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ABSTRACT

NUMERICAL INVESTIGATION OF FLOW THROUGH
WIDE ANGLE DIFFUSERS

by
Moududur Rahman

This study is aimed.at the development of a computational

technique for the prediction of the flow field in wide angle

diffusers. The finite element technique is used for the

solution of the governing equations. A commercial software

package, NISA/3D-FlUID, modified for this specific application

was used. The parameters affecting the flow field have been

identified. For a wide range of variation of these parameters,

the effects on the flow field have been examined. This

investigation is an exhaustive and comprehensive numerical

study of diffuser flows. Such a study will result in

substantial improvement in the understanding of the anatomy of

the flow field. The creation of the current knowledge base

will also enable a judicious selection of diffusers for

industrial applications.

It was found that for laminar flow through wide angle

diffusers the computational technique adequately predicted the

qualitative and quantitative behavior of the flow field.

Therefore new results, as predicted by the current

computational technique have been presented. For example, it

was found that the effective recirculation length varies

exponentially with the angle of expansion of the diffuser. For



turbulent flow the standard k-E model has been found to be

qualitatively adequate in representing the flow field.

However, the quantitative predictions are being compared with

available experimental results and those obtained using other

numerical schemes. A wide range of possibilities exist for the

constants and boundary conditions employed in k-E modeling.

Such a numerical experimentation requires deep understanding

of the equations governing the flow field. The validity and/or

adjustments of these constants and boundary conditions for

diffuser flow are investigated.
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CHAPTER 1

INTRODUCTION

Fluid flow diffusers are expanding axisymmetric geometries

with a wide range of industrial applications. Based on the

velocity and turbulence characteristics of axisymmetric

expansions, they can be broadly classified into two groups.

The first have expansions of small total angle (5-10 ° ) and the
second are characterized by large total angles and separated

flow (wide-angle diffusers). One typical reason for interest

in wide-angle diffusers is the recirculation obtained

downstream of the expansion. The engineering importance of

separation in design of systems is to avoid separation while

operating close to a separated state. The separated flow is

sometimes called the "separated zone", "stalled region",

"recirculation region" or misleadingly, "dead-water region".

A separated region or stalled region is that part of the whole

flow field adjacent to a free shear layer that separates the

zone from the through flow, i.e., the flow that passes through

the system from upstream.

Two-dimensional axisymmetric geometry is encountered in

a large number of industrial and other processes, such as

connection between pipes of different diameter, partial

blockage of pipes due to sediment deposits, flow through

engine inlet ports (Tsui, 1992), exhaust systems of gas

turbine engines (Baskarone, 1991) etc.

1



2

Recently, abrasive water jet machining (AWJ) has evolved

as a reliable manufacturing technique (Mosavi, 1987, Lai et

al., 1991). Due to acceptable cutting speed, absence of heat-

affected zones and thermal distortion, and the ability to cut

all materials of interest, AWJ is widely used in a number of

industrial applications. Atypical setup for such an operation

is shown in Figure 1. An effective design of the sapphire

nozzle and the mixing chamber, where the water jet mixes with

abrasive particles, is of critical importance for the whole

operating system.

Figure 1 Schematic of Cutting Head.

Because of the simplicity of the suddenly expanding

geometries (half angle of expansion of 90 ° ), it has been
widely used for validation of complicated numerical fluid flow
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solvers (especially the two-dimensional backward facing step).

Although the geometry encountered is simple, the corresponding

flow field is rather complex. For the industrial applications

mentioned above, the Reynolds number encountered makes the

flow field vary from a fully laminar case to a highly

turbulent one. As will be shown in the review of the

literature, attempts have been made in the past to solve the

flow field for some specific Reynolds numbers and geometries,

but no systematic study has been carried out for a wide range

of variation of the above mentioned parameters.

The objective of the current study is to systematically

investigate the flow through wide-angle diffusers for a wide

range of variation of the parameters affecting the flow field.

In case of tuurbulent flow, such a study will enable a better

understanding of the physis of turbulence for flow through

diffusers. This study will enable the creation of a knowledge

base for more effective and efficient design of diffusers

encountered in engineering applications. Such a knowledge base

will also be helpful in avoiding costly experimentation to

study the performance of diffusers.



CHAPTER 2

LITERATURE REVIEW ON DIFFUSER FLOWS

As mentioned in the previous chapter, the current study aims

at investigating the flow through wide angle diffusers for a

wide range of variation of the parameters affecting the flow

field. One of the critical parameters affecting such flows is

the Reynolds number (Uod/u). Based on the Reynolds number the

flow can be classified as laminar or turbulent. The current

work will include both laminar and turbulent situations. A

review of the literature indicates that previous studies on

diffusers can be broadly classified based on this parameter.

It is also noted that there is no demarkation (based on a

single value of Re) when the flow changes from laminar to a

fully turbulent one. In general the flow is expected to remain

laminar for a Reynolds number below 200 and become fully

turbulent for a Reynolds number more than 1000.

2.1 LAMINAR FLOW

Macagno and Hung (1967) performed both numerical and

experimental investigation of flow through an axisymmetric

conduit expansion. Steady and unsteady approaches were used to

solve the stream function vorticity equations using the finite

difference method. An expansion ratio of 2.0 was considered.

A fully developed parabolic profile was used at the inlet. Oil

was used as the fluid for experimental investigations and the

4
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flow at the expansion was observed by means of fine tracers

suspended in the oil. The photographic information was

supplemented with direct visual observation of dyed oil coming

into the flow through a series of small orifices bored through

the walls of the conduit. The stream function and vorticity

contours as obtained using a direct steady state approach have

been reported for Reynolds numbers varying from a vanishingly

small value up to 70. The same contours for Reynolds numbers

of 100 and 200 were obtained using the unsteady approach. Also

the eddy length, eddy center location, and the relative eddy

intensity have been presented as functions of time as the

Reynolds number was increased from 100 to 200. Comparisons

were carried out between the experimental and numerical

investigations with the obtained results for recirculation

length, eddy center length, relative eddy intensity, and

relative maximum vorticity in the backflow region for Reynolds

numbers of up to 200.

Back and Roschke (1972) carried out experimental

investigations of water flow through abrupt circular channel

expansions over a Reynolds number range (based on inlet

velocity and diameter) of 20 to 4000. The expansion ratio used

was 2.6. The flow at the entrance of the abrupt channel

expansion was nearly uniform. Dye injection technique was used

for the flow visualization. For the range of Reynolds numbers

mentioned above, the variation of recirculation length

(normalized by the step height) has been reported as a
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function of Reynolds number. For a range of Reynolds number

from 20 to 200, the reattachment length was found to increase

linearly. The slope of this linear increase was found to be

different from that reported by Mecagno and Hung (1967). The

reasons have been attributed to the difference in the ratio of

step height to inlet diameter and the inlet velocity profile

for the two cases. As the Reynolds number increased the

reattachment length started to deviate from the linear

variation and reached a peak value. This peak value was as

large as 25 step heights (7.7 tube dia) and occurred at a

Reynolds number of 250. For Reynolds number greater than 250,

the recirculation length started decreasing, reaching a

minimum near a Reynolds number of 1000 and then increasing

again becoming almost invariant near a Reynolds number of

4000.

Fletcher et al. (1985) studied numerically the

axisymmetric flow through sudden expansions using stream

function vorticity formulation. A finite difference numerical

technique was used to solve the differential equations.

Computations were carried out for a Reynolds numbers varying

from 25 to 1500 and expansion ratios from 1.5 to 6. The inlet

velocity profile was changed from fully developed to an almost

flat one. For an expansion ratio of 2.0 and the Reynolds

number range mentioned above, the recirculation length was

found to increase linearly. The location of the eddy center

also increases initially with increasing Reynolds number, but

for Re > 200, the ratio of L e /Lr , i.e the relative location of
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the eddy center, was found approximately to remain constant at

0.175. The following correlation was developed to describe the

relation of recirculation length as a function of expansion

ratio for a fixed Reynolds number (Re = 200) and a parabolic

inlet profile.

Lr /d = 12.2 (D/d) - 15.3

Fletcher et al. also established the strong effect of

inlet velocity profile on the recirculation length. The

recirculation length was found to have increased by almost 50 96

owing to the change in inlet profile from fully developed to

a nearly flat one.

Laminar flow of a Newtonian fluid in both planar and

axisymmetric abrupt expansions has been studied by Scott et

al. (1986). Numerical computations were carried out by solving

the Navier-Stokes equation using the finite element method.

Galerkin's finite element formulation for the primitive

variables was used to solve the continuity and momentum

equations. Second order triangular elements were used for the

velocities and linear variation of the pressure was considered

within each element. Reynolds numbers ranging from 50 to 200

was considered with expansion ratios of 1.5, 2, 3 and 4. A

parabolic velocity profile was used at the inlet. The Reynolds

number dependence of reattachment lengths, eddy center

location and relative eddy intensities for each of the above

expansion ratios, were reported for both axisymmetric and two
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dimensional cases. The reattachment and eddy center locations

were reported to be varying linearly whereas the relative eddy

intensity (ratio of the maximum amount of backflow in the

recirculation region to the inlet mass flow) was found to vary

exponentially with the Reynolds number within the range

considered. The following relation was proposed relating the

reattachment length, eddy center location and the Reynolds

number.

Le/Lr 	 + X/Re

where L e indicates eddy center location from the step, Lr the

recirculation length; g and are empirical constants.

More recently, Badekas and Knight (1992) carried out

systematic numerical computation of flow through axisymmetric

sudden expansion for a range of Reynolds number varying

between 50 and 200 with expansion ratios (E) ranging from 1.5

to 6.0. A fully developed parabolic profile was used at the

inlet. Navier Stokes equations were solved employing the

primitive variables using the finite-difference-based SIMPLE

algorithm.

Empirical equations were developed for eddy reattachment

length, relative eddy intensity and location of the eddy

center as functions of Reynolds number and expansion ratio.

The following equation was proposed 	 relating the

reattachment length with Reynolds number and expansion ratio

Lr /d 	 uRe
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where a is a parameter that depends on the expansion ratio.

The value of a can be calculated from

= 0.0603 ( E-1) - 0.0147

The above two equations are expected to hold for 1.5 s E

s 6 and 50 s Re 5 200.

The relative eddy intensity (I) is found to be an

exponential function of Re, which was earlier realized by

Scott and Mirza (1986) who proposed the following expression

I 	 01 [2_ _ e t ]

where 0 1 is given by

0 1 =a 1 (E-1) a2 +a 3

and t is given by

t=1)1 [ l_e2l) ] +b3

where the coefficients are found to be a 1 = 0.17, a2 = 1.27,

a 3 = -0.37, b l = 0.054, b 2 = 0.86, b 3 = -0.008

The location of eddy center L e is found to follow the

relation given below

Le/d = SRe



1 0

where 13 is a parameter that depends on the expansion ratio.

