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ABSTRACT

Behavior of Concrete and Slender Reinforced Concrete Columns under Cyclic
Axial Compression with Bidirectional Eccentricities

by
Byong You! Bahn

A rational analysis of reinforced concrete (R/C) structures requires satisfactory

modeling of the behavior of concrete under general loading patterns. The behavioral

characteristics of concrete dominantly depends upon its load history. For the study of

concrete behavior, parametric study and experimental investigation into the behavior of

concrete under load history of random cycles are performed. Through parametric study,

the applicability of the previous concrete models is examined and a physically motivated

modeling for the cyclic stress-strain relationships is proposed. The present modeling of

concrete under general cyclic loading is initiated to provide substantial applicability,

flexibility of mathematical expressions and furthermore to describe the behavior of

random cycles. For the experimental study of concrete subjected to cyclic axial

compressions, tests of 3 in. by 6 in. concrete cylinders are conducted under four different

loading regimes to determine the major experimental parameters for the proposed

analytical expressions. The model developed is based on the results of parametric study

and experimental data obtained for the present study. The validity of the proposed

general cyclic model is confirmed through a comparison of the experimental results and

simulated behavior of the model. Furthermore, the analytical model proposed has been

idealized and incorporated into the procedures in analyzing RIC columns.

The behavior of R/C columns having various properties and subjected to a variety

of loading conditions have been the topics of considerable investigation. Of particular



significance in the area of unexplored problems is the behavior of R/C columns under

cyclic compressive load. It should be noted that cyclic loads with bidirectional

eccentricities considered are in the longitudinal direction, and not in the transverse

direction, with respect to the column axis. For the experimental investigation, tests of

four foot long columns are conducted under stroke control to achieve both ascending and

descending branches of the load-deformation curves.

Analysis of RC columns subjected to cyclic axial compressions with

bidirectional eccentricities should be approached from the standpoint of a three

dimensional problem. A numerical procedure based on extended finite segment method

is proposed here to predict the ultimate load, deflections and moment-curvature of

experimental results. It is found that the proposed numerical analysis can reasonably

simulate the loading and unloading behavior of R/C columns under combined biaxial

bending moments and axial compressions.



CHAPTER 1

INTRODUCTION

1.1 General

The inelastic behavior of reinforced concrete members, especially the biaxially loaded

reinforced concrete (RC) column has been the subject of research for many years. Due

to the locations of the structural members, the shape of structures and the nature of the

applied loads, many members are subjected to combined biaxial bending and axial

compression. Structural R/C members are subjected to two main types of load, dead load

and live load. For any member, the dead load is present throughout the life of the

structure and can be considered to be constant. However, this is not the case for live load

which has a cyclic form during the life of the structure. The behavior of reinforced

concrete column depends on many parameters including the material properties, the

section geometry, and the history of moment and/or axial load to which the column is

subjected.

The behavior of concrete is dependent upon its load history. In most cases,

quantitatively accurate predictions on the load-deformation history up to and beyond the

ultimate load remain difficult to obtain. The highly nonlinear nature of the concrete

stress-strain relationship under a cyclic loading can not be easily described by any

mathematical formulas. Although a considerable amount of effort has been directed at

the development of the concrete model under cyclic compressive loading, most original

concrete models can not be incorporated into the analysis of reinforced concrete

structures. A reliable and substantial cyclic stress-strain relationship is thus needed for

the analysis of structures subjected to repetitive loadings.

Despite the progress made in recent years on the study of in-plane behavior of

reinforced concrete columns, their extension to three dimensional cases is restricted,
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although some studies have been reported. Furthermore, most previous research is

limited to studies of behavior of R/C columns subjected to combined biaxial bending and

monotonically increasing axial load.

For members where stability and secondary effects influence the strength, for

example, eccentrically loaded R/C columns, the changes in live load may have either a

beneficial or detrimental effect on the strength of a member. The influence of repeated

cycles of live load on column behavior is of interest in this study. The cyclic

compressive loading with bidirectional eccentricities considered in this study is in the

longitudinal direction, and not in the transverse direction, with respect to the column

axis. Such a loading and member might be present in a bridge substructure or a column

of building structures which is subjected to repetitive loadings. In both cases changes in

live load can occur frequently.

1.2 Literature Review

1.2.1 Stress-Strain Relationships for Cyclic Loading

An accurate and rational analysis of reinforced concrete structures requires satisfactory

analytical modeling of the material behavior of the concrete and the steel. The

reinforcing steel is almost invariably in form of small diameter bars. As a result, the

uniaxial stress-strain relationship of steel is all that is often required to model the

response of reinforcing elements.

In contrast to steel, concrete is almost invariably subjected to a multiaxial state of

stress. However, depending on the structural type, the nature of loading and the

reasonable accuracy, it may be possible to make simplified assumptions. Columns and

beams can be analyzed with sufficient accuracy using the uniaxial models of concrete.

Shear walls and shell structures require biaxial modeling whereas massive structures like

dams and nuclear pressure vessels can be better analyzed by a generalized triaxial
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constitutive model [Fafitis 1984].

A large variety of models has been proposed in recent years, which are based on

the more sophisticated theory of plasticity in mathematics. The complexity and

incompleteness of many of these models, and the rather complex behavior of concrete

under pattern of random cyclic loading, have led to simplified material models in the

empirical way. These simplified models are essentially mathematical formulations and

generalizations of the test results of various loading histories. Although the capability of

prediction of such models is restricted to certain load patterns in which the experimental

data are selected originally, their simplicity is very attractive. Due to the mathematical

complexity, the models based on plasticity seems generally far from being substantial in

implementation into the procedure of R/C structural analysis. Furthermore, it should be

mentioned that the major parameters of these models are determined from the test results.

There is an uncommon computer aided approach in the development of concrete

model. This alternative is to use a computation and knowledge representation paradigm,

called neural networks, developed by researchers in a subfield of artificial intelligence

(Al) to model the concrete behavior under compressive uniaxial cyclic loading. The

main benefits in using a neural network approach are that all behavior can be represented

within a unified environment of a neural network which is built directly from test data

using the self-organizing capabilities of the neural network. The network is presented

with the experimental data and "learns" the relationships between stresses and strains

[Ghaboussi, et. al. 1991]. The self-learning of neural network, however, can only be

obtained through the training of reliable experimental data until the network is able to

recognize the certain deviated data. The preliminary research of using neural networks to

model the concrete behavior seems promising.

Thus, the stress-strain relationships for concrete under cyclic compressive

uniaxial loading are surveyed herein. The envelope curve, unloading and reloading

curves and load history are reviewed for the behavior of concrete under cyclic loading.
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The available empirical and analytical models are presented through the numerous

simulations.

1.2.1.1 Envelope Curve. Although the behavior of nonlinear and strain softening

material like concrete is quite complex, some simplifications can be made for the purpose

of analysis. For example, it has been postulated that when concrete is subjected to

repeated uniaxial compressive loading, an envelope curve exists and that this envelope

curve is approximately the same as the stress-strain curve obtained under the

monotonically increasing strain [Sinha 1964, Karsan 1969 and Shah 1983].

An envelope curve is the line in which no stress-strain curve exceeds regardless

of the loading paths. The validity of the concept of the envelope curve is rested

primarily on the data of unconfined concrete in early researches. Fafitis, et. al. [1984]

found that under some limitations the concept is valid for confined, normal weight

concrete as well as unconfined and confined lightweight concrete. These similar

observations for the envelope curve were also reported by Desayi, et. al. [1979].

The envelope curve, or monotonic stress-strain curve is affected by concrete

strength, strain rate, and confinement as well as other parameters. A proper constitutive

model for analysis of concrete structures, however, requires a complete description of the

behavior of concrete, not only in its hardening range, but also including its softening

behavior. Physically, stiffness degradation in the post peak range is generally considered

to be related to some kind of material damage (perhaps, microcracks or microvoids),

which is rather complex. Recently many mathematical models have been proposed to

simulate observed monotonic stress-strain curves.

The stress-strain relationships for concrete under monotonic uniaxial loading are

summarized extensively as shown in Table 1.1. Influence of confinement and effect of

strain rate are reviewed for concrete behavior under monotonic uniaxial loading.

Influence of Confinement: Use of lateral reinforcement in R/C columns is based



RemarkEquation

Table 1.1 Stress-Strain Relations of Concrete under Monotonic Loading

5

Author

Smith and Young
[1956]

Kabaila
[1964]

Saenz
[1964]

Desayi, et, al.
[1978]

Tulin, et. al.
[1964]

S argin
[1971]

Popovics
[1970]

Kent and Park
[1971]

Liu, et. al.
[1972]

Shah, et. al.
[1983]
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on two concepts, the first, confinement increases compressive strength so that it is

possible to offset the strength loss from spalling of concrete cover, and the second,

confinement increases the capacity of concrete to sustain large deformations without a

substantial strength loss [Ahmad 1982]. The effectiveness of confinement depends on

geometry of confining reinforcement, compressive strength of plain concrete as well as

other parameters.

Desayi, et. al. [1978] found that the confinement becomes effective only when the

pitch of confining reinforcement is less than the least lateral dimension of the confined

specimen. Of the three types of lateral reinforcement studied, circular spirals, square

spirals and stirrups, the first was the most and the last the least effective. Ahmad[1982]

also reported a similar observation that when the spacing of lateral reinforcements

exceeds the value of about 1.25 times of the least dimension of the confined concrete

core, the influence of confinement is negligible.

It is well known that the shape of stress-strain curve is significantly affected by

the lateral reinforcement especially in the post peak range. Dilger, et. al. [1984] showed

that the strain at maximum stress is considerably more affected by the presence of

transverse steel than by the strain rate. The predominant effects of confinement are to

increase the strain at maximum stress and to reduce slope of the descending branch of the

stress-strain curve. The shape of stress-strain curve for confined concrete with 1 inch

stirrup spacing was not affected by the strain rate in the range of 33 to 200000

microstrain per second.

A laterally reinforced concrete member may be treated as a composite member consisting

of a confined core and unconfined cover. The ductility, the rotational capacity of the so-

called hinging regions in reinforced concrete members can be improved to a large extent

through the use of lateral confinement.

Effect of Strain Rate: Most of the experimental studies on concrete materials

and structural systems have been conducted quasi-statically. The strain rate sensitivity
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has generally been measured in terms of the strength, modulus of elasticity, or the strain

at the peak stress in compression.

In most studies, the compressive strength of concrete has been observed to

increase approximately linearly with each order of magnitude (factor of 10) increase in

strain rate, up to strain rate about 1000 microstrain per second. Generally, the increase

has been 7 to 15 percent with each order of magnitude increase in strain rate or stress

rate. There is little agreement among researchers on the strain rate effect on the strain at

the maximum stress [Harsh 1990].

Scott, et. al. [1982] reported that the peak stress and the slope of the descending

branch in stress-strain curve are increased by about 25 percent by comparing the high

strain rate (0.0167/sec) with the low strain rate (0.0000033/sec).

Comparing two test parameters between the influence of lateral confinement and

effect of strain rate on the behavior of concrete, it is noted that the confinement of

concrete plays a dominant role than the applied strain rate in the experimental study of

concrete.

1,2.1.2 Unloading and Reloading Curves. Karsan and Jirsa [1969] proposed the

stress-strain relationships of concrete subjected to cyclic compressive loading. The

stress-strain curves possess a locus of common points which are defined as the point

where the reloading curve of any cycle intersects the unloading curve. Stresses above the

common points produce additional strains, while stresses at or below these points will

result in the stress-strain path going into a loop. The values of common points depend on

the minimum stress in the cycle, i.e., the stress amplitude.

When the material is unloaded, additional permanent or plastic strain is

accumulated. For cycling at large strains, deformation consists mainly of sliding along

the macroscopic cracks. The resistance to deformation is provided primarily by friction

[Maher 1982]. The incremental strains under cyclic loading are a result of creep
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deformations and incremental damage. These phenomena are likely to depend on the

number of cycles, the rate of loading and the range of loading.

When reloading is performed from zero stress to meet the envelope curve, it is

found that the reloading curve changes curvatures. The shape of the reloading curve is

more complex. It is characterized by a double curvature with mild concavity in the low

stress region, and a sharp reversal in curvature near the envelope. Many of the existing

models simply use a straight line to simulate the reloading response [Sinha 1964]. A few

models adopt bilinear [Park 1972, Darwin 1976 and Yankelevsky 1987] or parabolic

expression [Karsan 1969]. In spite of its simplicity, the linear equation provides a

reasonable approximation to the observed behavior of concrete.

It is well known that the behavior of concrete between plain and confined

concrete shows significant difference in descending branch of stress-strain envelope

curve. However, Desayi [1979] reported that there was no noticeable difference between

the confined and plain concrete in the behavior of unloading and reloading. Thus, it is

possible to characterize an unified plastic strain between the confined and unconfined

concretes for the unloading behavior. The analytical model of unloading curve showed a

good agreement with his experimental data in both confined and plain concretes. But,

the mathematical expression of reloading curve is not analytical at reloading strain on the

envelope curve.

1.2.1.3 Load History. Figure 1.1 shows patterns of loading history in the previous

studies involving cyclic loading test. Most patterns of loading can be classified in two

categories based on available experimental results and analytical models. The first one is

a full loading of cycles in which the loading is up to the envelope curve and then

unloading down nearly to zero stress level. The second one is a partial loading and

unloading at specified stress levels within the envelope curve.

However, behavior of various elements in structural system may not fall into



(a) Cycles to Envelope

9

(b) Cycles between Fixed Stress

(c) Cycles to Common Points

Figure 1.1 Patterns of Load History in Previous Study
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either of the above mentioned categories. There is a possibility that the loading may hit

the envelope curve in a cycle and may not reach the envelope curve in the subsequent

cycles. Such a behavior can only be presented by an empirical and/or mathematical

model having a capacity to simulate the random cyclic loading. The stress-strain

relationship under conditions of general loading is needed to reflect the observed

behavior of structural components. The test results of concrete under random cyclic

loading are not available upto date. In addition, the test results of this type of loading

should also be employed to calibrate the analytical model for a random cycle.

1.2.2 Behavior of R/C Columns under Combined Biaxial Bending and Axial Load

1.2.2.1 R/C Columns under Monotonic Loading. Determining the strength of a

reinforced concrete (R/C) column has been the subject of lengthy research by many

investigators. The case of a column subjected to uniaxial bending and axial load is

satisfactorily developed while a column under combined biaxial bending and axial load is

solved using empirical procedures. The load-deformation relations for any reinforced

concrete sections and the behavior of slender R/C columns under monotonic loading

were thoroughly reviewed in Tsao's [1991] study.

