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ABSTRACT

TRANSIENT BEHAVIOR OF AN ADAPTIVE SYNCHRONOUS
CDMA RECEIVER

by
Bin Zhu

A steepest descent algorithm is used to update the adaptive weights of a

two-stage synchronous Code-Division Multiple-Access (CDMA) receiver that was

proposed recently. An issue of the adaptive CDMA system — the convergence and

stability property of the receiver is investigated in this thesis.

This adaptive synchronous CDMA receiver uses a decorrelator at the first stage

and adopts a neural network which acts as an interference canceler at the second

stage. It can achieve near-optimum performance. Furthermore, its computational

complexity is just a square function of the number of users. The only requirement is

the knowledge of the users' signature sequences.

The analysis shows that the algorithm for the adaptive weights is convergent

and straightforward in implementation. The guaranteed fast convergence of the

receiver weights and the tractable theoretical analysis on it, as revealed in this thesis,

make this adaptive receiver a promising approach for wireless communications.



TRANSIENT BEHAVIOR OF AN ADAPTIVE SYNCHRONOUS
CDMA RECEIVER

by
Bin Zhu

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

January 1994



 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPROVAL PAGE

TRANSIENT BEHAVIOR OF AN ADAPTIVE SYNCHRONOUS
CDMA RECEIVER

Bin Zhu

N'irwan Ansari, Thesis Advisor
	 1 	 Date

Associate Professor of Electrical and Computer Engineering
New Jersey Institute of Technology

Dr. Zoran Siveski, Committee Member
Assistant Professor of Electrical and Computer Engineering
New Jersey Institute of Technology

, 

DeNkltxander Haifnovic , Committee Member
Associate Professor of E ctrical and Computer Engineering
New Jersey Institute ofTechnology

Date

Date



BIOGRAPHICAL SKETCH

Author: Bin Zhu

Degree: Master of Science in Electrical Engineering

Date: January 1994

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1994

• Bachelor of Science in Electrical Engineering,
Shanghai Jiao Tong University, Shanghai, P.R.C., 1988

Major: Electrical Engineering



This thesis is dedicated to my parents
and my husband

v



ACKNOWLEDGMENT

I would like to thank my advisor, Dr. Nirwan Ansari, for his guidance and

support throughout my Master's program.

I would also like to thank my co-advisor, Dr. Zoran Siveski for his valuable

advice on my research and thesis.

Special thanks to Dr. Alexander Haimovich for serving as member of the

committee.

Furthermore, I would like to mention Lisa Fitton whose timely advice on the

writing of the thesis is much appreciated.

Last but not least, I would like to express my appreciation for all the love and

support given to me by my husband and friends.

vi



TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION  	 1

2 LITERATURE SURVEY  	 6

	

2.1 	 System Model  	 6

	

2.2 	 The Non-adaptive Receiver  	 8

2.2.1 	 The Conventional Receiver 	 8

2.2.2 	 The Optimum Receiver 	 9

2.2.3 	 The Suboptimum Receiver 	 11

3 NEURAL NETWORKS AS SYNCHRONOUS CDMA RECEIVERS . . . . 15

3.1 CDMA Receivers with Supervised Learning Algorithms 	 15

3.1.1 	 A Multi-layer Neural Network as a CDMA Receiver 	 15

3.1.2 	 A Single-Layer Neural Network as a CDMA Receiver 	 16

3.2 CDMA Receivers with Unsupervised Learning Algorithms 	 21

3.2.1 	 The Structures 	 21

3.2.2 	 Convergence and Stability 	 25

3.2.3 	 Simulations 	 26

4 CONVERGENCE AND STABILITY ANALYSIS OF A RECENTLY
PROPOSED SYNCHRONOUS ADAPTIVE CDMA RECEIVER 	 34

4.1 The Synchronous Adaptive CDMA Receiver 	 34

4.1.1 	 The Receiver 	 34

4.1.2 	 Weight Updating 	 35

4.2 Probability of Error 	 37

4.3 Convergence and Stability Analysis 	 41

4.3.1	 General Analysis 	 41

vii



Chapter	 Page

4.3.2 Transient Behavior Analysis 	  44

4.3.3 The Two-User Case 	  45

4.3.4 The Three-User Case 	  47

4.3.5 Simulation Results 	  50

5 CONCLUSIONS 	  60

REFERENCES 	  62

viii



LIST OF FIGURES

Figure 	 Page

2.1 The General Receiver Model  	 6

2.2 The Conventional Receiver  	 8

2.3 The Optimum Receiver 	  10

2.4 The Two-Stage Non-Adaptive Suboptimum Receiver 	  11

3.1 A Multi-layer Suboptimum Adaptive CDMA Receiver 	  15

3.2 A Single-layer Suboptimum Adaptive CDMA Receiver 	  17

3.3 The Transient Weights to User 1 and 2 in the Two-User Case 	  18

3.4 The Steady State Error Probability in the Two-User Case 	  19

3.5 The Transient Weights to User 1 in the Three-User Case 	  20

3.6 The Steady State Error Probability in the Three-User Case 	  20

3.7 The Backward Structure 	  21

3.8 The Direct Structure 	  23

3.9 The Two-Stage Mixed Structure 	  24

3.10 The Forward-Backward Structure 	  25

3.11 The Model Proposed 	  26

3.12 The Transient Weights of the Backward Structure Receiver 	 27

3.13 The Transient Weights of the Forward Structure Receiver 	  28

3.14 The Transient Weights of the Forward-Backward Structure Receiver • •

▪ 

28

3.15 The Transient Weights of the Two-Stage Mixed Structure Receiver .

• 	

29

3.16 The Probability of Error in the Forward-Backward Structure Case . • . 	 30

3.17 The Probability of Error in the Two-Stage Mixed Structure Case 	  30

3.18 The Probability of Error in the Backward Structure Case 	  31

3.19 The Probability of Error in the Forward Structure Case 	  31

ix



Figure 	 Page

3.20 The Transient Weights to User 1 in the Three-User Case 	  32

3.21 The Error Probability in the Three-User Forward Structure Case 	  33

4.1 The Synchronous Adaptive CDMA Receiver 	  34

4.2 The Probability of Error in the Two-User Case with p = 0.7 	  37

4.3 The Probability of Error of User 1 in the Two-User Case 	  38

4.4 The Probability of Error of User 1 in the Three-User Case 	  39

4.5 The Probability of Error of User 1 in the Four-User Case 	  39

4.6 The Comparison of Error Probability for the Two- to Four-User Case 	  40

4.7 The Two-User Synchronous CDMA Receiver 	  45

4.8 The K-User Synchronous CDMA Receiver 	  48

4.9 The Weight w21 with SNR1 = SNR2 = 8 dB, p = 0.9 and p = 0.002 . .

• 

51

4.10 The Statistical Behavior of w 21 with SNR1 = 8 dB, p = 0.002 	  51

4.11 The Statistical Behavior of w12 with SNR1 = 8 dB, p = 0.002 	  52

4.12 The Statistical Behavior of w 21 with SNR1 = 8 dB, = 0.2 	  53

4.13 The Statistical Behavior of w12 with SNR1 = 8 dB, A = 0.2 	  53

4.14 The Transient Error Probability in the Two-User Case with p = 0.2 	

▪ 

54

4.15 The Statistical Behavior of w21 with p = 0.2 and 0.002 	  55

4.16 The Statistical Behavior of w31 with p = 0.2 and 0.002 	  55

4.17 The Statistical Behavior of w21 with SNR 1 = 8 dB, p = 0.2 	  56

4.18 The Statistical Behavior of w31 with SNR1 = 8 dB, p = 0.2 	  56

4.19 The Transient Behavior of Weights with Non-Zero Initial Values 	  57

4.20 The Transient Error Probability in the Three-User Case with A = 0.2 .

• 

58

4.21 The Transient Behavior of the Weights to User 1 with p = 0.2 	  59

4.22 The Statistical Behavior of the Weights to User 1 with p = 0.2 	  59



CHAPTER 1

INTRODUCTION

Several techniques are available to transmit a plurality of different source messages