The value of 1 can be calculated from

[ea2(E-1) '53-1]

where a l = 26, a 2 = 4 x 10 -4 and a 3 = 1.4. The higher the

expansion ratio the better was the agreement of the above

correlation with experimental data.

2.2 TURBULENT FLOW

One of the most thorough experimental & analytical

investigations of flow through axisymmetric diffusers for

various expansion angles has been carried out by Chaturvedi

(1963). The Reynolds number considered was 200,000, based on

the inlet condition, and the expansion ratio chosen was 1:2.

Four discrete half angles of expansion were considered; 15 ° ,

30 ° , 45 ° , and 90 ° . For analytic study, the Reynolds equations,

expressing a balance between forces and mass acceleration,

were used. Steady state incompressible flow conditions were

assumed without the body force terms. Because of the high

Reynolds number the viscous stresses were neglected in

comparison with the Reynolds stresses. Since it was not

possible to solve the equation for the dependent variables,

they were used as a tool to clarify the details of motion by

evaluating them on the basis of measured values of the terms

involved. The equations were studied in their integral form to

make them more convenient and meaningful. Similar approaches
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were also used to evaluate the mean and turbulent energy of

motion. These provided a valuable means of cross checking the

obtained experimental results.

The measurements involved determination of the mean

velocity and pressure and the characteristics of turbulence.

The mean velocity and pressure measurements were made by

stagnation tubes and picot tubes respectively. The mean

velocities were also measured by use of a hot-wire anemometer.

The hot-wire anemometer was, however principally used for the

measurement of the turbulence characteristics (fluctuating

components in each direction and turbulent shear stress). An

IIHR (Iowa Institute of Hydraulic Research) hot-wire

anemometer, which operates on the principal of constant

temperature, was used. Because of the high level of

turbulence, the obtained experimental results were subject to

certain minor discrepancies. Three types of discrepancies were

mentioned and corrective actions were taken. Corrected values

of mean velocity, mean pressure, axial turbulence intensity,

radial turbulence intensity, and turbulent shear have been

presented for different x/d values along the length of the

diffuser. Other than turbulent shear, distribution along the

centerline have also been reported for all of the above

mentioned quantities.

Spatial distribution of stream lines have been reported

for all four angles of expansion. As a result of momentum

analysis, the centerline distribution of each individual term

11
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has been reported. Similar results have also been reported due

to energy analysis. At the end, a more vivid appreciation of

the results is obtained due to the presentation of some of the

more important factors, such as the kinetic energy of the mean

motion, kinetic energy of turbulence, pressure distribution,

turbulence production and turbulence shear in the form of

their spatial distribution.

Moon & Rudinger (1977) carried out both experimental and

numerical investigation of flow through a 90 ° diffuser with

expansion ratio of 1:1.428. The Reynolds number based on the

inlet diameter was approximately 280,000. The laser doppler

velocimeter was used for the measurement of the velocity

field. Numerical computation was carried out using a k-E

turbulence model. Moon & Rudinger have presented experimental

results from other investigators (Krall et al.,1966; Runchal,

1971; Back et al., 1972) along with their results to show the

variation of recirculation length with Reynolds number. No

definite conclusion can be made from these results other than

that recirculation length varies from 6 to 9 step height for

the Reynolds number range of 10 3 to 2.8x10 5 . Moon et.al (1977)

iterates the fact that the uncertainty in the location of the

reattachment point can be ascribed to both jet unsteadiness

and measurement errors; also as the Reynolds number increases,

the uncertainty in determination of the reattachment point

appears to decrease. The above observation is also confirmed

by Krall (1966). Axial velocity distributions as measured by

a velocimeter have been provided at different sections
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downstream of the step height. Comparisons have been made

between the theory and experiment at X/D 0.75 (D is the

internal diameter of the larger tube). There is a good overall

qualitative agreement between the two, but it is found that

the predicted rate of spread of the round jet is too high, i.e

the thickness of the recirculation zone is too small.

Centerline velocity distribution obtained using the theory

shows very good agreement with the experimental measurements.

Attempts were made to adjust the length of the recirculation

zone (which was initially further downstream compared to

experiments) by changing the coefficients of the turbulence

production and dissipation terms (C E1 and C 62 ). However, it

was found that these adjustments resulted in poor

recirculation zone thicknesses and centerline velocity decay.

Nevertheless, the co-efficient of dissipation (C 62 ) used by

the author was 1.7 instead of 1.94 as recommended by Launder

(1974) .

Sala et al. (1980) also studied the flow characteristics

of axisymmetric diffusers with half angles of 15 ° , 30 ° , 45 ° ,

and 90 ° by means of two equations; the (k-E) turbulence model

in conjunction with the finite difference method. The obtained

results were compared with those reported by Chaturvedi

(1963). Integral analysis of the momentum, mean kinetic and

turbulence kinetic energy equation were also carried out. The

expansion ratio considered was 2.0. A uniform velocity U 0 , a

turbulence kinetic energy of 0.014 U O2 and a uniform length

scale of 0.05 d (d is the inlet diameter) were used as the
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boundary conditions at the inlet. The wall-function method

(Launder et al., 1974) was used for setting the boundary

conditions for the momentum equations and calculating k-

generation terms near the wall. A different relation for the

shear stress at the wall has been used in place of that

derived from the logarithmic velocity profile (Launder et

a1,1974) i.e..

nc 1/4k 1/2 K TT
`')

in which, subscript p = the adjacent node to the wall; K = von

Karman's constant; Up = the velocity parallel to the wall

under consideration. The above equation is obtained under the

assumption that the mean turbulent dissipation near the wall

is fixed at a value given by

E = C 11 3/4k 3 / 2 /1Cy

and the hypothesis of a uniform shear region.

Sala et al. have presented the results for centerline

velocity and pressure distribution. Large disagreement was

found to occur near the recirculation region. Axial velocity

profiles as a function of radial distance have been reported

at different downstream stations for an expansion angle of

45 ° . In the recirculation region, the maximum return-flow
velocity location is predicted nearer the wall than observed

experimentally. Serious discrepancy is found in the computed
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recirculation lengths compared to the corresponding

experimental results. Experimental results (Chaturvedi, 1963)

indicate that the recirculation length in case of 15 ° is
significantly less compared to the other angles of expansion,

but in the computation of Sala et al., in the case of 15 ° the
recirculation length is found to be slightly higher than the

others. Spatial distribution of turbulent kinetic energy,

turbulence production, turbulent shear stress and mean kinetic

energy have been reported for angles of expansion of 45 ° and
90 ° . Turbulent kinetic energy distributions indicate that the
location of this maxima are predicted reasonably well with the

magnitude well within 15 96, but centerline velocity
distributions are in gross disagreement with each other.

Contours of turbulent production depict that the location of

maxima are predicted much closer to the inlet compared to the

experiments. Contours of turbulent shear stress show a reverse

trend compared to the turbulent production as the maxima are

predicted further downstream compared to the experimental

values. Though the mean kinetic energy contours show

reasonably good agreement near upstream (both in magnitude and

location) they begin to differ as one moves downstream of the

diffuser. Shear stress distribution as reported for a half-

angle of expansion of 45 ° at different axial locations
indicates better agreement in the shear layer upstream and

downstream of the recirculation region. Author (Sala et al.,

1980) has also reported the results of integral analysis of
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momentum, mean kinetic & turbulent kinetic energy as was also

done by Chaturvedi (1963).

Habib & Whitelaw (1982) described a method of calculating

the properties of axisymmetric swirling and nonswirling

turbulent recirculating flows in wide-angle diffusers. The

study is based on the numerical solution of two equation (k-E)

(Jones, 1971) turbulence model in orthogonal curvilinear

coordinates using finite difference method. The angles of

expansion considered were 20 ° and 45 ° with an expansion ratio

of 2.0. The boundary conditions required for the solution at

the inlet were taken from measurements where possible. The

rate of dissipation at the inlet section was estimated using

the relation E = C k3/2 /L where L = 0.3r and r is the radius

of the pipe upstream of the expansion. All the axial

gradients were presumed to be zero in the exit plane of the

confining tube. The wall function approach was used to bridge

the wall with the fully turbulent region. The inlet

distribution of kinetic energy of turbulence was presumed to

be similar to that of the normal stress with the value of k at

the centerline taken equal to 0.003U O2 , where U
0
 is the mean

velocity at the centerline. For an angle of expansion of 20 °

the results obtained were compared with the experimental

results obtained by the same authors. The width of

recirculation was predicted correctly, and the agreement was

found to be better in the downstream region where a maximum

discrepancy of 8% was obtained. A maximum discrepancy of 14%

was obtained in cases of mean velocity results with a maximum
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occurring close to the region of maximum normal stresses. The

calculated kinetic energy distribution was also compared with

the experimental results, which was based on the measurement

of normal stress u with the values of v and w taken equal to

0.60u. Although the location of maximum kinetic energy was

predicted correctly its magnitude at different axial locations

differed by as much as 30 96. The reason for this was attributed

partly to the overprediction in the rate of dissipation due to

the incorrect representation of the source term in its

transport equation and partly to the effects of the extra

strain terms in the calculation of Reynolds stress and the

dissipation rate.

In the case of 45 ° , the results were compared with the

experimental results of Chaturvedi (1963). The general

features of the flow were found to be correctly predicted. The

disagreement in the kinetic energy solution in the

recirculation region was severe.

Benim and Zinser (1985) studied axisymmetric flow through

sudden expansion using the finite element method and adopting

a primitive-variable formulation. An expansion ratio of 6.6

and a Reynolds number of 3 x 10 5 were considered. The standard

k-E equation was used for turbulence modeling with wall-

function approach near solid boundaries. A modified expression

for estimating wall function had also been proposed. In the

analysis, rectangular isoparametric elements were used. The

velocity components as well as k and E were interpolated

linearly while the pressure was assumed to be constant in each
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element. Finite element equations were derived using the

Galerkin method. The obtained results were compared with

experimental as well as finite difference predictions (Pai et

al., 1975).

The velocity profile at the inlet was approximated using

the following expression

u /uoc 	(y/r )lin

where, U00 is the velocity at the center and r is the radius

of the inlet section. Inlet boundary conditions for k and E

were derived by assuming a turbulence intensity of six percent

and a length scale of

L 	 0.1 (0.99) nr

A value of 40 was used for n, since the inlet profile for the

experimental setup was not fully developed. A constant eddy

viscosity model and jet profile were also used to compare with

the other models.

