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ABSTRACT

Particle Dynamics Modeling of Vibrating Granular Beds

by
Yidan Lan

Particle dynamics modeling is done to study the behavior of granular beds

subjected to vibrations imposed by a plane boundary which oscillates sinusoidally about a

zero mean speed. Significant differences between the lower and higher shaking

acceleration regions are found for the granular temperature and solids fraction depth

profiles, which characterize the effectiveness of the boundary in fluidizing the beds. When

higher accelerations are applied, the temperature is maximum at the vibrating floor and

attenuates through the depth, while the solids fraction profiles exhibit a maximum at some

intermediate depth. At lower acceleration values, most of the mass is located near the

bottom, and fluidization occurs on the top, where a high temperature and low solids

fraction is found. Simulation results are in good agreement with the kinetic theory

predictions of Richman et al. in the higher acceleration regions and quantitatively

consistent with the experimental data of Hunt et al. in the lower accelerations. Diffusion

coefficients, computed using both the velocity autocorrelation function and the Einstein

relation, are in agreement with each other and with the theoretical predictions of Savage.

Critical conditions to produce a convective flow and associated segregation phenomena in

a frictional bed are carefully investigated. The cell size, friction coefficient, agitation

amplitude and acceleration are found to be the crucial factors. The first observation in

simulation of an arching movement near the bottom of a large cell is also reported.
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CHAPTER 1

INTRODUCTION

Ll Overview

Granular materials, such as sand on the beach and sugar in a bowl, are so familiar to

everyone that it is hard to imagine that the behaviors of these materials, subjected to

disturbances, are far from being understood even today. This provides the main motivation

of this particle dynamics simulation research on granular material.

In this work, the focus is on understanding the behavior of granular assemblies in a

vibrating bed and investigating the coupling between the boundary motion and that of the

particles.

The major contributions of this work can be summarized as follows:

• Relations between the granular temperature, solids fraction and boundary shaking

acceleration, using a 3-D dynamics simulation method have been identified.

• Velocity autocorrelation and diffusion coefficients in a vibrated uniform granular

bed are computed.

• Convection and segregation in 3-D computer simulation of a vibrating granular

bed has been achieved and an analysis of the large sphere movement in response to

the boundary shaking has been done.

In general, the results of this study have a great potential for industrial

applications.

1.2 Literature Survey and Motivation

Granular material or bulk solids is the name given for a collection of discrete solid

components of any size-range which are in contact or near contact with immediate

neighbors. Owing to the particular structure, granular materials display a variety of

1
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properties that are totally different from those of other substances, one of which are the

phenomena caused by vibration.

The behavior of vibrating granular beds has been of much interest to industries

which process granular materials, such as plastics, powder metals, ceramics, food and

pharmaceuticals (1, 2). The related studies can be traced back to over 150 years ago when

Faraday (3) proposed the cause of convection driven by large-scale vibration. Since recent

analogies have been found between the physics in a sand pile and that in superconductors

(4), an increasing number of papers have been devoted to the dynamics of granular

materials.

Due to the difficulties of obtaining the measurements of individual particle

motions, early experimental studies on packed beds submitted to vibration concentrated on

phenomenological results and explanations. Recent developments in image processing

techniques have made two-dimensional experiments tractable in obtaining the micro-

structural information. However, experiments for 3D tracking are scarce due to the

expense (for example radioactive techniques) and difficulties in non-intrusive

measurements.

Theoretical treatments of vibrated beds were rare a decade ago; however,

advances in kinetic theory of granular flows now make it possible to study the problem

analytically (5). Kinetic models use assumptions, such as the form of velocity distribution

function, instantaneous binary collisions and simplified boundary conditions. Despite this,

many collision-dominated flows can be at least qualitatively predicted with these theories.

Different from real experiments, discrete computer simulation methods (6), viewed

as 'numerical experiments' based upon the solution of Newton's law of motion for the

energy dissipating system of interacting particles, have been developed to provide dynamic

properties (particle trajectories, collision forces and so on) of individual grains. From this

information, subsequent calculation of macroscopic behavior, such as granular

temperature and solids fraction, can be computed, and the effects of various boundary
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conditions on the granular bed can be studied. The results of computer simulations may

be used to test the theories and discover new phenomena, and to compare with the results

of physical experiments. In this sense, computer simulations act as two bridges, one

between the numerical models and theoretical predictions, the other between models and

experimental data.

Before going further to study vibrating beds, it is necessary to review the literature

to date.

1.2.1 Two Opposite Effects of Boundary Shaking on Granular Assemblies

It has been known for a long time that imposition of boundary shaking on a granular

assembly can produce two dramatically different effects: either the bed will densify or it

will become fluidized. Although these two effects are closely related, most studies treated

them as two separate phenomena, and concentrated only on density changes for

compaction and surface flow for fluidization.

Densification of particulate media by vibration, known as vibratory compaction

(7), is extensively used in industries. This technique involves the supply of increments of

energy to the bed of particles at a selected frequency for a fixed time period. Increases in

density of 4 to 11 percent were reported when vibrational methods were applied to the

containers in a packing machine for sunflower seeds (8). The vibration of mine cars, which

carry coal or ores, raised the density by 13 percent (8). In the early literature, five

parameters of vibration, namely frequency, amplitude, acceleration, energy input and

power input, were identified, one or more of which may be instrumental in causing the

compaction of the packed bed (7). As early as 1951, Stewart (9) pointed out that a

consolidation state of "maximum density" could be achieved at high frequencies and low

amplitudes. The existence of a critical frequency for maximum compaction has been

further confirmed by Gray (7). By placing a small load on a powder bed, Shatalova et al.

(8) measured the most effective frequency ranges to achieve minimum porosity. They
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found frequency ranges of 100 to 200 Hz for large particles over 100 1.1m, 200-300 Hz for

intermediate size, and over 300 Hz for small particles less than 1 micron. Acceleration was

considered as the most effective parameter by Cussens and Plowman (10,11). An

acceleration of 4g to 7g was recommended for table vibrators by Shatalova et al. (8). On

the hand, Macrae et al. (12) argued that the densest packing was related directly to impact

velocity, which may be produced by different stop settings of the container during a

vibrating cycle. Besides vibratory parameters, particle shape, initial poured density,

coherence and pressure on the bed also play a very important roll on the rate of

compaction (7). Most of the studies on this phenomena were aimed at industrial

applications, and little attention has been paid to understand the underlying physics.

Fluidization phenomenon in granular materials under vibration is a more

challenging topic in science and technology. One example (13) is the fluidization of a

sand pile submitted to large enough vertical vibrations. Using two vertical, coaxial tubes

and an expansion vessel, which was connected with the inner tube, Eversque et al.(14)

found that sand surface became fluidized and flowed down from the inner tube to the

outer tube when the apparatus was vibrated sinusoidally at a high enough amplitude. After

shaking, the cone shape surface of sand in the outer tube had crept up and became flatter.

According to his observation that the fluidization part was confined to an upper layer of

the bed, he argued that fluidization began from the surface, in contrast to most of

theoretical approaches, which predicted a fluidization thickness from the bottom where

energy input was applied.

Studies in vibration induced fluidization in a shallow bed were initiated by

Bachman (15) who in 1940 proposed the first model of this type of bed. More recently,

Thomas et al. (16) conducted experiments on sinusoidally vibrating shallow granular beds

with static bed depths ranging from 24 p.m to 30 mm. Through a thin, rectangular

transparent vessel, they measured the critical values of vibrational intensity Kcr = a(02/g,

the ratio of maximum shaking acceleration to gravitational acceleration, at which shallow
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beds became " mobilized ". It was found that Ker was very sensitive to particle size,

cohesiveness and the initial packing state of the beds. For particles larger than 100 p.m,

their results showed that Kcr = 1 in spite of the initial packing state. Kcr increased

monotonically as particle size was reduced below 100 1.tm. For fine and aeratable

particles, Kcr was significantly higher in a densely packed bed than in a loosely packed

bed. During the experiments, a phase-delayed trigger flashing system was used to take

photographs for all desired shaking phase angles, from which four vibrated-bed states

were distinguished by the degree of fluidization as the bed depth increased. Two

'Newtonian states' were identified for such states whereby the particles' trajectories were

governed by Newtonian mechanics. The bed depths before shaking were usually less than

one layer. During shaking, the highly dispersed particle pattern remained unchanged for

different phase angles in the Newtonian-I state. But with a small increase of initial bed

depth, notable changes were observed forming a Newtonian-II state, where uniformly

distributed particles would segregate and form a dense band near the vibrating floor during

a portion of a cycle. As the bed depth increased to 3-10 layers, a state, called the

"coherent- expanded state", was attained. Under the influence of the aerodynamic effects,

the bed moved together as a loosely packed coherent mass. As the bed collided with the

floor, a rush of upward air from the gap produced a large expansion of the bed. With

further increase of bed depth, a transition was found in which the bed expansion

diminished. Thomas et al. termed this the " coherent-condensed state", since a condensed

region of material appeared in the lower part of the bed and changed little during the

vibrational cycle. It is worth mentioning that Thomas et al. found that the bed depth,

particle properties (including coefficient of restitution) and aerodynamics were the

primary factors affecting transitions from one state to another. They also provided a

nondimentional bed- permeability parameter, which included the effect of the viscous drag

force of the gas, to characterize and determine the transitions between any two states.
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The density profile and velocity field in the vibrating bed are important in

identifying the region and degree of fluidization. With the help of innovation in

experimental methods, Clement and Rajchenbach (17) quantitatively measured these

parameters in a bidimensional vibrated bed of steel spheres. The snapshots for small

amplitudes of shaking, which were recorded every quarter of a shaking period, showed

that the grains in the deep layers remained in triangular arrays after shaking, while the

upper four or five layers were thermalized and a few particles jumped out of the bed.

Averaging the data from particle displacements, density and velocity fields were calculated

by a computerized technique. They confirmed that the mean density increased with the

depth from the free surface, while the particles exhibited a small random velocity in denser

regions. Unlike density, which was found to be independent of shaking phase, the average

velocities changed periodically as the phase angle changed. Its horizontal components

deviated slightly around zero, but vertical velocity components varied significantly during

the cycle, with small changes along the height. Their velocity distribution calculations

exhibit an approximate Gaussian and isotropic trend.

With a video recorder, Hunt et al. (18) measured the average solid fraction and

bed height in a glass-walled rectangular box, which was driven by an eccentric cam

mechanism. Three different bed masses of glass spheres, corresponding to three different

initial bed heights, were tested. For a fixed amplitude of 1.67 times of sphere diameter,

they found a critical acceleration value of 2 g, below which no obvious changes in bed

height and average solid fraction were observed, while beyond this value, significant bed

expansion and solid fraction decrease were found. They also noticed the local solid

fraction varied with the distance from the bottom of the bed and changed during the

vibration cycle, which is quite different from Clement and Rachenbach's (17) two-

dimensional observation. When amplitude was reduced to the particle diameter, the critical

value of acceleration decreased to 1.3 g. A critical frequency value was identified to be

independent of vibration amplitude. The first critical frequency was found at 10 Hz at
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which the bed expansion began and solid fraction decreased. The solid fraction curves

tended to be flat above 12 Hz , until the second critical frequency appeared at about 18

Hz , where a thick bed showed a further decrease. The data suggested that the minimum

value of average solid fraction was approximately 0.21 for all vibrated beds used in their

studies.

Recent in a three-dimensional Monte Carlo simulation approach by Mehta and

Baker (19) demonstrated for the first time the compression and dilation effects in granular

materials within a single mode of vibration. A local cluster of particulates in a granular pile

was modeled as an assembly of potential wells, while the vibrations of particles was

regarded as random noise. The large noises caused the particles to eject, while the small

noises let the grains reorganize and minimize the voids. Using a sequential random close-

packing algorithm, N monodisperse hard spheres were placed in a box with periodic side

boundaries. The "shake cycle" began by raising the spheres above a distance of shaking

amplitude in Z direction, while shifting the particles randomly around in X and Y

directions. A Monte Carlo procedure, proposed by Rosato et al. (2), was used to simulate

the falling of the assembly. They observed a threshold of shaking amplitude, above which,

the volume fraction fell off sharply, while below this threshold, it increased. Lower mean

coordination numbers in a large amplitude shaking bed reflected the existence of bridges,

arches and other voids generating by this shaking. A prominent peak in pair-correlation

function of sphere separation for the small amplitude shaking case indicated a significant

second-neighbor shell at that time. Upon comparing the pair-correlation function for

displacements in the transverse direction with those in longitudinal direction, they pointed

out that the motion of neighbors above and below a particle played a more important roll

than those of other neighbors in the reorganization process of the system. Large

topological changes were found in the contact network of the bed subjected to large

amplitude vibration, as compared with small changes in those submitted to small amplitude

shaking. Although Mehta and Baker had not described the detail dynamic changes and
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difference between the compression and dilation stages, they have, for the first time,

observed and pointed out that these two opposite effects could exist in the same vibration

model only if vibrational parameters were chosen correctly.

1.2.2 Convection, Diffusion and Mixing in a Vibrating Bed

Closely related with fluidization, convection and diffusion are also typical phenomena,

which have been received more and more attention in the research of vibrating bulk

assemblies.

When Evesque and Rajchenbach (13) used a loudspeaker to shake a monodisperse

glass sphere bed, they found that beyond a threshold of amplitude, the horizontal free

surface became inclined until its slope reached an angle slightly smaller than the maximum

angle of repose. An avalanche flow down the slope surface and an internal convective

transport, which refilled the top of the hill, were developed in the bed simultaneously. This

process occurred under a specific ratio of the bead's diameter to the displacement

amplitude. They confirmed that the key parameter responsible for the instability was the

amplitude of acceleration, which must exceed the acceleration of gravity "g", and

appeared to be independent of the size of the beads, but related with the size and shape of

the container. An alternate change in the packing of the bed was proposed to explain this

situation. When the cell was raised up, the bed experienced compaction which locked up

the interparticle motion. While the cell was going down, the bead were submitted to an

upward acceleration and became mobile if a shaking acceleration larger than "g" was

applied to the cell. It was also noticed that a chaotic pattern, with ballistic phenomenon

on the top, appeared when much larger amplitude was applied and convective flow

disappeared.

Using Reynold's concept of dilatancy, Rajchenbach (20) went further to analyze

the formation of a small bump on the horizontal free surface. Disturbed by the vibration, a

gradient of random velocities was developed in the bed, which generated an internal flow
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of particles from the less compressed regions to the more compressed regions. This

internal flow caused the bump, and a downward avalanche flow took place when the slope

of bump exceeded the angle of repose. Rajchenbach introduced an interesting experiment

to show this internal flow by using a U - shaped pipe filled with an equal level of powder

in both its branches. After shaking the tube for some time, the level of powder in one of

the branches increased, which Rajchenbach explained as lack of surface avalanches due to

the geometry of the pipe.

Faraday (3), considered one of the pioneers in this field, believed that air was

instrumental for the circulatory motion in the powder pile. When the particulate mass loses

contact with the bottom plate during upward motion, the air rushes into the gap from the

perimeter and carries the particle mass towards the center. Recent studies of Savage (1),

Evesque and Rajchenbach (13) and Rajchenbach (20) have shown this to be incorrect.

Savage did not find any noticeable difference by replacing his solid vibrating plate with a

plate containing air holes. Other workers also found no change for the value of the

threshold by comparing their measures in air with those in vacuum.

Savage (1) considered the " acoustic wave" sent by the base as the cause of the

convective flow and the source of the fluidization. Due to the dissipation in collisional

interactions, he predicted an attenuation of those waves. His rectangular shaking box had

a flexible metal bottom which enabled non-uniform amplitude vibrations across the width

of the base. With a maximum amplitude at the center and nearly zero amplitude at the side

walls, the bottom induced waves upwards through the bed. This caused a slow

recirculation in which particles moved upwards in the center region of the bed and moved

down near the side walls. By measuring the streamlines of this convection flow, Savage

found that the circulatory velocity increased as the shaking frequency or amplitude

increased, reached a maximum value, and then decreased with further increase in

frequency and amplitude. The collisional contact of particles with the vibrating bed over

the complete cycle was regarded as the primary source to maintain and enhance the
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convective motion. Savage explains this as follows. By using too high a frequency or

amplitude, yielding an acceleration larger than a critical value, the circulation would be

reduced, since the particles lose contact with the vibrating floor over part of the cycle, and

hit the floor too hard when the bed is moving upward from its lowest position. Using the

analogy between recirculating flows and "acoustic streaming" in the air, Savage developed

an approximate theoretical analysis of convection after introducing a modified constitutive

theory and simplified assumptions. The results from experiments compared well with the

theory except for a slight overestimate in velocities.

Based on his 2D numerical simulation results, Taguchi (21) postulated that

convection was induced by the elastic interaction between the particles. A viscosity term

was included in his force model, while rotation was omitted. In order to reproduce other

experimentalists' results, a larger viscous friction was used between sphere and side walls

than that between particles. Acceleration amplitudes kV , were tested up to 4g by fixing

the displacement amplitude "b" and changing co o . The test cell was partitioned into small

grid-like cells. The strength of convection flow was measured by counting the time

average number of particles passing through the small cells, which were fixed to the

original cell. A critical acceleration amplitude value 1.2g was found when the convection

strength become nonzero. Taguchi argued that the convection region first appeared near

the surface, and then expanded downward as vibration strength increased, from which he

found an agreement with Evesque et al.'s (14) concept of surface fluidization. He also

proposed his view about the origin of convection. Two stages were distinguished in a

shaking cycle. When the acceleration of gravity was larger than the downward

acceleration of the base, the particles were pressed and stresses developed between them.

During the interval when downward acceleration of the bottom became greater than the

acceleration of gravity, the particles were in free flight. The former developed vertical

stresses could easily relax in this time period, while horizontal stresses, restricted by the

side wall, couldn't be released, thereby promoting relative horizontal sliding motion
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between particles. Taguchi did not explain why the induced horizontal flow would meet at

the center of the cell, turned upwards and created a bump. He disagreed with

Rajchenbach's (20) assumption that heaping caused the convection. In contrast, Taguchi

thought convection was the origin of heaping.

With the help of a two-dimensional discrete element simulation, Gallas et al. (22)

investigated several types of convection cells. A sinusoidal vibration was introduced

through the base, where the amplitude was a cosine function whose amplitude could be

varied along the width of the base. Three forces, ( that is, an elastic restoration force, a

dissipation force due to collisions and a shear-induced friction force), were incorporated in

the collision model, while Coulomb friction and particle rotations were neglected. Since

the influence of the elastic modulus on the results was negligible, a very small value was

chosen to save computer time. When periodic boundary side "walls" were applied, the

authors observed upwards motion of particles near the center where the amplitude was the

largest. A resonance phenomenon occurred around 60 Hz, where the upper center part of

the bed was not in contact anymore and average vertical velocity components reached a

maximum. Another type of convection was reported when fixed frictional side walls and a

uniform amplitude of the base were applied. In this case a strong trend of downward

motion was observed at each side wall. An explanation of convection mechanism similar

to Taguchi was given in that case. When the bed is brought upwards, the upward motion

of particles with respect to the wall is reduced by a large shear friction, created from the

strong pressure exerted on the walls by the compressed packing. As the bed falls down,

the packing becomes looser. Particles tend to separate in the vertical direction, but

interact with its horizontal neighbors with smaller friction restraint, thereby allowing the

downward motion of particles with respect to the walls. An interesting phenomenon

occurred when the fixed walls had no shear friction. One convection cell, not two could be

found, but the motion of particles near the wall was quite uncertain, either upward or

downward. Gallas et al. thought the horizontal particle flow near the bottom would
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reinforce at each cycle. When the fixed wall prohibited this flow, the particles were forced

to move upwards. In their simulation, they also found convection did not depend on the

initial condition, which provided evidence that convection was not a transient effect.

