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ABSTRACT

ADAPTIVE NONLINEAR CONTROL 
USING FUZZY LOGIC AND NEURAL NETWORKS

By
Shu-Chieh Chang

The problem of adaptive nonlinear control, i.e. the control of nonlinear dynamic 

systems with unknown parameters, is considered. Current techniques usually assume that 

either the control system is linearizable or the type of nonlinearity is known. This results in 

poor control quality for many practical problems. Moreover, the control system design 

becomes too complex for a practicing engineer. The objective of this thesis is to provide a 

practical, systematic approach for solving the problem of identification and control of 

nonlinear systems with unknown parameters, when the explicit linear parametrization is 

either unknown or impossible.

Fuzzy logic (FL) and neural networks (NNs) have proven to be the tools for 

universal approximation, and hence are considered. However, FL requires expert 

knowledge and there is a lack of systematic procedures to design NNs for control. A 

hybrid technique, called fuzzy logic adaptive network (FLAN), which combines the 

structure of an FL controller with the learning aspects of the NNs is developed. FLAN is 

designed such that it is capable of both structure learning and parameter learning. Gradient 

descent based technique is utilized for the parameter learning in FLAN, and it is tested 

through a variety o f simulated experiments in identification and control o f nonlinear 

systems. The results indicate the success of FLAN in terms of accuracy of estimation, 

speed of convergence, insensitivity against a range of initial learning rates, robustness 

against sudden changes in the input as well as noise in the training data. The performance 

of FLAN is also compared with the techniques based on FL and NNs, as well as several 

hybrid techniques.
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CHAPTER 1

INTRODUCTION

1.1 General Background

Control, in general, means to regulate a process by comparing the measurements with 

some prescribed performance specification. It happens so common in our everyday life 

that no one can exactly describe its history from the very beginning. However, we still can 

roughly categorize the development of the control theories as conventional control theory 

and modern control theory.

Generally speaking, the control theory developed through the late 1950s may be 

classified as conventional control theory, which is considerably effective and sufficient for 

simple systems, such as single-input single-output (SISO) systems and linear time- 

invariant (LTI) systems. After World War II, due to the requirements of faster and more 

accurate control systems for military and space technologies, and the merge from other 

disciplines, researchers faced more complicated systems, such as multiple-input multiple- 

output (MEMO) systems and linear time-varying (LTV) systems. Great efforts were made 

to meet these requirements and promising results led the development of control theory 

into a new era. The age of modem control theory began in 1957, the time when the first 

sputnik was launched [Friedland 1986], A great diversity of practical approaches and 

successful industrial applications have been found since then.

However, most of the methods based on modem control theory are useful only 

when the system is operated in a small range because they are developed on the basis of 

linear control theory which assumes the system can be controlled by a linear controller to 

fulfill the performance specification. Due to the technological advances, there is a greater 

need to control systems where there may be hard nonlinearities (unknown or difficult to 

model nonlinearities [Slotine and Li 1991]) and model uncertainties which make the task

1
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of controller design more and more complicated. An industrial robot, for example, 

involves nonlinearities such as the friction force at each joint, nonlinear torques caused by 

Coriolis and centrifugal effects, and uncertainties originated in modeling and operating, 

such as the deflections in robot arms and the variation in working load, etc. Developing an 

appropriate controller to control a robot, therefore, becomes a challenging problem [Craig 

1988, Bobrow etal. 1983, Newman and Souccar 1991],

Most engineering control problems, like the case of robot control, are nonlinear in 

nature. While considerable progress has been made in linear control theory, the 

developments in nonlinear control theory has been limited [Isidori 1989, Slotine and Li 

1991, Kokotovic 1991, Friedland 1986], This motivates the study of nonlinear control 

theory. Moreover, the recent improvements in microprocessors and computer simulation 

techniques enable researchers to explore more details of nonlinear systems. Since late 

1980s, growing research on adaptive control [Goodwin and Sin 1984, Narendra and 

Annaswamy 1989, Astrom and Wittenmark 1989] and intelligent control [Barto 1989, and 

Lee 1990] has shown a great potential for these methods to deal with nonlinear systems.

Nonlinear control problems can be divided in three types. In the first type the 

nonlinearities in the system are known. For this case, the most common approach is to 

apply feedback linearization or compensation of nonlinearities [Isidori 1989], In robotics 

for example, nonlinearities are canceled by means of a nonlinear feedback controller as 

done in the classic work of [Paul 1981] and [Bejczy 1974], In these techniques, however, 

knowledge of full dynamic model and accurate parameters of the payload and manipulator 

are required. These requirements are difficult to meet in practice as mentioned before. In 

fact, for practical systems the cancellations of nonlinearities may not be achieved and then 

the dynamic performance of the robot is poor, and may lead to instability [Hewit 1979, 

Egeland 1986]. Moreover, these situations require complicated stability analysis. In the 

second type, there are uncertainties in the input and external disturbances. In this case, the 

common approach is to employ robust control strategies [Hached 1990], Usually, the
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uncertainties are assumed to be bounded, and the knowledge of nonlinearities is required. 

In the third type, the nonlinear model is unknown. In this case, adaptive nonlinear control 

is used to model or approximate the unknown nonlinearities [Hunt and Turi 1993, 

Newman and Souccar 1991, Seraji, 1987], While much attention has been given recently 

to these types of control problems, in particular to the first two cases, there are limitations 

to most proposed techniques. Therefore more research is required, as will be discussed in 

the next section, in order to develop flexible and practical approaches that can be easily 

adopted in industry.

ADAPTIVE CONTROL SYSTEM
ADAPTATION
MECHANISMCONTROLLER 

PARAMETERS,

REFERENCE
INPUT

SYSTEM
OUTPUT

CONTROLLER PLANT

CONTROLLER
OUTPUT

Figure 1.1 Basic structure of an adaptive control system.

1.2 Adaptive Nonlinear Control

Adaptive control, an important branch of modem control theory, refers to the control of a 

system, either linear or nonlinear, with uncertain or unknown parameters. These uncertain 

or unknown parameters may result from imperfect modeling or measurements of the 

system, or unpredictable changes of the inputs and disturbances to the system. Figure 1.1 

shows the basic idea of adaptive control. It differs from a conventional controller in that 

its parameters can be modified by an adaptation mechanism so as to meet the prescribed
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performance specification. There are three basic components in common adaptive control: 

namely, 1) an adaptation mechanism that contains a reference model that gives the desired 

system output or an identification model that estimates the unknown parameters, and 

produces a performance index by comparing the estimated output with the actual one; 2) 

an effective adaptation law, also called a controller, that contains modifiable parameters 

and generates proper signals by tuning the controller parameters based on the performance 

index and then send these signals to the system; and 3) the unknown system.

When the unknown system is linear, there are two principal approaches to adaptive 

control, which are model reference adaptive control (MRAC) and self-tuning regidators 

(STR). In the MRAC, a reference model is used to produce the desired trajectory for a 

given command input or reference input. The objective o f the adaptive controller is to 

generate the control input that forces the system to follow the desired trajectory. For 

example, in many control problems related to mechanical engineering applications, such as 

robotics control, a linear model of the robot manipulator under control is developed and 

then used in MRAC based adaptive control scheme [Landau 1979, Dubowsky and 

DesForges 1979, Balestrino, DeMaria and Sciavicco 1983, Craig 1988], Instead of having 

a reference model, the STR uses an identification model to estimate the system 

parameters. The parameters o f the controller are then modified based on the estimated 

system parameters. Excellent information on the histoiy and development of adaptive 

control o f linear time-invariant systems with unknown parameters can be found in 

[Goodwin and Sin 1984, Chalam 1987, Narendra and Annaswamy 1989, Astrdm and 

Wittenmark 1989].

Recent advances in nonlinear control theory and adaptive control theory [Isidori 

1989, Slotine and Li 1991, Kokotovic 1991] have motivated studies aimed at developing 

adaptive control schemes for nonlinear dynamic systems. The result of these activities have 

led to the emergence of the new subject, termed nonlinear adaptive control. A quick 

review of recent articles in leading control magazines and journals indicates the abundance
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of literature in this new area. However, careful scrutiny indicates that most methods are 

based on either an assumption regarding linearization of the model or some knowledge 

about the type or the order of nonlinearity. For example, in [Ortega et al. 1993] it is 

required that the time varying unknown loads are linearly parametrizable. For control of 

manipulators, [Seraji 1987] assumes that the nonlinear plant is approximated by quasi- 

linear time invariant model of plant variables. In [Newman and Souccar 1991] the 

nonlinearity is assumed to be of second order and feedback linearization based on the 

classification of the system state into certain regions is required. Most systems usually rely 

on some kind of feedback linearization, and that becomes an essential tool for nonlinear 

systems. However, quoting from [Hunt and Turi 1993] “... even if a system is feedback 

linearizable it can be extremely difficult, if not impossible, to construct an exact feedback 

linearizing transformation.” Apart from some of these limitations, the major problem with 

these conventional nonlinear control schemes is that they are quite complex in terms of 

implementation and almost always require a certain amount of knowledge of the plant. 

Moreover, most of these schemes pose a great challenge for an average practicing 

engineer. These reasons have led to the emergence of the new field of intelligent control.

1.3 Intelligent Control Using Fuzzy Logic and Neural Networks

Some of the ideas for intelligent control are based on the observation that an experienced 

human being can achieve complicated control tasks without having exact knowledge of 

the plant. Consequently, the use of fuzzy control (FC) and neural networks (NNs) to solve 

the problem of controlling nonlinear dynamic systems with unknown parameters has 

received the attention of many researchers [Takagi and Sugeno 1985, Miller, Sutton, and 

Werbos 1990, White and Sofge 1992] recently because of their great potential in dealing 

with complex, nonlinear mappings. In fact, fuzzy logic and NNs have been proven to be 

universal approximators, and therefore are ideal for approximating unknown nonlinearities
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[Kosko 1992b, Wang 1992, Funahashi 1989, Homik et al. 1989], Recent research has 

shown the promising results of applying these techniques to the control of nonlinear 

systems. For example, FC has been used successfully for automobile transmission control, 

anti-lock brake system operation, subway system control, air conditioner control, etc. (see 

[Lee 1990] and references therein). NNs have been used for system identification and 

control o f nonlinear systems [Narendra and Parthsarathy 1990], and inverse robot 

kinematics [Kim and Yoon 1992],

Despite the great potential of these two techniques to solve complex and ill- 

structured problems in nonlinear control, there are several drawbacks to each approach. In 

the FC approach, the development of the membership functions and linguistic control rules 

relies on the availability of the experienced operators or experts. In practice, such 

knowledge is either unavailable or is difficult to extract or represent particularly for 

complex systems. Similarly, in the NN approach, the design of the network architecture is 

based on designer’s experience. There is no explicit guideline for determining the 

configuration, such as the number of layers and the number of nodes in each layer o f an 

NN. Due to these problems, the applications of the FL and NNs are very limited.

1.4 Objective and Scope of the Dissertation

The main objective of this dissertation is to develop a systematic and flexible approach for 

solving control problems with unknown nonlinearities. The idea is to propose a method 

that is easy to implement and is highly practical and therefore suitable for application in 

industrial environment.

Based on the discussion presented here, it is apparent that the conventional 

adaptive nonlinear control techniques are not simple enough for this purpose. On the other 

hand, FC and NN approaches are very good candidates for this objective. Unfortunately, 

although FC and NNs have been successfully applied to the control o f nonlinear systems
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with uncertain or unknown parameters, there are some difficulties in the practical 

implementation as mentioned previously. The interesting point about these two methods, 

however, is that they have complimenting strengths, i.e., the FC provides a compact 

structure for control, while NNs provide learning ability that FC lacks. Therefore, 

combination of these techniques may provide answer to the question of developing 

practical approaches for control of complex nonlinear systems.

The major contribution of this dissertation is develpoment of a hybrid scheme that 

merges the concepts o f FC and NNs together to identify and control nonlinear systems 

having unknown parameters. As mentioned earlier, the FC provides a nice structure for 

control, and provides a meaningful physical description of the control scheme. On the 

other hand, the controller based on NN appears like a black box and does not provide a 

good physical interpretation of the control scheme. In addition, its structure is rather 

arbitraiy as compared to the structure of an FLC. Therefore, it is decided to base the 

proposed hybrid scheme essentially on an FLC, but use the learning procedure in the NNs 

to tune the parameters of the FLC. The resulting FLC may be used as an approximator. 

The approximator is then used as an identification model and a controller in the adaptive 

control system. The proposed scheme treats the FLC as an adaptive network, and thus is 

called Fuzzy Logic Adaptive Network (FLAN). Since the architecture of the FLAN is 

determined only by the number of membership functions, it simplifies the design procedure 

for developing an FLC. A brief review of FL and NNs along with the details of the new 

scheme (FLAN) is presented in chapter 2. A discussion of other hybrid approaches is also 

included.

Chapter 3 presents the problem of identifying nonlinear dynamic systems with 

unknown parameters using the FLAN. The identification models used in this chapter are 

adopted from [Narendra and Parthasarathy 1990], where NNs are used for identification. 

Two examples are given to demonstrate the successful use of the FLAN to identify 

nonlinear systems with unknown parameters. The identification results using the FLAN
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are compared with the results from [Narendra and Parthasarathy 1990] and others. The 

comparison includes the accuracy and learning aspects.

In chapter 4, the issue of designing the adaptive controller for the nonlinear control 

system is discussed. The indirect adaptive control scheme is used to demonstrate the result 

of combining the identification model developed in chapter 3 and the adaptive controller 

developed in chapter 4. An example is included to show that the controller, designed using 

the FLAN, is able to closely follow the desired trajectory given by a reference model. Here 

also, these results are compared with the work of [Narendra and Parthasarathy 1990],

Chapter 5 concludes this dissertation with summary of the research results. The 

merits and limitations of the new scheme are discussed, followed by the directions of 

future research.

The detailed derivation of the FLAN is given in appendix A. Although the stability 

analysis o f FLAN is beyond the scope of this work, appendix B presents a brief discussion 

on stability o f the nonlinear system used in chapter 4.



CHAPTER 2

DEVELOPMENT OF FUZZY LOGIC ADAPTIVE NETWORK (FLAN)

2.1 Introduction

In this chapter, first some basic concepts of fuzzy logic (FL) and neural networks (NNs), 

and their applications to the control problems are briefly reviewed. Discussion on the 

relative merits of the recently proposed hybrid schemes that combine FL and NNs is also 

presented. First, the basic concepts o f FL, and the definitions o f a fuzzy set and some 

important operators are reviewed in section 2.2. This is followed by a brief explanation of 

the basic structure o f a fuzzy logic controller (FLC). This introduction is necessary for the 

development o f FLAN. Next, the fundamental ideas of an NN and the leaning procedure 

used to train the network are reviewed in section 2.3. A backpropagation neural network 

(BPNN) is used as an example to describe how to employ an NN to solve a control 

problem. Then, with the basic concepts of FL and NNs in mind, several hybrid schemes 

that combine FL and NNs together are discussed in Section 2.4. This discussion naturally 

leads to the development of the proposed new scheme, FLAN. The detailed derivation of 

the learning procedure for the FLAN is given in appendix A.