over a common channel simultaneously, such as Time-Division Multiplexing (TDM),

which uses different time slots; Frequency-Division Multiplexing (FDM), which

uses different frequency bands; and Code-Division Multiplexing (CDM), which uses

different pre-assigned code waveforms (signature sequence). Code-Division Multiple-

Access (CDMA) has recently been adopted as one of the accessing techniques for

wireless personal and mobile communications. The reasons lie in its promise of

performance, and most of all, its high degree of flexibility — there is no "hard" limit

on the number of users that can simultaneously access the system; adding more

users just causes a graceful degradation of system performance.

In this thesis, we consider a synchronous CDMA communication system. In

CDMA, multiple accessing is actually achieved by spreading the spectrum of trans-

mitted signals with pre-assigned signature sequences. Each transmitter-receiver pair

is designed to encode and decode the information bit using a specific sequence.

Each receiver partially receives other user signals because of the cross-correlation

between their signature sequences. Therefore, in a multiple-user communication

system, the noise present at the receiver can be modeled as the sum of the channel

noise with additive white Gaussian properties and the interfering noise caused by

other users. Although the interfering power can be reduced by carefully choosing

the signature sequences with low cross-correlation, it results in the reduction of the

maximum number of users that can access the system simultaneously, rendering it

an impractical solution.

1
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There are various approaches in designing CDMA receivers. The conventional

single-user receiver that employs a matched filter is optimum in the sense of a

maximum output signal-to-noise ratio, where the noise is modeled as a Gaussian

noise. In the multiple-user case, since the interfering noise cannot be accurately

modeled as a Gaussian noise, the conventional receiver considers the background

noise only and, therefore, it can not be considered optimum. As a result of inter-

ference "ignorance", the performance of the conventional receiver closely depends on

the power of the interfering signals. Severe degradation of the system, known as the

"near-far" problem, can happen because of strong interference caused by the large

transmitted power of the interfering signals. To cope with this problem, a power

control system that adjusts the powers of the transmitted signal and the interfering

signals has to be built, which increases the complexity.

An optimum receiver in multiple-user environments that uses a Viterbi

algorithm is proposed by Verdu [1]. With the power of each user known, a decision

can be made by choosing one possible signal vector that minimizes the cost function.

The receiver has been proven to be insensitive to the "near-far" problem. Its practi-

cality is hampered by the requirement of the knowledge of each user's power. In

addition, its computational complexity increases exponentially with the number of

users.

Several suboptimum receivers have been proposed to achieve the reduced

computational complexity at the cost of lower performance [2], [3]. The suboptimum

two-stage decorrelating receiver analyzed in [3] is one of them. The first stage of

the receiver is a decorrelator. The original signals are considered as the signals at

the input of this stage. Interference-free signals can be achieved at the output of

the stage; however, the noise power is enhanced by this stage. To achieve better

signal-to-noise ratios, the second stage is implemented. It is an interference canceler
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with fixed weights which require the knowledge of the users' powers. What it does is

subtract the interference from the original signals again based on the results of the

first stage and, therefore, avoids the effect of noise enhancement. The receiver has

good performance with regard to error probability, and its computational complexity

increases linearly with the number of users. However, a shortcoming of the receiver

is the required knowledge of the user powers.

Along another path, interference cancelers with an adaptive concept were

introduced for the multiple-user environment [4]. Later, the same structures and

a similar adaptive rule were proposed independently by a group of European

researchers [5], [6]. Since then, a lot of work has been done in light of different

structures and adaptive algorithms [7], [8], [9], [10], [11]. The adaptive receivers are

designed to either track a parameter of the communication environment or adapt to

unknown user parameters. In this case, the convergence of the algorithm and the

stability of the system become main issues.

In [10], Aazhang proposed a CDMA receiver which consists of a multi-

layer neural network trained by the back-propagation algorithm. The training

is considered to be successful with regard to the convergence (unlikely to be trapped

in local minima) and stability of the algorithm. The receiver is shown to achieve

good performance in terms of error probability after the training. Still, problems

arise regarding the number of neurons needed, which increases exponentially with

the number of users, and the time needed for training cannot be ignored.

In [11], U. Mitra and H.V. Poor proposed a single-layer perceptron scheme with

different filtering techniques for single-user demodulation in a multiple-user channel.

The weights are shown to converge to the optimal values in a noiseless environment

and the convergence is guaranteed. With additive Gaussian channel noise added to
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the system, the performance is not satisfactory. Furthermore, the convergence rate

is relatively slow.

The above two neural network receivers are trained by supervised learning

algorithms. They all require reference training sequences to perform the system

training task, which is impractical in implementation. Unsupervised training is then

desirable in the CDMA environment.

The "bootstrap" algorithm was first introduced in [4] for interference cancel-

lation. In [8], [9], three different bootstrap structures (backward-backward, forward-

forward, and forward-backward) of the bootstrap blind adaptive algorithm for multi-

signal co-channel separation were analyzed. Recently, the same structures were

proposed independently in [5] and [6]. In [5], a backward-backward network structure

was proposed with an adaptive unsupervised algorithm. This was first applied

successfully to some continuous signals. But investigation revealed that this kind

of algorithm has severe drawbacks on convergence and stability [12], [13]. In [6], two

other structures (two-stage mixed and forward-forward) were proposed and compared

to the backward-backward structure. These structures can not overcome the same

drawbacks on convergence and stability.

The synchronous adaptive CDMA receiver investigated in this thesis was

recently proposed in [14]. The idea was inspired by the suboptimum two-stage

decorrelating receiver mentioned earlier [3]. Instead of using fixed weights (which

need the knowledge of the users' powers) for the interference canceler, this receiver

employs a neural network updated by a steepest descent algorithm. By doing this,

the weights are able to adjust their values and converge to the optimal weights.

Therefore, the knowledge of the users' powers is not required by this receiver.

This factor also makes it possible for the receiver to work in a power changing

environment, which is a very important feature in mobile communications.
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The system has been shown to be "near-far" resistant, achieves very good

performance with regard to error probability, and functions without knowing the

users' powers. It can even perform at the same level as the optimum receiver when

the users' SNRs are high [14]. Moreover, the computational complexity is just a

square function of the number of users.