R/C Sections under Biaxial Bending and Axial Load: Bresler [1960] proposed

two analytical expressions, reciprocal load method and load-contour method,

respectively. The criteria suggested in these methods are based on the approximations of

failure surfaces which are defined as a function of its eccentricities ex and e), or of the

components of bending moments Mx and My. These two approaches were extended to

give better prediction of a plane approximation to a curved surface by Pannell [1961].

The finite difference approach was used for the computation of internal force and

moments in the section. The concrete and reinforcements in the cross section were

divided into many small elements. The summation of the elemental forces acting on the

discrete areas allows the axial force to be determined, while summation of moments of
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the elemental forces is used to calculate the biaxial moments [Warner 1969].

A modification of the extended Newton-Raphson method was suggested for the

study of the moment-curvature characteristics of structural concrete sections subjected to

biaxial bending moments and axial load. The summation of elemental force and

moments were expressed by Taylor's expansion. A numerical analysis was also

developed for the determination of strain and curvature in a R/C section [Hsu 1973].

A general analysis and design expression of R/C short and tied columns was

recently proposed by Hsu [1988]. This equation represents both strength interaction

diagrams and failure surface of R/C sections under combined biaxial bending and axial

load. The equation of failure surface has been found to be a simpler and more logical

approach for the analysis and design of R/C columns. Analysis of R/C columns under

biaxial bending and axial tension was also considered in this expression [Hsu 1988].

Biaxially Loaded Slender R/C Columns: Farah and Huggins [1969] proposed

the integration method to analyze the R/C columns subjected to biaxial bending. The

integration method used in the analysis leads to three simultaneous nonlinear partial

differential equations which are solved by a procedure based on Newton-Raphson

method. The partial derivatives are the rates of change of force and moments with

corresponding the corner strain in the strain distribution of a section.

Finite segment method, developed previously for wide flange steel columns under

biaxial bending, was extended to analyze biaxially loaded R/C columns by Al-Noury and

Chen [1982]. The column was treated as a space structure after segmentation. The

sections were divided into finite elements of reinforcements and concrete in order to

calculate its tangent stiffness properties at different levels of strain. The segment

stiffness relationship was computed by solving the governing differential equations about

the principal axes of the cross section. Nonlinearities due to material plasticity and

geometrical change were handled by an iterative procedure based on the modified

tangent stiffness approach. The force-deformation equilibrium equations of R/C columns
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were also proposed. The moment-curvature-thrust relationships were obtained by step-

by-step application of the force-deformation equilibrium equations.

Recently, Wang and Hsu [1990] and Tsao [1991] developed a numerical analysis

to evaluate the complete load-deflection and moment-curvature relationships for square

and L-shaped slender R/C columns subjected to biaxial bending and axial load. The

analysis was based on an incremental deflection theory. A secant stiffness approach was

used to model the material nonlinearity and a finite difference method was applied to

calculate the curvatures. Idealized piece wise linear stress-strain curve was used for steel

and concrete elements, respectively. Furthermore, both ascending and descending

behavior of R/C columns under monotonically increasing load was successfully attained

in his study.

1.2.2.2 Slender R/C Columns under Cyclic Axial Loading. Behavior of reinforced

concrete columns subjected to a variety of loading conditions have been a subject of

considerable investigation. In spite of a number of column studies which have been

undertaken, there are still several important research topics which have been relatively

unexplored. Also, some problems which have been extensively investigated are not

satisfactorily resolved at all.

Of particular significance in the areas of unexplored problems are the factors that

affect the column behavior under cyclic loading. Most studies on biaxially loaded

column behavior are related to the monotonically increasing load. No published

experimental or theoretical studies are yet available on the behavior of slender R/C

columns subjected to cyclic axial compression with bidirectional eccentricities.

1.3 Statement of Originality

An accurate and rational analysis of reinforced concrete (R/C) structures requires

satisfactory modeling of the behavior of concrete. The behavior of concrete is dependent
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upon its load history. Although a considerable amount of effort has been directed at

developing the concrete model under cyclic compressive loading, most original models

can not be incorporated into the analysis of R/C structures. A reliable and substantial

cyclic stress-strain relationship is needed for the analysis of structures subjected to

repetitive loadings.

An experimental investigation and parametric study into the behavior of concrete

under cyclic loading are performed in this study. The direction of physically motivated

modeling of cyclic stress-strain relations will be suggested through the parametric study.

Cyclic loading test will be conducted on cylindrical specimens under four different

loading regimes. Stress-strain curves obtained for 3 in. by 6 in. concrete cylinders under

cyclic loading will be presented and analyzed to calibrate the analytical expressions.

Analytical concrete model will be proposed here to predict the behavior of concrete

under random cyclic loading.

The behavior of R/C columns having various properties and subjected to a variety

of loading conditions has been the subject of considerable investigation. There are still

several important research topics which have been relatively unexplored. Of particular

significance in the areas of unexplored problems are the factors affecting the column

behavior under cyclic loading. There are not any published experimental and theoretical

studies of the cyclic axial loading on the slender RJC columns subjected to biaxial

bending. It should be noted that the cyclic compressive load with bidirectional

eccentricities considered in this study is in the longitudinal direction, and not in the

transverse direction, with respect to the column axis.

For the present experimental study, four foot long R/C columns are tested under

cyclic axial compression with bidirectional eccentricities. The main parameter of column

Lest are the bidirectional eccentricities and its angle to the reference axis. Ultimate

strength, load-deflection and moment-curvature characteristics of R/C columns under

cyclic axial load with double eccentricities are examined. Furthermore, a computer
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model is developed here to simulate the behavior of RIC columns under combined biaxial

bending and cyclic axial compression.

1.4 Objectives of Research

An experimental investigation and parametric study into the behavior of concrete under

cyclic loading are performed as a part of this research work. The strategy of physically

motivated modeling of cyclic stress-strain relationships is proposed through the

parametric study. Stress-strain curves obtained for concrete cylinders under cyclic

loading are presented and analyzed to calibrate the analytical expressions under the

established strategies of reliable modeling. Analytical concrete model for cyclic loading

is proposed to predict the behavior of concrete under random cyclic loading. Analytical

expressions are made to describe the behavior of concrete that are practical and can be

incorporated into a computer model for analyzing the reinforced concrete columns under

cyclic loading. The possible flexibility of the proposed model should be able to

minimize the gap between the material model and a real implementation. Cyclic loading

tests will be conducted on 3 inches diameter by 6 inches high cylindrical specimens

under the following four different loading regimes: 1) Monotonic, 2) Cycles to envelope,

3) Cycles to common points, 4) Cycles with random loading.

The objective of this column study, therefore, is to examine the behavior of

various cyclic compressive load levels on the ultimate strength, deflection and moment-

curvature characteristics of reinforced concrete slender columns with bidirectional

eccentricities. Furthermore, a part of this research is to develop a numerical analysis that

can simulate the behavior of reinforced concrete columns under combined biaxial

bending and cyclic axial compression.

For the experimental study of column, four foot long reinforced concrete columns

are tested under cyclic axial compression with bidirectional eccentricities. The main

parameter of column test are the bidirectional eccentricities and its angle to the reference
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axis. The load pattern considered in this experimental study is cycle to envelope which is

a most typical load regime. The applied load is a full loading of cycles which is loading

up to the envelope curve and then unloading down to nearly zero stress level. It should

be noted that the cyclic axial compressive load with bidirectional eccentricities

considered is in the longitudinal direction, but not in the transverse direction, with

respect to the column axis. The experimental ultimate load, load-deflection and moment-

curvature curves are compared with the prediction of computer model developed in this

study.



CHAPTER 2

STRESS-STRAIN BEHAVIOR OF CONCRETE UNDER CYCLIC LOADING

To predict the stress-strain behavior of concrete under cyclic compressive loading, a

cyclic model is developed in this chapter based on in-depth parametric study of available

concrete models and the experimental results of the present study. Any analytical model

developed must be able to represent the general behavior of concrete under different

loading paths in the subsequent cycles. Furthermore, the developed model should be able

to apply to various different envelope (monotonic) curves. However, most of the cyclic

models available are restricted to the domain of their own experimental data.

2.1 Parametric Study of Stress -Strain Relationships

The material behavior can be simulated more satisfactorily by a physically motivated

modeling. In other words, a modeling must keep the physical interpretation of analytical

terms in mind. They can be expressed by empirical mathematical equations with a

number of constants which are calibrated from the experimental data. This gives the

empirical models a flexibility by an appropriate choice of the coefficients to achieve a

best fit to the test results. However, the predicting power of these models is limited only

to the vicinity of the experimental data from which they are derived initially. Therefore,

the behavior of concrete may be simulated by the unified characteristics which are

somehow distributed through the reliable previous models that simulate the basic features

of concrete behavior.

Through the review of previous researches in chapter one, the neural network

approach to model the concrete behavior provides a good suggestion that one or more

model parameters may be predicted from the theoretical simulation. In addition, the

major parameters, which is able to affect dominantly on the overall shape of cyclic

16
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stress-strain curve, can be obtained from the semi-empirical way by combining the

theoretical simulation and reliable range of experimental coefficients. Thus, extensive

numerical and geometrical simulations are performed here to study the reliable modeling.

Furthermore, simultaneous numerical and graphical simulations may be useful to

calibrate the experimental parameters of present test results.

An in-depth parametric study is carried out to investigate into the behavior of

concrete under uniaxial cyclic compressive loading. Available stress-strain relationships

for concrete under both monotonic and cyclic compressive uniaxial loadings are

implemented in a computer model to perform such a parametric study. The general

cyclic behavior of concrete is examined, and several common characteristics are

identified. The change of stiffness in a different stress-strain path, unloading strains on

the envelope curve, unloading plastic (residual) strains, common points and reloading

strains at the end of reloading curves are the major parameters that control general

behavior of concrete under cyclic compressive loading. Available empirical stress-strain

relationships for concrete under cyclic loading are analyzed in view of physical

characteristics.

A symbolic manipulation procedure leading to the analytical operation of a

related mathematical expressions is presented. New computer language

MATHEMATICA [Wolfram et,al. 1988] is used to simulate the characteristics of stress-

strain relationships.

Envelope Curve: An envelope curve defines a line in which no stress-strain

curve exceeds regardless of its loading paths. Various curves for stress and strain of

previous models are shown in Figure 2.1. They are nondimensionalized with respect to

the maximum stress and peak strain corresponding to the maximum stress. The resulting

normalized coordinates are: U =f/fc' and S = εc /6 0 . In Figure 2.1, the ascending

branch of monotonic stress-strain curves fairly agrees with each other, but the descending

branch shows considerable differences between certain models. Thus it can be concluded
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that most empirical models of monotonic stress-strain curve for an envelope curve

exhibit a more sensitive behavior in the descending branch than the ascending branch.

Common Point: The locus of points where the reloading curve of any cycle

crosses the unloading curve is defined as common points and a closed hysteresis loop is

formed in subsequent cycles. Karsan and Jirsa [1969] derived a mathematical expression

for the common points .

This expression is in good agreement with an original envelope from which an

initial mathematical foundation is developed as shown in Figure 2.2. However, when

this expression is applied to other monotonic (envelope) stress-strain curve, it does not

conform to a given model as shown in Figure 2.3. Thus it can be concluded that the

common point limit depends on an adopted envelope curve. It is found that the

mathematical expression of Karsan's common point model may have to be modified for

other monotonic models of concrete. Furthermore, the location of common points has

shown to vary with the type of loading applied in the present experimental investigation.

Thus, it is concluded that the stress-strain relationships should be derived without using

common points for a random cyclic loading which shows a more general loading pattern.

But, in case of full unloading and reloading, the common point approach may be used,

because it presents a more stable shape for each cycle with less sensitivity to the

reloading strain through the present parametric study.

Plastic Strain: Nonrecoverable or plastic strains are defined as the strains

corresponding to a zero stress level on the unloading or reloading stress-strain curve.

During cyclic loading, the accumulation of plastic (residual) strain occurs for all type of

loading regimes. There are no significant difference in the plastic strain between the

confined and plain concretes. The trivial different formulation for both confined and

unconfined concretes does not affect the overall shape of cyclic stress-strain curve.

The changes in the shapes of the cyclic stress-strain curves with increasing plastic

strains suggests a relationship between the plastic strain and the nature of the unloading



Figure 2.2 Karsan's Model with Original Envelope
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Figure 2.3 Behavior of Karsan's Model with Desayi's Envelope
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and reloading curves. The previously developed expressions describe the low strain

region satisfactorily, but show discrepancies with increasing strain.

Unloading and Reloading Curves: The unloading curve is characterized by its

single curvature. The available unloading curve with different envelope curve which is

not adapted in the developed models originally is presented in Figure 2.3. When a

unloading curve is derived from a different envelope curve, physical contradiction can be

developed. This phenomena may be caused by the highly nonlinearity of adopted

mathematical equation type and/or severe asymptotic numerical behavior of formulation

at near the plastic strain. Karsan's [1969] expression presents a unreasonable behavior in

view of this physical sense. The predicting capability of such models is limited to the

vicinity of the experimental data from which they are derived initially. This suggests a

more physically motivated modeling is needed and argues for the formulation of an

unloading curve that is less dependent on the envelope curve from which it is derived.

Thus, the behavior of unloading curve may be simulated by the unified characteristics

which are distributed through the reliable model.

The reloading curve is represented by a double curvature with mild curvature in

the low stress level, and a sharp reversal in curvature just below the envelope curve. A

similar phenomena is revealed when the expressions of reloading curve are applied with

different envelope curve as shown in Figure 2.4. This unreasonable behavior of

reloading curve is due to the severe asymptotic behavior at the vicinity of reloading

strain on the envelope curve.

Through the extensive parametric study of previous work, the following

important numerical and geometrical observations are attained. The numerical

asymptotic behavior at near the major control points of cyclic stress-strain curve may

present the unexpected manner and the complexity of adapted formulation is able to

distort the overall shape of stress-strain curve under cyclic loading. The above

mentioned phenomena can be developed when several different mathematical



Figure 2.4 Behavior of Karsan's Model with Popovics's Envelope
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expressions, those are highly nonlinear, should work together in a demanded direction.

For example, infinitesimal change of unloading strain from the envelope curve causes the

remarkable stress drop because of numerical sensitivity of selected equation type. And

the concerned unloading cycle can not be controlled due to the rapid accumulation rate of

reloading strain on the envelope curve.

Due to the above mentioned characteristics such as asymptotic behavior and

complexity of mathematical formulation, the models previously developed for cyclic

stress-strain relationships gives no flexibility to apply with certain experimental data and

the previous models can not be responded to any future modifications. Thus, the strategy

of mathematical formulation should be established to provide the flexibility of the model

developed. In addition, more suitable type of equation for the each component of cyclic

stress-strain curve have to be obtained to reflect the experimental characteristics of

concrete under general cyclic loading patterns. The numerical behavior of adopted

analytical expressions and the physical interpretation of mathematical terms should also

be identified for the reliable cyclic model of concrete.