2.2 Fuzzy Logic

2.2.1 General Introduction

In real life, we are commonly faced with many vague or inexact objects. In fact, if we 

observe carefully, we can find that most of the subjects are matters of degree. For 

example, the words commonly and most o f the subjects in the previous sentences are 

subjective terms that describe the fuzziness of some facts. This fuzziness is different from 

what traditional science tells us. We need a fuzzy description for the fuzzy world.

9
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Kosko said [Kosko 1993], "Fuzzy logic is reasoning with fuzzy sets." FL is a 

mathematical scheme that allows us to analyze the vague or inexact objects. No one would 

speak about the subject o f fuzzy logic without mentioning the great founder, Dr. Lotfi A. 

Zadeh, who invented fuzzy set theory [Zadeh 1965], He opened the door to a new subject 

that allows scientists and engineers to explore the decision space between 0 and 1. His 

remarkable contribution has allowed us, therefore, to use FL as a tool to describe this 

fuzzy world.

A fuzzy set is defined as a collection of the degrees of compatibility to a subject. 

For example, to discuss the tallness, we may use words short and tall, which are linguistic 

labels o f the fuzzy sets short and tall, to describe the observation. The degree of 

compatibility to each fuzzy set then can be subjectively determined, usually between 0 and 

1. For example, given a person 5'5" tall, we can label the person as short to the degree 0.7 

and tall to the degree 0.3. Therefore, the ordered pair (5'5", 0.7) belongs to fuzzy set 

short. Similarly, the ordered pair (5'5", 0.3) belongs to fuzzy set tall.

Definition 2.1 If x  is the object of interest in the universe o f discourse X then a fuzzy set 

A in X is defined as a set of ordered pairs:

where j i ^ x is the degree of compatibility o f object x  to fuzzy set A .

The above definition presents the fuzzy set in a discrete format, where the elements 

of the fuzzy set are enumerated pair by pair. Alternatively, we can use a function, called 

membership function, to describe the mapping from the observation space to membership 

space. Then equation (2.1) can be reproduced as

(2 . 1)

(2 .2)



where H^(x) is the degree of membership function defined as

MS :X->[0,1] (2.3)

Next, several important operations and the terminologies that are frequently used 

in the fuzzy set theory are presented.

• fuzzy union (Triangular Co-Norms, or S-norm):

/W >  W  = Tnax(nA(x),nB(x))
= Ha(x) v h b(x) (2.4)
= HA(x)+nB(x)

• fuzzy intersection (Triangular Norms, or T-norm):

= min(/i/l(x),/iB(x))

- ! I a(x) aiub(x) (2.5)

• fuzzy negation (complement):

= (2-6)

• fuzzy implication (the generalization of modus ponens (GMP) inference):

[(A and B) -> C] = fdA( x )  a  fiB{y) a  jic(z)

There are many more fuzzy operations and implication methods available in the 

fuzzy set theory. However, the intention here is to simply review some important and 

frequently used operators for the sake of development of the later sections. See 

[Kaufmann 1975, Dubois and Prade 1980, Kandel 1986, Lee 1990, Pedrycz 1993] for 

more details.
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2.2.2 Fuzzy Control

Fuzzy control (FC) has been an active research topic since Mamdani first applied fuzzy set 

theoiy to control problems [Mamdani 1974], The literature and applications in FC have 

been growing exponentially in recent years. An excellent survey o f FC along with a 

general scheme for constructing a fuzzy logic controller, and the direction for further 

research is presented in [Lee 1990], In [Mizumoto 1988, 1989, 1992], various fuzzy 

implications and defuzzification processes are introduced.

An FLC is a rule-based expert system designed for the purpose of control. It 

contains a set o f linguistic control rules which enable the controller to capture the vague 

or inexact nature of the control system. Basically, a domain expert is needed to transform 

expert knowledge into a set of linguistic control rules, which is the essential part of the 

FLC. However, an FLC is not an expert control system because the design of an FLC may 

not entirely depend on the domain expert.

Generally, there are four methods used to develop the control strategy of an FLC:

• extracting the domain expert's opinion or knowledge

• modeling the actions of the experienced operator

• observing the response of the system

• introducing the self-learning process

The first three methods are not highly suitable from the practical point of view, 

because the domain expert in the first case may not be available many times; the action of 

the experienced operator in the second case is not easy to observe or transform to 

numerical data; and trial and error has to be used in the third case. The last method 

appears to be promising, but it is not simple in practice because there are no clear rules

about how to introduce the learning algorithm into an FLC. This has been a new and

active research area, and will be explored in more detail later in this chapter. This self 

learning aspect is the basic idea on which FLAN will be built upon.
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An FLC usually consists of three parts: namely, the fuzzification process, which 

transforms a crisp input from the measurement into a fuzzy membership value, the fuzzy 

inference process, which contains a set of linguistic control rules and the decision-making 

mechanism, and the defuzzification process, which transforms the inferred result, a fuzzy 

number, into a crisp output as a control signal. Figure 2.1 shows the basic structure o f an 

FLC.

CRISP
INPUT

CRISP
OUTPUTFUZZIFICATION

PROCESS
INFERENCE

PROCESS
DEFUZZIFICATION

PROCESS

FUZZY LOGIC CONTROLLER

Figure 2.1 Basic structure of a fuzzy logic controller.

In the fuzzification process, the measured input signals are mapped to membership 

space. For each input signal, a grade of membership is assigned to each pre-defined fuzzy 

set. For example, given a crisp input signal x0 and n linguistic values, Al,A2,A 3,. ..,An,

which may be treated as the labels o f fuzzy sets, n  fuzzy membership values 

fiAi{x0), /' = 1,2,3,...,« may then be obtained. To summarize the process, the notation in

[Lee 1990] can be used:

x = fuzzifier(x0) (2 .8)

where x0 is usually a crisp input signal taken from the sensor, x  represents a set of 

fuzzified numbers ^ ( x j , / = 1,2,3,...,/?, and fuzzifier{-) represents the fuzzification
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process that maps the crisp input signal into the fuzzy membership value of each linguistic 

label. In the case that the input signal is taken from the observation of a human operator or 

in a noisy environment, x0 can be a fuzzy number. The membership value is then 

determined by the max-min operation on the fuzzy input, which means taking the 

membership value to a certain fuzzy membership function as the maximum values o f the 

intersections o f the fuzzy input and the fuzzy membership function. Figure 2.2(a) and 

2.2(b) show the cases of a crisp and a fuzzy input respectively. To simplify the 

demonstration, triangle membership functions are used. From the figure, it can be 

observed that a crisp input and a fuzzy input are assigned to the different degrees of 

membership. For simplicity, We shall only use the crisp inputs in the latter discussion of 

this dissertation.

3

2

(a)

Figure 2.2 Fuzzification Process.

The fuzzy inference process receives the fuzzified input values, compares them 

with the antecedent parts of the linguistic control rules, and then produces a set of 

fuzzified numbers from the conclusion parts of the rules. In the case o f two inputs and one 

output, the linguistic control rules can be typically expressed as:
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J?,: if x is A, and y  is Bx then z is C,
R2: i f x is ^2 a n d ^ is5 2 then z is C2
R3: if x is A3 andy  is B3 then z is C3 (2.9)

Rn: if x is An and y  is Bn then z  is C„

where Rj, i = 1 , 2 , 3 are the labels o f the rules, x  and .yare input variables and zis the 

output variable. Aj,Bj, and Cf, / = l,2,3,...,w are linguistic values, such as tall, short, and 

so on, for x ,  y ,  and z , respectively. The types of a control rules vary with the fuzzy 

reasoning mechanisms. In [Jang 1993], the author reviewed three types o f commonly used 

rules.

Fuzzy control rules in equation (2.9) are actually implemented by a fuzzy 

implication:

[p^ (x) and p B> (7 )] -> [pCi (z)] (2.10)

where (x), p Bi(y), and uCj(z) are the grades of membership to A,,Bt , andC,, 

respectively, for / = 1 , 2 , 3 , . and —> denotes the process of a fuzzy implication. A

variety o f fuzzy implications can be chosen, see [Lee 1990, Mizumoto 1988, 1989] for

more details.

Using the forward inference, named the generalized modus ponens (GMP), for 

example in [Lee 1990], we may demonstrate how to obtain the fuzzy conclusions. The 

GMP has the form:
premise 1: x is A and y  is B  then z  is C 
premise 2: x is A' and y  is B' 

consequence: z is C’

where A and A' are fuzzy sets in the universe of discourse U, B  and B ' are fuzzy sets in 

the universe of discourse V, and C and C' are fuzzy sets in the universe of discourse W.

Given x0 and y 0 as the input signals, we may deduce the fuzzy consequence C ' or 

p cXz) from premises 1 and 2 by taking the max-min composition o of the fuzzy relation 

([(A and B) —»C}) in UxVxW and  the fuzzy set (A'  and B') in U x V . That is,
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C' = [{A a n d £ ) -> C ]o U 'a n d £ ')  (2.11)

or

M * ) =  v  { W ^ o ) A ^ U ) ] A [ ( ^ W A / x B( ^ ) ) - > / i c (z)]} (2.12)
xo>yo

Now, if we translate the fuzzy implication HA{x) a  jiB(y) —> juc(z) into the form 

HA(x) a ^ ( j )  a£ tc(z), we may obtain

^ C,U) = v j ju^(jf0) A n A(x) A /ic(z) A  v ^ W  A  n B{y) A /ic (z)] [ (2.13)
* 0  v  ^ 0  J

Furthermore, from ̂ A xo)= Av(jo) = 1 an^ mA x ) ~ I1 A y ) = ® for all x *  x0 and

y ^ y 0 we can simplify equation (2.13) to

licXz) = ̂ A(xo)^HB(yo)A ^ A z) (214)

We may further generalize the result in equation (2.14) to the case of inferring 

from n  linguistic rules:

C  = C.{ or C ' or Q  or- • • or C' (2.15)

or

M AZ) = [v- 4  U ) A Mb, (Jo)A Me, U)]

(2.16)
v K 3(*o)aMb1G'0) a ^ c 1W]

v- • •'v[h Ak (x0) a  n Bn ( j/J  a  V-cSA

Thus the process of fuzzy inference can be summarized by equation (2.14) and 

(2.16). Finally, the last part of an FLC is the defuzzification process that transforms the 

fuzzy consequences into a crisp output signal. The reason for having this process is that a 

fuzzy number is not acceptable as an output in practice. In the defuzzification process, the 

consequences of the inference, equation (2.15) or (2.16), are first summarized, and then 

mapped to the range of the output variable based on the defuzzification algorithm. The 

nonfuzzy output is used as the control action.

As in the case of the previous two steps, there are various defuzzification methods 

one can choose from, see [Lee 1 9 9 0 , Mizumoto 1 9 8 9 , 1 9 9 2 ]  for more details. Among
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them, the center o f the gravity method is the most frequently used. Here, we simply use 

the notation in [Lee 1990] to represent the defuzzification process.

z0 = defuzzifier{ z) (2.17)

2.2.3 Practical Issues

The inherent simplicity of an FLC makes it a very attractive tool for many practical 

applications, ranging from use in simple appliances such as cameras and washing machines 

[Lee 1990] to control of helicopters [Sugeno 1993], For relatively simple problems, for 

example, anti-lock brakes in the car Saturn [Legg 1993], expert knowledge can be easily 

adapted into a controller without requiring much trial and error. However, when the 

problem is complex and the expert knowledge cannot be easily obtained or interpreted, the 

problem of control becomes very challenging [Sugeno 1993],

To summarize the discussion from the previous section, the following steps are 

required in order to construct an FLC. First, for each input, the number of membership 

functions and their shape parameters must be determined from expert knowledge. Next, a 

set of inference rules must be developed along with the parameters for the inference 

mechanism. Here, once again, expert knowledge and/or trial and error are required. 

Finally, the defuzzification mechanism has to be selected. All these steps may be easy for a 

very simple problem that does not require a high degree of accuracy. For example, in 

parking a car, one does not require a very high degree of accuracy in position relative to 

the curb. In that case, an FLC may be constructed without much trial and error. However, 

in control problems requiring high accuracy, for example, in robotics, the task of 

constructing an FLC is rather involved. For example, [Wu et al. 1992], present 

experiments using an FLC for control of both linear and nonlinear time varying dynamic 

DC motor driven systems. They show that an FLC for nonlinear control can be 

constructed with minimal knowledge about the system dynamics. They also point out,
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however, that through a self organizing scheme, the fuzzy membership parameters may be 

tuned to significantly improve the performance. Similarly, [Shao 1988] reports that tuning 

o f the rules significantly improves the performance of a DC motor speed. Without the 

tuning, the FLC results in excessive oscillations and large errors. Although these examples 

are recent, the need for the use of learning procedures in design of an FLC has been 

noticed since [Procyk and Mamdani 1979]. These and other examples show a varying 

amount of success achieved through a variety of tuning procedures. However, there is a 

need for development of a more systematic approach. This is one of the major objectives 

of this work. The techniques that borrow ideas from the learning abilities of NNs show a 

promise for development of a systematic approach. Discussion on these techniques is 

presented later, in section 2.4, after NN based techniques are reviewed in the next section.

2.3 Neural Networks

2.3.1 General Introduction

For centuries, scientists have been searching for the explanation to how a human being 

recognizes the face of a friend, memorizes a special event, or simply speaks a word. The 

answer is not yet complete. Generally speaking, these behaviors that a human being 

performs daily are some kinds of nonlinear transformations. However, it is hard to 

describe mathematically how these nonlinear transformations are done. In the case of 

recognizing a face, we may briefly conclude that the brain associates a linguistic 

description with a face pattern. In addition to this amazing ability of association, a brain 

can also, for example, adapt to the change of a face caused by aging. It refers to the ability 

of generalization. These extraordinary abilities have inspired researchers to develop so- 

called artificial neural networks (or simply termed NNs) to emulate the functions the brain 

performs everyday.
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An NN is a computational paradigm that contains a large amount o f neuron-like 

processing units, cailed nodes or threshold units. A node takes the input signals from other 

connecting nodes and summarizes an output signal based on its node function, also named 

activation function. Figure 2.3 illustrates the essence of a neuron-like processing unit.

INPUT 1
WEIGHT 1

OUTPUT 
TO NODE 1

INPUT 2

WEIGHT 2

OUTPUT 
'TO NODE 2■H SUM F()

WEIGHT 3

< OUTPUT 
TO NODE 3INPUT 3

BIAS OR THRESHOLD VALUE

Figure 2.3 A neuron-like processing unit.