A thorough investigation on the convergence and stability of the system is

presented in this thesis. Several conditions for the system to achieve convergence are

derived, and their properties are analyzed.

In chapter 2, earlier work on non-adaptive multiple-user receivers is briefly

reviewed for comparison. In Chapter 3, we focus on adaptive multiple-user receivers,

especially on single-layer neural networks with unsupervised learning algorithm (or

"bootstrap" algorithm). The algorithm, as well as their convergence conditions will

be revealed. Simulations on this kind of adaptive CDMA receivers were done and the

results will also be shown. In Chapter 4, the recently proposed synchronous adaptive

CDMA receiver will be introduced and its convergence and stability properties will

be analyzed. Details of the two-user case and three-user case, as well as numerical

results, are given for the purpose of illustration. The conclusion of the thesis is given

in chapter 5.



CHAPTER 2

LITERATURE SURVEY

2.1 System Model

The synchronous code-division multiple-access environment is shown in Figure 2.1.

Figure 2.1 The General Receiver Model

Suppose that there are a total of K active users in this environment. Define b(i)

[bi (i), b2 (i), • • • , bK(i)] T as a column vector corresponding to the K sources' infor-

mation bits transmitted at the ith time interval, where bk E { -1, 1} (if assumed

antipodal, as in this thesis), 1 ≤  k ≤  K, is the information bit of the kth source signal

with duration T0. Also define A = diag[ √A1, √A2,...,≤√AK] as a diagonal matrix,

where A

K

 is the received power of the kth source signal. Define sk(t), 1 ≤  k ≤  K,

as the kth user's signature waveform with its time interval limited between [0, T0).

Suppose a code word consists of m chips, each of duration τ , then T0 = mτ. Without

loss of generality, also set that∫ T00s2k (t)dt = 1. n(t) is the background channel noise

modeled as an AWGN with a zero mean and a double-sided power spectral density

of N0/2.

6
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For the kth source, each information bit bk is encoded by the signature sequence

s k (t), which means that the spectrum of the transmitted signal is spread and therefore

much wider than the bandwidth of the original signal. After being encoded, all the

K signals are transmitted through the same channel. Consider the case where all

users in the system are bit-synchronous, the signal r(t) received at the output of the

channel is the sum of all K signals and the noise n(t), which can be expressed as:

r(t) = E E bk (i) \/Ak sk (t — iTo) + n(t). 	 (2. 1)
k=1 i

Consider the ideal case of no intersymbol interference for the signature sequences,

then at time interval i, i.e., iTo < t < (i 1)To , the above equation can be simplified

as

r(t) = E bk (i)v/Akso 	 + n(t). 	 (2. 2)
k=1

The signal r(t) is then passed through a bank of matched filters, which results in

x pAb n, 	 (2.3)

where x = [x i , x 2 , . , xx]T , n = [ni, n2, 	 , nic]T nk is the output of the channel

noise through the kth matched filter. It can be proven that n k is still a Gaussian

noise with zero mean and power spectral density of N o /2, and the covariance matrix

of the vector n is

EInnT 1 = No

where p is the cross-correlation matrix with its (k, j)th element defined as:

To
Pkl = 0 Sk(t)Si(t)dt

	
k,l E (1,2, • • • ,K), 	 (2.4)

with pkk = 1 and phi 	p ik . Therefore, it can be seen that the noise at this point

consists of a background noise inherited from the channel and an interference caused

by other users. The signal vector x will then be processed by a decision system.
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2.2 The Non-adaptive Receiver

2.2.1 The Conventional Receiver

A conventional single-user receiver is a correlation receiver or a matched filter

receiver that is optimum in the sense of maximum signal-to-noise ratio. In a K user

environment, it refers to a receiver that employs K such single-user receivers. One

of the conventional synchronous CDMA receivers is depicted in Figure 2.2.

Figure 2.2 The Conventional Receiver

As mentioned earlier, the input to the receiver can be expressed as:

The signal received at the output of the kth matched filter becomes
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where bk(i) is the desired signal, EpkiVAibi(i) is the interference from other users,
zok

and noise nk (t) is a Gaussian noise with the following properties:

1. E{nk(t)} = O.

2. E{n2k (t)} No /2.

3. E{nk (t)n l (t)} = PkIN012, k 	 1.

These properties can be verified easily by using the fact that sk (t) is deterministic.

A decision is then made on the output of the matched filter:

bk(i) = sgn[xk(i)]

= sgn[V Akbk(i) E Pia 	 nk (t)] 	 (2.6)
zok

It is clear that in order to accurately recover the source information bit bk, the

interference from other users, in terms of Epki A i bi (i), should be small. When
zok

the interfering signal power is much larger than the desired signal power (which can

happen when a interfering station is much nearer to the receiver than its source

station), it is very difficult for the receiver to recover the desired signal. This is

the famous "near-far" problem, which is the major drawback of the conventional

receiver.

2.2.2 The Optimum Receiver

The optimum receiver in the multiple-user case is then exploited. It can make

decisions according to two different decision rules. One is maximum-likelihood

sequence detection, and another is minimum-probability-of-error detection. The

receiver is depicted in Figure 2.3.

Here, the Viterbi algorithm is used. With all information sequences assumed

to be equiprobable, the maximum-likelihood decision or optimum decision on b(i)
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Figure 2.3 The Optimum Receiver

can be made by only observing the signal vector received at ith bit duration. Denote

b(i) = [b1 (i), b2 (i),...,bΚ(i)]T as the estimation of b(i), the cost function is

which is the energy of the noise in one bit duration. When b(i) = b(i), the cost

function reaches its minimum:

which is the energy of the channel noise. Therefore, a decision is made according to

the following:

or equivalently, by maximizing a log likelihood function [3]:

Although the optimum receiver can efficiently resist the "near-far" problem, it

has severe limitations on complexity and it requires the knowledge of all the signal



11

powers. Since the number of choice on bk is 2K for antipodal signals in the .Kuser

case, the computational complexity increases exponentially with the number of users,

which is impractical in implementation.

2.2.3 The Suboptimum Receiver

Suboptimum receivers are proposed to achieve near-optimum performance with much

less complexity. Different interference cancelers are employed in this kind of receiver.

The two-stage decorrelating receiver is one that emerged recently. It employs a

decorrelator as the first stage to estimate the information bit and performs the inter-

ference cancellation at the second stage based on the former estimation [3]. This

non-adaptive receiver is depicted in Figure 2.4.

Figure 2.4 The Two-Stage Non-Adaptive Suboptimum Receiver
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Assume P is the K x K decorrelator matrix with its element denoted as pki,

and z = [z1 , z2, • • • , zid T = Px is the signal vector obtained at the output of the

decorrelator. Since

x = pAb +n and z

P can be chosen as p' to make the output signals z interference-free. Therefore,

z = Px = p- 1 (pAb n) Ab	 (2.11)

With 	 sgn[z], the output of the interference canceler can be expressed as

y = x — TO) = pAb n wb, (2.12)

where y = [yi, y2 , • • • , y,K-] T is the output signal vector of the second stage, and W

is the K x K weight matrix fixed as W = (p IjA. When signal SNRs are larger

enough, 6 b. Then equation (2.12) becomes

Abd-n.	 (2.13)

The output of the receiver is then

b	 sgn[y], 	 (2.14)

..,: 	 •,',
where b = [bi ,b2 , • • • ,bK] T is the final decision of the information vector b. The

,,
reason for choosing b instead of i is that the SNR at the output of the decorrelator is

too vulnerable to the large cross-correlation p. This can be seen easily by comparing

equation (2.11) and (2.13).