2.2 Physically Motivated Modeling

Analytical expressions of concrete behavior under cyclic loading may have to be

recognized in view of both physical sense and numerical sensitivity. The following

strategies of reliable modeling for cyclic stress-strain relationships are suggested through

the intensive parametric study and theoretical simulations of related previous works.

Firstly, formulation of unloading and reloading curves should be independent or

less dependent on mathematical expression of envelope curve which is adopted in the

original model. Otherwise, the analytical model developed can not be applied with

different monotonic stress-strain curves. This concept is directly related to applicability

of the proposed model and flexibility of the mathematical formulation.

Secondly, the material behavior can be predicted more satisfactorily by a
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physically motivated modeling that keeps the physical interpretation of the analytical

terms for themselves.

Thirdly, the suitable equation types of each segment in the cyclic stress-strain

curve may have to reflect not only the stable numerical behavior but also the growing

change in graphical mode. Due to the sensitive numerical behavior of adopted equation

types, overall shape of cyclic stress-strain curve for the proposed model may be distorted,

Furthermore, the adopted functional shapes should reflect the dominant characteristics of

concrete behavior in a different stress-strain path. Thus, it is important to identify a

flexible equation types for different characteristics of concrete behavior under various

loading patterns.

Based on the observations through parametric simulation and the test results of

previous work, the flexibility of selected analytical expression seems to be essential to

achieving the random cyclic stress-strain curve. The stress-strain curves obtained for

cyclic loading tests will then be analyzed in the following sections, and an analytical

model will be developed under the above mentioned strategies. The proposed model will

be used to predict a yet untested stress-strain paths to examine the validity of the model

developed.

2.3 Experimental Program

The purpose of the experimental program in this section is to investigate into the

behavior of concrete under cyclic compressive uniaxial loading. The stress-strain curves

obtained for 3 by 6 inches concrete cylinders under cyclic loading are presented and

analyzed to calibrate the analytical model. A series of tests on the plain concrete

cylinders are performed with four different loading patterns to be considered as the

general loading types. The main test parameters are four different loading types under

cyclic uniaxial compressions.
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2.3.1 Test Specimens and Design of Test Parameters

The specimens are 3 inches in diameter by 6 inches in height cylinders of normal

concrete. Photographs of instrumented concrete cylinder specimen are shown in Figure

2.5.

The concrete mix proportions are constant for all test specimens as shown below

in weight ratio.

C:S:A:W = 1:2: 2.5 0.55

The concrete is a blend of Type III Portland cement, local river sand, aggregate of

3/8 inches (maximum size), and water. The concrete was cast into a cylindrical mold and

the concrete cylinders were kept at casting room for one day. Then they were cured

under water for one week, and were left for drying after curing. Prior to testing the

specimens were capped with sulphur compound at both ends.

Most of previous experimental researches focused on certain loading patterns.

Patterns of loading may be classifred into two categories based on the available test

results and analytical models. The first one is that the unloading starts from the envelope

to near zero stress level and then the reloading starts from near zero stress level to the

envelope curve. The second one is that the unloading and reloading repeat themselves at

the specified stress levels within the envelope curve.

However, behavior of various elements in a structural system may not fall into

any of the above mentioned categories. For example, a loading may hit the envelope

curve in a cycle and may not reach the envelope curve in the subsequent cycles. Such a

behavior can be only presented by an empirical and/or mathematical model having a

capacity to simulate random cyclic loading of a more general loading type. The stress-

strain relationships under condition of general loading is necessary to reflect an observed

behavior of the structural components.

To investigate into the stress-strain response of concrete under cyclic loading,

four different loading regimes are employed in the following:



Figure 2.5 Set-up of Concrete Cylinder Test
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1) Monotonic loading.

2) Cycles to envelope curve.

3) Cycles to common point.

4) Cycles with random loading.

Monotonic compressive tests are performed on concrete specimens with each

batch and each applied loading type to determine the complete monotonic stress-strain

curve, including the ascending part and descending part. These data are needed to

determine the applicability of the envelope curve concept to concrete used in this tests.

The second cyclic loading scheme, cycles to envelope, is unloading to near zero

load level, then reloading from the plastic strain at zero load. The resulting envelope

curve will be compared with a monotonic stress-strain curve from the same batch. The

empirical relationship between the unloading strain on the envelope curve and the plastic

strain at the end of unloading will be studied.

The third cyclic loading pattern, cycles to a common point, is a repeated loading

up to each common point and then unloading to zero load level. The common point is a

location where the reloading curve crosses the unloading curve. This loading type is

employed to study the accumulation rate of reloading strain from the end of unloading

point to a common point because the slope of the reloading curve varies nearly linear but

changes sharply after the common point.

The fourth cyclic loading regime, cycles with random loading, is involved with

the combination of all possible loading patterns. There are full unloading and full

reloading, full unloading and partial reloading, partial unloading and full reloading, and

partial unloading and partial reloading. This loading pattern is a more general case than

the above mentioned one and is selected to provide an additional information. This data

may be found useful in calibration of the analytical model for the case of random cyclic

loading.

These four different load patterns adopted are shown in Figure 2.6 through 2.9. It
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should be noted that Figures 2.6 through 2.9 present the results of an electron screen.

2.3.2 Test Control and Data Acquisition

The tests were carried out by a closed loop servo controlled material testing system

(MTS) with a hydraulic capacity of 100 kips. During testing, the load and deformation

data are recorded in the form of analog signal and stored by the data acquisition system.

The data acquisition system consists of an IBM DACA converter which is installed in the

personal computer and UnkelScope software. This DACA board converts an analog

which is generated from the testing machine into the digital output and the sampling

speed at 0.5 Hz is controlled by the setting of UnkelScope. The sampling rate of data can

be adjusted according to the applied strain rate, so that the tests having thousands of data

can be fully recorded. After the data is obtained, it is translated by the UnkelScope and

is computed to obtain a real stress and strain quantity in order to produce stress-strain

plot of the specimen. A procedure of present data acquisition can be found in Figure

2.10.

The testing machine has the capability to control test using load control, strain

control, and stroke (displacement) control. All tests for different patterns of loading

were performed under strain control to achieve both the prepeak and post peak ranges of

stress-strain curve. The clip-on gage (MTS model 632.03B-20) are installed to measure

the displacement of test specimen (see Figure 2.5). The working range calibrated for 10

volt full scale output from a MTS transducer conditioner is 0.20 inches for the gage used

in this experiment. The strain rate used in this study is the static strain rate of 16.7

microstrain per second and the estimation of applied strain rate is in the following:

specimen height in loading direction: 6.0 inches

working range of gage: 0.20 inches

selected strain percentage: 50 %
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Figure 2.10 Procedure of Data Acquisition for Concrete Cylinder Test
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selected frequency: 1.0x10^3 Hz = 1/(1.0 x 10"3) sec.

ε°= {(0.2 x 50/100) / 6.0} /(1.0x10^3)

= 1.67x10^-5 s /sec = 16.7 116 / sec.

It should be noted that the thickness of sulphur capping is neglected in determining the

above strain rate.

The unloading and reloading are carried out at the interested load level by a

digital function generator (model 410) which generates a wave form output. Other

manual operation of NITS can not handle the extremely constant strain control during the

different loading path of cyclic loading. The testing machine is controlled by a set-point

until the load is near zero then reloading starts automatically by a function generator. A

ramp wave form output is employed to generate the cyclic loading in this experiment.

2.4 Analysis of Cyclic Loading Test

This section describes the experimental results of concrete subjected to cyclic axial

compressions. The deformation of specimens could not be taken directly from the

recorded digital signal. The recorded data in the form of voltage corresponding to load

and deflection were processed to convert it into the real mechanical quantity. The data

processing scheme is shown in Figure 2.11. As mentioned in section 2.3, that four

different loading patterns are used in this investigation.

The monotonic loading test was conducted for each series of specimens. In

general, the stress-strain behavior observed is typical of that found in the concrete

subjected to monotonically increasing axial compression. Figure 2.12 illustrates a typical

response under monotonic load. Plain concrete usually fails in a brittle manner, caused

by multiple failure planes. The asymptotic behavior of stress-strain curve shows in a

very high strain range of the descending branch.

A generally accepted behavior for concrete under cyclic loading is that of an

envelope curve, which provides a bound between the upper limit and lower limit for the
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stress-strain curve, can be obtained under different loading paths. The existence of an

envelope curve for a concrete can be studied by comparing the test results of cycles to

envelope curve with the corresponding test results of monotonic loading. As shown in

Figure 2.13, this suggests an existence of the envelope curve for a concrete subjected to

cyclic axial compression and may be considered to coincide with the stress-strain curve

under monotonic load.

Residual or plastic strains are defrned as the strains corresponding to a near zero

stress level on the unloading stress-strain path. The envelope unloading strains and

plastic strains can be obtained by the load type of cycles to envelope curve. The

observed changes in the shape of the stress-strain curves with increasing plastic strains

suggest a relationship between the residual strain and unloading strain on the envelope

curve. The increase in envelope unloading strain causes approximately the same increase

in the accumulated residual strain.

In case of full unloading and full reloading, the common points limit shows a

stable shape in the entire strain range of stress-strain curve. In the random cyclic

loading, however, the position of common points depends on the stress level of previous

unloading path as shown in Figure 2.13. In other word, the location of common points

varies with the type of loading applied. This implies that the stress-strain relationships

may have to be derived without using common points for a more general loading pattern.

The unloading and reloading curves obtained in tests do not coincide and are not

parallel to the initial loading curve. The average slope of the unloading and reloading

curves is inversely proportional to the plastic strain. This implies that there is a definite

stiffness degradation for the entire strain range of stress-strain curve.

The reloading strain at common points after completion of the first full unloading

is plotted against the envelope unloading strain in Figure 2.14. The envelope reloading

strain versus envelope unloading strain curves are shown in Figure 2.15. The overall

shapes of the curves in Figure 2.14 and 2.15 show the similar trend. This implies that the



Figure 2.12 Stress-Strain Curve under Monotonic Loading
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3

Figure 2.13 Cyclic Envelope Curve and Monotonic Stress-Strain Curve



Strain Ratio at Common Point

Figure 2.14 Relations between Common Strain and Envelope Reloading Strain
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1.5
Envelope Unloading Strain Ratio

Figure 2.15 Relations between Envelope Unloading and Envelope Reloading Strain



37

accumulation rate of reloading strain can be defined regardless of different stress level in

a reloading path. This observation through the random cycles enables to model the

partial reloading curve. Therefore, it is possible to define the corresponding envelope

reloading strain at the end point of certain stress level in the partial reloading path.

However, in most previous research, it was generally accepted that the accumulation of

reloading strain could be only defined at the maximum stress level, i.e. on the stress of

envelope curve.

It is true that there are difficulties to obtain the actual point of reloading strain on

the envelope curve due to the uncertainty of experimental data. It is not desirable to

determine the relationship between the envelope unloading strain and envelope reloading

strain solely based on the experimental data. Also, due to the highly nonlinearity of the

cyclic stress-strain curve, the coefficient for this relationship may also be obtained

through the theoretical simulation which gives a more reasonable overall shape of the

stress-strain curve. Thus, the stress-strain relationships will be determined by a semi-

empirical way.

It is necessary to consider the cases of partial unloading and partial reloading to

predict the concrete behavior subjected to random load history as shown in Figure 2.16.

In most previous work, the basic characteristics of concrete response were derived from

the test results of full unloading and full reloading patterns. The test results of concrete

under random cyclic loading are not yet available upto date. The test results of this type

should also be employed to study any proposed mathematical expressions for random

cyclic loading.

2.5 Modeling of Concrete under Cyclic Loading

This sections is devoted to developing the analytical expressions of stress-strain

relationships for concrete subjected to cyclic compressions. The model developed is

based on the results of parametric study and experimental data obtained for the present
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3 9

study. In order to predict the behavior of concrete under general loading patterns, each

characteristic on the different stress-strain path should be incorporated into the

mathematical formulations.

The model parameters are determined from both considerable amount of

theoretical predictions and experimental data. It should be noted that certain test

parameters for the cyclic loading can not be obtained clearly by the experimental results.

Due to the variable nature of concrete behavior, it is more reasonable to provide the

range of test results. Furthermore, this will give more flexibility to the developed

concrete model for future modification. Thus the model developed is a semi-empirical

one.

Numerical computations and graphical presentations are needed to determine a

preliminary mathematical equation of the cyclic stress-strain curves. Procedures for the

automatic generation of graphic stress-strain curves are needed to reduce the amount of

work involved in the construction of stress-strain curves. For this purpose, new language

MATHEMATICA, which is able to perform the symbolic operation and graphic

presentation, is adopted.

Considering the highly nonlinearity of cyclic stress-strain relationships, the

conventional procedures for curve fitting can not handle this problem. Furthermore, it is

very difficult to develop the mathematical expressions by curve fitting that present a

reasonable overall shape of cyclic stress-strain curves. Thus, a computer model for

numerical and graphical simulation of analytical expressions has been developed here to

analyze the experimental data and to predict the model parameters. This computer model

may be linked to analyzing the reinforced concrete structure with appropriate interface.

Also, it is possible to stand alone as a simulator for studying the stress-strain behavior of

concrete under cyclic loading.

There is no need to develop a specific model for a monotonic stress-strain curve.

It is because that the developed cyclic stress-strain relationships for general load patterns
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can also be used for various monotonic stress-strain curves. Thus, the present analytical

model provides a flexibility. The mathematical formulations, the flexibility of

mathematical expressions, the physical interpretation of analytical terms and the

identifrcation of suitable equation type are discussed in the following.

At the present study, the flexible type of equations is defined as the one that the

model parameters are corrected to fitting certain test results while the overall shape of

cyclic stress-strain curve is preserved. Contrary to the flexible type of equation, the

sensitive equation type is defined that if one or more parameters of the model is changed,

the overall shape of stress-strain curve is distorted due to the locality of adopted test data.

Thus it is very important to use the flexible equation type for each characteristics of

concrete behavior under cyclic loading. The dominant characteristics of concrete

behavior are the behavior of plastic strains, unloading curves, reloading strains and

reloading curves for the entire range of strain regardless of full or partial unloading and

reloading.

In this section, coordinates for stress and strain of the modeling procedure are

nondimensionalized with respect to the maximum stress and peak strain corresponding to

the maximum stress. The resulting normalized coordinates are U = f /Li and S = s 1 40

Hereafter, the stress and strain are discussed as the ratio of stress and strain, respectively,

in the normalized coordinates.

