘com ponents" in the hope tha t different compo

nents will indicate the  activities of different functional subunits w ithin the  brain. For 

exam ple, excitatory  postsynaptic po ten tials occurring on apical dendrites near the 

cortical surface generate a superficial curren t sink and a corresponding deep current 

source, thus producing surface negativity. Inhib itory  postsynaptic potentials occur

ring a t sim ilar sites generate a superficial source and corresponding deep sink, pro

ducing surface positiv ity  (Eccles. 1951; P urpu ra , 1959; C reutzfeld t & K uhnt, 1973).

T he steady-sta te  V EP is usually represented in term s of its frequency spectrum  

which includes inform ation about transm ission properties of visual neural pathways.

1.2.3 Nonlinear Properties

The visual pathw ays commonly show several types of tem poral nonlinear behaviors. 

Two exam ples are: i) W hen successive responses run into each other, they  may not 

sum linearly (Regan, 1982). In particu lar, the  m agnitude of th e  V E P does not in

crease as linearly w ith  th e  stim ulus con trast (Shapley Sz V ictor, 1978; 1980). This 

nonlinear process is referred to as contrast gain control which will be discussed in 

C hapter 4. ii) For periodical stim ulation, V E P response contains m ulti-harm onics 

and in term odulation  com ponents of th e  inpu t frequencies (Spekreijse & R eits, 1982; 

Zemon, Conte, J in d ra  Sz Cam isa, 1985). This type  of nonlinear process, which can 

be m odeled in term s of rectification, will be discussed in C hap ter 2 and 3. T he VEP 

m odeling developed in this dissertation includes those two types of nonlinear mech
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anism s. as well as another nonlinear process, la teral in teraction , to  be discussed in 

C hap ter 4.

1.3 Visual System  Analysis and M odeling

K nowledge of th e  visual system  (observation, s truc tu re , function, hypotheses, etc) 

can be linked together in to  a  p a t te rn -a  m athem atical m odel, which serves as a  tool 

to  q uan tita tive ly  describe and pred ic t the  system  spatial a n d /o r  tem poral dynam ics. 

Research in th is area covers single cell unit (e.g. retina ganglion cells), as well as large 

populations of neurons (e.g. electroretinogram  or evoked po ten tial).

Single cell models closely re la ted  to  the  present study  have been in troduced in 

previous studies for: A' type  ganglion cell (V ictor, 1987). Y type  ganglion cell (V ictor, 

1988), cortical sim ple and com plex cells (Spitzer &: H ochstein, 1985b). These m odels, 

which provide insight onto th e  spatial and tem poral properties of th e  cell un its th a t 

con stitu te  th e  visual pathw ays, will be discussed in th e  la te r chapters.

E arly work on V EP m odeling vras done by Lopes D a Silva (1970), who collected 

a large am ount of data  from  dogs and presented a  m odel in his Ph.D . d issertation  to  

characterize th e  dynam ics of visual evoked potentials. He used sinusoidally m odulated  

light as th e  stim ulus and th e  fundam ental com ponent of th e  corresponding V E P  

response as th e  ou tpu t to  describe a  linear model. T h a t work did no t consider the  

generation of harm onics, especially even harm onics, p redom inan t in th e  V EP caused 

by periodic stim uli.

Spekreijse and O osting proposed a three-stage m odel in 1970 for analyzing nerve 

sensory pathw ays. T h a t m odel, shown in Figure 1.2, contains a  s ta tic  nonlinearity  

N (v ) sandw iched by two linear elem ents Hi  and i f 2, which presents perhaps th e  

sim plest form  am ong com binations of linear and nonlinear elem ents to  present the  

nonlinear phenom ena of th e  V EP. T he existence of the  nonlinear process in th e  m odel 

is supported  by th e  fact th a t harm onic com ponents can be  found in th e  V EP responses 

elicited by th e  periodical stim ulation . This generation of V E P  harm onics has been 

found to  be frequency-independent (Spekreijse, 1966), and  can be characterized as a
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S( t ) V ( t ) 2( t ) y ( t )
N(v)

F ig u re  1.2 A sandwich model, two linear processes Hi and H 2 are separated 
by a static nonlinearity N.

sta tic  nonlinearity in th e  form of a  rectifier (the reasoning for this rectification model 

is discussed in the  next Section).

In 1982. m ethods for identifying the sandwich m odel, including a two-sinusoid 

procedure to be used in the  current research, were described by Spekreijse and Reits.

In 1984, Zemon analyzed direct-through excitation  and la teral inhibition pro

cesses in the V EP using a contrast reversing spatial p a tte rn  stim ulation. Based on 

the  sandwich m odel, he explained those two d istinct processes in term s of th e  obser

vations. In 1985. Zemon and his co-workers (Zem on, C onte, J in d ra  k. C am isa, 1985) 

provided physiological explanations for each elem ent in th e  sandwich m odel based on 

microphysiological knowledge involving the pathw ays involved in the  generation of 

the VEP.

1.4 Physiological Basis o f Sandwich M odel 
for the Visual Pathway

As shown in Figure 1.3, T he pa th  for V EP generation basically consist of th ree 

stages, retina, lateral geniculate nucleus (LGN) and cerebral cortex. In th e  retina, 

there are th ree  neuron layers, nam ely, photoreceptors, biopolar cells and  ganglion 

cells. Photoreceptors (cones and rods) sense th e  optical inform ation on the ir receptive 

fields, and convert it in to  electrical signal for consequent transm ission via the  LGN to 

the  cortex. The la teral geniculate fibers predom inantly  te rm inate  on dendritic  spines 

of s te lla te  cells, and th en  p ro jec t to  the  pyram idal cells. T he postsynaptic potentials
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F ig u re  1.3 VEP pathway is basically composed of three stages, retina, 
lateral geniculate nucleus and cerebral cortex. The pathway characteristics, 
which depend on the various cells characteristics, can be simulated by a 
deterministic sandwich model.

of apical dendrites, characteristically  arise from  the body of th e  pyram idal cells and 

point tow ard the cortical surface, are the  m ajor source of th e  V EP recorded from the  

cortical skin.

1.4.1 R ectification Process

It has been observed th a t sinusoidal stim ulation produces a  V E P  containing m ultip le 

harm onics and interm odulation com ponents of the  original frequency of th e  inpu t 

(Spekreijse and R eits, 1982; Zemon. Conte, J in d ra  k  Cam isa, 1985). This phenom ena 

implies th a t a nonlinear process exists in  th e  VEP pathw ays (otherwise th e  V EP 

will only contain th e  frequency com ponents of the inpu t). T he  nonlinear process is 

perceived to  be a kind of rectification (Spekreijse and O osting, 1970; Regan, 1989),
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which may result from the  signal processing behavior a t the front stage of the  cortex. 

It was found th a t the re  is a large inhibitory  activ ity  involved in the signal processing 

w ithin this neuron layer due to  highly branched connection (Benevento, C reutzfeld t & 

K uhnt, 1972; C reutzfeldt, K uhnt L  Benevento, 1974). A cell in this layer m ay receive 

m any inhibitory signals from the  local neighboring cells, resulting in cancellation 

of the  incoming, or a portion of the  incom ing, excitatory  signals from th e  lateral 

geniculate axons. Thus, th e  overall inh ib itory  signals a  cell receives can be presented 

as a threshold for the  excitatory  signal to  s tim ulate  this cell. A rectifier with a 

threshold to  represent such a cell inpu t-o u tp u t relation is illustrated  in F igure 1.4. 

From a neural network point of view, since th e  stella te  cell layer presents a large 

threshold to the  incom ing signals from the  early  neural layers, the rectification process 

in the visual pathw ay is thought to be essentially located in the front stage of the 

cortex (Zemon et al, 1985).

1.4.2 Linear Processing prior to the R ectification

The first linear elem ent Hi  in the sandwich model represents a linear process in the  

early stage of th e  Visual neural pathways. This result comes from studies of single 

cell behaviors in b o th  retina and la teral geniculate nucleus. Some relevant term s used 

in these studies will be introduced first.

Tem poral linearity

A neuron has a  temporal linearity if its response, in term s of its  firing ra te  

or dendrite po ten tial, to  a  stim ulus th a t is m odulated  sinusoidally in tim e has a 

sinusoidal tim e course (otherwise, th e  cell has temporal nonlinearity).

Spatial linearity

Dividing a neuron receptive field in to  several portions, if the neuron response to  

its  receptive field stim ulation  is a  linear sum m ation of th e  responses which correspond 

to  each partia l field stim ulation, th e  neuron has spatial linearity (otherwise, th e  neuron 

has spatial nonlinearity). In particu lar, when a  cell un it formed by a  group of cells 

has more than one separate  receptive fields, th e  spatial linearity m eans th a t th e  un it
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F ig u re  1.4 The output firing rate (OFR) of a cortical neuron as a  function of 
the excitatory incoming firing rate (EIFR). modeled by a threshold rectifier.

response to  its to ta l receptive field stim ulation  is linearly sum m ed from  the  responses 

corresponding to  stim ulation  of each individual field. Spatial nonlinearity m ay result 

from nonlinear sum m ation between spatially  discrete or overlapping subregions.

T ranchina and his co-workers (1981) dem onstrated , by recording intracellularly 

from horizontal cells in th e  tu rtle  retina, th a t neural processing in  the  d istal re tina  

is highly linear over a wide range of spatial-tem poral conditions. Furtherm ore, the 

ganglion cells in th e  re tin a  and LGN can be broken down, by th e ir  property, into X 

cells which are spatially-tem porallv  linear, and Y cells which are spatiallv-tem porally  

nonlinear (Enroth-C ugell k  Robson. 1966); or by the ir functions, in to  M cells which 

are more sensitive to  lum inance m odulation, and P  cells which are m ore sensitive to 

chrom atic m odulation  (De M onasterio k  Gouras, 1975; Lee e t al, 1990). Researches 

showed th a t all P  cells are X-like and approxim ately 75% of M cells are also X-
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like; only 25% of M cells are Y-like (Shapley, K aplan k  Soodak, 1981; Blakemore k  

V’ital-D urand, 1981; K aplan k  Shaplej', 1982).

The investigations above lead to  th e  conclusion th a t m ost of the  cells in the 

earl}’ stage proceeding the cortex present linear processing behavior, which can be 

therefore represented by the  first linear elem ent Hi  in Figure 1.3.

1.4.3 Linear Processing Posterior to  the Rectification

Spitzer and Hochstein (1985 a; b) classified cortical neurons in term s of their spatial- 

tem poral behaviors as simple cells and complex cells, and reasoned th a t the  response 

of a complex cell is a linear sum m ation of rectified inputs. Since sim ple cells are found 

almost exclusively in layer IV.  and complex cells are found above and below layer IV.  

but rarely in layer I V  (Hubei k  W iesel. 1962; 1968). the  conclusion by Spitzer and 

Hochstein suggests th a t  pyram idal cells (not in layer IV,  hence are com plex cells) 

linearly process the rectified inputs pro jected  from spiny stella te  cells. This linear 

process in th e  last st age can be represented by th e  second linear elem ent H 2 in the  

model.

1.5 O bjective, O utline and Contribution

1.5.1 O bjective

The sandwich system  for V EP modeling was proposed m any years ago, b u t a com plete 

m athem atical description of th e  m odel has not come out so far. I t  is thus th e  objective 

of this d issertation: to develop a mathematical model and identification method for  

the human VEP, based on the sandwich system.

M ajor benefits anticipated  from such a  model include the  advancem ent of phys

iological knowledge on functional subsystem s in the  neural netw ork and a be tte r 

understanding of signal processing in th e  various stages of visual neuron pathways. 

In the  clinical area, V EP models can be used as diagnostic tools. Diseases may 

affect the visual nerve system  to  generate different response wave forms in com par

ison w ith the  norm al ones. Such wave form modifications have been reported  for
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A lzheim er's disease (Trick, 1991). epilepsy (R atliff k  Zemon, 1984), m ultip le sclerosis 

(Halliday. M cDonald k  M ushin, 1973a; Zem on, 1984), neuron synaptic m alfunction 

(Bodis-W ollner k  Onofrj. 1982), re tin itis  pigm entosa (Berson, 1975), and visual acu

ity (Halliday, M cdonald k  M ushin, 1973b). Instead of describing those wave form 

changes in term s of ’’features” of recordings, they can be tran sla ted  in to  modifica

tions of a finite set of model p aram eter values which, in tu rn , m ay be associated with 

disease sta tes and their physical location.

1.5.2 O utline of Work Conducted

This work focuses on YEP modeling based on th e  sandwich system . F irst, m a th em at

ical descriptions (including transfer functions) were sought for each elem ent in the 

sandwich model. A two-sinusoid technique (to  be discussed in Section 2.1) was select

ed for identifying the  model. It composes a contrast reversing p a tte rn  stim ulation, 

containing a lum inance function tem porally  m odulated  by a  sum  of two sinusoids. 

Transfer functions of the  two linear elem ents were identified in term s of the  sum and 

difference frequency com ponents elicited by this stim ulation. A ccording to  the two- 

sinusoid strategy, we determ ined th e  nonlinearity  in the  m odel based on th e  nonlinear 

processing behavior in the V EP pathw a3rs before the  linear elem ent identification. 

Because even order harm onics were predom inantly  found in V E P due to  periodical 

contrast reversing p a tte rn  stim ulation, th e  nonlinearity  selected was a  full-wave lin

ear rectifier, which is perhaps the  sim plest s ta tic  nonlinear form  for generating even 

harm onics. Since different nonlinearity  selection m ight lead to  a different result of 

the linear transfer function identification, m ethodology for selecting the  nonlinear!ty 

was discussed, and th e  effect caused by a variety of selection for th e  nonlinearity  was 

also analyzed in the  dissertation.

We exam ined th e  V EP d a ta  m easured from  a  group of ten  adu lt hum an subjects 

to determ ine th e  transfer function form ations. M athem atical analysis showed th a t, to 

fit the  V E P sum and difference frequency com ponents m easured from those subjects, 

the transfer function form ation of th e  first linear elem ent has a  non-m inim um  phase
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characteristic w ith zeros on the  right half s-plane. This resu lt has not been shown in 

previous investigation of tem poral characteristics of either single neurons or evoked 

potentials (Section 3.3).

Previous studies on electrical activities of single cells and global visual system 

(V EP) showed th a t there are two inhibitory  m echanism s (to be described in detail 

in C hapter 4), contrast gain control located in bo th  th e  re tina  and  th e  cortex (Shap- 

ley k  V ictor, 1978, 1981; Zem on, Conte k  Cam isa, 1987), and lateral interaction 

mainly located in the cortex (Zemon. V ictor k  Ratliff. 1986). which modify both 

signal m agnitude and phase in a nonlinear m anner. It appears th a t the  V EP inter- 

m odulation com ponents due to  two-sinusoid stim ulation do not only depend on the 

forward processes before and in th e  cortex (which are represented by the  first and 

second linear elem ent in the sandwich system ), but also depend on th e  effects of the 

inhibitory  m echanism s. The phenom ena of such inhibitory processes in the  V EP are 

also dem onstrated  in the present work (Subsection 4.2.2, 4.3.2). A shunting inhibition 

model (Furm an, 1965: N abet k  P in ter, 1991) is used to  explain th is type of nonlinear 

process.

In th e  present work, a new m odel s truc tu re  based on th e  original sandwich sys

tem  is introduced, which includes nonlinear processes in th e  inhibitor}7 mechanisms. 

The model extension work em phasized th a t the  modified sandwich system  should not 

only satisfy the  m inim um  com plexity requirem ent for fitting  th e  V E P data , bu t more 

im portantly , should present a good in terp re ta tion  of m ajor neural generators of VEP.

Two m odels are presented in the  curren t work. In th e  first m odel, th e  effects of 

the  inhibitory  m echanism s are expressed as steady-state control of param eters. This 

model can provide a  good fit and prediction for the V EP frequency responses over the 

entire testing range (1.22-30 Hz), bu t fails to  describe th e  V E P  transien t response.

T he second m odel developed during th is work has th e  sam e basic s truc tu re  as 

the  first one, b u t the  param etric control is achieved dynam ically. This m odel can 

provide a  good fit for the  VEP transien t response. However, its  frequency response 

m atch is poorer th an  th a t of th e  first model.



17

For each of the two m odels, param eter identification procedures have been de

veloped and used for two hum an subjects.

1.5.3 Contributions

The essential contributions of th e  present research can be sum m arized as follows:

1. A new m odel structu re  has been proposed based on th e  sandwich system  w ith 

consideration of incorporating la teral interaction and contrast gain control m ech

anism s. This extended m odel perm its the analysis of separate excitatory and 

inhibitory  processes (Section 5.1).

2. M athem atical equations and identification procedures have been introduced to  de

scribe and identify the model. This work advanced sandwich modeling for the 

hum an Y EP in steady-state operation. Moreover, V EP m odeling has been ex tend

ed beyond th e  frequency dom ain consideration to the  tim e dom ain consideration.

1.5.4 Organization of D issertation

T he dissertation contents are arranged as follows:

C hapter 2 (Section 2.1) begins w ith an in troduction of the  two-sinusoid stim ula

tion m ethod used for identifying the  sandwich model. Later in th a t chapter, m ethods 

of Y E P m easurem ent and d a ta  processing are described.

C hap ter 3 discusses sandwich m odel fitting  for s teady-sta te  V EPs, which in

cludes nonlinearity  type selection, V EP in term odulation com ponents due to the two- 

sinusoid stim ulation, and transfer function form ation. T he chapter concludes w ith a 

discussion of m odel deficiencies.

C hap ter 4 begins w ith a  general introduction of inhibitory  m echanism s (Sec

tion 4.1). Section 4.2 introduces th e  concept of contrast gain control and presents 

experim ental results on the  effect of stim ulus contrast. Section 4.3 discusses la teral 

in teraction , and presents a te st protocol using three-sinusoid stim ulation  develope- 

d for th e  investigation of la teral inhibitory process. A shunting inhibition m odel is 

discussed in Section 4.4 to  provide a physiological explanation for those inhibitory
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processes and the ir effects in neuron signal transm ission.

C hapter 5 contains th e  result of th e  m odel s truc tu re  developm ent for th e  first 

model, including its  m athem atical description, system  identification procedure, and 

mode] validation.

C hapter 6 describes th e  A7E P transien t response, developm ent of th e  second 

m odel, system  identification procedure, and m odel fitting.

C hapter 7 presents a sum m ary, discussion and conclusions on th e  present work 

as well as suggestions for fu tu re  research.



C H A PTER  2 

M ETHOD

2.1 R ationale for the Two-Sinusoid Approach

T here are varieties of strategies to  determ ine th e  transfer characteristics of th e  ele

m ents w ithin  the  sandwich system . One of th e  popular approaches is th e  character

ization of th e  nonlinear system  in term s of W iener kernels (W iener, 1958), obtained 

from  an analysis of th e  system  response to  G aussian w hite noise input. These kernels 

can be calculated by polvcorrelation of input and ou tpu t signals (Lee &: Schetzen, 

1961). and can fu rther be  estim ated  by th e  Fourier transform  of input and ou tpu t 

signals (K im . Wang. Powers V R oth. 1979). Its application to  physiological systems 

can be found in th e  tex tbook by M arm arelis V M arm arelis (1978). A nother a lte r

native  approach is to  use an inpu t w ith m ultip le sinusoids to  approxim ate G aussian 

w hite noise. This approach has been introduced to  the  visual neuron cell m odeling 

by V ictor and Shapley in 1980. One of the  advantages of th is m ethod com pared w ith 

W iener Kernels is th a t th e  inpu t is determ inistic and thus easier to  control. How

ever, visual evoked potential recording, o ther than  neuron cell firing ra te  is readily 

d isturbed  by noise. Tests in this laboratory  showed th a t the  frequency com ponents 

of V EP, elicited by the  random  or “random -like” function stim ulus, has low signal to 

noise ra tio  and is not suitable for use in V E P system  modeling. Therefore, a two- 

sinusoid stim ulation (a determ inistic approach) was selected for the current research, 

which can elicit relatively reliable VEP response. The two-sinusoid technique has 

been used by Zemon and his co-workers for V EP researches, and was reported  in 

several papers (e.g. Zemon, 1984; Zemon et al, 1985; 1986). The principle of the  

two-sinusoid technique is described as follows:

For an input containing two sinusoids a t frequencies / i  and / 2, a  linear system  

produces two steady-sta te  sinusoidal ou tpu ts of th e  sam e frequencies. In the  sandwich 

system , however, nonlinear processing produces o u tp u t com ponents of in term odula

tion frequencies and harm onics of frequencies / i  and / 2. The basic in term odulation 

com ponents, sum frequency com ponent (the com ponent a t the  frequency f i  + / 2) and

19
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Figure 2.1 Demonstration of two-sinusoid approach for identifying the lin
ear elements in the sandwich model.

difference frequency com ponent (the  com ponent a t the frequency f 2 — / i ) ,  can be 

used to characterize the  linear elem ents H\  and H 2 if the  frequency pa ir f x and f 2 is 

carefully chosen.

As shown in F igure 2.1, the  o u tp u t of H \  due to  th e  two-sinusoid inpu t is 

also a two-sinusoids a t frequencies f x and  f 2 because of linearity  of H x. This signal 

is processed fu rth er by th e  nonlinearity  N [ v )  to  produce com ponents including a 

difference frequency com ponent (D FC ) and  a  sum  frequency com ponent (SFC). Now, 

if we change th e  in p u t frequency pair f x and f 2. for exam ple, to  f[  and  f 2, b u t keep the  

difference as a  constan t, th a t is. f 2 ~ f \ — f 2 ~  .fx, each of th e  tw o sinusoids entering 

jY(r) will change in am plitude and  phase according to th e  frequency characteristic  

of H\.  However, th e  DFCs produced from  N ( v )  still rem ain a t th e  sam e frequency. 

Those difference frequency com ponents w ith  identical frequency will be identically 

filtered by th e  second linear filter H 2. In th is way, H 2 m erely offers a  constan t gain 

and phase shift to  th e  DFC. The D FC response curve, obtained by using an en tire set 

of frequency pairs w ith equal separation betw een frequencies in  each pair, therefore
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depends only on Hi  and N (v ) .  If the  characteristic of N ( v )  is known, it is possible to  

recover the characteristic of Hi  from  the  DFC response. In the  following, we give a 

m athem atical analysis of this issue, and show how th e  difference and sum frequency 

com ponents can be used to  determ ine the  transfer function of the  linear elem ents H\  

and H 2 ■ This m athem atical analysis is based on th e  paper by Spekreijse and Reits 

(1982).

F irst, for given a two-sinusoid inpu t to  the nonlinearity  TV, th e  equations for 

calculating the  sum and difference frequency com ponents in the  ou tpu t of N  should

be established. Suppose the  inpu t-ou tpu t relation of th e  nonlinearity  is given by

= (i) = K[v(t)}  (2.1)

where v(t)  and ~(/) is the  value of input, and o u tp u t a t tim e 1 respectively. The 

Fourier transform  F ( j n )  of the  nonlinearity  N ( v )  is

/ OO
N { v ) t ~ 3UVdv  (2.2)

•OO

W ith  the  inpu t as a sum of N  sinusoids,

N
v {t) =  J 2 A >= c°s(w ^  +  <f>k) (2.3)

k=1
one finds

z(i)  =  N[v{t)} =  f  F { j u ) e iuvWdu 
2~ Jc

1 f  N
= 7T F { j u ) e x p { j u Y ,  A k cos{ujht  +  <j>k)}du  (2.4)

- 7r Jc  fc=i
where C  is a contour extending from  — 0 0  to  0 0  selected to  exclude singularities.

According to  th e  Jacobi-A nger form ula (G radshteyn & Ryzhik, 1980, page 973),

OO
e x p [ ju A k cos{u)kt +  (j>k)} =  ^ 2  j ntnJn{uAk) cos n(u)kt +  4>k) (2.5)

71= 0

where en is th e  Neum ann factor th a t e0 =  1 and en =  2 for n ^  0, J n is the  Bessel 

function of th e  first kind,

N  00

r« )
1 r a- 00

=  7T L  F ( j u )  J J  '52 j nenJ n(u A k) cos n(ujkt +  <f>k)du (2.6)
l T '  J C  f c = l  n = Q
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For Ar =  2 (two-sinusoid inpu t),

1 r  00
Z { t ) - —  / F { j l l ) ^ 2  j n(-nJn{uAl) COS n{iO!t + 4>!)

2 *  ' / c  n=0

CO

x 1 3  j m£mJm{uA2)cosni(u>2 t +  <j>2)du
777—0  

OO CO

=  $ 3  5 3  B„m{cos[(nu;1 -  mu>2)t +  n fa  -  m<^2]
71= 0  777=0

+  cos[(n.uU1 +  mu>2)t +  nd> j +  W7^2]} (2.7a)

where

B nm = j - e uemj n+m f  F ( j u ) J n( u A i ) J m( u A 2)du (2.76)
47T 7C

T he difference frequency com ponent (DFC) and sum frequency com ponent (S- 

FC) will be produced by the  term s th a t n =  m  =  1 if u;j and l<j2 are selected such 

th a t there are no other in term odulation or harm onic com ponents overlapping th e  D- 

FC and SFC. In this case, the am plitudes of D FC and SFC are identical, and given 

by

AzDFci.fl i f l ) =  A~SFci.fl-. j 2 ) =

B u  = - - [  F i ju )J-[{ u A i ) J i { u A 2)du (2.8)
7i J C

T he phase angle of D FC  is given by

<t>zDFCif\-.f7) = <t>\ — <t>i (2.9 a)

and the phase angle of SFC is given by

4> zSF C  ( / i , / 2 )  —  1 + ^ 2  (2.96)

where <j> 1 and 4>2 are th e  phase angles of two sinusoids in th e  inpu t. Note, if sin ra ther

than  cos is used in all th e  equations above, the  phase angle of D FC and SFC will be,

respectively

< i > z D F c { f i , f i )  =  <j>i -  <f>2 +  ^  (2.10a)

< f> z S F c i f i t  f i )  =  <t>i +  <t>2 — (2.106)
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N ext, we set up the  in pu t-ou tpu t rela tion  for th e  en tire  system . We denote 

\H i ( f ) \  and l H i ( f )  as th e  gain and phase characteristics of Hi  respectively; \H2( f ) \  

and l H 2{.f) as th e  gain and phase characteristics of H i  respectively. For a two- 

sinusoid system  inpu t

s(t)  =  C'tt,[sin(27r/1/)  -f sin(27r/2t)j (2.11)

where Cu. is th e  am plitude or th e  m odulation  dep th  of th e  two sinusoids, th e  steady- 

s ta te  o u tp u t of Hi  is also a two-sinusoidal function w ith am plitudes:

A v( f i )  = C w\H i ( f i ) \  ( 2.12  a)

A v(.f2) = C u, \H i{ f2)\ (2.12 b)

and phases:

U f i )  = L H i ( f i )  (2.12c)

U h )  =  l H i L f 2) (2.12 d)

S ubstitu te  A v( f i )  and  A v( f 2) for A i  and  A 2 respectively in (2.8), and  <f>v{fi )  

and <M /2) for <pi and <p2 in (2 .l0a , b) respectiveh’, one obtains the  D FC  and SFC in 

th e  ou tpu t of th e  nonlinearity  

A m plitude:

A z d f c U i *  h )  = A zsFc(fi-. .(2 )

=  - -  f  F ( j u ) J i ( u C w\H i ( f i ) \ ) J i ( u C w\ H i ( f 2)\)du (2.13)
7T J C

Phase angle:

4>zDFc(fuf2) =  I H i ( h )  -  LH 1 U 1 ) +  §  (2.14a)

t z S F c i f u h )  =  i H i ( f i )  +  L H i { f 2) -  |  (2.146)

Finally, after filtering of f / 2, th e  D FC and SFC produced in th e  en tire  system  o u tp u t

are

D FC am plitude:

A yDFc{f\ ,  J 2 ) = —\H2( f 2 — / i ) | — /  F ( j u ) J i ( u C w\ H i ( f i ) \ ) J i ( u C w\ H i ( f 2)\)du
7T J C

(2.15 a)
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SFC am plitude:

A y S F c i . f u . f 2 ) =  - \ H 2 [ h  + / 2)|~ f  F U u W u C u m f i W M u C u l H ^ m d u
7T J C

(2.156)

DFC phase angle:

<t>yDFci. fu I t )  =  i f 2 ) — l H \ i f i )  +  — +  LH 2 i f 2 — / 1 ) (2.16a)

SFC phase angle:

<PySFci.fi-! ,f2) =  S-Hii f i )  -)- / i f y ( / 2) — — +  LH 2 i f \  +  f i )  (2.166)

T he above relations lead to the  following conclusions:

If f 2 ~  f i  is kept as constant as fy is changed. \H2 i.f2 — / i ) |  and LH 2 H 2 — / i ) |  

also rem ain constant. For given nonlinearity  N ( v )  and system  inpu t (2.11),

1. The am plitudes of DFC and SFC produced from  th e  nonlinearity  N {v )  are identical 

( ( 2 .8) ) .