The following is an illustration of the 2 x 2 case. Denote p = P12 = p21 . The

cross-correlation matrix p in this case is 1 P . The background noise present in(
P 1

equation (2.11) and (2.13) become
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and

Thz	
p-1

( 1 —p)
—p 1
1—p2 

	1 	 n1 — pn2
1 — p2 ( n2 — Pni

(2.15)

ny = n.

Since Eln i l = E{n2 } = 0, E{n in2 } = 	 and EInn 	 Efrin 	 .-12-6-
7
 from

equation (2.15), the following hold:

E{n2z } = p-2E{n2 }

= 	 1
(1 - p 2 ) 	 2 )

1 
(1 p2 ) E {n2 }

> E{n2y }. (2.16)

It is clear that the background noise power present at the output of the decorrelator is

larger than the one present at the output of the interference canceler. When the signal

SNRs are large, and the weights are fixed (w21 = psqrt(A2) and w 12 = Psqrt(A1)),

then y Ab n, the output signals of the second stage are almost interference free.

In this case, the error probability of the receiver is better than the one of the first

stage. In the case that the signal SNRs are small, the output signals of the receiver

is not interference free, then the error probability of the receiver varies depending

on the powers of all the users. Evaluations of their probability of error has already

been done in [14], [15] .

The receiver achieves good performance on error probability with compu-

tational complexity linearly increasing with the number of users. However, the
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requirement of a priori knowledge of the transmitted signal powers is the drawback

of the receiver.

Since the non-adaptive receivers require the knowledge of the users' signal

powers and their signature sequences, neural networks with adaptive concept have

been proposed to perform the same separating task with less knowledge of the

sources. This kind of receivers as well as their simulations will be discussed in

chapter 3.



CHAPTER 3

NEURAL NETWORKS AS SYNCHRONOUS CDMA RECEIVERS

There are two kinds of algorithms used to train neural networks. One is the

supervised learning and the other is the unsupervised learning. Since in supervised

learning, a training sequence is needed each time to train the system, it is not always

desirable in implementation.

3.1 CDMA Receivers with Supervised Learning Algorithms

3.1.1 A Multi-layer Neural Network as a CDMA Receiver

In [101, a multi-layer neural network CDMA receiver is proposed, as shown in Figure

3.1.

Figure 3.1 A Multi-layer Suboptimum Adaptive CDMA Receiver

15
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In this structure, the neural network is a multi-layer feed-forward network.

Employing the gradient descent algorithm to minimize the error function, the

back-propagation algorithm is used to train the network. In comparison to the

supervisor (the deiired output), the derivative of the error function is computed to

train each neuron. The training starts at the output layer, then the error function

is back-propagated to the former layers. Usually, the algorithm will reach a local

minima. In [10], some new techniques were developed to deal with this problem. The

receiver is "near-far" resistant and the performance of the receiver has been shown

to be suboptimum. Although the convergence problem is solved, the computational

complexity is still high. With the number of neurons increasing exponentially with

the number of users, the time used to train the network increases exponentially, as

well.

3.1.2 A Single-Layer Neural Network as a CDMA Receiver

In [11], a single-layer perceptron with different filter operations as a CDMA receiver

is proposed in a noiseless environment. Two nonlinearity functions are used for each

neuron. One uses the hard limiter and the other uses the Sigmoid function.

3.1.2.1 The Receiver Model

The scheme is depicted in Figure 3.2.

As shown in the figure, this receiver only considers one source signal as the

desired signal. The other user signals are considered interfering signals. Assume the

input vector to the receiver is x = [x i , x2 , • • • , xK]T, the output of the receiver at the

ith interval is

yi = f(wTx,),
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Figure 3.2 A Single-layer Suboptimum Adaptive CDMA Receiver

where w = [w1 , w2 ,..., wK ]T  is the weight vector. The updating algorithm is

described as

where di is the desired output. Using the hard limiter,

f'(•

) = sgn(•), leading to

f'(•) 1. Using the Sigmoid function, f (s ) = 1/1+e-s, f'(s) is also a non-linear

function. The convergence of the algorithm with the hard limiter is easily established

[16]. The convergence of the algorithm using the Sigmoid function is proven [11] with

a condition on μ , which is 0 < μ < 32/A2M2Κ, where M is the length of the code

word and Amax  is the maximum user power. The error probability performance of

the receivers using these two algorithms shows that the weights converge to optimal

values in a noiseless multiple-user environment. With additive white Gaussian noise,

convergence can also be reached, but the receiver is no longer optimal. Comparing

the receivers with the hard limiter and the Sigmoid function, the latter is less affected

by noise, but it has a slower convergence speed.
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Although the above analysis considers only one desired output, it can be easily

expanded to the K-user case by using K such receivers together.

3.1.2.2 Simulations

Simulations on the receiver using the hard limiter are shown in two- and three-user

cases. Figure 3.3 shows the transient behavior of the weights to users 1 and 2 in

the two-user case under the conditions that SNR1 = SNR2 = 8 dB, p = 0.7, and

p, 0.01. The steady state error probability under the same conditions is depicted

in Figure 3.4 with SNR1 fixed at 8 dB,

Figure 3.3 The Transient Weights to User 1 and 2 in the Two-User Case

Gold sequences of length seven (frequently used in the literature) are chosen

for signature waveforms. The rationale for such a choice is that Gold sequences are

regularly used in asynchronous CDMA environments and the study of their proposed

synchronous counterparts may provide a useful indication of the performance of the



Figure 3.4 The Steady State Error Probability in the Two-User Case

former. The cross-correlation matrix p in this case is:

The simulations for the three-user case are depicted in Figure 3.5 and 3.6

with Gold sequences as their signature waveforms. Figure 3.5 depicts the transient

behavior of the weights to user 1 under the conditions that all the signal SNRs are

equal 8 dB and it = 0.01. Figure 3.6 shows the error probability simulated with

SNR1 fixed at 8 dB, SNR2 and SNR3 ranging from —6 to 6 dB.



Figure 3.5 The Transient Weights to User 1 in the Three-User Case
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Figure 3.6 The Steady State Error Probability in the Three-User Case
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3.2 CDMA Receivers with Unsupervised Learning Algorithms

The "bootstrap" algorithm with different structures is dated back to 1981 [4]. These

structures function as noise cancelers with or without feedback. Starting with

2 x 2 case, a lot of work was done to investigate the convergence, stability, and

the performance. It was also extended to the multiple-user case. Recently, several

scientists in Europe proposed the similar structures independently, to separate super-

imposed signals in an analog channel with the assumption that sources are statis-

tically independent [5], [6], [12], [13]. Since these structures have similar character-

istics, their performance and convergence properties are also similar.