Depending on the arrangement of the nodes and the learning algorithm used, 

researchers have developed different kinds of NNs to perform different tasks, such as 

system control, pattern recognition, medical diagnosis, and so on. Some of the frequently 

used NNs are: BPNNs, Hopfield networks, Kohonen's feature map, counterpropagation, 

etc. [Lippmann 1987, Dayhoffl990],
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Table 2.1 List of some important work in the area of using neural network to control 
nonlinear systems.______________________________________ _________________

[Barto 1989]
[Li and Slotine 1989]

[Chen 1990]
[Miller, Sutton, and Werbos 1990] 
[Narendra and Parthasarathy 1990] 
[Nguyen and Widrow 1990] 
[Levin, Gewirtzman, and Inbar
1991]
[Sannerand Slotine 1991a, 1991b] 
[Tzirkel-Hancock and Fallside 
1991a, 1991b]
[Polycarpou and Ioannou 1991]

[Hunt et al. 1992]
[Levin and Narendra 1992a,
1992b]
[Sanner, Slotine 1992]
[White and Sofge 1992]
[Gomi and Kawato 1993]

[Schiffinann and GefFers 1993]

A reinforcement learning control system 
Using BPNNs to model and control nonlinear 
systems
Using BPNNs for adaptive nonlinear control 
A collection of NNs for control 
Static and dynamic backpropagation methods 
Using Adalines and BPNNs to control problems 
Using BPNNs for adaptive nonlinear control

Gaussian networks for direct adaptive control 
A direct control scheme for nonlinear systems 
using radial basis function (RBF) networks 
Using a BPNN and a RBF network to model and 
control nonlinear systems 
An excellent survey 
Controllability and stabilization

Gaussian networks for direct adaptive control 
A collection of intelligent control schemes 
Using the feedback-error-leaming scheme for an 
NN to adaptive nonlinear feedback control 
Using a BPNN to adaptive control problems

2.3.2 Neural networks for Control

Many researchers have successfully used NNs to solve control problems that involve

nonlinear dynamic systems with unknown parameters. The main reason of this success is

that an NN can approximate arbitrary nonlinear functions [Funahashi 1989, Homik, 

Stinchcombe, and White 1989, Cybenko 1989, Funahashi and Nakamura 1993, Leshno 

et al. 1993, Bulsari 1993], Table 2.1 summarizes important work in this area.

Generally, the choice of a specific type of NNs to model and/or control a nonlinear 

system depends on several factors:

• the characteristics of the nonlinear system

• the availability of the input and output data
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• whether the training process will be on-line or off-line

• the accuracy required

The literature survey reveals that the multilayer feedforward neural networks 

(MFNNs) with the backpropagation learning algorithm (BPNN) appears to be one of the 

most commonly used neural network schemes for control system design (see, for example, 

Table 5 in [Hunt et al. 1992]). Therefore, we focus on its use in the control problems.

The first step in constructing a BPNN is to determine the configuration of the 

network, such as the number of layers, the number of nodes in each layer, the connections 

o f nodes between layers, and the type of the activation function for each node in the 

network. Since there is usually no activation function in the input layer, we commonly 

classify a network by the number of the hidden layers plus one. For example, a three-layer 

network consists o f one input layer, two hidden layers, and one output layer.

It has been proven that a two-layer feedforward neural network (having one 

hidden layer) can theoretically approximate any continuous mapping, but only under the 

following assumptions: there are a sufficiently large number of nodes in the hidden layer, 

and a nonconstant, bounded, continuous, and monotone increasing activation function is 

used [Funahshi 1989]. However, in practice we may consider adding one more hidden 

layer to avoid the need for an unlimited number of neurons [Chester 1990], Therefore, a 

three-layer BPNN is used as an example to demonstrate the idea of using NNs for control.

The next step is the determination of the number of nodes in each layer. For the 

purpose of demonstration, one may assume that these design parameters ar e given. Once 

these parameters have been determined, we may form the connections between nodes in 

different layers as shown in figure 2.4. The structure of the BPNN is thereby determined. 

Figure 2.4 shows a typical three-layer feedforward neural network. The bias signal to each 

node is neglected in the figure for simplicity.
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BACKPROPAGATION NEURAL NETWORK
NEURON OR 
PROCESSING UNIT

XI

X2
WEIGHT OR
CONNECTION STRENGTH

INPUT HIDDEN HIDDEN OUTPUT
LAYER LAYER-1  LAYER-2 LAYER

Figure 2.4 A three-layer backpropagation neural network.

After the structure of the network is determined, we need to prepare a set of 

training data that can appropriately represent the characteristic of the control system. This 

is also a crucial point to the successful use of a BPNN. The training data are usually 

collected from the test run of the system so that the data can best present the control 

system.

Then, we have to train the network with the set of prepared training data. The 

training process is called a supervised learning if the desired value of the system output is 

known. Usually, the training process can be carried out either on-line or off-line. For the 

purpose of demonstration, we shall use the off-line training process.

The training procedure contains two phases: the forward pass and the backward 

pass. In the forward pass, the input signals are forward propagated through layers to
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produce a set o f network outputs. This process can be described by the following 

equation:

Y = F3{ w 3F2[ w 2Fl(\V'X+B1)+B2] + B3} (2.18)

where the vector Y represents a set of network outputs, the vector X represents a set of 

input signals, the vector function F’ (-) is a set of the node functions or activation functions 

for nodes in layer / , the matrix W ' is a set of weights or connection strengths for the 

nodes between layer i and / — 1, and the vector B represents a set of the bias values to the 

nodes in layer / ,  for /' = 1,2,3.

Based on the difference between the desired outputs stored in the training set and 

the network outputs, an objective function or cost function is defined. The network is 

trained when the objective function is minimized. Usually the objective function is defined 

as the square of the sum of the differences between the desired outputs and the network 

outputs from all the patterns in the training set.

£  = £ ( y; - Y ')  (2.19)
/=1

where the total error E  is a scalar, and the vector Y'd is the desired output of pattern i , 

for / = 1 to P .

To minimize the objective function, the gradient decent method is commonly used 

in a BPNN. When the generalized delta rule, represented in equation (2.20) or (2.21) 

below, is used, one can show that the derivative of the error with respect to each weight is 

proportional to the weight change that should be made to minimize to error.

A W ~ H  (2.20)

or

=  (2 .2 1 )

where r\ is the learning rate.
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The reader is referred to [Rumelhart, McClelland, and the PDP Research Group 

1986] for further details.

There are two types of applications in the adaptive control: the direct adaptive 

control approach and the indirect adaptive control approach. In the direct adaptive 

control, the error signals of the system is usually employed to train the NN to produce the 

proper control actions [Venugopal, Sudhakar, and Pandya 1994, Sanner and Soltine 1992, 

Hunt, et al. 1992], Figure 2.5 shows the basic structure o f a direct adaptive control, where 

the error signals modify parameters of the NN controller. This approach is more feasible 

for real-time control problems.

DIRECT ADAPTIVE CONTROL

*

DESIRED
OUTPUT

A / / y
\

OUTPUT
PLANT

OUTPUT
S ' s>

\
\

\
\ ERROR )

----------------- { )

Figure 2.5 Direct adaptive control scheme.

In the indirect adaptive control, usually two NNs are used: one for the 

identification model and the other for controller [Narendra and Parthasarathy 1990, Hunt, 

et al. 1992]. When the NN serves as the identification model, it learns the mapping of the 

input-output relation. The estimation error is used to tune the weights in the NN model. In 

the case of using an NN as the controller, the system error, similar to the direct adaptive
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control approach, is used to modify the weights of the NN controller. Figure 2.6 shows 

the block diagrams of the indirect adaptive control scheme.

INDIRECT ADAPTIVE CONTROL

*
tLCtl UVUi-i C.U

INPUT

ESTIMATION ERROR
DESIRED
OUTPUT

ACTUAL
OUTPUT

CONTROLLER
OUTPUT

ERROR

Figure 2.6 Indirect adaptive control scheme.

2.3.3 Practical Issues

Main reasons for a tremendous growth of papers in the area o f applying NNs for control 

problems is due to; 1) their ability to approximate nonlinear mappings, 2) their ability for 

learning and adaptation, 3) a highly parallel structure that is suitable for parallel hardware 

implementation, and 4) an ability to process many inputs and outputs [Hunt ei al. 1992], 

Despite this outgrowth and successful applications, there are several problems with 

applying NNs to control problems. First, the procedures for the development of the 

network architecture are not systematic. Second, the relationship between the system that 

is being modeled and the specified structure of the NN used is not clear [Hunt et al.
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1992]. While an FLC is ideal for a structured representation of knowledge, an NN appears 

more or less like a black box to a practicing engineer. Third, the common problem with 

BPNN type networks is the need for a large amount o f learning cycles, for example it 

usually takes over 50,000 cycles for learning in an identification problem considered later 

in chapter 3 [Narendra and Parthsarathy 1990]. Fourth, although there is an exhaustive 

amount o f literature reporting proofs of stability of adaptive systems using Lyapunov 

methods, in almost all the cases the underlying plant is assumed to be linear and time- 

invariant [Hunt et al. 1992], There is a need for extending this work for nonlinear systems 

[Hunt et al. 1992, Narendra and Parthsarathy 1990],

Despite the problems listed above, the success of the NNs in control area is 

indisputable. It is clear that issues related to stability of these methods will require further 

investigation, but lack of reliable techniques for stability analysis has not been detrimental 

to development of a large number o f practical applications. In terms of the first three 

problems listed above, the most practical approach appears to be merging of NNs with 

techniques like FLC. In the next section, methods that borrow' learning concepts from 

NNs into FLC are reviewed.

2.4 Combined Approach of Fuzzy Logic and Neural Networks

2.4.1 General Introduction

As discussed in the previous two sections, there are problems in using FLC or NNs alone 

in control problems. Therefore, recent research has shown a new trend of combining FL 

and NNs to provide an alternative to using either of these modem techniques alone. The 

discussion here will focus on the schemes that incorporate the learning concept in an NN 

to an FLC.
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Essentially, there are three possibilities in combining these two approaches. First, 

one may either employ an NN or NNs to play the main role and apply an FLC or FLCs as 

an auxiliary, or vice versa [Berenji and Khedkar 1992, Lin and Lee 1994], Second, one 

may either use an NN to help model the mapping of an FLC, or vice versa [Wang and Kim 

1994], Finally, third, one may simply fuse  them together and obtain a hybrid architecture. 

Here, by fuse  we mean merging the concept of learning from NNs and ability of 

approximate reasoning from FL [Jang 1993],

The first two approaches may improve the overall performance of the system in a 

certain sense; however, they still may have the same problems that one faces when using 

an FLC or an NN alone. In the third case, the problems caused by using FL and NNs alone 

may be avoided if the topology of the network is properly arranged. It is the main 

objective of this research to develop a systematic procedure for nonlinear control 

problems, and a hybrid scheme that merges these two techniques together may be a better 

alternative. Later in this chapter, this will be discussed in more detail.

FAM
RULE]

RULE 2FUZZY
INPUT FUZZY

OUTPUT
CRISP
OUTPUTDEFUZZIFYING

PROCESSw3
RULE 3

w4.

RULEn

Figure 2.7 A fuzzy associative memory system.
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Before the hybrid scheme is developed, we will briefly review some pioneering 

work in this area. Kosko developed a scheme, called FAM, which maps fuzzy sets to 

fuzzy sets [Kosko 1992a]. Figure 2.7 shows the architecture of the FAM with one fuzzy 

input and one fuzzy output. The FAM system consists o f a set of FAM rules and a set of 

weights associated with the FAM rules, which is quite similar to a FMNN. The weights 

are modified by feeding the system with training data, calculating the firing frequency of 

each rule, and then determining the weight modification of each rule by comparing the 

firing frequency of each rule with a prescribed threshold value. The result of this learning 

process allows one to determine a set of weights associated with the rules in FAM so as to 

produce an optimal association of a fuzzy output to a fuzzy input. However, there are no 

changes in membership functions in both premise and consequent parts of the fuzzy rules. 

That is, this scheme only learns the fuzzy rules, and requires the fixed membership 

functions to be determined before the training process starts. In other words, expert 

knowledge to set up the membership functions is still required. The main advantage of the 

FAM is that it provides a way in which the number of rules required may be automatically 

determined.

ARIC

FAILURE SIGNAL

INPUT
STATE

INTERNAL REINFORCEMENT

OUTPUT
ACTION

ASN

AEN

PLANT

Figure 2.8 Basic structure of the ARIC architecture.
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Berenji introduced the ARIC and its generalization GARIC [Berenji 1992, Berenji 

and Khedkar 1992]. These schemes consist of two main elements: the action-state 

evaluation network (AEN) and the action selection network (ASN), as shown in Figure 

2.8. The AEN is an NN used to produce a prediction of the future reinforcement based on 

a given state; while ASN is also an NN that models an FLC and generates the control 

actions. In the ASN, an FLC is modeled by a two-layer neural network with the hidden 

layer containing as many nodes as the number of the rules. Thus the structure of ASN can 

be easily determined. However, in the AEN, the determination of the network 

configuration poses problems similar to those in constructing NNs alone for control. The 

weights in the AEN and ASN can be modified by the reinforcement leaning algorithm. 

Since there is no input and output training data used in ARIC, it employs unsupervised 

learning.

In addition to ASN and AEN in ARIC, GARIC has one more component, called 

stochastic action modifier (SAM), that stochastically generates the control action and 

sends it to the system. GARIC also provides an algorithm to tune the fuzzy labels globally 

in all rules, instead of tuning them locally in ARIC.

Although ARIC and GARIC have been reported as effective tools to control 

nonlinear dynamic systems, the main problem in practical implementation is the need to 

determine the architecture of ASE, similar to the problem in applying a BPNN.

Jang proposed the Adaptive Network-based Fuzzy Inference System (ANFIS) 

which can determine the near-optimal membership functions and the control rules [Jang

1993]. The ANFIS is essentially a special case of a MFNN named adaptive network. 

However, unlike the regular MFNNs, each node in the adaptive network can have 

different node function. In this approach, Jang used different node functions in different 

layers to replace the processes of an FLC in different phases.

Figure 2.9 shows the basic structure of an ANFIS. The circle represents the node 

containing modifiable parameters; while the square represents the node that has no



30

modifiable parameters. Since ANFIS employs supervised learning algorithm, input and 

output data are required. Jang also developed a hybrid training procedure, which is 

claimed to be an improvement of the basic gradient descent method. The training process 

is composed of two phases. In the forward training pass, the input signal passes through 

layers, like in an FLC, and produces the network output. The network output is then 

compared with the desired output stored in the training data. In the backward training 

pass, the difference of the comparison, which is the training error, is used as a reference to 

modify the parameters in the system. The entire training process repeats until it reaches the 

prescribed terminative condition.