2. The am plitude ratio  of SFC and D FC is given by

A y S F d . f u . f 2 ) . .  \ H 2 i . f l + . f 2 ) \ A :SF c i f u . f 2 )  _ \ H2i f 1  A  f 2)\ , .
A y DFc i . f u . f 2 )  \ H2 i f 2 - . f i ) \ A zDFc i f u . f 2) \ H 2 ( f 2 -  f i ) \  ^

which is a norm alized (by a constant \H2 i f 2 — / i ) | )  gain characteristic  of H.2 - This 

property  can be utilized for identifying H 2-

3. Theoretically, the relation between |i fy ( / ) | and th e  am plitudes of DFC and SFC 

produced from th e  en tire system  are expressed by (2.1oa) and (2.15b) respectively. 

However, if A yD Fcif i i  f 2)i the  V EP d a ta  of DFC am plitude, is given, finding 

|# i ( / ) |  th rough (2.15a) is not practical in general. In Section 3.1, an approxim ate 

m ethod will be used to  set up an  equation suitable for finding |H i ( f ) \  by com puter.

4. E xcept for a  constant, the  phase angle of DFC in the  o u tp u t </>yDFc{fi, f 2) is the 

difference between the  phase angle of the two individual frequency com ponents in 

th e  ou tp u t of Hi  ((2.16a)).
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5. Except for a constant, the  phase angle of SFC in th e  ou tp u t <f>ysFc{.fi, .fa) is the  

sum m ation of the phase angle of the  two individual frequency com ponents in the  

ou tpu t of H i and the phase angle of i f 2 at frequency f \  + / 2 ((2.16b)). Equations 

(2.16a) and (2.16b) can be com bined to  determ ine th e  phase characteristics of Hi  

and i / 2.

The above analysis dem onstrates th a t these conclusions hold for any type of 

sta tic  nonlinearity N{v) ,  which will serve as an im p o rtan t analytic tool in system  

identification.

2.2 Stimuli

T he stim ulus, created as a dartboard  p a tte rn  of 3 inches d iam eter (shown in Figure

2.2). is controlled by an 80386 m icrocom puter through the  driver. The stim ulus

p a tte rn  is displayed on a Tektronix 608 oscilloscope (m anufactured by Tektronix Inc., 

Beaverton, Oregon). The en tire  displaying area consists of a 256x256 pixel raster 

displayed a t a fram e ra te  (ra te  of refreshing a whole screen image) of 255.31 Hz. The 

lum inance of each segment in th e  dartboard  p a tte rn  is m odulated  tem porally as

L(t)  = L m[l + s{t)} (2.18a)

for one set of segments (for exam ple, w hite segments in Figure 2.2), and

I ( t )  =  Xm[ l - s ( t ) ]  (2.186)

for th e  o ther set of a lte rna te  segm ents (for exam ple, black segm ents in Figure 2.2), 

where L m =  150 c d /m 2, L( t)  is a lum inance function, s ( i)  is a  tem porally  m odulated  

signal, and |s ( /) | <  1 for any t. During an experim ent, when half of th e  displaying 

area increases in lum inance a t anjf tim e, th e  other half of th e  displaying area decrease 

by exactly  the  same am ount. Thus th e  lum inance of th e  stim ulus p a tte rn  is of the  

contrast reversal type, such th a t th e  average lum inance over th e  en tire display area 

is always kept a t a  constant L m. For th e  sake of m odeling, e ither one of equations. 

(2.18a) or (2.18b) can be defined as th e  system  input.
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F igure  2.2 Contrast reversed stimu
lus pattern. When one set of segments 
increase in luminance, the other set of 
segments decrease. The mean lumi
nance over all displaying area main
tains a constant.

F ig u re  2.3 Lateral view of skull 
to show the method of measuremen- 
t from nasion to inion at the midline. 
Electrodes are placed at the points Oz. 
Pz and C: .

stimulus driver computer

subject
A /D

converter
amplifier

e lec tr o d es

F ig u re  2.4 A system diagram for VEP measuring. A subject is set one meter 
from the stimulus displayed on a monitor. The stimulus can be controlled 
by the computer through the driver. VEP responses are picked up from 
the cortical surface with electrodes, and then amplified, filtered. A to D 
converted and stored in the computer for later analysis.



Two types of tem poral stim uli, two-sinusoidal and square wave, were m ainly 

used in this research. The responses due to  two-sinusoidal stim ulation were processed 

to obtain  frequency’ spectra; square wave stim ulation  was done w ith low frequencies 

(not higher than  1 Hz) to  obtain  effective averaged transien t responses. T he tem poral 

m odulation signal s(t) ,  for two-sinusoidal stim ulation , is given by (2.11), in which 

frequency’ /,• ranges from 1.22 to  30 Hz; for square wave stim ulation, is given by:

s(f) — /  n T  < t <  (n  +  1/2 ) T  o p  (*>19)
{  - C u. {n + l / 2 ) T  < t  < ( n  + l ) T  ( ~ 19)

where T  is a period set to  1 second in transien t response test. In bo th  equations 

(2.11) and (2.19). C w is a m odulation depth defined as the  W eber contrast

( 2 .20 )
"771

W hen Cu. is set. th e  peak lum inance on th e  stim ulus p a tte rn  is determ ined by (2.20). 

For exam ple, if L m — 150 e d / m 2 and Cw is set to  30%, then

— f-'u.'-I-'m “f  •I-'m — 19o cdjxtl

2.3 VEP Recording

Three electrodes were placed along the  m idline of th e  head as described by Jasper 

(1958) and Zemon et al (1988). Cz (positive lead) a t th e  m iddle point of nasion-inion 

distance was connected to th e  negative inpu t of th e  am plifier as a  reference, while 

the  Qz (negative lead), positioned 10 percent of nasion-inion distance above inion 

was connected to  th e  positive inpu t of the  am plifier. The th ird  point P2, 50% of 

the distance between Cz and Qz, served as floating ground. The diagram  of elec

trode connection is shown in F igure 2.3. T he Model 600 amplifier (m anufactured by 

NeuroScientific Corp.) was set to  AC m ode w ith an am plification gain of 20k and a 

bandpass filter from 0.03 Hz-100 Hz. It is believed th a t th is bandw idth  essentially
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covers m ost V E P  frequency com ponents because above 40 Hz, th e  V EP response re

duces to  noise level.

2.4 Procedure

The experim ents for m easurem ent of V E P were carried out in a dark room. T he sys

tem , illustrated  in Figure 2.4, consisted of a  stim ulus, driver, am plifier, A /D  converter 

and a com puter. The subjects were instructed  to  relax the ir muscles and fixate on the 

center of th e  stim ulus pa tte rn . M onocular stim ulation was used in all the  tests (one 

eye covered). T he subject was placed one m eter away from th e  screen. W hile the  

com puter was controlling the stim ulus display for the  sub ject, it sam pled the  V EP 

response from the  cortical surface through the electrodes, am plifier and A /D  convert

er. D uring th e  test, the  com puter also analyzed the  sam pled d a ta  and displayed the  

results. Sam pled d a ta  were stored in the  com puter for la te r studies. The entire te st 

procedure (driving stim uli, sam pling responses, displaying results and storing data) 

was m onitored by VENUS software produced by NeuroScientific Corporation. Farm- 

ingdale, New York.

2.5 D ata processing

Three data  processing m ethods are used in this work, nam ely data averaging, Fourier  

transform  and digital filtering. To dem onstrate  th e  processing procedures, we denote 

m as a to ta l num ber of repeated  m easurem ents, A T  as the sam pling interval and 

y j ( i A T )  as th e  j th  response a t tim e i A T  (i =  0 ,1 ,2 , • • ■; j  =  1,2 , • • •, m).  For each 

response, the  signal duration is broken up in to  M  urecords” to correspond to  th e  pe

riodic stim ulus changes. Assem ble averaging on these records is done to  reduce noise. 

Each of th e  M  records includes N  sam ples. Thus, th e  to ta l num ber of samples for 

the  signal duration  is N M .
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D ata average— square-wave stim ulation test.

In the square-wave stim ulation te st, a period of 1 second was used, producing 2 

records per second corresponding to  2 contrast reversals. Stim uli ran a to ta l of 64.17 

second with refresh ra te  255.31 Hz. D uring th a t tim e, a to ta l num ber of M  = 128 

records were produced. W ith  a sam pling ra te  of 255.31 Hz, each record of 0.5 second 

length involved N  =  128 samples. Thus, th e  to ta l num ber of sam ples taken during a 

64.17 second run was M N  =  128 x 128 =  16,384. T he j t h  effective-averaged transien t 

responses 'yJ is derived by averaging 71/=128 sets of periodic data 

M- 1
y j ( i A T )  = —  ^ 2  Vj[(i +  k N ) A T ]  i = 0 .1 .2 , • • •. N  — 1 =  127 (2.21c)

*  h= 0

The mean response over all m  repeated m easurem ents y ■ is given by

 / • A rp , 1 V—'   / • A T> \  ̂   0 .1 , 2, ■•• .A — 1 — 12< / i J \
K * A T ) - ^ E f t t . A T )  i  =  1. 2 , . : . , m {2.21b)

Fourier Transform -two-sinusoidal stim ulation te st

In the  two-sinusoidal stim ulation te st, the  stim uli ran 32.08 seconds w ith refresh 

ra te  255.31 Hz. T he data  sam pling ra te  was chosen as twice th e  stim ulus refresh rate, 

or 510.62 Hz, resulting in to tal samples during th e  m easurem ent period of 32.08 

seconds K M  =  32 x 256 x 2 =  16, 354. T he frequency com ponents of in terest are

derived by Fourier transform  of th e  data  recorded. By specifying record length N ,

The real and im aginary p arts  of the  com ponent in th e  j th  response are calculated by, 

respectively:
2 A'H r 1 2iriaj = Jad ?  y ^ T) cos -fj- 7 =  F 2, • • ■, m (2.22o)

2 NM-1 27n
bj = rK M  ^  i  =  l ; 2 , - - - , m  (2.22b)

This com putation uses all M  records. Fast com putation can be obtained by using 

one averaged record length:

2 27ri
a 3 = J j J 2 V j ( i ^ T ) cos:j f  j  =  1) 2, • • •, m  (2.23a)

2 *>7ri
bi =  j v E M ' A I , ) s i n y  7 =  1,2, • • •, m (2.236)
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where y ■ is the j t h  averaged response over M  sets of periodic data obtained by (2.21a). 

The am plitude and phase angle of th e  com ponent are, respectively:

A m  j =  yja j  4- 6] j  =  1,2. (2.24a)

4'j =  arctan  j  =  1, 2, • • • ,tt?. (2.24b)

The calculation of m ean values and variabilities of the  am plitude and phase 

over rr? m easurem ents is a little  m ore com plicated than  th a t of the m ean transient 

response. We will discuss th is problem  in the  next section.

D igital filtering

Filtering process is carried out in such a way th a t first, each frequency com po

nent (fundam ental and harm onics) is calculated by fast Fourier transform . The j t h  

averaged response over M  sets of periodic da ta  y ■ can then be expressed by a sum of 

Fourier com ponents

VjH&T) =  ^ JT1s i n ( ^ ^  +  <j>jn ) j  =  1 , 2 , - - - , 77? (2.25)
n = l

T he frequency com ponents to  be filtered are taken out from  (2.25), and the  rem aining 

term s sum together to  form  a filtered average response. For exam ple, a lowpass 

filtering to  exclude the ten th  and higher harm onics will give th e  j t h  averaged response

 ̂ 27T777
V j ( iA T )  = A in s i n ( - j r -  + <j>jn ) j  =  1,2, • • •, ??7 (2.26)

n = l  ■*'

One advantage of this filtering process is th a t it will not produce a  supplem entary 

phase shift for each frequencj- com ponent in th e  original signal.

2.6 Statistical Analysis of S teady-State VEP

In th is section, we describe th e  m ethod used to ob ta in  i) an estim ate of a V EP Fourier 

com ponent from repeated measures; ii) the variability  of the  estim ate of V EP Fourier 

com ponent.

V EP frequency response can be characterized by th e  am plitude and phase, or 

th e  real and im aginary p a rt, of Fourier com ponent a t one or more frequencies of
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in terest. An estim ate of a Fourier component, of evoked poten tial is obtained from 

several repeats of the m easurem ent. Individual estim ates of th e  Fourier com ponent 

can. as vectors, form a cluster in the  complex s-plane. The center of th e  cluster is a 

pooled estim ate of the response, and the scatter of th e  cluster describes th e  reliability 

of th a t estim ate. To give an estim ate of the V EP Fourier com ponents and their 

variability, a T?irc s ta tistic  (V ictor and M ast, 1991) is used in th is research, which is 

based on the  assum ption th a t i) the noise (i.e. the  background electroencephalogram  

(EEC!)) is a norm al process (Elul. 1969). and ii) E E C  noise and evoked potential 

signal combine additively and are independent (M ast V ictor, 1990). These two 

assum ptions provide a sufficient condition tha t the  real and im aginary parts of Fourier 

com ponents are equal variances and zero covariance (M ast V V ictor. 1990), which is 

th e  critical requirem ent for th e  derivation of the T^irc s ta tistic .

Now we denote a set of m  m easures of evoked responses as y i { t ), ?/2(^), •• 

ym{l)- and the ir Fourier com ponents as P i, V2. • • •, Ym, whose decom positions into 

real and im aginary parts  are 1'} =  aj -f ibj (j  =  1,2 • • •, m).  We define th e  Fourier 

com ponent of the  “true" evoked response as Y  =  a 4- ib. We assum e th a t the signal 

yj{t)  is a sum  of two com ponents: an evoked response, e(t), and ongoing “noise" 

unrelated  to  the stim ulus,

yj i t )  = e(t) + n j (t) (2.27)

rtj(i) represents not only endogenous EEG , but also exogenous sources of variability, 

such as signals generated by head movement. The expected value of th e  “noise"1 

is assum ed to  be equal to zero. T he “tru e ” evoked response e(t)  is assum ed to  be 

a periodic function w ith period of the  stim ulus and to  have no intrinsic variability. 

Thus, the  expected value of th e  real part and im aginary p a r t of Fourier com ponent 

is given by, respectively

E(aj )  =  E { ^  \e(t) +  rij{t)\ cosu>ntd t )

~ - f j Q i-£[e(*)] + E[nj{t)]} cosu>ntdt
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=  ^  f  e(t) cosu>ntdi  =  a (2.28)
1  J o

and

E{bj) = E i - f  JQ [e{t) + nji t)] sinu:ntdt}

~ t 5o {E \e if ^ +

=  " f  J o  e ^ ) s i n u ! ” t d t  =  b  (2-29)

Therefore, th e  em pirical m ean value of Yj. Y .  given by

y m  y .  n m  y * n  t .

y  = E -i=L. j =  +  i h ^ L . , 1  = a + ib (2.30)
IV  IV  7V

is the estim ate of the  "true" com ponent Y  =  a + ib. Note: i) Here. V is a vector 

average from the  m  m easurem ents. As m  increases to  infinity, Y  approaches V\ 

If y}{t) satisfies norm al d istribu tion  w ith mean e(f), a and b also satisfy norm al 

d istribution  with mean a and b respectively, ii) The Fourier com ponent can also be 

expressed by am plitude and phase, bu t the  am plitude of th e  “tru e ” com ponent can 

not be estim ated  by the am plitude average from the  m  m easurem ents since

£ (|y ;- |) =  E ( J a )  + b)) #  y j m a j )  +  E*(bj) = V t f + V  =  |K | (2.31)

Similarly, th e  phase angle of th e  “tru e ” com ponent can no t be estim ated  by th e  phase 

angle average from  m  m easurem ents.

Thus, the  em pirical mean values of am plitude and phase corresponding to  Y  

are given by, respectively

A m  =  \Y\ = \ j a 2 +  f  (2.32a)

ip =  arctan  (2.326)

N ext, we consider the  estim ate  of variance of Y  abou t the  “tru e” com ponent

Y .  Since T 2irc sta tistic  assumes th a t  the  variance of the  real and im aginary p arts  of

the com ponent are equal and the ir covariance is zero, th e  cluster of Yj is circularly 

sym m etrical about Y .  and the  radius of the  cluster is derived from  th e  two deviations,
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F ig u re  2.5 Geographical expression of T^rc statistic. The cluster of indi
vidual measure Yj is circularly symmetrical about the “true” component V. 
Thus, the standard deviation of Yj is a circle centered by Y  on the s-plane. 
The radius of the circle is estimated by the square root of (2.34).

aj  — a and bj — b. Suppose the  variance of a3 and bj are <r% and cr| respectively, the 

variance of Yj  is given by

V a r ( Y j )  =  E [ \Y j  -  K |2] =  E[(a; -  a f  +  (bj -  b f ]  = a 2 +  a 2 

T he estim ate of this variance from m m easurem ents is derived by

(2.33)

Y ( n  (y j)e 5 ( — (2.34)

One can prove th a t E [ V a r ( Y j ) eai] =  V a r ( Y j ) .  T he radius of the cluster is th e  square 

root value of V a r ( Y j ) .  F igure 2.5 dem onstrates such variability, in which, Y  is the 

“tru e” com ponent in s-plane; the  expected deviation of Yj  forms a circle around Y  

w ith radius estim ated  by the square root of (2.34).

The variance of the m ean, T , is then derived by

, r j L 1 Y j \ _  1
V  a r ( Y ) =  V a r

m m  ;=i

=
(2.35)
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According to (2.34), the estim ate  of this variance is given by

V a r ( Y ) ' „  =  ? * , ( « > - « ) ’ .*  (2.36)
m ( m  — 1)

Since th e  variance of Yj  represents th e  variability of th e  individual m easurem ent, 

b u t th e  variance of Y  represents th e  accuracy of the  es tim ate  for the  “tru e” com ponent 

Y ,  we have m ore interest in the  la tte r  one. We call the  circle, representing the  circular 

deviation of Y  around Y, the  “error circle of  the mean”, and denote the radius of the 

error circle as r c,rc, which is estim ated  by

'Arc — \ / V a r { Y ) est —

(2.30) and (2.37) give the  es tim ate  of V E P Fourier com ponent and deviation in the 

s-plane.

W hen the Fourier com ponent (individual or m ean) is expressed in am plitude 

and phase (Bode plot), its deviations in am plitude and phase can not be obtained 

directly  due to com plicated in tegration forms. However, we can give a  range for such 

deviations.

For the  am plitude, since expected distance between V  and Y  in s-plane is r c,yc, 

Y  can be considered as a  com ponent located on the  error circle around Y .  In this 

case, th e  am plitude of Y  and Y  have a  m axim um  deviation, r ctrc, when Y  and Y  have 

a sam e phase angle. Since Y  has an equal probability  to  be a t any point on th e  error 

circle, th e  expected deviation between the  am plitude of Y  and Y  is less than  r c,-rc, 

th a t is,

/ E ( | F | -  |Y |)2 <  Tdrc (2.38)

For the  phase, when the  radius of the  error circle is less than  the  am plitude of 

Y, Y  on the  circle has a  m axim um  phase deviation, arctan(7’clyc/ y |Y |2 — r 2Vc), when 

it is tangen t on th e  circle (see F igure 2.6). For sim ilar reason, Since Y  has an equal 

probability  to  be a t any point on the  error circle, the expected phase deviation of Y  is 

less than  arctan(7-circ/^ / |Y  |2 — 7’2rc), which is estim ated by a rc ta n (rctrc/- \ / |Y |2 — r 2Vc).
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F ig u re  2.6 Y  on the error circle has a  maximum phase deviation, (j>max = 
arctan(rcirc/ ^ / |y |2 — r^irc), when it is tangent on the circle.

T hat is

■ J E ( l Y  — I Y ) 2 < arctan  .■■■■■ arc ■ (2.39)

In the current work, th e  estim ate of th e  V EP frequency com ponent, Y , obtained in 

term s of (2.30), the  radius of error circle, r c,rc, calculated from (2.37), and the  error 

range of phase, estim ated  by (2.39) will be presented for each steady-sta te  V EP test.

W hen rciTC >  | V' | or rcirc > |K |, th e  signal to  noise ratio  is sm all. In th a t case, 

the phase angle of Y  is not a  reliable estim ate  for the phase angle of Y ,  and will not 

be p lotted  in the  figure.



CHAPTER 3

ANALYSIS OF SANDWICH MODEL 
FIT FOR STEADY-STATE VEPs

In this chapter, th e  sandwich system  m odeling for the  V E P pathw ay will be discussed 

using th e  two-sinusoid technique. This work includes: i) estab lishm ent of a  m athe

m atical description for the model including the  nonlinearity  selection, ii) exam ination 

of the  V E P frequency responses (sum  and difference frequency com ponents) elicited 

by the  two-sinusoid stim ulation to  determ ine the  types of linear filters in th e  model, 

iii) discussion of the  model fits and th e  relation betw een th e  m odel functions form 

and th e  prior knowledge of tem poral characteristics of th e  visual system .

3.1 N onlinearity Selection

In term s of two-sinusoid m ethod, th e  nonlinear elem ent in th e  m odel should be de

term ined  before th e  identification of th e  linear transfer functions. The choice of 

th e  nonlinearity  ty p e  is guided by th e  following consideration: i) The nonlinearity 

should, to  some ex ten t, be ‘‘explainable1’ in term s of th e  signal processing behavior 

in th e  retina-cortex  system, ii) It should be  as simple as possible, iii) The resu ltan t 

model should represent the tem poral characteristics of th e  V E P  pathway.

In th is work, the  nonlinearity chosen is a  full-wave rectifier w ith inpu t-ou tpu t 

relation

z( t )  =  JV[v(<)] =  K < )| (3.1)

where v (t) and z( t)  are the  inpu t and o u tp u t of the  nonlinearity  respectively. T he 

reasons for th e  choice of this rectifier, th a t is i) sym m etrical full-wave, ii) nonthreshold, 

and iii) “linear’1 rectification, will now be discussed separately.

1. Sym m etrical full-wave rectification

The predom inance of even order harm onics in th e  V E P response, elicited by 

a contrast reversing p a tte rn  stim ulation , dem onstrates th e  full-wave rectification be

havior in th e  V EP pathways (Zem on, 1984; Zemon et al, 1985). As an exam ple, V E P

36
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responses, m easured from  two adult subjects (sub ject A and B), using square-wave 

stim ulation, are depicted in Figure 3.1. These two subjects had norm al or corrected 

to  norm al visual acuity, and  no known ophthalm ic disorder. Stim ulus was a contrast 

reversing p a tte rn  with frequency 1 Hz and m odulation depth  Cw =  50%. Response 

curves were obtained bj' averaging 64 records, which are depicted in th e  top row of 

the  figure w ith the  stim ulus tem poral function. Those averaged responses are fu rther 

filtered by a digital lowpass filter w ith a cut-off frequency of 40 Hz. T hen th e  even 

order harm onics with respect to  the  fundam ental frequency 1 Hz were ex tracted  by 

m eans of fast Fourier transform , and sum m ed together to  form  “even order signals” , 

which are depicted in th e  m iddle row. The “odd order signals” formed by th e  odd 

order harm onics are p lo tted  in th e  th ird  row.

It is seen th a t the  signals formed by the even order harm onics present strong 

evoked potentials, while th e  signals form ed by th e  odd order harm onics appear to  be 

noise, which dem onstrates th a t th e  V EP due to  th e  stim ulation  of a contrast reversing 

p a tte rn  predom inantly contains even order harm onics.

T he rectification behavior can be a ttrib u ted  to  spatial-tem poral properties of 

th e  neural organization. Light inform ation from th e  stim ulus p a tte rn  is sensed by pho

toreceptors according to  th e ir receptive fields, and tran sm itted  to  the  brain  through 

parallel channels. For a  con trast reversing p a tte rn  shown in Figure 2.2, th e  neurons 

contained in the network can be prim arily  divided in to  two groups which process the 

light inform ation from th e  two sets of a lternate  segm ents. T he stim ulus p a tte rn  is 

radially sym m etric so th a t  it approxim ately m atches th e  radially sym m etric re tin a  

(K andel, Schwartz & Jessell, 1991). The two parallel pa th s form ed by these two 

groups of cells can be considered identical. D uring th e  periodic stim ulation, each 

group of cells sense the  sam e lum inance function from  th e  corresponding stim ulus 

segments. Since one set of stim ulus segments have a  half-period tim e shift w ith  re

spect to  the other set. T he responses generated from these two parallel pa th s are 

identical except for a  half-period tim e shift. Since th e  nonlinear process exists in 

each pathway, the  response produced in each pathw ay contains even order harm on-
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F ig u re  3.1 Square-wave responses recorded from subject A (left) and sub
ject B (right). A stimulus of contrast reversed pattern  with frequency 1 Hz 
and modulation depth Cw =  50% was used to elicit the VEP. Responses, 
obtained by averaging 64 records, are depicted in the top row. Those av
eraged responses are further filtered by a digital lowpass filter with cut-off 
frequency 40 Hz, and decomposed into two signals containing only even or
der harmonics (the middle row) and odd order harmonics (the bottom row) 
respectively. The result shows that the “even order signals” contain strong 
evoked potentials, while “odd order signals” appear as noise.



39

L i ( t )

L 2 ( t )

z \

Y i ( t )
H 1 — - — N ( v ) — - — H 2 \

v , ( t ) z,(t) A

W V

H 1 _____ N(v) _____ B— H 2
v 2 ( t ) Z 2 ( t )

F ig u re  3.2 Demonstration of neuron message processing in the VEP path
ways. Two groups of cells form two identical parallel paths to conduct the 
signals from the retina to the cortex, resulting an even order harmonic re
sponse. In the diagram, N( v )  can be any type of rectifier (e.g. symmetrical 
or asymmetrical, threshold or nonthreshold), which is responsible for gener
ating harmonics.

ics. Those responses sum together in th e  cortex to form  th e  V EP, in which, the  even 

order harm onics sum up and th e  odd order harm onics cancel each other due to  their 

half-period tim e shift. The VEP, therefore, presents an identical wave form in each 

half-period. A simple exam ple of such neuronal processing procedure is illustrated  in 

Figure 3.2.

In th is exam ple, each parallel p a th  is sim ulated w ith a  sandwich system; L\{t )  

and L,2 {t) are th e  lum inance functions on the  stim ulus p a tte rn , which, for dem onstra

tion purpose, are the  sinusoids w ith  180 degree phase difference; y( t )  is the  o u tp u t of 

the system , and yi ( t )  and j/2(^) are th e  o u tpu ts  from th e  two identical parallel paths 

respectively; N ( v ) can be any type  of rectifier which produces even order harm onics. 

Since th e  sandwich system  is tim e-invariant, yi ( t )  and j/2(t) have a  relative tim e shift 

of half period due to  th e  tim e shift of th e  inputs. T he o u tp u t ?/(t), sum m ed from 

2/i(t)  and yi{t),  contains only even order harm onics.

Because th e  two parallel pathw ays in Figure 3.2 are identical, they can be simply
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combined in to  a single sandwich system w ith the  inpu t e ither defined by L\  (t ) or ^ ( O -  

The sym m etrical full-wave rectification appears, therefore, to  be a proper form  of the 

nonlinear elem ent in th e  sandwich sj'stem  to  produce even order harm onics.

On the  o ther hand , from a  system  (other th an  physiological explanation) point 

of view, we would like to  ask, if a asym m etrical full-wave rectifier is chosen, what 

effect will it cause on th e  identification of th e  linear elem ents H\  and H z l  To analyze 

this issue, we expand th e  rectifier N ( v )  in to  a  series

N ( v )  =  £  akv k (3.2)
k=0

If the  rectifier is asym m etric, the  series above contains odd term s. O ne can prove (see 

A ppendix A -I). odd term s will not produce sum  and difference frequency com ponents 

due to  the two-sinusoid inpu t, only even term s in th e  series (sym m etrical portion) 

are capable of generating such in term odulation  com ponents. Since th e  identification 

goal is to  find H\  and for the  model to  fit th e  V EP sum and difference frequency 

com ponent d a ta , th e  choice of sym m etric or asym m etric rectifier will have the  same 

identification result.

2. N onthreshold rectification

We m entioned in Section 1.4 th a t th e  m ajor rectification process, located a t 

th e  front stage of th e  cortex, results from  large excita tory  signal requirem ent to  fire 

th e  stellate cells due to  the  inhibitory activ ity  w ith in  the stellate cell layer. This 

process is sim ulated by a half-wave rectifier w ith a  threshold as shown in Figure 

1.3. As a cell’s m odel, the  threshold of each cell m ay differ from  each o ther, which 

depends on th e  to ta l inhibitory  signals a cell receives. Since we desire to  use a  simply 

determ inistic  elem ent to  approxim ate the  rectification behavior of overall network, 

we do the  following trea tm en t: We substitu te  th e  half-wave rectifier in  F igure 1.3 for 

th e  nonlinearity  N ( v )  in Figure 3.2, and assum e th a t th e  threshold of th e  rectifier Vj  

equals the average value of th e  inpu t Vo (see F igure 3.3.a). The schem e w ith identical 

parallel pathw ays can then  be equivalently replaced by a  single sandw ich system  with 

a nonthreshold full-wave rectifier depicted in Figure 3.3.b. T he lum inance function



41

L(i ) .  by definition, can be either Li ( t )  or L 2(t) (we select L(t )  = L\{t)) .  Instead  of 

th e  threshold to  elim inate signal DC com ponent, a block DC elim inator is placed a t 

th e  beginning of the  system  to  ex trac t the input signal contrast.