3.2.1 The Structures

3.2.1.1 The Backward Structure

The two-user structure is depicted in Figure 3.7.

Figure 3.7 The Backward Structure

Denote vectors y = [y1 , y2]T , = [x1 , x2]T , and matrix F = [0 -f12 -f21 0], the

output vector y can be expressed as:
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y	 Fy y =(I— F) --l x	 (3.2)

where I is the identity matrix.

Assume that the input vector x is the linear combination of the source vector

b = b2 ]T, i.e., x = Bb, where B is the mixing matrix. In order to retrieve the

sources at the outputs of the structures, the following must hold:

y	 — F)x and b B-ix

I — F = KB -1 ,

where K is a constant matrix with elements kii, i , j E 1, 2. There are two separation

cases:

• kii 0, which leads to

	= k12b21 	 Y2 = k21b1•

The corresponding separating point for (f12, f21.) is then C.112 -,,	 ).
.22 .11

• kii = 0, bpi j. 	 Therefore,

	y i = ku bi , 	 Y2 = k22b2.

The corresponding separating point for (f12 , f21 ) is 0-1.„ §21,
un vi 2

Since matrix B is unknown, an adaptive rule is proposed to estimate the

weights. Because nothing else but the statistic independence of the sources is known,

the function to be minimized or maximized must be able to verify this. The updating

rule proposed in [5] to realize independence is given as follows:

fij (rt + 1 ) = 	 (T) -I- 1.491 (Yi) 1 (Y.i),
	 (3.3)
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where it is the learning step between (0, 1), and g(*) and l(*) are two non-linear

and different odd functions. Since the source signals usually have even probability

densities, verifying the independence of the output signals yi (proportional to the

source signals) simplifies to verifying that Elg(y i )/(yj)} = .E{g(y i )}E{1(yi)} = 0.

Simple odd functions are chosen, g(x) = x3 and 1(x) x. Once the separation of

the source signals has been achieved, the weights fi, reach their steady states. This

updating rule is also used for the following structures.

3.2.1.2 The Direct Structure

The two-user structure is depicted in Figure 3.8.

Figure 3.8 The Direct Structure

[Defining matrix D = 	 0
0 	 —d12 , the following holds:

—u
, 	 v21 

The same procedure can be used to calculate the separating points for (d1 2 , d21 ). The

results are the same as the feedback structure.



3.2.1.3 The Two-stage Mixed Structure

The two-user two-stage structure is depicted in Figure 3.9.
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Figure 3.9 The Two-Stage Mixed Structure

This is obviously a combination of the previous two structures. Using the same

updating rule and setting weight mij = dij= fij,wherei, jE 1, 2, the effect of the

receiver is equal to two one-stage receivers, yielding faster convergence. By defining

Solving the separating points [6] for the structure is much more complicated than

the previous cases. The structure has two separating points, which correspond to

each separating point of the former structures.

3.2.1.4 The Forward-Backward Structure

The structure is depicted in Figure 3.10.

The system outputs are y2 = x2 - w21x1 and y1 = x1 w12y2 , which can also be

expressed as



and the two separating points for (w 12 ,w21 } are (1/(b222/b1-b21 /b11)) and

(1(b12/b11-b22/b12), b22b12).

3.2.2 Convergence and Stability

It was proved [13] that the feedback structure has four stable equilibrium points.

Only two of them (listed previously) are separating points. Furthermore, convergence

of the system to any of the four stable points depends on the statistics of the input

sources. The necessary condition for this structure to achieve the source separation

task is

where <> denotes the time average. Similar situations take place on the other

structures mentioned previously. This is the drawback of this kind of neural network

receiver.

Once the necessary condition for the convergence is satisfied, the convergence

also depends on the value of the learning step p. On the one hand, the larger the

is, the faster the weights converge; on the other hand, the weights will start to
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diverge once it is greater than a certain value. This value depends on the structure

and is hard to determine.

3.2.3 Simulations

3.2.3.1 The Model

The model proposed to implement neural networks in the synchronous CDMA

receiver is depicted in Figure 3.11.

Figure 3.11 The Model Proposed

The structure can be one of the four types stated before. The difference is that the

structure used here is for the Kuser case.

Considering the two-user case, note that in digital communications, the

necessary condition (3.7) for the feedback structure is satisfied. As for the other two

structures, due to the difficulty in analyzing them, no conclusion is drawn.

3.2.3.2 Numerical Results

Simulations concerning the weight convergence and system performance, such as bit

error probability, are made for the two-user case and three-user case.
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Figure 3.12 shows the transient weight behavior of the backward structure

receiver with both users' SNRs fixed at 8 dB and a high cross-correlation of p = 0.7.

The learning step, which is a very sensitive parameter in this kind of receiver, is

chosen to be 0.00002.

Figure 3.12 The Transient Weights of the Backward Structure Receiver

In Figures 3.13 through 3.15, the transient weight behavior of the other three

structures are shown under the same conditions.



Figure 3.13 The Transient Weights of the Forward Structure Receiver
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Figure 3.14 The Transient Weights of the Forward -Backward Structure Receiver
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Figure 3.15 The Transient Weights of the Two-Stage Mixed Structure Receiver

It can be seen that under the same conditions, the convergence speed of the weights

of the forward structure is the slowest among all structures. The weights of the two-

stage mixed structure converge a little faster than those of the forward-backward

structure, although they all converge faster than the weights of the other two

structures. The figures of the bit error probability of the above four structures

under the same conditions are also shown in Figures 3.16 through 3.19. It is clear

that their performance with regard to error probability is similar, especially for

the forward-backward structure and the two-stage mixed structure. Comparing

these two structures, some conclusions can be drawn: these two structures are

almost equivalent concerning their performance with regard to error probability,

and the weights of the mixed structure converge a little faster than those of the

forward-backward structure at the cost of double structural complexity.
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Figure 3.16 The Probability of Error in the Forward-Backward Structure Case

Figure 3.17 The Probability of Error in the Two-Stage Mixed Structure Case



Figure 3.18 The Probability of Error in the Backward Structure Case

Figure 3.19 The Probability of Error in the Forward Structure Case
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Simulations for the three-user case using the forward structure are also done

with Gold sequences. Figure 3.20 shows the transient behavior of the weights to user

1 under the conditions that all the signal SNRs are set to 8 dB, and it = 2 x10 -6 . The

steady state error probability is depicted in Figure 3.21 under the same conditions,

with SNR1 fixed at 8 dB, SNR2 and SNR3 ranging from —6 to 6 dB.

Figure 3.20 The Transient Weights to User 1 in the Three-User Case
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Figure 3.21 The Error Probability in the Three-User Forward Structure Case



CHAPTER 4

CONVERGENCE AND STABILITY ANALYSIS OF A RECENTLY
PROPOSED SYNCHRONOUS ADAPTIVE CDMA RECEIVER

4.1 The Synchronous Adaptive CDMA Receiver

4.1.1 The Receiver

An adaptive, synchronous CDMA receiver proposed in [14] is depicted in Figure 4.1.