Jang’s work provides a good approach for solving the problem of parameter 

identification for an FLC. However, as the number of inputs and the number of 

membership functions for each input increase, the size of the network also grows 

exponentially. ANFIS should include a structure identification process in order to reduce 

the size of the network [Sun 1994].

ANFIS

w

Figure 2.9 An ANFIS architecture.
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In summary, it is apparent that all the methods discussed above have certain good 

features. However, each also has certain weak points. It is believed that combination of 

various ideas from some o f these techniques may be desirable. Essentially, the hybrid 

scheme should have the following properties:

• provide a general guideline to determine the hybrid architecture

•  determine the parameters of the hybrid system automatically

In other words, the ultimate goal of developing the hybrid scheme is to automatically 

identify the parameters and the structure of the hybrid scheme in a sort o f optimal sense so 

that the hybrid scheme can accurately approximate complex nonlinear mappings. In the 

next section, such a scheme is developed.

2.4.2 Proposed Hybrid Scheme: FLAN

As mentioned before, our main interest is in incorporating the learning process in the 

design of an FLC so as to determine the parameters and the structure of the FLC 

automatically, and thus provide a convenient tool for solving practical problems. As for 

the parameter identification, one effective approach is to use the MFNN architecture to 

present an FLC. The architecture of MFNN can be determined simply by the initial number 

of membership functions and initial number of linguistic control rules required. Once the 

structure of the network is set, the parameters of an FLC can be tuned by the learning 

algorithms used in NNs. While the structure identification is done by setting a set of 

additional parameters associated with the linguistic control rules and calculating the firing 

frequency o f each linguistic control rule so that the rules with low firing frequencies can be 

removed from the hybrid system.

The following discussion on developing the proposed hybrid scheme consists of 

two parts: the structure identification and the parameter identification. Figure 2.10 shows 

the flow chart illustrating this process. The first part, which is the structure identification,
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includes the determination of the number of initial membership functions and the 

adjustment o f the number o f final membership functions and the number of final linguist 

control rules. The number o f initial membership functions can be determined by analyzing 

the distribution of the given input patterns of each input variable within its definition 

interval. A membership function can be removed if there are only a few data falling in that 

interval. As a consequence o f removing a membership function, a set of rules related to 

this membership function is also removed. In the case o f a two-input system, for example, 

the linguistic control rules can be represented as a look-up table. Removing a membership 

function from an input variable is equivalent to deleting an entire column or row from the 

look-up table. At the end of this process, one is left with the initial set of linguistic control 

rules. Thus the number of initial linguistic control rules is determined by the number of 

membership functions of each input.

START

STRUCTURE
IDENTIFICATION

PARAMETER
IDENTIFICATION

NO
DONE?

YES

END

MODIFY 
# OF FINAL 

RULES

INITIALIZATION

MODIFY 
# OF INIT. MFs

FORWARD
TRAINING

BACKWARD
TRAINING

Figure 2.10 Flowchart of the proposed hybrid scheme.



33

The number o f final linguistic control rules is determined by counting the firing 

frequency weighted by the firing strength of each rule. A rule should be removed if the 

cumulative weighted frequency is low.

The second part, which is the parameter identification, performs the adjustments of 

the premise parameters and consequent parameters in an FLC. The parameter 

identification part is based on learning concepts from the MFNN. Therefore the steps in 

the parameter identification include steps similar to the design of an MFNN. All the steps 

in that part are discussed below.

The first step is to determine the architecture, namely, the number o f layers and the 

number of nodes in each layers required. The hybrid architecture consists of four layers: 

the input layer that receives the input signals from the sensor, the fuzzifying layer, which 

performs the fuzzification process, the inferring layer, which contains the fuzzy reasoning 

mechanism, and the defuzzifying layer, which produces the crisp output signals. The 

number of nodes required in the input layer depends on the number of signals received by 

the hybrid system. In the same manner, the number o f nodes needed for the defiizzifing 

layer is decided by the physical plant. The number o f the nodes in the fuzzifying layer is 

equal to the sum of the number of membership functions used over the number o f input 

signals; and the number of nodes required in the inferring layer is determined by the 

number of rules required, which, in turn, is decided by the number o f membership 

functions used. Therefore, the only design factor required in this scheme is the number of 

membership functions to be used for each input variable.

The second step is to connect the nodes in different layers. The configuration and 

the connection o f the hybrid architecture with two input signals and one output signal is 

shown in Figure 2.11.

The third step is to develop the training process that learns the parameters in the 

proposed hybrid scheme, which are the premise parameters in the fuzzifying layer, the 

consequent parameters in the inferring layer, and the weights in the defuzzifying layer. In
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the case o f controlling a dynamic system, the input and output data are usually known or 

measurable. Therefore, a supervised learning algorithm may be used in this case. To train 

the hybrid scheme with the supervised learning algorithm, we first present the input data to 

the hybrid system and produce a set of corresponding outputs, and next calculate the 

difference between this output values with the desired ones. Like in a BPNN, the 

generalized delta rule [Rumelhart, McClelland, and the PDP Research Group 1986] may 

be used to modify the parameters of the system so as to achieve a desired input-output 

mapping.

AJ Al,Bl -> Cl

XI

A2 A2.B1 -> C2

wj

AJ.B2 -> C3B1

X2

B2 A2,B2 -> CA

B2=
TZZ1FIER(X2)J >  B2X2

Figure 2.11 Basic structure of the proposed hybrid scheme - FLAN.
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The network described above can be thought of as a fuzzy logic adaptive network. 

Hence the term FLAN is used to describe this scheme. The training process in FLAN has 

two phases: the forward training phase and the backward training phase. To train the 

hybrid system, both the batch learning and the pattern learning can be used. To simplify 

the notations, we may just use the pattern learning approach.

In the forward training phase, a set of input data is first presented to the hybrid 

system to obtain a corresponding output value. In the fuzzifying layer, the input data are 

fuzzified to fuzzy values based on the corresponding membership functions.

O' =FUZZIFY(X) (2.22)

where the vector function FUZZIFY(-) denotes the fuzzification process that maps a crisp 

input vector X to the corresponding fuzzy membership denoted by the vector O '. The 

vector function FUZZIFY(-) is a collection of fuzzy membership functions which are used 

as the node functions for the nodes in the fuzzifying layer. These node functions are 

usually bounded, piecewise continuous and differentiable. Typical examples are triangular, 

trapezoidal and bell-shaped membership functions. For example, a bell-shaped membership 

function is determined by a set o f three parameters. Thus if we change the values of these 

three parameters, we may change the shape and/or the location of the membership 

function.

In the inferring layer, each node represents a linguistic rule which associates the 

output to the inputs, denoting as (A andB  —» C). Since the fuzzified input values 

activate each linguistic control rule to a different degree, we may calculate the firing

strength of a rule using the approach introduced in subsection 2.2.2. Applying the similar

procedure developed in that subsection,

O 2= JN F E R (0 ') (2.23)

where the vector function INFER(-) denotes the inferring process that produces proper 

values at the consequent parts based on the degrees of satisfaction at the premise parts of
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the control rules, and the vector O 2 is a set of the firing strengths of the linguistic control 

rules.

In the defuzzifying layer, the fuzzy output equals a weighted sum o f the individual 

consequences. We then may calculate the nonfuzzy output by one of the defuzzification 

method mentioned in subsection 2 .2 .2, for example, center of the gravity method.

Y = O3 = DEFUZZIFY(Wt ■ Q 2) (2.24)

where the vector Y represents a set of nonfuzzy outputs, which is the output of the 

defuzzifying layer O 3, the vector Sanction DEFUZZIFY(-) denotes the defuzzification 

process that maps the set of fuzzy outputs to a set of nonfuzzy values in the universes of 

discourse, and the vector W is a set of adaptation weights associated with the linguistic 

control rules. From equation (2.24) we may learn that the fuzzy outputs are additively 

combined with the sum operators; therefore, this fuzzy system is essentially an additive 

fuzzy system. In addition, the fuzzy system becomes a conventional fuzzy system when all 

the elements of the vector W are ones.

In the backward training phase, a procedure similar to the one developed for a 

BPNN may be used. First of all, an objective function has to be defined. In fact, it can be 

defined in a similar way as used in the learning process for a BPNN.

i=i *■
where P  is the number of training patterns, the vector e' = (Y ^ -Y ')  denotes a set of

errors between the desired outputs and the actual outputs.

Second, the modifiable parameters need to be identified. There are three sets of 

parameters needed to be trained so as to produce the proper mapping that represents the 

input-output relation of the training data: one is the set of parameters associated with the 

membership functions at the consequent side of the linguistic control rules, second is the

(2.25)
)r(vj-v')
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set o f parameters associated with the membership functions at the premise side o f the 

linguistic control rules, and the third is the set o f weights associated with the linguistic 

control rules.

To modify these parameters, the generalized delta rule used in a BPNN may be 

utilized to determine the amount of change that should be made for a given modifiable 

parameter.

A p '^ T iS '/ - '  (2.26)

where Apl is the change in the parameter that should be made, rj, as in equation (2.21), is 

the learning rate, S' is the error between the desired output and the actual output

produced by the given input pattern at the current node j  in layer I that contains the 

parameter under consideration, and x,'-1is the input from node / in the preceding layer l- l  

to current node j  in layer /. Since a delta rule implements a gradient descent in E, we can 

produce the following from equation (2.21) and equation (2.26).

dE . . .
<2 2 7 >

Because the change of a given parameter p i  only affects the nodes that contain 

this parameter, and the output of the current node j  is a function of the given parameter, 

the chain rule can be used to represent the partial derivative as the product of two parts:

dE dE dO‘

¥ ,  “  x f ,  ¥ ,  (2 28)

where Oj is the output o f node j  in layer /. The first part represents the change in error as 

a function of the change of the node output. If the node is in the defuzzifying layer, we 

may use equation (2.28) directly. When the node is in the hidden layer, we, again, use the 

chain rule to derive this part. The second part of equation (2.28) is the change in node 

function with respect to the change in the given parameter.
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The updated parameters are then used for the next training iteration. The training 

process is repeated until the objective function reaches a prescribed value or a certain 

number of iterations. At this moment, the system with the trained parameters can represent 

the nonlinear mapping to a certain accuracy.

In this algorithm, we are free to choose the number o f membership functions for 

each input, which is the only design factor that determines the whole architecture o f the 

scheme. The variation of the scheme can be made by using different fuzzy reasoning 

mechanisms or different training rules. In the present analysis, bell shaped membership 

functions are used for the premise part and Sugeno type fuzzy rules [Takagi and Sugeno 

1985] are used for the consequent part. Appendix A presents the derivations in more 

detail.

In the next two chapters, use of FLAN in identification and control o f unknown 

nonlinear systems is considered.



CHAPTER 3

IDENTIFICATION OF NONLINEAR DYNAMIC SYSTEMS 
WITH UNKNOWN PARAMETERS

3.1 Introduction

The major objective of an identification model is to represent the input-output relationship 

of the unknown dynamic system based on the input and output signal measurements. The 

input signals may be either some known functions commonly used for the purpose of 

identification, or in some form that is tractable; while the output signals are usually the 

readings from the sensors or some function of the sensor readings. A mathematical 

equation, either differential or difference equation, is usually used to express the 

relationship based on observed input and output signal measurements.

Conventional approaches assume that some prior information concerning the 

system is available, and the mathematical equation of the model is completely known 

except for a finite set of parameters. However, this is not always true in the cases of 

identifying nonlinear dynamic systems because some systems are just too complex to be 

expressed by a mathematical equation. Without the mathematical model, the conventional 

approaches fail because most of them are based on the certainty equivalence principle 

[Astrom and Wittenmark 1973, 1989] which starts with solving the system with known 

parameters, and then uses the recursively estimated parameters to generate control gains 

for the system with unknown parameters. In other words, if there is no analytical solution 

in closed form available to the problem of identifying a nonlinear system, then other 

approaches are needed. One may use a linear estimation scheme for the nonlinear 

problems, which in turn results in a poor estimation because the linear estimator just 

cannot catch the nature of the nonlinearity of the function to be identified. Alternatively,

39
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one may use stochastic processes, for example, from a Bayesian point o f view, to estimate 

the unknown nonlinear functions.

In many mechanical engineering applications, a great effort has been devoted to 

improve the understanding of dynamics of nonlinear systems so as to obtain a better 

control quality. However, in the literature, most mathematical models used are either 

based on linear system theory or obtained from experience and/or experiments. For 

example, in robotics, because the arm dynamics is highly nonlinear, a mathematical model 

o f the robot arm is usually obtained by making simplifyied assumptions. On the other 

hand, as reported in [Kim and Singh 1993], instead of using a linear model, the authors 

developed an experimental setup to measure the parameters o f the mathematical model for 

a hydraulic engine mount, which can be considered as a complex nonlinear dynamic 

system. This is the type of problems where the FLAN can fit in. Although the example in 

[Kim and Singh 1993] is not used here, a more general framework is utilized to 

demonstrate the potential o f the FLAN.

This chapter concentrates on the identification problem of nonlinear dynamic 

systems with unknown parameters. Section 3.2 provides the necessary mathematical and 

conceptual background concerning the subject. Section 3.3 devotes to the use o f the 

proposed hybrid scheme to the identification of nonlinear dynamic systems with unknown 

parameters. Simulations and results are included. Section 3.4 presents brief concluding 

remarks on the applicability of the FLAN to the identification of nonlinear dynamic 

systems with unknown parameters.

3.2 Identification Models

Identification is the process of assigning a set of values, called the estimates, to a set of 

parameters of the mathematical model regarding the system under testing, based on the 

measurements or observations of the input and output signals [Goodwin and Sin 1984], In



41

order to measure the accuracy of the identification, it is meaningful to define a cost 

function, or sometimes an objective function, which should be a function o f the estimation 

error. An identification or estimation is called optimal if the assignment o f an estimate 

minimizes some objective function.

Now, let us consider a discrete-time nonlinear dynamic system described by

x(* + l) = <D[x(A:),u(*),*], x(0) -  x0
y(*) = *P[x(*)]

where <t>[.] and *P[.] are the unknown nonlinear functions, x e 9tm,u e  9?",y e are the 

state, input and output, respectively. The objective of the identification of (3.1) is to 

replace the unknowns with equivalent functions which we are familiar with.

X m ( £  +  0  =  ^ J X ffl ( * ) > « ( £ ) > £ ] ,  x m ( ° )  =  X n,0 ( 3

where *!>„,[.] and ¥„,[.] are the estimation models, xOT e 9 tm,y m € are the estimated 

state, and estimated output respectively.

Now, the problem of identification of the unknown functions in (3.1) can be 

defined as the determination, according to the input and output data, of the model 

represented by <£„,[.] and ¥„[.] within a set of particular models so that it is equivalent or 

close, in most nonlinear case, to the actual system represented by <&[.] and ¥[.]. In other 

words, the difference between the estimated output from the identification model and the 

actual output from the nonlinear dynamic system should be as small as possible.