The simplification above is based on the hypothesis th a t th e  m ean value Vo in 

th e  rectifier inpu t m atches th e  threshold Vj. T he purpose of th is trea tm en t is m erely 

to  obtain  a  nonthreshold rectifier in th e  sandwich m odel, which is m ore convenient 

for analysis th an  a threshold rectifier. Indeed, th e  rectifier selection is no t unique, 

A threshold rectifier can also be considered. However, since we lack any idea of 

how much the  threshold should be to  provide a b e tte r  fit for th e  V EP d a ta , such 

consideration is put into lower priority. In fact, previous research showed th a t a low 

contrast stim ulus (2% contrast) can still elicit a detectab le V EP response w ith even 

order harm onics (Zemon. C onte k  Cam isa 1986), which suggests th a t the rectification 

threshold m ay closely m atch  signal average value. Therefore, if the  stim ulus used for 

the  m odeling is set w ith high contrast (say 30%), a tiny effect of the  rectification 

threshold (if it exists) on th e  com paratively large signal contrast can be neglected.

3. Linear rectification

T he quadratic function z  =  v2 is the  sim plest form  of th e  full-wave rectifier. 

Previous research found th a t th e  V EP response, elicited by a stim ulus w ith  lum i

nance tem porally  m odulated  by a  single sinusoid, contains second, fourth , and higher 

harm onics (Zemon et al, 1985). This finding suggests th a t the  nonlinearity N ( v )  in 

th e  V EP pathways can not be sim ply expressed as a quadratic  function (a m echa

nism  th a t squares the single sinusoid inpu t merely generates the  second harm onics). 

I t m ust contain high power te rm s if expanded in a  polynom ial. T he linear full-wave 

rectifier z =  |v| can be expanded in a high order series, and also is convenient for 

analysis in th e  tim e domain.

4. O ther considerations

In Section 2.1, th e  sandwich m odel was described by a  set of equations ((2.15), 

(2.16), (2.17)) under the  general condition of a yet unspecified nonlinearity z =  N ( v ) .  

These equations express the  V E P  sum  and difference am plitudes and phase angles in
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F ig u re  3.3 a: Two identical parallel pathways in the visual system sense 
the contrast reversed inputs, and results a summed output containing even 
order harmonics, b: Simplified diagram for the signal processing in (a) when 
Vo = VT.
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term s of the  linear transfer functions Hy and H 2. T he identification problem  involves 

inversion of th is set of equations to  ob ta in  H \  and H 2 in term s of th e  V EP sum  and 

difference am plitude and phase angles, for a  given nonlinear function.

As discussed in Subsection 2.1.2, \H2\. ^ H 2 and LH\  can be obtained from (2.16) 

and (2.17), neither of which depend on th e  nonlinear it}'. Gain |# i |  can be derived 

from (2.15a) which, however, does depend on th e  nonlinearity*. Thus, the  choice of 

the  nonlinearity affects only th e  identification of the  gain characteristic  of Hy.

Even though there is no proof th a t th e  linear full-wave rectifier is th e  best 

representation for th e  rectification m echanism  involved in  generating V EP, i t  can. at 

least, serve as a s ta rting  point for the  system  modeling.

N ext, we note, equation (2.15a), describing the  relation of D FC am plitude and 

the  gain characteristic of Hy,  is ra ther com plicated. Identifying the  transfer func

tion of Hy by using this equation is usually not practical. We, therefore, set up an 

approxim ate form ula instead of (3.15a) to  solve th is problem .

N(  v) is expanded in a sixth order polynom ial

N ( v )  =  H  «  akv k (3.3)
k=0

where a* is a constant coefficient of th e  A'th order term . Since th e  full-wave rec

tification is sym m etrical about th e  vertical ordinate, th e  polynom ial contains only 

even order term s. Least-square fitting yields ao =  0.085, a2 =  2.307, a4 =  —2.820, 

a6 =  1-466 for |u| <  1. T he approxim ation diagram  is illustrated  in F igure 3.4.

For a  given inpu t of two sinusoids w ith  am plitudes A v(fy)  and A v( f 2) to  the 

rectifier, one can prove (see A ppendix A-II) th a t th e  am plitude of difference frequency 

com ponent and sum  frequency com ponent is*

A zDFc{ f l  i f i )  =  A zS F c { h i f 2 ) =- T[ Av( f y ) , A v( f 2 )]

_  A , ( h ) A , ( h )  3 A l ( h ) A , ( h )  +  M h ) A U h )
2A v(fy)  +  A v( f 2) 2 4 ( A v( fy)  A  A v( f 2))3

15 
+ T a 6

’ (2.15) contains the term F(ju)  which is the Fourier transform of the nonlinear function N(v).

Al( .h)Av(f2) +  A„( f i )Al ( f , )  +  3 A l ( f , ) A l ( f 2)
( A M )  +  A M ))5
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  ideal rectification
 approx. curve

F ig u re  3.4 Approximation of full-wave linear rectifier by a. sixth order poly
nomial

T able 1 Comparison of the DFC amplitude calculated from approximating 
method and from numerical method.

am plitudes 
-4v( / i )  : A v( f 2 )

results from  poly
nom ial approxim ation

results from num 
erical m ethod

error

9 : 1 0.638 0.626 2%
8 : 2 1.236 1.250 -1%
7 : 3 1.889 1.832 3%
6 : 4 2.422 2.362 2.5%
5 : 5 2.628 2.694 -2.5%

To ensure th a t the  error caused by th e  sixth order polynom ial approxim ation 

is w ithin a tolerable range for m odeling purpose, am plitude of difference frequency 

com ponent, obtained from  th e  polynom ial approxim ation (calculated by (3.4)) and 

from  the actual full-wave rectifier (calculated by num erical method*) were com pared. 

T he results are listed in Table 1. F ive pairs of two-sinusoids w ith different am plitude

'ITo obtain (3.4), the input to the rectifier has been normalized to ensure that the magnitude of 
the signal entering the rectifier is not greater than one.

*The numerical calculation for the intermodulation components was carried out by taking the 
Fourier transform for the rectifier response due to the two-sinusoid input. The procedure was 
implemented by computer.
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ra tio  applied to the rectifier. The first column in th e  tab le  lists th e  am plitudes of 

the  two sinusoids, the second colum n lists the  results calculated from equation (3.4), 

th e  num erical solutions are listed in colum n three, th e  relative errors w ith respect 

to  the  data obtained by num erical m ethod are listed in th e  fourth  column. The 

m axim um  error of 3% suggests th a t th e  six th  order polynom ial approxim ation m ost 

likely satisfies the  accuracy requirem ent of V EP modelling.

According to  (3.4). for a given two-sinusoid in p u t w ith am plitude C u, to  the  

system , we have .4 ,.(/i) =  C u. \Hi ( f i ) \  and A v( f 2) =  C u,\H1( f 2)\. It gives

A : D F c ( f l . h )  =  A-SFc{.fl • ) =  T[CW\Hi ( f i  ) |, CU\ H,  i f 2) |]

=  )|. |iV3( /2)|]
_  r  r i i W i ) i i i M / 2 ) i  , 3  +
~  'rw(/.)i+i*(A)i+2a‘ d ^ i ( / i ) [ + i « i ( / 2 ) i ) a

8  [  ( ] H i ( / j ) I  +  | H . ( / ! ) I ) 5

T he am plitude of difference and sum  frequency com ponents from  th e  entire system  

are, respectively

A y D F c { f i , f 2 ) =  \H2[ f 2 -  f i m C ^ H i i f i ^ C M i f ^ }  (3.6a)

A vs F c ( f u f 2 ) =  \H2 ( f i  + f 2 )\r[Cul\ H i { f i ) l C w\ H i ( f 2)W (3.66)

Equations (3.5), (3.6a) and (3.6b) can be used to  calculate th e  am plitude of the  in

te rm odulation  com ponents. Those equations, together w ith (2.16) and (2.17), form  a 

set of basic equations to identify th e  transfer functions of th e  linear elem ents Hi  and

H 2.

■(3.5)

3.2 Interm odulation Com ponents in VEP

To find appropria te  equation forms for th e  transfer functions, a  sam ple of ten  norm al 

adu lt subjects was utilized to  ob ta in  V EP difference and sum  frequency com ponents
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(DFC and SFC). The “norm al” m eans the  subject had norm al or corrected to  norm al 

acuity  and no known ophthalm ic disorder. An experim ent was carried out under 

the  conditions m entioned in Section 2.2. Two-sinusoid stim ulation  was used. The 

frequency separation — ,/j was m aintained a t 1.99 Hz for each test. A to tal of eight 

pairs of frequencies were used, am ong which, / i  ranged from  1.22 Hz to  29.92 Hz. The 

frequency pairs were selected such th a t the re  were no o ther frequency com ponents th a t 

overlapped th e  difference frequency com ponents (D FC) and sum  frequency frequency 

com ponents (SFC). The m ean lum inance of the stim uli was m aintained at 150 c d / m 2. 

and th e  peak contrast of each sinusoid was set to  30%. Each te s t ran  32.08 seconds 

with 16.384 sam pling points. Two subjects A and B were tested  in this work. DFC 

and SFC data  are obtained by Fourier transform  applied to  th e  V EP recording. D ata  

averaged over four tests, together w ith th e  radii of error circles and error range of 

phase (see description in Section 2.4), are p lo tted  in F igure 3.5.1 (for subject A) and 

3.5.2 (for sub ject B).

In each figure, T he top left is amplitude, of the  D FC  versus /x, th e  bo ttom  

left is phase angle of the DFC versus / i ,  th e  top right is am plitude of the  SFC and 

am plitude ratios of th e  SFC and th e  D FC versus / i  + f 2 , and the  bottom  right is 

phase angle of the SFC versus f i  +  / 2. D ata  from o ther eight subjects, m easured 

previously a t the  Biophysics Laboratory, Rockefeller U niversity, are also p lo tted  in 

Figure 3.6.1 (am plitude of D FC ), 3.6.2 (phase angle of D FC ), 3.6.3 (am plitude ra tio  

of D FC and SFC), and 3.6.4 (phase angle of SFC). Each te s t for collecting those d a ta  

run one m inu te w ith a to ta l of 16384 sam pling points. O ther te st conditions were the  

same as those m entioned above except for different num ber of frequency pairs used.

A lthough th e  d a ta  in F igure 3.6 were obtained by m easuring th e  responses from  

each sub ject only once for each condition, tests in th is labora to ry  showed th a t th e  

sum and difference frequency com ponents, derived from th e  Fourier transform  for th e  

d a ta  recorded over the  period of one m inute, can be effectively recovered from  noise, 

and are repeatab le  in the  sense of response curve shape. Therefore, th e  d a ta  in F igure 

3.6, a t least, can qualitatively reflect some features of th e  V EP frequency responses.
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F ig u re  3.5.1 Tests of two-sinusoid stimuli for subject A. The difference 
between f \  and f i  was kept at 1.99 Hz. The sampling frequencies f \  were 
set to 1.22, 2.99, 4.99, 8.98, 13.96, 19.95, 24.93 and 29.92 Hz. The test 
was carried out at two different times. Each time, the test was repeated 
twice. The stimuli were first presented in ascending order from low sampling 
frequency to high sampling frequency, and then in descending order. The 
data collected from four measures are averaged. Amplitudes are plotted with 
the radii of error circles, phases are plotted with their error ranges, (a )-  
amplitude of DFC, (b)-phase angle of DFC, (c)-am plitude of SFC (marked 
by circles) and amplitude ratio of SFC and DFC (marked by boxes), and 
(d)-phase angle of SFC.
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F ig u re  3.5.2 Tests of two-sinusoid stimuli for subject B. The difference 
between fy and f i  was kept at 1.99 Hz. The sampling frequencies fy were 
set to  1.22, 2.99, 4.99, 8.98, 13.96, 19.95, 24.93 and 29.92 Hz. The test 
was carried out at two different times. Each time, the test was repeated 
twice. The stimuli were first presented in ascending order from low sampling 
frequency to high sampling frequency, and then in descending order. The 
data collected from four measures are averaged. Amplitudes are plotted with 
the radii of error circles, phases are plotted with their error ranges, (a )- 
amplitude of DFC, (b)-phase angle of DFC, (c)-amplitude of SFC (marked 
by circles) and amplitude ratio of SFC and DFC (marked by boxes), and 
(d)-phase angle of SFC.
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F ig u re  3.6.1 VEP amplitude of difference frequency components, collected 
from eight normal adult subjects using two-sinusoid stimuli. The frequency 
sampling points were set to / i  = 1.29, 3.30, 5.31, 9.31, 11.29, 15.31, 19.30,
23.30, 27.29 and 31.32 Hz. The separation between fy and fy was maintained 
at 1.99 Hz. Data are plotted versus fy.



DIFFERENCE FREQUENCY COMPONENT

J C  o s

90

-9 0

-135
100

-9 0
o>0  

2 ,
01o*

I
180

-3 6 0100

270 JC op OS

16 0

-90

135
P h y O D

90

| - 4 5

-9 0

-135

135
MCOS

90

-9 0

-135

135
DVOD

90

£-45
- 9 0

135
LJ OS

90

-135

90
VZOD

- 1  BO

-2 7 0

F ig u re  3.6.2 VEP phase angle of difference frequency components, collected 
from eight normal adult subjects using two-sinusoid stimuli. The frequency 
sampling points were set to /i= 1 .29 , 3.30, 5.31, 9.31, 11.29, 15.31, 19.30,
23.30, 27.29 and 31.32 Hz. The separation between f \  and /2  was maintained 
at 1.99 Hz. D ata are plotted versus f \ .
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F ig u re  3.6.3 VEP amplitude ratio of sum frequency components and differ
ence frequency components, collected from eight normal adult subjects using 
two-sinusoid stimuli. The frequency sampling points were set to /i=1.29,
3.30, 5.31, 9.31, 11.29, 15.31 Hz. The separation between f \  and fo was 
maintained at 1.99 Hz. D ata are plotted versus / i  +  / 2 -
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F ig u re  3 .6 .4  VEP phase angle of sum frequency components, collected 
from eight normal adult subjects using two-sinusoid stimuli. The frequency 
sampling points were set to  /i= 1 .29 , 3.30, 5.31, 9.31, 11.29, 15.31 Hz. The 
separation between f \  and was maintained a t 1.99 Hz. D ata are plotted 
versus fo + / 2.
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The data  in Figure 3.5 and 3.6 essentially present th e  following features:

1. The am plitude response of th e  D FC has relatively large values a t frequencies 

above 10 Hz in comparison w ith th e  values a t frequencies below 10 Hz. It has 

a peak around f \  =  20 Hz, and decreases rapidly as f i  increases beyond this 

point.

2. For the  phase of the DFC, although differences exist am ong th e  subjects, a 

consistency is found in the high frequency region for m ost subjects. T he phase 

angle essentially decreases as f \  increases for the  frequencies higher th a n  15 Hz.

3. The am plitude ratios of the  SFC to  th e  DFC, representing th e  norm alized gain 

characteristic of H 2- present a com paratively large gain around 9 Hz, and a 

rapid decrease when the frequency f i  +  f 2 is higher th an  th is tu rn ing  point.

4. T he phase function of the SFC exhibits a  negative, steep slope, representing the 

sum  of phase shifts contributed from both Hi  and H 2.

The above description for th e  V E P responses will be used to  determ ine the 

type of transfer function. Although there  are some quan tita tive  differences between 

each individual su b jec t’s data, the  m ajo r qualitative features described above exist 

in most sub jects’ V EP responses. For th e  phase data , all th e  phase responses of the 

SFC m atch our description; two subjects (JC ap OS and VZ OD) have phase response 

of the DFC not consistent w ith th e  description above, one has a  narrow frequency 

region above 20 Hz on which the decrease occurs, the o ther has a  large increase a t 

frequency 30 Hz. W ith  regard to  th e  am plitude data , two sub ject (DV OD and VZ 

OD) have significant differences in D FC am plitude, one presents two peaks in the  

high frequency region, th e  other has a  large value in the  low frequency region; two 

subjects (RM OD and VZ OD) have am plitude responses of th e  SFC departing  from 

the  description above, one has no peak and th e  o ther has a  peak far from  9 Hz. 

Those deviations may result from large noise, or from specific characteristics of the 

individual visual system .
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The above description is based on the  da ta  collected from a group of ten  subject- 

s. which contain a to ta l of 464 measures (sum  and difference frequency com ponents, 

am plitude and phase angle). Those ten subjects responses can be utilized for p red ic

tion of large population 's V EP. S tatistical analysis presented in A ppendix B-I gives 

95% confidence th a t th e  V E P responses (D FC and SFC) collected from  a t least 53% 

norm al population possess th e  features described above.

3.3 D iscussion of Sandwich M odel Fits

In this section, we discuss i) the  type  of transfer function for the  linear elem ents Hi  

and Hi-  ii) the com parison of the  function type w ith prior investigation of tem poral 

characteristics of the  visual system , and iii) th e  reason to im prove th e  sandwich m odel.

3.3.1 Typ es of Transfer Functions

We have collected th e  V E P d a ta  and established th e  system  equations. Now the}’ can 

serve as a rule to assess the  sandwich model.

Because the separation of th e  frequency pair f \  and / 2 is small (only 2 Hz), two 

sinusoids will be alm ost identically  filtered by Hi  when f i  and / 2 are sufficiently high 

(say higher than  15 Hz). In  th is case, for th e  inpu t containing two sinusoids w ith 

same am plitude and phase, th e  ou tpu t of Hi  also contains two sinusoids w ith  nearly 

identical am plitude and phase. According to  (3.4), the  am plitude of DFC produced 

from the  rectifier

A , o F c U u h )  =  r [ / U / ,  ) , A „ ( h ) 1  =  r [ A , ( / i ) ,  a , ( / o ]

2 2 ' S A U f i )  8 32A®(/i)

=  0.525A v( f i )  = 0.525Cw\Hi ( f i ) \  (3.7 a)

T he am plitude of the  D FC produced from th e  en tire system  then becomes

A y D F c i f l ,  / 2 )  =  A j D irc ( / j , / 2 ) | 7 / 2 ( / 2 — / ]  ) |
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«  0.525Cw \Hi ( f i ) \ \ H2( f 2 -  A )| (3.76)

Because the second linearity  H 2 only offers a constant gain and phase to  the  

difference frequency com ponents when f2 — f i  is a constant, equation (3.7) indicates 

th a t the D FC produced from  the  sandwich system  is approxim ately proportional to 

th e  gain characteristic  of H\ .  T hus, th e  DFC com ponents, presenting a  peak in 

am plitude around 20 Hz, im plies th a t H i is a  bandpass filter w ith m axim um  gain 

around 20 Hz.

The gain characteristic of H 2, reflected by th e  am plitude ratios of SFC and 

D FC , presents a bandpass character w ith m axim um  gain around 9 Hz.

T he phase response of DFC only depends on th e  first linear filter Hi  w ith  the  

dependence (from equation (2.16a))

<f iyDFcif i- . f i ) =  £ H i { f 2) -  i H i i f i )  4- constant (3.8)

Because the  phase response results from the  difference, ra th e r than  the  sum , of 

i H i i h )  and l H i ( f 2). one can expect th a t the  D FC phase variation is much sm aller 

th an  th a t of SFC, which is th e  sum of phase shift of / . Hi ( f i ) ,  LH\  ( / 2) and l H 2( f i + f 2). 

T his expectation  is consistent w ith  th e  d a ta  shown in F igure 3.5 and 3.6. O n the 

o ther hand, as m entioned above, th e  two sinusoids produced by Hi  are nearly iden

tical when f i  and f 2 are reasonably high. In th a t case, one m ay expect th a t i H i ( f i )  

and l H i ( f 2 in (3.8) become close to  each other, and th e  phase response of D FC from 

th e  en tire  system  will approach a  constant. However, th e  phase response curve of 

th e  D FC, presenting a negative slope in the  high frequency region, conflicts w ith this 

expectation .

To exam ine this problem , we consider below-, separately, th ree  different types of 

transfer functions of f f j ,  nam ely, i) Hi  is a  m inim um  phase function, ii) Hi  contains 

tim e-delay term , and iii) H\  is a  non-m inim um  phase function containing zeros in the 

righ t half s-plane.

1. Hi  is a. m inim um  phase function which contains neither poles nor zeros in 

th e  right half s-plane. In th is  case, the re  is a unique relationship  between th e  gain
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F ig u re  3.7 The integration contour in the s-plane for determination of the 
relation between gain and phase of a. transfer function.

and phase characteristics (Bode, 1945). This relation can be obtained  by in tegrating 

h\Hj (s)-inj//i (j^cJI arouncj t ]je right-hand half-plane as indicated in  F igure 3.7, which 

vields"
2u.v r

LH\  (ju»'c) =  —  /7r Jo
00 In \Hi { j u )| -  In \Hi (ju: c)|

du>
uJ

(3.9)

This equation gives the  phase of H-i(juj) a t an any arb itra ry  frequency loc in term s 

of the integral of In \H\{j^i)\  over th e  range of all positive real frequencies.

If we define

A  =  l n | t f a(> ,’)| (3.10a)

and

=  In
uJ

u . c

then, the  expression (3.9) can be transform ed to  (Bode, 1945)

2 /•+oo
+ i f

7T J - c

dA
du

dA '  
du , U>CJ

In coth du

(3.106)

(3.11)

Thus, it is seen th a t th e  phase shift a t any frequency is com posed of two parts.

The first contribu tion  to  the  phase is d irectly  proportional to  th e  slope of th e  gain

“Note that the integral on the right-hand side of (3.9) is the Cauchy principal value of the integral 
(i.e. the limit of the sum of the integrals around C\ ,  C3  and C5  in Figure 3.7 as the radii of Co and 
C4 approach zero and C q approaches infinity).
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characteristic  at the frequency at which the phase is sought, and the  second contri

bution is proportional to  th e  weighted integral of th e  difference in slope of th e  gain 

characteristic from th e  value of th is slope a t th e  desired frequency. T he weighting 

factor

In coth
e l“ l/2 _)_ e - l ul/2 

=  l n  c M / 2  _  e - H / 2  =  l n

U,’ +  UJc
(3.12)

LC — LOc

has a large value when u) closes to  u>c, and approaches zero when u> goes away from  u>c. 

For th is reason, if the  slope of th e  gain characteristic  is fairly constant over a  ra ther 

lim ited range of frequencies about u,'c. a good approxim ation to  the phase LH\{juj)  is 

(7r/2)(dA/du)  radians.

The above result provides a theoretical basis for exam ining the possibility of fit 

for H i w ithin the m inim um  phase function category. Because th e  am plitude response 

of the  DFC above 10 Hz essentially resembles the  gain characteristic of Hi  (see (3.7)), 

and below 10 Hz. its ra th e r flat curve implies th e  flat gain characteristic of Hi  in th a t 

low frequency region, hence, instead of the  gain characteristic  of Hi ,  th e  am plitude 

response curve of the  D FC can be used to  determ ine the  phase characteristic  of Hi  in 

term s of (3.11). If th e  phase characteristic of Hi  determ ined  by such a  m ethod can 

result in i H i  ( f i ) —LHi ( f i ) m atching the  phase d a ta  of D FC , which presents a negative 

slope in the  high frequency region, one may find a m inim um  phase transfer function 

Hi(s )  which fits both  am plitude and phase of th e  D FC a t sam e tim e, otherw ise, there  

is no m inim um  phase function existing for Hi.

T he am plitude data  of th e  D FC recorded from  subjects A and B, displayed in 

th e  top  row of Figure 3.8, have been sm oothed by a local-weighted regression curve 

using A xum “(TriM etrix, Inc., Seattle, WA). T he corresponding phase characteristic  

l H i ( f )  derived by (3.11) is presented by do tted  curve in th e  second row of Figure 

3.8. Since we concentrate on the  analysis of th e  phase characteristic in th e  high 

frequency region, only th e  curves above 9 Hz are displayed. T he integral in (3.11) 

is carried out over th e  frequency region from 1.22 Hz to  200 Hz. Since near the

'T his is not curve fitting for searching the transfer function, it is merely a signal curve fitting 
to obtain an approximating gain characteristic curve of H i ,  which will be utilized to determine the 
phase characteristic of Hi
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F ig u re  3.8 Phase characteristic of H\  determined from its gain characteris
tic by relation (3.11). The left column is for subject A, and the right column 
is for subject B. The top row shows the VEP amplitude response of the D- 
FC and their local-weighted regression fitting curves which approximate the 
gain characteristics of H\.  The second row shows the phase characteristic 
I H i ( f )  in dots and l H i { f  4- A /)  in dash (A /  =2 Hz). These phase curves 
are determined by (3.11) from the regression fitting curves in the top row. 
The difference curves <j>yD F c ( f , f  + A /)  =  l H x{ f  +  A /)  -  l H x( f )  are also 
shown in the second row in solid. The third row shows the difference curve 
< t > y D F c { f 1 /  + A /)  with the phase data of the DFC for comparison.
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frequency 30 Hz, th e  gain slope of H i  nearly  reaches a constant, th e  slope d A /d u  

above 30 Hz are assigned the  value of d A /d u  a t 30 Hz. As m entioned before, the 

frequencies below 1 .2 2  Hz and above 2 0 0  Hz are rem ote from  th e  frequency region 

we are considering, th e  contributions of th e  in tegration from those regions can be 

neglected due to  sm all weighting factor ln co th  | | | .  In the  second row of F igure 3.8, 

phase curves L H i ( f  +  A / )  ( A /  = 2  Hz) are displayed in dashes, and  th e  difference 

curves <f>yD F c { f , f  +  A / )  =  I  Hi ( /  -f A / )  — l H i ( f )  are in solid. These difference 

curves are also p lo tted  in the th ird  row of the  figure together w ith th e  phase data of 

the DFC m easured from subjects A and B. For easier com parison, <j>yD F c { f , f  +  A /)  

in the th ird  row are vertically shifted to  superim pose the  V E P phase data.

The result in the  th ird  row of F igure 3.8 shows th a t th e  difference curves 

<PyDFC'{f-.f +  A / )  (solid) do not m atch  th e  phase responses of th e  D FC in shape, 

recorded from either of the  two subjects. Sim ilar resu lt is expected  from  th e  da

ta  m easured from  th e  o ther eight subjects due to  the ir sim ilar features th a t  the  

D FC am plitude has a peak around 20 Hz and the  phase decreases as the frequen

cy increases in th e  region above 15 Hz. An apparen t reason of th is unfitness is: 

For a small separation between f i  and / 2, th e  variation of th e  D FC phase response 

<f>yDFc{fi - h )  — LHi ( / 2) — I  Hi ( f i ) is small as f i  and f 2 change, which is shown about 

45° in the second row of F igure 3.8. T he D FC phase d a ta  m easured from  m ost of 

th e  subjects, however, have a  variation range about 90° in the  region above 1 0  Hz. 

Therefore, we conclude th a t a  m inim um  phase function can not fit th e  D FC am plitude 

and phase data.

2. Hi contains a  constant tim e delay. T he tim e-delay te rm  exp- s r  in H i,  

according to  (3.8), will add a  constant te rm  to  th e  phase response of DFC

A<t>yDFc ( f i j 2 ) = - 2 v f 2T  + 2 x f 1T  = - 2 F T { f 2 - f i )  (3.13)

which does not con tribu te  a  negative slope in (f>yD Fc{fi ,  / 2 )- Therefore, th e  constant 

tim e delay in th e  transfer function will no t give any help to  fit th e  D FC  phase data.

3. Hi is a non-m inim um  phase function . To satisfy the  stab ility  requirem ent,
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Hi m ust have no poles in th e  right half s-plane. If Hi  contains zeros in the  right half 

s-plane. then  the  transfer function can be expressed as

 W )  =  W )  n E ^ T v  =  H u {  ] ' 2{ ) ( I4)

In the  above equation, bt are the  zeros in th e  righ t half s-plane, M  is the  num ber of 

those zeros, N ( s )  and D( s )  are the  num erator polynom ial and denom inator polyno

m ial respectively, and
rr , , n £ , ( *  +  M JV M
Hi i ( s )  = --------- ——---------  (3.1o«)

D( s )

(3-156)n & i s - b i )

n -L i i s  + K
It is seen th a t H i(s)  is composed of two parts, H n  and i? 12. H u  is a m inim um  phase 

function which fits the  D FC am plitude data , bu t is not able to fit the D FC phase 

data . H u  has a unit gain characteristic , and only offers a  phase shift to  th e  system. 

Thus. H u  serves as a phase com pensator which provides a possibility to  fit th e  DFC 

phase data.

Now, if H \ , a non-m inim um  phase function can fit th e  D FC data , w hat the phase 

characteristic of Hi should look like? Since the  phase com pensator i / 12 decreases in 

phase as the frequency increases, the  phase characteristic  of H n , a  m inim um  phase 

function, has a negative slope in th e  region above 15 Hz (see the middle row plots 

in Figure 3.8), the phase characteristic  of H i,  which is a com bination from th e  phase 

characteristic of H n  and H 1 2 , thus, has a negative slope in th e  region above 15 Hz.