It consists of a bank of filters (matched to the users' signature sequences), which

comprises the front-end, followed by samplers and the decision system.

Figure 4.1 The Synchronous Adaptive CDMA Receiver

As shown in equations (2.1) and (2.3), the received signal r (t) is expressed as:

where the received energy ilk is unknown to the receiver, the signature sequence

80) is known to the receiver. The sampled outputs of the bank of matched filters

in the ith bit interval is expressed as:

34



x(i) = pAb(i) + n(i).

For convenience, the index i will be omitted whenever possible in the text.

The output vector of the decorrelator is:

z p- lx = Ab p- in.

The estimation is:

= sgn(z).

The canceler's output is given by:

y 	 (4.1)

where
- 	 0 W12 	 • • • W1K

W = W21 0 	 • • W2K

WK1 WK2 	 • • • 0

The output for the kth user can be expressed as:

yk = Xk — Wk T bk, 	 (4. 2)

where wk is the kth column vector of W with the element wkk deleted, i.e., tvk

[wki, • 	 wk(k-i), wk(k+i), • • • , wkx-F; and b k is the vector obtained from b by deleting

the element bk , i.e., bk = 	 • • • , 	 • • • , 7).e. The output vector of the whole

receiver is then evaluated as agn(y).

4.1.2 Weight Updating

For controlling the weights, the cost function should be set. For the kth signal, the

output yk can be expressed as

35
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Yk = X k	 LE, k 
i)

 k
K

Wik 6i
k,i=1

Aibi nk — 	 wik6i

Akbk nk 	 E (pki
i=i,io k

where bi, i = 1, 2, • • • , K, are independent. The cost function in this case is

k = E{YZ} It is easy to see that if the weights are chosen properly, the cost

function will reach its minimum. In the scenario in which the estimations are

correct, i.e., bi di, the minimum cost function is

	A mi n = Ak N0 /2, 	 (4.4)

with the optimal weights wik = p ki frii, di 0 k.

The steepest descent algorithm is used to minimize the cost function. That is,

for the kth output, the optimum weights are obtained by an iterative search:

w k +
	

= wk(i) 412' awa 	 k Etyk2 1

= wk(i) ILE{Ykk}

= wk(i) ILE{xkbk — bke; wk(i)}• 	 (4. 5)

The steady state of the weight vector wk is readily obtained from the above equation,

E{xktk bk i)k w2 (i)} = 0, 	 (4.6)

which leads to

= X k —

K

= 	 Pki

(4. 3)

Efxktkl [Efinc bTk
	 (4.7)
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4.2 Probability of Error

Since the numerical analysis of the probability of error for Kuser case, where K is

very large, is computationally intensive, most evaluations are made in two- to five-

user cases. A detailed analysis of the error probability for the receiver is discussed

in [14]. In this section, only figures on the probability of error, based on theoretical

calculations [14], are shown. For the purpose of comparison, the performance of the

decorrelating detector and the two-stage non-adaptive decorrelating detector are also

shown.

The first example, depicted in Figure 4.2, is the probability of error in a simple

two-user case, but it nevertheless provides some insight into the steady state behavior

of the adaptive detector. The cross-correlation coefficient p assumed to be 0.7 (which

means strong interference), can certainly be considered to represent a case of high

bandwidth efficiency. The SNR1 is set to 8 dB, while the SNR2 , relative to SNR1 ,

varies from —10 to 8 dB.

Figure 4.2 The Probability of Error in the Two-User Case with p = 0.7
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Figures 4.3 through 4.5 show the performance of the two- to four-user receivers

with Gold sequences. As expected, with K getting large, the decorrelating detector

begins to exhibit its inadequacy. The adaptive and the fixed-weights scheme show

virtually identical performance, with the former being only slightly better for weak

interferers. With the number of simultaneous users increasing, certain trends become

more obvious. Due to its unacceptable high error probability, the decorrelating

detector clearly does not represent an appropriate choice.

Figure 4.3 The Probability of Error of User 1 in the Two-User Case



Figure 4.4 The Probability of Error of User 1 in the Three-User Case
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Figure 4.5 The Probability of Error of User 1 in the Four-User Case



40

Figure 4.6 shows the results from another angle. The error probability of

user 1 is measured under two-, three-, and four-user cases with all the user SNRs

ranging from 2 to 12 dB. It can be seen that adding more users only cause graceful

degradation of the system's performance.

Figure 4.6 The Comparison of Error Probability for the Two- to Four-User Case

From all these figures, some conclusions can be drawn: the performance with

regard to error probability of the adaptive receiver is better than the two-stage

decorrelating receiver with fixed weights; when the number of users increases, the

discrepancy between these two receivers' performance also increases.
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4.3 Convergence and Stability Analysis

4.3.1 General Analysis

The updating rule already derived earlier (4.5) is

	wk(i + 1 ) = wk(i) +/I,E{ x k i)k 614 ; wk( i )}.
	 (4.8)

Since wk is deterministic, which is decided by the expectation function in the weight

adaptive, the above equation can also be expressed as

wk(i +1) = (I - itE { 6kek r }) w k (i) klE {xki,k}

(I — JIB{ bkbl:})Q+ 1- wk (0) + E(/ — ttE{i)kbf }) 3 //E{xki)k}. (4.9)
i=o

For simplicity, the initial weight vector is assumed to be zero, i.e., wk(0) 	 O.

Thus, equation (4.9) becomes

	wk(i + = E(I — itE{tfk }) ttE{xkbk}- 	 (4.10)
j=0

Since bk E	 11, which implies —1 < WS} < 1 di j, matrix E{i;k6 1;} is

a (K — 1) x (K — 1) symmetric matrix with diagonal elements equal to 1 and non-

diagonal elements ranging between (-1,1). It is the non-linear function syn(•) that

makes the analyzing complicated.

Define H = I — AEI ktfl, a (K — 1) x (K — 1) symmetric matrix, equation

(4.10) becomes
ti

w k (i + 1) = (E 1-12 )tiE{xkbk}- 	 (4.11)

It is easily seen that the training of the weights converges if and only if

lim iw k (i + 1)1 < oo, 	 (4.12)
i-+ 00

where 	 means the absolute value.
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Equation (4.12) is equivalent to

Ern E < 00,
.

.1=0

(4.13)

for which one necessary condition is Jim H3 = 0. Take the determinant of it,
3 --+ co

	det(lim Hj) = lim {det(H)}' = 0. 	 det(H) < 1. Therefore, a necessary condition
j—►>o

for convergence is det(H) < 1.