Axial velocity distributions along the centerline show

good correlation between the experimental, current numerical

scheme, and other numerical schemes. The constant eddy

viscosity model failed to provide good correlation throughout

the whole domain. The free jet profile was found to perform

well for x/d of up to 10. The effect of variation of n was

also studied; a value of n = 10 (fully developed profile at
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inlet) failed to predict the initial core region. Axial

velocity profiles for different x/d locations were also

presented. Good agreement between the numerical schemes and

experiments were reported.

It was concluded that the finite element method is as

effective as other numerical schemes, with the added advantage

of allowing a flexible mesh for complex geometries.

Numerical studies of turbulent flow in an axisymmetric

45 ° expansion combustor and bifurcated diffuser has been

carried out by Yung at al. (1989). The Navier-Stokes equation

along with the k-E model were solved in a non-orthogonal

curvilinear co-ordinate system. A zonal grid method, where

the flow field is divided into several subsections was

developed. This approach allows different computational

schemes in different zones. A finite volume method was used to

solve the equations in the transformed co-ordinate system

incorporating the SIMPLE algorithm. In this study three

differencing methods-hybrid, quadratic upwind (Leonard, 1979),

and skew upwind (Raithby,1976), were used for the convective

flux.

For the 45 ° combustor, the inlet boundary conditions

were taken from experimental conditions of Chaturvedi. The

inlet velocity profile was flat and the Reynolds number was

2.5x10 5 . The expansion ratio was 2.0. Inlet boundary

conditions for k and E were chosen as k 0.03UO2,E=

k li5 /0.005D where, Uo is the velocity at inlet and D is the

diameter of the larger pipe.
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The reattachment length of the recirculation calculated

with for various computational schemes and meshes were

tabulated. The experimental value of the reattachment length

is 4.5 times the inlet diameter (Chaturvedi,1963). The

differences between the predicted and measured lengths range

from 10% to 30% depending upon the numerical methods

considered. The hybrid scheme produced the most accurate

results among the three differencing schemes. The velocity

decay for the three differencing schemes were also compared

with the experimental data. Good agreement was found within

the recirculation region, but produced overestimated results

farther downstream for the three differencing methods used.

The radial distribution of turbulence intensity (u = Ii(2k/3))

was also compared at different locations. The predictions were

not good at the upstream locations but satisfactory agreement

was found at downstream locations (X/D = 8.0). Contour plots

as obtained by the hybrid scheme have been reported for

streamline, axial velocity, and turbulence intensity

respectively. The maximum reverse flow was found to be about

18% of the total mass flow rate at a location about one inlet

diameter downstream of the inlet.



CHAPTER 3

STATEMENT OF THE PROBLEM

In the previous section, the importance of the understanding

of fluid flow through diffusers has been emphasized. It was

found that there are wide ranges of applications starting from

very low speed flow to a highly turbulent one. It has been

well documented (Fletcher et al., 1985) that the parameters

affecting the performance of a suddenly expanding diffuser are

the inlet Reynolds number, inlet velocity profile, and the

expansion ratio. To the best of our knowledge, no study has

been presented in the literature investigating the effect of

angle of expansion on the flow field in the case of laminar

flow in combination with other factors. The current study

shows that angle of expansion has a strong effect on the

recirculation length.

In this study, a systematic investigation of flow through

expanding axisymmetric pipe has been undertaken. A typical

sketch of the flow domain is shown in Figure 2. The required

differential equations describing this kind of flow are

compiled in Chapter 6. In brief, momentum, continuity, and k-E

equations are to be solved. The effect of different angles of

expansion, expansion ratios and Reynolds numbers (both laminar

and turbulent) have been examined. For the turbulent flow

case, the effect of inlet boundary conditions, wall boundary

conditions and empirical coefficients used in the k-E

21
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equations have also been studied. The inlet velocity boundary

condition was kept constant for all flow situations. The

variation of Reynolds number was obtained by changing the

molecular viscosity of the fluid considered.

Figure 2 The Computational Domain and the Prescribed
Boundary Conditions

As shown in Figure 2, at the inlet a fixed axial velocity

U Uo has been specified, with the radial velocity (V)

considered as zero. On the walls, the no-slip boundary

condition (U = V 0) has been specified. On the axis of

symmetry, the radial velocity V and the radial derivative of

the axial velocity have been considered as zero. At the exit,

the axial derivatives of both axial and radial velocities are

taken as zero. For turbulent flow, the wall function approach

(Tong, 1983) has been used to bridge the solution obtained in

the fully turbulent region with that near the physical wall.

The following relation (Launder et al., 1974) was used to

obtain the turbulent kinetic energy boundary condition at the

inlet.

k=CU2o 	 (3.1)
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where C is an empirical constant. The boundary condition for

turbulent dissipation energy at the inlet is obtained using

the following relation :

where C is another empirical constant and L is known as the

length scale of turbulence.



CHAPTER 4

MOMENTUM EQUATION AND TURBULENCE

In the previous chapter the problem of obtaining a flow field

for a range of Reynolds numbers had been identified. In this

chapter, the equations required to solve the flow field will

be presented. The basic principles are the well known

conservation of mass and conservation of momentum. The first

one gives rise to the continuity equation the second one to

the momentum or Navier Stokes equation. The following

assumptions are used to derive and simplify the equations to

the forms given below

1) Flow is homogeneous, isotropic, incompressible.

2) Continuum principle is satisfied.

3) Valid for both laminar and turbulent flows.

4) No body force considered.

5) Fluid is Newtonian.

Under the above assumptions the equation of continuity

can be written as (Schlichting, 1979) :

au.
0axi

(4.1)

and the momentum equation takes the form

aui 	avi d	ap	 a 
[ 	

aui 
P [ 737-+ui axi 	axi + ax; 	ax ax. ] (4 . 2 )

Note that summation convention for repeated indices is

24
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assumed above. The first term on the left hand side is the

unsteady term, followed by the convection terms. Pressure

gradient is the first term on the right hand side and the

second term is known as the diffusion term.

As mentioned previously the Reynolds numbers for the

problem to be analyzed range from laminar to fully turbulent

situations. Although the equations of motion stated above are

applicable to both situations, due to computational

limitations (Launder et al., 1974), it is not possible to use

the above equations directly for a turbulent flow situation.

A detailed description of turbulent flow simulation is given

next.

4.1 TURBULENCE

Turbulence is a highly complex nonlinear, time dependent and

three-dimensional 	 phenomenon. 	 The 	 most 	 important

characteristic of turbulent motion is its ability to diffuse

momentum, heat, and mass far more effectively than molecular

diffusion. It is an eddying motion which, at high Reynolds

numbers, usually prevailing, has a wide spectrum of eddy sizes

and a corresponding spectrum of fluctuation frequencies; it's

motion is always rotational and can be thought of as a tangle

of vortex elements whose vorticity vectors can be aligned in

all directions and are highly unsteady. The larger eddies,

which are associated with the low frequency of fluctuations,

are determined by the boundary conditions of the flow and

their size is of the same order of magnitude as the flow
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domain. The smaller eddies, associated with high frequency of

fluctuations, are determined by viscous forces. The width of

the spectrum and thus the difference between the largest and

smallest eddies increase with the Reynolds number. It is

mainly the large scale turbulent motion that transports

momentum and heat.

The large eddies interact with the mean flow (because the

scales of both are similar), thereby extracting kinetic energy

from the mean motion and feeding it into the large scale

turbulent motion. The eddies can be considered as vortex

elements which stretch each other. Due to this vortex

stretching, which is an essential feature of the turbulent

motion, the energy is passed on to smaller and smaller eddies

until viscous forces become active and dissipate the energy.

This process is called energy cascade. The rate at which mean-

flow energy is fed into the turbulent motion is determined by

the large scale motion; only this amount of energy can be

passed on to smaller scale and finally be dissipated.

Therefore, the rate of energy dissipation is also determined

by the large-scale motion although dissipation is a viscous

process and takes place at the smallest eddies. It is

important to note that viscosity does not determine the amount

of dissipated energy but only the scale at which dissipation

takes place. The smaller the viscosity (i.e. the larger the

Reynolds number), the smaller are the dissipative eddies

relative to the large-scale eddies.

The instantaneous velocity field in a turbulent flow is
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described by the Navier-Stokes equation. However, even today's

super computers are not fast enough nor do they have the

storage capacity to solve these equations directly for the

required range of length and time scales. Hence it is of

practical importance to describe turbulent motion in terms of

time average quantities rather than instantaneous ones.

A statistical approach is used and each of the field

variables (velocity, pressure, and temperature) is separated

into mean and fluctuating quantities. Thus mean values of the

field variables (U i and P) are used to model the large scale

flow characteristics. For an arbitrary field variable r, we

define its mean value as

_ r A tt rdt ( 4 . 3 )

where the averaging time t is long compared with the time

scale of the turbulent motion. The variable r is then

decomposed into mean and fluctuating components as follows

= r y (4.4)

This decomposition is directly applied to the equations

of motion (4.1 and 4.2) given earlier. For brevity, the

overbars indicating averaged value will be dropped from U i and

P from here on. The resulting equations are integrated over

the interval (t, t + At) yielding the following field

equations.



au.
	3 -0
axi

(4.5)
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p [ 
 aui

 + U • 
 aUi 

— 
ap 

+ 
a [11( 

au,
 +  ax

au; 
)-puiui]	 (4.6)at	 3 ax. 	 ax, ax; aX3. 

These are the equations governing the mean flow

quantities U i and P .

The averaging process has introduced unknown correlations

between fluctuating velocities u i u 2 and the mean velocity Ui .

The term -pu i ui is known as "apparent" or Reynolds stresses

of turbulent flow. From now on the overbar from the Reynolds

stress term will be dropped when it appears within the text.

Equations (4.5) - (4.6) can be solved for the mean values

of velocity and pressure only when the turbulence correlations

can be determined in some way. Basically, the determination of

these correlations is the main problem in calculating

turbulent flows.

Exact transport equations can be derived for u iu j , but

these equations contain turbulence correlations of the next

higher order. Therefore, closure of the equations cannot be

obtained resorting to equations for correlations of higher and

higher order; instead, a turbulence model must be introduced

which approximates the correlations of a certain order in

terms of lower order correlations and/or mean-flow equations.
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4.2 Eddy-Viscosity Concept

The mostly-used approach to modeling the Reynolds stresses is

due to Boussinesq (Rodi, 1980); his eddy-viscosity concept

assumes that, in analogy with the viscous stresses in laminar

flow, the components of the Reynolds stress tensor are

proportional to the mean velocity gradient, i.e

aUi au-; ) _ 2 ko-p L2j= t ( axi ax, 	 3
(4.7)

The proportionality parameter A t is termed the eddy

viscosity and unlike the conventional shear viscosity p.,

depends on the turbulence of the flow and hence is a flow

property.