Now, if we substitu te  / j  +  A /  for / 2 in equation (3.8), and take the  derivative 

of the  equation w ith respect to  f i ,  we obtain

d t y D F c i f i J i  +  A / )  _  d l H i i f i  +  A / )  d l H i i f i )
d f i  d f i  d f i  ( 3 ' 1 6 )

Since the  plot of <t>yD F c(fi ,  / 1  +  A / )  versus f i  essentially presents a negative slope in 

th e  high f i  region, so is negative, and

d l H i i f i  + A f )  d l H i ( f i )
dfi dfi

< 0  for a reasonably large f i  (3.17)



61

Because phase slope d" ^ -  ) and —— are negative. One can obtain  from

equation (3.17) th a t the absolute value of ~ is bigger than  th a t of

or, in o ther words, the  phase slope of H \  a t fi  -f A /  is steeper than  th e  slope at f i .

The discussion above leads to  a conclusion: To fit the D F C  components measured 

from the ten subjects, the transfer function o f  Hi must contain zeros in the right half 

s-plane. Its amplitude characteristic is a bandpass with maximum gain around 20 Hz, 

and its phase characteristic has such a property that the slope becomes steeper as the 

frequency increases in the region above 15 Hz.

How is the  conclusion above affected if another type of nonlinearity, N (v ) ,  is 

chosen for th e  sandwich model?

We note th a t th e  above conclusion is derived based on equations (3.7) and (3.8). 

Equation (3.8). the relation between the  phase characteristic H i  and phase response 

of DFC observed from the  system , holds for any static  nonlinearity, while equation 

(3.7). the relation between the gain characteristic  of H i  and th e  am plitude of DFC 

produced from the  rectifier, was obtained  under th e  condition th a t th e  rectifier is full- 

wave. Equation (3.7) indicates: The full-wave rectifier has a p roperty  such th a t, when 

the  two sinusoids applied to  the rectifier have identical am plitude, th e  am plitude of 

D FC produced by th e  rectifier or observed for the entire system  is proportional to 

the  am plitude of th e  rectifier input, and thus, proportional to  th e  gain characteristic 

of Hi.

This property  of the  full-wave rectifier can be observed in th e  V EP te s t using 

two-sinusoid stim ulation w ith variable contrast. As m entioned before, for a  reason

ably high frequency pair, f i  and / 2, the  two sinusoids in th e  rectifier inpu t, which 

have been nearly identically filtered by H i,  have nearty identical am plitude, and this 

am plitude is proportional to  the stim ulus contrast. Previous research (Zem on, Conte 

Cam isa, 1987) and the experim ent conducted in th e  cu rren t work (Section 4 .2 ) 

showed th a t, when th e  frequency is above 2 0  Hz, th e  am plitude of the  D FC elicited 

by two-sinusoid stim ulation m onotonically increases as stim ulus con trast increases. 

Therefore, if another type of rectifier is selected (e.g. threshold or nonlinear rectifier),
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to  m atch the physiological phenom ena, it m ust also possess the  property  th a t,  for the  

inpu t containing two sinusoids w ith identical am plitude, the  am plitude of th e  DFC 

produced by tha t rectifier is proportional to  the  am plitude of the rectifier inpu t (we 

call th is “physiological-evidence based selection” ). If th is condition is satisfied, the  

am plitude of the D FC elicited by two-sinusoid stim ulation resembles the  gain char

acteristic of Hi in the  high frequency region. Therefore, physiologica-evidence based 

selection for the type of nonlinearity  will no t substan tially  affect the  above conclusion.

3.3.2 Linear Process before the C ortex-M inim um  Phase 
or Non-M inim um  Phase Function?

Prior investigation of tem poral characteristics of visual system  included single neu

ron and VEP studies. V ictor (1987: 1988) and P urpura  et al (1990) showed th a t 

the  ganglion cells in the  retina, except for a constant delay, have a m inim um  phase 

tem poral character, which does not have a  phase slope th a t becomes steeper as the  

frequency increases in all th e  test region from 0.23 to  50 Hz. The ganglion cells in the 

la teral geniculate nucleus (LGN) essentially have sim ilar spatial-tem poral properties 

as those in the retina (So k  Shapley, 1979; Shapley, 1982), it is reasonably to  assum e 

th a t the  tem poral characteristics of the ganglion cells in LGN do not differ m uch 

from those of the ganglion cells in the retina. As shown in the  last subsection, th e  

linear elem ent H i.  representing th e  constitu tion of th e  single cells in th e  early  stage 

up to cortex, however, appears to  be a large difference in the  tem poral characteristic  

as th a t of the single cells in th e  re tin a  and LGN. If th is finding is true, one possibility 

is th a t the linear process in the  cortex before th e  rectification differs m uch from the  

linear process in the  re tin a  and LGN.

T he clarification of th e  above issue m ay be sought by microphysiological studies 

on the tem poral behavior of single cells in th e  front stage of the  cortex. However, 

th e  transfer function form , obtained  in the  last subsection, is not consistent w ith 

th e  previous investigation of tem poral character of the  V EP pathways. T he relevant 

work is referred to  Lopes D a Silva’s m odel proposed in 1970. The stim ulation  he
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used was a sinusoidal m odulated  light ra th e r than  th e  contrast reversing p a tte rn . In 

the  te st, all the  neuron receptors sensed the  sam e light function on the ir receptive 

fields, and m ediate the signals to  the  cortex. According to  the  discussion in Section

2.1 and 3.1, th e  path  for signal process can be represented by a sandwich m odel 

w ith non-sym m etrical rectifier as shown in Figure 3.9.a. Because the  asym m etrical 

rectification produces both  odd and even order harm onics in th e  cortex, Lopes D a 

Silva used fundam ental com ponent of V E P as a system  ou tpu t for modeling, which 

essentially characterized linear process of retina-cort.ex system . The rationale lies in 

the fact tha t the  asym m etrical rectifier N  can be decom posed into an even order 

rectifier (sym m etrical) and an odd order rectifier, and hence, the  sandwich system  in 

Figure 3.9.a can be decom posed in to  two parallel pa th s which contain the  even order 

rectifier and the  odd order rectifier respectively. The scheme for such decom position 

is illustrated  in Figure 3.9.b. In th e  figure,

(3.18a)

which is an even order rectifier sym m etrical about vertical axis, and

N ( v ) - N ( - v )  / o , o „
Ara(v) = ----------   (3.186)

which is odd order rectifier sym m etrical about original point. If N 2(v) is approx

im ately linear w ithin a certain  range of v, The fundam ental com ponent, produced 

only through N 2{v) due to  th e  sinusoid inpu t, characterizes th e  consequent linear 

process of H \  and H 2.

Lopes D a Silva showed th a t th is linear process in th e  V E P pathways, except for 

a  constant delay, can be described by a  transfer function of m inim um  phase.

Com paring w ith the  above result, we would like to  ask: Does the  linear process 

before the  cortex have m inim um  phase or non-m inim um  phase characteristic? This 

question is equivalent to: Does th e  phase characteristic of th e  neural pathw ay be

fore th e  cortex have such a featu re  th a t its slope becom es steeper as the  frequency 

increases?
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N(v)

S ': ' \ ' /
H  1

( a )

N , ( v )

H 1 ---------- • — < 1 / — H 2
v n(t ) V Z-l(t)

v 2 ( t) z
/ " • V

z2(t)

N 2( v )

( b )

F ig u re  3.9 a : Neuron signal process due to sinusoidal modulated light 
is simulated by a sandwich model with an asymmetrical rectifier, b: The 
model in (a) is decomposed into two parallel paths containing an even order 
rectifier and an odd order rectifier respectively.

To exam ine th is problem , let us suppose th a t the  argum ent, th e  slope of the 

phase characteristic in th e  early stage of th e  visual pathw ay (Hi )  becom es steeper as 

the  frequency increases, is true , which m eans th e  phase slope a t / i  +  A f  is steeper 

than  the phase slope a t f \ .  Then the  absolute value of increases as A /

increases. From equation (3.16), one obtains, for a given / i ,  th a t th e  absolute value of 

WyDFcUJ+Af) jncreases with  A / ,  th a t is, th e  slope of the  DFC phase response from 

the entire system increases w ith the  separation of the  frequency pair. This outcom e 

indicates th a t th e  exam ination of th e  argum ent is accessible by using th e  two-sinusoid
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stim ulation  technique with different separations between th e  frequencies w ithin each 

pair.

The experim ent for this exam ination  was perform ed. Stim uli were constructed 

with two sinusoids as before, bu t th e  separation between /]  and was kept as a 

constant of 1.99 Hz, 3.99 Hz, and 7.98 Hz respectively for each test. If th e  phase slope 

of the  V E P difference frequency com ponents in the high frequency region becomes 

steeper as th e  frequency separation increases, th e  argum ent above holds, otherwise 

the argum ent fails. The same two subjects A and B were tested  in this experim ent. 

Difference frequency com ponents of th e  V EP, together w ith the ir radii of error circles 

and phase error ranges, are depicted in F igure 3.10.1 for subject A and in Figure

3.10.2 for subject B. All data are p lo tted  versus frequency f i  in linear scale in order 

to com pare th e  phase slope in the  high frequency region.

For th e  am plitude response, when th e  separation of A f  becomes larger, the  

m agnitude tends to  decrease, and th e  peak position shifts left along the / i  axis. 

For the  phase response, an increased phase lag is obtained as A f  increases, which 

may result from  the  phase characteristic  of H 2. However, th e  phenom enon th a t  the  

phase slope becomes steeper w ith increased frequency separation in the  high frequency 

region is not observed. This finding conflicts w ith th e  argum ent given above and 

suggests th a t, for these two subjects, th e  DFC phase decrease in th e  high frequency 

region does not appear to  depend on H i .

3.3.3 Sum m ary and Discussions of This Section

We exam ined the  V E P sum  and difference frequency com ponents from  ten  norm al 

subjects to  search for the  transfer functions of th e  sandwich m odel. We found th a t, to 

fit those subjects data , the  first linear elem ent in the  m odel m ust be a non-m inim um  

phase function w ith zeros in the  righ t half s-plane. This resu lt has not been shown 

in th e  litera tu res concerning tem poral characteristics of th e  visual neural system.

We designed an experim ent, using two-sinusoid stim ulation  w ith variable sepa

ration between the  frequency pairs, to  investigate th e  linear processing characteristics
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F ig u re  3.10.1 Experiment of two-sinusoid stimuli with different separation 
between the frequency pair. D ata are collected from subject A and plotted 
vs. / j . The top and second rows are the DFC amplitude and phase respec
tively. The bottom  two rows show the radius of error circle and phase error 
ranges respectively. f \  were selected as 1.22, 2.75, 4.64, 6.98, 9.97, 14.05, 
19.79, 22.59, 27.05, 31.24 Hz. The data corresponding to the separation of 
1.99 Hz are marked by circles, 3.99 Hz marked by boxes and 7.98 Hz marked 
by triangles.
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F ig u re  3.10.2 Experiment of two-sinusoid stimuli with different separation 
between the frequency pair. D ata are collected from subject B and plotted 
vs. f i . The top and second rows are the DFC amplitude and phase respec
tively. The bottom two rows show the radius of error circles and phase error 
ranges respectively. f \  were selected as 1.22, 2.99, 4.99, 8.98, 13.96, 19.95, 
24.93 and 29.92 Hz. The data  corresponding to the separation of 1.99 Hz 
are marked by circles, 3.99 Hz are marked by boxes and 7.98 Hz are marked 
by triangles.
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before the cortex (which is sim ulated by the  first linear elem ent, H \ s in the  sandwich 

model). R esult from two subjects showed th a t th e  DFC phase response, used to 

identify the  phase characteristic of H \,  did not only depend on H \.

If our finding does hold for large populations, there  is a question: W here is 

the functional subsystem , o ther than  ifx , m odifying th e  V E P difference frequency 

com ponents?

Previous studies on th e  signal processing behavior of neural system  found th a t 

two inhibitory m echanism s, contrast gain control and lateral interaction (e.g. Zemon. 

1984; Zemon, V ictor and Ratliff, 1986; Zemon, Conte & C am isa, 1987), play an 

im portant role in neural signal processing, modifying both am plitude and phase of 

the signal tran sm itted  in th e  direct-through pathways. In the  two-sinusoid stim ulation 

tests, such an inhibitory process, which appears to exist in the  cortex, m ay modify 

the rectified signal from  an earlier stage to  cause ex tra  phase shift in the  VEP.

Indeed, a  transfer function of non-m inim um  phase in th e  m odel m ay provide 

a fit for the difference frequency com ponent d a ta  of VEP. We em phasize in this 

work, however, th a t th e  m odel should not only satisfy the  inpu t-o u tp u t relation of 

the  entire V E P system , bu t also, each elem ent in the  model should be in terp retab le  

physiologically, th a t is, the  m athem atical description of each elem ent should, as close 

as possible, m atch  th e  tem poral characteristic of the  subsystem  it represents. From 

this point, it is w orthy to  modify the  sandwich model to include some im portan t 

functional m echanism s. This work not only narrows th e  gap between th e  m odel's 

behavior and th a t  of th e  real system, b u t also, it allows quan tita tive  analysis of such 

m echanism s’ activ ities and their interactions.



C H A PTER  4 

INH IBITO R Y M EC H A N ISM

4.1 General Introduction

Photoreceptors in the retina sense the light inform ation in the ir receptive fields and 

tran sm it such inform ation to  th e  brain. However, th is  neural message is no t a  sim ple 

transduction  of the optical image. The image in th e  visual system  is transform ed by 

spatial interactions between neurons, and decoded in th e  brain to recover w hat the  

eye has seen. The spatial in teraction can be classified in to  two types: O ne type tha t 

nerve cells triggering im pulses (action potential) in o ther cells is considered to  be 

excitation and forms a prim ary direct-through pathw ay, which m ediates signals from 

earlier to  la te r neuronal layers. A nother type th a t nerve cells preventing im pulses 

from arising in other cells is inhibition and m ediates signals in  local synaptic areas. 

A cell receives m any excitato ry  and inhibitory inpu ts from  o ther cells and  in tu rn  

supplies m any others. T he process whereby a cell adds together all th e  incom ing 

signals th a t excite and inhibit it is known as in tegration which essentially determ ines 

a cell's ability  to excite the  next cells in the  pathw ay (Kuffier & Nicholls, 1976).

T he functions of inh ib itory  m echanism s are very im p o rtan t. The im age inform a

tion in th e  neuronal system  is carried by im pulses in nerve fibers, bu t the  inform ation 

capacity of a neural pathw ay depends not only on the  num ber of fibers, b u t also upon 

the  m ean ra te  of nerve im pulses in the  fibers. Barlow (1969) pointed out th a t this 

m ean ra te  of impulses should be able to  vary adaptively to  m ain tain  the  “econom y” 

s itua tion , which m eans th e  genetically determ ined p a tte rn s  of synaptic connection- 

s should enable the an im al’s typical sensory environm ent to  be represented by low 

average activ ity  in sensory centers. If the environm ent changes, th e  average activ ity  

should change correspondingly, bu t such change in  those synaptic connections should 

again enable th e  new environm ent to  be represented economically, th a t is, th e  low 

m ean firing ra te  of the nerve cells should be restored. Barlow pointed out fu rther th a t 

the  neural inhibition m ay function as a m echanism  th a t  reduces th e  flow of im pulses 

in nerve fibers to  achieve such adaptive reduction redundan t inform ation.

69
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T he o ther im portan t role th a t neural inhibition m ay play is in “form perception” 

(Ratliff. 1965). In th e  initial stage of the  neural pathway, th e  photoreceptors process 

the optical inform ation corresponding to  the ir receptive fields, which is relatively 

separate and localized. In the  cortex, neural messages in teract on the ir way from distal 

stage to  high levels of processing; m ore la tera l in teraction is involved due to  highly 

branched dendritic  connections th a t link th e  spatially localized messages together 

(Benevento, C reutzfeldt k  K uhnt, 1972; C reutzfeldt, K uhn t k  Benevento, 1974). 

Physiological evidence has been obtained to  show th a t, in th e  visual cortex, most 

cells become m ore selective in the ir receptive field properties (Maffei k  Fiorentini. 

1973): They acquire binocularity and exhibit greater selectivity  to  orientation and 

direction of m ovem ent than  the  cells a t lower levels of th e  visual system  (Hubei k  

Wiesel. 1962).

Two inhib itory  m echanism s are of in terest in the  curren t research, one is a  con

trast gain control m echanism  which is activated by stim ulus con trast change (Enroth- 

Cugell k  Robson, 1966; Shapley k  V ictor, 1978; Zemon, C onte k  Cam isa, 1987), the 

other is lateral interaction activated  by neural la teral connections w ithin th e  local 

neighboring area (N abet k  P in te r ,1991; Zemon k  Ratliff, 1984). Since bo th  m ech

anisms have effects on excitatory signal transm ission, for the  sake of m odeling, it is 

necessary to  investigate the roles th a t bo th  m echanism s play in  generating the  VEP.

4.2 Contrast Gain Control M echanism

4.2.1 Prior Studies on Contrast M echanism

Early studies of con trast gain control th a t closely relate to  th e  present m odeling have 

involved physiological investigations of ganglion cells in th e  ca t re tin a  (e.g. Shapley 

k  V ictor, 1978; 1980). Those researchers used a contrast reversing stim ulus th a t 

consisted of an eight-sinusoid tem poral m odulation of a  g rating  p a tte rn . The X type 

ganglion cells, due to  the ir linear character, were studied based on th e  response of 

their fundam ental frequency com ponents; the  Y type cells, due to  the ir nonlinear
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F ig u re  4.1 Fundamental frequency components of an on-center X cell, elicit
ed by an eight-sinusoid grating pattern stimulation. Modulation depth per 
sinusoid in the pattern was set at different levels: circle. 1.25%: box. 2.5%: 
triangle. 5% and Filled circle. 1 0 %. The mean luminance was 2 0  cd/m2.
Source: Shapley &: Victor. 1978.

character", were studied based on th e  response of second order (i.e., sum and d- 

ifference) frequency components*. T he studies dem onstra ted  a  nonlinear effect of 

stim ulus contrast on th e  tem poral tun ing  characteristics of b o th  X and Y cells. For X 

type cells, as Figure 4.1 shows, th e  responses of fundam ental frequency com ponents 

grow much less than  linearly w ith inpu t contrast when th e  in p u t tem poral frequency 

is below 2 Hz: th e  responses grow nearly  proportionally  to  in p u t contrast when th e  

frequency is above 8  Hz. On th e  o ther hand , the phases of th e  fundam ental frequen

cy com ponents advance as con trast increases over nearly  th e  en tire  frequency range 

from  0.32 Hz to  15 Hz. For Y type cells, shown in F igure 4.2.a, the sum frequen-

"Y type ganglion cells predominantly produce even order harmonics, which is evidence that a 
nonlinear process exists in the Y cell path.

1Sum and difference frequency components are those at the frequencies fi+ i ± / i  O' =  1,2, • • -, 7), 
elicited by the eight-sinusoid stimulation.
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F ig u r e  4 .2  A m plitudes and phases o f the second-order frequency com ponents, elicited by  
an eight-sinusoid grating pattern  stim ulation , as a function  o f a  contrast in an on-center  
Y cell. T he three levels o f  contrast are indicated  by th e  sym bols: Q ,  2.5%; □ , 5%; A , 
1 0 %. The m ean lum inance was 2 0  c d /m m 2. In A (le ft) , am plitudes and phases o f  the  
second order harm onics are p lotted  versus 2 In B (r igh t), am plitudes and phases o f  the 
difference frequency com ponents are p lotted  versus / , - + 1  — /,-.
Source: Shapley & V ictor, 1980.

cy responses in the  region above 1 0  Hz increase m ore rapidly w ith contrast than  do 

the  responses to  lower frequencies; the phase responses have a larger advance as the  

stim ulus contrast increases a t the  lower frequencies than  a t the higher frequencies.

The above outcom e suggests tha t the re tin a ’s tem poral characteristic is not 

linear, bu t has param etric  nonlinear dependence on contrast. T he m echanism  th a t 

adjusts the  signal transm ission characteristic  in term s of the  signal contrast is called 

contrast gain control or contrast mechanism. The form ation of the  contrast gain 

control in the re tina  m ay be a feedback signal from am acrine cells to bipolar cells th a t 

modifies inform ation processing in the bipolar cells (Levick, 1975; Kolb, Fam iglietti 

Nelson. 1976).
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A nother interesting investigation by Shapley and V ictor (1980) showed th a t the 

difference frequency com ponent (D FC) of Y type ganglion cells elicited by an eight- 

sinusoid stim ulus essentially does not exhibit a phase shift w ith stim ulus contrast 

change. The DFC am plitude responses, however, present a  sim ilar dependence on 

contrast as the  sum frequency com ponent do (see Figure 4.2.b).

T he effect of contrast gain control on the  V EP was investigated by Zemon and 

his co-workers in 1987. They found th a t the  difference frequency com ponents (DFC) 

of the VEP, m easured from hum an scalp using the two-sinusoid stim ulation, have a 

significant increase in phase with increase of stim ulus contrast in the  high frequency 

region above 20 Hz (Zemon, Conte & C am isa, 1987). According to  the  findings by 

Shapley and V ictor, difference frequency com ponents produced in the  retinal Y cells 

do not have a phase shift with stim ulus contrast. Therefore, th e  phase shift of the DFC 

in the V EP may result from the phase shift of fundam ental frequency com ponents 

produced in the initial linear stage. However, since the separation between the input 

frequency pairs was small (2 Hz), in the  high frequency region above 20 Hz, the phase 

shifts in the  fundam ental frequency com ponents, caused by the  contrast mechanism 

in th e  initial stage, can be expected to be nearly identical. According to (3.8), the 

phase change of the DFC in the V EP is the difference between the phase changes 

of the individual fundam ental frequency com ponents in the  early stage before the 

rectification. Thus, nearly identical phase changes of th e  fundam ental frequency 

com ponents will not result in significant phase changes in the  DFC recorded from the 

cortex. From this point, Zemon et al. (1987) suggested th a t there m ight be another 

contrast m echanism  in the cortical area following the rectifier, which is responsible 

for the phase change in the V E P difference frequency com ponents. Recently, the 

existence of the contrast gain control in the cortex has also been reported  by Geisler 

and A lbrecht (1992).

T he investigation above leads to  the  im portan t conclusion th a t the  nonlinear 

process exists in both  //] and H 2 in the sandwich model. In the following section, 

we will discuss the V EP experim ental result obtained using contrast varying of the
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two-sinusoid stim ulus to  seek the  rules of inhibitory processing for the con trast m ech

anism in the cortex.

4.2.2 D em onstration o f Contrast Gain Control in the VEP

T he experim ent to dem onstrate  th e  effects of th e  contrast m echanism  is sim ilar to 

th a t done by Zemon e t al. in 1987. The stim ulus contained two superim posed si

nusoids. The separation between the  two frequencies in a  pair was fixed a t 1.99 Hz. 

T he sam pling frequency points were set to f \  =2.99, 4.99, 8.98, 13.96, 19.95,24.93,

29.92 Hz. The contrast of the  stim ulus was set to  10%, 20%, 30% and 40% for 

each test. O ther conditions were the same as described before. Difference frequency 

com ponents (DFC) were obtained by Fourier analysis on the  recorded V E P data .

Two subjects, A and B as m entioned before, were tested  in this work. T he 

results, which are shown in Figure 4.3.1 for subject A and Figure 4.3.2 for sub ject B, 

are qualitatively consistent w ith those reported  by Zemon et al. (1987). In th e  left 

column of Figure 4.3, d a ta  are p lotted  versus f i  in solid, long dash, dash and dots, 

corresponding to the stim ulus contrast of 10%, 20%, 30% and 40% respectively. In 

the right column of F igure 4.3, d a ta  are plotted versus stim ulus contrast, b u t only 

those d a ta  in high frequency region above 2 0  Hz are displayed. At zero con trast (null 

inpu t), we set all the am plitudes of DFC to zero. T he accuracy of the  m easurem ent 

is expressed by the radius of error circle and phase error range calculated from (2.37) 

and (2.39) respectively. W hen the  am plitude of D FC is sm aller than th e  radius of 

error circle, the phase d a ta  is not a  reliable m easurem ent, and is not displayed in the 

figure.

It is seen, when the  frequency is above 20 Hz, th a t both  am plitude and phase 

of the  DFC increase m onotonically with contrast. However, th e  d a ta  curves in the 

right column of Figure 4.3 show th a t the  am plitude does not increase linearly w ith 

contrast, bu t its slope decreases as the  contrast increases. This m eans the  signal 

transfer gain is inversely related to signal contrast, ln  the  low frequency region, the 

result is not clear. At some frequency points, th e  am plitude and phase responses
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F ig u re  4.3.1 Experiment for observing the effect of contrast gain control on the VEP. 
DFC data were measured from subject A. Two-sinusoid stimuli with different contrast and 
frequency pairs were used. The separation between the frequency pairs was kept at 1.99 Hz 
in each test. Vector averaged components, the radii of error circles and phase error ranges 
are obtained from four repeated measurements. In the left column, DFC data are plotted 
versus f i  in linear scale to display the results in more detail in high frequency region. 
In the right column, DFC data are plotted versus stimulus contrast, but only those data 
corresponding to / i  =19.95, 24.93, 19.92 Hz are displayed; amplitude corresponding to zero 
contrast stimulus (null input) is set to zero. When the radius of error circle is bigger than 
the amplitude of DFC, the phase data is not a reliable measurement, and is not dispalved 
in the figure.
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F ig u r e  4 .3 .2  E xperim ent for observing the effect o f contrast gain control on the V EP. 
D F C  d a ta  were m easured from  subject B. T w o-sinusoid  stim uli w ith  different contrast and 
frequency pairs were used. T he separation betw een the frequency pairs w as kept at 1.99 Hz 
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versus f i  in linear scale to  display the results in m ore detail in high frequency region, 
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corresponding to the  high contrast stim ulus are even lower or m ore lagging than  the 

responses corresponding to  th e  low contrast stim ulus.

We suggest th a t it is the contrast gain control in the cortex th a t makes the 

above response curves change shape. There are th ree reasons for this suggestion:

1 . The response dependence on contrast is not th e  consequence of a  s ta tic  sa tu ra

tion. In the case of such a nonlinearity, a  phase shift in the D FC due to  stim ulus 

contrast change would not occur (according to  (3.8)).

2. The activity  appearing in the high frequency region during the  above experim ent 

rules out the possibility of lateral in teraction , because the la teral inhibitory 

mechanism (to be discussed in the next section) has little  effect in the  frequency 

region above 20 Hz.

3. A phase shift in the  DFC rules out the  possibility of the contrast m echanism  in 

the retina accounting for the results (as explained before in this chapter).

Therefore, the  changes in the  response of th e  D FC with different stim ulus con

tra s ts  appears to reflect the behavior of contrast gain control a t th e  cortical level.

A lthough the knowledge of the  anatom ic s truc tu re  of the  neural circuitry, which 

is responsible for such modification, is lacking at the  current tim e, a  m odel, proposed 

by Shapley and V ictor in 1978 for the  contrast gain control of retinal ganglion cells, 

is presented here in Figure 4.4 to account for th e  nonlinear process of th e  contrast 

m echanism  in the cortex. Except for some different in terpretations for th e  elem ents, 

this model is still valid for explaining the con trast gain control phenom ena in th e  

VEP.

In the model, an elem ent H i  and its o u tp u t y(t)  form a neuronal excitatory 

pathway in the  cortex. This elem ent however receives another inpu t I g produced by 

contrast gain control G. E lem ent G  filters and senses the  overall contrast of th e  signal 

processed in the excitatory  pathway, and produces th e  ou tpu t I q th a t consequently 

m odulates the  param eters of elem ent Hi.  Since signal contrast, ra ther th an  signal 

value, is m easured by G, elem ent G m ust contain an even order nonlinearity or be a
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F ig u re  4.4  The model for contrast gain control in the cortex. A linear el
ement H 2 representing direct-through pathway in the cortex is surrounded 
by a contrast gain control element G. This element senses the overall sig
nal contrast in the direct-through pathway, and produces a signal I g th a t 
modifies the temporal characteristic of E%.

full-wave rectifier, which can ex trac t th e  inpu t signal contrast. Its  inpu t m ay either 

come from an earlier stage or feedback from  the o u tp u t y(t).

4.3 Lateral Inhibitory M echanism

4.3.1 Prior Studies on Lateral Inhibition

Investigation on neural networks can be im plem ented by m eans of neuronal receptive 

field studies. In past decades, m uch progress has been achieved in this area. I t has 

been shown th a t visual neural s truc tu re  is arranged in a  retinotopic fashion a t each 

level (Pearlm en, 1975). T h a t is, the  retinal cells in a  given region pro ject to  a  given 

region of the  la teral geniculate nucleus, and then  p ro jec t to  a  given region of the 

visual cortex. Besides those parallel signal forw arding paths, w ithin a  neural cell 

layer, th e  cells in each region m ay affect each o ther due to  la te ra l connections. I t  is 

believed, in th e  neural netw ork, th a t forwarding pathw ays tran sm it excitatory  signals, 

while la teral connections tran sm it inhibitory  signals (Zemon Conte & Cam isa, 1987). 