Plastic Strain: In the previous researches, most mathematical relationships

between the envelope unloading strain and plastic strain were developed from the

plasticity concept. A strain contains the elastic strain and plastic strain as shown in

Figure 2.17. This means that the linear relationship between the unloading strain and

residual strain is used. This concept may not be adequate to describe the descending

branch of stress-strain curve due to the higher accumulation rate of plastic strain in a high

strain range. In other word, the recoverable strain (a, = 6„ — a s,) is greatly reduced when

the envelope unloading strain is increased. Also, there is an asymptotic behavior of



Figure 2.17 Plastic Strain and Recoverable Strain
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plastic strain in the low strain region. As discussed previously, a suitable type of

analytical expression can be used to reflect these characteristics directly.

Through the numerous simulation of different type in mathematical expressions,

the power type equation is obtained for the relationship between the envelope unloading

strain and plastic strain as shown Figure 2.18. Although a single term of a polynomial is

not accurate as the multiple terms of a high order polynomial to predict the certain test

data, the adopted single tern expression does not sacrifice the above mentioned

behavioral characteristic of concrete and its mathematical flexibility. The geometrical

shape of adopted equation type also gives a reasonable shape with various parameters.

This implies that the obtained equation type behaves reliably according to the provided

experimental data. Thus, the proposed analytical relationships between the unloading

strain and plastic strain can be written as:

(2.1)

Where 4, is a unloading plastic strain ratio, S e„ is a unloading strain ratio on the

envelope curve, cp is a coeffrcient of plastic strain and np is an optimum order of

proposed equation type in the concerned test data. The change of np will provide change

in curvature of a curve shape for future modification.

The proposed equation also satisfies the theoretical boundary condition with

which the plastic strain is always greater than zero or equal to zero in the range of

compressive strain (Seu 0). A comparison of the above type equation with the test data

of Sp„ — Seu is shown in Figure 2.19. A constant of cp is suggested as 0.30 based on the

present test results for full unloading and reloading cycles and order of np is 2 which is

an optimum for the present study. It is noted that the constant cp will be modified for the

cycle with random loading and a certain comparison. It is obvious that these coefficients

can be adjusted to the certain experimental results.



Figure 2.18 Adopted Power Equation Types for Plastic Strain
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Envelope Unloading Strain Ratio

Figure 2.19 Relations between Plastic Strain and Envelope Unloading Strain
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This analytical expression may be used for both plain or confined concrete. It is

well known that the lateral confrnements affect on the shape of envelope curves

substantially but there was no signifrcant difference in the plastic strain between the

confined and plain concrete. This implies that the trivial different mathematical

expressions do not affect the overall shape of cyclic stress-strain curve.

It should also be mentioned that the unloading plastic strain can be only obtained

by full unloading from an envelope curve to the zero stress level in experiments. This

suggests that the plastic strain can only be determined quantitatively by the unloading

strain on envelope curve. This observation is very useful to obtain the plastic strain when

the previous history of stress-strain path is of partial reloading. Thus, for the case of

partial reloading, the proposed mathematical expression of plastic strain can be used at

any stress level once the corresponding envelope unloading strain at the end point of

partial reloading is found.

Reloading Strain: The reloading strain on the envelope curve can be formulated

as either of the unloading strain or plastic strain. Observing the arbitrary single cycle of

stress-strain curve, the envelope reloading strain is always greater than the envelope

unloading strain. In case of partial unloading or partial reloading, the plastic strain at any

stress level is always less than the reloading strain at any stress level on the reloading

path that followed by full unloading. Because random cycles are a suitable combination

of partial unloading and/or partial reloading stress-strain path, this observation enables to

model the behavior of concrete subjected to random cyclic loading. Considering the

highly asymptotic behavior of reloading curve near the envelope curve, a more accurate

determination of envelope reloading strain may reduce the flexibility of mathematical

formulation. Thus it is desirable to provide the reasonable range of experimental

parameter rather than the value of specific test coefficient.

It is necessary to formulate the envelope reloading strain as a function of

envelope unloading strain rather than the plastic strain. This leads to a unified



45

formulation because the plastic strain is expressed as a function of envelope unloading

strain. For this purpose, the relation between the reloading strain and the unloading

strain is shown in Figure 2.20. The results of tests can be approximated as:

(2.2)

Where Se, is a reloading strain on the envelope curve and 5S„ is the difference between

unloading strain and reloading strain on the envelope curve for full unloading and

reloading cycles.

It is unavoidable to approximate the reloading strain due to the uncertainty of true

reloading strain points on the envelope curve. In other word, the end points of reloading

curves can not be obtained clearly in the test results. This implies that the reloading

curve can be predicted in a comparatively simple shape. Observing the scatter is

expanded when the unloading strain is increased, it is better to employ two parameters of

5S,,, in the prepeak range and post peak range of strain, respectively. The range of two

parameters is between 0.05 and 0.12 and the specifrc coefficients are conformed to the

observation of the overall shape of stress-strain curve.

For the case of random cyclic loading, the envelope reloading strain can be

obtained by the end point of partial unloading. It is reasonable to suggest a unified

reloading strain for both plain and confined concretes, due to the uncertainty and

growing scatter of test results. Furthermore, the reloading strain can be determined from

an arbitrary stress level of full or partial unloading that always exists below the

monotonic (envelope) curve regardless of plain or confined concrete. The behavioral

characteristics of confined concrete is tremendously affected by the shape of envelope

curve.

Unloading and Reloading Curves: By observing the characteristics of

unloading curve from the test results, numerous possible types of equation are presented
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in Figure 2.21 through 2.23 for comparison. These tentative equation types are power

function, polynomial and exponential types. The simplicity of formulation will be

considered for a random cycle, although the obtained test results can be predicted by

three different types of equation.

By observing these different types of mathematical expressions, it seems that the

power type of equations gives a more stable curve shape with different parameters than

those of polynomial and exponential types. It should be noted that the model flexibility

is decreased as the number of functional terms and number of model parameters are

increased. The experimental unloading curves show a noticeable sensitive behavior at

the vicinity of envelope unloading points. Thus the power type of equation is employed

to model the behavior of unloading curves in both ascending and descending branches of

stress-strain curve. The adopted equation type should also be able to reflect the

demanded curvature in the curve shape, because the degree of nonlinearity in the

unloading curve are varied throughout the entire strain range of stress-strain curve.

The shape of unloading curve is strongly dependent upon the location of

unloading plastic strain rather than the envelope unloading strain. Assuming that the

unloading curve varies linearly from the envelope unloading strain to the plastic strain as

shown Figure 2.24, the following linear relationships can be written as follows, where a

point (S,U) is located at any location on the assumed straight line for unloading:

(2.3)

Where Sp is a plastic strain ratio, S 	 a unloading strain ratio on the envelope curve

and U 	 a envelope unloading stress ratio at the corresponding strain ratio on the

envelope curve.



Envelope Unloading Strain Ratio

47

Figure 2.20 Envelope Reloading Strain and Envelope Unloading Strain

Figure 2.21 Power Function Types for Unloading Curve



Figure 2.22 Polynomial Types for Unloading Curve

48

Figure 2.23 Exponential Types for Unloading Curve
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Where x is a linear function.

A simplified straight line shown in Figure 2.24 is a special case of an actual

behavior during unloading. Thus the analytical expression of unloading curve can be

expressed as function of x to reflect the nonlinearity of actual shape of the unloading

curve:

(2.4)

Where Uunlo is a nonlinear function of unloading curve

Substituting a linear function x into Equation 2.4:

(2.5)

The behavior of unloading curve can be predicted through the appropriate

combination of basic linear function x which is discussed in above section. Considering

the complexity of basic function x and envelope unloading stress ratio U eu, a single term

of the equation for unloading curve is at best proposed. It should be noted that the

envelope unloading stress ratio U eu must be determined from the adopted monotonic

(envelope) curve for the applicability of the proposed model. When the number of terms

in Ueu increases, the proposed mathematical expression becomes more dependent on the

adopted monotonic curve. The envelope unloading stress ratio (l ei, can be only defined

on the envelope curve, and the resulting unloading equation is not analytical at the

envelope unloading points if the term Ueu  is eliminated from the proposed equation.

Although the unloading equation without the term tie:, is completely independent on the

adopted envelope curve, a envelope unloading stress have to be approximated by a

50
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numerical iterations.

For an engineering analysis, it is not desirable to propose a concrete model that an

iteration procedure is required to frnd an envelope unloading stress. Thus the type of

power function is proposed here to characterize the concrete behavior of unloading. The

mathematical expression of unloading curve is proposed in this study as follows :

(2.6)

Where cu is a parameter of unloading curve and nu is expressed as a function of the

plastic strain.

Equation 2.6 is for the case of full unloading as shown in Figure 2.24 and

Equation 2.6 is a more general expression than that of Equation 2.4. If the end point of

unloading is not at zero stress level of Upu, then the partial unloading stress U pu should

be added to Equation 2.6 and the term (f eu of the above equation must be replaced by

tie ," — Up„. Thus, for the case of partial unloading, that is a more general stress-strain

path than a full unloading, Equation 2.6 can be written as:

(2.7)

The unloading coefficient cu can not be determined by the simple frtting of test results at

any specific point due to the variation of coefficients at each cycle. A trial and error

approach of simulating the overall shape of stress-strain curve with the aid of test results

is used to determine cu . The ranges of parameter cu is from 0.95 to 1.0 and 0.95 is

adequate for the present study. The power term nu can be expressed as a function of the

plastic strain rather than the envelope unloading strain, because the curvature in
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unloading curve changes sharply as a strain approaches to the plastic strain. Based on the

concrete behavior during unloading in the present tests and the above mentioned

preliminary shape of unloading curve, nu is found to be greater than 1. It is found that

nu is 1.0 + √Sp for the present study. The power term n shown in Equation 2.7 is used

to characterize the nonlinearity of unloading curve as the unloading plastic strain

increases.

Figure 2.25 shows a good agreement for the unloading curves obtained from the

test results as compared with the proposed mathematical expression for unloading

behavior. The experimental strain and stress at the envelope unloading points were

required to simulate the proposed equation because the envelope curve was not involved

in this comparison. The experimental unloading points were obtained from a large

amount of the sampled data in the concrete cylinder test.

For the reloading strain as discussed previously, due to the uncertainty of

reloading strain in the test results and a growing scatter of test data, the reloading curve

will be approximately proposed. In this situation, a more accurate modeling may end up

distorting the overall shape of cyclic stress-strain curve. Furthermore, to obtain a simple

model which includes the partial reloading as a part of random cycle, the present study

proposes a linear relationship for the reloading curve (see Figure 2.24). And a linear

relationship may also be useful to defrne a stiffness in the reloading paths. Thus, the

mathematical formulation of reloading curve can be expressed as:

(2.8)

Where cr is a reloading coeffrcient, S„ is a reloading strain ratio on the envelope curve

and U, is a corresponding envelope reloading stress ratio at the reloading strain ratio on

the envelope curve.
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For a general analytical expression, the reloading curve may have to be

considered with a history of unloading path (see Figure 228). Again, as in Equation 2.7,

for the case of partial reloading with the history of partial unloading, the above equation

can be written as:

(2.9)

Where the reloading coefficient cr is equal to 1, nr is equal to 1 for the present study,

Uerpu is a envelope reloading stress ratio at the corresponding reloading strain ratio Serpu

and U pp, is a partial unloading stress ratio at the corresponding partial unloading strain

ratio in the history. U pp, is equal to zero, when the full unloading previously occurs. In

this case, Equation 2.9 is the same as Equation 2.8.

Partial Unloading and Reloading: In their pioneering work, Kansan and Jirsa

[1969] proposed a non-uniqueness concept that the partial loading curve is not unique

with respect to a given stress level. In addition, there is no additional strain accumulation

in the partial reloading curve until the stress level exceeds a certain limit (stability limit).

This concept is different from the uniqueness concept proposed by Sinha, et. al. [1964].

Validity of the above mentioned concepts may be confirmed from the test results

of random cycles. A similar concrete behavior, which supports non-uniqueness concept,

is also observed in the present test results. It is found that the current stress-strain

response seems to be dependent upon the previous loading history. As shown in Figures

2.26 and 2.27, the test results of random cycles show the subsequent unloading paths that

fall into either of the left side or the right side of previous unloading curves. These

phenomena depend on the reloading stress level. The observations also support the non-

uniqueness concept of stress-strain cycles. If the uniqueness concept of each cycle is

assumed to be valid, the unloading behavior due to the partial reloading history in the
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second cycle of Figure 2.26 can not be attained in the experiments. Thus, there is no

guaranty that each subsequent cycle is able to construct a unique cycle in the stress-strain

curve. Figure 2.27 shows a series of unique cycles.

The non-uniqueness concept and above observations provide a clue that the

envelope reloading strain can be determined from the history of partial unloading. And

the envelope unloading strain at a corresponding stress level can be obtained by the

history of partial reloading.

Based on the present test results for full unloading and full reloading, and random

cyclic loading, the envelope reloading strain is always greater than the envelope

unloading strain regardless of partial or full unloading. Comparing the test results of a

series of cycles to common points with the cycle of random loading, the unloading curve

due to the history of partial reloading falls into the left side of the previous unloading

curve when the stress level of the history of partial reloading is below a certain stress

level. Consequently, the second cycle exists within the first cycle. Thus, it can be

concluded that the accumulation of envelope reloading strain depends upon the stress

level of unloading history and can be expressed as a function of envelope unloading

strain.

A random cycle can be achieved by a suitable combination of partial unloading

and partial reloading in the subsequent loading path. First of all, the possible and most

general loading path should be identified. Figure 2.28 shows a schematic general stress-

strain cycle and the possible loading paths. The pattern of load history and all possible

stress-strain paths for random cycles are summarized in Table 2.1.

In the envelope, the possible and most general stress-strain path is the partial

unloading. After partial unloading is finished at Sppu (see Figure 2.28), partial or full

reloading is followed. In this case, the envelope reloading strain S erpu due to the history

of partial unloading is required to obtain the reloading curve regardless of full or partial

reloading. The envelope reloading strain S erpu due to the history of partial unloading is
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Figure 2.26 Non-unique Cycle of Unloading Curve
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STRAIN RATIO

Figure 2.27 Unique Cycle of Unloading Curve



Partial Unloading; Seu — S ppu

Re loading due to Partial Unloading; S ppu — Srpr

S; Envelope Reloading Strain due to Partial Unloading

Sieupr • Imaginary Envelope Unloading Strain due to Partial Reloading

57

Figure 2.28 Schematic General Stress-Strain Cycles and Possible Loading Path



Table 2.1 Patterns of Load History and Possible Stress-Strain Path

Load Patterns	 Stress-Strain Path * 	 Remark **

Full Unload

Full Reload

Partial Unload with Full Reload

Full Unload with Partial Reload

General Stress-Strain Path

* All notations can be found in section 2.5 and Figure 2.28.