The eddy-viscosity concept was conceived by presuming an

analogy between the molecular motion, which leads to Stoke's

viscosity law in laminar flow, and the turbulent motion. The

turbulent eddies were thought of as lumps of fluid which, like

molecules, collide and exchange momentum. The molecular

viscosity is proportional to the average velocity and mean

free path of the molecules; accordingly the eddy viscosity is

considered proportional to a velocity characterizing the

fluctuating motion and to a typical length of this motion

which Prandtl called mixing length (Schlichting, 1979).

4.3 Model classification

Turbulence models were developed which do not make use of the

turbulent viscosity concept but employ differential transport
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equations for the turbulent momentum u ju i . One possible way of

classification of turbulence models would be according to

whether (or not) the models use the eddy viscosity concept.

However, there are such large differences between the simplest

and the most advanced eddy-viscosity models that a finer

subdivision seems appropriate. For example, the use of

constant eddy viscosity tuned to suit the problem has little

to do with turbulence modeling, it does not account for

changes in local turbulence structure, whence it cannot in

general describe correctly the details of the mean flow field.

The simplest models relate the eddy viscosity g t directly to

the mean velocity distribution.

=uta V'L (4.8)

These models assume that the turbulence is in local

equilibrium (generation dissipation), which means there is

no transport of turbulence in the flow field.

In order to account for the transport of turbulence,

models have been developed which employ transport equations

for quantities characterizing the turbulence. These equations

contain terms representing both the convective transport by

the mean motion and diffusive transport by the turbulent

motion. Some models use only a transport equation for the

single velocity scale V" (one equation model) assumed to

characterize the fluctuating velocities, while others also use

an equation for length scale L (two equation model). Still
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more complex models solve equations for more than one velocity

scale, namely the transport equations for u iu j .

4.3.1 Zero equation / Mixing-Length Model

The first model to describe the distribution of the eddy

viscosity, and thus the first proper turbulence model, was

suggested by Prandtl (1925) and is known as the Prandtl mixing

length hypothesis. Stimulated by kinetic gas theory Prandtl

assumed that the eddy viscosity A t is proportional to a mean

fluctuating velocity V' and a "mixing length" lm (similar to

equation 4.8).

Considering the shear layers with only one significant

turbulent stress (11 1 112 ) and velocity gradient aU/ay, he then

postulated that V' is equal to the mean velocity gradient

times the mixing length l m

v'.1 
in ay
	 (4.9)

with this relation, the eddy viscosity can now be expressed as

u t 1 2 1-L1In
m ay

(4.10)

This is Prandtl mixing length theory; it relates the eddy

viscosity to the local mean-velocity gradient and involves as

single unknown parameter the mixing-length l m .

The mixing length model has been applied with a
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considerable success, at least for relatively simple flows,

because l m can be specified by simple empirical formulae in

many situations. In free layers, l m can be assumed constant

across the layer and proportional to the local layer width 6.

The mixing length model is not suitable when processes of

convective or diffusive transport of turbulence are important;

examples are rapidly developing flows, heat transfer across

planes with zero velocity gradient, and recirculating flows.

More generally the model is of little use in complex flows

because of the great difficulties encountered in specifying

l m , and the simplicity with which it is derived.

4.3.2 One Equation Model

In order to overcome the above mentioned limitations of the

mixing length hypothesis, turbulence models were developed

which account for the transport of turbulence equations by

solving differential transport equations for them. An

important step in the development was to give up the direct

link between the fluctuating velocity scale and the mean-

velocity gradients and to determine this scale from a

transport equation.

If the velocity fluctuations are to be characterized by

one scale, the physically most meaningful scale is v1k , where

k is the kinetic energy of the turbulent motion (per unit

mass) defined as follows.

k 	 1/2 (u 1
2 + u2

2
 + II 3

2
)
	

(4.11)

According to this equation k is a direct measure of the
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intensity of the turbulence fluctuations in the three

directions. When this scale is used in the eddy viscosity

relation (4.8), it results in

u t=C (4.12)

where C is an empirical constant. This formula is known as

Kolmogorov-Prandtl expression because Kolmogorov (1968) and

Prandtl (1945) introduced it independently. They also

suggested to determine the distribution of k by solving a

transport equation for this quantity. Such an equation can be

derived in exact form from the Navier-Stokes equation. For

high Reynolds numbers the equation reads

ak 	 ak 	 a 	u.u. p 	 au 	 au, au, 	 (4.13)
+ 
	 - 	  Eui(  1 3 + —) ]_ 	 -u 	at ax, ax-, 2 p 1 aX_7 aX aX

The rate of change of k is balanced by the convective

transport due to the mean motion, the diffusive transport due

to velocity and pressure fluctuations, the production of k (G)

by interaction of Reynolds stresses and mean-velocity

gradients, and the dissipation of k by viscous dissipation

into heat.

The exact k equation (4.13) is of no use in a turbulence

model because new unknown correlations appear in the diffusion

and dissipation terms. To obtain a closed set of equations,

model assumptions are made for these terms. The diffusion flux

of k is often assumed proportional to the gradient of k.
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,lliU;
+ 	 =
P )
 u t ak
) 

2 	 p 	 ok axi (4.14)

where 0 k is an empirical diffusion constant. The dissipation

is usually modeled by the expression

k 3 / 2G=C
D L

(4.15)

where C D is a further empirical constant.

With the above model assumptions and eddy-viscosity and

diffusivity expressions for u,.u i and using equation (4.8), the

k equation reads

p 1--- +u
ak 	 ak ] 	a ( 

'lc ak 
) 	 -c

au. au; au;,	 k 3/2
•—--a t 	 axi 	 axi a k axi	C aX

J
 axi ax; D L

(4.16)

This is a high Reynolds number form of the transport

equation for k used in most one equation models.C;C D 	0.08

and a k 1 appear to be reasonable values of empirical

constants (Launder et al., 1972). It should be noted that it

is not the individual values of C; and C D that are important

but only their product; the individual values determine the

absolute value of the length scale L which is normally not of

interest.

The Kolmogorov-Prandtl expression (4.12) and the

dissipation term of the k-equation (4.15) contain the length

scale L which needs to be determined. This determination
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distinguishes the various one-equation models that use

equation, (4.12) and (4.15). In most models L, is determined

from simple empirical relations similar to those given for the

mixing length l m . Unfortunately, L is no easier to prescribe

than l m ; its ratio to the shear layer width S also depends on

the type of flow, and in flows that are more complex than

shear layers there is little empirical information available

on the length scale distribution.

4.3.3 Two-Equation Models

The length scale L characterizing the size of the large,

energy-containing eddies is subject to transport processes in

a similar manner to the energy k. For example, the eddies

generated by a grid are convected downstream so that their

size at any station depends very much on their initial size.

Other processes influencing the length scale are dissipation,

which destroys the small eddies and thus effectively increases

the eddy size, and vortex stretching connected with the energy

cascade, which reduces the eddy size. The balance of all these

processes can be expressed in a transport equation for L which

can then be used to calculate the distribution of L.

A length scale equation need not necessarily have the

length scale itself as dependent variable; any combination of

the form Z kmLn will suffice because k is known from solving

its own transport equation. In fact most equations proposed so

far do not use L as a variable (Rodi, 1980) : Chou (1945),

Davidov (1961), Harlow and Nakayama (1967) and Launder (1972)
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suggested an equation for the dissipation rate E Of k 1 ' 5 /L,

Rotta (1968) proposed an equation for kL, Kolmogorov (1968) an

equation for the frequency k ()-5 /L and Spading (1971) and

Saffman (1970) an equation for a turbulence vorticity k/L 2 .

Even though these equations express different physical

processes and may not have been intended as length-scale

equations, this is effectively what they all are. Some of the

equations were derived first in exact form by manipulation of

the Navier-Stokes equations and were then turned into a

tractable form by model assumptions; other were conceived

heuristically. The results are very similar; in fact all the

equations possess a common form which reads

az +U  az  -  a  (  i-k-L az 
 ) + c 	

zik s
k 	 z2 L 	 (4.17)

Jat 	 ax1 ax1 a axi

The first term on the left hand side indicates rate of

change whereas the second term indicates convection. On the

right hand side, the first term indicates diffusion, the

second term indicates production whereas the last two terms

indicate distribution of the variable Z; where , Czl , C z2 and

a z are empirical constants.

4.3.3.1 The E equation

At high Reynolds numbers where local isotropy prevails, the

rate of dissipation is equal to the (molecular) kinematic

viscosity times the fluctuating vorticity (au i /ax i ) 2 . An exact

transport equation can be derived from the Navier-Stokes

equations for the fluctuating vorticity, and thus for the
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dissipation (Tenneskes, et al., 1972). This equation contains

complex correlations whose behavior is little known and for

which fairly drastic model assumptions must be introduced in

order to make the equation tractable. The equation contains

terms representing the rate of change, convection, diffusion,

generation of vorticity due to vortex stretching connected

with the energy cascade, and viscous destruction terms that

require model assumptions. Usually, the diffusion is modeled

with the gradient assumption. The generation and destruction

terms cannot be modeled with gradient assumptions. They cannot

be modeled separately. It is their difference that is modeled

(Rodi, 1971). The outcome of the modeling is the equation

presented below

aE 	 aE 	
[ 	 +U. 	 j-  a  ( 11, t  aE  , 	 E2

	

t 2 aXi 	 aXi a, axi
K G- C

k
(4.18)

where G is the production term which is also used in the k

equation.

4.3.4 Reynolds-Stress Equations

The first suggestion to determine u iu j from a transport

equation was already made by Keller and Friedmann (1924).

These authors showed how (under certain assumptions) equations

for u iu j can be derived, but they did not give the equations

explicitly. Chou (1945) was the first to derive and present

the exact u iu j equation given below.

The exact equation for the Reynolds-Stress u iu j can be
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derived in the following way. The time-averaged momentum

equation (4.6) is subtracted from the time dependent Navier-

Stokes equation (4.2) for both the x i and the x j momentum. The

resulting equation for the component i is then multiplied with

the fluctuating velocity u j , and the equation for the

component j is multiplied with u i . Summation of the two

equations and subsequent time-averaging yields the u iu j

equation (Hinze, 1959).

au j uj 	auiuj__ a  	 au .P au .P 	  au
at 	 ax

-f-u„ 	 	  (uluiu;) - 	 ( 	 - 	 2 ) - u .0 	
lp ax, 	 sax 	 ax

(4.19)

The contraction of this equation, that is when the three

equations for the three normal stress (i j 1, 2, 3) are

summed up, yields the exact turbulent kinetic energy equation

(4.16), presented already (k 1/2u iu i ). The physical meaning

of the individual terms of the k-equation was described before

and equivalent terms appear in equation (4.19), which

represent the rate of change, convective and diffusive

transport, and viscous destruction of u iu j . Equation (4.19)

contains an additional term (fifth term on right hand side)

denoted "pressure strain" term because it involves

correlations between fluctuating pressure and strain rates.