Thus, a signal processed in one forw arding path  will inh ib it th e  signal processed in
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F ig u re  4.5 A demonstration of neural connections between two layers. Exci
tatory connections are marked by solid arrows, while inhibitory connections 
are marked by dash arrows.

the neighboring forwarding p a th  through local lateral connections. A simple diagram  

of such neural s tru c tu re  is dem onstrated  in Figure 4.5.

The m echanism  by which a signal processed in one cellular region inhibits the 

signal processed in another region v ia la teral connections is called lateral inhibition or 

lateral interaction. I t has been found th a t this m echanism  exists in th e  different layers 

of the visual pathways from th e  re tin a  (W erblin. 1972; M asland, 1986). to  the  la teral 

geniculate nucleus (KufBer Sz Nicholls, 1976), to the cortex (Benevento, C reutzfeldt 

K uhnt. 1972) th a t contribute to  th e  VEP.

To investigate la teral inhibitory  activity, one m ust e x tra c t this contribution to  

the VEP, which contains mixed contributions from  other m echanism s. This work was 

done by Zemon and Ratliff (1984) by using two-sinusoid stim ulation  constructed in 

either a  superimposed or lateral condition. In th e  superimposed condition, the stim ulus 

was the  sam e as th e  one described in Section 2.2. V EP sum  and difference frequency 

com ponents elicited by such stim ulation essentially em phasize th e  excitatory process 

in the visual pathways. In the lateral condition, the stim ulus was constructed in such
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F igu re  4.6 Photographs of the windniill-dart board stimulus used to elicit lateral interac
tion. Segments in the central disk and the second annulus are modulated by one sinusoid 
of frequency /] .  while segments in the first and third annuli are modulated by a second 
sinusoid of frequency / 2. In this situation, the percept alternates between that of a dart- 
board and that of a windmill. Photographs of the stimulus at intermediate phases, between 
windmill and dartboard. are shown to the right of the windmill and dartboard photographs. 
Source: Zemon. 1984.
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F ig u re  4.7 Amplitude and phase of the difference intermodulation component, for one 
normal subject, obtained using superimposed and lateral stimuli.
Source: Zemon. 1984.
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a way th a t the  lum inance in th e  central disk and th e  second annulus was tem porally  

m odulated  by a contrast reversing sinusoid with frequency / i ;  while the  lum inance 

in the  first and th ird  annuli was m odulated  by a con trast reversing sinusoid w ith fre

quency f 2 (see Figure 4.6). Those separate stim ulus functions thus elicited different 

tem poral signals in the  neural channels th a t in teract w ith each other through lateral 

connections, and produce in term odulation  com ponents (SFC and DFC) in th e  VEP. 

T hese in term odulation com ponents, to  some ex ten t, reflect th e  characteristics of the 

la teral pathways. T he difference frequency com ponent data , m easured from a typ i

cal norm al subject in either superim posed or la teral conditions, reported by Zemon 

(1984). are depicted in F igure 4.7.

U nder th e  superimposed condition , sim ilar to th e  data presented in Section 3.2. 

D FC response presents an am plitude peak around 20 Hz, and a negative phase s- 

lope in the  high frequency region. U nder the  lateral condition, the  DFC am plitude 

response falls off above 10 Hz, and th e  phase response differs by about 180° from 

tha t obtained under the superimposed condition a t low and in term ediate  frequencies; 

it is nearly identical to  th e  superimposed condition d a ta  a t high frequencies. From 

those observations. Zemon pointed out th a t strong lateral interactions in the  neural 

network m ay occur when th e  inpu t frequency is around 10 Hz.

4.3.2 D em onstration of Lateral Interaction in the V EP

Based on the  discussion in th e  last section, we propose a V E P pathw ay m odel th a t 

includes th e  lateral inhibitory  m echanism . The m odel, illustrated  in F igure 4.8 .a, 

contains two identical parallel paths composed of linear-nonlinear-linear elem ents in 

cascade, which represent parallel neural channels th a t m ediate th e  inpu t signals from 

th e  re tina  to  the  brain. Lateral in teractions between each channel are im plem ented 

through th e  la teral elem ent L, which receives the  in p u t from  one channel and sends 

th e  o u tp u t to  the  other channel. As m entioned in Section 4.1, the  m ajor la tera l in

h ib itory  com ponent occurs in th e  cortex. The signal I I  from th e  la teral pathw ay is 

applied to  the  H 2 stage and modifies th e  direct-through signal in a  nonlinear m anner.
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F ig u re  4.8 a: A model structure containing two parallel direct-through 
pathways connected with each other by lateral pathways, b: A model simpli
fied from the structure in (a) with hypothesis that the symmetrical pathways 
are identical.

Considering th a t th e  lateral inhibitory  signals are generated by neurons in the  cortex, 

the la teral path  begins a t the position after H \.  T he m odel in Figure 4.8 .a  can be 

fu rther simplified to a s truc tu re  shown in Figure 4.8.b, given sym m etrical pathways 

th a t are identical.

N ext, we discuss the experim ent conducted in th is study to  dem onstrate  the 

effect of la te ra l interactions. L ateral inhibition is activated  by th e  signals th a t are 

generated in neighboring neurons. If two superim posed sinusoids are used to  m odulate 

the lum inance in the  first and th ird  annular rings of th e  dartboard  p a tte rn , and 

the  lum inance of central disk and second annular ring of the  p a tte rn  is tem porally  

m odulated  by a single th ird  sinusoid w ith a different frequency and contrast, it is 

possible to  observe how the  difference frequency com ponent (D FC ) elicited by the  

superim posed two sinusoids is affected by th e  la teral neural signals corresponding to
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the single sinusoid m odulation of neighboring neurons.

The present experim ent was designed and conducted in such a fashion. Two su

perim posed sinusoids were applied to th e  first, and th ird  annular ring of th e  dartboard  

pattern  stim ulation shown in Figure 2.2 a t /i= 1 9 .4 5  Hz and / 2= 2 1 . 4 4  Hz. The peak 

contrast of each of these two sinusoids was 30%. T he th ird  sinusoid, applied to  the 

central disk and second annular ring, served as a. la teral signal w ith  a frequency of 

2.99, 4.99, 9.97. 20.44, and 24.93 Hz, and a  contrast of 0%, 5%, 15% and 30%. Each 

test ran 32.08 seconds. Difference frequency com ponents (DFCs) were obtained by 

Fourier analysis. The two adult subjects, A and B, were tested in this experim ent. 

The results are depicted in Figure 4.9.1 for subject A and Figure 4.9.2 for subject 

B. The accuracy of th e  m easurem ent is expressed by the radius of error circle and 

phase error range calculated from (2.37) and (2.39) respectively. W hen the  am pli

tude of DFC is sm aller than  the  radius of error circle, the  phase d a ta  is not a  reliable 

m easurem ent, and is not displayed in the  figure.

There are several outcomes:

1 . In the en tire  frequency region (2.99 Hz-24.93 Hz), when th e  th ird  sinusoid has 

nonzero am plitude (A /3 ^  0). th e  D FC response is a ttenuated  in am plitude and 

advanced in phase in com parison w ith  th e  data  collected when A j3 =  0.

2. Significant effects of the th ird  sinusoid on th e  DFC occur a t frequencies fa 

below 2 0  Hz. Above 2 0  Hz, the  effect on D FC am plitude decreases rem arkably 

for subject A, and is hardly observed for subject B. As fa  increases to  20 Hs, 

Phase values of bo th  subjects approach th e  value obtained w hen A / 3 = 0 .

3. The DFC am plitude has a  m inim um  value when fa  is around 1 0  Hz, and in 

creases when fa increases or decreases from this point.

4. A t frequency fa — 1 0  Hz, there  is a  certain  relation between D FC response and 

the  la teral signal’s contrast A /,: W hen the  contrast A / 3 increases, th e  DFC 

am plitude decreases and th e  DFC phase advances.
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luminance of first and third annuli was modulated by a sum of two sinusoids with frequencies 
/ i =19.45 Hz, / 2 = 2 1 .4 4  H z and contrast of 30%. The luminance o f  central disk and second 
annulus was modulated by a  single sinusoid with frequency / 3 = 2 .9 9 , 4.99, 9.97, 20.44, and
24.93 Hz and contrast A/3=0%, 5%, 15% and 30%. Vector averaged components, the radii 
of error circles and phase error ranges are obtained from four repeated measurements, and 
are plotted versus fz. When the radius of error circle is bigger than the amplitude of DFC, 
the phase data is not a reliable measurement, and is not dispalyed in the figure.
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F ig u r e  4 .9 .2  E xam ining th e  effect o f  lateral in teractions: D FC  data from  subject B. T he  
lum inance o f  first and third annul! w as m odulated  by a  sum  o f tw o sinusoids w ith  frequencies 
/ i  =  19.45 Hz, /2 = 2 1 .4 4  Hz and contrast o f 30%. T he lum inance o f central disk and second  
annulus was m odulated  by a single sinusoid w ith  frequency /3 = 2 .9 9 , 4 .9 9 , 9 .97 , 20 .44 , and
24.93 Hz and contrast j4/3=0% , 5%, 15% and 30%. V ector averaged com ponents, th e  radii 
o f error circles  and phase error ranges are obtained  from  four repeated m easurem ents, and  
are p lotted  versus f s .  W hen th e  radius o f e rro r  circle  is bigger than the am plitude o f  D F C , 
th e  phase data  is not a reliable m easurem ent, and is not dispalyed in the figure.
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If the  above result, the D FC am plitude and phase th a t vary w ith contrast and 

frequency of the  th ird  sinusoid (la teral signal), reflects th e  la tera l in teraction phe

nom ena, w hat does it tell us?

a. Since the  effects of the  la teral signal can be observed for D FC responses gener

ated  a t frequencies other than  / 3 , a nonlinear process is indicated.

b. Inpu t frequencies f j  and are set close together. If the  nonlinear gain control 

exerted through lateral in teractions m ainly affected th e  transfer characteristics 

of H i,  it would cause alm ost th e  sam e phase shift in th e  fundam ental compo

nents produced by Hi", <z>,.(/i) and GM/2 ) are nearly identical. T he phase of the  

DFC results from  the difference between ®v{.fi) and (M /a ) (see (3.8)). Thus, 

no significant change in th e  D FC w ith contrast would be expected. A large 

DFC phase advance is found in th is experim ent (about 180° as contrast ranges 

from 0% to  30%), which indicates th a t principal nonlinear effect of the  lateral 

in teraction  is exerted on H 2 .

c. Since la tera l inhibition will cause signal phase shift, the  negative slope in the 

phase response of th e  D FC (see F igure 3.5 and 3.6) m ay resu lt or partia lly  result 

from th e  effect of this m echanism , particu larly  in the  m iddle frequency region.

d. High frequency inpu t in neighboring receptive fields will not cause significant 

contrast gain control through la teral interactions. The contrast of the  input 

signal in th e  high frequency region, however, does produce a contrast gain con

trol effect on local excitatory  signals, (experim ent result in Section 4.2.2). This 

im plies th a t  there  are at least tw o kinds of inhibitory pa th s in th e  cortex: one 

possesses a lowpass filter and ano ther one does not.

4.4 Shunting Inhibition M odel

Inhibition w ithin a single neuron can be sim ulated by a  shunting inhibition model 

proposed by Furm an in 1965. I t  assum es th a t  inhibitory influences cause a  shunting
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of a portion of the excitation-produced depolarizing current in the  receiving neuron's 

dendrite. This assum ption is d ic ta ted  by its considerable physiological plausibility. It 

has been found th a t in terneuronal inhibition depended on nerve m em brane conduc

tance changes (EccJes, 1961; L ettv in , 1962). In th e  dendrites of a receiving neuron, 

the activation of an excita to ry  ending produces a curren t flow in a dendrite; th e  ac

tivation of an inhibitor}'- ending results in a conductance increase of th e  m em brane 

patch on which th e  ending te rm inates, which resu lts in a  portion of th e  excitatory- 

produced current to  be shunted through this conductance. However, if the  d iam eter 

and length of the dendrite  is sufficient large and short, it will present a  relatively low 

resistance path  to  the  site of im pulse generation. In th is case, the  local position and 

ordering of the inhibitory  endings does not substan tially  affect the  resu ltan t gener

ator current. A sim ple schem e of the  shunting m odel is illustrated  in F igure 4.10, 

in which, ik is the source current produced by all of th e  excitatory  influences acting 

on neuron Nk', Vsj  (j  — 1 , 2 is the  signal produced by each inhib itory  neu

ron and transm itted  to  th e  neuron Nk', ie, the  generator current, is th e  p a rt of the

source current reaching th e  excitable portion of neuron Nk through m em brane con

ductance Gt \ i Sj ( j =  1 , 2 , . . . , ? )  is the  part of the  source current shunted through 

th e  inexcitable portion of th e  m em brane, whose conductance G sj  (j  — 1 ,2 , . . .  , q )  is 

signal Vsj  dependent; and C  is th e  m em brane capacitance. T he basis of th is  model 

can be found in the  article by Furm an (1965) and th e  book by N abet k  P in te r (1991).

Now we assum e th a t th e  shunting conductance G sj  is proportional to  the 

inhibitory signal V3j ,  th a t is,

G sj  =  ?rijVsj  j  =  1 , 2 , . . . ,  q (4.1)

where 1 < j  < q and rrij is a constant. From Figure 4.10, one obtains

C die ,
— -F +  *5 =  0 (4.2a)

where

*» = Y  **i =  m i V*i (4-26)
j= 1 j =1 j=1
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i e

Gs2 G s q

F ig u re  4.10 Schematic of shunting model, where is source current, Ysj
(j  = 1 . 2  q) is inhibitory input. ie is generator current, and iSJ (j  =
1 . 2 .. . . .q )  is shunted current.

Com bining th e  above equations together yields

C die r 1 A  „  t  , ,
G~~dt +  ^  +  G~ J -  =  **e e j= i

If Vsj varies w ith tim e. (4.3) is a  tim e varying differential equation. If Vsj  is a function 

of ik, (4.3) becomes a nonlinear differential equation. If in th e  sim ple case, we assume 

th a t Vsj is constan t, then  we have th e  following transfer function:

-  G' / C  ( 4 4 )  
h( s )  s +  ( G J C + i  E S - . m j H i )

In periodic steady-sta te  operation, th e  above equation m eans th a t increasing the 

inhibitory signal Vaj  will decrease th e  gain and advance the  phase shift.

The shunting inhibition m odel above shows how th e  local inh ib itory  signals 

modify th e  d irectly  m ediated  signals. In th e  real visual system , because of com pli

cated neuronal organization, inhibitory  activ ity  in the  cortical neural network th a t 

produces th e  V EP m ay not be described sim ply by a  single cell inhibition model. 

However, it is a  reasonable expectation  th a t th e  inhibitor}7 phenom ena observed in 

the  VEP, to  some ex ten t, m ay still reflect th e  inhibitory  activ ities in th e  single cells,
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th a t is. an increase of inhibitory  signal will decrease the  gain and advance the  phase 

characteristic  of the neural system .

4.5 Sum m ary of Inhibitory M echanism  Investigation

Analysis of la teral in teractions m ay be achieved by trea tin g  th e  excitatory  process 

and inh ib itory  process as two d istinct pathways. Following th is strategy, a model 

th a t describes la teral inh ib itory  paths was proposed in F igure 4.8.

P rio r studies of inhibitory  activities in the  neural signal processing were re

viewed. Those researches showed th a t both  contrast gain control and la teral in ter

action will modify the tem poral characteristics of the  visual pathway, in particu lar, 

th e  effects of those inhibitory  m echanism s on the  Y EP difference frequency com po

nents m ainly result from the  in h ib i to r  activities in th e  cortex (Zemon, Conte k  

Cam isa. 1987). Experim ents conducted were perform ed on two subjects in th is work 

to  dem onstrate  the inhibition phenom ena in the  V EP. A shunting inhibition model 

was used to qualitatively describe such inhibition phenom ena.



C H A PT E R  5 

SYSTEM  ID EN TIFICA TIO N

The procedure of system  identification will be divided into four steps, nam ely i) model 

construction, ii) selection of criterion for fit, iii) param eter estim ation  and iv) model 

validation (Ljung, 1987).

The m odel is constructed based on observed d a ta  and prior knowledge of the  

physical system. This is no doubt the  m ost im portan t and difficult step in the  system 

identification procedure. It is here th a t a prior knowledge and engineering in tu ition  

and insight have to be com bined w ith form al properties of the  model. Particularly , for 

a com plicated system , prem odeling and reconstruction will som etim es be necessary 

until one finds a proper m odel to  describe th e  system . In fact, it was th e  situation  in 

our system modeling.

The second step, the  choice of criterion for fit, is to  set up  a rule by which 

the candidate model can be assessed by using th e  observed data . T here are varieties 

of m ethods to  organize such assessm ent, and different m ethods m ay give different 

estim ation results. D etailed discussions on th is aspect can be referred to  the  tex t 

book by L. Ljung (1987).

The th ird  step, param eter estim ation, is to  determ ine the  model param eters by 

carrying out the response fitting  procedure. Even w ith  a good model s truc tu re  and 

a proper fitting criterion, special fitting  strategies should be considered to  achieve 

correct convergence.

The final step, model validation, includes evaluation of how th e  m odel relates 

to the  observed d a ta , as well as establishm ent of th e  classes and ranges of stim uli for 

which the  model is valid. All the  above steps are included in the  logical flow diagram  

as Figure 5.1 shown. Each step will be discussed in detail in the  following sections.

In the system  identification, although we desired a  general type  of transfer 

function for the  m odel, the  observed in terindividual differences in the  two-sinusoid 

stim ulation te s t (F igure 3.5, Figure 3.6) necessitated  incorporation of specific subject

90
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F igu re  5.1 System identification loop.
Adapted from the book by Ljung, 1987.

a ttrib u tes  into th e  equation coefficients. In this case, the  coefficients in the transfer 

functions will be subject dependent. We express, therefore, th e  transfer function 

type according to  th e  common features of the V EP responses (sum  and difference 

frequency com ponents) m easured from  th e  group of ten  subjects, and illu stra te  the  

param eter estim ation  for two specific subjects to  obtain a protocol for V EP modeling.

5.1 M odel Construction

5.1.1 M odel Structure Consideration

As discussed in th e  previous chapters, there  are several m ajo r m echanism s in the 

visual system  th a t account for th e  generation of the  VEP. E xcitato ry  processes are 

involved in signal transm ission through successive stages from th e  re tina  to  the  brain. 

Two types of inh ib itory  processes, contrast gain control and la teral interaction, are
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known to  modify th e  neural signal transm ission. T he contrast gain control exists in 

both  the  retina and the  cortex, while the  dom inant la tera l in teraction is located in 

th e  cortex. A block diagram  th a t depicts such neuronal signal processing is shown in 

Figure 5.2 .a.

In the diagram , th e  signal d irect-through process is expressed by a  trad itional 

sandwich model.

T he in itia l filter H i represents th e  transfer characteristics of earl}-’ stages of 

the  visual pathway, including th e  retina, la teral geniculate nucleus (LGN) and fron- 

t stage of th e  cortex. Hi  is segregated fu rther in to  th ree  elem ents, i / la , H u  and 

F.  to  represent the  process of the  contrast gain control in the  retina. Evidence has 

been shown th a t the  con trast m echanism  in th e  re tina  receives the  signals generat

ed by some bipolar subunits and feedbacks to m odulate  the  behavior of the  front 

end of the  subunits due to  num erous am acrine-to-am acrine and am acrine-to-bipolar 

synapses”(Levick, 1975; Kolb, Fam iglietti & Nelson, 1976). Hence, elem ent F  repre

sents the  feedback pathw ay of th e  contrast gain control in th e  retina, H \ a and H u  

represent the  transfer characteristic  before and after th e  feedback loop respectively. 

Hib  is a linear transducer. H ia is a  transducer w ith  param eters controlled by the  

feedback signal from F .

Since we assum e th a t th e  rectification process resides in th e  cortical level, th e  

second filter H 2 following th e  rectifier represents transfer characteristic of th e  last 

stage in the cortex. E lem ent G  perform s the con trast gain control in th e  cortex (see 

Section 4.2), while elem ent L  represents a la teral inh ib itory  pathw ay (see Section 4.3). 

T he inpu t of elem ent G  has not been decided, it  can come from an earlier stage or 

feedback from a la ter stage. T he param eters of th e  elem ent H 2 are controlled by the  

inhibitory  signals from bo th  G and L.

T he m odel above describes th e  neural message process in m ore detail than  

th e  sandwich model does. However, th e  V E P response elicited by th e  two-sinusoid

' Amacrines are the neuronal cells located between the bipolar layer and the ganglion layer in the 
retina, which play a function of m odifying the activity at the junction between the bipolar cells and 
the ganglion cells (e.g. Masland, 1986).
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s(t)
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Z(t)V ( t )

( b )

F ig u re  5.2 a: A block diagram of VEP generator containing excitatory pro
cess and two types of inhibitory processes, b: A simplified model containing 
one inhibitory process.
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inpu t, does not supply sufficient inform ation for identifying each block in F igure 5.2.a. 

In searching for an adequate model th a t can explain th e  visual system ’s behavior 

including the  excitatory  and inhibitory processes, yet sim ple enough for analysis, two 

considerations regarding inhibitory  processes in th e  retina and the  cortex are m ade.

F irst, we note: V ictor, in his work for m odeling the  dynam ic behavior of cat. 

re tina X cells (V ictor, 1987) and Y cells (victor, 1988), dem onstrated  th a t,  although 

th e  m odel param eters depend on the  stim ulus contrast level, such m odels w ith  pa

ram eters estim ated  at low contrast frequency response can predict th e  low contrast 

transient response, and so do the  models w ith param eters determ ined for high con

trast frequency response. This fact suggests th a t, if th e  stim ulus contrast is kept at 

the  sam e level during each test in our m odeling, th e  effect of contrast gain control 

in th e  retina will not be significant, and therefore need not necessarily be taken into 

account., or it can be m erged into th e  effect of contrast m echanism  in th e  cortex. The 

transfer characteristics of H\  can then  be approxim ated as a  purely linear process.

Second, we consider bo th  inhibitory m echanism  blocks L  and G  affecting H 2- 

i) We assum e th a t th e  con trast gain control G  m easures the  signal contrast from 

Hi:  th is m eans th a t both  elem ents L  and G  have th e  sam e input, ii) B oth la teral 

interaction and contrast gain control essentially have th e  sam e inhibitory  effect on the 

signal transm ission; nam ely an increase of inh ib itory  signal causes the  forw ard signal 

to  decrease in m agnitude and to  advance in phase (Section 4.2, 4.3). Thus, these two 

blocks can be com bined into one. A simplified m odel based on the  above discussion 

is illustrated  in F igure 5.2.b, in which, L G  is th e  block com bined from elem ent L  and 

G.

Phase change due to  L G

To describe th e  phase decrease of the  D FC in th e  two-sinusoid stim ulation  test 

using the  model in F igure 5.2, we hypothesize: in th e  m id-frequency region around 

15 Hz, as / i  increases, th e  signal from the  la tera l inhibitory  pathw ay L  decreases due 

to  th e  bandpass na tu re  of L  (Section, 4.3), which causes the  DFC phase to  decrease. 

In th e  high frequency region above 2 0  Hz, as f i  increases, th e  signal from contrast gain
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control G  decreases due to  the  gain character of H i ,  which causes the  DFC phase to 

decrease further. The com bination of these effects thus presents a m onotonic phase 

decrease in the  region above 15 Hz. Therefore, in th e  model of Figure 5.2.b. the 

transfer function of L G  should be properly constructed so th a t the  phase decrease of 

th e  D FC response results from the  inhibitory  modification through LG.

5.1.2 Identification of Subsystem  — Inhibitory Function

To set up a relation between the  inhibitory signal from the  block L G  and its dependent 

param eters in H 2. elem ent H 2 is segregated into two subsystem s in cascade. O ne is a 

linear filter, th e  o ther contains the  param eters which are controllable by the inhibitory 

signal. Since the inhibitory m echanism s affect both signal am plitude and phase, the 

transducer with controllable param eters is further segregated into two consequent 

blocks, nam ely a magnitude modulator and phase modulator. A block diagram  of this 

H 2 stage m odel is illustrated  in Figure 5.3.

In this m odel, H 2l  is sim ply a  linear transducer; H 2p is a  phase m odulator whose 

param eters depend on the inhibitory  signal I l g • H 2a  is a zero m em ory m agnitude 

m odulator whose gain depends on inhibitory signal I l g • I l g  is defined as a constant 

in s teady-sta te  operation, bu t its  value varies w ith th e  input frequency.

The inpu t-ou tpu t relation of H 2p  is defined as

G ( q) =  s  ~  (P1 F 2-^ g)
s  +  { p i  +  P 2 I l g )_

where p i  p 2 are constant coefficients, and N  is an integer. Since I l g  is a constant 

in s teady-sta te , for sinusoidal inpu t z ( t ) ,  the ou tpu t g ( t )  is also a  sinusoid w ith I l g  

dependent phase bu t the sam e am plitude of the  input.

T he inpu t-ou tpu t relation of H 2A is defined as

X ( s )  =  =  H 2A(I l g )G(s)  (5.2)
P a - f  I l g

where p 3 and p 4 are constant coefficients. For a sinusoidal inpu t g ( t ) ,  if I l g  is fixed 

in s teady-sta te , the ou tpu t x ( t )  is also a sinusoid with I l g  dependent am plitude bu t 

the  sam e phase of th e  input.

Z ( s ) =  H 2P(s , I l g ) Z ( s ) (5.1)
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I LG

z(t)

F ig u re  5.3 A block diagram of transducer H 2 which can be divided into 
two consequent processes, nonlinear and linear process. The nonlinearity 
consists of an amplitude modulator and a phase modulator both controlled 
by an inhibitory signal I l g -

This separately  controlled am plitude-phase m odel offers a  d istinct convenience 

to identify the linear elem ent (H 2l )• Suppose inpu t z(t)  contains a  difference frequen

cy component (D FC) and a sum frequency com ponent (SFC). Since H 2a  changes the 

am plitudes of m oth  DFC and SFC in th e  sam e scale, while H 2p  doesn 't change the  

am plitudes at all. th e  DFC and SFC in th e  ou tp u t r ( f )  from these m odulators retain  

the same ratio  as th a t for inpu t ~(i). Hence, the  ra tio  of SFC and DFC (equation 

(2.17)) is still valid to  determ ine the gain characteristic  of th e  second linear elem ent

H 2L-

To determ ine th e  param eters of th e  m odulators, one notes th a t,  for two-sinusoid 

input, the  phase and am plitude of the difference frequency com ponent produced from 

the  system  are, respectively

Q y D F c { f \ , h )  =  N t - 2 N  arctan  

and

-4 yDFC { f l i  f 2 ) =  ~ ~ Y ’t----\ H 2l { / 2 ~  f l ) \ A zD F c ( f l ,  f 2) (5 .4 )
Va +  I lg

2t t ( /2 — / i ) 
L Pi +  p2I lg

+  i H i L i f l  — / l )  +  <PsDFc(/l, f 2) (5.3)

9 ( 0 y ( 0
2P 2A H 2 L



Now if the input freq u en c ies/j and f 2 are fixed, then  | ^ 2l ( / 2 —/i) |-  l H 2 L{ f 2 —/ i )  

and  <b - DF C  ( / i , . ( 2 )  in the  above equations are constan t. Because I l g  and A z D F c { . f i , f i ) 

are proportional to the  stim ulus contrast Cw. we denote

I lg =  M j C w (5.5o)

\ H 2l {J2 — f i ) \ A 2D F c ( f i ,  J t ) — M 2C w (5.5 b)

where M i  and M 2 are constant. Equations (5.3) and  (5.4) can be simplified as

where M 3 =  N x  A  l H 2L { f 2 -  f i )  A  < } > z D F c { h ,  f i )  is a constant.

Equations (5.6) and (5.7) indicate: by fixing f i ,  f 2 and varying the  stim ulus 

contrast Cu.. the change in am plitude and phase of D FC can help one to  determ ine 

th e  coefficients pi. p2, p3 and p4. M i  and M 2 in (5.6) and (5.7) are rela ted  to  the  

transfer gain of Hi.  L G  and H 2l  a t particu lar frequency, for convenient purpose, they 

can be set to  unit value. Since th e  model is developed to fit the  phase change ra ther 

than  phase value of the DFC*. M 3  can be any a rb itra ry  constant.

According to  the discussion above, we divide th e  system  param eter estim ation 

in to  two steps. In the first step (we call i t  p re-param eter estim ation), we use th e  two- 

sinusoid stim ulus with a fixed frequency pair a t different contrast levels to  determ ine 

the  coefficients p i, p2, p3 and p4. In the  second step , w ith  fixed coefficients pi,  p 2, p 3 

and p4 , we use a modified two-sinusoid technique to  identify th e  transfer characteris

tics of H i ,  L G  and H 2l - T he m odification, considering th a t  one m ore elem ent L G  is 

included in the model, will be presented in th e  n ex t section.