Diffusion is an important transport phenomenon associated with non-uniformity in

composition or other properties. In a granular bed, the diffusion coefficients relate the

particle flux to a concentration gradient, and this has a direct influence on mixing and

segregation.

Savage and Dai (23) have examined the self - diffusion problem in an 'unbounded '

granular flow. From a statistical mechanics point of view, the diffusivity tensor can be

found by computing the velocity autocorrelation tensor, whose components can be

expressed in general as an exponentially decaying function. Kinetic theories for granular

flows have been used to analytically estimate the relaxation time of this decay function. By

taking the single particle velocity distribution function to be a perturbed Maxwellian and

considering only binary collisions, Savage and Dai developed an expression for the self -

diffusion coefficients as,

D = 
8(1+ e) • v • go(v)

where go(v) is the Carnahan - Starling expression for the radial distribution function

evaluated when particles are in contact, T = (C
2 ) 

3 is the "granular temperature", and

(C 2 ) is the second moment of the deviatoric velocity. They also computed the self-

diffusion coefficients from the velocity autocorrelation by using the results of granular

dynamics simulations of unbounded shear flows. The calculation was very time

consuming, since it required ensemble averages for long time periods.
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Hunt et al. (18) have derived the same analytical expression for self-diffusion

coefficient D using a different approach. In order to calculate D, a rough estimation was

used to express the temperature. It was assumed that particles near the vibrating boundary

had the same vertical velocity as the boundary and negligible velocity components in the

horizontal directions. In fact, they approximated the granular temperature of the vibrated

bed as the temperature associated with the vertical sinusodal velocity fluctuations of the

boundary. After obtaining D , the diffusive mixing time expression was found by solving a

1-d diffusion equation with appropriated boundary conditions at the bottom and top

surface. This theoretical mixing time result, compared with crude experimental

measurements, showed relatively good quantitative agreement. In their experiments, the

mixing time was computed from the changes in digital images. Several layers of blue glass

sphere were placed above an equal thickness of red spheres before shaking. During

shaking, pictures were taken by a video recorder at a rate of 60 image per second. The

change in color distribution was analyzed and averaged by computer to determine the

mixing degree. Their results for diffusive mixing and bed expansion (discussed in last

section) indicated that they are two closely related phenomena. No mixing was observed

in the bed when the acceleration was under 2.0 g. As the acceleration increased , the

mixing time decreased dramatically and the bed expanded significantly. They also found

the spacing between the front and back wall did not affect the results greatly. Another

important observation was that they did not discover any recirculation pattern in their

experiments, which suggests that convection and fluidization can exist separately.

As opposed to the results of Hunt et al. (18), Zik and Stauans (24) observed the

convection flow of glass beads (diameter = 0.1 cm) in their vibrating cell — a 12 cm

long, 1 cm wide and 10 cm high glass box. Their experimental work showed how to

successfully isolate two different transport phenomena—convective transport and diffusive

transport. Consequently they were able to measure the self-diffusion coefficient. By

applying a vibration amplitude of 0.07 to 0.16 times particle diameter and high frequencies
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(80-120 Hz), instability, such as surface heaping and convection streaming along the

longitudinal direction, was minimized. However they did observe a transverse convective

flow, whereby the bead moved down near the lateral boundaries and traveled upwards to

the top in the bulk. To further minimize the longitudinal flows, they cemented a layer of

beads on the small side wall and let the long side wall be smooth. Diffusion along the free

surface was prevented by dipping some comblike metal sheets into the top surface, which

allowed the surface particles to move transversely only. By coloring the beads located in a

center strip of the cell and observing its progressive widening, they could measure the

diffusive transport in longitudinal direction quantitatively. The concentration of colored

particles was decided by the intensity of the light transmitted through the bead layer,

which was then averaged over the height. A mean square width of the concentration was

calculated and used to define a diffusion coefficient. Their experiments indicated that self-

diffusion coefficient was independent of vibration frequency and amplitude, but linearly

related to the transverse convective velocity. With a small convection, no concentration

change could be seen in the lower part of the bed. No mixing occurred when convection

was very small and the particles seemed to follow the vertical oscillations of the cell.

1.2.3 Different Opinions on the Cause of Segregation

A widely occurring phenomenon in granular materials associated with vibrations or

shearing is known as size segregation. In fact, bulk particulates tend to unmix when

subjected to various forms mechanical disturbances. Segregation has been observed in

pouring and shearing; however, vibration is one important and not well-understood

external driving force to cause segregation, whereby the largest particles rise to the top of

the bed while the smaller particles fall to the bottom. Size segregation is usually an

undesirable effect when product homogeneity is required, but there are some useful

applications. In chemical, pharmaceutical, plastic and powder metallurgy industries,

segregation causes serious problems, such as uneven quality, varying in packet weight and
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low mechanical strength. As an example, in plastic field (25), vibrational conveying of

mixtures of several different types of polymers leads to the separation between the

components. In contrast, segregation facilitates separation in batch sieving or classification

processes. It is clear that although segregation and mixing are two opposite phenomena,

both are concerned with local particle rearrangement mechanisms.

1.2.3.1 Some of the Early Work on Segregation

One of the early studies on segregation was done by J. C. Williams (26). He noted that

although other factors contributed to segregation, such as density and shape, the principle

factor appeared to be particle size discrepancies. In order to examine the causes of

vibrational segregation, he placed a single large ball at the bottom of a glass beads bed.

When the bed was subjected to vertical agitation, the large ball could always be made to

rise even if its density was greater than that of the bed. An explanation was introduced in

term of pressure below the surface of the large sphere. He hypothesized that the large ball

would move up as long as the pressure beneath it was sufficient to prevent the movement

of the small particles. But this mechanism fails to explain why an empty ball and one full of

mercury both rose to the top of the bed.

Interparticle percolation has been experimentally studied by Bridgwater et al. (27)

(28). The layers of particles act as a screen through which all but the large particles are

able to pass and reach the stationary region below. However, when particulate sizes are

comparable, the smaller particles cannot sift through the gaps formed by the larger ones.

Ahmad and Smalley (29) carried out the same type of experiments as Williams

(26). They measured the time for a large particle to rise to the surface of a sand-filled

vibrated bed. An acceleration range of 1-10 g and frequency range of 50-150 Hz was

used. It was obsevered that acceleration was an important factor affecting the segregation.

Segregation increases with an increase in acceleration for all fixed frequencies, but it was

reduced with increasing frequency at a constant acceleration. It was also confirmed that
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the greater bed depth, the greater segregation time, while the greater the size of the large

ball, the greater the tendency to segregate. Shape was not considered as a significant

factor under all vibrating conditions.

With the help of radioactive tracer, Harwood (30) measured the segregation effect

in real powder systems. The powder materials were selected to be of different cohesion,

different size and density. The powder properties as well as vibratory parameters had

profound effect on the results. Significantly increased segregation was observed when

powder was fluidized under sufficient energy.

Kawakita (31) is perhaps the first person who noticed the effect of convectional

flow on segregation. He hypothesized that the middle part of the bed was more porous

than at the side walls, and this resulted in a movement of surrounding particles to the

center. A falling flow was therefore developed at the sidewall, while rise flow developed in

the center of the container. The velocity difference of convectional flow between large and

small particles was proposed as one of the cause of vibrational segregation.

1.2.3.2 Recent Results on Size Segregation

Recent research on size segregation has been focused on quantitative modeling of the

segregation process. Monte Carlo simulations and dynamics simulations have

demonstrated great potential in characterizing various mechanisms by which the large

particles segregate.

A shear-driven mechanism was proposed by Haff and Werner (32) in 1986 in a

two-dimensional particle dynamics simulation to model the mechanical sorting of inelastic

frictional disks. Shearing motion was applied to a pan, filled with uniform small grains and

a large grain on the bottom, by introducing vertical and horizontal harmonic oscillations.

The interactive normal force in their model is taken to be proportional to the amount of

overlap between disks, while the tangential force is modeled using a Coulomb type friction

law. In addition, a velocity-dependent damping term is employed to affect the collisional
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energy loss. Simulation results indicated that the amount of shear induced in the system

had a strong influence on the degree and rate of sorting. It was argued that the relative

rotation of particles promoted the segregation. Sufficiently high friction helped the large

particle roll up over small adjacent particles, and ensured the smaller particles supporting

the large one. On the other hand, frictionless particle exhibited little or no sorting

tendency, since absence of grain rotation prohibited large particle from rolling up on to

smaller ones.

A geometric mechanism by which vibratory segregation occurs was identified and

isolated by Rosato et al. (2, 33) using a Monte Carlo simulation. Hard disks were

randomly place in a container and then allowed to collapse under gravity to an equilibrium

state. Shaking was simulated by repeatly lifting the assembly by a prescribed amplitude and

then allowing it to collapse until equilibrium was attained. The effect of interparticle

collisions and collisions with walls were modeled as random movements of the particles

with respect to one another. It was demonstrated in the simulation results that the size

difference created more opportunities for the small disks to fill a void which opened

beneath a large one. It was shown that for a fixed size ratio (large to small diameter), an

increase in the shaking amplitude resulted in a faster segregation, which is in qualitative

agreement with the experimental results presented by Ahmad and Smalley (29). The

specific dependence of segregation rate on time demonstrated the strong influence of

local geometric structure near the large particle on the sorting mechanism, which is quite

different from Williams' (26) explanation. In binary systems (34), segregation could be

traced by the progression of the interface line separating the mixed region from the sorted

layers. This method has been extended to multi-component system (35), by Rosato, Lan

and Wang to qualitatively investigate the effects of size ratios on the rate of segregation.

The concept of mutual sorting was introduced from which generalized expressions were

derived for the rate of change of the size species concentrations. Simulation results

showed good agreement with the theoretical predictions regarding the influence of size
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ratio. With a change of size ratio, a reversal of sorting order between small and large

particle in a ternary system was predicted by the theory and verified by the simulation.

They further confirmed that the sorting of the intermediate size was always delayed

despite of size ratio.

A three-dimensional Monte Carlo model has been used to simulate the procedure

of vibratory size segregation by Jullien and Meakin (36). Using periodic boundaries in the

lateral direction, they created a packing of 250 large spheres and 50,000 small sphere.

They also simulated the upwards motion of a single large sphere in a random packing of

small spheres. After studying the dependence of the height of the large sphere, they

found a size ratio threshold value of 2.8, below which the maximum upward displacement

of the large sphere remained finite.

Recent experiments with a single large glass bead in a vibrating bed of small beads

by Knight, Jaeger and Nagel (37) proposed a mechanism similar to Kawakita's (31). A

symmetric convection cycle was observed. All the spheres, regardless of size, were found

to rise in the middle at the same rate. The large sphere was trapped on the top, and failed

to join in the downward motion of small particles along the walls. The rise velocity

depended on the depth below the top surface. They argued that the boundary conditions at

the wall were crucial for creating convection. Their claim, that segregation is caused by

convection is confusing in light of their experimental data showing that large spheres of

different sizes rise at the same rate. Consequently, convection cannot differentiate between

sizes and therefore does not result in size sorting.

1.2.4 Kinetic Theory Approach in the Studies of Granular Flows

Fifteen years ago when Ogawa (38) first suggested the idea of granular temperature, the

kinetic theoretical approach for granular flows was just at the beginning. Taking the

advantage of the physical similarity between rapid granular flows and dense gases, Savage

and Jeffrey (39) , Lun et al. (40) and Jenkins and Richman (41) have successfully
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developed various kinetic theory models for granular flows, by including the energy

dissipation due to inelastic collisions. The concept of granular temperature is the most

important key to understanding the behavior of collision-dominated granular flows. The

velocity of each particle may be viewed as a sum of the mean velocity of the bulk material

and a random component, which is the fluctuating component of the particle motion.

Granular temperature, defined as the mean square value of this random velocity, is the

energy per unit mass contained in the random motion of particles. Since the collisions

between real particles are inelastic, granular temperature is dissipated. To maintain the

temperature, energy must be continuously supplied to the system to balance that lost

during collisions. All of the kinetic theory models assume that the particles interact via

binary collisions, usually using a constant coefficient of restitution to represent the energy

dissipated by the normal impacts between the particles. The major constituent in the

derived conservation equation is related to the conduction and dissipation of granular

temperature.

These treatments have been proven successful, especially when boundary

conditions have been imposed to solve different kinds of flow problems. For an example,

Jenkins and Richman (41) employed the averaging technique in kinetic theory of dense

gases to calculate the rate at which momentum and energy were transferred between flow

disks and boundaries. Upon balancing the energy, they established boundary conditions for

the shear stress, pressure and flux of fluctuation energy. Their work was later extended to

smooth spheres by Richman (42), whereby a modified Maxellian velocity distribution was

used to analyze the shear flow driven by the bumpy boundary. He predicted that as

roughness in a boundary increased, the slip velocity would decrease, which has already

been verified by other simulation work (43, 44, 45). Recently, following Richman's (42)

boundary conditions and Jenkins and Richman's (41) constitutive theory, Richman and

Martin (46) presented for the first time a theoretical calculation of the solid fraction and

granular temperature depth profile in a top-unconfined granular bed, having a bumpy floor
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that fluctuated with a constant root mean square speed about zero mean velocity. They

concluded that a deeper and more thermalized bed resulted with an increase in boundary

fluctuation, and granular temperature increased monotonically from the top to the bottom,

while the solid fraction achieved its maximum at an intermediate level. It is worthwhile

mentioning that similar studies have completed by Richman and Mark to discuss different

types of vibrating beds (47).

1.2.5 Motivation, Objectives and Methods

The unusual behavior of granular material has drawn more and more attention among the

science and technology circles. Just like semiconductors which exhibit conduction or

insulator-like behavior depending on the external electrical field applied, granular materials

would experience a transition from solid to liquid-like state under certain circumstance. An

open question is under what condition this transition would happen, and how to

quantitatively describe them. Recent studies on vibrating bed have revealed the existence

of a threshold, but most of them haven't investigated the details of this transition, partly

because of the difficulties in getting the dynamic information about the motion of

individual particles. For example, granular temperature, which is due to the random

motion of the grains, should be an important avenue to investigate fluidization and

diffusion phenomena, but no recent dynamics simulations and experiments have discussed

this topic. The theoretical studies of Richman and Martin (46) on the relation between

temperature and boundary energy provides an excellent basis with which to make

comparison with dynamic computer simulations.

Mixing and segregation in vibrating bed is another topic having both scientific and

technological importance. Various mechanisms and theories have been proposed; yet a

micro-structural level understanding is still lacking. The experimental work of Hunt et al.

(18) and Zik et al. (24) have measured diffusion coefficients, which is the basis for

studying mixing and segregation. Their studies, neglecting the temperature and density
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gradient, treated the bed as a whole, without considering the possible differences along the

depth. A more reasonable diffusion coefficient may be developed by using the dynamics

simulation method, which may also provide microstructural information. Knight et al.'s

(37) convective mechanism for segregation has suggested another mechanism that of grain

transportation via convection, which the authors mistakenly call segregation. Using

dynamics simulation to duplicate this phenomenon, and investigating the different response

of small and large particles to the boundary shaking will be helpful to understand this

behavior in detail. The phenomena of convection in a granular bed is itself a puzzle

deserving of further study. This is especially true since the existing two-dimensional

simulations haven't set up a relation between the convection flow and granular

temperature.

With a purpose of establishing a three-dimensional dynamics model and comparing

simulation results obtained with all existing assumptions, theories and experimental

observations, this study will concentrate on the macroscopic properties of vibrating beds,

such as granular temperature, solid fraction profiles and diffusion coeffecient. The effect

of boundary shaking on size segregation will be also emphasized.

1.3 Outline of Thesis

Chapter 1 reviews previous work on the vibrating granular bed. Various mechanisms,

theories and experiments are mentioned to highlight different opinions. Chapter 2

describes the dynamics simulation model used in this study. After briefly introducing

Walton's soft sphere model, boundary conditions for the vibrating bed and modification of

the code are presented in detail. In Chapter 3, methods employed to compute diagnostic

and statistical parameters are explained. Simulation results for smooth uniform beds are

reported in Chapter 4, where various physical quantities, such as granular temperature,

solid fraction, diffusion coefficient and mean square displacement are calculated and

compared with kinetic theory predictions and recent experimental results. Moreover,
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coupling between boundary and particle motion is examined by spectral and correlation

analysis methods. Chapter 5 is concerned with convection and "segregation", where the

critical conditions to produce a convective flow are provided. Convective motion and the

movement of a large sphere in a frictional bed are analyzed quantitatively. Summary and

conclusions are presented in Chapter 6, together with suggestions for further research.



CHAPTER 2

THREE-DIMENSIONAL
PARTICLE DYNAMICS SIMULATION MODEL

The particle dynamics simulation is a technique derived from the molecular dynamics

method used in the studies of dense fluids. Although molecular dynamics simulation has a

long and rich history of almost 40 years, the rise of particle dynamics simulation in

granular material occured in the 1970's. The basic concept and the main techniques of

molecular dynamics simulation, concerning the deterministic solution of the classical N-

body problem, have been retained. The major difference between molecules of fluid and

bulk particulates is their interaction models. Energy conservation is essential to molecular

systems, while energy dissipation is the characteristic of granular assemblies. In contrast to

gas molecules, particulates can not be modeled by perfectly elastic collisions since these

do not involve any kinetic energy loss. During a collision, a portion of kinetic energy is

either dissipated in plastic deformation or converted into heat. Two approaches have been

developed to approximate this interaction. By considering the particles to be infinitely stiff,

"hard sphere" models assume instantaneous, binary collisions. A collision operator, which

is a function of the particle properties (friction, normal and tangential restitution

coefficient) and pre-collisional velocity, is used to compute post-collisional velocities. The

"soft sphere" model, on the other hand, allows colliding particles to overlap a small

fraction of their diameters, and the interaction force is a function of this relative overlap

among other factors. Collisions involving continuous and multiple contacts can be

modeled, since many time steps are considered in a single collision over which to integrate

the equations of motion.

In this study, the "soft sphere" model, develop by Walton et al. (6), has been used

to investigate the dynamic properties of a vibrating granular bed, with the objective of

connecting the "microscopic world" described by Newton's law with the macroscopic

23
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behavior characterized by quantities such as granular temperature and time correlation

functions.

2.1 General Structure and Techniques

The simulation code used in current studies has been modified from a uniform shearing

flow code developed by Walton and Braun (6). Parts of the diagnostic procedure were

modified by Dr. Hyeong-Jin Kim when he studied Couette flow (45). The recent

modifications incorporated for this dissertation include imposing special boundary

conditions and implementing new diagnostic parameters to calculate the velocity and

temperature fields in different cases for the vibrating bed. Two independent codes have

been written and tested to compute the autocorrelation function and mean square

displacement, from which diffusion coefficients can be found.

Aftrer initial coordinates for particle centers are generated via a random number

generator. radii expansion technique is used to determine an initial configuration for the

system. Then all the initial and boundary conditions are superimposed to initialize the

simulation. A finite difference algorithm developed by Verlet (48) is employed to solve the

resulting equations of motion of the system of interacting spheres for particle translations

and rotations and velocities. The time increment, usually called time step, is significantly

smaller than the typical time taken for a collision to ensure a sufficient degree of accuracy.

Long term diagnostic parameter calculations, including mean and fluctuation velocity,

solids fraction, granular temperature and stresses, are computed after the system has

reached steady state.

The computer simulation is performed on a three-dimensional control volume,

consisting of a vibrating floor, periodic or solid side walls and an open top surface. First

the particles are allowed to fall under the influence of gravity to get a loose packing, which

is called the pouring procedure. Then the floor starts to shake to simulate a vibating bed.
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There are 16 subroutines in the current simulation code, which can be classified

into five groups according to their functions.