Summation of the pressure strain term for i j over 1, 2, and

3 yields 	 2 
p au,
p ax, which is zero because of the continuity

	aU i p all i au all i au;
- U.u l 	( 	 +	 3 )-2u 	

aXi p ax axi 	ax ax/

condition. That is why this term is absent in the k equation.
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4.3.5 Algebraic Stress / Flux Models

In general flows, there are six components of the Reynolds

stress u ju j . A turbulence model employing transport equations

for all this components, would therefore require the solution

of 10 partial differential equations. This is not a trivial

task even with modern numerical schemes and computing

facilities, and it renders the models rather uneconomical.

Suggestions were therefore made to simplify the equations such

that they reduce algebraic expressions but still retain most

of their basic features.

Gradient of their dependent variables appear in the

transport equations only in the rate of change, convection and

diffusion terms. Hence, when these gradients can be eliminated

by model approximations, the differential equations can be

converted into algebraic expressions. The simplest model is to

neglect the rate of change and transport terms, and this

appears to be a sufficiently accurate approximation in many

cases. However, a more generally valid approximation was

proposed by Rodi (1976), who assumed that the transport of

u iu j is proportional to the transport of k, the

proportionality factor being the ratio u iu j /k (which is not a

constant).

•7-1

	

1. 1 U 	 Dkjl	 f f (k) - 	 3 (G- E)
.Du i u j 	.F.F , . 7 )7 . 	 -

	‘"-1‘-'3	 k 	 DtDt 	
Di 	 (4.20)

The second equality follows from the k equation (4.13).

Equation (4.20) is a good approximation when the temporal and
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spatial change of u iu j /k is small compared with the change of

u iu j itself (Rodi, 1976). When 4.20 is incorporated into the

u iu j equation (4.19) together with some model approximations,

the following is obtained.

u,u.=k[-2 8 .+j 	3 23

. 	 •

(1-y) ( 	  
2 

ij-
G

)E 3 	 c

C1+ —
G 

-1

where, 	 is the stress production term in the Reynolds

stress equation (third and fourth term on the right hand side

of equation 4.19)

4.4 The k-E Model of Turbulence

In section 4.2 the concept of eddy-viscosity has been

elaborated. In this concept the components of the Reynolds

stress tensor are assumed to be proportional to the mean

velocity gradient (equation 4.7). The proportionality

parameter A t is termed the eddy viscosity.

The turbulence models utilizing the eddy-viscosity

concept can be further classified based on the number of

equations used in determining the eddy-viscosity (which is

proportional to the velocity and the length scales of

turbulence).

The most simple eddy viscosity model is known as the

mixing length or zero equation model (section 4.3.1) in which

no differential equation is solved to obtain the velocity and

the length scales of turbulence. In one equation model of
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turbulence a differential equation is solved to obtain the

velocity scale of turbulence whereas the length scale is

determined from simple empirical relations.

The k-E two equation model of turbulence determines both

the velocity scale (1/k) and the length scale of turbulence by

solving partial differential equations. In these equations

both convective and diffusive transports of the kinetic energy

and the dissipation rate are taken into account. Such

consideration is needed when solving rapidly developing flows,

recirculating flows etc.

While the higher order equations (e.g. The Reynolds

stress model) take into consideration the anisotropic effects

of turbulence; enormous amount of computational resources

required for their solution limits their practical

application. The exact form of the k equation as derived from

the Reynolds stress equations under the assumption of

isotropic turbulence is given in section 4.3.2. Under some

model assumptions (section 4.3.2) the high Reynolds number k

equation of turbulence takes the form.

	p[-ak 	 ak 	a	 P, ak
)+ii( 

au, au.
)
 au,

+ui 	1 - 	(	 t   	 -7 	  	at	 ax, 	 ax, 0 ax, 	 ax.; ax, ax;

(4.16)

The first term on the left hand side is the unsteady term

and the second term is known as the convection term. On the

right hand side the first is the diffusion term, the second

term is the production of turbulent kinetic energy (G) and the

last term is the dissipation of turbulent kinetic energy.



42

The length scale (L) as mentioned before is obtained by

solving for the dissipation rate of turbulence and then using

equation (4.15). The complete equation is given below.

aE +u ,  aE  1 _  a  ( 1-tt aE ) + c E G 	
E2

P at 	 axi 	 axi a e axi 	 kEa k

The physical interpretation of the terms in the

dissipation equation is similar to that of the k equation.

Once the k and E are obtained the eddy-viscosity is

solved for using the following relation

k 2
t = 	 e

4.5 Wall Function

At a boundary wall the no slip condition leads to

predominantly viscous behavior and is thus termed the viscous

sublayer. For turbulent flows it is often desirable not to

compute the flow right up to the wall. When boundary

conditions are specified right at the wall, the equation must

be integrated through the viscous sublayer present near the

wall, which is undesirable because of two reasons. Firstly,

very steep velocity gradients prevail in the viscous sublayer

so that, for proper resolution, many mesh points have to be

placed in this layer and the computation would be

prohibitively expensive; secondly, viscous effects are

important in this layer so that the high Reynolds number k-E

turbulence model is not applicable in this region. Solution of
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the flow in this viscous sublayer is normally not necessary

because empirical laws of sufficient generality are available

that connect the wall conditions (e.g., wall shear stress and

heat flux, temperature) to the dependent variables just

outside the viscous sublayer. Thus the finite element mesh is

not extended completely to the wall, rather an empirical law

is employed to connect the computational point to the wall

conditions.

The function used is logarithmic and is written as (Tong,

1983)

U+= 1—ln (E y+)
	

for 	 12 <y+ <100 	 (4.22)

for y+ < 12
	 (4.23)

where

U+ = 
U
P

37 U 
37+ - p T U

ET,

where K and E are empirical constants. T w is the wall shear

stress and U T is known as the friction velocity.

The boundary condition for k and E at the wall is

evaluated using the following relations

ti w

Ei 2 U 3
k -   	 E	 T

C
(4.24)
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The values of K and E (Tong, 1983) used in the current

computations are 0.435 and 9.0 respectively.



CHAPTER 5

FINITE ELEMENT ANALYSIS TECHNIQUE

The finite element method (FEM) is an approximate method of

solving equations of boundary and/or initial value problems in

engineering and mathematical physics. In this method, a

continuum is divided into many small zones (called elements)

of convenient shapes, triangular, quadrilateral etc. Choosing

suitable points called "nodes" within the elements (figure 3),

the variable in the differential equation is written as a

linear combination of appropriately selected interpolation

functions and the values of the variable or its various

derivatives specified at the nodes. Using variational

principle or weighted residual methods, the governing

differential equations are transformed into "finite element

equations" governing all isolated elements. These local

elements are finally collected together to form a global

system of differential or algebraic equations with proper

boundary and/or initial conditions imposed. The nodal values

of the variable are determined from this system of equations.

Among the approximate method of analysis, the finite-

difference method (FDM) and the variational methods such as

the Ritz and Galerkin methods are more frequently used in the

literature.

In the finite-difference approximation of a differential

equation, the derivatives in the equations are replaced by
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difference quotients which involve the values of the solution

at discrete mesh points of the domain. The resulting discrete

equations are solved, after imposing the boundary conditions,

for the values of the solution at the mesh points. Although

the finite-difference method is simple in concept, it suffers

from several disadvantages. The most notable are the

derivatives of the approximated solution, the difficulty in

imposing the boundary conditions along nonstraight boundaries,

the difficulty in accurately representing geometrically

complex domains, and the difficulty in employing nonuniform

and nonrectangular meshes.

Figure 3 Finite Element Entities

The finite-element method is endowed with two basic

features which accounts for its superiority over other

competing methods. First, a geometrically complex domain of

the problem can be represented as a collection of

geometrically simple subdomains (elements). Second, over each
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finite element the approximation functions are derived using

concepts from interpolation theory (interpolation functions).

The interpolation functions are algebraic polynomials and

the undetermined parameters represent the values of the

solution at a finite number of nodes, on the boundary and in

the interior of the element. From interpolation theory one

finds that the order of the interpolation function depends on

the number of nodes in the element. Another advantage of FEM,

again over FDM and especially over analytical solution

techniques (as opposed to numerical techniques) is the ease

with which nonhomogeneous and anisotropic materials may be

handled. Very little extra effort is required in the FEM

formulation when heterogeneous and/or anisotropic materials

are to be modeled, even when some parts of the structure or

body are made of one material and other parts are made of

different materials.

All the various types of boundary conditions that one may

encounter in a typical FEM application except those that

require prescribed values of the field variables (Dirichlet

boundary condition) themselves are automatically included in

the formulation. Among the boundary conditions that are

automatically included (Natural or Neumann type boundary

condition) are convection, radiation, applied heat fluxes and

insulation in case of thermal analysis and pressure and

velocity gradients in case of fluid flow analysis. In all

cases, these conditions need not be constant. When these

boundary conditions or other properties are functions of the
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field variable, the problem becomes nonlinear. Special

solution techniques must be applied in these cases. The basic

finite element method is applicable, however, for both linear

and nonlinear problems.

Another advantage of FEM is that higher order elements

may be implemented with relative ease. Higher order elements

require the use of higher-order interpolating polynomials. In

fact by using isoparametric elements, curved sides may

actually be used thereby allowing very close fits to

essentially all irregular geometries.

5.1 BRIEF HISTORY OF FEM

Hrenikoff (1941) introduced the so called framework method, in

which a plane elastic medium was represented as a collection

of bars and beams. The use of piecewise continuous functions

defined over a subdomain to approximate the unknown function

dates back to the work of Courant (1943), who used an

assemblage of triangular elements and the principal of minimum

potential energy to study the St. Venant torsion problem.

Although certain key features of the finite-element method can

be found in the works of Hrenikoff (1941) and Courant (1943),

the formal presentation of the finite-element method is

attributed to Argyris and Kelsey (1960) and to Turner, Clough,

Martin and Topp (1956). However, the term "finite element" was

first used by Clough (1960).

Zienkiewicz and Cheung (1965) and Visser (1965) were

among the first to apply the finite element method to generate



49

solutions to the problems described by Laplace's and Poisson's

equations in 1965. The application at that particular time

happened to be in conduction heat transfer, but it was

immediately recognized that the procedure was applicable to

all problems that could be stated in a variational form.

Other researchers, such as Szabo and Lee (1969), showed

how the method of weighted residuals, particularly the

Galerkin method, could be used in the study of nonstructural

applications to retain the basic finite element process.

Zienkiewicz (1971), in a second edition of an earlier book,

was evidently the first to include in one book the general

applicability of the finite element method to problems

describable by ordinary and partial differential equations, or

field problems in general.