** CEV, CCP and CRL are the applied load regimes in present experimental

investigation:

CEV ; Cycles to Envelope.

CCP ; Cycles to Common Points.

CRL ; Cycles with Random Loading.
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assumed that LS' e rpu exists between the envelope unloading strain S 	 the envelope

reloading strain S, for full unloading and reloading. This assumption is based on the

observation of experimental results in the partial unloading and full unloading (see

Figure 2.13 and 2.16), For this purpose, the linear interpolation can be used to determine

the arbitrary strain point between the envelope unloading strain S and the envelope

reloading strain S„ under a single cycle of full unloading and full reloading.

Considering the relationships between the full unloading path and partial unloading path,

the modified envelope reloading strain due to the history of unloading path can be

determined as:

Accumulation of reloading strain AS„ due to the history of full unloading:

(2.10)

Accumulation of reloading strain due to the history of partial unloading:

(2.11)

Thus, the modified envelope reloading strain due to the history of partial unloading

can be determined as:

(2.12)

The subscripts are: r = reload, u = unload, eu = envelop unload, er = envelope reload, pu

= partial unload, and pr = partial reload, respectively. Spfu, is the plastic strain due to the

history of full unloading and S pp, is the plastic strain due to the history of partial
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unloading path, respectively, Uenv(s) and Uunlo(s) are the adopted envelope curve and

history of unloading curve, respectively.

Equation 2.12 is a more general expression than that in Equation 2.2 to obtain the

envelope reloading strain. In other word, if full unloading occurs, then the stress U pp u at

the end point of unloading path becomes zero and Equation 2.12 is the same as Equation

2.2. Determining the modified envelope reloading strain, the general reloading curve due

to the history of partial unloading can be obtained by Equation 2. 9.

For a general unloading curve with previous partial reloading path, it is necessary

to determine the unloading plastic strain under this history. It is assumed that this

unloading path varies from an imaginary envelope unloading strain S ieupr to the

corresponding plastic strain Sppr due to the history of partial reloading. The imaginary

unloading curve ( S ieupr — S ppr ) may or may not pass through the end point S rpr of a

previous partial reloading curve. It should be noted that the plastic strain can only be

derived from the unloading strain on the envelope curve.

The imaginary envelope unloading strain S ieupr due to the history of partial

reloading can be obtained to estimate the corresponding plastic strain Spp r due to the

previous partial reloading. Once two points Sieupr and Sppr are obtained, the unloading

path (Sr,„--> Sppr) can then be determined at any arbitrary stress path. Due to the history

of partial reloading, the stress level of this history is evidently below the envelop curve.

Thus, it can be concluded that the imaginary envelope unloading strain due to the history

of partial reloading exists somewhere between the previous envelope unloading strain S eu

and the envelope reloading strain S,. Similarly, the imaginary envelope unloading strain

Sieupr can be expressed as:

Imaginary change of envelope unloading strain due to the history of partial

reloading:
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(2.13)

Thus, an imaginary envelope unloading strain due to the history of partial reloading:

(2.14)

Where, U„ =[Uenv ,	 Urpr [ U relo(s)]s=s

The subscripts are: pr = partial reload and er = envelope reload respectively. U relo(s) is

the history of partial reloading curve.

The stress U rpr  at the end point of partial reloading path is always equal or greater

than the first point of the previous partial reloading path. If the stress Urpr  is equal to

U this implies that the reloading does not start yet. Once an imaginary envelope
,

unloading strain is obtained, the corresponding plastic strain can then be obtained from

Equation 2.1. However, a constant cp in Equation 2.9 is modified to give a close

prediction of present test results for the random cycles. A constant cp is calibrated as

0.18 for the test results of random cycles. The general unloading curve due to the history

of partial reloading can therefore be determined by Equation 2.7 regardless of any stress

level.

Discussion and Simulation of Proposed Model: Having the analytical

expressions developed, the stress-strain behavior of concrete subjected to cyclic axial

compression can be simulated successfully. A simulation program for the cyclic stress-

strain response of proposed model is developed by using the new computer language

MATHEMATICA. This computer program is implemented at SPARC workstation to

give numerical and graphical presentations. Figure 2.29 shows the multiple cycles to the

envelope with Smith's envelope curve and Figure 2.30 and 2.31 presents model behavior
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Figure 2.30 Random Cycles with Smith's Envelope by Proposed Model

6 3

Figure 2.31 Random Cycles with Tulin's Envelope by Proposed Model
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of random cyclic stress-strain curve with Smith's and Tulin's envelopes respectively.

The above simulations verify the validity of the proposed model. Comparing the

simulations of Figures 2.30 and 2.31, they show that the proposed analytical expression

reflects the non-uniqueness concept. These simulations are performed with different

envelope curves, and they show the applicability and flexibility of the proposed

mathematical expressions.

All model parameters, either an empirical or a semi-empirical, can be adjusted to

a certain test results. The overall shape of stress-strain curve will not be distorted due to

such minor modifrcations. Furthermore, the proposed model is less dependent upon the

adopted envelope curve and this can be verified in the following section through the

simulations with different envelope curves. Any specifrc monotonic stress-strain

relationships of previous work are not involved in modeling procedure of cyclic stress-

strain relationships. The proposed mathematical model is used here to simulate a typical

cyclic behavior of concrete under all possible loading patterns. Some of them are

untested stress-strain paths before this study. The preliminary results of using proposed

model seems to be promising and the comparisons are made in the following section.

2.6 Comparison of Concrete Test and Proposed Model

A computer model based on the proposed analytical expressions has been developed to

simulate the stress-strain behavior of concrete under various cyclic load regimes. The

predictions of the proposed model are compared with experimental results on concrete

subjected to cyclic axial compressions. The envelope unloading strain of analytical

model can not be controlled exactly at the same unloading strain as in the test results.

Thus, it is a more reasonable to compare the prediction of proposed model with the test

results in view of the pattern recognition problem rather than the close comparison by

curve frtting.

There are no any specific monotonic stress-strain relationships that are used for
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envelope curve in modeling the concrete behavior under a cyclic loading. It is obvious

that the proposed model will be able to give a close prediction of the test results by using

the envelope curve which fits well the corresponding experimental envelope curve.

However, such comparisons can not verify the validity of proposed model and they are

only considered as a special case between the experimental results and the prediction of

proposed model.

Thus, an arbitrary monotonic model for the envelope curve is employed here to

compare the experimental results and the prediction of proposed model. As shown in

Appendix A, a comparison of model prediction and test result is shown in Figures A.1

and A.2 for the load pattern of cycle to envelope. The overall stress-strain behavior of

the proposed model and test result shows a similar configuration with each other.

Figures A.3 and A.4 compare the experimental and analytical behavior of

concrete for cycles to common points. It is observed that the prediction of analytical

model gives similar patterns as the ones shown in the experimental results. In the

experimental results, the common points do not coincide exactly at the same point due to

the determination of these points by a monitor display.

Figures A.5 and A.6 show the test results and simulation of proposed model for

the random cyclic load pattern. A series of full unloading and reloading, partial

unloading and partial reloading are presented. It depends on the stress level of current

partial unloadings whether the current unloading curve falls on the left side or right side

of the previous unloading curve. This observed behavior was previously discussed in

section 2.5. It should be noted again that the location of current unloading curve due to

the previous partial reloading is solely dependent on the stress level at the end point of

previous partial reloading. There are no relations between the end point of partial

reloading and the common point in the behavior of current unloading curve.

The proposed analytical model is less dependent upon an adopted envelope curve.

The overall shape of stress-strain behavior of concrete under cyclic loading is not
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distorted due to the employment of various monotonic stress-strain curves. The proposed

analytical expression is used with the monotonic models proposed by Desayi, Smith and

Young, Popovics and Shah, respectively. The flexibility and less dependency of

proposed model are verified from a series of simulation as shown in Figure A.7 through

A.10. For this purpose, the model behavior for random cycles is also presented in the

previous section 2.5 (see Figures 2.30 and 2.31). Thus, the proposed mathematical

model is able to simulate the stress-strain curve of concrete under various patterns of

load history and it can also be used together with various monotonic stress-strain curves.



CHAPTER 3

ANALYSIS OF R/C COLUMNS UNDER CYCLIC AXIAL LOADING WITH
BIDIRECTIONAL ECCENTRICITWS

This chapter discusses the behavior of slender reinforced concrete (R/C) columns under

cyclic axial loading with bidirectional eccentricities. A brief discussion of conventional

finite segment model is presented. Analysis of R/C column subjected to combined

biaxial bending and axial load should be approached from the standpoint of a three

dimensional problem.

Unlike the finite segment model, frnite element model idealizes each structural

members as an assemblage of a large number of finite elements. These elements can be

of various types such as one dimensional and two dimensional elements, even three

dimensional elements for concrete. The cost and time involved become prohibitive if

three dimensional elements are used. In addition, there are some difficulties involved in

implementing an idealized empirical concrete model in the frnite element model. Thus,

the conventional finite segment method is extended here to study the R/C columns under

cyclic axial compression with bidirectional eccentricities.

3.1 Method of Column Analysis

3.1.1 Description of Column Analysis

The numerical procedures of the previous studies by Wang and Hsu [1990] and Tsao

[1991], are based on the incremental deflection approach, where a deflection is assumed

to be in a specific direction. In other word, this analytical procedure is good only to

increase the strain at the divided areas of steel and concrete in column section under

monotonically increasing load. The unloading in curvatures can not be considered

67
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because the analytical formulations are expressed in terms of cross-sectional stiffness,

strain at coordinate origin and deflections along the column. The convergencies are only

confirmed for the strain at coordinate origin, axial force and deflections. After the

deflections are determined, the corresponding curvatures are calculated from the frnite

difference method. Furthermore, the convergence criteria are difficult to reach the

desired accuracy due to the feeding of simply increasing specifrc deflection for the

subsequent stage of analysis. Thus, it can be concluded that a simple modification of

previous numerical procedure can not handle the different loading paths needed in the

present study.

Variations in loading can affect the stiffness and strength of the R/C column,

especially when the loading and unloading occur. In addition, the axial load acting on a

column section influences the flexural stiffness, the moment capacity, and the ductility of

R/C column as well.

A finite segment method of analysis is extended here to predict the behavior of

R/C slender columns under cyclic loading with bidirectional eccentricities. The

numerical procedure is designed to consider increasing or decreasing of the strain at

discrete elements in the column under cyclic loading. The rate of convergence in

analysis depends on the proposed values of deflection and strain. The convergence of

iterative procedures can be improved through the interpolation or the extrapolation

method which utilizes the previous solutions.

The load-deflection curve, moment-curvature curve and ultimate load are

predicted through the developed computer program. Computer model developed for the

present study has the following capabilities:

1) General cross sections may be possible to enable consideration of any arbitrary

shapes.

2) Complex loading conditions, including cyclic compression with bidirectional

eccentricities.
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3) Both material and geometrical nonlinearities can be considered.

4) Both ends of the column are assumed to be pinned-ended. However, it can be

modified to accommodate other end conditions.

3.1.2 Idealized Stress-Strain Relations for Column Analysis

Once the strain in any discrete element is proposed, the corresponding stress can be

obtained from the proposed cyclic stress-strain relationships as discussed in chapter 2.

Generally, the complexity of the finite segment method in column analysis is a direct

function of the material stress-strain relationships. The secant stiffness is defined as the

secant slope of the stress-strain curve for a given strain. Here the secant stiffness is used

to study the column behavior in both ascending and descending branches. It should be

noted that, in the case of stress computation, the stiffness must be derived by considering

the strain history at certain element of either loading or unloading paths in the stress-

strain curve.

To determine a reasonable result, the element stiffness should be updated

whenever any event occurs at an individual element. This, however, can be

computationally unfeasible especially if a highly complex material model is adopted.

Because of this reason, the material models should be idealized as simple as possible.

In this study, a kinematic hardening model [Chen and Han, 1988] is employed to

describe the cyclic stress-strain relationships for steel reinforcement. The elastic range is

assumed to be unchanged during strain hardening. The center of the elastic region is

moved along the straight line aa' (see Figure 3.1). The envelope curve is characterized

by the steel reinforcements in a tensile test until failure in a monotonically increasing

load. The unloading and reloading curves follow along a stress-strain path that is

generally assumed to be parallel to an initial elastic portion of the curve. Thus it is

assumed that no stiffness degradation occurs as seen in Figure 3.1.
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It is true that there is a considerable gap existed between the mathematical model

of concrete and its use in an engineering analysis. It should be mentioned that there are

many stiffness changes in the concrete model. The precise details of a concrete stress-

strain curve do not greatly affect the overall behavior of a structural member. Hence, to

accomplish implementation and to reduce the effort of computing, an idealized cyclic

concrete model is proposed for the present column analysis. To simplify the proposed

concrete model, several parametric studies are performed as discussed in chapter 2. The

procedures of obtaining an idealized concrete model are conducted through a new

intelligent language, MATHEMATICA.

First of all, an idealized concrete model should be able to represent the physical

characteristics of stiffness on the envelope curve. In addition, the defrnition of stiffness

on the unloading or reloading stress-strain paths must be reasonably established. The

slope change of the unloading curve varies in a wide range from the envelope unloading

point to the zero stress level. Thus the stiffness can not be adequately defined on the

unloading stress-strain path. It can be concluded that the stiffness on the unloading or

reloading stress-strain paths is defined somewhat of the slope on the reloading path of the

cyclic stress-strain curve. The change in the slope of reloading stress path is more stable

than the change in the slope of unloading path.

The envelope curve of an idealized cyclic stress-strain relationships is here

modified from Hsu's [1974] monotonic stress-strain curve. The stiffness degradation of

unloading or reloading path for concrete elements is well represented in the idealized

model of the present study. In all cases a definite decrease in the average elastic modulus

of the reloading curves with an increase in the plastic strain is shown in the present

idealized stress-strain relationships of concrete (see Figure 3.2) for column analysis.

The stiffness degradation is an important feature for the analysis of the reinforced

concrete structure. Several analytical expressions for the stiffness degradation have been

proposed using three different approaches. The frrst is a slope of two points between the



Figure 3.1 Idealized Cyclic Stress-Strain Curve for Steel
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Figure 3.2 Idealized Cyclic Stress-Strain Curve for Concrete
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plastic strain and reloading strain on the envelope curve. The second is derived from two

points between the plastic strain and common point. The third is formulated by the

plastic strain and the midpoint between unloading strain and reloading strain on the

envelope curve. The changes of stiffness for the above mentioned three different

approaches are presented in Figure 3.3.