1. Subroutines for simulation parameters input and initialization.

Simulation parameters include:

• basic parameters (number of particles, diameter, computational cell size

and maximum run time)

• boundary parameters (number of boundary particles and their size)

• material properties (coefficient of restitution, stiffness, friction coefficient,

mass per unit sphere and gravity acceleration)

• vibration parameters (velocity amplitude and frequency)

These are specified in an input file (named i3ds), and then read in via

subroutine Datain. The boundary particle configuration is obtained from

subroutine Bound. After assigning indices for free and boundary particles,

the initial positions and deviatoric velocities for particle centers are

generated in subroutine Init. The time step and diagnostic zone parameters

are also calculated there. The initial configuration of the system is

completed in subroutine Findrad after finishing radii expansion.

2. Interparticle force subroutine.

Subroutine Forces calculates the forces between all the interaction pairs

within the near neighbor array, which is created and updated from time to

time by the subroutine Update.

3. Integration subroutines.

After subroutine Initstep initializes the integration step, subroutines Integl and

Integ2 solve the equations of motion numerically, using the Verlet algorithm (48).

4. Diagnostic calculation subroutines.

Subroutines Initcuml and Initcum2 initialize the short and long term

cumulative average parameters respectively, and then subroutine Diagnos2
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calculates all the diagnostic parameters, such as mean velocity, granular

temperature and solids fraction.

5. Data output subroutine.

Subroutine Datasave is responsible for writing the output data into specified files.

A flow chart of this simulation code can be found in (45).

Some important strategies used in particle dynamics simulation will be introduced

later in this chapter, with emphasis on the detailed methods employed in this simulation.

Topics included in H. Kim's dissertation (45), such as the Verlet algorithm and linked-list

logic are not discussed.

2.2 Generating An Initial Configuration

After the input data is read in, a set of random coordinates, if not contradicting boundary

conditions, is assigned to the center of each particle in subroutine Init. However the

diameter of each sphere is not yet defined. This is done in subroutine Findrad, which is

called to find an allowable radius for each particle. For example, the radius of particle i is

set equals to a fraction of the distance rij between i and its nearest neighbor j such that

these two particles share this distance according to the ratio of their pre-input radius

values. (See Figure 2.1) Suppose k, m and n have specified the same input radius in input

file i3ds, and particle k's nearest neighbor is particle m, but particles m and n can claim

each other as nearest neighbors. Therefore particles m and n are assigned same radius,

which equals half of distance rnm between them, and they just tangentially touch each

other. But particle k has a radius equal to 1/2 rte, which is larger than those of particles m

and n. If the radius of a particle, decided as explained above, exceeds the specified input

value, the code simply sets it equal to this input value. After all the particles have been

assigned an allowable radii, those particles, having radii less than the input value, will

increase their radii at a constant rate at each time step in subroutine Findrad. This causes

interactive forces between overlaping particles, which are computed in subroutine Forces.
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The subsequent motions are determined in subroutines Integl and Integ2. The radius

expansion procedure does not stop until each particle has the radius specified in the input

file i3ds. In summary, the function of subroutine Findrad is to obtain an initial

configuration by means of radius expansion.

Figure 2.1 Allowable radius when nearest neighbor is considered.

2.3 Neighbor Lists and Updating

In order to evaluate of interparticle forces between particles and to permit efficient

searching for contacts, a data structure called "neighbor lists" is used. Instead of looping

over all particles in the cell to find contacts, the argorithm examines only the near

neighbors around particle i, when considering the interaction between particle i and other

particles. The near neighbors of a particle are defined by a parameter, called "search" in

the code. Particle j will be on the neighbor list of particle i only if the separation distance

rijbetween their centers is less than a distance equal to the radius ofiplus the value of

parameter "search". A list of all the neighbors of each particle is constructed and updated
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by the code at update time. During the updating intervals, the program checks only those

particles appearing in the list, and then calculates the forces. The neighbor lists are stored

in a large array, which contains not only the particle number, but also the latest tangential

force history and overlap information. A pointer is used to indicate the position in the

neighbor list array where the first neighbor of particle i can be found.

At the beginning of the program, the "search" distance is either input or set to its

default value of the maximum particle radius. The initial update interval is directly

proportional to the search distance and inversely proportional to the maximum initial root

mean square (rms) deviatoric velocity, if the later is nonzero. Otherwise the initial update

interval is set to be 20 time steps. A value of 200 time steps is set in subroutine Init as the

maximum update interval.

The function of the Update subroutine is to construct and update the neighbor list.

First, the routine checks for particle i each particle pair (i, j) to ascertain if the center of j

lies within the search region. For those inside this region, it will further check if particle j

is already in the previous neighbor list of particle i. The algorithm skips those in this

previous list, while it adds each not included at the end of the list. If particle i has no

previous neighbor list, particle j within the search region will be added as the first entry of

particle i's neighbor list.

The subroutine Forces loops over the neighbor list and uses the information stored

for each particle, together with the current information about positions of particle, to

calculate the new forces. At the same time the updated information is recorded on the new

list.

The update interval is subject to change during simulation, although it had already

been set in subroutine Init. Each time after subroutine Update finishes updating the list,

the next update time will be recalculated from the search distance and the maximum root

mean square deviatoric velocity from the last time step. Between update intervals, the

ratio of search distance to the current maximum deviatoric velocity is continuously
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monitored by the subroutine Diagnos2. If the ratio is smaller than half of the value

computed during the last call to the routine, the update time will be revised by this small

ratio. In all cases the update interval will not be less than a time step or larger than a

maximum update interval.

The neighbor lists method saves significant cpu time by looping over only a

fraction of the particles instead of all particles in searching for contacts and calculating the

forces. However in some particular cases, if one of the particles moves so fast that it

penetrates into or through the search circle, errors may occur (Figure 2.2).

Figure 2.2 Errors occurred during the update interval.

For example, suppose particle m was outside of search circle of particle i at the

update time to (Figure 2.2a). During the update interval, particle m had not only moved

inside the circle, but also impacted against particle i with a overlap when the next update

time arrived (Figure 2.2b). An error occurred since the forces subroutine only calculated

the particle interactive forces between the contacting pairs inside the search circle at the

last update time. Particle m had come into contact with particle i during the update

interval, but subroutine Forces failed to calculate the interactions between them, and

hence nothing was recorded on the neighbor list. In this case, the code outputs an error
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message and then exits. An error will not be detected if particle m penetrates through

particle i and consequently separates during the update interval (Figure 2.2c). Due to

neglect of interactive forces by the code, particle m moves without any resistance, as if it

never collides with particle i. During the course of the research reported in this

dissertation, it was observed that when velocities were "too large," some particles passed

right through the solid boundaries without being detected. Circumventing this error is a

complex issue and it depends on the update time, search radius and particle velocities and

diameters. This error occurs in general during the pouring stage of a simulation when it is

possible for a particle which has a large mean free path to develop a high impact velocity

Large mean free paths are prevalent when the computational cell is of a height

substantially larger than the particle diameter.

The parameter "search" is a user input. As search distance is increased, the

frequency of updates of the neighbor list will be decreased. However more particles will

be included in the neighbor list, and this decreases efficiency. It was also observed that by

increasing the value of "search", the above noted error is not eliminated, since as "search"

is increased, the update time is decreased proportionally.

2.4 Collisional Force Model

In this study, a hysteretic force-displacement soft particle contact model, developed by

Walton et al. (6), is used to simulate the collisions between the particles in a vibrating bed,

where continuous and multiple contacts are expected to occur.

An overlap after initial contact between particles is interpreted as the deformation

which generates a normal repulsive force. To estimate the value of this force, the model

distinguishes a compression period (loading) from restitution period (unloading) during a

single collision by using a different stiffness for the loading and unloading process. The

tangential force, which approximates the Mindlin-Deresiewicz model (49), is calculated at

each time step incrementally from the old value of tangential force, together with the
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tangential stiffness and relative surface displacement between particles at the point of

contact. The details of the Walton and Braun models can be found in (6, 50). They are

repeated here for completeness.

2.4.1 Normal Force Model and Normal Restitution Coefficient

The elastic collision of two spheres is divided into two periods. The first is the

"compression period" (or loading period), during which elastic deformations of the

spheres occur after initial contact. The degree of deformation is measured by the normal

overlap between the spheres. The compression period ends as the relative velocity is

reduced to zero, and the overlap has reached a maximum value. This is followed by the

"restitution" or unloading period when the overlap decreases. At the end of restitution

period when the spheres separate, the two particles either will have regained their original

shape or will have some residual deformation before loading again. No permanent

deformation of the spheres is permitted and if the particle does not suffer another collision

during the unloading period , the residual a o is set to zero for the next collision.

Figure 2.3a is a schematic representation of the force model, which was termed

the "partially latching-spring" model by Walton and Braun (6).

The normal force (F1 or F2 ) is expressed as

Fi=Ki.a 	 for loading, and
(2-4-1)

F2 = K2. (a — ) for unloading, or reloading from nonzero overlap,

where Ki and K2 are two different spring stiffnesses, shown as the slopes of the curves in

Figure 2.3b. Here a is the current overlap and ao is the overlap value where the unloading

curve goes to zero along the slope K2. In this model, the initial loading follows the slope

Ki from point a to b. If unloading occurs at point b, it will take place along a the steeper

slope of K2 from point b to c, until the normal force is reduced to zero with a remaining

overlap ao. Reloading from any point between b and c will follow the path c-b-d.



32

Unloading from a different point d will be along a different path but at the same slope of

K2.

Figure 2.3 (a)Model of partially latching-spring (6) for collision interaction and (b)
linear normal force loading and unloading with stiffnesses Kr and K2, respectively.

During the simulation, the code calculates the value of Fr and F2 values at each

time step, and chooses the smaller one to be the normal force between the particles, which

results in the loading, unloading and reloading paths as described above. A detailed

explanation is as follows.

1. Loading from zero remaining overlap (a 0 = 0) (Figure 2.4 a):

Since Kl < K2 , it is clear that

F = Ki.a< K2.• (CIC 	 ="-- F2.

therefore, Fr will be used as the normal force in this case, which means loading

follows the path having a smaller slope K./.
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2. Unloading :

Unloading from point b will follow the path b-c (Figure 2.4b). Here F2 will always

be smaller than Fi.

3. Reloading from a o # 0:

From Figure 2.4c, it is clear that F2 <F1 when reloading from c to b. Choosing F2

as the normal force is the equivalent to reloading along path c-b (slope K2). After

reaching point b, T2 will be larger than T. So will be used as the normal force,

ensuring further loading along b to d.

Figure 2.4 Procedure for normal force loading (a), unloading (b) and reloading (c)

Although the normal force model discussed above is a simple empirical model,

Walton and Braun (6) had shown that it can effectively approximate the behavior observed

n experiments and finite element calculations (50). In this study, this model has been used

to simulate the behavior of vibrating beds. Results compared with experimental data also

lemonstrate the effectness of this model.

The normal coefficient of restitution e derived from the above force model proceeds

as follows. Consider the impact of two spheres approaching along the line joining the

centers of the spheres. The normal interaction force F1 begins to act and change the
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velocities of the spheres after their initial contact. Suppose vl and V2 are the value of these

velocities, mi and m2 sphere masses; then the equations of motion are,

dvl 	 dv 2
M1 •	 = — F 1	 = —F 1 	 (2-4-2)

dt 	 dt

Hence, the relative velocity of approach& is,

dc.=vi+v2 	 (2-4-3)

From (2-4-1) , (2-4-2) and (2-4-3), the acceleration of approach can be expressed as,

a =
	 M1 + M2	

(2-4-4)
m2

M1 • m2Upon multiplying both sides of (2-4-4) by a and using the notation =

d(a)
2
 = — K1 oc • da

P-
(2-4-5)

Let va be the approach velocity when a = 0 and a. be the maximum deformation

when ex = 0.

Integrating of (2-4-5) yields,

M1 ± M2

Next consider the equation of motion for unloading period when the spheres are separating

under the force F2. Then,

ml —
dV1 

= F2 	
dv 2

M2 •	 = F2
dt 	 dt

(2-4-7)

The relative approach velocity a is given by ec = —(vi + v2), and F 2 = K2-(a — ao). By

following the same procedure as above, we have,

1 *2 ) = K2 (a — co.d(a. — ao)
I

from which, by integration,

(2-4-8)
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1 a=°a
rm

2 )= —-2-K 	d[(0c—ao) 2 ]2 f d(a
214 a=aoOt=vs

(2-4-9)

e = =

amk

Va 	 am K1

vs 

(a ac:111 K2

(a —ao) K2
(2-4-11)

where the lower limit vs is the relative velocity of separation of the two spheres when the

interaction force is zero. It follows from (2-4-9) that,

V s = (OG °Co 
)11K 2 	

(2-4- 10)

Therefore, the effective coefficient of restitution e can be obtained from the definition,

Upon noting that the ratio
2/

	

am— ao F7 K2 K1	 = 	
K2 is 

independent of the past loading
ocm 	 F 

K1

history, we find a constant of coefficient restitution,

K1
e= 1[K2 • (2-4- 12)

2.4.2 Tangential Force Model

The tangential force model used in this study is patterned after the theorectical model

developed by Mindin and Deresiewicz (49), who proposed to use a tangential stiffness

which decreases with the tangential displacement until full sliding occurs.

The tangential force between two interacting spheres is the component on the

tangential plane which is perpendicular to the vector pointing from one sphere center to
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the other. As the position of spheres change, the tangential plane also changes. The

following discussion is based on a coordinate system fixed to the tangential plane between

two interacting spheres at the previous time step (t- Δ t).

The force due to relative surface slip at time t between particles i and j, denoted by

ftij, is calculated from the previous value (at t- Δ t) of the tangential force, tf, by

considering the adjustment caused by the relative surface displacement ΔS, namely,

where tp is a vector lying in the tangential plane (at time t) whose magnitude is obtained

from the projection of tf onto this plane (Figure 2.5). It is important to note that tf shown

in the figure does not lie in the tangent plane at time t, since this plane has moved during

Δ t. Here Kr is the effective tangential stiffness, K0 is the initial tangential stiffness, ΔS t and

ΔSn are the components of ΔS in the tangential and normal directions of the tangential

plane at time t, respectively (Figure 2.6). Therefore, Kt  (ΔSt) and K0 (ΔSn) represent

the tangential forces due to the relative surface displacement.

Figure 2.5 Collision of two spheres at time t. Here tf is the interaction from the
tangential force model at thie t - Δ  t, and tp and tr are its projection into the
tangent plane and normal direction as shown.
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In rectangular component form, equation (2-4-13) for the force ftij ( ftijx, ftijy,

ftijz) is given by,

ftijy = txp + Kt • (A S.). + K o • (AS.).

ftijy = typ + Kt • (AS t) y + K o • (AS.) y
	 (2-4- 14)

ftijy = tzp + Kt • (ASS) . + Ko • (AS.).

where txp, typ and tzp are the components of tp in the x,y and z directions, respectively.

The friction force tf calculated at the last time step (at t-At) is not in the current

tangential plane (Figure 2.5), while the effective part for the current time t is its tangential

component tp in the current tangential plane. The rectangular components txp, typ and tzp

of tp can be calculated from the rectangular components y:x, 67 and tfz of tf by resolving

tf into tangential component tp (txp, typ, tzp) and normal component tr (trx, try, trz). It is

clear that tp may be written as,

tp = tf - tr	 (2-4-15)

By making use of

( trx\ 	 Vcx\i xk \

try = (xk yk zk) tfy yk
trz 	 z )\ zk

where (xk yk zk) are the direction cosines of current tangential plane, equation (2-4-15)

can be written in rectangular component form as,

' txp (

typ = ffy —(xk

\ ffz

rxk

yk zk) tfy yk

z Azk

(2-4-16)
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The values of tfx, tfy and tfz are known from the neighbor list, and xk, yk and zk

are calculated from the current particle position.

The relative surface displacement ΔS (dsx dsy dsz) contains two parts (Figure 2.6)

One is the contribution due to the translation of the particles, the other is the contribution

due to the relative rotation, which depends on the angular velocities of both particles. The

tangential component ΔSt is obtained simply by projecting ΔS (dsx dsy dsz) onto the

current tangential plane, yielding

where (tx ty tz) are the direction cosines of the unit vector in the current tangential

plane, given by tf/|tf|

Figure 2.6 Relative surface displacement ΔS at time (t - Δ  t) of two interaction
spheres and its projection onto the tangent plane ΔS t and normal direction ΔSn at
time t.
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Once ASt has been obtained, AS. (dsxp dsyp dszp) is straightforward to compute

by vector subtraction,

AS. = AS — ASt (2-4-18)

which in component form

dsxp\

is given by,

"dsx' dsx)7

dsyp = dsy —(tx ty tz) dsy
dsz\ 	 A

lY
tz I

(2-4-19)

The stiffness values used for the two components of AS are different. Since slip

cannot occur in the direction along the line of centers of the spheres, the initial tangential

stiffness Ko is fixed and defined as Ki -ratk, where Ki is normal stiffness and ratk is an

input ratio. However, the effective tangential stiffness Kt in this model is a variable, related

to the Coulomb friction limiting value and the direction of the total tangential force. To

evaluate the potential sliding in the two directions, the code introduces a factor scalek to

express Kt , namely,

Kt = Ko • scalek	 (2-4-20)

where scalek is given by

scalek =(1 
T —T *

11N ±T *
(2-4-21)

Here, 1IN is the maximum Coulomb friction force, T is the smaller value of the old

friction force tf and p./V , T * is a variable, which is initially zero and subsequently set to the

value of T, whenever the slip reverses direction. The sign of T * is also decided by the slip

direction.

2.5 Time Step and Material Properties

The proper selection of a time step and material properties, such as the loading stiffness,

particle densities and normal restitution coefficient, is essential to make effective
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comparisons between the simulations and physical experiments. In making such a

comparison, it is preferable to use realistic properties. However, this has the disadvantage

of sigificantly increasing compuing time. The cpu time depends on the time step, which is

generally specified by the force model and is closely related to the choice of particle

material properties. The use of a relatively larger time step than that determined from

realistic material properties can save significant computing time, but results in some loss of

accuracy in intergration of the system of equations. The balance of these two aspects is

very important.

The time step used in this study is derived from the normal force model by

considering the time spent in the restitution (unloading) period during a particle collision.

Consider the general integration of (2-4-8)

_1 . 6f=6d (dc2 ) = _K2 a=famd [ (cc
2211a=o 	 a=a

namely,

da = = K2 
ani CCO) 2 — (a - curdt

This gives a restitution time tr,

(2-5-1)

d (0C — OCO)
tr =

2 	 ifao k am — a \ 2 —
( 

— CC 0) 2
l-t

(2-5-2)

11 	 arcs].n oc CC o 	 IC= -- =K 2	 a — am 	K 2

For a monodisperse system of particles (i.e., uniform density and size) the reduced

mass becomes m/2; hence it follows from (2-4-12) that,
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IL lei M	 n 11 Mtr = — 	 = — • e.
2 2K2 2 	 2Ki

(2-5-3)

In the actual simulation code, the duration of the impact is approximated as 2tr We

note that the time spent in restitution compared to compression has not been monitored

and that the use of 2tr is merely an estimate. Then time step At using in the simulation is

determined by dividing tr into n intervals, i.e.,

At jite)  m jn•e) _Ind' • p 

n 	 1(21Ci 	 n 	 12.Ki
(2-5-4)

where d is the diameter of particle, p is the density of the material. The value of n is input

by the user. Equation (2-5-4) shows that the time step is dependent on the material

properties e, n, Ki, p and the sphere diameter.

From (2-5-4), it is clear that as n decreases, the value of time step increases, which

means a higher computing efficiency but less accuracy. In this simulation, after testing

several different values of n, it was found that values between 15 -30 gave good accuracy

and efficiency. This was done by checking the results for various choices of n.

In general, the results are sensitive to the restitution coefficient e. Since it is usually

very difficult to measure e correctly, comparisons with simulations are sometimes

uncertain. In this study, a value of e = 0.9 is chosen to model glass or plastic material in

most of cases studies except when discussing the effects of this parameter.