The problem may be attacked from two different approaches: the parallel 

identification model, in which the plant and the identification model are independent of 

each other as shown in figure 3.1(a), and the series-parallel model, in which the output of 

the plant is fed back to the identification model as shown in figure 3.1(b) [Narendra and 

Annaswamy 1989]. Since the series-parallel identification is more preferable to generate 

stable adaptive laws [Narendra and Parthasarathy 1990], we will use this approach for the 

rest of the development of this research.
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Figure 3.1 Parallel identification model and series-parallel identification model.

Depending on the interdependency between the state and the input, we can further 

characterize the discrete-time nonlinear dynamic system described by equation (3.1) into 

the following types [Narendra and Parthasarathy 1990]:

Type 1 : The dependence (of the present output) on the past output value 

y ( k - i )  (where / = 0,l,-*-,w-l) is linear while the dependence on the past input values 

u(k -  j ) (where j  = 0,1, • • •, m — 1) is nonlinear.

n- 1

y(*+ 1)= 2  a«y(* “ 0 +£[**(*). u(* - 1), • • •, u(* - 1»+ 1)] (3.3)
;=0

where a ( (/ = 0,1,•••,/» -!) are the unknown coefficients.
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Type 2: The dependence on the past output value y( k - i )  (where / = 0 , 1 , 1 )  is

nonlinear while the dependence on the past input values 

u ( k - j )  (where j  = 0,1,—, w —1) is linear.

IW—1
y (k  +1) = /[y (£ ), y(k -1),■ ■■ •, y(k -  n + 1)]+ X  b yu ( k -  j )  (3.4)

j =0

where b j (j  = 0,1, • • •, /w - 1) are the unknown coefficients.

Type 3: The nonlinear dependence on the past output value y ( k —i)

(where i = 0,l,---,w -l) and the past input values u ( k —j )  (where j — 0,l,” > ,w -l) is

separable.

y(k + 1) = /[y (/r) ,y (^ -1),• • •,y(A- w+1)]+g[u(A),u(A-l),"-,u(& -/»+1)] (3.5)

Type 4 : The nonlinear dependence on the past output value y ( k —i)

(where / = 0,l,---,w — 1) and the past input values u ( k - j )  (where j  = 0,1,*-*,#m-1) is

not separable.

y(k + 1) = /  jy(Ar), y(Ar - 1), • • •, y(^- n  +1), u (*), u(A -1 ),—, u(A -  «  + 1)] (3.6)

Type 4 system is the most general form of nonlinear systems because in practice 

one usually does not have prior information about the control system. In using type 1, 2, 

and 3 systems, minor assumptions need to be made about the system or some prior 

information about the system must be available. Type 1 and 2 systems are more preferable 

in most applications because they are more analyzable. In practical applications, the type 

o f identification model to be used is determined based on the characteristics of the system 

under consideration. Since Type 1 and 2 are similar from the identification point of view,
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only one case is considered for a simulation study in the next section. Type 3 is also 

considered to illustrate how FLAN can be applied for such problems.

3.3 Simulation Studies

In the following simulation studies, for the sake of simulations the equation of the control 

system is completely specified so that the identification model according to the 

classification of the systems described in the previous section can be determined.

3.3.1 Case 1: Identification of a Type 1 Nonlinear System

First, we consider the example used in [Narendra and Parthasarathy 1990, Jang 1993], 

where a 1-20-10-1 BPNN [Narendra and Parthasarathy 1990] and an ANFIS with seven 

rules [Jang 1993] are used to identify the unknown nonlinear function of input in a control 

system. The plant is described by the following difference equation, which is a type 1 

nonlinear system in equation (3.3):

y{k + \) = 0.3y(£) + 0.6j(A:-l) + f [u(k)\  (3.7)

where ^(-) and w(-) are the output and input of the system respectively, /( • )  represents 

the unknown nonlinear function of the input with the following form:

f {u)  — 0.3 sin(7TM) + 0.6 sin(37n/) + 0.5sin(57n/) (3.8)

We may discuss the identification of the nonlinear system described by (3.7) in two 

phases, which are the identification of the mapping from u(k) to f[u(k)] and then the 

identification of the mapping from y(k), y(k-l), and u(k) to the estimated output y (k  + 1).

The reason will become clear later.

First, since the plant under control is type 1 nonlinear system, we may consider the 

following series-parallel model for identification:

y (k  +1) = 03y(k)  + 0.6y(k  -1 )  + FLAN[u{k)] (3.9)
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where y(-) represents the estimated output of the plant under consideration, and FLAN(-)

denotes a function implemented by the FLAN to approximate the unknown function /(• ) . 

To identify the unknown function /(• )  by FLAN (-), we need the measurements of

the input u(k) and f[u(k)]. A number of data are collected as the training data, which can 

best represent the characteristic of the unknown function. For the purpose of simulation, 

the input to the plant is given by the following equation:

f sin(2/i*/250) 1 < k  <250 and 501 < k  < 700 
Ŵ  = lo .5 sin (2^ /250) + 0.5sin(2rat/25) 251 < * < 5 0 0  (3 10)

A change of the input to the system is introduced at the time steps between 251 and 500. 

The reason is to demonstrate if the identification model can tolerate the change of the 

input which is not represented in the training data. Figure 3.2 shows the given input at the 

time steps from 0 to 700.

0.8
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0.4
0.2

- 0.2
- 0.4
- 0.6
- 0.8

0 100 200 300 400 500 600 700

TIME INDEX

Figure 3.2 Input to the nonlinear system (for case 1).
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In this case, we employ the FLAN to estimate the unknown function with one 

input and one output. The hybrid architecture is now determined by the number o f the 

membership functions used. Three, five and seven are commonly used numbers. Suppose 

we start with three membership functions for the input. Then the hybrid architecture 

consists of one node in the input layer, three nodes in the fuzzifying layer, three nodes in 

the inferring layer, and one node in the defuzzifying layer. If  Sugeno type fuzzy reasoning 

method is used, the linguistic control rule has the following form:

/?,.' Ifu(k) is Au thenfi = p, * u(k) + qt\ (3.11)

where/?, denotes the /-th linguistic control rule, At is the linguistic label, is the estimated 

output from /'-th linguistic control rule, and p t and q, are the modifiable parameters o f the 

consequent part. The configuration of the hybrid architecture with three membership 

functions is shown in table 3.1.

Table 3.1 The configuration of the FLAN with three membership functions.
Number of Nodes Modifiable Parameters

Input layer 1 0
fuzzifying layer 3 9
inferring layer 3 6
defuzzifying layer 1 3

There are two important factors that affect the training process: namely, the 

preparation of the training data and when to terminate the training process. Depending on 

the characteristic o f the nonlinear function, we may select the number of training data that 

can best fit the function under estimating. In this study, 125 training data was sampled 

from the first 250 entities of the input and the output measurements. The time to end the 

training process, such as in training a BPNN, is usually determined by the training time 

available or whether the value of the objective function reaches the prescribed value or 

not. We used fifty training epochs in all the following training processes.
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Since the parameters in the hybrid system are not known in advance, we initialize 

the parameters as follows. The parameters in the membership functions can be estimated 

be equally partitioning the input space depending on the number of membership functions 

used. The parameters in the consequent part can be set to zeros. The weights associated 

with each rules are set to ones. It is emphasized here that unlike a BPNN where the 

initialization is usually random, a consistent scheme described above is used for initializing 

FLAN. When the initialization is random as in BPNN, one needs to perform Monte Carlo 

type study to validate the identified model. For FLAN on the other hand, since the same 

kind of initialization is always used, the question of dependency on a particular random 

initialization is avoided. Needless to say, as the training process moves on, these 

parameters are properly adjusted so as to represent the nonlinear mapping.

There is no need for structure identification in this case because there is only one 

input variable and the training data are equally distributed in the input space. As mentioned 

in the previous chapter, the training process consists of two phases. The forward pass of 

the training process includes the estimation of the parameters at the consequent parts and 

the calculation of the estimated output, as explained in the Appendix A. While the 

backward pass o f the training process involves the updating operations of the parameters 

in the fuzzifying and defuzzifying layer. The selection of proper learning rate is problem- 

dependent, and is also an important factor to the success o f training process. A larger 

learning rate helps in speeding up the convergence but causes oscillations in the estimation 

if it becomes too large. Nevertheless, a smaller learning rate helps in reducing the 

oscillations but takes longer time to rearch the point of convergence. Here, Jang’s 

adaptive learning rate scheme is employed because it has the positive effect o f improving 

the speed of convergence (see page 676 of [Jang 1993]).

The learning scheme utilized by FLAN also has another feature. A threshold based 

on the root mean square error (RMSE) is prescribed to separate the updating operations 

into two stages. If the RMSE is smaller than the prescribed value, only the parameters in
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the fuzzifying layer are updated. Otherwise, both the parameters in the fuzzifying and 

defuzzifying layersare updated. In this example, the training procedure is repeated fifty 

times. Table 3.2 shows the results, in terms of the root mean square errors (RMSE), of the 

training process with different numbers of membership functions.

Table 3.2 The RMSEs resulting from different numbers of membership functions.
Number of Membership Functions RMSE Max. Error

3 0.29 0.742
5 0.09 0.250
7 0.0086 0.021

From the above table, it is observed that more the number of membership functions 

used, smaller the RMSE and the maximum error. Therefore, we may conclude that the 

determination o f the number of membership functions used depends on the accuracy of the 

estimation required. Although there is no restriction in selecting the number of 

membership functions, one does not want to use too many membership functions. Further 

work is required in developing schemes to automatically determine the optimum number 

o f membership functions. Figure 3.3 shows the initial and final membership functions of 

the simulation result for seven membership functions.
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T
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Figure 3.3 Initial membership functions and final membership functions.
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The initial and final parameters of the consequent part are given in table 3.3. The 

weights associated with the linguistic rules are: 1.00063208, 1.00080695, 1.00058118, 

0.99999654, 1.00056460, 1.00089715, and 1.00067018. Since the weight adaptation 

starts after the RMSE is already small, the weights are close to unity. The effect o f weight 

adaptation is demonstrated in figure 3.4. In this figure, the comparison between having 

weight adaptation and not having weight adaptation is made. The weight adaptation 

started after about 26 iterations. It is observed from this figure that the accuracy of the 

estimation is further improved even through there are only small changes in the weights. It 

is also observed through this and other examples not reported here that using these 

weights results in a smoother convergence. A more intensive study on this issue, however, 

is required before any conclusions can be made.
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Figure 3.4 The RMSE curves for the cases of having and not having weights.



50

Table 3.3 Initial and final parameters at the consequent part of the linguist control rules.
Rule Number Initial p Final p Initial q Final q

#1 0 -23.994517 0 -24.70773
#2 0 -17.948412 0 -9.471423
#3 0 4.433724 0 3.919599
#4 0 31.725769 0 0.020006
#5 0 4.477868 0 -3.936794
#6 0 -17.736848 0 9.349239
#7 0 -24.044038 0 24.760621
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Figure 3.5 The RMSE curve for 200 epochs.
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Figure 3.6 Comparison of the RMSE values.

Figure 3.6 illustrates the comparison of the results of the FLAN with ANFIS. The 

results o f this figure are obtained through running both the networks under identical 

conditions. It is emphasized here that using a particular learning rate has resulted in a 

better converegence for ANFIS than reported in [Jang 1993], The figure shows that the 

performance of FLAN is comparable to ANFIS, but exhibits smaller oscillations in RMSE. 

The neural network (1-20-10-1 BPNN) used by [Narendra and Parthasarathy 1990] is 

reported to require about 50,000 epochs before the RMSE values are comparable to what 

is shown in this figure. In that network, there are at least 230 modifiable parameters versus 

42 in FLAN. Our experience with a similar NN shows that the number o f epochs are even 

higher for a typical random initialization. The comparison with NN is summarized in Table 

3.4. The results in this table are based on what was reported in each work.
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Table 3.4 Comparison of FLAN with NN and ANFIS.
Method Parameter Number Training Epochs

NN 261 50,000
ANFIS 35 250
FLAN 42 50

UNKNOWN FUNCTION vs. FLAN 
1. 5 ,----------------------------------------------------------------------------------------------

FLAN[u]

1 . 5 ---------------------- 1--------------------1--------------------- 1--------------------- 1---------------------- 1--------------------- 1---------------------

0 100 200 300 400 500 600 700

TIME INDEX 
Estim ation

Unknown 
 FLAN

Figure 3.7 The actual and the estimated outputs of the unknown function.

Figure 3.7 shows the results of the actual output asf[u(k)J and the one from the 

FLAN (with seven membership functions for the input variable u) as FLAN[u(k)] with the 

input u given by equation (3.10). The data of the actual output is plotted as the dashed 

line; while the estimate by FLAN[u(k)] is presented as the solid line. The figure also
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reveals that the estimated model was able to catch up with the change of the input quite 

well, even when the changing signals were not represented in the training data. In the scale 

of figure 3.7, two curves are virtually indistinguishable. The difference between the two 

can be seen in figure 3.8, where the scale is enlarged and the curve illustrates the 

estimation error, which is the difference between f[ti(k)] and FLAN[u(k)J, at each time 

step. Both [Jang 1993] and [Narendra and Parthasarathy 1990] obtained similar results, 

but over 50,000 training epochs were required in [Narendra and Parthasarathy 1990].

0.02 
0.015 
0.01 

0.005
Estimation 0
Errors.0.005 

- 0.01 
-0.015 

- 0.02 
-0.025

0 100 200 300 400 500 600 700
TIME INDEX 

Figure 3.8 Estimation error at each time step.

The next step in the identification of the nonlinear system is to impose the 

estimated model into the control system. If the coefficients of y(k) and y(k-l)  in (3.7) are 

assumed to be known, then the estimated output of the control system can be determined 

by equation (3.9). Now, we can compare the actual outputs of the control system with the 

one from the estimated outputs produced from equation (3.9). The result o f the
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comparison are shown in figure 3.9. The dashed line represents the output signals from the 

control system; while the solid line represents the output signals from the identification 

model. Once again, in this scale, these two curves are virtually indistinguishable. In figure 

3.10, the curve shows the difference between the outputs from the control system and the 

identification model. Since the nonlinear element in equation (3.7) is replaced by a well 

estimated model FLAN[u], the estimated output closely follows the actual output from the 

control system. This reveals that the series-parallel identification mode! with an FLAN as 

an estimator can successfully estimate the control system described by equation (3.7). The 

results presented here are comparable to [Jang 1993] and [Narendra and Parthasarathy 

1990],

SYSTEM OUTPUT vs. ESTIMATED OUTPUT
8 ,-------------------------------------------------------------------------------

y(k+i)
and

yA(k+i)

■ 8 -------------1________ i________ i________ i________ i_________i________

1 101 201 301 401 501 601 700
TIME INDEX

IDENTIFICATION
 System  O utput
 Estim ated O utpu t

Figure 3.9 The outputs from the control system and the identification model.
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Figure 3.10 Identification errors.