Considering the behavior of a structural member which consists of a number of

discrete elements, certain elements experience very different stress-strain paths. The

common points and plastic strain points do not always exist in the consequent cycles of

loading and unloading paths. Observing the random cyclic loading from the proposed

concrete model as discussed in chapter 2 and the experimental results, the lowest stress

point during partial unloading and the reloading point on the envelope curve are defined

uniquely and these two points always exist. Thus it can be concluded that the stiffness of

unloading or reloading stress-strain path can be defined by the above mentioned two

points, namely, the plastic strain points, and envelope reloading points.

3.1.3 Extended Finite Segment Method for Cyclic Analysis

As shown in Figure 3.4, the column is considered as three dimensional structure after

segmentation. The column section is divided into small elements of reinforcements and

concrete in order to calculate each cross-sectional stiffness at different levels of strain.

The analysis is based on the behavior of the cross-section at each segment point along the

column.

The analysis has the following assumptions:

1) Plane sections remain plane before and after bending.

2) There exists a perfect bond between concrete and steel.

3) The effect of axial and shear deformations is negligible.

4) Envelope curve of an idealized cyclic stress-strain relationships is approximately same

as the monotonic stress-strain curve.



Stiffness Degradation for Unloading and Reloading Path
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Comparison of Stiffness Change

_ _ _ _ Slope between Unloading and Plastic Strain

	  Slope between Midpoint and Plastic Strain

	  Slope between Reloading and Plastic Strain

Figure 3.3 The Change of Stiffness Using Three Different Aproaches



Figure 3.4 Column Description and Discretization
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Using the assumption that plane section remains plane during bending, the

strained plane in the cross-section can be described by the strain at the coordinate origin

s o , curvatures C, and φy about both axes, respectively. They are shown in Figure 3.5.

Thus the strain εk at any element k under combined biaxial bending and axial

compression is given by [Hsu, 1974, Wang and Hsu, 1990]:

(3.1)

where

s o : strain at coordinate origin.

: curvature produced by bending moment M.

4), ; curvature produced by bending moment My .

Mx . and My
 ,
• moment about x-axis and y-axis, respectively.

x, and yk : coordinates of centroid of an element k from both principal axes X and Y,

respectively.

The corresponding stress fk and secant stiffness Ek are found by the idealized

cyclic stress-strain relationships of steel reinforcements and concrete elements. When the

elemental forces and moments in the column section are found, the calculated cross-

sectional forces P,, M„ and M„ are given by:

(3.2)

(3.3)

(3.4)



6k = 60 + 4) .x Yk (1)y xk

XY; Undeformed Plane

XY; Strained Plane

Plane XY is perpendicular to axis Z

Plane X'Y' is inclined
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Figure 3.5 Strain Plane of Combined Biaxial Bending and Axial Load
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where a, is a small area of discrete element k and subscript c denotes the calculated

values.

Considering Equations 3.3 and 3.4 for calculated moments M x, and Myc , the

formulas are only valid when the areas of divided elements are comparatively small.

This implies that the mechanical behavior of a unit element should be estimated more

accurately. Thus Equations 3.5 and 3.6 are used here to reduce an accumulation of error

when the coarse mesh is used for analyzing the column section.

(3.5)

(3.6)

Where Ix' xok and I'yok are the moments of inertia (second moment) of an element k about

elemental centroidal xo and yo axes parallel to both reference x and y axes, respectively.

The moments of inertia of each element I'xo k and Iyokwere suggested by

Menegotto and Pinto [1977] to calculate the moments of inertia I xk and Iyk about a

coordinate system. Two additional terms in Equations 3.5 and 3.6 represent the effect of

inclined elemental plane on the computed moments M„ and Myc , respectively (see

Figure 3.5). The additional terms involving the moment of inertia of each element

enable the number of elements to be reduced. It should be noted that for elements where

unloading occurs, the curvatures φx and (1) y in Equations 3.5 and 3.6 must be replaced by

φxh and (4) .}, (1) ),h), where Ch and φyh are the curvatures corresponding to the

solution at which a updated strain history εkh for the particular element. This procedure

of using a updated strain history saves a considerable amount of memory space in the

computer implementation and the details of computer algorithm will be explained later in

this chapter.
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The relationship among the axial load, moment and curvature for the uniaxial

case was obtained by Gurfinkel and Robinson [1967]. Through the numerous researches,

this thrust-moment-curvature relationships were expanded to the incremental stiffness

matrix (3 x 3) of the cross-section for biaxial bending [Hsu, 1974]. The detailed

formulation, which is in the form of partial derivative, of the cross-sectional stiffness

matrix can be derived by considering the effects of finite changes Sε ° , 6(1) x , 64 ), in ε o ,

φx and 4 onPc, Mx,and

The small change of strain due to an axial load, 68 0 , produces a corresponding

stress change, δfk , at an element k which is corresponding to Esk δε ° . The resulting

changes of force components from Equations 3.2, 3.5 and 3.6 can be obtained, thus δP c ,

δMxc and δMyc can be expressed as:

(3.7)

The finite change of a curvature about x-axis, 6(1), introduces a stress change,

Esk δφx x, and the resulting change of force components from Equations 3.2, 3.5 and 3.6

can be determined. Thus δPc δMxcandδMycare given by:
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(3.8)

Similarly, the finite change of a curvature, 6 ,1) y , generates a stress change,

Esk δφyY,, and the resulting change of force components δPc , δMxc and δMyc,  can be

written as:

(3.9)

It is a must that the stress resultants P, Mx and My satisfy both the equilibrium

and compatibility conditions. Referring the strained plane (Figure 3.5) under combined

biaxial bending and axial load, the stress resultants P, Mx and My can be expressed as

functions of c o , 4), and (1)y :

(3 . I 0)
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Expanding Equation 3.10 about 6 0 , 4 and 4 y by Taylor's series and retaining

linear terms:

(3.11)

Rearranging Equation 3.11 in a matrix form, an incremental stiffness of small

cross-section can be written as:

(3.12)

The components of cross-sectional stiffness matrix [K,] can be given from the

prescribed Equations 3.7, 3.8 and 3.9. Thus, the incremental stiffness matrix of a cross-

section for numerical analysis can be given as:
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It is required to express an equilibrium equation in an incremental (difference)

form for numerical analysis from the analytical (differential) form ( dF = KscdD). Thus

the incremental form of equilibrium equation is given for small changes of force, 6 F ,

and strain, 6 D, as follows:

(3.14)

The resultant force and strain vectors under combined biaxial bending and axial

compression at any segment point along the column are defined as:

(3.15)

(3.16)

The difference between the proposed and calculated forces at any segment point

is given by:

(3.17)
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If the proposed force vector is not close to those obtained from the calculated

values of forces, corrections to strain {ε,„ (1) x 	T is required to reduce the difference in

next iteration. Thus a finite change of strain due to the obtained difference in force can

be written from Equation 3.14 as:

(3.18)

Due to finite difference of force components, a small quantity of strain components

{ε0,φx,φy}T updates actual strain ε k at each element to reduce the force difference in the

next iteration. This work is remarkably robust because the procedure must be carried out

at both individual element and each segment points along the column.

The deflections at each segment points along the column are determined by the

double integration of both curvatures corresponding to the converged force vectors

previously. In other word, the deflection is equal to the fictitious moment [Timoshenko

and Gere, 1963] through the consecutive points on fictitious loading curve (curvature

diagram). The deflections are calculated starting with the pinned end and the calculated

deflection at segment point i is given by:

(3.19)

Equation 3.19 is based on the assumption that the curvature varies linearly within a

segment along the column as shown in Figure 3.6.a. This implies that the area of

frctitious load is apparently underestimated. Furthermore, the curvature has an abrupt

change at the midheight of a column as the hinging region develops there. Hence, it can
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be concluded that the calculated deflection should be modified to give a better

approximation by adopting the nonlinear variation of curvature between the segment

points. The curvature diagram can be represented by a second order parabola. The

parabola is determined so as to pass through three consecutive points on the fictitious

loading curve as shown in Figure 3.6.b. The extended formulation of deflection can be

expressed in the following form as:

(3.20)

Where the subscript i is recursive,	 is a calculated deflection at segment i ,	 is an

area of fictitious load at segment i and L, is a length of segment i .

After the deflections are calculated, the compatibility conditions should be

examined through the provided tolerance and the incompatibility. The incompatibility

is defined as (see Figure 3.7):

(3.21)

Where Vip is a proposed deflection at segment i .

The compatibility conditions should be checked at the control segment point in

control direction either in x-direction or y-direction because the externally controlled

deflection is only concerned with one direction. If the difference between the calculated

deflection at the control segment point and the proposed deflection at control point is not

below a given allowable tolerance, this implies that the applied axial load with



(a) Linear Distribution of Curvature
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(b) Nonlinear Distribution of Curvature

Figure 3.6 Variation of Curvature in a Column Segment

Calculated Deflections

Proposed Deflections

at Control Point

Figure 3.7 Modifed Iterations for Deflection at Control Point
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bidirectional eccentricities is less or greater than the required axial load to produce a

deflection close to the proposed deflection. Thus, an axial load factor 2 must be used to

modify the applied axial load and the modified axial load will generate the adjusted

control deflection in the next iteration (Figure 3.7).

In the previous study, the procedure was repeated until the difference between the

calculated and proposed deflections within an allowable tolerance through successive

iteration method. However, this algorithm can not handle the case of unloading.

Furthermore, the convergence may not be achieved in some cases as illustrated in Figure

3.8. Such situation of convergence problem may be caused by an approximation of

cross-sectional stiffness when the strain enters into the inelastic range of stress-strain

curve. In particular, such a small change in resultant strain near the envelope unloading

point is able to cause a remarkable change in stress. Such numerical sensitivity has also

been observed when the proposed model is simulated for the concrete under cyclic

loading (see section 2.5 and 2.6). Thus, a more sophisticated method is needed to

achieve the convergence. Also, this method is required to handle the different loading

paths for the present study.

In the derivation of incremental cross-sectional stiffness, Taylor's series was used

to approximate the force components. Taylor's expansion exhibits the characteristics that

all the information used in the approximation concentrates on the expanded points in

ε o , I), and s. It should be mentioned that the primary use of Taylor's expansion in a

numerical analysis is not for approximation purpose, but for the derivation of numerical

technique. Therefore, there is a need to develop a forecasting procedure of a more

reasonable proposed value and an advanced modification procedure of the applied axial

load in this study. These are particularly needed to achieve a solution in the descending

branch of load-deformation curve. The reason is that the cross-sectional stiffness has

been approximated as the strain enters into the nonlinear range of stress-strain curve. In

other word, an inadequate difference in the strain components may cause the



Converged 8X,

(a) General Case

Lowest Trials

(b) Perturbation in High Strain Range

Figure 3.8 Behavior of Load Factor for Modification Procedure

86



87

considerable change of stress in the stress-strain curve. Due to the above mentioned

characteristics of incremental stiffness in the cross-section, the numerical behavior of

load factor is perturbed in some instance.

The modifrcation of proposed load factor can therefore be determined by

considering the effect of unit change in the proposed load factor λp. The unit change in

load factor X. produces the corresponding axial force with bidirectional eccentricities at

certain discrete element k as:

(3.22)

Equation 3.22 shows the axial force and moments when X, is equal to unit. The

corresponding strain vector {D} at the individual element can then be obtained by:

(3.23)

After the changes in curvature are obtained at each element, the changes are

integrated to find the corresponding changes in the calculated deflections.

Differentiating Equation 3.21 with the proposed load factor λp , the calculated deflection

due to a unit load factor can be determined as:

(3.24)
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The term δ(Vic —Vip)/δλp corresponds to the calculated deflection due to a unit load

factor, because Vic is the calculated deflection when the applied eccentric load is λ pP

and Vip is a proposed deflection at the control point which can be controlled externally.

Thus, the modifrcation quantities, δλ,„ can be obtained by rearranging the above

Equation 3.24 and 6C from Equation 3.21:

(3.25)

Since 6C changes from the incompatibility C of the frrst iteration to a very small value

which is almost zero. Therefore the change in incompatibility, δζ, is equal to the first

incompatibility C .

The modification quantity of load factor is added to the proposed load factor λp

to give new proposal value for the next iteration. The calculated deflection due to the

new proposed load factor is therefore adjusted. It should be noted that the quantity of

updated λp depends on the sign of δλ p to adjust the applied eccentric axial load.

The above procedure for modifying the load factor is not enough to secure the

convergence as the material behavior enters into an inelastic strain range. The cross-

sectional stiffness in this range become an approximated value even though the discrete

element is designed to be a suffrcient small to achieve an uniform stress. In certain

analysis stage, an infinitesimal change in load factor may produce a comparatively large

difference in strain of each element. Consequently, the change in magnitude of the

resultant forces may never falls into the specified tolerances.

There are cases where the solution diverges in the descending branch of load-

deformation curve. For this case, it is observed that the required modifrcation quantity of

a load factor, which is able to give converging solution, exists between two trials as
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shown in Figure 3.8. Once this numerical behavior is found in the modification

procedure, the modification quantity of a load factor should be restricted within two trials

instead of using the above mentioned modification procedure. The two trials are selected

as the lowest values. However, the procedure consumes more computing time by using

an infrnitesimal change of modification quantity of a load factor.

In order to deal with loading or reloading and unloading, it is necessary to

maintain a strain history for all the discrete elements along the column segments. As

each successive solution is found, the strain in each element should be calculated and

compared with the latest value in the strain history. If the current magnitude of strain is

less than the strain history value, the unloading has developed as shown in Figure 3.9.b

and the current strain should not be stored as the strain history for optimum algorithm. If

the magnitude of calculated strain is greater than the strain history value, the loading has

developed and the strain history is replaced by the current strain. This implies that the

strain history can only be updated by the strain on the envelope curve. During the

present numerical analysis, if the magnitude of the proposed strain at any element ε k is

less than the magnitude of the strain history value at the corresponding element εkh „ then

the unloading stress I, at element k can be obtained by:

(3.26)

where fkh is the stress corresponding to strain history εkh and E„„ 10 is the slope of the

unloading curve as described in section 3.2.1.

Equation 3.26 is valid in both ranges of compressive and tensile strains. In

addition, this mathematical expression is effective in both unloading and reloading stress-

strain paths while the magnitude of current strain 6 k is less than the stored value of strain

history Thee proposed concept for the strain history can reduce the consumed

memory space in the practical computer implementation. The required memory space in
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the conventional algorithm (see Figure 3.9.a) is remarkably large to decide the status of

stress-strain path at the individual element along the column segments.