The normal stiffness Ki is the most important factor affecting the time step in this

force model, but it is not listed in any handbooks. A related parameter usually listed in the

handbooks is Young's modulus E. Therefore, the relationship between stiffness 10 and

Young's modulus E in current force model is the key for estimating stiffness. However, to

the author's knowledge, this relationship has not been reported for contact model

employed in these studies. Therefore, an equivalent Hertz force model is used for

estimation. Such an approach is reasonable since collisional deformation is less than one or
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two percent of the sphere diameter, and consequently Walton and Braun's partially

latching spring model follows the Hertian 3/2 power model well.

The force-displacement relationship in Hertz contact model can be expressed as,

where KH is the stiffness, E is Young's modulus, v is the Poison's ratio, d is the diameter of

the particle, and a is the relative displacement or overlap after initial contact (50).

To find the an equivalence between the Hertz model and the spring-latching model,

the maximum strain energies from these two models are equated. This means that the

areas under the two force-displacement curves must be equal (Fig. 2.7). For the Hertz

model, upon condidering (2-5-5), this maximum strain energy Umax is given by,

Figure 2.7 An equivalence between Hertz model and spring-latching model.
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Suppose the maximun impact velocity between two spheres in a vibrating bed is

determined by the maximum shaking velocity v max of the vibrating floor. The kinetic

energy of a particle whose velocity is v max is given by,

Umax = —
1

mv
2 	 max

(2-5-7)

where m is the particle mass. The maximum overlap a max is obtained by equating (2-5-6)

and (2-5-7), i.e.,

2
15my rna2 	• (1— v2 ) -x 5

(2-5-8)a max =
4- E ,471 .

[

From the spring-latching

a

model, the work done is given by,

a
Umax = Fl .da= 	 Ki.a.da= 1— 2K1 amx (2-5-9)

0	 0	 2

The loading stiffness In is then approximated by equating (2-5-7) with (2-5-9), which

( 	  2yields, IC, = m 
vmax

	.It is important to realize that this is merely an estimate and that
a Max

IC/ is in fact a material parameter.

The influence of normal stiffness In on the computed granular temperature and

solids fraction profiles has been carefully studied by making a comparison of two cases

having different In values with other properties being identical. The results of this

comparison, which is discussed in Chapter 4, clearly indicated that the use of a normal

stiffness value one hundred times smaller than that derived from the equivalent Hertz

model, caused an insignificant difference in the computations. Recall from equation (2-5-

4) that the time step At depends on the value of KI. In order to reduce computing time,
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most of the simulations which are compared with real experiments and kinetic theory

predictions employ the smaller normal stiffness value.

Besides material properties, the time step is considerablly influenced by the size of

the particle. Particles smaller than 3 mm in diameter are usually used in experiments, but

cause problems for use in simulation. For example, suppose one is modeling a granular

flow of glass spheres of 3 mm in diameter. The time step (from equation (2-5-4)) will be

g/
m anof the order of 10 -6 seconds, for glass spheres with density p = 2490 k 	 3 , andc

Young's modulus E = 6.8948 x 10 10 N/ 2. For a small system of particles (np = 240),

approximately 240 hours of CPU time on a Sun Sparc10 workstation was required to

model a 40 second real time experiment.

2.6 Boundary Conditions

Once the interparticle forces are specified, only the boundary conditions and the initial

conditions are required to completely solve the problem. Experiments and theoretical

studies have shown that boundary conditions greatly influence observed bulk flow

behavior (1, 42 ).

Due to dissipative interparticle collisions in granular material, external energy must

be continually introduced into the system to maintain the granular temperature. Boundary

shaking and shear work are two important methods to provide this energy. Vibrating or

shearing walls may therefore be considered as a local source of temperature. On the other

hand, collisions with the boundary, especially with a fixed wall, are also dissipating energy.

From a kinematics point of view, a solid boundary is a kind of particular constraint acting

on the system, which is quite different than periodic boundaries. For example, simulation
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results have shown that the presence of solid side walls is crucial for producing a

convective motion in a vibrating bed.

In this simulation study, both the vibrating floor and side walls can be chosen to be

smooth, or frictional and flat or bumpy. Figure 2.8 illustrates the computational cells and

boundary conditions used in these studies.

Figure 2.8 Computational cells and boundary conditions

2.6.1 Periodic Boundary Condition

Due to the limitation of storage and speed of the computer, particle dynamics simulations

are usually performed on a small number of particles. If these particles are confined by the

walls of a container, a large fraction of them will lie on the surface, where the particles

experience quite different forces from those in the bulk. Periodic boundary conditions are
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to be preferred in most instances since they minimize these surface effects and preserve a

macroscopic homogeneity. Also, the use of nonperiodic cells with small systems might

preclude the occurrence of phenomena such as clustering (51), which takes place over a

large length scale.

Instead of having a real confining wall, the periodic boundary condition is

constructed by a primary cell and surrounding imaginary cells. Particles are originally in

the primary cell, whose lengths in x, y and z direction are given by xcell, ycell and zcell,

respectively. Each imaginary cell is a replica of the primary cell. For each particle having

coordinates (xp, yp, zp), there are an infinite number of images in the imaginary cells at

position (xi, yi, zi), where

{

xi = xp +1- xcell
yi = yp + m • ycell (1,m,n are arbitrary positive or negative integers) 	 (2-6-1)
zi = zp + n • zcell

In the course of a simulation, as a particle in the primary cell moves, its image in

each neighboring cell moves in exactly the same way. As a particle leaves the primary cell,

one of its images will enter from the opposite side. Since there are no real walls, no

surface effect exists.

A particle's real position can be inside or outside of the primary cell. Particle

collisions can occur in variety of ways between particles' images or between the particle

and other particles' images. An example is depicted in Figure 2.9, particles I, J and K are

in three different cells. Here, particle I is colliding with the image of particle K outside of

the primary cell, while particle /'s image in primary cell is just touching the image of

particle J. Each time the program calculates the real distance between two particles to

determine if collision has occured, it also checks the distance between one particle and

other particle's image, as well as between the two images. Suppose rx = x(J) - x(I) is the

real distance in the x direction between particle I and J, then the smallest distance between

their images may be found by calculating a new rx value, which is given by
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where rx in left side of equation (2-6-2) is the new value of rx  , rx in right side of (2-6-2)

is the old value, and Int represents the integer conversion function.

Figure 2.9 Collisions between particles and their images. Spheres depict the real particles

If I and J are in the same cell, Int(rx/xcell) will be zero since rx < xcell .

Therefore the value of rx will not be changed. If I and J are in different cells, the new rx

value is given by equation ( 2-6-3). Similarly, the nearest image distance in the y and z

directions is found by

In the vibrating bed case, the periodic boundary conditions are imposed only in the x and z

directions. The solid vibrating floor is located at y = 0. Thus the nearest image distance

checking in y - direction is not performed.



48

2.6.2 Plane Boundary

A plane boundary means that there is a solid plane to reflect the particles. A particle

impacts this plane only when the distance from the center of the particle to the plane is just

equal to or less than the radius of the particle. During the impact, the plane exerts a

normal force and a tangential force on the particle (Figure 2.10)

Figure 2.10 A plane boundary is modeled by a boundary particle of infinite mass

The solid plane is modeled by a sphere, which reflects an impacting free particle. It

is noted that the solid plane sphere is unaffected by the impact and consequently maintains

the same motion it had before impact. Suppose the plane boundary is located in the y = 0

plane. The center of corresponding boundary sphere j should be in the plane of y - rad

(j), where rad(j) is its radius. The x and z coordinates of the boundary particle are not

specified. In order to find if particle i of radius rad(i) hits the plane , the code only checks
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if the distance rij between the center of particle i and boundary particle is equal to or less

than the sum of their radii.

n1 2 r. 2 + rye + rz 2 5[rad(i) + rad( Ar

where rx , ry and r, are the x, y, and z coordinate differences between the center of the

two spheres. For the previous example (plane at y = 0), rx and rz are always set to zero,

which means the center of boundary particle has the same x and z coordinates as particle i.

The only nonzero coordinate difference occurs in the y direction, i.e, ry. The friction

coefficient and restitution coefficient of the boundary particle can be input in i3ds. In this

way the boundary particle can model a wall having various properties — smooth or

frictional. (Figure 2.10)

2.6.3 Bumpy Boundary

Bumpy boundaries can be composed of identical, smooth or frictional half spheres. Two

types of arrangements are currently available for use in this code, square arrangement or

triangular arrangement. Details about these arrangements can be found in (45). It is

important to check the spacing between the boundary particles in order to prevent free

particles from passing through the gap. Overlap of boundary particles is not allowed,

since the overlapped sphere volume will be counted twice when calculating the total

volume of the cell and the zone (an equal portion of the cell ).

2.6.4 Velocity of the Vibrating Floor

The initial velocity of a boundary particle is input by the user in the file i3ds. When a free

particle collides with the boundary, only the free particle will experience change, while the

particle representing the boundary remains unaffected as if it had infinite mass.

The velocity and displacement of vibrating floor is specified in subroutine Integ2

after certain parameters ( such as tpour, frq and vamp), are read in by Datain.
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Here, tpour is a parameter indicating the desired time for pouring, during which

the velocity of the vibrating bottom is set to zero. After this is completed, the bottom

starts to shake at a fixed frequency frq. The amplitude of vibrating velocity increases

linearly from zero to the input value vamp in the first second of shaking, and then remains

fixed. When a sinusoidal vibration is applied in vertical y direction, the floor velocity v(y)

is given by

v(y) = vamp • cos(27t • frq • t) 	 (2-6-6)

Shaking in three direction can be achieved by adding the other two velocity

components, hence

v(x) = vampx• cos(27c • frqx•t + (px)

v(y) vampy - cos(27c • frqy - t + 9y) 	 (2-6-7)

v(z) = vamp2. cos(2n • frqz • t + (pz)

where (px, (py and (pz are the initial phase angles.In the studies which are compared with

theoretical predictions, the boundary is oscillated in three directions with equal phase

angles of zero and equal frequencies and amplitudes.

2.6.5 How to Define a Boundary Condition

The number of boundary particles along each coordinate direction is specified in file i3ds.

For example, nybx0 and nzbx0 are the number of boundary particles along y and z

direction at the plane of x 0, respectively. Setting both of them equal to zero implies

periodic boundary condition at that plane. A plane boundary is created by setting nybx0 =

nzbx0 = 1. Any other number (except zero and one) for nybx0 or nzbx0 means a real

bumpy boundary on plane x = 0. There are other analogous flags defined by subroutine

Datain, each of which represents the number of boundary particles in a particular
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direction on a particular plane (eg., nxbzl ,nybzi). If a flag is omitted, the code will set this

flag to its default value of zero, which implies a periodic boundary.



CHAPTER 3

DIAGNOSTICS AND DATA ANALYSIS

The advantage the of dynamics simulations is to obtain a substantial amount of time-

ordered information about individual particle's positions, velocities (including angular

velocities) and forces. Methods to compute macroscopic or bulk properties, such as

granular temperature, as well as time correlation functions, is the topic to be discussed in

this chapter. In a dynamics simulation, it would be inappropriate to store every

configuration on a disk or tape for further processing. Usually the bulk properties are

obtained by taking appropriate weighted averages during the simulation. Calculation of

time correlation functions are made after completing a simulation by post-processing

stored data stored on disk.

3.1 Diagnostic Quantities and Averages

In order to examine the macroscopic properties in a granular flow, diagnostic parameters

are computed by taking space and time averages of particle velocities and their

fluctuations. These include mean and deviatoric velocities, mean kinetic energy density,

granular temperature and solids fraction.

Two types of spatial average method are employed. One is the "global" or

"computational cell" average, which is performed by considering the contribution of every

particle in the system. The other, a "local" average taken over a portion of the

computational cell, provides a means of examining spatial variations of diagnostic

quantities. Depending on the relative size of the computational region over which averages

are performed, it is possible to analyze details of the microstructure. In studies where

periodic boundary conditions are applied in the directions perpendicular to the gravity

field, the computational cell is partitioned into "zones" along its depth since properties

52
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should be uniform in the other directions. Generally a particle may occupy up to three

zones, since each element of the partition of has a minimum height equal to the radius of

the largest free (i.e., non-boundary and non-fixed) particle. An instantaneous zone

diagnostic is a mass-weighted average taken over all the particles which occupy a zone at

some time t. For example, in Figure 3.1, only the mass contained in the lower part of

particle 1, the central portion of particle 2 and the upper segment of particle 3 (dark

region) are counted when performing the average for zone y. Therefore, the instantaneous

mean velocity in zone y is simply given by,

where v i (t) is the velocity of particle i, mi ( t ) is the mass fraction of particle i in zone y,

while ∑iEy means the summation over all the particles occupying zone y. So the

denominator of (3-1-1) is the total particle mass of zone y, while the numerator is its total

momentum.

Figure 3.1 In computing mass-weighted averages of diagnostic quantities, only
the tractional portion of the particle in the zone contributes to the average.
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It is straightforward to express the instantaneous cell average mean velocity as

Ucell(t) = iEcell
IM(i) • V i(t)

iEcell 
m(i) (3-1-2)

where m(i) is the mass of particle i and the summation is over all particles in the

computational cell.

Time averages of the mass-weighted, instantaneous quantities are computed both

as "short-term" or "long-term" values. Short term time averages are performed over time

intervals specified by the user (i.e., usually dtout, a user-input parameter to specify when

computed diagnostics will be written to the output files). The smallest time interval for

computing short-term averages is the time step At (discussed in section 2.7). Although it is

not practical to choose time step as the short term average interval, an interval of 7.5

times of time step has been frequently used in this study when spectral analysis is used to

examine the change of zone average velocities. In a y-zone, the short term cumulative

mean velocity can be expressed as

where the notation ( ) stands for the short term time average, and E represents the
tedtout

sum of the instantaneous values in the time interval dtout. Equation (3-1-3) is merely then

a short-term, mass-weighted cumulative mean value.

The time interval over which to compute the long term cumulative average of

instantaneous mass-weighted values, denoted by (} L , is a user input quantity. For this

purpose, statistics are accumulated after the system has attained steady state. Long term
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cumulative average will be denoted by ( ) z, later. So it is straightforward to express long

term cumulative mean velocity in zone y as,

tmax

(Ein,(t)* Vi (0)

t=to iEy

tmax  y,(
t=ro iey

(3-1-4)

where the outer summations are taken from t = to (standing for "tzero") to "max", a flag

for maximum time running simulation.

In this study, the short and long term cumulative mean velocities in different zones

are calculated in rectangular component form and saved separately in the files named zwel

(for the x components), zyvel (for the y components) and zzvel (for the z components).

The space-time averages of other diagnostic parameters are defined and computed

in a manner analogous to equations (3-1-1), (3-1-3) and (3-1-4).

The deviatoric velocity of a particle, commonly referred to as the fluctuating part

of velocity, is found by subtracting the mean velocity from the particle's absolute velocity.

Hence, the instantaneous deviatoric velocity Ci(t) for particle i in zone y is expressed as,

C ; (t)= v i (t)—u(y,t) 	 (3 - 1-5)

where u(y,t) is given by (3-1-1).

A parameter extensively used in statistical physics is the root-mean-square (rms)

deviatoric velocity, whose y-zone mass-weighted average at time t is calculated as,

C(y,t) =
( E ihi(t)•Ci(t)2 Y2
lEy 

tey
ini (t) (3- 1-6)

where the mass-weighted average is taken over the square of deviatoric velocity Ci(t),

given by (3-1-5), for all the particles occupying zone y at time t. The long term cumulative
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mass-weighted average of the rms deviatoric velocity is computed after steady state is

attained at time t = to over a time interval (tmax - to) and is given by,

(C(y,t))L =

( trasx
fri i(t)-(vi(t)–u(y,t))2t=zo 	iey

t max
( rhi(1"))

t=10 iey

(3-1-7)

In the code, the short and long term rms deviatoric velocity values for different

zones are saved in the file zpadel in subroutine Datasave.

A particularly important quantity to characterize the bulk behavior is the "granular

temperature" — a term first used by Ogawa(38) twenty six years ago. From the kinetic

theory point of view, the random motion of granular particles has an obvious analogy

with the thermal motion of molecules in liquids and gases. Similar to the definition of

temperature in thermodynamics, granular temperature, denoted by T, has been defined as a

measure of the kinetic energy of the granular mass due to the particles' fluctuating

velocities. It is commonly referred to as the "translational fluctuation energy per unit

mass" and is defined by,

3 	 1
= .(C(Y't))2. 	

(3-1-8)

By using the the above notation, long term cumulative mass-weighted average

granular temperature T(y) (of zone y) is computed as,

t max

1 	 i, t 	(o i ey
I iiii(t).(vi(t)–u(y,t))2

.-- 	
)

=t T (y) = • ((C(y,t))L )2 = 3 I max 	 (3-1-9)
I ( I, AM))

	

(=to	 iEy

In addition to the above, the mean translational kinetic energy density KE and

solids fraction v are monitored at each time step and averaged over short and long term



t =to iE y 
VO4(0)

t max

V(Y) = I
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periods. The long term mean of KE, which measures the translational kinetic energy per

unit volume, is computed as,

KE(y).

!max
(-1.Ein' i(t)'(V(t) - 110) ,t))2)t=to 	tEy

IniaxVol(y)t=to
(3-1-10)

where Vol(y) is the volume of zone y. The long term cumulative average of the solids

fraction v(y) is given by,

where vo/y(i) is the volume of particle i in zone y.

(3-1-11)

3.2 Spectral Analysis and Time Correlation Functions

A powerful technique to analyze random phenomena is through spectral analysis, which is

done using Fast Fourier Transforms (1-1, 1). In this work, power spectral density of the

velocity field history is used to reveal the frequency composition of this time function.

Intensity peaks at certain frequencies indicate the energy level distribution in the frequency

domain. A white noise type record will have a broad spectral density function, while the

spectral density for a narrow-band random record is contentrated around the frequency of

the instantaneous variation within the envelope. In spite of the seemingly random nature of

vibrating particle beds, the results of this work does indicate a strong degree of statistical

regularity.

In order to compute statistics for the flow, it is necessary to accumulate (or

sample) large quantities of data after the system reaches steady state (at t = to). This is

done by restarting the code at to and storing the configuration data (i.e., phase space). A
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minimum time interval for sampling ts should be chosen to be approximately one-half of

the mean collision time (time for the loading-unloading process to occur) to compensate

for the fact that during a collsion, the direction of a particle's velocity will change. An

approximation to this time is used, given by (n/2)At, where At and n are defined in

equation (2-5-4).

If X(f) is the Fourier transforms of real time function x(t), the power spectral

density of x(t) can be expressed as,

S(f = lim — X (f) X * ( f )
	

(3-2-1)
tp--3°o tp

where S(f ±) is the spectral density function over positive and negative frequencies, x i) is

the averaging period, and X* is the complex conjugate of X.

An important statistic is the correlation function, which is a measure of the

"similarity" between two stochastic variables wi(t), w2(t). We imagine performing a large

number of experiments to generate an ensemble (or collection), denoted by

w1 (t) k , k=1,2,3,...}, {w2 (t) k ,k= 1, 2, 3, ...} Then, as shown in Figure 3.2a, the

correlation between them is determined by multiplying the ordinates of the two records at

each time t and then computing the average value, denoted by (wl(t)w2(t)), over the

ensemble of experiments by dividing the sum of the products by the number of products.

It is evident that the correlation so found will be largest when the two records are similar

or identical. For dissimilar records, some of the products will be positive and others will be

negative, so their sum will be smaller.