The results presented so far indicate that the FLAN is successful in identification of 

unknown nonlinear system. The results also indicate that the performance is at least as 

good as ANFIS if not better, and it is significantly better than NNs at least in terms of the 

speed of learning. Next, several different variations of the scheme are considered to 

illustrate, i) the robustness o f the scheme in terms of changes in the input, ii) the 

robustness in terms of sensitivity against noise in the training data, iii) the insensitivity 

regarding the learning rates over a certain range, and iv) why a scheme such as FLAN is 

necessary for the nonlinear identification problems as compared with using FLCs alone.

For illustrating robustness (case i, called Case la  hereafter), a change in input, 

which includes a higher frequency nonlinear term as the following is considered,

[ sin(2mt/250) 1 < k  <250 and 501 < k  < 700 
u(k) = \ (3.12)

[0.5sin(2rot/250) + 0.5sin(2^/2.5) 25 l< k  <500 '
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where the change of the input to the system introduced at the time steps between 251 and 

500 is adjusted from sin(27cfc /25) to sin(27T& /2.5). The input u(k) described by (3.12) is

shown in figure 3.11. The same network is used to replace the nonlinear function f[v(k)] 

in equation (3.8) but the nonlinear system is now subjected to a different input expressed 

by equation (3.12). The simulation result of identification is shown in figure 3.12. As 

illustrated in figure 3.12, the identification error is small even when a higher frequency 

nonlinear term is introduced. This reveals that the proposed scheme is able to tolerate a 

wide range o f change of input to the system. Figure 3.13 shows the identification errors.

1

0.8
0.6
0.4
0.2 

) 0  

- 0.2 
-0.4 
- 0.6 
- 0.8 

-1
0 100 200 300 400 500 600 700

TIME INDEX

Figure 3.11 A different input to the system.
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Figure 3.12 Identification result.
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Figure 3.13 Identification errors.
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Effects of noise in the training data (case ii, called Case lb hereafter) is considered 

next. In practical situations, for a given input, the output of the unknown nonlinear system 

is measured, for example, using sensors, and thus the input-output pairs are generated for 

use in training. In real life, then there will be a certain amount of noise in the measurement 

of the output. In this experiment, a uniform random noise of ± 5 % of the maximum 

amplitude is added to the output, thus simulating 5 % error in the measurements. This 

noisy data is used for training the FLAN. After 50 epochs the minimum RMSE error (the 

difference between the predicted output and the actual measured noisy output) of 

0.031619 is obtained. The results of nonlinear model estimation are shown in figure 3.14, 

and the difference in the estimate and actual model is shown in figure 3.15. The estimation 

does have a small amount of errors, but is certainly smaller than ± 5 %. Through this 

example, it is shown that the FLAN is able to come up with a reasonable estimate even 

with noisy training data. More investigation, however, is required in this area.

1.5

0.5
flu]

and
FLAN[u]

-0.5

-1.5
0 100 200 300 400 500 600 700

TIME INDEX
Estimation
 Actual
 Estimate

Figure 3.14 Identification results with noisy outputs in the training data.
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Figure 3.15 Identification errors.

Effects o f learning rates (case iii, called Case lc hereafter) are illustrated as 

follows. The example of case 1 is considered with a wide range of initial learning rates. As 

mentioned before, a simple heuristic procedure (similar to [Jang 1993]) within the 

algorithm adjusts the learning rate depending upon the rate of change of RMSE. Several 

different initial learning rates ranging from 0.01 to 0.5 were selected and for each case, 

FLAN was trained for 500 epochs. The results o f the minimum RMSE for each case are 

listed in Table 3.5. The convergence trend is depicted in figure 3.16, where only three 

different cases representing the whole range are presented in order to avoid the clutter in 

the figure. As can be seen from the figure, the FLAN basically converges to a low RMSE 

value within about 250 epochs. When the learning adaptation scheme is not used, then 

much smaller fixed values of learning rates (0.005 or smaller) are required for convergence 

within 500 epochs. Using a fixed value is inefficient and is not recommended in general as
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there will be a higher tendency for getting stuck at local minima. In summary, this and 

other similar examples that were tried indicate that the technique is not very sensitive to 

the initial learning rate. Similar simulation experiments were performed using ANFIS. The 

ANFIS also utilizes a similar learning adaptation scheme, and thus it is expected that the 

results would be similar. It is interesting to note, however, that for this example, one of 

the initial learning rates exhibits a rather non-conforming behavior. As shown in figure 

3.17, for initial learning rate of 0.4, the ANFIS fails to provide a small RMSE even after 

500 epochs (the minimum RMSE is 0.034897). This result, of course, may be coincidental 

and does not lead to any definite conclusions. However, it is generally clear from our 

experiments that both FLAN and ANFIS have a similar performance.
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Figure 3.16 The RMSE curves of FLAN under different learning rates.
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Figure 3.17 The RMSE curves of ANFIS under different learning rates.

Table 3.5 Comparison of RMSEs for various learning rates.
Learning Rate Min. RMSE (FLAN) Min. RMSE (ANFIS)

0.5 0.006126 0.006855
0.4 0.008414 0.034879
0.3 0.004760 0.004311

0.25 0.003272 0.004752
0.2 0.004570 0.004488
0.1 0.008560 0.005779

0.05 0.006513 0.005886
0.01 0.006179 0.005712
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Next, we illustrate through the same example why a technique such as FLAN is 

necessary (case iv, called Case Id hereafter) as compared to using an FLC alone. The 

reader may recognize that once the learning is over, FLAN is a basically an FLC if the 

weights for the linguistic rules are set to 1. We would like to point out that the idea of 

having these weights helps in structure identification and learning. However, FLAN can 

also be used with all these weights set to unity, without significantly affecting the final 

accuracy of identification. In the following experiment, the final status of FLAN (as shown 

by dashed curve in figure 3.4, but at end of 100 epochs) is taken as an FLC except that the 

final membership functions are replaced by the initial membership functions. As can be 

seen in figure 3.3, the difference between the initial and the final membership functions is 

not large, and in fact, is within the errors that a domain expert may make. Thus the 

resulting FLC may be considered a typical one that a domain expert may have constructed. 

However, even with only this small a difference between FLAN and FLC, the actual 

estimation using a FLC is very poor, with minimum RMSE as large as 1.112662. The 

results of estimation are plotted in figure 3.18 to further illustrate this effect along with the 

estimation errors shown in figure 3.19.
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Figure 3.18 Estimation results.
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Figure 3.19 Estimation Errors.
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3.3.2 Case 2: Identification of a Type 3 Nonlinear System

In this example, we consider the plant, from [Narendra and Parthasarathy 1990], described 

by the following equation, which is a type 3 model as in equation (3.5).

y{k + \) = f[y{k)] + g[u(k)] (3.13)

where /[•] represents the unknown function of y(k)

/ M =

and g[-] denotes the unknown function of u(k)

g(u) = u3

where the input u(k), as shown in figure 3.20, is given as

» « ) = SII^—  J+ sjn^—

(3.14)

(3.15)

(3.16)

1.5

0.5

-0.5

-1.5

0 20 40 60
TIME INDEX

80 100

Figure 3.20 Input to the nonlinear system.
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To model the plant, we may employ a series-parallel identification model involving 

two FLANs described as

y (k  +1) = FLANf  [y (A)]+ FLANa [u(k)] (3.17)

where FLANf \-\ and FLANg\\  are the estimates of the unknown function /  and g  in

(3.13) respectively. Therefore, we need to train these two FLANs separately following the

same procedure that was employed in the previous example (case 1).

In this example, seven membership functions are used for both FLANf  [•] and

FLANg\;\. Ten input data are sampled in interval [-2, 2] for FLANg[-] from a set of

measurements o f the input-output relation described by equation (3.15) and another ten 

input data are sampled in interval [-10, 10] for FLANf \-\ from a set o f measurements of

the input-output relation described by equation (3.14). Once we have the training data

ready, we may start the training process. The number of training epochs is also set as 100

and the number of membership functions is selected as seven. With the same training

procedure employed in the previous example, we have the following simulation results. 

Figure 3.21 shows the initial and final membership functions for FLANf \^\.
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Figure 3.21 Initial and final membership functions for FLANf \ \ .

Table 3.6 shows the initial and final values of the parameters at the consequent part of the 

linguistic control rules. The weights associated with the linguistic rules are: 1.00000165,
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0.99984032, 0.99982832, 1.00290391, 0.99983454, 0.99984118, and 1.00000171. The 

minimum RMSE for this case is 0.001464. Again, the weights have the effect of improving 

the accuracy of the estimation by a small amount, although the changes in the weights are 

small.

Table 3.6 Initial and final parameters at the consequent part of the linguistic control rules.
Rule Number Initial p Final p Initial q Final q

#1 0 -0.014456 0 -0.245291
#2 0 -0.024513 0 -0.314858
#3 0 -0.051978 0 -0.442687
#4 0 0.581997 0 -0.000006
#5 0 -0.051972 0 -0.442665
#6 0 -0.024509 0 -0.314828
#7 0 -0.014449 0 -0.245217

F(y) vs FNNf(y)
0.6

0.4

0.2

- 0.2

-0.4

- 0.6
-10 -6 -2 2 6 10

 y_____
Actual 

 Estim ated

Figure 3.22 The actual outputs from f f y j  and the estimated outputs from FLANf [ ] .
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Figure 3.22 shows the results of the comparison of the actual and the estimated

output o f the unknown function /  described by (3.14). The dashed line represents the

output data from the actual output o f /in  (3.14); while the solid line denotes the estimated 

values from FLANf \~\. They are almost identical except in interval [-2, 2], This is caused

by not having enough training data to cover the range of this sudden change. However,

the result is still acceptable.

The next step is to train FLANg[■] in order to estimate g in (3.15) using the

training data described before. The number of training epochs is also set as 100 and the

number of membership functions is selected as seven. The following simulation results are

obtained through the similar procedure used before. Figure 3.23 illustrates the initial and 

final membership functions for FLANg\-}.
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Figure 3.23 Initial and final membership functions for FLANg\^\.

Table 3.7 shows the initial and final values of the parameters at the consequent part of the 

linguistic control rules. The weights associated with the linguistic rules are: 1.00011703, 

1.00026690, 1.00009406, 0.99998587, 1.00008860, and 1.00010291. The minimum
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RMSE for this case is 0,000925. Once more, the weights have the effect of further 

improving the accuracy of the estimation, although the changes are small.

Table 3.7 Initial and final parameters at the consequent part of the linguist control rules.
Rule Number Initial p Final p Initial q Final q

#1 0 11.939388 0 15.903503
#2 0 6.574062 0 4.879100
#3 0 2.074484 0 0.466522
#4 0 0.959759 0 0.000067
#5 0 2.074466 0 -0.466313
#6 0 6.574438 0 -4.879379
#7 0 11.93944 0 -15.903660
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Figure 3.24 The actual outputs fromg[u] and the estimated outputs from FLANg\ \
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Figure 3.24 shows the results of the comparison of the actual and the estimated

output of the unknown function g  described by (3.15). The dashed line represents the

output data from the actual output o fg  in (3.15); while the solid line denotes the estimated 

values from FLANg\^\. The two curves are almost identical in this case.

These two separately trained FLANs are combined to estimate the actual system 

output. At this point the input to the system is given by equation (3.16). Figure 3.25 

depicts the result of the comparison of the actual system output and estimated output. The 

dashed line is the actual output from the control system and the solid line is the estimated 

output from the identification model. The result, likewise, shows that the identification 

model also successfully predicts the output of the control system.

ACTUAL vs. ESTIMATED SYSTEM OUTPUTS 
8  

6  

4

y(k) ^ 
and 0

*A<k> - 2  

-4 
-6 
-8

0 20 40 60 80 100
Time Index

Identification  
A ctual 

 E stim ated

Figure 3.25 The outputs from the control system and the identification model.



3.4 Conclusions

In this chapter, an alternative approach is developed that uses the learning aspects of an 

NN in a structure of an FLC for the identification of nonlinear dynamic systems with 

unknown parameters. The simulation results reveal the strong potential o f using this 

approach to solve complex, nonlinear problems. Through a variety of simulation 

experiments, advantages of the proposed technique, FLAN, over other approaches are 

demonstrated.



CHAPTER 4

ADAPTIVE CONTROL OF NONLINEAR DYNAMIC SYSTEMS 
WITH UNKNOWN PARAMETERS

4.1 Introduction

Adaptive control deals with the problem of controlling dynamic systems with time-varying 

parameters or unknown parameters. Most methods currently available are for control of 

linear time-varying systems. [Goodwin and Sin 1984, Gupta 1986, Chalam 1987, Astrom 

and Wittenmark 1989, Narendra and Annaswamy 1989, Sastry and Bodson 1989], These 

days, since control systems tend to be more and more complicated, assuming complex 

systems to be linear may result in very poor control quality.

Robotics, for example, is an active area o f research in many disciplines, especially 

in mechanical engineering. In robotics, motion control requires moving the end-effector of 

a robot to a certain location, with a prescribed speed, along a predefined trajectory, and is 

a challenging problem because it involves modeling and controlling a highly complex 

nonlinear dynamic system. In addition to joint motion control and resolved motion control, 

adaptive control is one of the major approaches to solve this problem [Fu, Gonzalez, and 

Lee 1987, Lozano and Brogliato 1992], In joint motion control and resolved motion 

control, one generally uses nonlinear compensation techniques which require an accurate 

model of the arm dynamics, and, usually neglects the changes in the control system, such 

as the variation of load in a task cycle. While in the approach of adaptive control, a linear 

and decoupled model of the arm dynamics is an essential component. These approaches 

usually result in nonuniform damping and other undesired effects [Craig 1989], In other 

words, they all have a common shortcoming in modeling the nonlinearities and 

uncertainties in the robot arm dynamics. The result of this shortcoming reveals the need of 

advanced approaches to model complex nonlinear systems. Since a highly reliable tool to

71
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model the nonlinearities and uncertainties in the control system is not yet available, more 

research in this area is desired and expected. While the ultimate goal is to develop schemes 

to solve nonlinear control problems such as robotics control, reliable schemes for even 

simpler nonlinear systems are not available. In this chapter, we focus on applying the 

method developed in chapter 2 to solve a class of nonlinear control problems.

Recently, Kokotovic adopted the feedback linearization techniques and developed 

the adaptive nonlinear control theory [Kokotovic 1991]. Nevertheless, the assumption is 

that the parameters of the nonlinear dynamic system under control either appear, or can be 

made to appear, linearly. Other approaches to control nonlinear dynamic systems with 

unknown parameters, such as fuzzy logic (FL) and neural networks (NN), have also been 

reported to be able to approximate complex nonlinear mappings successfully [Lee 1990, 

Narendra and Parthasarathy 1990, Miller, Werbos and Williams 1992], However, as 

mentioned previously, the applications of these approaches are still very limited because 

the major problem in applying these approaches is that they highly rely on expert 

knowledge and experience.