Since H is a symmetric matrix, it can be diagonalized and all of its (K — 1)

eigenvalues are real. So, there always exists an orthogonal matrix Q such that

H = QDQ -1

where D is a diagonal matrix D = diag [A i , A2, • • • AK-i], and Ai , i 1, • • -,K — 1

are the (K — 1) eigenvalues of matrix H. Thus,

w k (i + 1) = E(QD 2 Q-1 )1tE{xki)k}

Q(E D3 ) Q -1 11E {xkbk }

j=0

1—A1
	 0

= Q
	 (2 -1 A.ElskIkl•

	 (4.14)

	

\0 	 1 — AK-1 /

It is clear that the necessary and sufficient condition for the weights to achieve

convergence and stability is

Ai < 1, di.	 (4.15)

The following Gershgorin theorem [17] of characteristic roots is used to estimate

the eigenvalues of a matrix:

If M is a square matrix of order n with its element denoted as mii, every
characteristic root of the complex matrix M lies in at least one of the

n disks with centres mii, radii ri = E	 A sometimes sharper

set of bounds can be obtained by applying this theorem to M and M T

simultaneously.
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From the theorem, the following holds for matrix H:

lAi	 ( 1 	11 )1 < ri Vi, 	 (4.16)

where ri is the sum of the absolute value of each element of the ith column vector of

matrix H with the diagonal element deleted. Equation (4.16) leads to

(1 — it) — ri	A i	(1 — p) + ri . 	 (4.17)

A A

Assume emax 	I, where eii is the (i, Ath element of matrix Efbkbk
T
 1, which

depends on the signal SNRs and cross-correlation matrix p, then, r i < (K 2)emaa .

Combine equations (4.15) and (4.17), the conditions on Ai (di) can be implemented

as

—1 <1—y—ri<Ai <1—p+r i < 1. 	 (4.18)

which leads to the following two results.

1.

(K — 2)emax < 1.

This put an balance among three elements of the system: the number of users

that can access the system simultaneously, the signal SNRs,  and the cross-

correlation of their signature sequences.

2.

< 	 Dr 9 )
-r 	 Lvemax •

This is the condition on learning step it for the system to achieve convergence

and stability. When condition 1 satisfied, this condition implies that p, can be

any number between (0,1).

2
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These two conditions are concerned to be sufficient for the system to converge.

The steady state of the weight vector wk is

wk = (I — 	 pE { xkbk }xkik

= E {xk l) k }[E{ak'} ] - ', 	 (4.19 )

which is the same as (4.7). It is easy to verify that when the above two conditions

satisfied, matrix E{b kbk} is a non-singular matrix, and its eigenvalues are between

(0,2).

Consider the case when the initial weight vector is not set to 0. According to

equation (4.9),

wk(i + 1) = iii+itvk(o)+Eiv itEfxkbo,
J.0

it is easy to verify that when the two conditions for convergence are satisfied,

limH 2 + lwk(0) = 0. Therefore, wk will converge to the same steady state no matteri--+00
what its initial value is.

Although the above analysis considers the kth user only, the results can be

applied to all the users. Therefore, these two conditions are sufficient for the receiver

to achieve convergence.

4.3.2 Transient Behavior Analysis

From equation (4.14), the transient behaviors of the weights is decided by two

elements: learning step p and eigenvalues of matrix H. Since the eigenvalues of

H is almost untractable in K user case, therefore, no analysis on the effect of the

eigenvalue spread is given in this thesis. But when SNR, defined as Ak/No for user

k, is high enough, it leads to Efbibil 0, Vi j and, thus, (4.10) becomes:

w k (i + 1 ) 	 [ 1 -- (1 — A ) 2 fl ]Efxkikl, 	 (4.20)
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which means that the weight vector is almost free of the effect of the eigenvalue

spread, and it changes almost monotonically to the steady state value. Moreover,

the larger the ,a, the faster the weights converge.

For illustrative purposes, further considerations on the two-user case and three-

user case will be given in more detail. The simulations of the updating weights as

well as their transient behaviors are performed for those cases.

4.3.3 The Two -User Case

The synchronous CDMA receiver for the two-user case is depicted in Figure 4.7.

Figure 4.7 The Two-User Synchronous CDMA Receiver

In this case, the outputs are

and
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The following weight updating rule is readily obtained from (4.29):

w2i(i + 1) = (1 — iL)w2i(i) PE[xi 62]

w12 (i + 1) = (1 — µ)w12(i) itE[x2k]•

With w initially set to 0, w21 at the ith iteration can be expressed as

i-1

w21(i) = (1 — 1t)2w21(0)+E(1— tty[tE[xib2]
J=0

[1— (1— p)1E[xii)2]-

(4.21)

(4.22)

(4.23)

Similarly,

w12(i) = [1 — (1 — p) i ]E[x21)1]•

H in this case is not a matrix, but a value equal to (1 — p). In this case, the transient

behavior of the weight depends on the learning step p only.

From the above, the following properties agree with our earlier analysis:

1.

lim W21 	 -E[X12],

and

11M w12 = E[X2 61]1i-+oo

which match equation (4.7).

2. p, can be chosen between (0, 1), and convergence is guaranteed provided that

0 < < 1. The larger u is, the faster the convergence.

3. w is monotonically increasing with i. If we denote 41 as the steady state value

of w21 , then the convergence speed can be easily established.
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Since

w21(i) = [ 1 
( 1 — )

define a parameter S to measure the distance in percentage between w21(i) and
°its steady state value w 1) i. e. , w 
21 	Then , for a given , the minimum2 	 .
-
„o
w2

1 
(i)

 • 	 (5
"'21

number of iterations, N, such that

1 W21 (N)
„„0

can be obtained as follows:

(1 — ja) Ar 5_ 6
lg

N = [10 —
1,

where Ixl is the ceiling of x.

Similar analysis can be drawn for w12•

(4.24)

4.3.4 The Three -User Case

The receiver for the K-user case is shown in Figure 4.8. Here, consider the three-user

case, i.e., K = 3.

Without loss of generality, consider the weight vector to user 1 only, which is

w i = [w21, w31] T . The output of user 1 is yi = xi — w2:62 — w311.3. The weights are

readily obtained from equation (4.29):

w21(i + 1) = (1 — bl) 1-021(i) — ItE[i):63]w31(i) ttE[x1b2]

w31(i + 1) = (1 —ii)w3i(j) — iitElb2b31w2i(i)+ itE[x i b,],

which in matrix form is

w21(i +1) ) 	 1 ma 	 mtiEr62i)31 ) tv21(i) )
w31(i +1) 	 —ftE[b2163] 	 1— ia 	 w31(i) )

E [xii)2]	 (4.25)
E [ x /6 3



Figure 4.8 The K-User Synchronous CDMA Receiver

In this case, matrix H becomes

where

The eigenvalues are

and



2
0 < <

1 + 	 { i)2 1)3 }
(4.28)
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Finally, equation (4.25) leads to

i i 	•

= Q j=O

0 EV2
j=3

i 	 .

0EA.'

/ 	 i 	 . 	 i
EN + A32) EN — AD \
j-..-0 	 j=O

i 	 i
E03, - Ai2) Eoji + A2) ,

\ i=0 	 J.-..0 	 /

From the above, the following properties hold:

1. when i .— co, the steady state values for w21 and w31 are ut and tv3 i , then

f 	 IA 	—E[b2 b3 ] 	 ( E[x362]
0 	 Eib 	 1
21 ) 	L 2 3 j	1 	E[xi63]

w3l 1 — E 2 C62 i)3 1

2. for the weights to achieve convergence, A l must satisfy a 1 I < 1 and IA 2 1 < 1,

which leads to

w21 (i -1- 1)
1)

Efx ' . 2 1
E{ b3 }

E { x ib2}

E{x 1 b3 }
(4.27)

i.e., p, can be chosen between (0,1).