CHAPTER 6

FINITE ELEMENT FORMULATION OF GOVERNING
EQUATIONS

In Chapter 4, the equations required for the solution of flow

through a diffuser have been obtained in tensor notation. For

laminar flow only the solution of continuity and momentum

equations are required, whereas for turbulent flow additional

equations are needed to be solved to obtain the Reynolds

stress terms appearing in the momentum equation. As mentioned

earlier, the two-equation k-E model, which uses the eddy

viscosity concept will be employed in this regard. The k-E

model obtains the velocity and the length scale by solving the

turbulent kinetic energy and dissipation of turbulent kinetic

energy equations respectively. Since the geometry considered

is axisymmetric the relevant equations are summarized and

presented as follows :

au v av .
ax	 ar (6.1)

	ad) v acl:H a (r 4 ) _  a  (II, at +A , i3P +B aP +C V=S 	 (6.2)(u
P ax ar 	 ax 	 ax rar 	 ar 	 ax ar r 2 (I)

where, 0 is the dependent variable (U, V, k, or E). A - is

nonzero (A - =1.0) only for the U equation, B and C are nonzero

(1.0) only for the V equation. For momentum equations r o is

the molecular viscosity.
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for the U equation

so 	 p fu 	 r (rpuv)

for the V equation

a --(puv)----i(rpv2)ax	 r Er

where

au 2
- pu 2 =2!A tTc - --ip_k au+ av•

ar ax'

av 2 2-pv 2 =211
tar

-
3

pk ; 	 ii t=pC1, 

for the k and E equations

Sjc.=G- p E ; 44-4t

Q k

-k-
E2 	

- 
P+Pcse .cei E-

GE

G=1.11t2{ [ aU 
2 ( 

aV) 2 	v\ 2 3 ( au+ av)
+(d 	 ar ax

The constants in the above equations are chosen as

(Launder, 1974)
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C=0.09, a k.1.0, 	 CE2.1.92

Since the governing equation mentioned above are

nonlinear, a symmetric variational form and the associated

functional do not exist. Therefore, Galerkin's weighted

residual scheme is used to obtain the finite element

formulation of the above equations.

6.1 GALERKIN METHOD

The objective of the finite element method is to approximate

the differential equations by a system of algebraic equations.

This is achieved by discretizing the flow domain into a number

of elements. Within each element, the dependent variables are

approximated by simple polynomial functions as described

ea: lier. The coefficients of these polynomials are obtained

from nodal values of the dependent variable. Mathematically,

the dependent variable in an element can be written as (Chung,

1978).

(x) -V02.

P(x)=O TP

where the unknowns 0 1 , P are column vectors of nodal points V/

and 0 are column vectors of the shape functions. Substituting

these into the governing equations yields a set of equations

of the form

f 4,0,0,P) 	 R

where R is the residual resulting from the use of the

approximations of the variables in equations (6).

The Galerkin form of the method of weighted residuals
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seeks to reduce the error (residual) R to zero. This is done

by achieving orthogonality between the residual and weighting

functions of the element which is expressed as

fa. (f. w) 	 = f (R. W) 	 = 0
a,

where Q is the element domain.

6.2 ELEMENT SHAPE FUNCTION

Four noded isoparametric quadrilateral elements have been used

for all the computations. The shape functions used are given

in terms of the natural coordinates of the elements, i.e

and r?

01 = 1 / 4 ( 1- ) ( 1- 77)

= 1/4(1 + e) (1 - 77)

03 = 1/4 (1-1-n (1+77)

04 = 1/4(1-n(1+77)

6.3 FINITE ELEMENT FORMULATION

Using Galerkin's method of weighted residual, equation 6

becomes

[fA-4:ciA] u+ [f
A
 linrdA] v÷ [f Al 1-a—CdA] v = 0

r 	 dr
(6.3.1)

In case of the momentum equation the pressure term (included
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[ f AP* 4: ciA] 	[ fA C41 4 -13 dA] 4) [ f Ar4)-ai! -81TdAs] ( )±
[1 41-4, aa11.37 aatl; 	4)+A [L c-3-e TdA] P+B[f AgirdA, P+C[ fAip 	 dA] 4)

fAS4,41dA+ f 4,4r n,17) di+ fir4,* / 	
d 	

(6.3.2)

in the source term) is handled using the penalty method

(Hughes et al. 1979), where the continuity equation is

replaced by a perturbed equation :

p	 -X (au/ax + v/r + av/ar)

For further details see NISA/3D-Fluid user's manual.

Equation 6.3 results in a system of algebraic equations

of the form

[K] [0] 	 [F)

where, [K] is the stiffness matrix, [0] is the column vector

of unknowns {U,V,k,e} and [F] is the source term.

NISA/3D-FLUID uses successive Picard iteration scheme to

solve the system of nonlinear equation given above.

6.4 WAVEFRONT SOLVER

For the solution of the overall finite element equilibrium

equations, which are in the form of simultaneous linearized

algebraic equations, the wavefront technique (Irons, 1970) is

used. For most practical problems the computer time required

for the solution of system of equations represent a

substantial portion of the total computational time of the

run. In the wavefront (frontal) technique, the solution time

is proportional to the square of the wavefront size. Therefore

it is important to minimize the wavefront size by resequencing
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the elements, which is carried out in NISA/3D-FLUID as a

prefrontal operation.



CHAPTER 7

RESULTS AND DISCUSSIONS

7.1 Laminar Flow

In this section, the results obtained by the numerical (finite

element method) solution of the Navier Stokes and continuity

equations for expanding axisymmetric laminar flows will be

presented. A typical geometry for this study and boundary

conditions have already been discussed in Chapter 3. The

parameters affecting the performance of a diffuser are the

inlet Reynolds number, inlet velocity profile, angle of

expansion and the expansion ratio . As discussed in Section

3.1, a few numerical and experimental results are available

for flow through axisymmetric suddenly expanding geometries

with fully developed parabolic velocity profile specified at

the inlet. Validation of the current code for laminar two

dimensional situations have already been reported (Bhatia et

al., 1993). For the sake of comparison and validation of

axisymmetric geometries, the results obtained by applying the

above mentioned boundary condition at the inlet will be

compared with the available results.

In this study, in addition to the comparison of results

mentioned above, more results (not reported in literature thus

far) are obtained by studying the effect of the above

mentioned parameters on the flow field for a flat specified
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inlet velocity profile. Quadrilateral, isoparametric, first

order elements are used for all computations.

In the results reported, all velocities and distances are

non-dimensionalized with respect to inlet average velocity

(U0 ) and inlet diameter (d) respectively.

7.1.1 The Effect of Reynolds Number

The effect of Reynolds number on the flow field has been

studied for the following configurations :

1) 90 ° half expansion angle with fully developed

parabolic velocity profile specified at the inlet.

2) 90 ° half expansion angle with flat velocity profile

specified at the inlet.

3) 30°, 450, 60 ° and 75 ° half expansion angles with flat

velocity profile specified at the inlet.

For all of the above three cases the expansion ratio D/d

had been chosen as 2.0 with the Reynolds number ranging from

50 to 200.

Figure 4 shows the variation of recirculation length as

a function of Reynolds number for the first configuration

mentioned above. Also shown in this Figure are the

experimental results of Macagno et al. (1967). The number of

elements used in this case to achieve mesh independence was

11960. It is found that the current computations correctly

predict the linear variation of recirculation length with the

Reynolds number. Solutions showing better agreement with the

above mentioned reference are obtained when the inlet
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prescribed velocity boundary condition is specified at 5

diameters upstream from the inlet section, also shown in

Figure 4. Figure 5 shows the comparison of the current results

with the computational results obtained by Fletcher et al.

(1985), Scott et al. (1986) and Badekas et al. (1992). Back

and Roschke (1972) have mentioned that linear increase in

recirculation zone length with Reynolds number can be

explained if the flow is considered to be a jet mixing with a

fluid at rest, since the spread of the shear layer between the

central jet and the reverse flow is solely by molecular

diffusion. Another interesting comparison can be made by

measuring the location of eddy center, which is defined as a

distance between the eye of the recirculation zone and edge of

the step. Figure 6 shows the variation of eddy center location

with Reynolds number for the same configuration. Current

numerical scheme predicts correctly both the qualitative and

quantitative behavior by agreeing closely with those reported

in other references mentioned above. As can be noted from this

Figure, there is large disagreement between the results

obtained by Scott et al. (1986) with those reported by others.

This can be partly attributed to the inadequate mesh used in

their computation. This is evidenced by the fact that in the

present study a total number of nearly 13,000 nodes were

required against 945 nodes used by Scott et al. (1986).

Variation of recirculation zone length with Reynolds

number for the second and third configurations (30 ° , 60 ° and
90 ° ) have been shown in figure 7. The number of elements used
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for the 30 ° half expansion angle was 12250. For all other
angles of expansion 9800 elements were used. For all angles of

expansion considered, a linear variation is obtained but with

different slopes. The reason for this (linear variation) may

be the same as that of the case with specified parabolic

inlet velocity profile. For any fixed Reynolds number the

recirculation length is always found to be less for the

geometry with the smaller half angle of expansion. These

results have not been previously reported in literature. The

linear variation of recirculation length can be expressed as

Lr/d A l (Re-50) + B l (7.1)

The above relation is valid for 50 5 Re 5200. The coefficients

A l and B 1 for various half angles of expansion have been

tabulated in table 7.1

For the second configuration, Figures 8 to 11 show the

velocity profiles for different Reynolds numbers at various

cross sections (x/d of 1.0, 2.0, 4.0, 16.0). Figures 8 and 9

indicate that with the increase in Reynolds number the reverse

flow speed increases. Also the curve for Reynolds number of 50

is almost normal to the wall depicting the fact that the

recirculation length for this case is close to 1.0. Similar

behaviors for Reynolds numbers of 100 and 200 are found to

occur for x/d of 2.0 and 4.0 (Figures 9 and 10) respectively.

As the axial length increases, the velocity profile in

each case tends to become parabolic. The larger the Reynolds

number, the larger is the length required for the flow to
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become fully developed (Figure 11) for the range of Reynolds

number being considered.