In this chapter, the proposed hybrid scheme, FLAN, described in chapter 2 is 

employed to design the controller in an adaptive control system. Following a brief 

introduction to adaptive nonlinear control, section 4.2 discusses the schemes that are 

commonly used in adaptive control. Section 4.3 presents the simulation study which uses 

the FLAN to design an adaptive controller for an unknown nonlinear dynamic plant. The 

results show that the proposed scheme is able to successfully control the nonlinear system 

with unknown parameters. The chapter ends with the conclusions of the simulation study 

in section 4.4.
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4.2 Adaptive Control Schemes 

There are essentially two major approaches in adaptive linear control: namely the model 

reference adaptive control (MRAC) and the self-tuning regulator (STR). Figure 4.1 shows 

the basic structure of each approach. Although there are several variations of these 

approaches, the common factor is that the parameters of the controller follow the change 

in the control system. Therefore, the main objective of using adaptive control is to develop 

a controller that can follow the changes in the system. In other words, we need to design a 

control law with adjustable parameters that can minimize a prescribed objective function. 

In the case of MRAC with the gradient approach, the cost function is defined as a function 

o f the difference between the output of the control system and that o f the reference model. 

Similarly, in the case of STR, the objective function may be defined as, for example, the 

variance.

The adaptive control scheme used in the next section is indirect MRAC, which is a 

combination o f MRAC and STR. The FLAN is used as an estimation model and adaptive 

controller in this scheme.

4.3 Simulation Study

In this section the FLAN will be used to the design an adaptive controller. Let us consider 

the example described by the following equation in [Narendra and Parthasarathy 1990],

•K* + l) = —jr^r + K*)]3 (4.1)
1+[>'(*)]

which is the same system that was used in chapter 3. The nonlinear dependence of the 

output and its past values is described by equation (3.13) as f ( ) .  While the nonlinear 

dependence of the input and its past values is expressed as equation (3.14) as g(). They 

are assumed to be separable. In chapter 3, we have successfully produced two
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identification models to estimate these two nonlinear functions, which are F L A N and 

FLANg[\.
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Figure 4.1 Block diagrams for model reference adaptive control and self-tuning regulator.
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Suppose the desired trajectory of the system is given by a reference model as

y m(k + 1) = 0.6ym(k) + r(k) (4.2)

where y m denotes the output of the reference model, and r  represents the reference input. 

Figure 4.2 shows the block diagram of the control system.

REFERENCE INPUT r

X -
SYSTEM PARAMETERS

REFERENCE
MODEL

CONTROLLER
FNNc

ESTIMATION 
FNNfand FNNg

Figure 4.2 Block diagram of the control system in equation (4.1) and (4.2).

The objective of the controller is to provide the control signals so that the system 

may follow the output of the reference model as close as possible. In other words, we 

need to minimize the difference between the actual output from the control system and the 

desired output from the reference model. In this case, the control law is chosen as

M  = g"1 [ -7 W  *)]+ °-6^ + r (*)] (4.3)
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where u(k) represents the control law, denotes the controller that generates the 

control signal u(k), and /[•] is the estimation of /[•] in equation (3.13). Since we have 

successfully developed an identification model F L A N j\\, we shall use it to replace the

estimation /[•] in (4.3). In the mean time, we shall replace [•] with FLANC\^\, which is, 

similar to FLANf  [•], a hybrid network.

The simulation study starts with training FLANC\̂ \ so that FLANg\FLANc(r )\ ~ r

as the reference input r  varies in interval [-4, 4], We may also use the identification model 

FLANg\̂ \ developed in chapter 3 to test the results o f training. Twenty training patterns

are collected as r varies in [-4, 4] and the training epochs is set to be 100. Figure 4.3 

shows the initial and final membership functions o f the reference input r. Table 4.1 

presents the parameters and the weights associated with the linguistic rules. The final 

weights are: 1.00003359, 0.99987993, 0.99998254, 1.00008291, 0.99998200,

0.99971454, and 1.00017453. The minimum root mean square error (RMSE) in this case 

is 0.001668.

Table 4.1 The final values o f consequent parameters of the linguistic control rule.
Linguistic Control Rule P q

#1 0.1521673764 -0.9815163568
#2 0.1848535892 -0.8929286859
#3 0.3114866271 -0.6890313951
#4 2.758424389 -0.0187295369
#5 0.3021608388 0.7003829436
#6 0.1854860738 0.8911815786
#7 0.1527689597 0.9792456189



77

FINAL MEMBERSHIP FUNCTIONS

0.9

0.7
0.6
0.5
0.4
0.3
0.2
0.1

-4 -2.4 0.8 2.4- 0.8 4

INITIAL MEMBERSHIP FUNCTIONS

0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.1

-4 -2.4 - 0.8 0.8 2.4 4

Figure 4.3 Initial and final membership functions of the reference input.

Once we have FLANC\•], we may test whether FLANg\FLANc{r)\~ r  or not. 

Figure 4.4 plots the result of the test and shows that FLANg ]jFLANc(r)] is close to r 

because the slope is about one in [-4, 4]. Now we may use FLANC\̂ \ to replace £"’[•] in 

equation (4.3).
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Figure 4.4 Plot of FLANs \FLANC(r)J vs. r.



78

Suppose the reference input is described by the following equation.

r(k) = sir
2 7tk 
'25

. ( nk
+sn\ T (4.4)

We may study the behavior of the control in two cases. One is the case without control; 

and another is the case with control. In former case, the output o f the control system can 

not follow the desired trajectory given by the reference model. Figure 4.5 show the results. 

The dashed line represents the desired output from the reference model; while the solid 

line depicts the actual output from the nonlinear plant.
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Figure 4.5 The outputs of the nonlinear plant and the reference model in the case without 
control.
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In the latter case, the control signal is generated by

u{k) = FLANc[r(k) + 0.6y(k) -  FLANf  [>(*)]]. (4.5)

The results are shown in figure 4.6 where the solid line and dashed line are virtually 

indistinguishable. It is observed that the output of the nonlinear plant closely follows the 

desired trajectory.
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Figure 4.6 The outputs of the nonlinear plant and the reference model in the case with 
control.

4.4 Conclusions

We have shown that the FLAN can be utilized for the purpose of the adaptive control of 

nonlinear dynamic systems with unknown parameters. The simulation results show the
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promising potential of using this approach to design the controller in an adaptive control 

system.

For the example used in this chapter, we tried two different ways of tuning the 

weights in the defuzzifying layer to see the effect of the weights. In one case we fixed the 

weights to be one all the time, which is similar to the ANFIS [Jang 1993]; while in the 

other case we tuned the weights after the RMSE is a small value. After 100 training 

epochs, the former case resulted in the minimum RMSE of 0.01707 and the latter case in 

the minimum RMSE of 0.001688. This experiment further shows that the weights 

associated with the linguistic rules may help in fine tuning the results o f the mapping.

There are several ways in which the results of the control may be improved. The 

first is to increase the accuracy of the FLA N ’s. The second is to improve the control law 

by considering the effect o f the control error. These are issues requiring further work.



CHAPTER 5

CONCLUSIONS AND FUTURE W ORK

5.1 Conclusions

In this dissertation, we have developed a hybrid scheme, called Fuzzy Logic Adaptive 

Network (FLAN), that combines the good features from fuzzy logic (FL) and neural 

networks (NNs), and applied it to the problems of identifying and controlling nonlinear 

dynamic systems with unknown parameters. The results o f simulation studies have shown 

that FLAN is an effective tool for adaptive nonlinear control problems. It is found to be a 

very practical tool which provides a very systematic procedure, and thus it fulfils the 

objectives of this work.

In this section, comparsions with conventional adaptive control schemes, NN 

approaches, FLC approaches, and other hybrid schemes are summarized, and the 

advantages o f using FLAN are also discussed from different aspects. Section 5.2 discusses 

the issues needing futher studies.

Comparison with conventional adaptive nonlinear schemes: As discussed in 

chapter 1, most adaptive nonlinear control schemes are generalized from the adaptive 

control theory for linear systems. Although the adaptive control theory is now relatively 

mature, it is generally based on the assumption of linear time-invariant plant [Hunt et al. 

1992]. Even with the adaptation process resulting in the overall system being nonlinear, 

the fundamentals of these methods lie in linear systems theory [Narendra and Annaswamy

1989] and most applications require a significant level of prior knowledge about the plant. 

Many schemes either use a linearized controller to control the nonlinear plant or use a 

nonlinear controller to control a linearized model. For example, in [Ortega, Canudas, and 

Seleme 1993], the authors proposed a estimation scheme to handel time-varying (linearly

81



82

parameterized) unknown loads of induction motors. The estimation, also known as system 

identification, is usually done by assuming that a linear model is available and by using 

recursive parameter identification schemes to search a set of parameters to fit the 

linearized model [Ruck e t al. 1992]. Other approaches, such as adaptive feedback 

linearization control scheme by Kokotovic, also requires the system to be feedback 

linearizable [Kokotovic 1991], Although this approach has been shown to be useful in 

nonlinear control problems, there are practical difficulties such as in constructing an exact 

feedback linearizing transformation. Therefore techniques based on NNs and FLCs are 

more attarctive for the control of nonlinear systems with unknown parameters. In 

comparison with conventional adaptive control methods, the FLAN has the advantage of 

emulating the unknown nonlinearities in the control system without making any 

assumptions. Thus this method has a great potential for solving more complex control 

problems that the conventional methods can not solve.

Comparison with NN approaches: The results o f estimation, identification, and 

control in the previous chapters indicate that the performance of FLAN in terms of 

accuracy is as good as or better than achieved in [Narendra and Parthasarathy 1990] using 

an NN. It is shown based on the simulation results in chapter 3, Case 1, that compared to 

using NNs alone, FLAN has several advantages. First, there are at least 230 modifiable 

parameters in the NN used to solve the example of Case 1 [Narendra and Parthasarathy

1990] versus only 42 in FLAN. The fact that using an overparametrized model could lead 

to convergence problems is rather well known in adaptive control [Hunt et al. 1992], Thus 

use of more parameters is not always a good idea in terms of trying to get a better 

approximation. Second, in terms of the training time, a longer training time, over 50, 000 

epochs, is required for Narendra’s NN; while the FLAN requires only 50 epochs to 

produce comparable results. Thus computationally, our scheme is more effective both in 

terms of training and in on-line control because it involves less number o f processing units 

and less number of modifiable parameters. Third, in NN approaches, the design
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procedures are largely ad hoc because there are no general guidelines to determine the 

structure of the network. For example it is not entirely clear why a 1-20-10-1 BPNN is 

used in [Narendra and Parthsarathy 1990], The FLAN, on the other hand, is more 

systematic and thus practical because the only factor involved in designing the initial 

structure is the number of membership functions for each input. The specification of the 

number o f membership functions is much easier as compared to specifying the NN 

architecture, and the number of membership functions used also has a direct physical 

meaning for each practical problem. Fourth, the resulting estimation or identification 

network in case of FLAN has a physical structure that is very meaningful since it is 

essentially a fuzzy rule based inference system. The NN on the other hand is no more than 

a black box to a practicing engineer. Fifth, the FLAN always utilizes a consistent scheme 

for initializing network parameters, thus the problem of the results depending on a 

particular random initialization is avoided. On the other hand, the random initializations 

used in an NN may require technique such as Monte Carlo method for generating a set of 

initializations. Such procedures further add to the computations.

Both the FLAN and the techniques based on NN alone have a problem of selecting 

a learning rate. In this work, a simple learning rate adaptation scheme is found be 

satisfactory for the examples considered. It is noted here that as long as gradient descent 

type learning is used in either FLAN or an NN, the issue of finding a proper learning rate 

remains an open question.

Comparison with FLC techniques: Compared to the conventional FLC, FLAN 

has the benefit of automatically determining the parameters of the membership functions at 

both premise and consequent parts without requiring the knowledge of a domain expert. 

In other words, the FLAN provides a more practical approach by adopting the learning 

concepts from NNs, and thus eliminates the need of manually tuning the membership 

functions in a conventional FLC. Moreover, in the conventional FLC, even when the 

knowledge of a domain expert is available, further parameter tuning may be necessary as
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illustrated through the example of Case Id in chapter 3. This tuning is automatically taken 

care o f by FLAN.

Comparison with other hybrid techniques: In comparison with Kosko’s fuzzy 

associative memory (FAM), where the fixed membership functions and the linguistic 

control rules are determined by so-called domain experts or simply by trial-and-error, the 

FLAN has the advantage in that the membership functions and the linguistic control rules 

are determined through the learning process. In a time-varying version of FAM, called 

adaptive FAM (AFAM) [Kosko 1992a, 1992b], the weights associated with linguistic 

rules are tuned to produce a better mapping through a learning process. However, this 

scheme still relies on the proper setting of the membership functions. In addition, FLAN 

also employs the weights associated with linguistic control rules, thus providing flexibility 

in terms of structure identification.

The FLAN is quite similar to the adaptive-network-based inference system 

(ANFIS) proposed by [Jang 1992, 1993]. However, use of the weights associated with 

linguistic control rules in FLAN make it more flexible. These weights appear to help in 

fine tuning the mappings and in removing the redundant control rules. It is obserevd 

through the simulation experiments that the performance of FLAN is at least as good as 

ANFIS, if not better, in most cases. Both of them exhibit similar learning trends (example 

of Case 1c in chapter 3) despite the fact that ANFIS employs a different type of hybrid 

learning scheme which is supposed to be less sensitive to the initial learning rate.

O ther issues: In terms of robustness against changes in the input, the example of 

Case la  in chapter 3 illustrates that the FLAN can tolerate a change in the input frequency. 

Case lb illustrate that the FLAN is relatively insensitive to noise in the training data. It is 

interesting to observe how well the FLAN can approximate a noisy model. The issues such 

as these, however, require theoretical investigation.

In summary, a very practical and easy to use systematic approach is developed for 

identification and control of nonlinear systems with unknown parameters. However,
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considerable work remains to be done to in order to explore the full potential of the FLAN 

and improve it, and utilize it for the purpose of identification and control of nonlinear 

systems. Several important areas of further work are outlined next.

5.2 Future W ork

The FLAN is designed for solving the problem of parameter identification as well as 

structure identification. It was shown that it is able to tune the membership functions and 

the linguistic rules in a fuzzy logic controller (FLC). However, more work is required to 

demonstrate its effectiveness in structure learning. Further study is also required in order 

to study the effects of the weights in the defuzzifying layer. Recent research suggests 

several approaches to hadling the problem of structure learning that may be of use in 

FLAN [Lin and Lee 1994, Sun 1994, Higgins and Goodman 1994].