Next consider the case where w2 (t) = w/ (t) = w(t). Then the autocorrelation

function, denoted by R (t) is defined by (w(t)w(t+ T)), where ( ) denotes the average

over the ensemble. Here ti is a time shift, as shown in Figure 3.2b. R(t) is then the

expected value of the product w(t)w(t+ t), that is,
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If the process is ergodic, i.e., that the ensemble average can be replaced by a time

average taken from only a single sample which is representative of the ensemble, then the

autocorrelation can be computed as,

where t is the sampling time ts, and tmax  is the maximum time over which the computation

is performed, usually one-half of the simulation run time. Properties of R( τ ) can be found

in (52) and are briefly discussed here. If w(t) is stationary, then E[w(t)] = Ejw(t+τ )] =

m. Also, because of the assumed stationary nature of w(t), the value of R(τ ) depends only

on the time interval; hence R(τ) = R(-τ ) and therfore the function is even-valued. It is clear

that R(τ ) reduces to the mean square value E[w(t)2 ] at τ  = 0 which is its maximum. Since

for a random process there will be no correlation between w(t) and w(t+ τ ) at large values

of τ , it can be shown that R( τ )τ→∞ m2 . Consequently, for processes with a zero mean, R( τ

) decays to zero asτ→∞ . If w(t) is periodic, R(τ ) is always periodic.

Figure 3.2 Calulation of correlation functions.
(a) Correlation between w1(t) and w2 (t), (b) w(t) shifted by
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Similarly, the cross-correlation between two variables of w(t) and u(t) is defined by,

R.( t) = w( t)u( t +'t)] = (w(t)u(t + T))

(3-2-3)
1 

ten=
= w(t)u(t

t max t= 1

Unlike the autocorrelation function, the cross-correlation is not an even-

valued.function of t, It has an important application in detection of the time delays

between two signals, which will be shown by following example.

Consider two random processes x(t) and y(t), defined by

x(t) = xosin(cot+ 0)

y(t) = xosin(cot + 0— (1))

where the probability density of phase angles 0 is given by,

p(e) = 
{Y271

0 	 elsewhere

for 0 5 0 5. 27c

and (131 is a constant phase angle. Obviously, y(t) can be regarded as the response of x(t) in

an electrical or mechanical system with a phase lag (1). Then the autocorrelation function

R(T) of x(t) can be calculated from the definition (3-2-1) as,

R(r)= E(x(t)x(t +T))= E[xo 2 sin(cot+ 0)sin (cot + OYC 0)]

= 1- X0 2 sin (cot + 9) sin (cot + cot + 0) d6
27t 0
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which, after making use of the identity,

sin (cot + c t + 0) = sin (cot + 0) cos(on) + cos(cot + 0) sin (on)

and evaluating the integrals, gives,

Re 	 1C) = — XO2 cos(on).
2

(3-2-3)

The cross-correlation function Rxy of x(t) and y(t) can be calculated in a similar manner as,

R,(T) = E(x(t)y(t + T)) = E[xo 2 sin(cwt+0)sin( cot + cot+0- 4))]

1= — f.x0 2 sin(o)t + 0)sin(a)t+ on +0— 4))d0
27c 0

which results in,

R iy (t) = 1 Xo` COS(On 4))
2

(3-2-4)

A comparison of R(t) with Rxy shows that they differ only by a phase angle. In the

event that two random signals have almost same power spectral density, (which means

their frequency contents are almost same), the phase lag, usually not easily detected from

the original waveforms, can be found by comparing the peaks in the plots of

autocorrelation and cross-correlation functions.

Another important application of time correlation function occurs in the

determination of a self-diffusion coefficient, which, in three dimensions, is given by,

D =—ref d'r(v(r)• v(0))
3 0

(3-2-5)

where v(0) is the centre-of mass velocity of a single particle at time zero, and v(c) is the

velocity at a time ti seconds later. The autocorrelation function used in this context

(v(t) • v(0)) in (3-2-5) represents an ensemble average, which, in performing the actual
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calculation, is replaced by a time average, assuming that the process is ergodic. During the

simulation, the velocities of a particle are sampled (after the system attains steady state) at

equally spaced intervals ts. In order to improve statistical accuracy, in this study, the

velocity autocorrelation functions are first computed for each of the N free particles

separately, and then the results are added together and divided by N to obtain an average

value. Hence, for each value of ti which is a multiple of the sample time t s, the

autocorrelation R(t) is computed as,

N
R(T) = (v(t) v(0)) = 1 (vi(t + t) • vi(t))

(3-2-6)

N

	

= I 	 Evi(t+,)•vi(t)
	AT A:4 	tznix

The self-diffusion coefficient, which is the trace of the diffusion tensor, is then computed

from (3-2-5). This function will, in general, decay to zero at a time called the "relaxation

time".

In performing the autocorrelation calculation (3-2-6), the number of time-sampled

velocities for each particle should be sufficiently large, otherwise the statistical precision

for large time shift values ti will be very poor. For example, if the number of velocity data

values is equivalent to the maximum time shift tmax + 1 ),( 	 calculation of R(tmax) will\ 

involve only one term in the sum, i.e., the product of first and last data value. To avoid

this, a set of two thousand velocity data points for each particle has been used in this

study, while the maximum time shift is only one thousand. Thus the product terms in

summation (shown as tmax in (3-2-6)) is at least one thousand for each T.



63

The autocorrelation computation expressed by (3-2-6) will be very time consuming

if the data stored in a file are read in by FORTRAN direct access I/O statements. Most of

the CPU time would spent on accessing data from the file in a nonsequential manner. To

speed up the computation, a large array is generated to store velocity time history of all N

particles. Although for a large system of particles, this array will require substantial

memory, approximately 95 percent savings in CPU time is achieved.

It is also possible to improve the speed of calculating time correlation function by

taking the advantage of technique (53). The autocorrelation function may be obtained

by using the inverse Fourier transform of the spectral density. But this technique would

require even more memory, which was not available in computer system used in these

studies.

3.3 Mean Square Displacement

A method to compute the self-diffusion coefficient D has been evaluated in the previous

section by means of velocity autocorrelation function. An equivalent method using the

Einstein expression for self-diffusion, is discussed in this section. In what follows, a

derivation of this expression and its relationship to the autocorrelation function is

presented (54).

Suppose that at time t 0 a group of particles are located within a small volume

centered at r = O. At time t, the fraction of these particles per unit volume around the

point r , denoted by Gs(r, t), obeys a diffusion equation given by,

—
d

G (r,t) DV 2Gs(r,t) (3-3-1)
dt

where D is the self-diffusion coefficient. Under the isotropic assumption, a solution of (3-
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3-1) subject to the initial condition that Gs(r,0) = 6(r) is,

Gs(r,t),_. 	1(47tD0312 exP(—r2 J 4Dt) (3-3-2)

It is clear that G.,(r, ,t)dr is the probability of finding a particle in a region dr

around point r at time t given that the particle was at the origin at time t 0. So the mean

square displacement (kr), computed as the expected value of r2 , is given by,

00

,(Ir1 2 ) = r 2a4r ,t) • 41t 1- 2 dr	 (3-3 -3)
0

Upon substituting (3-3-2) into (3-3-3) and integrating, the Einstein relation

2tD = -31 ([r(t)—r(0)] 2 ) 	 (3-3-4)

is obtained. Thus the self -diffusion coefficient D can be computed from the mean-square

displacement as,

D =lir12(6t) - 1 ([r(t) — r(0)}2 )	 (3 -3-5)

Equation (3-3-5) is equivalent to (3-2-5) for stationary processes as can be seen by

observing that

1--((r(t)—r(0)) 2
)r 

-d 
r ( t ) —r(0)) 2 )

2t 	 2 dt
(3-3-6)

= jdti(;(1);(0))
0
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In the actual computation of the mean square displacement, the same averaging

strategy is employed as that in computing the autocorrelation function. That is, the mean

square displacement for each particle is obtained, and an average is then computed for the

system of particles. Hence we have,

N 'max r(Irr 	 1) = 	 i[xi(t + 	 xi(t)}2 +[yi(t+ t)— yi(t)r + [zi(t + — zi(t)r } (3-3-7)
N	 t=1

where xi , y i and z i are the center coordinates of particle i, which are not reflected back

into the primary computational cell when they move outside of this cell. In running the

simulation, before restarting the code for sampling after steady state is attained, the input

icoord, is set to 1, which signal the output of the particles' real coordinates possibly

outside of the primary computational cell.

The Einstein relation provides an alternative way to compute aself-diffusion

coefficient and it also has some advantages over velocity autocorrelation method. In the

case that the correlations decay slowly to zero, their tails may extend so long as to exceed

the range for which the velocities have been recorded. By omitting the contribution of the

integral under such a long tail, significant statistical errors in diffusion coefficient

calculation can occur. Use of the mean square displacement, however, does not require

any numerical integration, and in addition, the treatment of displacement variables is

relatively easy to handle. In this study, both methods are used for comparison purposes.



CHAPTER 4

SMOOTH UNIFORM BEDS WITH PERIODIC SIDE WALLS

The particle dynamics modeling of the smooth, uniform vibrating beds with periodic side

walls and a flat vibrating floor will be discussed in this Chapter. The focus on the simple

smooth, uniform beds makes it possible to compare these results with recent kinetic theory

predictions. The use of periodic side boundaries permits modeling of a small system

without significant wall effects. Since nearly smooth, uniform spheres have been used in

many of the experiments on vibrating granular beds, it is also possible to find suitable

cases to check the effectiveness of the results to be discussed.

The computational cell (see Figure 2.8a) in this study consists of a plane floor,

periodic boundaries along the sides and an open top surface. The cell is usually 2.5 times

as high as the densest packing. A right-handed Cartesian coordinate system is established

such that the origin of the x and z axes coincides with a corner of the floor; gravity acts in

the -y direction.

After the initial configuration has been randomly generated in the cell, a "pouring"

of particles is simply simulated by allowing particles to fall freely under the influence of

gravity into a loose packing. Then the bottom plane starts to vibrate sinusoidally. At the

first second of shaking, the amplitude of velocity increases linearly from zero to a user

input value. Usually it takes more than four hundred shaking cycles for the system of

particles to reach a "steady state". After that statistics to compute long time cumulative

averages of diagnostic parameters are accumulated. In order to determine the depth

profiles of diagnostic quantities, the cell is partitioned into zones (or layers) of thickness

equal to the sphere diameter.

The first study is focused on an investigation of the temperature and solids fraction

depth profiles of uniform, smooth beds to compare the results with recent theoretical

66
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predictions of Richman and Martin (46) for smooth spheres. The effects of the bed mass,

the boundary shaking velocity and acceleration have been investigated. The influence of

normal stiffness (with restitution coefficient fixed) on simulation results is also studied.

Bed expansion and densification phenomena are examined by using a fixed

displacement amplitude of shaking. The influence of shaking acceleration on the bed

height and average cell packing fractions are analyzed and compared with the experimental

results of Hunt et al. (18).

Spectral analysis methods are introduced to examine the coupling between the

boundary velocity and the mean velocity in each layer. A simple method to measure the

sound attenuation in the granular medium is also discussed.

Diffusion in granular vibrating beds has also been carefully studied. Results

calculated from velocity autocorrelation functions are compared with those obtained by

mean square displacement methods and analytical methods.

The diagnostic methods used in this study have been briefly introduced in Chapter

3, and will be specified in each case study before introducing the results.

4.1 Temperature and Solids Fraction Profiles

The concept of a granular temperature is perhaps the most important key to understanding

the behavior of agitated granular systems. The work done by the external forces transfers

kinetic energy into mean motion of a granular system. Meanwhile, the interparticle

collisions convert some of the kinetic energy of the mean motion into granular

temperature (which is the kinetic energy associated with the random particle velocities).

Therefore, the magnitude of granular temperature is proportional to the mean velocity

gradient within the material. Finally, the inelastic collisions will dissipate granular

temperature into real thermodynamic heat. An increase in granular temperature reflects an

increase in the random motion of the particles, a larger velocity gradient or a smaller

dissipation due to inelastic collisions between particles.
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Another physical quantity of interest is the solids packing fraction v — the local

fraction of the volume occupied by particles — of the granular bed. This quantity is

directly connected with granular temperature, which will be shown by the simulation

results which follow.

In order to examine the local change of temperature and solids fraction, a series of

parameter studies were performed, from which comparisons with Richman and Martin's

theoretical predictions (46) were made. In making these comparisons, several of their

parameters are used.

To allow the floor to vibrate in three directions, the components of boundary

particle velocity v are given by,

vx = vo cos(27cf . 0
vy = vo cos(2lge . t + 2%) 	 (4-1-1)

vz = vo colitfs - t + 4%)

where vo is the velocity amplitudes and f is frequency. The components in (4-1-1) have

different initial phase angles, in order to make v a rotary vector similar to the case of

rotary currents in electricity. This is done in order to eliminate any mean motion across the

cell. For smooth spheres and flat floor case, the x and z components do not transfer any

momentum to the bed.

An analogy is made by equating the time average of (4-1-1) to Richman and

Martin's rms boundary fluctuation energy, denoted by V2 . Hence,

i,2
v2 =.1- ( v 2 = _____.1 1(v2 +v2 +1) 2)dt = v 0

3 	 3,t 0 x	 y 	 z 	 2 (4-1-2)

where 't is the period of the boundary velocity. This is normalized to yield a dimensionless

boundary fluctuation velocity Vb,
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Vb=  V 	 vo 	 2-nf • a 
dg	 2 dg 11-f,dg (4-1-3)

where d is the diameter of the particle, g is the gravitational acceleration, and a is the

displacement amplitude. Obviously, Vb is a measure of the input boundary fluctuation

energy.

The mass of spheres supported by the vibrating floor is quantified by the

dimensionless "mass hold-up", mt, which is given by

Nnd2int = fv(Oat = 	,
6A0

(4-1-3)

where L is the depth of the bed, = L— y , v(t) is the solid fraction along the depth, A is

the cross-section area of the cell, and N is the number of the spheres. A dimensionless

measure of granular temperature, given by

W(Y)= 11% . g 	(4-1-4)

where T is the granular temperature, Y = Y , is introduced to characterize thed 

effectiveness of the vibrating boundary to thermalize the granular mass.

4.1.1 Effect of Mass Hold-up mt

In the first set of case studies, a system of acrylic spheres with density p = 1200 kg/3 and

diameter d = 0.1 m was used. Sinusoidal oscillations of 50 Hz. were induced in three

directions through the bottom of a computational cell, which has equal width and length

(xcell = zcell = 0.5 m) and periodic side walls. The normal stiffness (K i = 2.7 x 10 s N/m )

was estimated by the equivalent Hertz force model discussed in Chapter 3, yielding a time

step dt = 6.4294 x10-6 seconds. The effects of mass hold-up mt and dimensionless

boundary fluctuation velocity Vb on granular temperature and solids fraction depth profile
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were investigated. A summary of the parameter values used in this first set of studies

appears in Table 4.1.

Table 4.1 List of parameters (Case 1)

Parameter Value

Particle Diameter d (m) 0.1

Density p (kg/n23) 1200

Normal Stiffness K1 (N/m) 2.7 x 108

Restitution Coefficient 0.9

Frequency f (Hz.) 50

Mass Hold-up me 1.0, 2.5, 5.0

Boundary Fluctuation Velocity Vb 0.25, 2.0, 5.0

The behavior of vibrating beds with mass hold-up rni 1.0 and 2.5 is shown in

Figures A4.la,b for a fixed boundary fluctuation velocity Vb = 2.0. (displacement

amplitude a can be calculated by (4-1-3), since f and Vb are known) The dimensionless

granular temperature W(Y) and solids fraction are plotted versus the demensionless bed

depth Y. The solid and dotted lines in the figures are the kinetic theory predictions of

Richman and Martin (46).

For a shallow bed (ms = 1), which consists of approximately two layers after

pouring, the bed swells in the vibrated state and particles disperse forming an expanded

bed, which is evident from its flat solids fraction profile (Figure A4.1b). The temperature

W(Y) decreases slowly along the depth (Figure A4.1a). This phenomenon is qualitatively in

agreement with the observations of Thomas et al. (16) in their "Newtonian state"

experiments. In contrast to the shallow bed, the deep bed ( ms = 2.5, 5.0) is only slightly
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thermalized for the same boundary fluctuation velocity Vb. The temperature profiles W(Y)

in Figure A4.1a (mt = 2.0) show a maximum at the vibrating floor and a monotonic

decrease with depth, while the solids fraction profile v(Y) has a peak at some intermediate

depth and a lower value at the vibrating floor. Both temperature and solids fraction

profiles are in good agreement with the kinetic theory predictions.

4.1.2 Effect of Boundary Fluctuation Velocity

The results in Figures A4.2a, b show the behavior of the bed when boundary input

fluctuation velocity is increased for a fixed granular mass (mg = 5). Large values of Vb are

more effective in thermalizing the bed as depicted by the increase of W(Y) in Figure A4.2a

and in the expansion of the bed shown in the solids fraction profiles of Figure A4.2b. Since

the total mass in the cell is equal, the area enclosed by each solids fraction curve is the

same for each case. However, the shapes of these areas are quite different. A large

agitation (Vb = 5.0) pushes most of the mass to the top. When the agitation is small (Vb =

0.25), the bed is only slightly thermalized with a nearly uniform density. In all cases, the

maximum temperature appears in the bottom, where the particles' motion is quite random

and the solids fraction is low. Simulation results again show good agreement with the

theoretical curves (46), represented by solid or dotted lines in Figures A4.2a, b.

Figures A4.1 and A4.2 reveal that when energy input is large enough, the vibrating

bed can maintain a region of low density near the bottom floor, where the granular

temperature is maximum. This is similar to the effect of temperature on gases, where the

density of gas decreases as temperature rises. As mentioned above, the value of the

granular temperature is determined by the balance between temperature generation by the

vibrating floor and dissipation via inelastic collisions. The large granular temperature near

the vibrating floor can be attributed to the great temperature generation near the external

energy source and the relatively small temperature dissipation due to the solids fraction in

this region (i.e., low collision frequency).
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4.1.3 The Influence of Normal Stiffness

In the previous simulations with acrylic spheres, an equivalent Hertz force model was used

to estimate the value of normal stiffness, which resulted in a small time step At and

consequently a substantial amount of cpu time. For a system of 240 particles with a

diameter d = 0.1 m, this simulation required 72 hours cpu time on a SUN sparc-10

workstation. For d = 0.003m, the cpu time will be longer than 240 hours. Therefore, the

influence of loading stiffness K1 has been carefully investigated. The objective is to find a

reasonable range for which the results would be essentially unaffected. A system of N =

119 spheres is used for the test runs; all parameters can be found in Table 4.2.

Table 4.2 List of parameters (Case 2)

Parameter Value

Particle Diameter d (m) 0.01

Density p (kg/m3) 2490

Normal Stiffness K1 (N/) 2.7 x10 8 , 3.64 x10 6 , 1.2 x10 5

Restitution Coefficient 0.9

Frequency f (Hz.) 50

Mass Hold-up m e 2.5

Boundary Fluctuation Velocity Vb 2.0

First the stiffness (K 1)H was found using the equivalent Hertz model (equation (2-

5-10)) which was described in Chapter 2, section 5. Since the time step dictated by this

computed value was very small, a trial value of K 1 	(K1 ) 11 x 10 -2 was selected. During

the simulation, the overlap was monitored and if its maximum value cc 	 exceeded one

percent of a particle diameter, the simulation was halted. The value of K 1 was increased
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slightly and the procedure repeated until a,,. 5.. 0.01d . Figures A4.3a and A4.3b

compares results for three different stiffness values with other parameters being identical.

The dotted lines in figures are theoretical predictions of Richman and Martin (46). The

triangles are the results for the stiffness estimated by the equivalent Hertz model (equation

(2-5-10)); the crosses represent the results found by the monitoring a, , and the circles

are the results for a stiffness much smaller than the previous two values. Only a small

difference was found between the depth profiles of granular temperature and solids

fraction. Hence, a reduced stiffness value obtained from the maximum overlap procedure

has been used in the majority of the investigations in order to reduce computing time.