Table 7.1 Empirical coefficients of equation 7.1

Half Angle of

Expansion

Coefficient

A l

Coefficient

B1

30 0.01467 0.996

45 0.01621 1.005

60 0.01742 1.0287

75 0.0180 1.0803

90 0.01806 1.157

7.1.2 The Effect of Inlet Velocity Profile

A comparison between Figures 4 and 7 shows that, for a

parabolic inlet velocity profile, the recirculation length is

more than twice of that obtained with a flat inlet velocity

profile. This may be due to the fact that the vorticity near

the step edge is high for the flat profile, causing increasing

spread of the shear layer between the jet and the reverse flow

regime. Figures 12 to 15 show the comparison of velocity

profiles at various axial locations (x/d 1.0,4.0,8.0,16.0)

for the two different specified inlet velocity profiles

mentioned above.
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7.1.3 The Effect of Angle of Expansion

Figure 16 shows the variation of recirculation length as a

function of half angle of expansion for a specified flat inlet

velocity profile and a fixed Reynolds number of 200. The

expansion ratio considered for this case is 2.0 with the half

angles of expansion varying from 10 ° to 90 ° . The number of
elements used for angles of expansion of 15 ° and 30 0 were
14700 and 12250 respectively. For all other half angles of

expansion (10 ° ,20 ° , 45 ° , 60 ° , 75 ° ,90 ° ) the number of elements used
were 9800. It is found that a half angle greater than 20 ° , a
smooth curve between recirculation length and angle of

expansion is obtained which is exponential in nature. But the

recirculation length for 15 ° does not follow this curve and
the value at 15 ° is more than that of 20 ° . The same trend is
found for 10 ° also. The reason for this may be the fact that
as the angle decreases below a certain limit the detachment

point moves downstream much faster than the reattachment point

(Figure 17). The effective recirculation zone length (axial

distance between the reattachment and the detachment point)

variation with half angle of expansion for this case is shown

in Figure 18. The curve is exponential in nature for the whole

range of angles considered.

Figure 19 shows the centerline velocity distribution for

three half angles of expansion (15 ° , 30 ° , and 90 °) for the
same Reynolds number and inlet boundary conditions mentioned

above. Figures 20 and 21 show the corresponding centerline

pressure (non-dimensionalized with pUO2 /2) and axial velocity
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distributions along the shear layer respectively. From Figure

19 it is found that, although there is no significant

difference between the 15 ° and 30 ° cases, the 90 ° case shows
a distinct difference from the other two cases. The centerline

velocity for this case tries to hold for a small distance

which is not observed in the other cases.

Figure 20 shows that, as expected, lower the angle of

expansion higher the recovery of pressure. Peaks for all the

three curves are found to be occuring almost at the same axial

location just downstream of the step edge.

Figure 21 shows the sharp gradients that exist along the

shear layer. The magnitude of maximum axial velocity is

significantly higher in case of 90 ° in comparison with the
other two angles of expansion.

7.1.4 The Effect of Expansion Ratio

Variation of recirculation zone length with expansion ratio is

shown in Figure 22. The half-angle of expansion considered for

this case was 90 ° . The Reynolds number used was 100 with the
velocity profile specified at the inlet being a flat one. The

expansion ratio varies from 1.5 to 4.0. The number of elements

used for expansion ratio of 1.5, 1.75, and 2.0 were 8960,

9800, and 9800 respectively. 12800 elements were used for

other expansion ratios (2.5, 3.0 and 4.0). A linear variation

of recirculation zone length with expansion ratio is obtained

for the expansion ratio range of 2 to 4. Below an expansion

ratio of 2.0, the recirculation length does not vary linearly.
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It needs to be mentioned here that a linear relationship

between the recirculation length and expansion ratio (varying

from 1.5 to 6.0) has been proposed by Badekas et al. (1992)

for a parabolic inlet velocity profile (Section 2.1). It has

also been indicated that this proposed correlation shows poor

agreement with the experimental results as the expansion ratio

decreases. This may be due to the fact that below a certain

expansion ratio the relation is no longer a linear one (also

for a parabolic inlet profile).

7.2 Turbulent Flow

In the previous section, computational results for laminar

flow through expanding axisymmetric geometries have been

reported. In this section, results for turbulent flow through

similar geometries will be considered. In addition to the

continuity and momentum equations, more equations are required

to be solved for determining the Reynolds stresses in the

momentum equations which arise due to the time averaging of

the Navier Stokes equations. Since the eddy viscosity concept

is used to model the Reynolds stress terms, additional

equations to determine the eddy viscosity are required. A two

equation k-E turbulence model is employed in this regard. A

review of literature in Section 2.2 have shown that a few

computational and experimental results are available for some

of the geometries considered here.

The parameters affecting the performance of axisymmetric

diffusers have already been identified which are mainly angle
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of expansion, expansion ratio, velocity profile at inlet and

the Reynolds number. In addition to these parameters,

variables affecting the performance of the k-E equations need

to be considered. Similar to the previous section, before

presenting new results, comparison with available results will

be carried out.

In the results reported, all velocities and distances

have been non-dimensionalized with inlet uniform velocity (U o )

and inlet diameter (d) respectively.

7.2.1 Effects of Angle of Expansion

To study the effect of angle of expansion on the flow field,

three discrete half angles of expansion (15 ° , 30 ° , and 90 ° )

have been considered. The expansion ratio chosen is 2.0 with

a Reynolds number of 200,000, based on the inlet conditions.

The boundary condition for k at the inlet was chosen according

to equation 3.1, with the value of C chosen as 0.014. The

dissipation inlet boundary condition was based on equation

3.2, with the value of the length scale L chosen as 0.05d. The

number of elements required for the 15 ° , 30 ° and 90 ° angles of
expansion were 2415, 2940, and 2525 respectively. Figures 23

through 25 show the centerline axial velocity distributions

for the above three angles. Also presented in theses Figures

are the experimental results of Chaturvedi (1963) and

computational results of Sala et al. (1980) . Figure 23 (half

angle of expansion of 90 ° ) shows that both the computational
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schemes predict correctly the qualitative nature of the curve

obtained experimentally. The recirculation length obtained by

the current scheme is 3.6 which is underpredicted compared to

the experimental value of 4.6 reported by Chaturvedi (1963).

Figure 24 shows the centerline axial velocity distribution for

30 ° half angle of expansion. Better correlation is obtained

with the experimental results compared to the other numerical

scheme (Sala, et al.,1980). The recirculation length obtained

is 2.6, which is also an underpredicted one. Figure 25 shows

the results for 15 ° case. Although good correlation is

obtained with the experimental results, the current scheme

fails to capture any recirculation. As can be seen from

Figures 24 and 25 gross difference exist between the

predictions of Sala et al. (1980) and the reported

experimental results, although his predictions of

recirculation length are better than the current scheme. This

can be attributed to the different shear stress relation used

in conjunction with the wall function (see section 2.2). It

has already been mentioned in Section 2.2 that gross anomaly

exist in the qualitative nature of his predictions

(recirculation length obtained by 15 ° is more than that of

90 ° ).Figure 26 shows the profiles of the fluctuating axial

components of velocity at different cross sections for the 90 0

case. Comparison with Figure 27 (results of Chaturvedi) shows

a good qualitative agreement between the two.

Figures 28 to 30 show the profiles of turbulent kinetic

energy (non-dimensionalized with U O 2 ) and Figures 31 to 33
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show the profiles of dissipation of turbulent kinetic energy

(non-dimensionalized with UO 3 /d) at different axial sections

of the above mentioned geometries.

Figure 34 shows the pressure distribution along the

centerline for all three angles of expansion mentioned above.

Good qualitative results are obtained, which follows the trend

of the laminar case.

In a bid to improve the recirculation length, the effects

of following parameters on the flow field have been studied.

7.2.2 Effects of inlet kinetic energy boundary condition

The geometry considered in this case is the 15 ° angle of

expansion with the same expansion ratio and Reynolds number

mentioned above. Three different values of the constant C of

equation (3.1) were chosen (0.005, 0.014, and 0.025). Figure

35 shows the centerline axial velocity distribution for this

case. It can be seen from the presented results that for the

range of kinetic energy considered, the centerline velocity

does not show any significant change. The recirculation length

also remained unchanged. Since there was no difference in the

recirculation length for this particular geometry considered

effect of this boundary condition was not examined for the

other two geometries. It can be mentioned here that the

experimental results of Chaturvedi (1963) were obtained with

no turbulence at the inlet. To simulate this computationally

one needs to apply zero value for turbulent kinetic energy at
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inlet. But this makes the computational scheme totally

unstable.

7.2.3 Effects of inlet boundary condition of dissipation

It has been observed that several estimates for boundary

conditions for dissipation of turbulent kinetic energy at the

inlet have been tried (Benim at al.,1984; Habib et a1,1982).

In order to study its effect on the flow characteristics in a

diffuser, prescribed E at the inlet is increased by an order

of magnitude (L 	 0.005d) while the k boundary condition

remained unchanged. The geometry and Reynolds number

considered are the same as were used to study the effect of

inlet k boundary condition (half angle 15 ° ). The centerline
velocity for this case is shown in Figure 36. The

recirculation length improves dramatically (for this case it

changed from no circulation to 3.2). However, the centerline

velocity shows a marked difference in comparison with the

experimental results. Effects of considering this boundary

condition on the resulting axial velocity distribution of

other two geometries are shown in Figures 37 and 38. The

recirculation length for 30 ° changes from 2.8 to 3.60 and that
for 90 ° becomes 3.99 from 3.6. The centerline velocity
deteriorates for both these cases.

7.2.4 Effects of empirical constant C tt

As discussed in the previous section, in case of laminar flow

the spreading of the incoming jet to the diffuser; which,
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primarily determines the recirculation length is because of

molecular diffusion. For turbulent flow the turbulent

diffusion is expected to be one of the key factor affecting

the spreading. In addition to the turbulent kinetic energy and

turbulent dissipation, the coefficient that directly affects

the turbulent diffusion is C
. 
Attempt have been made in the

P

past to study the effect of this coefficient on the

recirculation region in case of turbulent flow through

backward facing step (Autret et al.,1987) and improved

recirculation length have been obtained. In the current

investigation the value of C p was reduced from 0.09 to 0.045.

All three expansion angles were used for this investigation.

In case of 15 ° , a very small recirculation length was
obtained. For 30 ° the recirculation length increased from 2.6
to 3.7. In the case of 90 ° the effect was very pronounced. The
recirculation length jumped from 3.6 to 4.99 which is slightly

more than that obtained experimentally. The centerline axial

velocity distributions for these cases are shown in Figures 39

to 41. In all three cases, the centerline velocities are found

to be significantly different from the experimental ones. It

can be noticed that the effect of C is more significant as
A

the angle of expansion increases. The reverse is true for the

inlet boundary condition of dissipation. A summery of the

results obtained for various conditions mentioned above has

been tabulated in table 7.2
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7.2.5 Effects of coefficients C E1 and CE2

It has been already noticed that increasing the dissipation

energy boundary condition at the inlet improves the

recirculation length significantly. Another way of obtaining

an increased level of dissipation in the flow domain is to

manipulate the first (C E1 ) and the second (C E2 ) coefficients

in the dissipation equation.

To study the effects of the above coefficients on the

flow field the value C E2 was changed from 1.92 to 1.42. Figure

42 shows the centerline velocity in this case for the geometry

with 15 ° half expansion angle. It is found that the centerline
velocity is overpredicted substantially for most of the

domain, although the recirculation length improved to 3.43.