T he identification of coefficients pi,  p2, p3  and  p4 was done as follows: The 

stim uli contained two superim posed sinusoids w ith contrasts of 0%, 5%, 10%, 20%,

‘ Equation (2.16a) used to determine the phase characteristic of H i  contains an unknown constant 
<hs D F c ( f i , h ) -

<Py D F c { , f \ -  f 2 ) =  —2 N  arctan
Pi +  P2 M 1 C,

(5.6)

and

(5.7)
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30% and 40%. T he frequency pair was fixed to  / i  =  18.95 Hz and f 2 =  20.94 Hz. 

O ther conditions were the  sam e as those described in C hapter 2.

It should be m entioned:

1 . The reason to  set the  stim ulus frequency pair around 2 0  Hz is th a t  th e  V EP dif

ference frequency com ponent m ay have a m axim um  response a t  th is  frequency, 

which is relatively reliable and accurate due to  high signal to  noise ratio.

2. In th e  m odel, I l g  represents th e  inhibitory  signals of b o th  con trast gain control 

and la teral interaction. A lthough th e  estim ation of th e  coefficients in the phase 

m odulator and am plitude m odu lato r are guided by th e  contrast varying test, 

since we assum e th a t both  inhibitor}' m echanism s have sim ilar nonlinear effect 

on th e  signal transm ission w ith in  certain  frequency region, th a t is, an increase 

of inh ib itory  signal will decrease th e  transfer gain and advance th e  phase of 

th e  system . Therefore, th e  p aram eter dependence on th e  inhibitory  signal I l g - 

obtained in th e  above experim ent, essentially represents th e  general rule of 

neural inhibitory  activity, e ither for th e  contrast gain control or the  lateral 

in teraction.

Difference frequency com ponent d a ta  were derived by Fourier transform  for the 

V EP records. Two subjects A and B, whose d a ta  are utilized in th e  modeling, were 

tested  to  ob ta in  th e  subject dependent coefficients p l5 p2, P3  and p4. D ata  were 

m easured a t two different tim es. Each tim e, th e  te st was conducted twice. T he 

first one ran  in ascending order from low contrast to high contrast; th e  second one 

in descending order from high contrast to  low contrast. T he am plitude response 

corresponding to  zero contrast inpu t was set to  zero. Averaged d a ta  over to tal four 

m easurem ents, m arked by circles, together w ith the ir radius of error circle and phase 

error range, are p lo tted  in Figure 5.4.1 for subject A and F igure 5.4.2 for subject B.

Because th e  phase m odulator also provides a phase shift to  th e  sum  frequency 

com ponent (SFC ), its order N  should be selected so th a t th e  phase m odulator co-
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F ig u r e  5 .4 .1  C ontrast experim ent data  for determ ining th e  param eters o f  
inhibitory m odulators. D F C  o f  V E P  were m easured from  subject A by using  
superim posed tw o-sinusoid  stim uli w ith  fixed frequency pair o f / j= 1 8 .9 5  H z, 
/2 = 2 0 .9 4  Hz and variable contrast set to  0%, 5%, 10%, 20% , 30% and 40%. 
Test was run at tw o separate tim es and repeated tw ice  in each tim e. A ver
aged data over to ta l four m easurem ents, m arked by th e  sym bol o f  circle, are 
plotted  versus stim ulus contrast. A m plitudes are p lo tted  w ith  their radius 
o f error circle , phases are p lo tted  w ith  their error range. T he fitting curves 
were obtained by least-square m ethod and are p lo tted  in solid curves.
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F ig u r e  5 .4 .2  C ontrast experiment, d a ta  for determ ining the param eters o f  
inhibitory m odulators. D F C  o f  V E P  were m easured from subject B by using  
superim posed tw o-sinusoid stim uli w ith  fixed frequency pair o f  f \  = 18.95 Hz, 
/ 2= 20 .94  Hz and variable contrast set to  0%, 5%, 10%, 20%, 30%, and 40%. 
Test was run a t tw o separate tim es and repeated tw ice in each tim e. A ver
aged data over to ta l four m easurem ents, m arked by th e  sym bol o f  circle, are 
plotted  versus stim ulus contrast. A m plitudes are p lotted  w ith their radius 
of error c irc le , phases are p lo tted  w ith  their error range. T he fittin g  curves 
were obtained by least-square m ethod and are p lotted  in solid curves.
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operating w ith the tim e delay in th e  system  can provide a  fit for the  phase response 

of SFC. However, the  tim e delay should be m ain tained  in a  proper value so th a t the 

model can also m atch  th e  VEP tran sien t response (to  be discussed in C hapter 6 ). 

Therefore. After several tries of prem odeling, it has been found th a t  N  =  4 provides 

reasonable m atching. Least-square fitting  was used to  determ ine param eters p\ to 

p4. P aram eters pj and p 2 were obta ined  by phase curve fitting  w ith  equation (5.6). 

Param eters pz and p4 were determ ined by am plitude curve fitting  w ith (5.7). Curves 

of model fits are p lo tted  in solid line in F igure 5.4. The param eters identified are 

listed in Table 2.

T ab le  2  Parameters of inhibitory modulator

Pi P'2 Ps Pa
subject A 0.678 4.587 3.489 24.379
subject B 0.155 6.704 3.218 15.374

5.1.3 The Strength of Inhibitory Signal

In C hapter 4, we indicated th a t a signal in the  d irect-through pathw-av a t one frequen

cy will be modified by an inhibitory  signal at ano ther frequency. This in term odulation 

modification depends on the  strength  of the  inhibitor}’ signal, which m ay be consid

ered a m easure of inhibitory  signal contrast. Therefore, in the  m odel of Figure 5.2.b, 

signal I l g , which acts as a param eter in th e  m agnitude and phase m odulator, should 

be a m easure of th e  signal contrast passing through the inhibitory  p a th  LG.

Now if th e  inhibitory  signal consists of several sinusoids, w hat is its  strength , 

average value, effective (RMS) value, or energy? Because all of these values are de

scribed in a steady-sta te  category, and are rela ted  to  each other, increase or decrease 

in one value m eans th e  sam e result in th e  o ther values. W hatever m easure is selected 

as a definition of signal strength  does not substantially  influence the  m odel identifi

cation. However, when th e  model is used to  predic t the  response elicited by another 

type of stim ulus o ther than  the two-sinusoids, th e  contrast of th e  stim ulus should 

be set so th a t th e  to ta l inhibitory  influence caused by contrast gain control in the 

retina is equivalent to  th a t corresponding to  th e  two-sinusoid stim ulus. O therw ise,
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th e  effect of contrast gain control in the  re tin a  will differ in each te st, and it  cannot 

be om itted  from the model. Therefore, when th e  m odel’s prediction is checked by 

com paring the  observed response elicited by different stim uli, th e  equivalent contrast 

should be determ ined and used. N aturally , th e  definition of inhibitor}' signal s treng th , 

I l g - should be expressed in term s of such equivalency.

In prior studies of m odeling X and Y type ganglion cells of th e  cat re tina, Vic

to r (1987; 1988) dem onstrated  th a t either frequency response or transien t response 

depend on stim ulus contrast. A m odel identified in te rm s of th e  cell’s frequency re

sponse to  low contrast stim uli essentially generates a close m atch  to  th e  step response 

m easured at low contrast, but it substan tially  deviates from  the  observed step  re

sponse to  high contrast stim uli. Similarly, a model based on th e  frequency response 

m easured a t high contrast can only produce a good fit for th e  observed step response 

to  high contrast stim uli, particu larly  when the  step function stim ulus and sinusoidal 

stim ulus have the  same root-m ean squared (RMS) values of th e  m odulating signals 

s(t) .  This finding leads to  the  hypothesis th a t stim uli w ith identical RMS values of 

th e  m odulating signals produce equivalent contrast gain control in the  retina.

Based on this assum ption, we define the  signal I l g  as RMS value of th e  in 

h ibitory  m odulating signal. A m odel of th e  inhibitory p a th , L G , based on the  above 

consideration, is proposed in F igure 5.5.a, here, H 3  is a  linear transducer, representing 

th e  linear process in the inh ib itory  path; M  is an algorithm  elem ent which converts 

th e  inhibitory  signal q(t) in to  its  RMS value, I l g ; th a t is

I l g  =  M\q{t) \  =  ^lirn jQ (5-8a)

or

I l g  =  \ J a \  -f A \  -1- ----- (- A */  V 2  (5.86)

where A i ,  A 2 , ■ ■., A n are th e  am plitudes of the  sinusoids consisting in q(t). Since 

th e  system  input s(t)  does not contain DC com ponent, q(t)  does not contain DC 

com ponent either. I l g  is a m easure of overall contrast of th e  inhibitory  signal q(t).

In th e  physical visual system , th e  inhibitory process in th e  cortex m ay not
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v(t) q(t)
H 3 --------- M
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f i l t e r \ /
l n r -

l ( t )  =  q  ( i )

M

! L “ I 1 DC!
1 / 2

(b)

F ig u re  5.5 a: Inhibitory path containing a linear transducer Hz and a 
converter M .  b: A subsystem M  th a t, in steady-state, transforms the input 
signal to its root-mean squared (RMS) value.
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be necessarily described by algorithm  (5.8), yet for the  system  m odeling, we feel this 

algorithm , together w ith m odulators H^a and H ip .  m ay conveniently suite description 

of the inhibitory  process under s teady-sta te  condition. Therefore, we accept this 

algorithm  ju st as we accept equation (3.4) to  approxim ate the  inpu t-o u tp u t relation 

of the rectifier. The difference is th a t (3.4) is derived based on th e  rectification 

characteristic, while (5.8) is derived based on th e  experim ental results.

A physically realizable subsystem  th a t  can equivalently fulfill such signal tran s

form ation is shown in Figure 5.5.b. In th e  system , th e  first elem ent is quadratic 

full-wave rectifier w ith inpu t-ou tpu t relation l(t) = q2 ( t ); T he second elem ent is 

a lowpass filter w ith a sufficient low corner frequency to  ex tract the  DC com po

nent from /(/): T he th ird  elem ent is a  square-root rectifier th a t produces ou tpu t

I l g  =  Vdc\* =  lim r-oc. \ / j  lo q2 {t)dt.

A com pleted m odel for describing V EP generating in s teady-sta te  operation is 

shown in F igure 5.6. In the  model, H 1 . H 2L and H 3  are linearities whose transfer 

functions are determ ined  in th e  identification procedure described later.

5.2 Choice of Criterion for Fit

To identify th e  param eters in th e  m odel, least-square fitting is used. Suppose n 

tests  are conducted a t different frequency pairs, / 1  =  rjt and / 2 =  77,- -)- 2 =  Hz 

(?’ =  1,2, • ■ ■ ,n ) . We denote th e  corresponding averaged Fourier com ponents of the 

V EP as Vy» th e  model response as

Yi = t iVi ,9)  (5.9)

where 9 is a vector of param eters in th e  m odel to  be determ ined, and £ is th e  m odel 

equation which correlates th e  m odel o u tp u t Y{ and th e  variables 7?, and 6 . Y j  and Yt 

m ay represent either th e  DFC or the  SFC. T he criterion function is given by

R , m  =  E F i - « * , * ) ] ’ (5.10)
t '= l



105

LG

q[t)

LG

DC H 2A

V( t ) Z(t ) 0( t ) x ( t ) y( t )

H 2 L\ 1 Z H 2 P

l ____________________________________________________ J

F ig u re  5.6 VEP frequency response model, which contains a direct-through 
pathway and a parallel inhibitory pathway. The direct-through pathway 
consists of a linear transducer H\  followed by a rectifying nonlinearity N  
and an inhibitory signal dependent transducer H2. The inhibitory pathway 
is formed by a linear transducer H$ and a converter M . components of the 
blocks are defined in detail in Table 3.

T ab le 3 Characteristics of each element in the model guided by frequency 
responses.

Hv- V ( s ) - ( ^ h +a;-3+ a 2 ) 2 ( s 2 + 0 ! s+a4 )2exp s T S(s )

N  : z(t) =  N [v{ t )] =  |t»(<)|

H 2p :

h 2A

M  : h o  = M[q(t)] =  l i m j _ „  ^  f f  q2 ( t ) i i  -  q2 (t) > a v e

H 2L : W  _  (s+&i)fci 1 1 Y(~\

# 3 : Q{*) -  ^ , , ^ ( 6 )
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where R n{8 ) is a sum  of residuals which should be m inim ized by adjusting  the  pa

ram eter vector 8 . T he unique feature of th is criterion, developed from  th e  linear pa

ram eterization and quadratic  criterion, is th a t it is a quadratic  function in #, which, 

therefore, can be m inim ized analytically. In th e  practical identification procedure, 

th e  criterion equation (5.10) m ay be modified. Different weights IF) can be assigned 

to  the  residuals, yielding a criterion equation

(5 .i i)
(=i

The reasons to  consider weighted least-square m ethod  are:

1 . The observations V, could be of varying reliability. The degree of disturbance 

in some observations could be subject to  change, or th a t certain  m easurem ents 

are less representative of the  system 's properties. In such case, th e  observations 

should be down weighted.

2. The observations could be of varying relevance. This is because th e  model 

is proposed and identified according to  th e  d a ta  we m easured over th e  entire 

testing region, bu t the  corresponding fitting  curve m ay not exactly  fit every 

observation. In some particu lar testing  region, th e  m odel may no t hold. T here

fore, an observation in such questionable region, even if accurate, should carry 

less weight.

Reviewing th e  V E P d a ta  m easured from  th e  ten  subjects (F igure 3.5, 3.6), 

one finds, for the phase response of DFC, th a t  all th e  response curves are relatively 

consistent in the  high frequency region, presenting a  negative slope, b u t possess a 

large variance in th e  low frequenc}' region below 1 0  Hz. One reason is th a t th e  V EP 

frequency responses have low sensitivity in th e  low frequency region, and easy to  be 

contam inated by noise. Such phenom ena can also be seen from the  repea ted  te s t on 

single subject. F igure 5.7 shows a set of difference frequency com ponent (D FC ) d a ta  

m easured six tim es from  subject B. In this experim ent, m easurem ents were carried out 

in three different tim es. Each tim e, DFC corresponding to  each frequency po in t was
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F ig u re  5.7 Experiment of VEP reliability investigation. Stimuli were of two-sinusoids in 
superimpos. The separation of two frequencies was 1.99 Hz. The sampling frequencies were 
set to / i  =  1.22. 2.99, 4.99, 8.98, 13.96, 19.95, 24.93 and 29.92 Hz. Test repeated twice on 
subject B at three different times. Each test ran 32.08 seconds. DFC were obtained by 
Fourier analysis on recorded VEP data  and are plotted in top for amplitude and middle 
for phase. The data  collected at different time are marked by the symbols of circle, box 
and triangle respectively. In each time, two sets of repeated measurements are marked by 
unfilled and filled symbols respectively. Vector-averaged data  are plotted in solid line. The 
radius of error circle r circ and the ratio of the amplitude of the averaged response and rclTC 
are plotted in bars and dash line respectively in the bottom.
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m easured twice, one was forward (from low frequency point to  high frequency poin t), 

the  o ther was backward (from high frequency point to  low frequency point). Each 

test ran  32.08 seconds. The data m easured a t different tim es and in different orders 

are m arked by different symbols. T he vector-averaged data  over th e  six m easures are 

linked by a solid line. The radii of error circles, r circ, a t each frequency point are 

m arked by bars. The ratios of th e  am p litude  of the  averaged response and r c,rc are 

linked by  a dash line.

T he d a ta  show i). Even though th e re  is a  variance between each single record

ings. except for the  phase response a t low frequencies below 5 Hz, the  response curve 

shapes, are essentially consistent w ith each other, ii). T he ratios of the  am plitude of 

the averaged response and r c;rc, which reflect th e  signal to  noise ratio , is much lower 

in the region below 5 Hz than  in th e  ano ther region.

Therefore, instead of averaging large num bers of repeated  records to  get rid of 

noise in th e  low frequency region, we assign a lower weight to the m easurem ents in 

th a t questionable region and higher weight to  th e  others in order to  guide the system  

identification by reliable and consistent data . In this work, th e  weighting function is 

defined as th e  ratio  of th e  mean am plitude of DFC (calculated from (2.32a)) and the  

radius of error circle (calculated from  (2.37)), th a t is,

W ■ =  A yDFC^ i '>'ni +  2 ) a v e  ( 5

T c i r c i V i )

where A yD F c { V i ‘. Vi +  ~ ) a v e  is th e  m ean am plitude of DFC at th e  ith  frequency pair 

{Vi-, Vi +  2), and r c{rc(r)i) is th e  radius of error  circle at th e  ith  frequency pair. For the  

sum frequency com ponents, th e  sam e procedure is followed to  obtain  th e  weighting 

function.

5.3 Param eter Estim ation

There are th ree  subsystem s in th e  m odel to  be identified, nam ely th e  linear filters 

H\.  Hz  and H 2 L■ Since m ore blocks are included in the m odel, th e  equations for th e  

sandwich system  should be modified. We denote the gain and phase characteristic
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of those linear filters as [ H . i f j l  L H ^ f ) .  \Hzi.f)\,  i H z i f ) ,  \H2Li f ) \  and l H 2Li f )  

respectively. For th e  system  inpu t

s(<) =  C u,[sin(27r/1i)  +  s in (2 x /2<)] (5.13)

where C w is th e  depth  of m odulation which is 30%, the  am plitudes and phases of 

DFC and SFC produced from  th e  rectifier are given by equations (3.5), (2.16), (2.17), 

th a t is

A- . DFci . f 1 . f 2)  =  r[C u.|/f1( / 1)|.C’u, | i /2( / 2)|] (5.14)

A z S F c i f i J * )  =  A: DFC( f u f 2 ) = T[Cw\ H i ( f 1 ) \ ,Cw\H2 ( f 2 )\] (5.15)

<PzDFC'i.fl • -  L Hi i f i )  +  ^  (5.16)

<PzSFci.fl-, / i )  =  +  £-H2 (./*2 ) — — (5.17)

Since H 3 linearly filters th e  signal from H i.  th e  am plitudes of the  tw o sinusoids

produced from H 3 are Cw\H i i f i  ) | | t f 3 ( / i ) |  and Cw\H1 ( f 2 ) \\Hz{f2)\. The inhibitory

signal generated from  block M .  according to  (5.8b), is given by

I  LG =  CuV | i / 1 ( / ] ) |2 | / f 3 ( / l ) | 2 + i ^ l ( / 2 ) | 2 |^ 3 ( /2 ) |7 v /2 (5.18)

Finally, th e  difference frequency com ponent and sum frequency com ponent from the

entire system , according to  (5.3) and (5.4), are given by th e  equations

A yDFC{f i , f2)  =  -r[Cw\ H , i h ) \ , C w\Hi{.f2) 1] \H2L{ h  ~  h )I (5.19)
P4 +  iLG

<PyDFci.fl,  f 2 ) =  l H 1( f 2) - £ H i i f 1) + ̂ i r - 8  a rc tan  — ‘f-— / ^ - + l H 2L{ f 2 ~  f i )  (5.20)
* Pi +  p 2lLG

A ySFc i . f i , h )  =  — ^ Y - G a m m a l C ^ i h ^ C ^ H . i h M H M  + / 2)| (5.21)
Pa t  iLG

<fySF c i f i ,  ,/2 ) =  LH 1 (f i ) +  Lf f  1 (h ) +  \ 7T- 8  a rc tan  r— ̂  "t~ f 2  ̂+  LH2L(f i  +  f 2) (5.22)
* P l +  P2-ILG

T he ratio  of sum frequency com ponent and difference frequency com ponent is then

A y S F c ( f l , f 2 ) _  \ H 2 l i . f l  +  ,/~2)[

A yDF c i f l , f 2 ) \ H 2LU 2 - . f l ) \  1 j
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For a given input of two-sinusoids in (5.13), when f 2 — f i  is a constant, th e  gain 

|-#2l ( / 2  — / i ) |  and phase shift I H 2 l { J 2 — f i )  are constan t too. Therefore, (5.19) and

(5.20) provide the  rules for identifying Hi  and H 3 according to  th e  observed difference 

frequency com ponents, while (5.23) provides a rule for identifying \H2i { f ) \  according 

to  th e  observed am plitude ratios of sum frequency com ponent and difference frequency 

com ponent. Once those have been done, equation (5.22), together w ith (5.19), (5.20) 

and (5.23), offer additional rules for adjusting the  param eters in all th e  three elem ents 

H i.  H 3 and H 2l  simultaneously. In th e  procedure of p aram eter estim ation, a unit 

value and an arb itrary  constant are assigned to  \H2 L H 2 — / i ) |  and l H 2L[ f 2 — f i )  

respectively, so tha t relative values of DFC and SFC are used to  guide the  param eter 

identification.

The transfer function forms are constructed  in such a way: F irst, since the  

am plitude response of DFC reflects th e  gain characteristic  of Hi  (from (3.7b)), it 

can be used to  determ ine th e  transfer function form of H i.  A lthough the  m agnitude 

m odulator H 2a in the  H 2 stage will m odify the  am plitude of DFC observed from  the 

system , such effect may merelj- change the  DFC value ra th e r th an  response curve 

shape.

Second, the  am plitude ratio  of SFC and DFC, reflecting th e  gain characteristic 

of H 2l ■ can be used to determ ine th e  transfer function of H 2 l -

Third , considering when Hi  is a m inim um  phase function, it only offers a ra th e r 

flat phase response in the DFC; th e  phase response of D FC in th e  V EP (which is 

not a flat curve) m ainly results from th e  inhibitory process through inhibitory pa th  

L G  and phase m odulator H 2p.  Since th e  phase of D FC produced from  H 2p  increases 

w ith inhib itory  signal I l g ,  thus, the  D FC phase response curve shape, in some ex ten t, 

reflects th e  gain characteristic of H 3  in p a th  LG.  This featu re can be used to  set the  

transfer function form of H 3.

We determ ine the transfer function forms of H i ,  H 2l  and H 3  in term s of th e  

above discussion w ith consideration in m inim um  phase function category (except for 

a constant delay). After several tries for fitting  the  D FC and SFC data m easured
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from subjects A and B, we established th e  transfer functions for each linearity  as 

follows:

=  (5-24)

H 2 L : H 2L{s) =  , W +. ,  (5 '25>

-^3 : ^ 3 (3 ) =  (ai+a^s+»ii)! (5.26)

In H i . a constant delay exp-sT is added to  the  transfer function to  express th e  tim e 

cost for transm ittin g  the neural signal from  the retina to the  cortex. All th e  input- 

output relations of the  blocks in m odel, so far. are com pleted, which are listed in 

Table 3.

Since there are eighteen param eters included in the  m odel to  be determ ined, 

the  procedure of residual m inim ization m ay not necessarily yield unique param eter 

set or may not even converge. To avoid th is situation, p re-ad justm ent of th e  initial 

param eters has to  be m ade. A param eter identification procedure was developed in 

this work, its flowchart is shown in F igure 5.8.

The param eter estim ation is done in two stages, nam ely p re-ad justm ent and 

param eter identification. During the  p re-ad justm ent stage, individual elem ents are 

considered separately, while during the  identification stage, all param eters are ad just

ed simultaneously. In each of the step, least-square sitting  is used.

F irst, after each param eter has been assigned an initial value, th e  param eters 

in H 2l  are determ ined independently  to  fit th e  SF C /D FC  am plitude ratios according 

to (5.23).

Second, th e  param eters in H i , except the  constant delay T , are tem porarily  

determ ined by D FC am plitude curve fitting  according to  (5.19). W hen Hi  has been 

settled, th e  param eters of H 3  are estim ated  by D FC phase curve fitting  according to

(5.20). A fter th is has been done, th e  inhibitory m odulation on th e  D FC am plitude 

has been changed due to  th e  param eter change in H 3 , the DFC am plitude response
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from the  m odel may not fit the  data.. If so, we repeat ad ju stm en t of the  param eters 

of Hi  according to (5.19). Similarly, th is  change in Hi  p aram eters  modifies th e  phase 

m odulation of th e  DFC through i / 3 , so th a t the m odel fit for the  phase response 

of th e  D FC m ay not hold. We again ad just param eters in i /3  in te rm s of (5.20). 

A fter alternatively  repeating these two steps several tim es, b o th  am plitude and phase 

responses of DFC from th e  m odel will be close to  th e  observed V E P data. A t this 

stage, the  param eters of Hi  and i /3  are adjusted  sim ultaneously according to  (5.19) 

and (5.20).

T hird , the  conduction delay T  is estim ated  by fitting  th e  phase response of the  

SFC in accordance with (5.22).

Finally, the param eter identification is carried out. whereby all eighteen param 

eters are adjusted sim ultaneously by fitting  both  DFC and SFC responses in term s 

of (5.19). (5.20), (5.22) and (5.23).

W hen the  system  identification is guided by bo th  am plitude and phase of V EP 

in term odulation  com ponents, th e  to tal least-square residuals to  be m inim ized is a 

com bination of am plitude residuals and phase residuals. However, because the  phase 

values are m uch greater than  the  am plitude values, th e  to ta l residuals are m ore sen

sitive to the phase variance than  to  the  am plitude variance. Therefore, a different 

weight m ust be assigned to  each residual set in order to  balance th e  sensitivity  of the  

am plitude variance and the  phase angle variance.

T he to ta l least-square residual then  is given by

Rn(B) =  WA j r  WilYiA -  U ( V i , 6 ) f  +  W t ' E W i F i *  -  U i m M  (5.27)
i = l  i = l

where W,- are the  weights obtained by (5.12) in term s of signal to  noise ratio; WA and 

H 0  are th e  constant weights assigned to  the  am plitude residuals and phase residuals 

respectively. The weight ra tio  of WA and W$ was set to  1:0.0001 in  th is  work.

A corresponding program  for frequency response fit was w ritten  in this work 

and linked w ith  a  Simplex m inim um -residual-searching algorithm  (Caceci & Cacheris, 

1984). By using th is program , we identified the  system param eters for subject A and



PARAMETER PRE- ADJ USTMENT

M odel  c l o s e ly  f i t  b o t h  a m p .  & p h a .  of DF"C?

n o
y e s

end

Obt a i n  H2L p a r a m e t e r s  by f i t t i ng  
a m p l i t u d e  r a t i o  o f  S F C / D F C  

u s i n g  5  2 3 )

ODtai n c o n d u c t i o n  d e l a y  T by  f i t t ing  
p h a s e  o f  SFC  u s i n g  ( 5 . 1 8 ) ,  ( 5 . 2 2 )

O bt a in H 1 D a r a m e t e r s  by f i t t ing  
a m p l i t u d e  o f DFC 

u s i n g  ( 5 . 1 9 )

O b t a i n  p o m m e t e r s  o f  b o t h  H1 a n a  H 3  s i m u l t a n e o u s l y  

b y  f i t t i n g  b o t h  a m p l i t u d e  a n d  p h a s e  o f  DFC 

u s i n g  ( 5 . 1  B ) ,  ( 5 . 1 9 ) ,  ( 5 . 2 0 )

assign initial values

O o i a i n  H 3  p a r a m e t e r s  b y  f i t t i n g  
p h a s e  o f  DFC  

 u s i n g  ( 5 . 1  8 ) ,  ( 5 . 2 0 ) ______

u s i n g  al l e q s .

PARAMETER IDENTIFICATION
O b t a i n  al l p a r a m e t e r s  by f i t t i ng a m p l i t u d e

: o f  DFC a n d  SFC s i m u l t a n e o u s l y ,  
( 5 . 1 8 ) ,  ( 5 . 1 9 ) ,  ( 5 . 2 0 ) ,  ( 5 . 2 2 ) ,  ( 5 . 2 3 )

F ig u re  5.8 Frequency response curve fitting procedure.
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subject B. T he V EP data  of bo th  D FC and SFC m easured from  these two subjects and 

th e  model fits are displayed in F igure 5.9.1 and 5.9.2 respectively. In the  figures, th e  

data  points are m arked by symbols, while the  fits are p lo tted  in lines. The frequency 

characteristic of the initial linear filter Hi in bo th  m odel A and B are p lotted  in 

F igure 5.10, and the  characteristic  of Hz  are p lo tted  in F igure 5.11. All th e  resulting 

param eters of models A and B are listed in Table 4. We expect these sets of d a ta  can 

offer useful inform ation to  set th e  in itia l values for fu rther system  identification.

We also m ention : For th e  d irect-through pa th  in the  m odel, the signal goes 

through H i , H 2a and H 2l • The overall constant gain of th e  d irect-through pa th  is 

th e  product kopzh-  For th e  inhibitory  pa th , the signal goes through Hi and Hz- The 

overall constant gain of th e  inhib itory  pa th  is the p roduct k0 k2. Those products can 

be trea ted  as new param eters instead of ko- p3, ki and k2. T he num ber of m odel 

param eters can then  be reduced.

5.4 M odel Validation

W hen the  m odel has been set, it rem ains to  te s t w hether th is  m odel is valid for its  

purpose. It involves the  assessm ent how the  m odel relates to  observed data  and its 

intended use. In this section, m odel validation is perform ed for th e  two subjects A 

and B. We will discuss i) w hether th e  model is “good enough” to  fit the V EP sum  

and difference frequency com ponents, and ii) w hether th e  m odel can predict th e  V E P 

response corresponding to  th e  stim ulus o ther than  two-sinusoids.