3.1.4 Discussions of Accuracy and Convergence

It should be noted that the small change of strain components δεo, δ4), and 64 ), have to

be suffrciently small in order to satisfy the basic assumption of Taylor's series expansion

about ε o , φx and φy. Equation 3.11 was expanded using the Taylor's series about ε o ,

and (13'y to approximate the resultant force components P, Mx and My . This implies that

the proposed values of strain components εo p, φ xp and (I) yp
 should be close enough to

ε o , 4), and P.), respectively. Consequently, the proposed values of strain components

have achieved convergence. In other word, if the proposed values of strain components

exist outside of certain range, there is no guarantee that the proposed value converge to a

solution regardless of number of iterations.

The following allowable tolerances have been found: 10 -6 for force and moments,

10 -3 for deflections. The allowable incompatibilities can be reduced slightly by using

double precision, but the numerical results are not affected significantly.

Generally the present proposed procedures converges rapidly, especially where

solutions being sought are in the ascending branch of load-deformation curve. Although

the rate of convergence to give a solution is dependent on several conditions, it is

desirable to provide the reasonable proposed values for the load factor, strain vector at

each element and deflections at all segment points before the iterations for converging

solution. Thus, the second order Lagrange Polynomial is used to forecast a better

proposal from the last three proposals corresponding to the converged solutions. If the

required forecasting point x exists beyond the range [x o x2 ], the polynomial is an

extrapolation function. Otherwise, the polynomial is approximated as an interpolation,

and x locates within range [x o , x2 as shown in Figure 3.10. Of course, the accuracy of



x = Pr oposed Values in Pr evious

f (x i ) = Converged Solutions in Pr evious

P, (x) = Forecasting Value at Current Value x
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Figure 3.10 Forecast of Reasonable Proposal
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forecast in the extrapolation is decreased because the Lagrange Polynomial is able to give

more accurate values in the interpolation.

Consider x a , x1 and x., as the deflections at control segment point for the previous

three solutions and f (x 0 ), f (x 1 ) and f (x 2 ) as the values of converged solutions in the

previous solutions. Now let x be the current control deflection for which a solution is

being sought. The forecasting value P2 (x) for x is written as:

(3.27)

Where coefficient polynomials are Lo (x), L 1 (x) and 4(x):

The forecasting procedure reasonably provides the first trial and this routine

contributes to reducing the number of iterations to a converged solution. The forecasting

procedure for each new solution stage can be applied to both loading and unloading paths

through the extrapolation and interpolation.
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3.2 Procedure of Numerical Analysis

Computer implementation of analytical model discussed in section 3.1 is described in this

section. The computer model developed consists of both preprocessor and analysis

procedure. FORTRAN 77 is used to implement the extended analytical model at VAX

system.

Preprocessor: This routine generates the coordinates and area of discrete

elements for each segment points along the column . There is a subroutine INPUTGEN.

Analysis Procedure: This procedure contains thirteen major subroutines as

follow: STATEMENT, MOMENT, CLEAR, STEEL, CONCRETE, ACCUMU,

SOLVER, SAVE, INTEGRA, LAMDA, HISTORY, SHIFT, FORECAST.

1) STATEMENT: This routine gives defrnitions of numerous variables used in the

program and does not perform any calculations.

2) MOMENT: This routine calculates moments at each segment points along the column

from the proposed axial load with eccentricities including the second order effect at each

iteration.

3) CLEAR: This routine erases the previous calculated force vector at each segment

point and the cross-sectional stiffness matrix of an individual element along the column

at the first iteration.

4) STEEL: This routine gives corresponding stress and secant modulus at the proposed

strain on a specific stress strain path for steel elements along the column segments. The

unloading, reloading and loading stress-strain paths are solely dependent upon the stored

strain history at corresponding elements along the segment of a column.

5) CONCRETE: This routine is similar to the subroutine STEEL. The idealized cyclic

stress-strain curve is implemented.

6) ACCUMU: This routine accumulates the calculated elemental forces and elemental

cross-sectional stiffness matrix to build the force vector and its resultant stiffness on the

specific segment point.
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7) SOLVER: This routine solves the equilibrium equation to obtain a strain vector due

to the force difference between the calculated and proposed ones.

8) SAVE: This routine saves the converged force vector and corresponding strain vector

and corresponding resultant stiffness matrix at each segment points along the column.

9) INTEGRA: This routine integrates the converged curvatures of a strain vector from

the subroutine SAVE to give the calculated deflections at each segment points

10) LAMDA: If the calculated deflection dose not satisfy with the proposed deflection at

the control segment point, this routine should be performed to modify the load factor of

an eccentric axial load which is able to produce a closer deflection to the proposed

control deflection for the next iteration. And the load factor is traced in this routine to

find a numerical behavior of the modification quantity in load factor.

11) HISTORY: This routine updates the strain history at each element along the column

through the concept discussed in the previous section 3.I.3 once a solution is obtained.

12) SHIFT: After the solutions are found, the load factor, strain vector and segment

deflections are restored and these stored informations will be used to forecast a new

proposal for the next solution.

13) FORECAST: This routine forecasts the load factor, strain vector and deflections at

each segment points to provide closer proposals to the next solution.

A detailed flow chart for an analysis of reinforced concrete column under cyclic

axial compression with bidirectional eccentricities is presented in Figure 3.11. A

computer model developed is based on the extended finite segment method as described

in section 3.1.3. It should be noted that the present computer analysis assumes that both

ends of the column are pinned-ended. However, this computer program can be easily

modifred to accommodate other end conditions.



Figure 3.11 Flow Chart for Analysis of R/C Columns
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CHAPTER 4

EXPERIMENTAL PROGRAM AND PREDICTION OF COLUMN ANALYSIS

An experimental investigation was carried out on slender reinforced concrete (WC)

columns to compare the ultimate load, load-deflection and moment-curvature predicted

by the proposed numerical method with those obtained experimentally. For the present

study, eight slender R/C columns were tested under cyclic axial compression with

bidirectional eccentricities. The columns had the pinned end at both ends.

The test parameters of column specimens were bidirectional eccentricities and its

angle to the reference axis. Eccentricities used in this experimental study were 1.0 inch

and 2.0 inches, respectively. The angles used were 45 and 22.5 degrees as shown in

Table 4.1. It should be mentioned that the cyclic compressive loading with bidirectional

eccentricities is in the longitudinal direction, not in the transverse direction, with respect

to the column axis.

4.1 Test of R/C Columns under Cyclic Axial Compression with Bidirectional
Eccentricities

4.1.1 Preparation of Column Specimens

All columns had a nominal cross section of 3.0 by 3.0 inches in both sides, four feet long

and the brackets at both ends to enable axial load to be applied outside of the column

section for the required biaxial eccentricities. The reinforcement consisted of four #3

deformed steel bars which were tied by I2 gage steel wire as a stirrup at spacing 3.0

inches. The details of column geometry and reinforcements are shown in Figure 4.1.

The concrete materials consisted of Type III Portland cement, sand, aggregate

and water. Each column specimen and five control cylinders were cast from the same
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Table 4.1 Test Outline of Column Specimens
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Main

Bars
Specimen

fy = Yield stress of Main Bars.

fc' = Maximum Strength of Concrete.

s = Spacing of Stirrups.

ex and ey = Eccentricities along X-Axis and Y-Axis, respectively.

/ = Total Length of Column Specimens.

0 = tan"' (e I ey ).



8.0 in. Section B-B

7.0 in.
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. 12 Gage Wire @3.0 in.

1	  4-43 Bars

Section A-A

3.0 in.

7.0 in.

7.0 in.

Figure 4.1 Geometry and Reinforcements of Column Specimens
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batch of concrete. And all columns were cast horizontally using the electrically driven

vibrator and steel rod. The columns and cylinders were stripped approximately 24 hours

after casting and both specimens were under moisture curing period of 7 days. Both

column specimens and control cylinders were exposed under the same curing condition

until the tests were conducted.

4.1.2 Details of Column Test

The tensile tests for #3 steel reinforcements were performed by Tinus Olsen testing

machine and its typical stress-strain curve for #3 reinforcement is shown in Figure 4.2.

Five control cylinders with standard size (3.0" x 6.0") for each column specimens were

tested to obtain the corresponding ultimate strength of concrete. The tests of concrete

cylinders were conducted on the same day as the corresponding column specimens were

tested.

The column tests were conducted by an electro-hydraulic closed loop servo

controlled material testing system (MTS) under stroke control (stroke rate=0.05 in./min.)

to achieve both ascending and descending branches of load-deformation curve. The

unloading and reloading were accomplished at an interested load level or a deflection

point by a digital function generator (model 4I0) which enables to generate the loading

and unloading with a constant stroke rate. Other manual operation of MTS can not

handle the constant displacement control during the different loading path of cyclic

loading. Adequate data sampling points were decided by monitoring the results of X-Y

RECORDER (model 431) which were generated from the built-in LVDT (linear voltage

differential transducer) of the testing machine.

It should be noted that testing machine will shut off automatically when the set-

point control at minimum load level is unable to keep holding the column specimen

during the entire testing procedure. Because of this difficulty, a number of preliminary

tests with imaginary specimens were performed to eliminate the loss of column
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specimens by this manmade condition.

The desired eccentricities were obtained by moving the ball bearings to the proper

position relative to the end plates which were mounted on the both ends of column

specimen. The column specimens were adjusted so that the center line of the end bearing

facing the load cell coincide with its center line, Subsequently, a small load was applied

to keep the specimens in place. An outline of column test programs is presented in Table

4.1.

Several couple of dial gages were used to measure the deflection at the beginning

of brackets and at mid-height of column in both X and Y directions. The initial length of

mechanical gages were measured before and after setting the column specimens into the

testing machine. The initial measurements were repeated several times to ensure the

actual length of initial mechanical strain gages. This initial gage length is the basic

quantity to calculate the strains and curvatures at each loading steps after all test data are

acquired. The deformations at mid-height of column were measured by four pairs of

mechanical strain gages to obtain the strains about both X and Y directions, as shown in

Figure 4.3. The deflections were measured by AMES dial gage which can measure upto

1/10000 inches.

The setup of column test is presented in Figure 4.4. Data readings from the

measuring devices were repeated at certain sampling points when those measured

quantities were not stable. The corresponding data samplings were terminated by

unavoidable experimental conditions that local failure occurred either at the location of

mechanical gages or the hinging region was developed far from the mid-height of

column. The reason is that the collected data can not be considered as good results when

the noticeable failure occurs beyond the range of mechanical strain gages.

4.1.3 Analysis of Test Results for Columns

The applied axial load can be obtained directly from MTS and the moments Mx and My
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6.0 in.

Figure 4.3 Arrangement of Mechanical Strain Gage over Column Segment
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at mid-height of column can be determined from the applied eccentric load, the provided

eccentricities and the measured deflections at each load step. These experimental results

of maximum axial load and moments are presented in Table 4.2. The ultimate strengths

of control concrete cylinders show a scatter due to the different age of concrete column

specimens that were tested. Five control cylinders of concrete for each column

specimens were tested as the same day as the column test was conducted.

The strains can be calculated by the ratio of difference between an initial gage

length and the current gage length to an initial gage length. The curvatures are

determined by the slope between the horizontal line and piece wise linear line from the

obtained strains at mid-height of the column as shown in Figure 4.5. Extending the

nonlinearity of strain value, a linear regression is used to get a more stable value of

curvature. The remarkably deviated value of a strain from the remaining three strain data

can be excluded in the regression instead of four data points. The typical strain

distribution of column on the both faces is presented in Figure 4.6 which is a part of data.

The observed failure modes are summarized in Table 4.3 and Figure 4.7

illustrates the deformed column specimens after testing. For columns with symmetric

eccentricities, the crushed concrete in compression zone usually occurs at the corner of

both compression faces as shown in Figure 4.8. From these observations of failure

mode, it shows that there is a large deformation in the diagonal direction. The failure of

concrete seems to be dependent on the magnitude of the maximum load level at each

cycle.

It is observed that there is a difference between the current test series and

previous studies [Tsao, 1991] on biaxial bending columns under monotonic loading. For

the previous study, the location of hinging region was not as predictable as would be

desired. But in the present experiments, the hinging region is mostly formed near the

mid-height of the columns except one column specimen. The reason for this trend is that

an even distribution of cracking due to the stress relaxation of the repeated loading and



Table 4.2 Test Results of Maximum Axial Load and Moments

Specimen	 P (lbs)	 Mx (lb-in) My (lb-in)	 Number of Cycle

106

* Denotes Numbers of Cycles in the Ascending and Descending Branches of Load-

Deflection Curves respectively.

N.A; Hinging Region of Specimen C6 occured outside the Range of Mechanical Strain

Gages.

Note that the unloading points for each test are not necessary to be the same points.



Table 4.3 Observed Failure Mode of Column Specimens

Length of	 Exposed
RemarkSpecimen Location of Plastic Hinge Plastic Hinge Main Bar

107

* Plastic Hinges for all Columns are located within the length of Mechanical Strain Gage

except Specimen C6.

* For all Column Specimens, the Cracks are well distributed along the Columns.

* The failed columns show that all reinforcing bars are not buckled.
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(1)	 Slope of Linear Regression
(3 or 4 Points)

di ; Strain Depth at Gage Number i

; Gage Number (1 ~ 4)

j ; Load Stage

lo, ; Length of Initial Gage

• Length of Deformed Gageij ;

; Approximated Curvature

Figure 4.5 Analysis of Experimental Strain and Curvature



STRAIN DISTRIBUTION OF GAGE 1-2-3-4
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STRAIN DISTRIBUTION OF GAGE 8-7-6-5

Figure 4.6 Typical Strain Distribution of Column on the Both Sides
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unloading produces a more uniformly loaded column. The test specimens under

monotonic loads seem to fail at the weakest section of the column specimen.

4.2 Comparison of Test Results and Numerical Analysis

In this section, the validity of the computer model developed in chapter 3 is confirmed by

the comparison with the experimental results of columns for the present study. A

parametric study is made for various factors that may have an effect on the numerical

solution. These parameters are the number of segments and number of discrete elements.

The use of ten segments was considered to be small enough through the numerous

preliminary analysis. The effect of the number of elements and additional term φ El of

Equations 3.8 and 3.9 in chapter 3 are studied on the maximum load and moments at

peak load.

The effect of number of discrete elements and additional term (I) El on the

maximum load and moments at peak point are examined in Tables 4.4 and 4.7. A closer

solution to the experimental maximum load was obtained using comparatively less

number of elements. Thus it can be concluded that if φ El terms are used in the extended

formulation, the accuracy of computation can be achieved through the reduced number of

elements used. Comparing the tabulated results of maximum load in Tables 4.4 and 4.5,

the effect of additional term in 40 elements is greater than the effect of additional term in

64 elements. This implies that the effect of additional term is greater when the number

of elements is decreased in the analysis. In the previous studies by Wang and Hsu [1990]

and Tsao [1991], this term could not be considered because a finite difference approach

was used to compute the deflection.