Similar effects were also obtained for the coefficient C el .

Table 7.2 Comparison of recirculation lengths for turbulent
flow

HALF
ANGLE OF
EXPAN-
SION

CHATURVEDI SALA STANDARD REDUCED

C il

INCREASED
DISSIPA-
TION

15 ° 3.55 4.60 X SMALL 3.20

30 ° 4.20 4.50 2.60 3.70 3.60

90 ° 4.65 4.45 3.60 4.99 3.99

7.2.6 Effects of Turbulent kinetic energy Boundary Condition
on the wall

A boundary condition for k at the wall, different from that of

equation 4.24 has been reported (Betts et al., 1985). In this

reference, the gradient of k {ak/ar} at the wall has been set
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to zero. Figure 43 shows the centerline axial velocity for the

15 ° diffuser which had been used to study the effect of the
above mentioned boundary condition. Figure 44 shows a

comparison of the turbulent kinetic energy along the

centerline of this diffuser with the prescribed boundary

condition of k. Upon close examination of the results obtained

using ak/ar 0 at the wall, it can be concluded that no

significant differences are observed. The reattachment length

is still underpredicted by almost the same margin as in the

case where k was computed using equation 4.24.

7.2.7 Effects of Reynolds Number

To study the effect of Reynolds number on the flow field, the

Reynolds number was varied from 4000 to 200,000 (Figure 45).

The geometry considered was the 90 ° half angle of expansion
with expansion ratio 2.0. It is found that the recirculation

length remains almost constant for the Reynolds number range

from 10,000 to 200,000. This may be due to the fact that at

higher Reynolds numbers the decrease in diffusivity is offset

by the higher level of mixing due to turbulence. Below 10,000,

the recirculation length reduces slightly for the turbulent

flow case.

7.2.8 Effects of expansion ratio

Thus far numerical results and their comparisons with the

corresponding experimental results have been reported for

diffusers with different angles for an expansion ratio of 2.0.
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Similar results for any other expansion ratio are not

available. The angle of expansion considered is 30 ° . The

number of elements employed for expansion ratios of 4.0 and

6.0 were 3439 and 4521 respectively. A Reynolds number of

200,000 were used. Figure 46 shows a comparison of the

centerline axial velocities for expansion ratios of 2.0, 4.0

and 6.0. Figure 47 shows the kinetic energy profile (non-

dimensionalized with U O2 ) for x/d of 4, 8, 12 and 16 for the

expansion ratio of 6.0. It can be noted that the behavior of

this quantity is similar to that obtained with an expansion

ratio of 2.0 but the maximum for example is obtained at a

different value of the radius.



CHAPTER 8_

FURTHER NUMERICAL EXPERIMENTATION

In section 7.2 results of numerical experimentation has been

reported by modifying some of the standard co-efficients and

also the boundary conditions for k and E at the inlet. Some of

the changes have shown insignificant effects while others have

shown improved localized results. While manipulating the co-

efficients, a constant value throughout the flow field has

been assumed. As mentioned earlier, the co-efficient that

directly affects the turbulent diffusion is C. A variation of

C, in the flow field as a function of the ratio of production

of turbulent kinetic energy (G) and its dissipation has been

proposed by Rodi (1972) and investigated by Autret et al.

(1987) for a two-dimentional backward-facing step. It is

interesting to see the effect of such spatial variation of C„

in the present case of diffuser flows. The expression employed

is as follows :

2 1-a  1- t) (1-a )
C

3 ti)
[14-

1
 ( G -1) 

2

t.)

The coefficents in the above expression have been taken

as L) 2.8, a .549 as suggested by the author. The graphical

representation of the above expression is given in Figure 48.

To test the performance of this model the geometry with

72
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half angle of-expansion of 15° was considered. The centerline

velocity distribution for this case is shown in Figure 49. It

can be seen that the centerline velocity in this case is very

much similar to that obtained with a constant value of of

0.045, although the recirculation length improved to 3.2 from

a very small recirculation length (obtained with ;of 0.045).



CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

1) The current investigation has resulted in the development

of a comprehensive computational procedure for solving flow

through diffusers over a wide range of variation of the

parameters affecting the flow field. Such a computational

procedure can be utilized for effective design of diffusers by

the creation of a database covering all practical range of

variation of the design parameters.

2) For laminar flow, the current numerical scheme can

predict both the qualitative and quantitative behavior

accurately. A mathematical model has been proposed showing the

variation of recirculation length with Reynolds number for

various angles of expansion.

3) The recirculation length for half angle of expansion of

90 ° shows linear variation with expansion ratio for a certain
range .

4) The recirculation length does not show a monotonic

variation with half expansion angle. There is an inflection

point giving a minimum reattachment point location.

5) Effective recirculation length shows an exponential

variation with half angle of expansion.

6) The standard k-E model of turbulence in conjunction with

current numerical scheme can adequately predict the

qualitative behavior of the flow field.
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7) The standard k-E model is unable to predict the

quantitative behavior of the flow field adequately.

8) Changing the kinetic energy boundary condition on the

wall does not show any significant effect on the computed flow

field.

9) Increasing the dissipation rate boundary condition at the

inlet yields better recirculation length for all expansion

angles.

10) Manipulation of the coefficients resulted in significant

improvement of recirculation lengths in most cases. However,

there is room for improvement in the overall prediction of the

flow field.

11) The current study has elaborated a procedure for

selection of proper boundary conditions while solving

turbulent flow through diffusers.

12) The current study has resulted in a deep and thorough

understanding of the physics of turbulence in diffuser flows

in conjunction with the k-E model.

13) The finite element method is an effective numerical tool

for predicting the flow field in diffuser flows.

Recommendations for Further Work

Further numerical experimentation can be carried out to study

the effect of variation of empirical coefficients

simultaneously.

The higher order turbulence model can be examined to
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check for any improvement in the prediction of flow field due

to a consideration of anisotropic turbulence.

More exhaustive experimental results with state-of-the-

art equipment are required to have better insight of the flow

field and creation of a database to enable further tuning of

the empirical constants.
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Figure 4 Variation of recirculation length with Reynolds
number for a parabolic inlet velocity profile
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Figure 5 Variation of recirculation length with Reynolds
number for a parabolic inlet velocity profile
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Figure 6 Variation of eddy center location with Reynolds
number for a parabolic inlet velocity profile
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Figure 7 Variation of recirculation length with Reynolds
number for a uniform inlet velocity profile
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Figure 8 Velocity profiles at a fixed cross section (x/d 1)
for different Reynolds numbers for a uniform inlet
velocity profile
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Figure 9 Velocity profiles at a fixed cross section (x/d = 2)
for different Reynolds numbers for a uniform inlet
velocity profile
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Figure 10 Velocity profiles at a fixed cross section (x/d
4) for different Reynolds numbers for a uniform
inlet velocity profile
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Figure 11 Velocity profiles at a fixed cross section (x/d
16) for different Reynolds numbers for a uniform
inlet velocity profile
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Figure 12 Comparison of velocity profiles at a fixed cross
section (x/d 1) for uniform and parabolic inlet
velocity profiles
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Figure 13 Comparison of velocity profiles at a fixed cross
section (x/d = 4) for uniform and parabolic inlet
velocity profiles
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Figure 14 Comparison of velocity profiles at a fixed cross
section (x/d 8) for uniform and parabolic inlet
velocity profiles
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Figure 15 Comparison of velocity profiles at a fixed cross
section (x/d = 16) for uniform and parabolic inlet
velocity profiles
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Figure 16 Variation of recirculation length with half angle
of expansion
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Figure 17 Variation of detachment length with half angle of
expansion
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Figure 18 Variation of effective recirculation length with
half angle of expansion
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Figure 19 Centerline axial velocity distribution for various
half angles of expansion
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Figure 20 Centerline pressure distribution for various half
angles of expansion
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Figure 21 Axial velocity distribution along the shear layer
for various half angles of expansion
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Figure 22 Variation of recirculation length with expansion
ratio
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Figure 23 Centerline axial velocity distribution for half
angle of expansion of 90°
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Figure 24 Centerline axial velocity distribution for half
angle of expansion of 30°



Figure 25 Centerline axial velocity distribution for half
angle of expansion of 15°
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Figure 26 Profiles of fluctuating axial component of velocity
at various cross sections for half angle of
expansion of 90°
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Figure 27 Experimental results for profiles of fluctuating
axial component of velocity at various cross
sections for half angle of expansion of 90 °
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Figure 28 Profiles of turbulent kinetic energy at various
cross sections for half angle of expansion of 90°
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Figure 29 Profiles of turbulent kinetic energy at various
cross sections for half angle of expansion of 30°
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Figure 30 Profiles of turbulent kinetic energy at various
cross sections for half angle of expansion of 15°
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Figure 31 Profiles of turbulent dissipation energy at various
cross sections for half angle of expansion of 90°
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Figure 32 Profiles of turbulent dissipation energy at various
cross sections for half angle of expansion of 30°
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Figure 33 Profiles of turbulent dissipation energy at various
cross sections for half angle of expansion of 15°
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Figure 34 Centerline pressure distribution for various half
angles of expansion
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Figure 35 Centerline axial velocity distribution for
different inlet kinetic energy boundary conditions
(half angle of expansion 	 150)



Figure 36 Centerline axial velocity distribution for
increased dissipation energy at the inlet
(half angle of expansion = 15°)
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Figure 37 Centerline axial velocity distribution for
increased dissipation energy at the inlet
(half angle of expansion = 300)
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Figure 38 Centerline axial velocity distribution for
increased dissipation energy at the inlet
(half angle of expansion	 900)
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Figure 39 Centerline axial velocity distribution for half
angle of expansion of 15° for C, = 0.045
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Figure 40 Centerline axial velocity distribution for half
angle of expansion of 30° for C m = 0.045
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Figure 41 Centerline axial velocity distribution for half
angle of expansion of 90° for C u 	0.045
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Figure 42 Comparison of centerline axial velocity
distribution for different values of coefficient C„
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Figure 43 Comparison of centerline axial velocity
distribution for different boundary condition of
turbulent kinetic energy at the wall
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Figure 44 Comparison of centerline turbulent kinetic energy
distribution for different boundary condition of
turbulent kinetic energy at the wall
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Figure 45 Variation of recirculation length with Reynolds
number



Figure 46 Centerline axial velocity distribution for
different expansion ratios
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Figure 47 Turbulent kinetic energy profiles at different
cross sections for expansion ratio of 6.0
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Figure 48 Variation of C 4 with ratio of production and
dissipation of turbulent kinetic energy
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Figure 49 Centerline axial velocity distribution for
different values of the coefficient C, (half angle
of expansion = 15°)
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