4.1.4 Effect of Shaking Acceleration

In order to determine the range of shaking acceleration amplitude F = ao.) 2 in which the

simulation results agree with the kinetic theory predictions, a system of 119 spheres (int =

2.5, p = 2490 kg/m3 ), with diameter d = 1 cm, was studied under a fixed boundary

fluctuation (Vb = 2.0) and a varied frequency range from 5 Hz. to 100 Hz. This

corresponds to a change of acceleration F from 2.84g to 56.5g. It is important to observe

that in these studies, since Vb is held fixed, an increase of F as frequency f is increased

implies a compensating decrease in amplitude a. A pronounced effect of acceleration r on

the depth profiles of dimensionless temperature and solids fraction can be found in Figures

A4.4a and A4.4b. The data matches well with kinetic theory predictions when F = 28.3g

(f = 50 Hz.) and 56.5g (f =100 Hz.), where the granular mass is apparently thermalized to

a degree consistent with assumptions implicit in the theory. However, at the low

accelerations (eg., F = 5.68g), the granular temperature does not decrease monotonically

from the bottom to the top as predicted by the kinetic theory. For F = 2.48g, the

dimensionless temperature decreases slowly from the maximum value at the bottom,

reaches a minimum at about 5 layer above the floor, and then increases slowly to a
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constant value at the top of the bed. The solid fraction profile shows a large expansion of

the bed with a peak located at the layer where temperature has its minimum value.

Deviation of simulated results when r is small from kinetic theory predictions

provides motivation for the next series of investigations in which comparisons are made

with existing experimental data.

4.2 Bed Expansion and Densification Phenomena

This study aims at comparing simulation results with recent experimental data provided by

Hunt et al. (18) for the average solids fraction and bed height of a vibrating mass of glass

spheres. In order to make a legitimate comparison between the physical data and simulated

/computed quantities, we employ the same materials as used in the experiments, i.e., glass

spheres of density p = 2490 kg/m3 and diameter d = 3 mm.

The primary computational cell, which is 15 mm in both length and breadth has

periodic side walls and a smooth plane vibrating floor. The total bed mass in the

simulation cell is much smaller than the total mass (136 kg) used in the acutal experiment

cell. However, the use of periodic side walls makes it possible to compare the results if the

mass hold-up in simulation cell is the same as calculated from the experiment cell (mt =

5). Consequently, the number of spheres N = 239 and primary computational cell

dimensions were chosen so that mi = 5. Smooth spheres (no rotation) are employed in the

simulations since particles used in the experiments were essentially smooth,

The vibrational parameters of the simulations are also the same as those used in the

experiments. A vertical sinusoidal vibration is introduced from the bottom floor, with a

fixed displacement amplitude of 5 mm (1.67d). The vibrational frequencies are varied from

7 Hz. to 38 Hz., corresponding to a change in shaking acceleration from 1 to 30g.

Due to the large Young's modulus of glass, the normal stiffness estimated by the

equivalent Hertz model is large. With such large a stiffness and such small a diameter, the
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time step would be very small. Therefore, the stiffness used in this simulation is

determined by the criterion that maximum overlap would not exceed one percent of the

sphere diameter. Table 4.3 lists all of the relevant parameters for this study.

Table 4.3 List of parameters (Case 3)

Parameter Value

Particle Diameter d (m) 0.003

Density p (kg/m3) 2490

Normal Stiffness Ki (N/m) 106

Restitution Coefficient e 0.9

Shaking Amplitude (m) 0.005

Shaking Acceleration

IT (g)

1.0, 1.2,

3.15,

2.0, 2.35, 2.8,

3.6, 4.1, 30

Mass Hold-up nit 5.0

In Hunt et al.'s experiments, the bed height was roughly determined from the

height of a thin sheet of paper lid placed on the top of the vibrated bed. Obviously, their

height measurements represented an average value since ballistic effects at the bed surface

cannot lift the paper lid. In the results to be presented on bed height, only a single

snapshot of the configuration was used and ballistic surface trajectories were ignored by

removing those particles from the data file. The height was then determined from the

solids fraction depth profile of this selected configuration. Clearly, more accurate

computations could have been done by averaging over many configurations after the onset

of steady state. In the physical experiments, average bulk solids fraction was computed by

using the total volume of spheres divided by the product of the bed height and cross-
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sectional bed area. The same technique is employed in the simulations. Although above

measure of bulk solids fiction is made by viewing one configuration, it is found that the

bulk solids fraction calculated by above method is very close to long term average bulk

solids fraction. (The long term depth profile of solids fraction will be discussed later).

Hence, above estimation on bed height and bulk solids fraction is reasonable.

Comparisons of the average bed height and average bulk solid fraction versus

acceleration F with the data of Hunt et al. (18) are presented in Figures A4.5 and A4.6.

The figures show that the simulation bed expands a little bit higher than the experimental

bed, which could be due in part to the neglect of friction between spheres in simulations.

However, the basic trends are in agreement. The height of the simulation bed remains

almost constant until the acceleration increases to 2g, where a larger jump than reported in

experiment occurs. As the acceleration increases, a further expansion is found in both

simulation and experimental beds, with a plateau appearing at F' 2.8g. Simulations were

also carried out at a large acceleration value of F = 30g, which is far outside of the

experimental range. The data renders nearly the same bed height when F = 30g as for F =

3.6g. It is important to note the critical F value for bed expansion predicted from the

simulations lies beween 1.2 and 2.0g. In Figure A4.6, the simulation and experiment data

for bulk solid fraction are also found to be in good agreement except at F = 2g.

The granular temperature and bulk density profiles in Figures A4.7a and A4.7b

depict a similar phenomenon as was shown in Figures A4.4a and A4.4b of the previous

case. When the low acceleration vibrations are applied to the cell, the bed expands

significantly. The maximum temperature area is near the top surface where the density is

very low. The maximum density occurs several layers above the bottom where granular

temperature is at its minimum value. In contrast, the temperature depth profiles for high r

values exhibits behavior predicted by the kinetic theory. It is worthwhile to note that this

case study is different from the case compared with the kinetic theory predictions (Figures.

A4.4a, b) for which Vb was held constant. In the current study, the boundary fluctuation
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velocity increases as frequency (or r) increases since the amplitude is fixed. Hence, the

local temperature near the bottom increases as r increases.

The location of the maximum density for different r values are plotted versus the

dimensionless depth Y in Figure A4.8. As the acceleration increases, the peak shifts to a

higher layer. The peak for F = 30g is more than five times higher than the peak for r
1.2g. This local density change is also observed in Figure A4.9, where the mass

percentage below the depth Y has is plotted. For F = 2g, about 50 % of mass is located

below a depth of five sphere diameters, as compared to only 10 % when F = 30g.

Snapshots of selected two dimensional configurations (projected on xy plane and

the particle sizes has been reduced for clarity) in Figures A4.10 provides some interesting

information. The bed height at r = 1.2g remains the same as pre-vibrated bed (Figure

A4.10a), but the particles are aligned in columns with the direction of shaking (Figure

A4.10b). Although only one snapshot is plotted here, it was observed in simulation this

phenomenon exit in all of the shaking phase angles, which is indicative of a strong

coupling between the boundary and the bed. A surface fluidization phenomena is observed

at F = 2.0g, where the less restricted top particle layers expand, while the bottom remains

in a densely packed configuration. At r = 3.15g, the bed appears thermalized and

expanded although its height is not significantly different from its value when F = 2.0g. A

distinct local density change can be recognized upon comparing Figure A4.10e (F = 30g)

with Figure A4.10d (F = 3.15g). At F = 30g, the strongest fluidization (or thermalization)

appears at the bottom, while F = 3.15g, this takes place at the surface. These figures

strongly support the granular temperature and solids fraction depth profiles of Figures

A4.7a, b. We remark that for all values of F, regions of high granular temperature

correspond to relatively low solids fractions, and vica versa.

The simulation results also show that the cell average granular temperature

increases as F increases (Figure A4.11). When F is below 4.1g, the average temperature

increases quickly and a jump appears between 1.2 and 2.0g. After F = 4.1g, the rate of
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increase is suddenly reduced. Related to this change, the average number of collisions per

particle (average over 40 seconds) becomes smaller as F increases (Figure A4.12), where

a rapid descent occurs between 1.2 and 2.0g. The collision number is reduced very slowly

after r = 4.1g.

From the kinetic theory point of view, collision rate A (collisions/second) is a

function of granular temperature and density, i.e., A = 4 v 2 d 2 (it kT) 1"2 where k is the

Boltzmann constant, T is the granular temperature and v the solids fraction. When the

density is low, the temperature must increase to maintain the same collision rate. Or, at a

reduced collision rate, more energy must be dissipated per collision in order to dissipate

same amount of energy. Consequently a higher granular temperature is produced.

The reason for the previously discussed differences in the granular temperature

depth profiles at small and large values of F is explained as follows. When F is small,

particles near the cell floor, do not experience a sufficient impulse to jump upwards and

consequently they approximatly follow the oscillating floor motion. The temperature (and

deviatoric velocities) near the floor is small, which is a combined effect of low temperature

generation due to a weak floor acceleration and high collisional dissipation as a result of a

high local solids fraction. The environment for particles near the top surface is quite

different. These particles are not significantly overburdened, and a small agitation

transferred from the bottom causes them to fly freely from the surface. The solids fraction

is low here, and therefore the collisional rate is also low. This produces a high granular

temperature at the top. It is obvious that when F is "small" and a region of high solids

fraction exists near the floor, collisions will not be binary in nature. Rather, it is likely that

continuous contacts are dominant in most of the bed. Accordingly, it is reasonable to

expect simulation results to depart from kinetic theory predictions in this case.

For large values of F, the movement of particles near the bottom deviates from the

floor motion. The temperature near the bottom is high, promoted by significant

fluctuations supplied by the vibrating floor, and this in turn creates a region of low solids
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fraction. Transfer of boundary energy to the top of the bed becomes minimal which

produces an upper region of low temperature and high solids fraction. It should be

understood that high granular temperature (fluctuation energy per unit mass) doesn't

necessarily imply a large total kinetic energy.

Simulation results (Figures A4.10c and A4.10d) support the hypothesis that

fluidization begins from the surface (14, 17), and that the fluidized region expands as IT

increases. However this is true only for a range of small IT values. In a high acceleration

range, the fluidized region exists near the bottom with the dense region on the top. At any

input shaking condition, energy is transfered from the bottom. Hence it is useful to study

how the vibrating boundary couples energy into the particle bed.

4.3 Coupling Between the Boundary Motion and Bed Response

Granular temperature is important since it reflects the fluctuating contribution to the

kinetic energy in a system. It is also relevent to study the mean motion, since granular

temperature is proportional to the mean velocity gradient, and mean velocity itself reflects

the average energy level in the flow. It is crucial to understand how the energy is

transfered from the floor and how it propagates upwards through the bed of spheres.

In this study, the spectral analysis method has been used to quantify the mean

velocity field of a vibrating bed, consisting of 239 smooth spheres with a diameter of

0.1m. A frequency of 7 Hz and amplitude of 0.05m are applied. Data is accumulated after

the system reaches steady state and subsequent computations of the mean velocity time

history for each layer (or zone) of the depth partition are performed, sampled and stored in

a file. The time history of the component of mean velocity in the y-direction in each zone

is shown in Figures A4.13. It is clear that the waveform in each zone does not change

greatly except in top zones (zone 11,12 and 13), while the amplitude of the mean velocity

is decreases rapidly. The power spectral density diagrams depict this fact more clearly. In

every zone with the exception of the top zones, the maximum power peaks occur at the



80

same frequency as the boundary shaking frequency. However, the magnitudes of these

peaks decrease rapidly. This means the frequency components of mean motion in each

zone (or layer) are wholly determined by the frequency of the floor. Energy is input from

bottom, where power spetral density has the maximum value. As the energy is transfered

by collisions from layer to layer, it becomes smaller and smaller, which is evident from the

decrease in magnitude of the power spectral density. At the top layers, the time history

and power spectral density differs considerably from the lower layers. The waveforms are

similar to a wide-band random noise signal. The power spectrum exhibits a peak at a much

lower frequency and this is indicative of a weak floor influence.

Although spectral density analysis produces the frequency components of a signal,

it does not provide any phase information. This can be done by computing cross

correlation functions between the time histories of the boundary velocity and y-

components of the mean velocities in each zone. Several results are depicted in Figures

A4.14 to examine the phase delay of energy tranfer between the floor and the bed. The

autocorrelation of boundary velocity is shown in Figure A4.14a, where a peak in t = 0 is

expected. Figure A4.14b displays the cross correlation function between boundary

velocity and mean velocity in the second zone (near the floor). Obviously, the peak has

already shifted a small amount to the right. As we move further away from the floor, the

peak shift becomes larger. Computations using the velocity cross correlation between

boundary and the tenth zone reveal a 0.118 second phase delay. This calculation provides

a simple but useful method to measure the speed of sound in granular material for further

study.

From above spectral and correlation analysis, it is clear that as the depth increases

towards the bed surface, the energy transferred from the floor becomes smaller and the

response to the boundary movement gets delayed. Finally at the very top of the bed, the

influence of the vibrating floor is very small, and particles are in chaotic motion.
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4.4 Autocorrelation Functions and Self Diffusion Coefficients

As discussed in Chapter 3, the velocity autocorrelation function of a system is in itself a

good measure for the "randomness" of the vibrated bed, and it also provides a convenient

means to calculate self-diffusion coefficients. In order to examine the randomness of the

bed motion in different directions, the velocity autocorrelation functions are separated into

three components as follows:

(v(t)- v(0)) = (v x (t)• v x (0))+(v y (t). v y (0))+(v z (t). v z (0)) 	 (4-4-1)

In the above, the three terms on the right-hand side represent the coordinate

components of velocity autocorrelation function. From (3-2-5) and (4-4-1), the self-

diffusion D is computed as,

D = 1  f dti -(v(t)• v(0))
3 0

31 [Scit .(v x (t)•v x (0))+Sctt
0 0

(r)• v y (0)) + fdt-( v (T) • z ( 0 )
(4-4-2)

1 r
=—LD +D A-D]3 x 	 yz

where D., Dy and Dz are regarded as the three components of self-diffusion coefficient D.

In this study, velocity autocorrelation functions and self-diffusion coefficients are

calculated for a system of 239 smooth spheres with the same material parameters (see

Table 4.4) as used in Section 4.1 (case 1), except that the normal stiffness (K1 = 2.8 x 106 )

was reduced for computational efficiency (dt = 6.3135 x 10 -5 ). Only vertical sinusoidal

vibration is induced from bottom. Table 4.4 provides a complete list of the parameters.

Velocity data sampling was initiated after the simulation had run for 40 seconds. (Steady

state conditions occurred at approximately 30 seconds.) The sample interval was one-half

of the mean collision time. Since the number of time step during collision was set to equal

15 in this case study, the sample interval is 7.5 time steps. 2000 data points were
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accumulated for each velocity component and stored in three separate large files, from

which autocorrelation function was computed.

Table 4.4: List of Parameters (Case 4)

Parameters Value

Particle Diameter d (m) 0.1

Density p (kg/m3) 1200

Normal Stiffness K1 (N/m1 2.8 x 106

Restitution Coefficient e 0.9

Shaking Amplitude (m) 0.0089, 0.05

Shaking Acceleration r (g) 5, 10, 20, 90, 483

Mass Hold-up mt 5.0

Calculations of D were compared with its value obtained from an analytical

expression derived from the kinetic theory by Savage (23) and given by,

d0•i
D = 

8(1 + e) • v • g 0 (v)
(4-3-3)

Here, T is the granular temperature, v is bulk solids fraction, d is the diameter of the

particle and g o (v) is the Carnahan-Starling approximation to the radial distribution

function at contact, i.e.,

go (v) = 
(2—v)

 — v) 
2(1— v) 3

(4-3-4)

In calculation, T and v were expressed by cell average granular temperature and

solids fraction respectively. The influence of shaking acceleration is first investigated with

a fixed frequency (50 Hz.) and varied amplitude. Two large accelerations were selected:
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F = 90g (a = 0.089d) and F = 483g (a = 0.5d). Since both cases have a high acceleration,

the granular temperature and solid fraction profiles (Figures A4.15a and A4.15b) are

consistent with the kinetic theory predictions. The maximum temperature in the bottom

and density peak near the top indicates a chaotic motion in the low layers of this system.

In Figure A4.16 and A4.17 the components of autocorrelation function are plotted versus

time. In both cases, all three components have exponentially decaying tails. The x and z

components are quite smooth, but the y components for both cases have a lot of wiggles

in the tails, especially when a small amplitude (0.089d) is applied. This implies that in the

direction of shaking (y), the motion of the boundary still maintains substantial influence on

the up and down behavior of the bed even though the acceleration is large (F = 90g or

483g). Following equation (4-4-2), integrations of these autocorrelation functions yield

the diffusion coefficients. It is found that the self-diffusion coefficient D for the small

amplitude case is quite close to the value computed from the analytical predictions of

Savage ( see equation (4-4-3)). For the large amplitude case, D is slighly higher than the

analytical value. (See Table 4.5 for a list of values).

Table 4.5 Self-Diffusion Coefficient

Parameters D (Simulation)

(mXec. )

D (Analytical)

(m2Xec.)

Bulk Solids

Fraction

Cell Ave.

Temperature

F = 90 g,f = 50 Hz.

(Amp. = 0.0089 m)

0.00544 0.00532 0.44 0.7950

F = 483 g, f = 50 Hz.

(Amp. = 0.05 m)

0.2676 0.2116 0.14 13.80

The above computations show that for a fixed shaking frequency, the diffusion

coefficient increases as acceleration (or amplitude) increases.
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The effect of shaking acceleration on the diffusion coefficient is also examined with

a fixed amplitude and varied frequency. Three acceleration values (F = 5g, 10g, 20g) are

selected with a fixed amplitude equal to d/2. The temperature and solids fraction profiles

(Figures A4.18 and A4.19) for these three cases are quite different. The autocorrelation

functions are plotted in component forms in Figures A4.20, A4.21 and A4.22. It is found

that the x and z components of autocorrelation functions for all three cases are very

smooth and close to the exponentially decaying time correlation function assumed in the

kinetic theory analysis (23). As F increases, the initial value (at t = 0) of these components

increases. The important observation here is that the autocorrelation functions for v y do

not exhibit a relaxation time by decaying to zero, but oscillate for all cases, indicative of a

strong correlation with the vertical boundary motion. Since the form of the boundary

velocity is a cosine, then a total correlation of the bed with the boundary would produce a

cosine autocorrelation function. Although not presented in this work, the autocorrelation

function of the y-component of the velocity at r 1.2g did behave as a cosine function.

In Figure A4.20 (F' = 5.0g), this tendency is still very large. As r increases, the oscillatory

part in the autocorrelation function of vy (Figure A4.22) becomes less pronounced.

Therefore it is not unreasonable to see that the oscillations in the tail persists even F = 90g

Figure A4.16). The calculation of y-component of self-diffusion coefficient (Dy) has been

omitted, due to the strong correlated motion in y direction. The x and z components of

diffusion coefficient are computed, and results are listed in Table 4.6 and plotted in Figure

A4.23. Obviously, the diffusion coefficient increase as the acceleration increases, which

supports Hunt's experimental data (18).

For the case r = 10g, the values of x and z component are very close to each

other, while in the other two cases, the magnitudes of x and z component are slightly

different. This maybe caused by the randomness of the particle motion. It is difficult to

follow the system for a fairly long time and to sample a large amount of data due to the

limited computing time and computer memory available for these investigations. For the
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diffusion computations, 2000 data were sampled every 0.94 seconds. Each sampled value

is actually a short term average value. When velocity autocorrelation functions were

calculated, a maximum time shift of 0.47 seconds (1000 data points) was used in order to

improve the accuracy. Given sufficient resources, it would be possible to follow the

system for a significantly longer time period and to increase the quantity of sampled data,

consequently minimizing differences between the Dx and Dz .