More work is also required in the area of practical applications, such as in the field 

of robotics. Issues related to applying FLAN to complex, coupled multiple input-multiple 

output dynamic systems such as robot manipulators more detalied studies. For such 

applications, further investigation is required realted to the use o f different types of rules 

in the consequent part. In this study, the rules used are those of Sugeno type, which 

assume that the consequents are the linear combination of the inputs. However, this is not 

always true, especially in the domain of system control. Therefore, higher order equations 

are needed. If the parameters are linear for these higher order equations, least sqaures 

estimates may be used for learning. The group method of data handling algorithms by 

Ivakhnenko [Farlow 1984] or other regression methods may used to determine the 

parameters of the higher order rules.

Most importantly, much theoretical and analytical work is required to address 

issues o f stability, convergence, and robustness. Future developments in the fields of
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neural networks and adaptive systems may be helpful in developing theoretical frame work 

for the proposed approach. More work is needed to connect these developments with the 

proposed scheme.



APPENDIX A

DERIVATION OF THE PROPOSED HYBRID SCHEME

A .l Step 1: Determining the Parameters of the Network

The following is the derivation of the proposed hybrid scheme. In order to simplify the 

derivation, a two-input-one-output system is used here.

The first step is to determine the architecture of the hybrid system, which includes 

the determination of the configuration of the hybrid architecture and the identification of 

the parameters associated with each node in the hybrid system.

Suppose that each input is quantified to two linguistic labels, such as high, low, 

etc. In this case, the input layer contains two node with node functions equals to ones; the 

fuzzifying layer consists of four nodes represent four membership functions; the inferring 

layer includes four nodes express the inferring process; and the last, the defuzzifying layer, 

which is the output layer has only one node that transform the fuzzy inputs into a crisp 

number. Table A.l shows the parameters that determine the hybrid architecture.

Table A. 1 The parameters that determine the hybrid architecture.
Description Symbol Number

Number o f inputs IN 2
Number of outputs OUT 1
Number o f linguistic labels for each input MF 2
Number o f nodes in the input layer #(L0) 2
Number of nodes in the fuzzifying layer #(L1) = IN * MF 4
Number of nodes in the inferring layer #(L2) = MF A IN 4
Number of nodes in the defuzzifying layer #(L3) = OUT 1
Total number of nodes in the hybrid system TN 11
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From the above table we may also observe that the configuration of the hybrid 

system is determined by the numbers of input signals, output signals and linguistic labels 

used for each input.

The second part of the first step is to identify the modifiable parameters associated 

with each node. For the nodes in the input layer, the number of the modifiable parameters 

is zero because their node functions are ones, that is, they don’t perform any 

transformation.

For the node in the fuzzifying layer, the modifiable parameters are the parameters 

of the membership function. The number of parameters varies according on the type of the 

membership function used. Usually, they represent the center, the height, and the width of 

the membership function. Bell-shaped, triangular, and trapezoid membership functions 

which are commonly used for conventional fuzzy control can also use here. We shall use 

bell-shaped membership functions to demonstrate the node functions in the fuzzifying 

layer.

m,(*) = — (A.1)
1 +

/  v  x - c ,

\  a i J  A

where / is the node index, ai,bi,ci are the parameters associated with node /. By 

modifying these parameters, we may change the location and the shape of the membership 

function. The learning procedure can help us to determine the proper parameters that 

construct a membership function represent the transformation of a crisp number into a 

corresponding linguistic label.

For the nodes in the inferring layer, the modifiable parameters represent the 

parameters for the membership function at the consequent part of a linguist rule. There are 

three types of membership function usually used for the consequent part o f a linguistic rule 

[Jang 1993], Type 3 fuzzy reasoning mechanism, which is a Sugeno type fuzzy rule, will
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be used here. In a Sugeno type fuzzy rule, the result of the consequent part is the linear 

combination of the input signals plus a constant term. Therefore, the number of the 

modifiable parameters equals to the number o f input signals plus one.

f = p ixl + qix2+ri (A. 2)

where p itqn rt are the modifiable parameters for the node /' in the inferring layer, f x 

represents the consequent part o f the z-th linguist control rule.

For the node in the defuzzifying layer, the modifiable parameters are the weights 

associated with the linguistic control rules. Therefore, the number o f the modifiable 

parameters is the number of the fuzzy linguistic rules. Table A.2 summarizes the 

identification of the parameters in the hybrid system.

Table A.2 The number of parameters in the lybrid system.
Parameters Symbol Number

Input layer #(P0) 0
Fuzzifying Layer #(P1) 3
Inferring Layer #(P2) = IN + 1 3
Defuzzifying Layer #(P3) 1

A.2 Step 2: Connectting the Nodes

The second step is to connect the nodes in the different layers. The node in the input layer 

have only fan-out signals to nodes in the fuzzifying layer representing the linguistic labels 

of the given node.

The node in the fuzzifying layer, representing a linguistic label o f the given input 

variable, receives a signal from the node in the input layer and produces a fuzzy number 

represents the degree of membership to the given linguistic label. The fuzzy number is then 

fan out to the nodes in the inferring layer that contain the fuzzy number at their premise 

parts.
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The nodes in the inferring layer represent fuzzy linguistic rules. Each node receives 

a fuzzy number from each input variable and produces a fuzzy output to the node in the 

output layer.

The node in the output layer summarizes the fuzzy outputs from the inferring layer 

and produces a crisp output. Figure 2.7 represents the connection of a two-input-one- 

output hybrid system.

A.3 Step 3: Training the Network

The third step is to develop the learning procedure to tune the parameters in the hybrid 

system. This step includes two phases: the forward pass and the backward pass. In the 

forward pass, each node produces a output signal based on the input signals and its node 

function. In the backward pass, each node generate a set of new parameters based on the 

learning algorithm. The following is the derivation of the forward pass of the learning 

procedure:

Layer 0 (the input layer): In layer 0, a input signal from the training data set is supplied as 

the output of a node representing the input variable.

Ot° = x,p (A.3)

where / = 0 to #(L0), denotes the index of the node in the input layer, 0 tLO represents the 

output o f node i in layer L0, the label of the input layer, and x? is they'-th item of the p-th 

set o f the training data.

Layer 1 (the fuzzifying layer): Layer 1 performs the fuzzification of a crisp input to a fuzzy 

number with some linguistic label.



where i = 0 to #(L1), denotes the index of the node in the fuzzifying layer, O f  represents 

the output of node j  in layer LI, the label of the fuzzifying layer, /i, ( ) is the membership

the initial parameters such as by randomly initializing, randomly partitioning the

input space, etc. One of the easiest approaches to obtain a set o f reasonable initial 

parameters ai ,bi ,ci is by equally partitioning the input space into M F  fuzzy subspaces. 

These parameters may be adjusted through the updating procedure in the backward pass 

phase and modified to proper values.

Layer 2 (the inferring layer): Layer 2 performs the fuzzy reasoning process that produces 

the fuzzy consequences based on the fuzzy premises.

node j  in layer L I  to node i in layer L2.

There also exist several approaches to determine the initial parameters r, at 

the consequent part, such as the matrix inversion algorithm, the Kalman filtering 

algorithm, the group method of data handling algorithm [Farlow 1984] and regression 

methods, etc. What these algorithms do is essentially to extract a set o f parameters of an 

estimated model, based on the training data and the given firing strengths.

function for node i, which represents the fuzzy label i. There are several ways to determine

o r = u

where t, is the normalized firing strength of rule /:

(A.5)

(A. 6)

with tt = r i o j i ,  represents the firing strength of rule /'. O f f  is the fan-in signal from
j= 0
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Layer 3 (the defuzzifying layer): Layer 3 performs the defuzzification process that 

transforms the fuzzy consequences into a crisp number.

where Wj is the weight associated with rule j .  The index j of the output node j may be

omitted if there is only one output.

The backward pass of the training process starts with the calculation of the 

estimation error for the given training data, which is the difference between the desired 

output stored in the training data set and the network output, usually refers to the actual 

output. The objective function E is then calculated by squaring the estimation error.

Next is to calculate equation (2.27). Since equation (2.27) can be calculate from 

two separate part, we shall start with the first part, which is the partial derivative o f E with 

respect to the output of the given node. For the node in layer L3,

(A. 7)

- ^ -  = - (O d - 0 L3) d o i 3 w  u  ) (A. 8)

where Od is the desired output.

For the nodes in layers L2 and LI,

dE dE dO12
dO,L2 dOu  dOtL2 

= -w i{Od- O l3)
(A. 9)

and

dE dE dO£i
(A  10)

where the sum is carried out only for those nodes in layer L2 that receive the input from

node j  in layer LI; and represents the derivative of the output node ;-th node inoU ,
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layer L2 with respect to node j  in layer LI, that fan out the signal to node / inlayer2. The 

part can be expressed more detail as

d O f

0 L1
(=0 V ;=0 L 1=0 \ k=0

Ll ttU 2)( «Un )

l  n o "

( A l l )

. i=0 ;'=o

The second part is to calculate the partial derivative of E with respect to the 

parameter in the given node. The general form is given by

(A 12)dP,L 30,L dP,L { )

where P(L denotes the parameter P  of node i in layer L, OtL represents the node that 

contains the parameter P. Equation (A, 13) to (A. 19) represents the partial derivatives of 

E with respect to the parameters w ,p,q ,r,a ,b ,c.

Layer 1 (a,b,c):

dO,L l
24(0“  -c )

_ c V i _ 1  
j - i i  i

a,
da,

a 4

2b

1 +
<OL0 - cj - * i  i

a, /  J

O - cJ -> i  1

a,

(A. 13)

1+
r OL0-c .I I

a, /  J
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Layer 2 (p,q,r):

dO?
dbt

- 2 In
O - c

a.
0 LO - c]-*! I

a ,

X2b

1 +
0 LO - c  v ij —»  i

In
^ 0 “  - c  Yw j-* i  S

L\

/  J

^ 0 to - c  ^j-> i l

a.

(A. 14)

1+

2b
d0,Ll a 
dc.

1+

' o 10 - c  
a,

\26-l

_ c  Vi

v a-

2b
rn  lo v*>

J-»] I

v "■

(A. 15)

t o - 4
r  - c . 

! +  '

,T2

0.

m L2

= / x  = t
dp, 10 M

a?, ' 1 1 1

§o r_
dr '

(A. 16)

(A. 17)

(A. 18)



95

Layer 3 (w):

In the case of off-line training, we update the weights after all the training patterns 

are presented to the network. Therefore, the new parameters can be expressed as

^ dEP
P ^ = P old- r ] l r ^ r  (A.20)

where tj denotes the learning rate, similar to the one in an BPNN. The learning rate is 

usually a constant. However, a non-constant learning is also used in some case.

The whole training process is repeated until the objective function is optimized or 

a prescribed training time is reached.



APPENDIX B

STABILITY ANALYSIS

B.l Introduction

In the appendix, we shall discuss the stability of the control scheme employed in the 

chapter 4. A brief introduction is give here. In section B.2, the detail of the stability 

analysis is described.

The concept of stability for nonlinear systems is more complicated than that for 

linear systems. There are a large number of theories available in the literature. We shall 

briefly introduce Lyapunov’s second method for stability analysis theory here.

The main idea of Laypunov’s second method for stability is that a system has an 

asymptotically stable state if the value of the energy function of the system decays as time 

increases until it finally reaches the minimum value at the equilibrium state. The energy 

function is so-called Lyapunov function.

Theorem B.l [Narandra and Annaswamy 1989]:

The equilibrium state of a system described by (B.l) is uniformly asymptotically stable if 

the Lyapunov function candidate V with continuous first partial derivatives with respect to 

time exists such that V(0,t) = 0 and if the following conditions are satisfied:

(1) V is positive-defined;

(2) V is decrescent;

(3) V is radially unbounded;

(4) V  is negative-defined;

y =f ( y , i ) .  / ( o . ')= o , / a / „  (B.i)
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B.2 Stability Analysis

We now consider the design of stable control law of the systems of the form described by 

the following equation, which is a continuous version of equation (3.5).

where y  € 9? is the state variable for measurement, u e  91 denotes the control input,/and 

g  represent the unknown nonlinear functions. Without loss of generality, we shall assume 

the initial condition as / ( 0 )  = 0, i.e. y  = 0 is an equilibrium point.

We further assume that the control objective is to regulate the plant output y  to 

follow the desired trajectory y mgiven by a reference model:

where r € 91 is the bounded reference input of the reference morel, y m e  91 denotes the 

output o f the reference model, am > 0, and bm are known scalar constants. Since the 

control objective is to regulate the plant output y  to follow the desired trajectory _ymgiven 

by a reference model, we may define the control error, or called tracking error ecas

and design a control law to make ec tend to zero with time. Since an indirect adaptive 

control scheme is used in the example in chapter 4, we don’t use ec directly to design the 

control law. Instead, we use the estimated plant parameters to design the controller based 

on the certainty equivalence principle. The control input is then has the form

y = f { y ) + M (B.2)

y m=~amym+bJ (B.3)

= y m- y (BA)

where g ~1 denotes the inverse of the unknown function g, and f  represents the estimate 

of the unknown function f  and 6'f  is a set of the optimal parameters o f the identification

model that estimates the unknown function/

(B.6)

Rewrite equation (3.4) by substituting (B.2), (B.3), and (B.5)
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K = - * » « , , + [ / O ' .  0 } ) - / ( * ) ] + [ l ( « . ® u ) - ^ » ) ] + [ ^ " I [ s ( M ) . 0 i » ) ]  - ^ _ 1 [ ^ w ) ] ]  ( B  7 )

where g  represents the estimate of the unknown function g, 0* is a set of the optimal 

parameters of the identification model that estimates the unknown function g, g~' 

represents the estimate of g _1, 0*(u) is a set of the optimal parameters of the identification

model that estimates g~'.

K  = arg9u niin[sup|g(M,0„)-g(w)|] (B.8)

0*(u) =argflgM m in jsupg-'^M ),© ^^]-^"1̂ ^ ) ] }  (B.9)

The initial condition can also be expressed as

ec(0) = Tm«>)-.y(0) (B.10)

Now we shall proceed with the synthesis of the control law using Lyapunov’s

stability theory [Astrom and Wittenmark 1989], Choosing the Lyapunov function

candidate as

(B.l 1)

(B.12)

where y  is a positive constant that refers to the learning rate in the adaptive control law 

The time derivative of the Lyapunov’s function candidate F is given by

V(ec,<b) = - a me] +ec[f(y,e*f ) - f ( y ) \ + e c[g { y ,d l ) -g ^ ) \  

+ec[g'[gnO'giu)\-g~'[g{«)]]
^ ~ an,e2c+P\ec\

where (3 is defined as

£=|/( ,̂ e} )|+|/(.y)|+|g(̂ , e*u)\+\g{ «)|
(B .13)
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Therefore, for all ec > p / a m, we have V <0,  which implies that the tracking error is 

decreasing.
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