Table 4.6 shows the proposed analysis closely predicts the experimental

maximum loads. Most predicted ultimate loads are lower than the experimental values

and most experimental maximum load also shows a sharp increase at the peak. This

phenomena could be due to somewhat stiffness relation between the column specimen



Table 4.4 Effect of 4E1 term on the Peak Load for 40 Elements

Specimen Elment 40 w/o AEI	 Element 40 w/ φEl 	 Ratio
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Table 4.5 Effect of φEI term on the Peak Load for 64 Elements

114

Specimen Elment 64 w/o φEI 	 Element 64 w/ (WI 	 Ratio



Table 4.6 Test Results and Predictions of Maximum Load and Deflection

Specimen	 Experiment	 Analysis	 Ratio

US



Table 4.7 Effect of φEl term on Moment at Peak Load for 40 Elements

Specimen Element 40 w/o (1E1 	 Element 40 w/ φ EI 	 Ratio

116
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and the test machine during testing and the strain rate may also play a role in this

phenomena.

The predicted and experimental load-deflection curves are shown in Appendix B.

The overall trend of experimental results is satisfactorily simulated. It should be noted

that it is hard to control the points of envelope unloading deflection in numerical analysis

based on the envelope unloading points of experimental results. Thus, the unloading

points in column analysis do not necessarily coincide with the values of experimental

unloading points.

The analysis results of moments at ultimate load are shown in Table 4.9 to

examine the effect of the number of divided elements, and the comparison between the

predicted and experimental results are tabulated in Tables 4.7 and 4.8, respectively. It

should be mentioned that the theoretical values of maximum moments are not necessary

to be the ultimate load because of the second order effect. Comparison of load-deflection

and moment-curvature curves exhibit the desirable pattern between the experimental and

predicted results as shown in Appendix B.

Observing the prediction of overall load-deformation curves in the descending

branch, the results of present theoretical analysis show a slight overestimation than the

experimental curves. This discrepancy may be due to the bond deterioration in column

or the strength reduction of an envelope stress-strain curve for concrete under cyclic

loading. These two factors, which may affect the results of the analysis, were not

considered as described in the basic assumptions of the extended finite segment method.

Above all, the strength degradation of an envelope curve due to cyclic loading may have

to be left for future research because the strength degradation of concrete is rather

complex. The size effect and the end condition of 3 by 6 inches cylinder tests may also

play a role in this discrepancy.



Table 4.8 Effect of φEI term on Moment at Peak Load for 64 Elements

Specimen Element 64 w/o 4E1 Element 64 w/ φEI 	 Ratio
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Table 4.9 Test Results and Predictions of Moment at Peak Load

Specimen	 Experiment	 Analysis	 Ratio

119

* Moment at Peak Load is not necessary to be Maximum.



CHAPTER 5

SUMMARY AND CONCLUSIONS

5.1 Summary

Firstly, the purposes of present research work are to study the behavior of concrete

subjected to cyclic uniaxial compressions and to develop an analytical model to predict

the behavior of concrete cylinders under random cyclic loading. It is true that there is a

gap between the theoretical model and real implementation in the stage of engineering

analysis. Thus, the present research attempts to reduce the gap between the theoretical

model of concrete under cyclic loading and the practical implementation of an idealized

concrete model. Secondly, this research is to investigate into the behavior of slender

reinforced concrete columns under cyclic axial compressive load with bidirectional

eccentricities and to propose a suitable numerical analysis for the simulation of column

test results.

To study the concrete behavior, experimental investigation and parametric study

of the concrete under general cyclic loading were performed here. Through the

parametric study, the applicability of previous concrete model was investigated and the

physically motivated modeling for cyclic stress-strain relationships was proposed. It has

been shown in this study that most previous cyclic models of the concrete can not be

used together with other envelope curves. Due to this reason, the present modeling of

concrete under general cyclic loading is initiated to propose the mathematical

formulations with substantial applicability and flexibility in modeling.

The possible type of mathematical expressions has been obtained through a large

amount of numerical and graphical simulations. For this purpose, a numerical and

graphical simulator for the cyclic stress-strain relationships was constructed. The

simulator developed is used to assist a modeling procedures and to present the model

120
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prediction. Tests of concrete cylinder were conducted under four different loading

regimes to determine the major experimental parameters for the proposed analytical

expressions. Furthermore, the analytical model developed was calibrated by a trial and

error to simulate the concrete behavior under random cyclic loadings.

Experimental column tests were carried out to examine the effect of various

cyclic compressive load levels on the behavior of R/C slender columns with bidirectional

eccentricities. All columns had a nominal cross-section of 3 by 3 inches and four feet

long. The test parameters of column specimens were bidirectional eccentricities and its

angle to the reference axis. For this study, the column tests of eight specimens were

conducted by an closed loop servo controlled MTS under stroke control to achieve both

ascending and descending branches of load-deformation curves in different loading

paths. The ultimate strength of columns, load-deflection and moment-curvature curves

in both X and Y directions were obtained in this experimental program.

Analysis of R/C column subjected to combined biaxial bending and axial load

should be approached from the standpoint of a three dimensional problem. The

numerical procedures adopted in the previous studies were not able to handle the

unloading and reloading path of load-deflection curve due to the nature of incremental

deflection. At the present study, a numerical analysis based on an extended finite

segment method was proposed to predict the ultimate load, deflections and moment-

curvature of experimental results.

5.2 Conclusions

Based on the present experimental investigations and theoretical study of concrete

cylinders subjected to cyclic axial compressions and reinforced concrete slender columns

under cyclic compressive load with bidirectional eccentricities, the following conclusions

can be made.

1) For a more reliable concrete modeling, formulations of the cyclic stress-strain
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relationships are desirable to be less dependent upon a mathematical expression of the

envelope curve using certain monotonic stress-strain curves.

2) The common points limit depends on the adopted envelope curve. It is found

that the location of common point has been shown to vary with the type of load applied.

Thus, it is reasonable to assume that the stress-strain relationships may be derived

without the terms of common point for random cyclic loading. However, in case of full

unloading and reloading, the common point approach presents a more stable shape at

each cycle with less sensitivity to the change in envelope reloading strain.

3) It is generally accepted in most previous study that the accumulation of

reloading strain can be only defined at the maximum stress level of each cycle, i.e., on

the envelope curve. However, the accumulation rate of reloading strain can be defrned

regardless of different stress level in the reloading path due to the history of partial

unloading. This observation through the load pattern of random cycles enables to model

the partial or full reloading curve which is a part of random cycle. Thus, it is possible to

define the corresponding envelope reloading strain to the end point of arbitrary stress

level in the partial unloading path. This observation can also back up the non-uniqueness

concept of cycle and the proposed model is able to reflect this behavior. Otherwise, the

above mentioned intermediate envelope reloading strain due to partial unloading can not

exist between the envelope unloading strain and envelope reloading strain corresponding

to full unloading path. In a similar manner, an imaginary envelope unloading strain with

regardless of reloading stress level can be defined to obtain the unloading curve due to

the history of partial reloading path.

4) An analytical model for the stress-strain relationships of concrete under general

cyclic loading is proposed through the determination of a suitable equation type from the

preliminary simulations of possible curve shape. The calibration of model parameters

from the test results of four different loading regimes and the theoretical simulations are

carried out to ensure the validity of the proposed analytical model. The proposed
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mathematical expressions have a flexibility to deal with any possible future modifications

for certain experimental data. The applicability of proposed model is confirmed through

the simulation of cyclic stress-strain curve with different monotonic stress-strain

relationships. The reloading curve is idealized to accomplish the random cycles and to

incorporate into the procedures for analyzing R/C structures. The overall stress-strain

behavior of the proposed model and test results show a favorable agreement with each

other.

5) The change in stiffness of the stress-strain curves with increasing strains

provides a relationship between the strain and the nature of stiffness degradation. Thus,

the stiffness degradation of unloading and reloading paths is idealized and has been

successfully implemented into the procedure of R/C column analysis.

6) It has been observed that there is a noticeable difference in the failure mode

between current test series and pervious studies on biaxial bending columns under

monotonic loading. The location of hinging region of previous research was not as

predictable as would be desired. However, the hinging region of present column tests

was formed near the expected location in all columns except one specimen. It can be

hypothesized that the reason for this trend is an even distribution of cracking due to the

stress relaxation of repeated unloading. This phenomena may produce a more uniformly

stiff column in the predicted manner.

7) The comparisons between the predicted and experimental results of column

tests show that the proposed numerical analysis can reasonably describe the behavior of

reinforced concrete columns under cyclic axial compressive load with bidirectional

eccentricities. Thus, the assumption of nonlinear variation of curvature in the column

segments and the proposed modification procedure for the load factor are valid for the

present column analysis.

8) Since the present column analysis has a capability to simulate the cyclic axial

loading, the proposed numerical procedure may be incorporated in a suitable algorithm
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for a nonlinear seismic analysis. Various phenomena such as stiffness degradation,

material nonlinearity and loading-unloading-reloading can also be taken into account in

the analysis.



APPENDIX A: COMPARISON OF TEST RESULT AND PREDICTION

STRAIN RATIO

Figure A.1 Test Result for Cycles to Envelope

Figure A.2 Behavior of Proposed Model for Cycles to Envelope (with Tulin's Envelope)
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STRAIN RATIO

Figure A.3 Test Result for Cycles to Common Points
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Figure A.4 Behavior of Proposed Model for Cycles to Common Points
(with Smith's Envelope)



STRAIN RATIO

Figure A.5 Test Result for Random Cycles
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Figure A.6 Behavior of Proposed Model for Random Cycles
(with Smith's Envelope)



Figure A.7 Behavior of Proposed Model with Smith's Envelope

128

Figure A.8 Behavior of Proposed Model with Desayi's Envelope



Figure A.9 Behavior of Proposed Model with Popovics's Envelope
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Figure A.10 Behavior of Proposed Model with Shah's Envelope



APPENDIX B: COMPARISON OF TEST RESULT AND ANALYSIS

LOAD-DEFLECTION CURVE IN X-DIRECTION

DEFLECTION(N)X1 10^-1

Figure B.1 Comparison of Load-Deflection Curve (X-DIR.) for Column CI

LOAD-DEFLECTION CURVE IN Y-DIRECTION

DEFLECTION(IN )X10^-1

Figure B.2 Comparison of Load-Deflection Curve (Y-DIR.) for Column Cl
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MOMENT-CURVATURE CURVE ABOUT X-AXIS
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4.0 0
CURVATURE(1/IN.)X10^-3

Figure B.3 Comparison of Moment-Curvature Curve (X-AXIS) for Column Cl

MOMENT-CURVATURE CURVE ABOUT Y-AXIS

7.5
CURVATURE(1/IN.)X10^-3

Figure B.4 Comparison of Moment-Curvature Curve (Y-AXIS) for Column Cl



LOAD-DEFLECTION CURVE IN X-DIRECTION

12000
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DEFLECTION(IN)X1 0A-1

Figure B.5 Comparison of Load-Deflection Curve (X-DIR.) for Column C2

LOAD-DEFLECTION CURVE IN Y-DIRECTION

DEFLECTION(IN.)X10^-1

Figure B.6 Comparison of Load-Deflection Curve (Y-DIR.) for Column C2



MOMENT-CURVATURE CURVE ABOUT X-AXIS
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7.5

CURVATURE(1 /IN.)X1 04 -3

Figure B.7 Comparison of Moment-Curvature Curve (X-AXIS) for Column C2

MOMENT-CURVATURE CURVE ABOUT Y-AXIS

CURVATURE(1/IN.)X10^-3

Figure B.8 Comparison of Moment-Curvature Curve (Y-AXIS) for Column C2



LOAD-DEFLECTION CURVE IN X-DIRECTION
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DEFLECTION(IN.)X10^-1

Figure B.9 Comparison of Load-Deflection Curve (X-DIR.) for Column C3

LOAD-DEFLECTION CURVE IN Y-DIRECTION

DEFLECTION(IN)X1 0A-1

Figure B.10 Comparison of Load-Deflection Curve (Y-DIR.) for Column C3



MOMENT-CURVATURE CURVE ABOUT X-AXIS
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CURVATURE(1 /IN.)X10^-3

Figure B.11 Comparison of Moment-Curvature Curve (X-AXIS) for Column C3

MOMENT-CURVATURE CURVE ABOUT Y-AXIS

CURVATURE(1/IN.)X1 10^-3

Figure B.12 Comparison of Moment-Curvature Curve (Y-AXIS) for Column C3



LOAD-DEFLECTION CURVE IN X-DIRECTION
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DEFLECTION(IN.)X1 0^-1

Figure B.13 Comparison of Load-Deflection Curve (X-DIR.) for Column C4

LOAD-DEFLECTION CURVE IN Y-DIRECTION

DEFLECTION(IN.)X10^-1

Figure B.14 Comparison of Load-Deflection Curve (Y-DIR ) for Column C4



MOMENT-CURVATURE CURVE ABOUT X-AXIS

1:37

CURVATURE(1/IN.)X10^-3

Figure B.15 Comparison of Moment-Curvature Curve (X-AXIS) for Column C4
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Figure B.16 Comparison of Moment-Curvature Curve (Y-AXIS) for Column C4
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Figure B.17 Comparison of Load-Deflection Curve (X-DIR.) for Column C5
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Figure B.18 Comparison of Load-Deflection Curve (Y-DIR.) for Column C5
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Figure B.19 Comparison of Moment-Curvature Curve (X-AXIS) for Column C5
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Figure B.20 Comparison of Moment-Curvature Curve (Y-AXIS) for Column C5
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Figure B.21 Comparison of Load-Deflection Curve (X-DIR.) for Column C6
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Figure B.22 Comparison of Load-Deflection Curve (Y-DIR ) for Column C6
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Figure B.23 Comparison of Moment-Curvature Curve (X-AXIS) for Column C6
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Figure B.24 Comparison of Moment-Curvature Curve (Y-AXIS) for Column C6
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Figure B.25 Comparison of Load-Deflection Curve (X-DIR.) for Column C7
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Figure B.26 Comparison of Load-Deflection Curve (Y-DIR.) for Column C7
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Figure B.27 Comparison of Moment-Curvature Curve (X-AXIS) for Column C7
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Figure B.28 Comparison of Moment-Curvature Curve (Y-AXIS) for Column C7
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Figure B.29 Comparison of Load-Deflection Curve (X-DIR.) for Column C8
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Figure B.30 Comparison of Load-Deflection Curve (Y-DIR.) for Column C8
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Figure B.31 Comparison of Moment-Curvature Curve (X-AXIS) for Column CS
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Figure B.32 Comparison of Moment-Curvature Curve (Y-AXIS) for Column C8
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