The relationship between diffusion and temperature is shown in Figure 4.24, where

the Dx and D z are plotted versus the x and z components of cell average granular

temperature Tx and T. Results reveal a phenomena similar to thermal diffusion in

thermodynamics, that is, diffusion increases as temperature increases.

Table 4.6 Self-Diffusion Coefficient

Parameter DX

(17124c. )

T.x D,

(ni2Xec.)

T,

r = 5 g, Amp. = 0.5d

(f = 5 Hz.)

0.002765 0.1193 0.003420 0.1193

F = 10 g, Amp. = 0.5d

(f = 7 Hz.)

0.006441 0.1656 0.006396 0.1675

F = 20 g, Amp. = 0.5d

(f = 10 Hz.)

0.007554 0.2679 0.008691 0.2679

The effect of shaking amplitude on D has been studied for a fixed acceleration F =

10g. It is found when the amplitude descends from one-half of a diameter to one-

hundredth of a diameter, the velocity autocorrelation function will decrease much faster.

Figure A4.25 shows the autocorrelation function an amplitude of 0.00103m (0.Old), and f

= 50 Hz. Although the acceleration is as high as lOg, the initial value (at t = 0) of
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autocorrelation is very small, and the tendency to follow the boundary movement is

strong, as can been seen from the small oscillation in the tails of the x and z components of

autocorrelation functions. The diffusion coefficients when a = 0.01d (Table 4.7) are nearly

three orders of magnitude smaller than those when the amplitude is one half of a diameter.

Table 4.7 Self-Diffusion Coefficient

Parameter DX
	 ( m2 sec.) Di 	 (• m2Xec. )

Amp.= .00103 m, F = 10g

(f = 50 Hz.)

8.7x10-6 9.3x10-6

Amp. = .05 m F = lOg

(f = 7 Hz.)

0.006441 0.006396

In order to further validate the diffusion results above using velocity

autocorrelations, the mean-square displacement of particle motion is calculated for use in

equation (3-3-5). The absolute displacements of particles are sampled in the same way as

was done to find the velocity autocorrelation functions. The procedure for determining the

average is to first compute the mean-square displacement for each particle, and then these

values are averaged over all particles in the system. The detailed calculation procedure has

already been introduced in Chapter 3, Section 3.3.

Several cases, which have been already discussed in the calculation of

autocorrelation function, are selected to compute the mean-square displacement. The

system, consisting of 239 spheres with material properties are listed in Table 4.4, is shaked

through the floor at an applied relative acceleration F = 90g. Its velocity autocorrelation

functions are shown in Figure A4.16. The mean-square displacement ((r(2) of this system,

plotted versus time (seconds) in Figure A4.26, appears quite smooth and linear. By using

the Einstein relation (equation (3 -3-5), the self-diffusion is determined as one-sixth of
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limiting (at large t) slope of mean-square displacement curve. It is found that the self-

diffusion coefficient determined in this fashion is exactly the same as that calculated from

velocity autocorrelation function. The comparisons and results are listed in Table 4.8.

Table 4.8 Com arison of Self-Diffusion Results

Parameter (D m2Zec.)
D*(m2 sec.}

F=90 g, f = 50Hz. 0.00544 0.00530

Parameter Dx D: Dz D:

(m2Zec. ) (m2Zec.) (m2 sec. ) (m2Zec.)

F = lOg 0.006441 0.006269 0.006396 0.006282

* Values are calculated from mean-square displacement method

The mean-square displacement for a system with acceleration I' lOg (f = 7 Hz)

was also computed and plotted in Figure A4.27. Here it is observed that the mean-square

x-displacement (x 2 ) and mean-square z-displacement (z 2) curves are very smooth and

linear, and have the same limiting slope. However, the mean-square y-displacement (y 2 )

has a strong sinusoidal waveform, corresponding to the sinusoidal component in the long

tail of velocity autocorrelation function (see Figure A4.21). It is anticipated that this curve

(Figure A4.27) would approach a limiting slope if it were possible to perform the

computations for a much longer period of time than was done in this study. However, this

was not possible with the computing resources available. Following equation (3-3-4), the x

and z components of self-diffusion coefficient (Dx and D z ) are computed by taking one-

half of the limiting slopes of (x 2 ) and (z 2 ), i.e.

Dx 	(20-1([x(t)--x(0)12)	 (4-4-5)
t->oo
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Dz 	lim (20-1 ([z(t)—z(0)12 )
	

(4-4-6)

The results listed in Table 4.8 show fairly good agreement with those calculated

from velocity autocorrelation functions.



CHAPTER 5

FRICTIONAL BEDS WITH SOLID SIDE WALLS

The behavior of real granular beds is highly complex. The previous discussions on the

smooth uniform beds cannot be applied to most cases, since the effects of factors such as

particle friction, size distribution, and side walls must be incorporated into the modeling.

Observations (4, 22, 55) indicated that various of phenomenon in granular beds, such as

convection, heaping, arching and segregation are closely related to the friction between

the particles and the walls. This then provides motivation for the following investigations

of frictional beds with solid side walls.

The primary computational cell with a sinusoidal vertical floor vibration is

illustrated in Figure 2.8c. Fixed solid flat side walls are only applied to the boundaries

parallel to the x-y plane. The y-z plane boundaries are periodic, which assures

homogeneity of properties in x direction. To measure and analyze the velocity field, the

cell is partitioned into a lattice of small parallelepipeds in the z-y plane having a width

equal to the x-dimension of the primary computational cell (Figure 5.1). Each small cell

has same length and height equal to the diameter of the particle. The mean velocity in a

small cell is calculated by averaging the velocities of those particles, whose center occupy

the cell during the time interval. To do so, the (y, z) coordinate of the particle center is

monitored at each time step to locate in which small cell it resides. For example, suppose

the coordinate of the center of particle i at time t is (xi, yi, zi). The z and y index (mc, nc)

of the small cell occupied by particle i is given by,

.mzcell/	 + 1MC = Int(zi	 ' 1

nc = Int(yi. nycell/
/ycelll
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where mzcell and nycell are the total number of small cells in z and y directions, and zcell

and ycell are the cell dimension in z and y directions, respectively. Accordingly, the

velocity of particle i at that instant contributes to the small cell average. Both short and

long term cumulative mean values are computed in this study.

Figure 5.1 The primary computational cell is partitioned into small cells to
determine the y and z components of the mean velocity field

5.1 Critical Conditions to Produce Convective Flow

When a mass of bulk solids is vibrated, under certain conditions a convective flow is

induced whereby particles move upwards in the center and downwards in a narrow stream

near the side walls. The occurrence of this phenomenon is dependent on a number of

factors, such as particle properties, side wall conditions and vibratory parameters. It

appears that the most critical of these is the existence of frictional or rough side walls.

Indeed, no convection was found in these investigations when periodic boundary

conditions were applied to compare with the experiments of Hunt et al (18). However,

side walls alone are not sufficient and this will be discussed in what follows.
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5.1.1 Effects of Shaking Amplitude

Shaking displacement amplitude is a key factor to produce a convective flow. With a fixed

shaking acceleration of F 10g, three different displacement amplitudes were chosen to

test using a computational cell of length equal to 6d and width equal to 3d. The vibration

and material parameters are listed in Table 5.1, and the convective velocity fields, which

are long term averag value over 80 seconds after reaching a steady state, are shown in

Figure A5.1, where the magnitude of velocity is quantified by the length of the velocity

vector. No convection tendency was observed when a shaking amplitude of 0.25d was

applied (Figure A5.1 a). As the amplitude is increased to 0.3d, a steady convective flow

develops as shown in Figure A5.1b, where a downward stream near the frictional side

walls, and upward flow in the middle of the cell represents a typical circulatory pattern as

observed by other workers (1, 21, 22). This convection becomes extremely strong at a

amplitude equal to 0.5d (Figure A5.1c). But only the columns of particles directly

touching the wall have a strong trend of downward motion due to the narrow cell length

of 6d. At two particle diameters away from the side wall, the convection velocities is

nearly zero. The magnitude of convective velocity for surface particles is much larger than

those near the bottom, which is also illustrated in Figure A5.1. This velocity field is similar

to that of Galas et al. (22), but different from Taguchi (21), which showed a convective

velocity with a maximum magnitude at an intermediate depth, and very small magnitude

near the surface. Perhaps this is because Taguchi used a relatively small acceleration r <
4g.

In order to quantitatively expressed the strength of the convective flow, the

average magnitude of the convective velocity in the whole computational cell is calculated

and listed in Table 5.1, from which the dependence of convection on displacement

amplitude is very clear. Moreover, the average velocity magnitudes for each column of

small cells are also plotted in Figures A5.2a, b and c, where the horizontal axes describe

the location of the small cell in which convection occurs (y-z plane of the cell), while the
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vertical coordinates represent the magnitudes of mean velocity. It is found that the

magnitude of convection velocity near the side walls shown in Figure A5.2c, where the

shaking amplitude is 0.5d, are significantly larger than those for the smaller amplitudes

shown in Fig A5.2a, b. Both facts above indicate the possible existence of a threshold

shaking displacement amplitude below which the convection will not occur even if the

acceleration F is large. We remark that during the initial phases of these investigations, no

convection was observed when high frequency and low amplitude vibrations (which means

high acceleration F) were applied via the floor.

Table 5.1 Vibrational Parameters and Material Parameters

Diameter of

the Particle

(m)

Normal

Stiffness

(N/m)

Density of

particle

( kg i
m )

Friction

Coefficient of

the particle

Friction Coef

of the

Boundary

0.1 2.8 x 10 6 1200 0.8 0.8

Acceleration

(g)

Frequency

(Hz.)

Amplitude

(Dia.)

Ave. Convection

Velocity (m /s)

10 7 0.5 0.0368

10 7.878 0.3 0.0185

10 9.996 0.25 0.0054

5.1.2 Friction Between the Particles and the Wall

The effect of the friction between the particles and side walls is examined in this study by

considering limiting or extreme conditions. Four different pairs of friction coefficients have

been considered while other parameters are held fixed (see Table 5.2). When the friction

coefficient of particle (denoted by fmu in the code) is fixed at a value of 0.8, it is found
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that a large boundary friction coefficient (denoted by fmub in the code) results in a large

convection velocity. This is shown in Figures A5.3 and A5.4 for the cases where fmub =

0.8 and fmub = 0.2. An extreme case is tested where the boundary friction fmub = 0,

which means that the side walls act only as a smooth constraint in the horizontal direction,

and does not provide any tangential impulse to contacting particles. Figure A5.5 shows

that the circulation direction is the same as above two cases, but the width of the

downwards flow near the wall has extended to two particle diameters. An interesting

change in flow pattern can be seen in Figure A5.6, when the particle friction coefficient

fmu = 0, and boundary friction coefficient fmub = 0.8. The particles near the wall goes

upwards instead of downwards, while all the other particles move downwards. As

opposed to the convection patterns in Gallas et al's two-dimensional simulations (22),

(which has been mentioned in Chapter 1), there are two convection cells, one at each side

wall, shown in Figure A5.6 for this case.

Table 5.2 Parameters for study the effect of friction coefficient

Fixed

Parameters

Amplitude

(Dia.)

Frequency

(Hz)

Acceleration

(g)

Normal

Stiffness

0.5 7 10 2.8 x10 6

Particle Friction

Coefficient

Boundary Friction

Coefficient

Direction of Convection

Along the Side Wall

0.8 0.8 downwards

0.8 0.2 downwards

0.8 0 downwards

0 0.8 . 	 upwards



94

5.1.3 Influence of the Cell Size

Three different computational cell sizes were considered in this study. Their length x

width (z x x) dimensions are 100dx1d, 20dx3d, and 6dx3d. (These three cells will be

referred to as 100dx1d, 20dx3d, and 6dx3d). The friction coefficients of the particle and

the wall are equal to 0.8 (i.e., fmu = fmub = 0.8), while the other parameters are as listed

in Table 5.2.

The convection field for a 20dx3d cell shows the downstream flow near the wall

has extended to two particle diameters. A symmetric convection pattern consisting two

vortex-like structures is observed at the left and right side walls.(Figure A5.7) In the

center of the cell, a small upwards stream is present.

The situation for the 100dxld cell is quite different (Figure A5.8a). Near the walls

two small convective vortices exist which are about 8d wide each. This is similar to the

20dx3d cell. In the center of the bed, convection is weak and appears somewhat random,

as seen in the enlarged velocity field plot (Figure A5.8b). Figure A5.9 shows a significant

difference of the velocity magnitudes near the near wall region and the central portion of

the bed. It is possible that this is the reason why Hunt et al. (18) weren't able to observe a

strong convective flow in their relatively large cell, while Zik et al. (24) were able to

measure the convective motion near the wall.

The most striking phenomena while shaking the wide 100dxld cell is the

occurrence of arching or waves. In Figures A5.10a-d, configurations of the z-y projected

reduced spheres are shown at eight phase angles within a single cycle (0, ic/4, ic/2, ..., 27c).

The dotted lines in each figure indicates the position of the vibrating floor at the instant

shown. Arching almost disappeared when the bed mass made contact with the floor as it

moved down from its highest position. Arching became more pronounced as the floor

moved upwards from its lowest level. In examining several such sequences, this pattern

did not appear to repeat itself in a predictable manner, but seemed somewhat random. In

order to determine the local velocity field of the bed while arches are formed during a
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single shaking cycle, eight (short term) velocity field averages are computed, i.e. ((0 - 7t/4),

(7t/4 - 7c/2), (77t/4 - 2a) ), corresponding to the eight configurations shown in Figures 5-

10a-d. These are presented in the vector field plots of Figures 5.11a-d, where regions

devoid of spheres are visible, (i.e., velocity vectors are absent). In the central region of the

bed away from the side walls, convection patterns can be seen forming over the cycle.

However, averages taken over a long time scale (Figures A5.8a and A5.9) tends to hide

the details. It is most likely that the creation and break-up of the arches occurs at some

time scale not on the same order of the period of the vibrating floor. However, since only

a single cycle was examined in these investigations, it is not possible to deduce the time

scales of the observed arching structures.

5.2 Convection and "Segregation"

Convection and segregation are two different phenomenon. Convection is a means of

particle transport and tends to promote mixing while segregation causes the opposite

effect. Recently Knight, Jaeger and Nagel (37) argued that segregation can be caused by

convection, since they found spheres of all sizes rise in the middle of a vibrated cylinder at

the same rate, but the large particle became trapped on the top. The mechanisms which

cause this large particle to remain at the top are those which promotes size sorting (or

segregation) and therefore must be understood. In this study, various of shaking

conditions, friction coefficients and boundary conditions have been examined. Analogous

to the physical experiments of Knight et al. (37), a strong induced convection field was

responsible for the motion of large sphere upwards through the cell. Therefore, this

section addresses the connection between the transport of a large particle in relation to an

induced convective velocity field. No attempt is made here to uncover those mechanisms

which promote size sorting.

First, the influence of cell size was studied. A large sphere, with diameter D = 3d

(where d is the diameter of the smaller bed spheres) was placed in the center of the floor.
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Other parameters are the same as listed in Table 5.1. In a 6dx3d cell, the large sphere

moved up quickly (about 15 seconds), and then remained on the surface thereafter. Figure

A5.12 shows the trajectory of the large particle. The reason why the large particle has

been trapped at the surface is as Knight et al (37) had explained, that is, the narrow

downward convecton stream cannot carry it back down. In a larger 20dx3d cell, the large

particle ascended to the top at the almost same speed, but it sank near the wall to an

intermediate depth and then moved up again (Figure A5.13). The large sphere, initially

located in the center of the floor of a 100dxld cell, did not move upwards during a 160

second run, due to the nature of the convection field discussed in the previous section.

The displacement and velocity of the large particle have been compared with those

of several small particles. We choose one of these just beneath the large one and another

adjacent to the wall. The behavior to be described for these two small particles is typical

several others considered. The displacement and velocity time histories and power spectral

densities are shown in Figures A5.14a, b, c. It is obvious that the small sphere beneath the

large one experiences a very similar displacement and velocity history to that of the large

sphere (Figures A5.14a, b). Both particles experience a pulse-like upward displacement

and saw-tooth like velocity, whereby each jump in the velocity coincides with a rapid

ascent in displacement. The linear regressions for both displacement curves exhibit an

almost same slope, which means the large and small particle rise at a same speed. The

spectral density for both velocities showed a same significant frequency peak at around 2.5

Hz, which is much lower than the boundary frequency of 7 Hz probably due to the

existence of friction. This is quite different from the smooth sphere studies presented in

Chapter 4, where the power spectral density of mean velocity in each zone exhibited a

peak at the shaking frequency of 7 Hz. It is important to notice that the power spectral

density for the small particle near the wall (Figure A5.14c) also showed a maximum peak

located around 2.5 Hz, although its net displacement is downwards.
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Factors which affect the strength of the convection field must influence the speed

of large sphere. Therefore, as the shaking amplitude increases, the strength of convection

increases, which causes the large particle to reach the surface more quickly. An increase of

friction coefficients for the walls and particles also creates a faster upward movement. In

Figure A5.15, the effect of wall and particle restitution coefficients (eb, e, respectively) on

the speed of large particle in a 6d x 3d cell is shown for different pairs of eb and e, with

both particle and particle friction coefficients equal to 0.8. The large particle reaches the

surface very quickly (15 seconds or 105 shaking cycles) when eb = e = 0.6; this occurs

much more slowly (60 seconds or 420 shaking cycles) when eb = e = 0.9. The large

restitution coefficient promotes a higher granular temperature in the system, but causes a

decrease in the strength of convective velocity field, as shown in Figure A5.16a, b. By

examining the other two cases (Figure A5.15), i.e., when e = 0.6, eb = 0.9, and e = 0.9,

eb = 0.6, it is concluded that a small restitution coefficient for free particles (e = 0.6) is in

favor of speeding up the large particle.

The neighborhood of large sphere has been studied by computing the coordination

number history over a shaking cycle. The smallest coordination number is unity when the

floor moves downwards from its highest position, while the largest coordination number

occurs while the floor moves upwards. It can been observed from Figure A5.17, that the

peak of the coordination number curve coincides with the peak of large particle velocity.

This indicates that the upward motion of large particle does not occur during its free flight

period, but during the time when it is closely surrounded by small particles. It is worth

while mentioning the fact that the neighborhood of smaller spheres around the large sphere

remains unchanged as it move upwards and this means these small particles are "dragged

up" with the large one within the convection stream.

From above analysis, it appears that induced convection is responsible for particle

transport and does not result in size separation. Further studies are needed and these will

be discussed in Chapter 6.



CHAPTER 6

SUMMARY AND CONCLUSIONS

An in-depth investigation of the behavior of vibrating granular beds has been carried out

using particle dynamics simulations, an outgrowth of molecular dynamics type studies

used in the field of statistical and computational physics, to model this complex N-body

problem. Such problems are generally non-equilibrium in nature. This work has

applications in the field of bulk solids transport used in numerous solids handling

industries.

Smooth uniform beds are modeled in a primary computational cell with periodic

side walls and a plane vibrating floor. It is found that the bed behavior is strongly

dependent on the floor shaking acceleration amplitude (F).

In the low r region, simulation results quantitatively reproduce many of the

phenomenon observed experimentally by Hunt et al (18), Evesque(14) and Clement (17).

A threshold exists between 1.2g and 2g, below which the bed is densely packed and no

fluidization is observed. A fluidized region near the surface appears at F F. E. 2g , which

grows downwards as F is increased. The bed experiences a large upward expansion for

2g r 3.6g and then its height remains fairly constant thereafter. The maximum solids

fraction occurs several layers above the vibrating floor where particles are physically

overburdened, and where granular temperature is a minimum. At the surface where the

solids fraction is low, the granular temperature is high.

A dramatic behavioral change occurs when high shaking acceleration is applied.

The strongest fluidization appears at bottom, promoting a highly dense packing at the

surface. Simulation results show a good agreement with the kinetic theory predictions of

Richman and Martin (46). A maximum granular temperature and low solids fraction

98



99

region is maintained near the vibrating floor, with temperature decreasing monotonically

and solids fraction exhibiting a peak at an intermediate depth.