3. when the signal S N Rs are large enough, b2	b2 , b3 	b3 . so, 026] f.?.. O.

A2 	 - /2.

Then,

w21 (i + 1) 	 ( 1 — (1 — 	 0
	

E[xib2]
w31(i + 1) ) 	 0 	 1 — ( 1— AY+1 	E{xlb3] )

which means that the weights are mostly depend on value, and changes

almost monotonically with i.
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4.3.5 Simulation Results

In practice, the expectation operation is usually implemented by time average. In

this case, equation (4.9) becomes

wk(i + 1) = (I — p < bki)Tk  >)w k (i) + p < xki)k >	 (4.29)

where < • > denotes time average. Equation (4.29) revealed that in real imple-

mentation, w k is a random process, which partially accounts for the undulation on

weights while updating (the effect of eigenvalue spread may also cause undulation).

The subject is similar to the stochastic approximation widely studied in [18]. The

only difference is that the learning step in stochastic approximation is a function of

time index i.

4.3.5.1 The Two -user Case

In this section, simulations of weight updating in the two-user case is given.

Figure 4.9 depicts the weight updating process under the conditions that p = 0.7,

SNR1 	SNR2 8 dB with learning step p = 0.9 and 0.002. The window size

used for time average here is 2000 steps. It is clear that under the same conditions,

the weight updated with the large p value converges faster than the one with the

small p value. The undulation exists mostly because of the time average used in

implementation. Since the weights are random variables, their statistical behaviors

in terms of mean values and standard deviations are examined. The statistic behavior

of the weights can be seen in Figure 4.10 and Figure 4.11. The results are achieved

under the conditions that SNR1 fixed as 8 dB, and SNR2 varies as 2, 8,14 dB.

in this case is chosen as 0.002.
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Figure 4.9 The Weight w21 with SNR1 = SNR2 = 8 dB, μ = 0.9 and μ = 0.002

Figure 4.10 The Statistical Behavior of w21 with SNR1 = 8 dB, μ= 0.002



Figure 4.11 The Statistical Behavior of w12 with SNR1 8 dB, μ  = 0.002

Figure 4.12 and Figure 4.13 show the weight behavior with μ  = 0.2 under the

same user SNRs as in the last case. It can be seen that in both cases, the weights

converge to the same values which are their steady state values. Also, they converge

with different speed because of different learning steps μ . The number of iterations

needed for the weights to converge to their steady states can be calculated using

equation (4.24). Assume δ = 0.1, then

Assume δ  = 0.01, then

The results are the same for w21 and w12 . They agree well with the simulations.



Figure 4.12 The Statistical Behavior of w21 with SNR1  = 8 dB, = 0.2, μ= 0.2
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Figure 4.13 The Statistical Behavior of w12 with SNRi = 8 dB, μ  = 0.2
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Figure 4.14 depicts the transient behavior of the error probability in the two-

user case under the conditions that both signal SNRs are set to 8 dB, ρ  =0.7, and

μ = 0.2. It is clear that the error probability can reach the steady state in a very

fast manner. In this case, with learning step p set to 0.2, the number of iterations

needed for the convergence is about 50.

Figure 4.14 The Transient Error Probability in the Two-User Case with it 0.2

4.3.5.2 The Three-User Case

In this section, the behavior of the weights in the three-user case, with the Gold

sequences introduced earlier as signature sequences, is obtained. The statistical

behavior of the weights to user 1 ( w21 and w31 ) with SNR1 = SNR2 = SNR3 = 8 dB

and different learning steps μ  = 0.2 and μ  = 0.002 are shown in Figures 4.15 and 4.16.

Their statistic behavior with μ  = 0.2 and SNR1 = 8 dB but SNR2 = SNR3 = 8

and 14 dB are shown in Figures 4.17 and 4.18.



Figure 4.15 The Statistical Behavior of w2 1 with A = 0.2 and 0.002

Figure 4.16 The Statistical Behavior of w 31 with ,u, = 0.2 and 0.002



Figure 4.17 The Statistical Behavior of w21 with SNR1 = 8 dB, μ  = 0.2
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Figure 4.18 The Statistical Behavior of w31 with SNR1 = 8 dB, μ  = 0.2
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Figure 4.19 shows the result of the transient behavior of the weight vector in

the case that the initial value is not set to 0. The signal SNRs are all set to 8 dB,

it is set to 0.2. The initial weights are set to w21 (0) = 2 and w 31 (0) = 1. It is clear

that the weights still converge to the same steady state, but the number of iterations

needed to achieve the steady state is different from the previous case. Therefore, in

order to achieve fast convergence, it is suggested to set the initial weight vector to 0.

Figure 4.19 The Transient Behavior of Weights with Non-Zero Initial Values

The transient behavior of the probability of error under the conditions

SNR1 = SNR2 = SNR- = 8dBandμ=0.2 is also given in Figure 4.20. It

can be seen that the error probability goes to its steady state very quickly, within

200 steps.
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Figure 4.20 The Transient Error Probability in the Three-User Case with p 0.2

4.3.5.3 The Four-User Case

Results for the four-user case are also given in Figure 4.21 for the weight vector to

user 1 (w21, w31, w41). In this case, all the user SNRs are 8 dB, p is chosen as 0.2.

Figure 4.22 shows their statistical behavior under the same conditions.

In the simulations, it has been shown that the weights achieve their steady

state values in a very short period of time, probably within 50 iterations. Their

statistic behaviors show that the convergence process is relatively stable, the mean

value almost monotonically changes and the deviation range is insensitive to the user

SNRs and learning step p. The transient behavior of the bit-error probability also

shows that the receiver can attain steady state performance in a very fast manner.

Fast convergence and stability of the adaptive CDMA receiver enhance its practicality

and attractiveness as a viable option for future realistic CDMA receivers.



Figure 4.21 The Transient Behavior of the Weights to User 1 with u = 0.2
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Figure 4.22 The Statistical Behavior of the Weights to User 1 with p = 0.2



CHAPTER 5

CONCLUSIONS

In this thesis, various structures of synchronous CDMA receivers have been reviewed

and studied. The key contribution is the investigation of the convergence and

stability analysis of a recently proposed adaptive two-stage receiver [14] in a

synchronous code-division multiple access communication environment with additive

white Gaussian background noise. With the knowledge of all user signature

sequences, the receiver has been proven to be "near-far" resistant and near-optimum

regarding its error probability, meanwhile its computational complexity is a square

function of the number of users.

Analysis on the adaptive rule shows that the convergence of the adaptive

weights to the steady states is guaranteed. Two conditions sufficient for convergence

are drawn, which put no restriction on the learning step (chosen between (0,1D,

though there is a loose constraint among the number of users, the signal SNRs,

and the cross-correlation of their signature sequences. Simulations are also done to

show the transient behaviors of the weights and the user error probabilities. Fast

convergence is shown to be achieved by choosing the learning step close to 1. All

these properties enhance the practicality of the receiver, making it a viable option

for future realistic CDMA receivers.
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