5.4.1 G oodness of Fit

The m odel’s goodness of fit is exam ined by the  m ethod of “lack of fit” (e.g. Davis k  

G oldsm ith, 1972). This m ethod  is utilized for repeated  sam pling d a ta  and assum es 

th a t  the  errors or residuals are norm ally d istribu ted . T he principle is briefly described 

below, m ore details can be  found in  th e  reference.

Suppose th a t there are n frequency points, and  a t each poin t, the re  are m  

repeated  m easurem ents, then  the  to ta l num ber of m easurem ents is m n.  We denote
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O  V E P  d o t o  
  m o d e l  f i t s
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F ig u re  5.9.1 Intermodulation components of VEP from subject A and their 
fits from model A. The averaged observations are marked by the circular 
symbols The fits are plotted in smooth curves, a: amplitude responses of 
difference frequency component; b: phase responses of difference frequency 
component; c: ratios of sum and difference frequency component; d: phase 
responses of sum frequency component.
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F ig u re  5.9.2 Intermodulation components of VEP from subject B and their 
fits from model B. The averaged observations are marked by the circular 
symbols. The fits are plotted in smooth curves, a: amplitude responses of 
difference frequency component; b: phase responses of difference frequency 
component; c: ratios of sum and difference frequency component; d: phase 
responses of sum frequency component.
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F ig u re  5.10 Frequency characteristic of initial linear filter H\. Upper: 
amplitude; lower: phase. Model A’s characteristic are plotted in solid, while 
model B’s are plotted in dash.
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F ig u re  5.11 Frequency characteristic of Hz in the inhibitory path. Upper: 
amplitude; lower: phase. Model A’s characteristic are plotted in solid, while 
model B's are plotted in dash.
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T able 4 Parameters of subject A and subject B resulted from frequency 
response curve fitting.

ko bo a,Q
H !

Oi a2 0 3 &4 T
subject A 7.05x10^ 0.2614 8.1367 102.06 16721 77.076 49098 0.030
subject B 9.02X109 0.2306 5.4600 181.665 37236 154.05 28507 0.032

H 2l
ki bj a$ a6 07 0 8 a 9

subject A 3 .5 9 x l0 8 7.2950 331.50 114.65 1922.6 73.168 6777.3
subject B 3.30X107 0.7540 31.416 31.491 2218.7 40.200 18026

h 3

k 2 o-io a n
subject A 1.5996 69.266 1057.9
subject B 2.2322 120.95 990.47

a Fourier com ponent m easured a t the ?th point as 1 'tJ (1  <  i < n. 1 <  j  < in): the 

averaged data  over all m  m easurem ents at po in t i as K,-; the  m odel response a t point 

i as Yj, then  the  to ta l m ean squared error due to  noise is

n  m

M S f „ l - t )  =  • £  E o t  -  y i ) 2/ < I f , n c i „ )  ( 5 . 2 8 )
i = l  j = 1

The to ta l m ean squared error due to  “lack of fit” is

M S (ioj) = i r ,m ( Y i  - Y i ) 2 / d f {lof) (5.29)
t=i

where df^0j) is the  degrees of freedom for “lack of fit” , d/(noise) is th e  degrees of freedom 

for noise.

Now we construct a F -ratio  function

r  M S W | m(Vj -  Y j ) V d ! Vol)

M S T . U T . 7 ^ ( y n - Y i ? l d f ^ „ )  ' '  ’

which satisfies condition of th e  F  d istribu tion . T he criterion of judgem ent is s ta tis 

tically based. We give a null hypothesis th a t  th e  to ta l variance between th e  model

responses and th e  tru e  responses for all sam pling points is not greater th an  th e  to tal 

variance of th e  m easurem ents, and set a  critica l value Fcr, so th a t the re  is a  small 

probability th a t th e  F  d istribution  value is g reater th a n  F ^ i • If th e  calculation of

(5.30) exceeds F crt-, th e  hypothesis is rejected , we say, there is a significant “lack of
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fit-’*, otherw ise, we accept the hypothesis and say th a t th e  m odel has no significant 

“lack of fit” . In such a case, problem s w ith  th e  m odel are a ttr ib u te d  to  noise.

In th e  system  identification procedure, we fitted th e  V E P  d a ta  expressed in 

am plitude and phase angle, the  reason is th a t th e  data in such expression has more 

visible relation to  th e  param eters in th e  m odel than  the  expression in real and im ag

inary p a rt in s-plane, and thus m ore convenient for transfer function configuration 

and in itia l value setting. However, as described in Section 2 .6 , th e  am plitude and 

phase of V E P data do not satisfy the  condition of norm al d istribu tion . Therefore, to 

exam ine the  m odel goodness of fit, we calculate th e  model residuals and m easurem ent 

residuals in term s of the component expressed in real and im aginary  parts.

For difference frequency com ponent, there  are eight sam pling points (?) =  8 )

from 1 .2 2  to  30 Hz. For sum frequency com ponent, there  are five sam pling points 

(n = 5) from 4.33 to  30 Hz. A t each point, the re  are four repeated  records, and 

each record contains two m easurem ents-real and im aginary com ponents. So the to tal 

num ber of m easurem ents i s ( 8  +  5 ) x 4 x 2  =  104. The to ta l m ean squared error due 

to  noise is

13 4 _  13 4

M  ̂  {noise)  =  I E ( '  i j ( real )  1 i ( real ) )  / d f [ n o ise) +  E E ( i s i i « i  - r , (  i m a ) )  / 'd}(noi se)
t = l  j = l  »=1 j = 1

(5.31)

The to ta l m ean squared error due to “lack of fit” is

13 - _ 13 ~ _
4(Ti(reo/) -  yi(real))2 /4f(lof) +  ]>2 4 (̂ >'0'ma) “  Yi(ima))2 / dj\{0f) (5.32)

t = l  t'=l

The footm arks ‘rea l’ and ‘im a’ in (5.31) and (5.32) express real p a r t and im aginary 

p a rt of th e  d a ta  respectively. Because there  are eighteen param eters estim ated , among 

which k0 and can be combined in to  a new param eter k0 ki,  th e  degrees of freedom 

for residuals is

df{res) =  ( 8  +  5) x 4 x  2 -  17 =  87 (5.33)

The degrees of freedom for noise is

d f{noise) =  ( 8  +  5) x (4 -  1) x 2 =  78 (5.34)
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T he degrees of freedom for “lack of fit” is

df(iof) — df^rcs) df(nojse) = b>t lb 9 (5.3o)

Because in the  param eter estim ation , weights was assigned to  th e  residuals to  

be m inim ized (see equation (5.27)), th e  m odel has a tendency to  m ore closely fit the  

da ta  w ith higher weight th an  th e  d a ta  w ith  lower weight. In checking th e  goodness of 

fit. th e  weights should also apply to  the squared errors in (5.28) and (5.29). Therefore, 

th e  jF  ra tio  function becomes

f  — £ j = l  ^  i O ' i j j r e a l )  ~  F  U r e a l ) ) 2 +  I 2 j = i  ^  ~  I  , ( , m a ) ) 2 78
H i = l  4W Ureal) ~  F  U r e a l ) ) 2 +  ] C i = l  4 W  , ( ^ i ( i m a )  ~  F , ( t ma) ) 2 9

(5.36)

where IT,- is the weight determ ined as the  ratio  of the am plitude and the radius of 

error circle of the  com ponent at ?th point. Applying th e  data listed in Appendix 

B-II to (5.36), we have: for subject A, F  =  1.58; for sub ject B, F  =  1.53. From the  

tab le  of F  distribution, the critical value F cri corresponding to  0.05 probability and 

(9.78) degrees of freedom is 1.99. Because both  subjects F  values are less than  F cri, 

we suggest th a t the  model has no significant “lack of fit” .

5.4.2 M odel Prediction

Model prediction for the  stim uli o ther th an  two-sinusoids is exam ined. The following 

two cases are considered of in terest:

(1 ). Single-sinusoid stim ulation (steady-sta te  response).

(2 ). S tep-function stim ulation (transien t response).

Single Sinusoid Stim ulation

T he stim ulus for checking th e  m odel prediction, th e  sam e as th e  two-sinusoid 

one, was a contrast reversing d artboard  p a tte rn , bu t th e  lum inance was tem porally  

m odulated  with sinusoidal function

L ( i )  =  L m +  L ms { t ) =  L m +  L m C w sin(27rf t )  (5.37a)

for one set of segments in the  p a tte rn , and

L ( t )  = L m -  L ms ( t )  = Lm -  L m C w sin(27rf t )  (5.37b)



for the  o ther set of segm ents. In (5.37). L m is average lum inance. s( t )  — Cw sin(27r/t) 

is m odulating  signal, and C u, is m odulation dep th  or con trast peak in percentage. To 

elim inate th e  effect caused by th e  contrast gain control in th e  re tina , the m odulating  

signal of th e  single sinusoid stim uli should m atch  th a t  of th e  two-sinusoid stim uli in 

RM S value. Therefore, th e  con trast peak Cw in  equation  (5.37), corresponding to  

30% con trast of two-sinusoids, was set to  42.43%. Since th e  m odel contains a  full- 

wave rectifier in the  d irect-th rough  pathway, and only even harm onic com ponents 

are produced from th e  system , second harm onic com ponents from the  model and in 

th e  V EP were com pared. T he frequency points in th e  experim ent were set to  1 .2 2 . 

2.87. 5.55. 7.29. 9.82. 12.15 and 14.96 Hz. Each test ran 32.08 seconds, and repeated  

four tim es at each frequency. Subjects A and B were te sted  monocular!}- w ith the  

sam e eye as the one tested  w ith two-sinusoid stim ulation . T he second harm onic data  

are obtained by Fourier analysis on the  recorded V EP. T he vector-averaged d a ta , as 

well as th e  radius of error circle are p lo tted  versus frequency 2 /  in Figure 5.12.1 and 

5.12.2.

To calculate th e  o u tp u t from  th e  m odel, we again use th e  6 th  order polynom ials 

to  approxim ate the rectifier characteristic . For th e  single sinusoid inpu t of (5.37), the  

second harm onics from th e  rectifier is (see A ppendix C-I)

am plitude: A z{2f )  =  Cw\Hi ( / ) | ( | a 2 +  | a 4 +  §§a6)

=  0.4307CUI|ET1( /) |*  (5.38)

phase: <t>z{2f) =  2 l H i ( f )  -  n / 2  (5.39)

T he inhibitory  signal:

I l g  = C w\ Hi ( f ) \ \ H 3 ( f ) \  (5.40)

T he second harm onics from  th e  en tire  system  is then

am plitude: A v( 2f )  = A z{ 2 f ) ^ ^ \ H 2L{2f ) \  (5.40)

phase: <t>v(2 f )  =  <f>x( 2f )  +  4tt -  8 a r c t a n ( - ^ ~ ) + L H 2L{2f )  (5.41)

*In equation (5.38), a2, 0 4  and a 6  are constant coefficients in the polynomials which are 2.307, 
-2.820 and 1.466 respectively.
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VEP d a t a  
m o d e l  fit
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F ig u re  5.12.1 Comparison of single sinusoid stimulus responses from sub
ject A and model A. Stimulus contrast was set to  42.43%. The stimulus 
frequencies were set to 1 .2 2 , 2.87, 5.55, 7.29, 9.82, 12.15 and 14.96 Hz. Sec
ond harmonics were selected for comparison. The vector-averaged data  are 
marked by the circular symbols. Amplitudes are plotted with the radius of 
error circles, phases are plotted with their error range. The model responses 
are displayed in solid lines.
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VEP d a t a  
m o d e l  fit
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F ig u r e  5 .1 2 .2  Com parison o f single sinusoid  stim ulus responses from  sub
ject B and m odel B . Stim ulus contrast w as set to  42.43% . T he stim ulus  
frequencies were set to  1 .2 2 , 2 .87, 5 .55 , 7 .29 , 9 .82 , 12.15 and 14.96 Hz. Sec
ond harm onics w ere selected for com parison. T h e vector-averaged d a ta  are 
m arked by th e  circular sym bols. A m plitudes are p lo tted  w ith  th e  radius o f  
error c irc les , phases are p lotted  w ith  their error range. T he m odel responses  
are displayed in solid lines.



T he m odel responses, calculated from th e  above equations for com parison, are p lo tted  

in solid lines in F igure 5.12.1 and 5.12.2.

The resu lts are discussed as follows:

1 . A m plitude responses of both  subjects have a peak around 8  Hz and  a  rapid 

decrease beyond 15 Hz.

2. There are some quan tita tive  differences between th e  two su b jec ts’ responses: 

subject B presents a sharp peak, while subject A has a relatively flat peak: 

subject B has an another small peak around 2 0  Hz, subject A does not. The 

differences m ay result from the  cortical transfer characteristic  because i) the 

same differences can be observed from th e  ratios of sum and difference frequency 

com ponents (S F C /D FC ) m easured from  subjects A and B due to  the  two- 

sinusoid stim ulation  (Figure 3.5.1.C and 3 .5 .2 . c ) ,  and these ratios reflect th e  gain 

characteristic  of H 2, which represents th e  cortical transfer characteristic  (Section 

2 . 1 ); ii) th e  second harm onic response due to  th e  single sinusoid stim ulation 

depends on th e  transfer characteristic of H 2 in th e  region below 30 Hz and th a t 

of H\ in th e  region below 15 Hz; th e  la tte r  has a ra th e r flat gain below 15 Hz. 

(Figure 3 .5 . 1 .a and 3 .5.2 .a). Therefore, th e  V EP am plitude characteristic  of the 

second harm onic as shown in Figure 5.12 ,  reflects the  gain characteristic  of H 2 

or th e  cortical transfer function.

3. The m odel response curves of F igure 5 .1 2  essentially m atches th e  V E P 's  for 

both  sub jects A and B.

Step Function S tim ulation

To te s t th e  m odel prediction in tim e dom ain, a step function or a  square-wave 

stim ulus is usually considered. However, th e  transien t behavior of th e  m odel which 

was developed for steady-sta te  operation can not m atch  th a t of th e  visual system. 

To facilitate  th e  representation of the  inhibitory  process, block M  (F igure 5.5.a) was 

constructed in th e  inhibitory  path . This block converts the  inhibitor}' signal q(t) to
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its RMS value I lg which acts as a param eter in elem ents H 2p  and H 2a for steady- 

sta te  operation. The lowpass filter in block M  (Figure 5.5.b) m ust possess a  corner 

frequency below the  lowest frequency of the  signal processed in th e  inhibitory  path . 

This m eans the  corner frequency m ust be lower th an  2  Hz. However, a typical tran 

sient VEP, which subsides within 500 m s (see Section 6.2), has a spectrum  containing 

frequencies considerably greater th a n  2 Hz.

Therefore, in order to  describe th e  visual system  transien t behavior, th e  pa

ram eters in H 2 m ust be controlled by a dynam ic signal ra th e r th an  a steady-sta te  

constant. A direct m ethod to  solve this problem  is to  modify th e  m odel in such a 

way tha t all the  linear elem ents in the  model reta in  the  same functions, bu t the  de

scription of param eter control in H 2 for the  steady-sta te  operation is substitu ted  by 

a dynam ic description. For such lim ited range m odification, the  resu ltan t questions 

are: i). can th e  dynam ic model fit th e  V E P transien t response? and ii) are the 

steady-sta te responses of th e  dynam ic model reasonably consistent w ith those of the 

frequency response m odel?

Indeed, in th e  frequency response te s t, th e  inpu t only contains one or two fre

quency com ponents, bu t in the  transien t response test, th e  step function inpu t con

tains the com ponents covering a wide frequenc}- range. Because a  neuronal m echanism  

th a t responses to  one particu lar stim ulus m ay not response to  ano ther type  of stim u

lus, or m ay not have an equivalent function to  bo th  stim uli, it is difficult to  ensure th a t 

a  model, which can fit th e  V EP frequency response, is able to  fit th e  V EP transien t 

response and vice versa. However, sinusoid and step  function are th e  two im portan t 

types of inpu ts for system  modeling, bo th  stim uli m ay reveal th e  characteristics of 

th e  response not apparen t in the  opposite stim ulus response. We, therefore, readily 

take them  into account for model assessm ent. This issue will be discussed in the  next 

chapter.



CHAPTER 6 

VEP DYNAMIC MODEL

In the  frequency response m odel discussed in C hapter 5, th e  RMS value of the  in

hibitory signal q(t),  I l g i is a constan t acting  as a param eter in elem ents H 2P and 

H%a- However, to  m atch  the  transien t behavior of visual system , th e  dynam ics of 

the inhibitory  signal has to be considered. In this chapter, we m odify th e  inhibitory 

process of the  m odel, which includes block M  in the inhibitory p a th  L G  (Figure 5.5). 

phase m odulator H.2V and m agnitude m odulator H 2A, to  m ake th e  system  applicable 

for tim e dom ain operation. We also discuss th e  V EP transien t response, including 

response recovering tim e and wave forms. A selective transien t response to  guide 

the param eter estim ation is derived. Sj’stem  identification and m odel prediction are 

presented la te r in this chapter.

6.1 Dynamic Model Construction

As discussed in C hap ter 5, block M  (F igure 5.5) in the inh ib itory  p a th  ex tracts the 

RMS value of inhibitory signal q ( t ) to  generate a constant signal I lg -  The lowpass 

filter in M  should possess a sufficiently low corner frequency to  elim inate all the  har

monic and in term odulation com ponents. Convenient as this m ay be for frequency 

response considerations. Such m echanism  m ay not necessarily represent physiological 

function. In reality, th e  inhibitory param etric  control m ay be m uch faster than  th a t 

provided by th e  elem ent M  of F igure 5.5. This is an apparen t reason th a t th e  fre

quency response m odel fails to  p red ic t th e  V EP transien t response. To recover th is 

deficiency, it  is reasonable to either increase the corner frequency of th e  lowpass filter 

in M  or even removed from the m odel. T he inhibitory signal will then  becom e a tim e 

varying signal, th a t is, we replace th e  notation I l g  by u g ^ )*  th e  steady-sta te 

operation, from  tim e average point of view, one can still expect, in some degree, th a t 

iLG{t) m odulates the  transfer character of H 2A and H 2p in a sim ilar way as DC signal 

I l g  does.
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We construct the dynam ic model by keeping all th e  linear elem ents and th e  

full-wave rectification constructed in th e  frequency response m odel unchanged, but 

remove the  lowpass filter from elem ent M  in Figure 5.5, which gives the  inpu t-ou tpu t 

relation of M :

*lg (<) =  \ A 2(0  =  k(O I (6-1)

Thus, block M  is simply a full-wave linear rectifier, ?'£o(t) is th e  absolute value of q(t).  

A com pleted m odel structu re  for V E P tem poral dynam ics is illu stra ted  in Figure 6.1. 

In th e  m odel, a tim e delay block t~ sTc is added so th a t th e  m agnitude m odulator 

H 2 A-, receiving j’lg U  ) via the  delay block, can tim ely cooperate w ith phase m odulator 

H 2p  to  generate a proper transient response. The in pu t-ou tpu t relations for all the 

elem ents in th e  m odel are listed in Table 5.

T he V E P dynam ic model of F igure 6.1 is essentially th e  sam e as the  frequency 

response m odel of Figure 5.6 except for th e  inhibitory m echanism  controlling elem ents 

h-2A  and h.2p .  This involves five new param eters, nam ely p\, p2, P 3 ,  P a  and Tc.

It is assum ed th a t all th e  param eters in th e  linear elem ents will essentially be the 

same as those for frequency response m odeling and identified as described in C hapter 

5. O ne exception is th e  d irect-through conduction delay T  in elem ent H \.

Thus, in th e  V E P dynam ic m odel, the re  are six param eters, pi,  p2, P3 * Pa* T c 

and T  are to  be  identified. The param eter estim ation is guided by th e  V E P transien t 

response. T he m odel -will then  go back to  th e  frequency dom ain for exam ination of 

its perform ance.

6.2 V E P Transient R esponse

The transien t response considered here is the step function response. T he V EP is a 

weak signal merged in noise. To ob ta in  a  clear and correct response, we m ust average 

several responses corrected under the  sam e test condition to  increase the  signal to  

noise ratio . A repetition of step  functions is conveniently obtained  by square-wave 

stim ulation. If the square-wave frequency is set sufficiently low so th a t the  V E P
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DC

y(t)e(t) x(t)

-ST c

F ig u re  6.1 The VEP dynamic model. Components of the blocks are pre
sented in Table 5.

T ab le 5 Characteristics of each element in the dynamic model

h

N

HP

hiA

M

h-2 L 

h-3

5+ao

z (t) =  Ar[n(f)] =  |u(f)|

)2( p T ^ ) 2e - ^ - r M r

' X! ‘ ' - v { t ) 0 0 0
X2 - 2  77(f) - 77(f) 0 0
Xz - 2  T](t) - 2  y{t) - v W 0
Xa . - 2 77(f) - 2  y(t) -27 7(f) —

’  X! ' ' 277(f)
x 2

+
277(f)

X3 277(f)
X4 L 277(f)

T + [ l l z{t)

z{t)

V(i)  =  Pi +  P2 iLa{t) 

x ^  = Pi+i^aU-Tc)9 ^

iLG{t) =  M [q{t)] =  \q(t)\

y( t )  = Jo L s’̂ a l + a j ^  ~  T)<*T

b>s2
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response elicited by th e  step-changes of lum inance re tu rns to  its initial s ta te  before 

next step-change occurs, the  response can be effectively considered as a transien t one.

The frequency of th e  square-wave function should be determ ined so th a t the 

half period of th e  function is longer th an  th e  V E P recovering tim e , defined as the  

tim e period th a t  the V E P response re tu rn s to  its  in itia l s ta te  after each lum inance 

step-change. E xperim ents showed (Figure 3.1) th a t th e  V EP due to  a  lum inance 

step-change essentially subsides in 500 m s (see also Zemon, 1984 and Regan, 1989). 

Hence, a 1 Hz square-wave stim ulus was used to  obtain  th e  V EP transien t responses.

V EP transien t responses were m easured from  both subjects A and  B. T he dart- 

board stim ulus p a tte rn  was the  same as th e  one used in the  two-sinusoid stim ulation 

test. The lum inance on the  p a tte rn  was tem porally  m odulated by the  function

■ m  _  /  C w  n T  <  f  +  l / 2 ) T  _  n i o i r o  \
|  - c w (n +  1 / 2 )T  < t <  (n +  l ) T  (6- ° )

for one set of segm ents and

~ ° w n T  < t ^ ( n  +  l / 2 ) T  n  i  9
( )  ( C u, (n -f 1 / 2 )T  < t < (n +  1)T  (6 ~ 6)

for another set of segm ents. To m ain tain  th e  equivalent effect of th e  con trast gain 

control in th e  re tina , th e  m odulation dep th  C w of th e  square-wave function was set 

to  30%, equal to  th e  RMS value of the m odulation signal of th e  two-sinusoid stim uli 

(A ppendix C-II). The te s t ran  32.08 seconds and was repeated four tim es on each 

subject. Since th e  response waveforms in each half period of 500 ms are considered 

identical to  each other, due to  the rectification process in the  visual pathw ays, d a ta  

recorded in each 500 ms period are averaged. T he responses, filtered by a  digital 

lowpass filter w ith  a cut-off frequency of 40 Hz, are presented in F igure 6.2. T he top 

row shows the  four individual averaged responses. T he m iddle rows shows th e  m ean 

responses (solid line) and th e  error ranges (expected error of th e  m ean, dashed line). 

T he “expected error of th e  m ean” , ey(t),  represents th e  accuracy of th e  es tim ate  of 

the  V EP response y{t)*. the  bo ttom  shows th e  th e  stim ulus function. T he left colum n 

of the  figure is for subject A, and the right colum n is for subject B.

'For each time sample 1 of the m  =  4 responses, the “expected error of the mean”, £y(t), of the
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F ig u re  6.2 VEP transient responses measured from subject A (left column) 
and subject B (right column). The top plots present the four responses, each 
averaged over 64 records. The second row shows the mean responses (solid 
line) and the error ranges (expected error of the mean, dashed line). The 
bottom row shows the stimulus function.
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It is seen in Figure 6.2 . th e  response shape can be predom inantly  characterized 

as two positive waves (the first one is much smaller than  th e  second one) followed 

by two negative waves. These different waves can reflect different cellular events. 

E xcitatory  postsynaptic poten tials depolarize apical d en trites’ m em branes near the 

cortical surface to  generate a superficial sink and deep curren t source, resulting sur

face negative activity; Inh ib ito iy  postsynaptic potentials hyperpolarize the  d en trites’ 

m em branes to  generate a  superficial current source and deep sink, resulting surface 

positive activ ity  (Eccles. 1951; P u rpu ra . 1959; C reutzfeld t k  K uhnt. 1973). The ear

lier two positive waves m ight reflect combined action potentials arriving a t the  cortex 

via two groups of LGN (lateral geniculate nucleus) afferent fibers which have differ

ent conduction velocities (W atana.be. Konishi k  C reutzfeld t. 1966; Zemon. K aplan k  

Ratliff. 1986). The initial positivity. occurring around 60 ms, is thought to be an in i

tial depolarization occurring deep in the  cortex, presumabl}’ in layer I V  (W atanabe, 

Konoshi k  C reutzfeldt, 1966; C retzfeld t, Rosina, Ito  k  P robst, 1969; C reutzfeldt k  

K uhnt. 1973). T he second positive wave, occurring around 100 ms, is believed an 

inhibitory  process, m ediated by G A B A -a presum ed inhibitory  tran sm itte r, in the  vi

sual cortex (K rnjevic k  Schw artz, 1967; Zemon, K aplan k  Ratliff, 1986). T he two 

negative waves, occurring la ter, probably reflect the neuron excitato ry  activities in 

the  cortex (Eccles, 1951; P urpura , 1959; C reutzfeldt k  K uhnt, 1973).

T he relative “sm oothness” of the  average responses, shown in th e  center row 

of F igure 6.2 during t <  100 ms and t > 300 ms, suggests th a t th e  waves in th e

four individual VEP averaged responses yj{t )  (j  =  1 ,2 ,3 ,4)  is defined as

fiy(0 = \
X > j « )  -  !/«»= /714 )1 .1 -1 )
1 = 1

where y( t )  =   ̂ Vj ( V  is the mean value of yj ( t ) .  The expected error of the mean, which 
represents the accuracy of the estimate of the VEP response y(t),  is related to the standard deviation
of y(0-

fry CO = X^(P,-(0 -  y { t ) ) -  / \ A -  1 =  2£y( t )
j =i
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individual responses (top row) during those intervals represent (uncorrelated) noise.

6.3 Choice of Criterion for Fit

To obtain reliable data for param eter estim ation, we prefer to  reserve th e  relevant 

positive and negative waves discussed before, and disregard th e  earlier and la ter 

parts  of the responses, we also expect the  param eter estim ation  to  be guided by the 

predom inant waveforms, th e  in itial positive wave, which is much sm aller than  the 

o ther th ree waves, is then neglected even though it is a portion of reliable response.

Sim ilar to  the identification of the frequency response m odel, least-square m ethod 

is selected for the dynam ic model identification, using th e  criterion function

R k (0)  =  £  H  i [ y ( t A T ) -  £(?A!T,0)]2 (6.3)
;=1

where & is a vector of param eters to  be determ ined, A T  is a  sam pling interval, N  

is the  num ber of sam pling points in the  period, y  is th e  m ean response and £ is 

the  model response, M ”, is a window-like weighting function created  for ex tracting  the  

predom inant positive wave and th e  two negative waves in the  transien t response. The 

window-like weighting function is defined for the  sam ple a t i A T  as

* 1 +  9 ex p -fc6 '^ r - r1) j _f_ g eXp-fc(iAT-T2) (®*4)

T he coefficients k , T\ and T2 were determ ined m anually  by visual inspection to  cover 

the  region of the  predom inant wave forms. Their values are listed in Figure 6.3, which 

presents plots of the weighting function W{ for bo th  subjects A and B.

6.4 Param eter Estim ation

The V E P averaged responses of subjects A and B, presented in Figure 6.2, are used 

for guiding th e  param eter estim ation. The m odel transien t response is derived by 

applying a step function inpu t to  th e  system  and calculating its  ou tpu t w ith MA- 

TR IX x software (produced by In tegrated  System  Inc., Santa C lara, CA). The m ini

m um  residuals-search routine for criterion function (6.3) is im plem ented by M aximum-  

Likelihood algorithm  in the  M ATRIXx software.
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L i
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0.2 0 . 3 0 . 4 0 . 50.1

weighting func.
/•' Tj T 2

sub ject A 
subject B

87.89 0.025 0.2
87.89 0.025 0.3

t i m e ( s )

F ig u re  6.3 Window-like weighting function (6.4) used in the least-square 
curve fitting, which extracts the predominant wave forms in the VEP tran
sient response. The solid curve is for subject A. and dashed curve is for 
subject B. Coefficients in (6.4) for both subjects are listed in the left of the 
figure.