Another measure of the behavior of the bed as a function of F is provided by the

velocity autocorrelation functions and self-diffusivity. At high F, all three components of

the velocity autocorrelaion function are exponentially decaying, thereby exhibiting a

relaxation time. The tails for the x and z components are very smooth with the component

in the direction of shaking (i.e., y component) showing some small fluctuations. The self-

diffusion coefficient calculated from these autocorrelation functions are very close to that

computed from analytical expression derived from kinetic theory by Savage (23), and that

measured from the limiting slope of mean-square displacement curve suggested by

Einstein relation (3-3-5). In contrast, at low F values, the y component of velocity

autocorrelation function is not an exponentially decaying function, but oscillates about

zero with a frequency equal to that of the vibrating floor. Hence, there is a strong coupling

of the vertical movement of the granular mass with the floor. The other two components

of the autocorrelation function do exhibit a relaxation time with smooth tails, indicating a

minimal sensitivity to the floor.

Frictional beds are simulated in a primary computational cell having fixed solid

plane side walls, a flat vibrating floor and lateral periodic boundaries. Results show that

convection in granular vibrating bed is a conditional phenomena, whereby particles move

downwards in a narrow stream near the side walls, and rise upwards in the center of the

cell (6d-20d) A sufficiently large amplitude and acceleration is necessary to create a

convective flow, while the friction of spheres and walls influence the strength and

direction of the circulation. A reversed convection flow pattern is observed when particles

are smooth and walls are highly frictional (fmu = 0, fmub = 0.8)). Also, a low sphere

restitution coefficient is found to promote the convection. In a wide computational cell

(-100d), the convective flow is confined to a narrow region adjacent to the side walls.
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Convection is weak and appears unstable in the center of the cell, where a striking

phenomenon of the formation and break-up of arches occurs.

Simulations in which convection occurs faithfully reproduce the particle transport

phenomenon observed by Knight et al. (37). All particles ascend to the top at about the

same speed. A single large sphere becomes "trapped" on the surface by failing to join in

the narrow downward stream of small particles near the side walls. It is found that the

peak in coordination number curve of large sphere is highly correlated with the peak in the

large particle velocity history.

Coupling between granular beds and the vibrating floor is examined by spectral

analysis methods. Energy is found to attenuate from the bottom as expected. In a smooth

bed, the frequency of mean velocity through the depth remains the same as that of the

floor with a phase delay. In a frictional bed, the frequency of mean velocity versus depth

is much lower than the floor frequency.

In summary, we have presented particle dynamics simulations to investigate the

behavior of vibrated systems of smooth and frictional spheres. Our model has produced, in

accordance with experimental observations of Hunt et al. and Knight et al., the

phenomenon in which the bed experiences either expansion or convection motion. In

addition, good agreement of computed granular temperature, solids fraction profiles and

diffusion coefficients with recent kinetic theory predictions of Richman et al. and Savage

et al. was found in a high acceleration region where the bed is sufficiently thermalized.

The work which has been discussed in this dissertation provides strong direction

and motivation for continued detailed studies. Several problems and striking phenomena

have been revealed which easily lend themselves to further investigations.

(1).Investigate the microstructure change at different shaking phase angles, using 3-D

Voronoi diagram.

(2). Calculate the self-diffusion tensor by following the system dyanimcs over a long

time.
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3). Study wave propagation through the bed and in granular materials by considering

the phase delay of the velocity cross-correlation functions.

(4). Simulate the vibrating transport of granular beds.

(5).Further study the segregation phenomenon in vibating beds by performing

amicrostructural analysis of diagnostic quantities.

(6) Create 3-D video animations of the simulations which could reveal phenomena not

easily observed, such as the formation and breakup of arches and heaping.
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Figure A4.1a Dimensionless granular temperature depth profiles for Vb = 2.0
compared with theoretical predictions of Richman and Martin (46).(dotted and
solid lines). d = 0.1m, e = 0.9, frq. = 50 Hz, K 2.7x108 .
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Figure A4.1b Solids fraction depth profiles compared with theoretical predictions
of Richman and Martin (46) (dotted and solid lines). d = 0.1m, e = 0.9, frq. = 50
Hz, K, = 2.7x108.



Figure A4.2a Dimensionless granular temperature depth profiles for mt = 5.0
compared with theoretical predictions of Richman and Martin (46).(dotted
and solid lines). d = 0.1m, e = 0.9, frq. = 50 Hz, K1 = 2.7x108 .
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Figure A4.2b Solids fraction depth profiles for mt = 5.0 compared with
theoretical predictions of Richman and Martin (46) (dotted and solid
lines). d = 0.1m, e = 0.9, frq. = 50 Hz, K1 = 2.7x108 .
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Figure A4.3a Dimensionless granular temperature depth profiles at three
different values of normal loading stiffness K1 and the theoretical
predictions of Richman and Martin (46).(dotted line). d = 0.01m, e = 0.9,
frq. = 50 Hz.
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Figure A4.3b Solids fraction depth profiles at three different values of
normal loading stiffness K1 and the theoretical predictions of Richman and
Martin (46) (dotted line). d = 0.01m, e = 0.9, frq. = 50 Hz.
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Figure A4.4a Dimensionless granular temperature depth profiles for m1 =
2.5 and Vb = 2.0 over a range of F values obtained by varying the
frequency of the boundary between 5 and 100 Hz. The dotted line is kinetic
prediction of Richman and Martin(46). d= 0.01m, e = 0.9.
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Figure 4.4b Solids fraction depth profiles for mt = 2.5 and Vb = 2.0 over a
range of Γ  values obtained by varying the frequency of the boundary
between 5 and 100 Hz.The dotted line is kinetic prediction of Richman and
Martin(46). d 0.01m, e = 0.9.
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Figure 4.5 Simulated bed height versus F compared with experimental
results of Hunt et al. (18).
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Figure A4.6 Simulated bulk solids fraction versus F compared wtih
experimental results of Hunt et al. (18).
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Figure A4.7a Dimensionless granular temperature depth profiles with
increasing F and a fixed shaking amplitude equal to 1.67d. e = 0.9.
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Figure A4.7b Solids fraction depth profiles with increasing r and a fixed
shaking amplitude equal to 1.67d. e = 0.9.
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Figure A4.8 Normalized y coordinate (Y = yld) at which peak in solids
fraction profile occurs as a function of the acceleration amplitude F.
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Figure A4.9 Mass percentage below normalized bed location Y at
different F values.
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Figure A4.10a Projection of reduced spheres onto x-y plane before
shaking (at t =0).



Figure A4.10b Snap of projection of reduced spheres onto x-y plane forΓ
1.2g.
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Figure A4.10c Snap of projection of reduced spheres onto x-y plane for r

= 2g.



Figure A4.10d Snap of projection of reduced spheres onto x-y plane for F
= 3.15g.
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Figure A4.10e Snap of projection of reduced spheres onto x-y plane for F
= 30g.
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Figure A4.11 Mean granular temperature in primary computation cell
versus I,. (average over 20 seconds after the system reaching a steady state)
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Figure A4.12 Mean collisions per particle versus I'. (average over 20
seconds after the system reaching a steady state)
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Figure A4.13a Boundary velocity (frq. = 7 Hz) and its spectral density of a,
system where mt = 5, F = 10g, d = 0.1m, displacement amplitude = 0.5d,
F .10d, e= 0.9, K1 = 2.8 x106, p = 1200 kg/m3 .
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Figure A4.13b Time histories of y-components of the mean zone velocities
and their power spectral densities in Zone 1 and 2. Zones are sequentially
numbered starting from 1 near the vibrating floor. mt = 5, d = 0.1m,
shaking amplitude = 0.5d, Γ  = 10g, e= 0.9, Κ1 = 2.8 x106, ρ  = 1200 kg/m3.
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Figure A4.13b Time histories of y-components of the mean zone velocities
and their power spectral densities in Zone 3 and 4. Zones are sequentially
numbered starting from 1 near the vibrating floor. nu = 5, d = 0.1m,
shaking amplitude = 0.5d, r = 10g, e= 0.9, K1 = 2.8 x106, p = 1200 kg/m3.
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Figure A4.13b Time histories of y-components of the mean zone velocities
and their power spectral densities in Zone 5. and 6. Zones are sequentially
numbered starting from 1 near the vibrating floor. mt = 5, d = 0.1m,
shaking amplitude =.5d, Γ =10g,e=0.9,Κ1= 2.8 x106,ρ= 1200kg/m3.
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Figure A4.13b Time histories of y-components of the mean zone velocities
and their power spectral densities in Zone 7 and 8. Zones are sequentially
numbered starting from 1 near the vibrating floor. m t = 5, d = 0.1m,
shaking amplitude =.5d, Γ  = 10g, e= 0.9, Κ1 = 2.8 x106, ρ  = 1200 kg/m3
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Figure A4.13b Time histories of y-components of the mean zone velocities
and their power spectral densities in Zone 9 and 10. Zones are sequentially
numbered starting from 1 near the vibrating floor. mt = 5, d = 0.1m,
shaking amplitude =.5d, Γ  = 10g, e= 0.9, K1 = 2.8 x106, ρ  = 1200 kg/m3.
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Figure A4.13b Time histories of y-components of the mean zone velocities
and their power spectral densities in Zone 11 and 12. Zones are
sequentially numbered starting from 1 near the vibrating floor. mt = 5, d =
0.1m, shaking amplitude =.5d, Γ  = 10g, e= 0.9, Κ1 = 2.8 x106, ρ  = 1200
kg/m 3 .
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Figure A4.13b Time histories of y-components of the mean zone velocity
and its power spectral density in Zone 13. Zones are sequentially numbered
starting from 1 near the vibrating floor. m t = 5, d = 0.1m, shaking
amplitude =.5d, Γ  = 10g, e= 0.9, K1 = 2.8 x106, ρ  = 1200 kg/m3 .
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Figure A4.14 Autocorrelation of boundary velocity and cross correlations
between the boundary velocity and the y-components of the mean velocity
in zone 1 --zone 5 in a system where mt = 5, d = 0.1m, shaking amplitude
=.5d, Γ  = 10g, e= 0.9, K1 = 2.8 x106, ρ  = 1200 kg/m3.



Figure A4.14 Cross correlations between the boundary velocity and the y-
components of the mean velocity in zone 6 ~ zone 11 in a system where m t

= 5, d = 0.1m, shaking amplitude =.5d, Γ =10g,e=0.9,K1= 2.8 x106,
ρ= 1200kg/m3.



Figure A4.15a Dimensionless granular temperature and solids fraction
depth profiles at Γ  = 90g and amplitude a 0.1d for a system where m t =
5, d = 0.1m, e= 0.9, Κ1 = 2.7 x108 , ρ=1200 kg/m 3
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Figure A4.15b Dimensionless granular temperature and solids fraction

depth profiles at Γ= 483g and amplitudea= d /2, for a system where.mt

= 5, d = 0.1m, e= 0.9, Κ1 = 2.8 x106, ρ  = 1200 kg/m3 .
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Figure A4.16 Components of the velocity autocorrelation function for Γ =
90g, f = 50 Hz and amplitude a ≡ 0.1 d.(mt = 5, d = 0.1m, e= 0.9, K1 = 2.7
x108, ρ = 1200 kg/m3)
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Figure A4.17 Components of the velocity autocorrelation function for Γ =

483g, f = 50 Hz and amplitude a= d/2.( mt = 5, d = 0.1m, e= 0.9, K1 =

2.8 x106, p = 1200 kg/m 3)
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Figure A4.18 Dimensionless granular temperature profiles for a fixed
shaking amplitude a = d 1 2 and Γ  = 5g, 10g and 20g. ( mt = 5, d 0.1m,
e= 0.9, Κ1 = 2.7 x108, ρ = 1200 kg/m3)
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Figure A4.19 Solids fraction depth profiles for a fixed shaking amplitude
a= d/ 2 and Γ = 5g, 10g and 20g. (mt = 5, d = 0.1m, e= 0.9, Κ1 = 2.7 x
108, ρ = 1200 kg/m3)



Figure A4.20 Velocity autocorelation function for a = d / 2 and Γ  = 5g
whose dimensionless granular temperature and solids fraction depth
profiles are shown in Figure A4.18 and A4.19.



Figure A4.21 Velocity autocorelation function for a= d / 2 and Γ  = 10g
whose dimensionless granular temperature and solids fraction depth
profiles are shown in Figure A4.18 and A4.19.
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Figure A4.22 Velocity autocorelation function for a= d 1 2 and r = 20g
whose dimensionless granular temperature and solids fraction depth
profiles are shown in Figure A4.18 and A4.19.
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Figure A4.23 Self-diffusion components Dx and Dz versus Γ  for the systems whose
temperature and solids fraction have been discussed in Figure A4.18 and A4.19.
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Figure A4.24 Self-diffusion components Dx and D z versus granular
temperature Tx and T2, respectively.
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Figure A4.25 Components of the velocity autocorrelation function for f =
50 Hz, Γ  = 10g and amplitude a = 0.01d.



Figure A4.26 The mean square displacement (|r|2) .for a case where Γ =

90g, f = 50 Hz d = 0.1m, amp ≡ 0.1d. The liming slope of this curve is
used to compute the diffusion coefficient D*
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Figure A4.27 The x, y and z components of the mean square displacement.
The limiting slopes of these curves are used to compute the Dx* and Dz* .



Figure A5, la Mean velocity field for the case where Γ  = 10g, f = 9.99(
Hz, d = 0.1m , amplitude = 0.25d., and friction coefficient for both
particles and boundaries are 0.8.
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Figure A5.1b Mean velocity field for the case where Γ =10g,f =7.878
Hz . d = 0.1m , amplitude = 0.3d., and friction coefficient for both particles
and boundaries are 0.8.
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Figure A5.1c Mean velocity field for the case where Γ  = 10g, f = 7 Hz, d
= 0.1m , amplitude = 0.50d., and friction coefficient for both particles and
boundaries are 0.8.
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Figure A5.2a Magnitudes of mean velocity vectors for the case shown in
Figure A5.la plotted as coordinates along the vertical axis. The horizontal
axes describe coordinates. along the convection plane (.i.e, the y-z plane)
normalized by the particle diameter.



Figure A5.2b Magnitudes of mean velocity vectors for the case shown in
Figure A5.1b plotted as coordinates along the vertical axis. The horizontal
axes describe coordinates along the convection plane (.i.e, the y-z plane)
normalized by the particle diameter.
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Figure A5.2c Magnitudes of mean velocity vectors for the case shown in
Figure A5.1c plotted as coordinates along the vertical axis. The horizontal
axes describe coordinates along the convection plane (.i.e, the y-z plane)
normalized by the particle diameter.
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Figure A5.3 Mean velocity vector field in a 6d x3d cell where the particle
and wall friction coefficients are equal, i.e. frnu = fmub = 0.8. (Γ = 10g, d =
0.1m, amplitude = 0.5d and f = 7 Hz.)
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Figure A5.4 Mean velocity vector field in a 6d x3d cell where frnu = 0.8,
fmub = 0.2 .( Γ = 10g, d = 0.1m, amplitude = 0.5d and f = 7 Hz.)
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Figure A5.5 Mean velocity vector field in a 6d x3d cell where fmu = 0.8,
fmub = 0.(Γ = 10g, d = 0.1m, amplitude = 0.5d and f = 7 Hz.)
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Figure A5.6 Mean velocity vector field in a 6d x3d cell where fmu = 0.0,
fmub =0.8. (Γ = 10g, d = 0.1m, amplitude = 0.5d and f = 7 Hz.)



Figure A5.7 Mean velocity vector field for a primary computational cell of
length x width = 20dx3d. where fmu = 0.8, fmub =0.8.(Γ = 10g, d = 0.1m,
amplitude = 0.5d and f = 7 Hz.)
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Figure A5.8a Mean velocity vector field for a primary computational cell
of length x width = 100dx1d, where fmu = 0.8, fmub =0.8.(Γ = 10g, d =
0.1m, amplitude = 0.5d and f = 7 Hz.)



Figure A5.8b Enlarged mean velocity vector field for a central region of
the primary computational cell of length x width = 100dx1d.



Figure A5.9 Magnitudes of mean velocity vectors for the case shown in
Figure A5.8a plotted as coordinates along the vertical axis. The horizontal
axes describe coordinates along the convection plane (.i.e, the y-z plane)
normalized by the particle diameter.
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Figure A5.10a Y-Z sphere projection plots, for phases π /4 (yb  = 0.0359m,
v 1.58 m/s) and π /2 (yb = 0.05m, v 0). (Primary computational cell
dimensions length x width = 100dx1d



Figure A5.10b Y-Z sphere projection plots for phases π /4 (yb = 0.0359m,
v = -1.58 m/s) and π  (yb  = 0.m, v = -2.23m/s). (Primary computational cell
dimensions length x width = 100dx1d



Figure A5.10c Y-Z sphere projection plots for phase π /4 (yb= -0.0359m,
v - 1.58 m/s) and π /2 (yb  - 0.05m, v = 0). (Primary computational cell
dimensions length x width = 100dx1d



Figure A5.10d Y-Z sphere projection plots for the the phases 7 π /4 (yb =
0.0359m, v = 1.58 m/s) and 2π  (yb  = 0.0m, v = 2.23m/s). (Primary
computational cell dimensions length x width = 100dx1d



Figure A5.11a Mean velocity fields for phases π /4 (yb  = 0.0359m, v= 1.58 m/s)
and π /2 (y

b
 = 0.05 m, v= 0). (Primary computational cell dimensions lengthxwidth =

100d x1d)



Figure A5.11b Mean velocity vector fields for phases 3π /4 (yb  = 0.0359m,
v = -1.58 m/s) and π  (yb = 0.m, v -2.23m/s). (Primary computational cell
dimensions length x width = 100dx1d



Figure A5.11c Mean velocity vector fields for phases 5 π /4 (yb = -0.0359m,
v = -1.58 m/s) and 3 π /2 (yb = - 0.05m, v = 0). (Primary computational cell
dimensions length x width = 100dxld



Figure A5.11d Mean velocity vector fields for phases 7 π /4 (yb
0.0359m, v = 1.58 m/s) and 2 π  (yb = 0.0m, v = 2.23m/s). (Primary
computational cell dimensions length x width = 100dx1d



Figure A5.12 Trajectory a single large sphere of diameter D = 0.3m in a
vibrated bed of small spheres d = 0.1m for a 6dx3d cell, f = 7 Hz,
amplitude =



Figure A5.13 Trajectory a single large sphere of diameter D = 0.3m in a
vibrated bed of small spheres d = 0.1m for a 20dx3d cell, f = 7 Hz,
amplitude = d/2, and Γ =10g.



Figure A5.14a Displacement and velocity history and spectral density of a
single large sphere initially placed in the center of the primary
computational cell (6dx3d) for the case D/d = 3, f = 7 Hz, amplitude = d/2
and Γ = 10g.
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Figure A5.14c Displacement and velocity history and spectral density of a
single bed sphere of diameter d adjaced to the side wall for the case shown
in Figure A5.14a where Did = 3, f = 7 Hz, amplitude = d/2 and r 10g.
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Figure A.5.15 Vertical displacement history of a single large sphere of
diameter D for different normal restitution coefficient pairs (eb, e) f = 7
Hz, amplitude = d/2 and F = lOg
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Figure A5.16a Mean velocity vector field for (eb, e) = (0.6, 0.6) for the
case where 1=7 Hz, amplitude = d/2 and Γ  = 10g.
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Figure A5.16b Mean velocity vector field for (e b, e) = (0.9, 0.9) for the
case where f = 7 Hz, amplitude = d/2 and F = 10g.



Figure A5.17 Coordination number and velocity (m/s) time histories of a
single largesphere where D/d = 3 and f = 7 Hz, amplitude = d/2 and Γ
= 10g.
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