T he system identification procedure, as shown in F igure 6.4, is separated  into 

several steps. F irst, we set th e  conduction delay Tc to  zero, and assign some reasonable 

in itia l values to  the coefficientsp \ , P2 , Ps and p4. In th is work, we set the initial values: 

pi — 1.2, p2 — 1.2, pz =  0.4 and p4 =  1.2. Generally, th is  in itial assignm ent will enable 

the dynam ic model to  produce a  transien t response w ith  one positive wave followed 

by two negative waves.

Second, by varying conduction delay T ,  th e  whole response curve can be shifted 

to  th e  position th a t th e  positive wave peak in th e  m odel response m atches the  positive 

peak of the  V EP response.

T hird , we note th a t, for step function in p u t, th e  signal (lg (^) produced in th e  

la teral pa th  possesses a sharp peak wave. If we change conduction delay Tc, the 

inhibitory  signal *z,g(<) will shift along the  tim e axis, which allows us to  inh ib it the  

direct-through signal selectively. In our m odel, Tc is set to  0.013 s so th a t th e  first 

negative wave will be inhibited by th e  sharp peak of iLa{t).

T he adjustm ent of both  T  and  T c above were done m anually.

W hen conduction delays T  and T c have been set, only four rem aining param eters 

should be determ ined. We no te  th a t p3  represents an  overall system  gain which 

affects the m agnitudes of all th ree peak waves; p4 influence th e  level of m agnitude 

inhibition. Since T c has been selected to  inhibit th e  first negative wave, the  m agnitude
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Set  in i t io l  va lu e s  f o r  

T, Tc, p 1, p2 ,  p3, p4

 I ______________________
Sh i f t  m o d e l  r e s p o n s e  by c h a n g in g  T 

so  t h a t  th e  pos i t i ve  pea ks  o f  m o d e l  

re s p o n s e  and  VEP m a tc h  

( m a n u a i  p ro c e d u re )

Set Tc to  o b ta in  in h ib i t ion  of  the  

f i r s t  n e g a t i v e  VEP wave by Eg ( t )  

( m a n u a i  p r o c e d u re )

A d ju s t  p i ,  p2,  p3  a nd  p4  s im u l t a n e o u s l y  
to  f i t  th e  VEP t r o n s ie n t  re s p o n s e  

( M a x i m u m  L ike l ihood  ro u t in e )

F ig u re  6.4 Transient response curve fitting procedure.

of the first negative wave can be controlled by adjusting coefficient p4. Furtherm ore, 

by num erical calculation, we found th a t pi,  cooperating w ith p 2 > can control the 

m agnitude of th e  two negative waves. In  th is last step, all these four param eters are 

determ ined sim ultaneously by least-square curve fitting , carried ou t by M axim um- 

Likelihood rou tine in M ATRIXx software.

Model param eters have been identified for both  subjects A and B. T he results 

are p lotted  in F igure 6.5. V E P averaged transien t responses are p lo tted  in solid curves, 

while the model responses are p lo tted  in dashed curves. The resu lting  param eters 

and the coefficients of the  weighting functions in criterion equation  (6.3) are listed
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F ig u re  6.5 The transient responses measured from the cortex (solid) and 
produced by the model (dash). Top: responses for subject A. Bottom: re
sponses for subject B.
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F ig u re  6.6 Input signal and corresponding responses produced from some 
blocks in the model. The left column is the plot for subject A, and the right 
column for subject B.
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T able 6 Parameters of the dynamic model for subject A and subject B, 
resulting from curve fitting of VEP transient responses.

m odel param eters
T  Tc pi p2 pz p4

subject A 
subject B

0.035 0.013 1.715 2.453 0.435 0.811 
0.047 0.013 1.034 2.507 0.347 0.512

in Table 6. The in p u t function, responses from  some subsystem s of th e  m odel, z(t) .  

il g {1 h •*'(t ) and y(f), are draw n in F igure 6.6. I t is seen from  F igure 6.5 th a t  the  

dynam ic model appears to  provide a reasonable fit of the  p redom inan t V E P wave 

forms for each of the  two subjects.

6 .5  M o d e l P r e d ic t io n

It now rem ains to  be exam ined how well the  dynam ic m odel will perform  in th e  steady- 

s ta te  for periodic stim uli. The prediction ability  of th e  m odel for periodic stim ulation 

has been exam ined for th e  two-sinusoid in p u t. T he sum  and difference frequency 

com ponents produced from  th e  system  were obta ined  by num erical calculation*and 

com pared w ith the  V E P responses m easured from  sub jects A and B. T he am plitude 

of two-sinusoid inpu t for th e  m odel was set to  0.30. T he inpu t frequencies were set 

to  .A =1.2, 1.8, 3.0, 3.8. 5.0, 6.8, 9.0, 11.8, 14.0, 16.8, 20.0, 22.0, 25.0, 28.0 and 

30.0 Hz. T he separation between th e  two frequencies in each pair was fixed a t 2 Hz.

The DFC and SFC responses produced from  th e  dynam ic m odel, toge ther w ith  th e  

previous DFC and SFC responses from th e  frequency response m odel and  the  V EP 

data , are p lo tted  in F igure 6.7.1-4. In those figures, am plitude response of D FC is 

p lo tted  in (a), phase response of DFC in (b), am plitude response of SFC in (c) and 

phase response of SFC in (d). I t is seen th a t th e  dynam ic m odel responses (D FC and 

SFC) do not m atch  th e  m easured V EP data  although th e  curve shapes of th e  m odel

‘ The responses of the model due to the two-sinusoid input are recorded for 10 seconds with 1000 
sampling points, difference frequency components (DFC) and sum frequency components (SFC) are 
obtained by Fourier transform of the dynamic model response from simulation.
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responses and the  V E P 's are consistent in th e  region above 5 Hz for DFC and above 

8 Hz for SFC.

The above outcom e lim its th e  application of the dynam ic model in th e  frequency 

category. However, if the  model prediction is only considered for response curve rather 

than  values in th e  high frequency region, th e  application of the  dynam ic model may 

extend to the  frequency domain.



140

O  s u b j e c t  A d a t a
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F ig u re  6.7.1 Amplitude responses of difference frequency component from 
the dynamic model, frequency response model and VEP. The upper graphic 
is for subject A, the bottom  graphic is for subject B. The dynamic model 
response is derived by employing a two-sinusoid input to the system with 
amplitude 0.30 and frequency pair separation 2 .0  Hz.
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Figure 6.7.2 Phase responses of difference frequency component from the 
dynamic model, frequency response model and VEP. The upper graphic is 
for subject A, the bottom graphic is for subject B. The dynamic model 
response is derived by employing a two-sinusoid input to the system with 
amplitude 0 . 3 0  and frequency pair separation 2 . 0  H z .
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F ig u re  6.7.3 Amplitude responses of sum frequency component from the 
dynamic model, frequency response model and VEP. The upper graphic is 
for subject A, the bottom graphic is for subject B. The dynamic model 
response is derived by employing a  two-sinusoid input to the system with 
amplitude 0.30 and frequency pair separation 2.0 Hz.
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F ig u re  6.7.4 Phase responses of sum frequency component from the dy
namic model, frequency response model and VEP. The upper graphic is for 
subject A, the bottom graphic is for subject B. The dynamic model response 
is derived by employing a  two-sinusoid input to the system with amplitude 
0.30 and frequency pair separation 2.0 Hz.



C H A PT E R  7 

DISCUSSIO N

7.1 Sum m ary of the R esults

1 . Sandwich m odeling for the  V E P  frequency response was perform ed, and the  

resulting fit for the  V EP in term odulation  com ponents was analyzed using the  

two-sinusoid approach. This resulted  in the selection of a  full-wave rectifier for 

th e  nonlinearity in the  m odel and determ ination  of th e  forms of the  transfer 

functions (C hapter 3).

2 . In order to search for the  transfer functions for th e  sandw ich model, ten  norm al 

subjects da ta  were analyzed. We found, to  fit th e  V E P  sum  and difference 

frequency com ponents m easured from  those subjects, the first linear elem ent 

H i  m ust be a non-m inim um  phase function w ith  zeros in  th e  right side of the  

s-plane. The am plitude characteristic  of H i  is a  bandpass filter w ith a peak 

around 20 Hz, and th e  phase characteristic of H i  possesses th e  feature th a t 

its slope becomes steeper as th e  frequency increases in the region above 15 Hz 

(Subsection 3.3.1). This finding does not m atch  w ith previous investigations of 

th e  tem poral characteristics of th e  visual system , which showed th a t ganglion 

cells in the re tina  and  th e  linear processing stages in th e  V EP pathways can be 

characterized by m in im um  phase functions (Subsection 3.3.2).

3. F urther investigation was done by perform ing th e  experim ent of two-sinusoidal 

stim ulation w ith different separation within the  stim ulus frequency pairs on 

two subjects. This work showed th a t  th e  V E P phase response of th e  differ

ence frequency com ponent did not simply result from the  classic linear-static 

nonlinear-linear process (Subsection 3.3.2).

4. Based on the previous studies of tem poral behaviors of single cells and large 

populations of neurons, two inhibitory  phenom ena-con trast gain control and 

la tera l interaction are thought to  be involved in V EP generation. These two
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phenom ena m ay reflect a  single nonlinear m echanism  th a t is d istinct from  the 

s ta tic  nonlinearity in the visual system . T heir effects in th e  V EP responses were 

dem onstrated  by experim ents conducted. T he effect of contrast gain control 

was dem onstrated  using the  two-sinusoid stim ulation  w ith different contrast 

levels (Section 4.2). T he effect of lateral in teraction  was dem onstrated  using 

three-sinusoid stim ulation introduced during th e  curren t investigation (Section

4.3). The inhibitory  processes modify the signal transfer character in th e  visual 

system , and they can be qualitatively  explained by a  neural shunting inhibition 

m odel (Section 4.4).

5. A V EP model was extended from the sandwich system  w ith the hypothesis 

th a t contrast gain control and la teral in teractions m odify the forw ard-through 

signal in the  cortex (Subsection 5.1.1). These two inhib itory  m echanism s are 

represented by an elem ent in parallel w ith th e  sandw ich system  th a t produces a 

signal to control th e  param eters of the  second filter H 2  in the  sandwich system  

(Figure 5.2).

6 . Model param eter estim ation  and validation were carried out for two individual 

subjects to  ob ta in  a system  identification m ethod.

7. In th e  first m odel (frequency response m odel), the  param eter dependence on 

the  inhibitory signal is defined for frequency dom ain operation (Subsection

5.1.3). The inhib itory  signal is constant in steady-sta te  for a  given stim ulus, bu t 

varies as the stim ulus frequency changes. P aram eter estim ation  was guided by 

the  V EP sum  and difference frequency com ponents using a least-square fitting  

m ethod  (section 5.3). M odel fitting  quality was verified by “lack of fit” exam 

ination (Subsection 5.4.1). Model prediction ability  in th e  frequency dom ain 

was exam ined for single sinusoid stim ulation (Subsection (5.4.2). T he m odel’s 

response curve essentially m atched the  V E P ’s. Since the  param eter control by 

the  inhibitory  signal is defined in steady-state operation, th e  frequency response 

m odel is not able to describe the  visual system ’s dynam ics in the tim e domain.
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8 . The second m odel (dynam ic m odel) is developed in such a  way th a t the  m od

el s truc tu re  and all the  linear elem ents identified in th e  first model are kept 

unchanged, and the  param eter dependence on th e  inhibitory  signal is defined 

in tim e course instead of steady-sta te  operation (Section 6 .1 ). P aram eter es

tim ation  was guided by the V EP transien t response elicited by a  square-wave 

contrast reversing p a tte rn  (Section 6.4). M odel prediction in the  frequency do

m ain was exam ined for two-sinusoid stim ulation  (Section 6.5). Some agreem ent 

in response curve shapes can be observed in the  frequency region above 5 Hz 

for difference frequency com ponents and above 8  Hz for sum  frequency com po

nents. However, the  dynam ic m odel does not provide a good fit for the  values 

of the  steady-sta te  V EP d a ta  (F igure 6.7).

In sum m ary, T he present research on th e  hum an  visual system  relates to  two 

aspects. T he first one is the  study  of evoked po ten tia l m ethods and  experim ental work 

in order to ob ta in  an understanding of the  m echanism s responsible for the  generation 

of evoked potentials in biophysical term s. T he second one is system  m odeling in order 

to transform  th e  evoked po ten tial m ethodology from  an em pirical phenom enology into 

a  quan tita tive  sub ject of research. We in troduced system  identification procedures 

and perform ed these procedures for two individual subjects to  drive a  protocol of 

V EP modeling.

T he m ajor contributions of this work include:

1 . P roposed a  V E P m odel s tru c tu re  based on th e  sandwich system  w ith  considera

tion of incorporating  the  nonlinear contrast gain control and la teral in teraction  

m echanism s. This extended m odel enables the  analysis of separate inhibitory  

and excitato ry  processes and the ir interactions.

2. Introduced a  m athem atica l equations and m ethod  to  describe and identify the 

m odel w ith  th e  consideration of b o th  frequency and tim e dom ain prediction.
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7.2 D iscussion

In this research, two m odels were proposed. T he second one was developed from the  

first one in an a ttem p t to extend the  m odel from a description in the frequency domain 

to  one in th e  tim e dom ain. As m entioned in Section 5.4, for a nonlinear phj'siological 

system , generally a m odel can only describe th e  system  responses corresponding to 

some particu lar inpu ts, it cannot describe th e  actual system ’s behavior for any input. 

“The real-life actual system  is an object of a different kind than  our m athem atical 

models. In a sense, there is an im penetrab le bu t transparen t screen between our word 

of m athem atical descriptions and th e  real word. We can look through th is window and 

com pare certain aspects of the  physical system  with its m athem atical description, but 

we can never establish any exact connection between them " (Ljung, 1987). For a set 

of given stim uli, for instance in our system m odeling w ith two superim posed sinusoids 

and a square-wave function, a m odel capable of fitting  th e  response corresponding 

to one type of stim ulation is not guaranteed to  fit the  response corresponding to 

another type of stim ulation. System m odeling, nevertheless, is aim ed to  elaborate a. 

m athem atical form th a t can describe the  physical system 's behavior in as large a range 

as possible. The current work is indeed an a tte m p t to  achieve th is goal. In th e  steady- 

s ta te  case, one can im agine the  visual neural m echanism s m ay have sim ilar reactions 

to  both  two-sinusoid and single sinusoid stim uli, particu larly  when th e  frequencies of 

the two sinusoids are close together. However, a square-wave function contains a wide 

range of frequency com ponents. Reactions of neural m echanism s to  th e  square-wave 

inpu t may significantly differ from the  reactions to  the  two-sinusoid inpu t. N aturally, 

it  is m ore difficult for the  m odel to  predict th e  responses in both  th e  frequency and 

tim e dom ain th an  to  pred ict the  responses of different stim uli in th e  sam e frequency 

dom ain. As a  resu lt, the  dynam ic model gains an  ability  to  describe th e  transien t 

behavior of th e  real system , bu t loses its  prediction power in th e  frequency region. 

Based on th e  above discussion, we prefer to  accept the  m odel guided by “usefulness” 

ra th e r than  “tru th .” From this point, B oth the  frequency response m odel and the 

dynam ic model should have their specific application  range.
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7.3 Topics for Future Research

The current work also exposed some problem s th a t may lead to  fu rther visual evoked 

potential research.

I. The source of the  contrast gain control in th e  cortex

The experim ent in C hapter 3 elucidated how th e  contrast m echanism  affects 

the  d irect-through signals in the  cortex. However, th e  source of th is con trast signal 

remains in question. There are three likely* possibilities: i) The signals directly come 

from an early stage, which forms a forward inhibitory structu re , ii) The signals 

come from a la te r stage, which forms a feedback inhibitory structu re , iii) They 

simply come from direct-through signals them selves, which forms a self inhibitory 

structure. Because visual evoked poten tials com bine the activities of m any neural 

m echanisms, there  is little  hope to  ob ta in  a clear p ic ture about the  s tru c tu re  of this 

contrast m echanism  through VEP analysis. This problem  is expected to  be solved by 

physiological and anatom ical studies in th e  future.

II. Subsystems of inhibitory  process in th e  cortex

The param eter control in the  m odel is represented by a phase m odulator and 

a m agnitude m odulator. O ne of the  reasons for such a trea tm en t is th a t a sufficient 

background is lacking about cellular connections th a t re la te  to  the  inhib itory  process 

in the cortex. If the  cellular s truc tu re  responsible for those inhibitory  processes is 

clarified, and fu rther th e  network inhibitory  behavior is properly represented by some 

functional blocks according to  the  neural connecting structure , th e  resu ltan t model 

may possess m ore physiological sense and predictive power.

III. Model application extension in o ther aspects

The m odels proposed in this work were developed, tested  and validated under 

certain conditions. As a next step, extension of th e  m odel conditions can be consid

ered, which refers to  the  following subjects:

i). Model response as a function o f stimulus contrast

In either th e  frequency response m odel or th e  dynam ic m odel, th e  lum inance 

m odulation depth of the  stim uli was fixed in order to  get rid of the  effect caused by the
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contrast gain control in the retina. This lim itation  can be removed if the  properties 

of this contrast m echanism  is considered in the m odel. In fact, V ictor has proposed a. 

model for th e  ca ts ' X type cells in the  re tin a  (V ictor, 198T), which included the  effect 

of this m echanism . This single-cell m odel m ay serve as a reference for fulfilling the 

objective.

ii). Model response as a function o f spatial variables

If a dartboard  or a checkboard p a tte rn  stim ulus w ith variable-size segments 

is used in V E P  studies, lateral in teraction across the  areas of different size m ay be 

investigated and fu rther described in th e  m odel. In this case, V EP responses are 

not only a function of tim e, but also a function of one- or two-dim ensional special 

variables.

The above topics m ay be considered w ith regard to both  microphysiological 

and global neural network investigations. We expect any progress in these fields will 

enhance the  knowledge of visual neural physiology and perception.

Finally, we want to  expand th e  curren t work to  the  clinical field. In the  current 

studies, the  m odel identification procedure was dem onstrated  for two subjects. The 

m odel param eters listed in Table 4 and Table 5 can supply a  reference of initial value 

selection for fu rther m odel identification. If th is procedure is carried out over a large 

sample of th e  population, the  m odel param eters can be statistically  analyzed. The 

statistical param eters, such as m ean value, variance, etc., m ay serve as a. standard  

for clinics to  analyze disease states and deficits associated w ith  the  visual neural 

pathways. T he param eter estim ation rou tine (V EP d a ta  m easuring, processing and 

curve fitting) and equipm ent used in th is research are also accessible to  the  general 

clinic.



A PPENDIX A

A-I Interm odulation Com ponents 
from an A sym m etrical Rectifier

An asym m etrical rectifier N (v )  can be expanded in a  series

OO CO o o

N (v )  =  Qkv k =  a 2kv 2k +  a2k+i t >2fc+1 (A .l)
k= 0 k= 0  k= 0

by least-square fitting approach. T he first term  of th e  right side of (A .l) is th e  even 

portion of the  rectifier, the  second te rm  is the  odd portion of th e  rectifier. Now we 

want to  prove, for two-sinusoid inpu t

v(t)  = A a sinu-’if 4- A 2 shiuj2t (A .2)

th a t th e  odd portion will not produce sum  and difference frequency com ponent. The 

proof is divided in three steps.

1 . W hen A' =  3,

v 3 (t) =  (A i sin wit +  A 2 sinu>2f ) 3

= A3 sin3u>if -fi 3 A ^ A 2 sin2 u.’i< sinu^A +  3AiA2 sinu;if sin2 u 2 t  + A 3 sin3u;2t 
3 3

=  A 3  sin3 u;if 4- - A \ A 2 sinia2t — - A ^ A 2 [sin(u>2 — 2u>i)< +  sin(u>2 4- 2u>i)/]

3 3
——AiA^[s\u(uii — 2,u>2)t T  sin(u>i 4 - 2 û 2 )f] 4~ ~ A i  A^  s in io\t +  A 3  sin3 u 2t (A. 3)

fit ^

It is seen, u3 (f) does not contain even order frequency components*.

2. Suppose th a t, when A- =  r  ( r  is an odd integer), v r(t) does not contain even order 

frequency com ponents.

3. W hen k = r +  2 ,

t4+ 2(f) =  v T( t)v 2 (t)

— ^ ( 'O I t^ A 2 +  A2) — ^ A 2 cos2u>ii — cos 2u>2t 

4- A iA 2 [cos(u; 1 — u>2)t — c o s ^  4- ^ 2 )*]} (A .4)

'T h e even order frequency components is referred to the components at frequencies nwj ±  m w 2 
(n , 777= 0 , 1 , 2 ,  • • ■, and n + m  is an even integer.)
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All the term s in th e  brackets are even order frequency com ponents, and according to  

the  assum ption th a t v r (t) only contains odd order frequency com ponents, therefore, 

r r+2(/.) does not contain even order frequency com ponents, including sum  and differ

ence frequency com ponents.

(end of proof)

A -II Interm odulation Com ponents 
from the Full-W ave Rectifier

For two-sinusoid input applying to  th e  rectifier

v ( i )  — Ay sin(uqf -}- (p-y) -j- A 2 .sin(u,’2 f -h ©2 ) ( . 4 .5 )

to  obtain the am plitude of DFC and SFC, we expand the  rectifier N ( v )  into a six

degree series by least square approxim ation:

N (u) rs akv k (A .6 )
k= 1

If N (v )  is a full wave rectifier, only even order te rm s exist in the  series, th e  second 

term

r 2 (f) =  [Ai sin(wif +  <f>y) 4- A 2 sin(u;2 f 4- <̂2 ) ] 2

=  A2 sin2 (w1t -)- <f)i) -f- A 2 sin2 (a;2t  4~ <̂2 ) 4* 2Ai A2 sin(uqf +  ) sin(u>2t +  <̂2 )

=  A 2 sin 2 (o>it -f- cf>\) +  A 2 sin2 (a>2  ̂4" ^ 2 )

4* A iA 2{cos[(uji - W 2 ) H ^ i  — <f>2] ~  cos[(u;i u>2 )t (f>y 4- <£2]}

=  A 2 sin2 (a’if 4 * +  A js in 2^ ^  4“ <̂2 )
7T

4- A iA 2{sin[(u?i — uj2 )i 4- <j>\ — ^ 2  4- — ]

+  sin[(o>i A u>2 )t 4- <f>i + <j>2 — tj]} (A.7a)

It is seen, the  am plitude of DFC and SFC produced by th e  second te rm  is A 1A 2 . By

further calculation, one can show th a t  th e  am plitudes of DFC or SFC produced by
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the fourth  term  and sixth term  are also equal, they  are:

3
am plitude of fourth  term : 

am plitude of six th  term :

(AaA2 +  A i A 2) (A .7b)

~g~(A^A2 4 -  A j A 2 +  A i A 2) (A .7 c )

T he am plitude of DFC or SFC produced from  th e  rectifier then  can be expressed 

by:

A =d f c {Ji - fz )  =  A :sFc(.fh  f i )  «
3 15

~  G2 A 1 A 2 +  —a4(A^A2 -f A i A 2) -f — a 6 (A iA 2 •+ A 4 A 2 +  A \ A 2) (A .8 )
2  o

N ext, considering the approxim ation (A .6 ) only valid when the  value of input r 

is w ithin a specific range (in th is work. |u| <  1 for a0  = 0.085, a 2 =  2.307, a4 = —2.820 

and ae =  1.466), expression (A .8 ) therefore should be norm alized. The input v(t)  can 

be rew ritten  as

v{t)  — (A i + Az)
,A \  +  A 2 

— {A\ +  A 2 )v (t )

sin(u;if •+ d>i) -f s m (u>2t +  d>2)
A \  -f A 2

(A .9)

where t>’(f) is also a two-sinusoid function w ith am plitudes A i/(A i -f A2) and A 2/ ( A \ + 

A 2 ). Now th e  ou tpu t of the  rectifier

-(*) = AT[«(1)] = l»(i)l = IUi + M) v \ i )  1

=  (.4i +  A 2 )\v'(t)\ = (Ai +  / ! 2 )J\r[ti'(;)J (4 .10 )

We denote the am plitude of D FC , produced from  th e  rectifier due to  inpu t v '( t) ,  

as A'zDFC{fi ,  f 2). Because |u '(f) | <  1 , A'zDFC( f i ,  / 2) can be obtained  from  (A .8 ) by 

substitu tion  of A x and A 2  by A i/(A i +  A2) and A2 /(A i +  A2) respectively. This gives

A zD F cif i  •> f?) ^  g 2 

4

Ai
'l ( —— ^ 4- - a  (  ^
/  kAj  4  A 2)  2 VAi  +  A 2)  VAj  4  A2Ai 4- A 2

)\A ] 4  A2/  \A i 4  A2/

+ 3 (  A i i 3 r  A i  f  1 (
\ A 2 +  A 2)  \ A ,  + A 2J VjI,

+

15
(  *  ) 5 ( - ^ - )  +
VAj +  A 2J  vA] 4  A 2/

A i

4  A 2J V A i  4  A2

5 1

(A .11)
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The final expression is obtained by m ultip ly ing A'gDFC{fi ,  .fi) by {Ai +  A 2),

AzDFci.fl, f i )  =  (Ai +  A 2 )A .DFC{ f i , f 2)
A j A 2 , 3 A 31 A 2 + A 1 A Z2 15 \ A \ A 2 + Z A \A l  + A l A \

K a 2 i r + T 2  +  r -  "(A1 + A 2r  +  ¥ “ 6 [— t v f v —

T hat is the  result of equation (3.4).

(A .12)



APPENDIX B

B-I Confidence Lim it for VEP R esponse Description

In C hapter 3. we exam ined th e  V EP sum  and difference frequency com ponents record

ed from ten subjects. We gave a  description for those responses based on m ost of the 

sub jec ts ' data . In the worst case, th a t is the  ra tio  of sum  and difference frequency 

com ponents, there  are two su b jec ts’ response curves differing from the  description. In 

te rm s of those observations, now we m ust give a confidence lim it tha t the description 

we have given is correct for large num ber of populations.

Assume th a t the a response curve (am plitude or phase of DFC or SFC) satisfies 

binom ial d istribution, th a t is, the  probability  tha t th e  response curve satisfies the 

given description is p, and fails to  satisfy the  description is 1 — p. The probability 

th a t r  successful responses out of n  observations is given by

^  =  <*■'>

Now if r  and n are given, and p  is unknown, the probability  (confidence level) th a t p 

is w ithin some particu lar range 4> ( 0  <  $  <  1 ) is given by th e  ratio  of integrals

■ W a i f b P r O - P ) n~, ‘fr  W O - p r ' f r

fo H [ n - r ) iPr ( 2  ~  P)n~TdP fo P r ( !  -  p)n~rdp

In our V E P  observation th a t r  =  8  and n — 1 0 , if we want to  obtain 95% 

confidence th a t p  is greater th a n  a value pcr,-, it  requires

/per,P8( l - P ) 10~ >
f j  P8( l  ~  P)10~8dp

Solving equation (B.3) yields pcr{ =  0.53, which m eans th a t we have 95% confidence 

th a t a t least 53% of the popu la tion ’s V EPs satisfy th e  description given in C hapter

3.

9 5 % = - y W "  V  ( b - 3)
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APPENDIX C

C-I The Second Harm onic from the Full-Wave R ectifier

If the  rectifier characteristic is approxim ated by a six degree polynom ial

jV(v) =  |u| r j ao 4- a 2 v 2 +  a4 v 4 4- o,qv6  for |u| <  1 (£hl )

for a single sinusoid inpu t

v ( t ) =  A  sin(u>f 4 - 6 ) (D .2 )

we have

N{ v )  =  N[ A  sin(u;/ -+■ ©)] =  .4-/V[sin(u4 4 - ©)] (£>.3)

The second term  of (D. l )  is

1 2 I TP
[sin(arf -I- <b) } 2 = - [ 1  -  cos{2 u>t +  2 (j>)} =  -  + -  sin (2 ud  -f 2 4 > -  (£>.4 )

It is seen, th e  second harm onic produced by th e  second term  is |  sin(2 u;f 4 - 2 <f> — - ) .

By fu rther calculation, the  second harm onic produced by the  fourth  and  six th  term s

are -  sin(2u;f 4-2d> — -|) and | |  sin(2 tat-(-2 d>—-|) respectively. Therefore, th e  am plitude 

of the second harm onic produced from  th e  rectifier,

A z {2f )  = A ( - a 2 4- ~ a 4 4 - - ^ a&) (D.5)

The phase of th e  second harm onic produced from the  rectifier,

M V )  =  ^  ~  f  (£h 6 )

Equations (5.35) and (5.36) hence are proved.

C-II R oot Mean Squared M agnitude of Square-Wave Input

Suppose the  two-sinusoidal inpu t

S(sin){t) =  CU)(sin)(sinu;1/ 4-sinu>2<) (£>.7)
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and the square wave input

-  { - Z L  <"T+ l / 2l  T < ! < l ^ ) T  " = 0 . 1 , 2 , . . .  ,Z>.8 >

B oth signals possessing equivalent m odulation depth in root-m ean square sense gives 

an equality

' J C l(s,n) + C l ( S, n ) / ^  = = Cwlsqy) (D.9a)

OI (D.9b)
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