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ABSTRACT

AUTONOMIC NERVOUS SYSTEM EVALUATION
USING TIME-FREQUENCY ANALYSIS

by
Sanjay Fernando

Spectral analysis of heart rate variability (HRV) provided an estimate of the

sympathetic and parasympathetic influences on heart rate without drugs or other

invasive procedures. However, there are many situations where heart rate changed

rapidly over time and the control of those changes was of considerable interest.

Time-frequency analysis was utilized to expand the concept of spectral analysis of

HRV to describe changes in vagal tone and sympatho-vagal balance as a function of

time. As a result the assessment of the autonomic nervous system during rapid

changes in heart rate was made.

There were three advantages to calculating vagal tone and sympatho-vagal

balance by using time-frequency analysis. First, vagal tone and sympatho-vagal

balance were described as functions of time. Hence, a better understanding was

attained about autonomic control of rapidly changing signals. Second, the rate of

increase or decrease of vagal tone and sympatho-vagal balance was derived. These

rates were used to determine the integrity of the autonomic system. Third, a mental

component affecting vagal tone was suggested. It is anticipated that the effects of

anxiety on vagal tone can be revealed using time-frequency analysis.



AUTONOMIC NERVOUS SYSTEM EVALUATION
USING TIME-FREQUENCY ANALYSIS

by
Sanjay Fernando

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Biomedical Engineering

Biomedical Engineering Committee

October 1994



 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPROVAL PAGE

AUTONOMIC NERVOUS SYSTEM EVALUATION
USING TIME-FREQUENCY ANALYSIS

Sanjay Fernando

Dr. Stanley 'S. Reisman, Thesis Advisor
	

Date
Professor of Electrical Engineering and Associate
Chairperson for Graduate Studies, NJIT

Dr. David Kristol, Committee Member
	

Date
Professor of Chemistry and Director of
Biomedical Engineering Program, NJIT

Dr. 'Thomas W. Findley, Comm-ittee Member Date'
Associate Professor of Medicine, UMDNJ
Director of Research, Kessler Institute for
Rehabilitation



BIOGRAPHICAL SKETCH

Author:	 Sanjay Kanchan Fernando

Degree:	 Master of Science in Biomedical Engineering

Date:	 October 1994

Undergraduate and Graduate Education:

Master of Science in Biomedical Engineering
New Jersey Institute of Technology, Newark, NJ, 1994

El Bachelor of Science in Electrical Engineering
New Jersey Institute of Technology, Newark, NJ 1993

Major:	 Biomedical Engineering

Presentations and Publications:

Fernando,Sanjay K. Reisman,S., "Autonomic Nervous System Evaluation Using Time-
Frequency Analysis." IEEE-SP International Symposium on Time-Frequency
and Time-Scale Analysis. Philadelphia, Pennsylvania, October 25-28, 1994.

Fernando,Sanjay K., Reisman,S., Daum,M., Zorowitz,R., DeMeersman,R.
"Baroreceptor Reflex Sensitivity Among Stroke Survivors: A Pilot Study." 20th
Annual Northeast Bioengineering Conference. Springfield,Massachusetts,
March 17 & 18, 1994.

iv



This thesis is dedicated to my parents,
Jayantha and Lakshman Fernando.



ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to his advisor,

Dr. Stanley S. Reisman, for his guidance, friendship and moral support throughout this

research.

Special thanks to Dr. David Kristol and Dr. Thomas W. Findley for serving as

members of the committee.

The author appreciates the help and suggestions from Dr. Ronald DeMeersman.

vi



TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	  1

1.1 Time-Frequency Analysis 	  1

1.2 Autonomic Nervous System 	  14

1.3 Baroreceptor Reflex Sensitivity Index 	  18

1.4 Heart Rate Variability: A Signature of Autonomic Function 	  19

	1.5 Scope of Thesis     22

2 METHODS 	  24

2.1 Acquisition of Respiration 	  24

2.2 Acquisition of Interbeat Interval 	  25

2.3 Acquisition of Blood Pressure 	  30

2.4 Acquisition of Volume of 02/kg 	  34

2.5 Experimental Setup 	  34

2.5.1 Baroreceptor Reflex Sensitivity Index 	  35

2.5.2 Paced Breathing 	  36

2.5.3 Exercise Protocol on Kinetron 	  36

2.5.4 Exercise Protocol on Bicycle 	  36

2.6 Data Analysis 	  37

2.6.1 Baroreceptor Reflex Sensitivity Index 	  37

2.6.2 Instantaneous Frequency 	  38

2.6.3 Vagal tone and Sympatho-vagal balance via Wigner Distribution 	  39

vii



TABLE OF CONTENTS
(Continued)

Chapter	 Page

3 RESULTS AND DISCUSSIONS 	  41

3.1 Computer Generated Signals 	  42

3.2 Electromyographic Signal 	  45

3.3 Heart Rate Variability 	  48

3.3.1 Detrending 	  49

	

3.3.2 Instantaneous Frequency of Paced Breathing     50

3.3.3 Vagal Tone via Wigner Distribution During Exercise on a Kinetron 52

3.3.4 Vagal Tone and Sympatho-vagal Balance via Wigner Distribution
During Exercise on a Bicycle 	  55

3.3.5 Time-frequency Analysis of IIBI from the Valsalva maneuver . . 	  60

4 CONCLUSIONS 	  65

	

4.1 Vagal Tone and Sympatho-vagal Balance via Wigner Distribution   65

4.2 Baroreceptor Reflex Sensitivity 	  67

4.3 Future Work 	  70

APPENDIX A Procedure for Calculating Baroreceptor Reflex Sensitivity Index	 72

APPENDIX B Procedure for Performing Time-Frequency Analysis 	  73

APPENDIX C Computer Programs 	  74

REFERENCES 	  79

viii



LIST OF TABLES

Table	 Page

1.1 Four Phases of the Valsalva maneuver 	  20

3.1 Quantitative Results from Time-frequency Analysis of
Exercise Protocol on Bicycle 	  59

3.2 Baroreceptor Reflex Sensitivity Index of

	

Normal vs. Stroke Survivors     63

3.3 Time-frequency Analysis of Post Valsalva
between Stroke and Normal 	  63

ix



LIST OF FIGURES

Figure	 Page

1.1 Time-frequency distribution of whale sound 	  2

	

1.2 Short-time Fourier transform     5

1.3 Time-frequency representation 	  6

1.4 Cross-term from Wigner distribution 	  11

1.5 Symmetry of energy density around the origin of a real signal 	 12

1.6 Diagram depicting the nerve supply to the heart 	  15

1.7 Location of arterial baroreceptor 	  17

1.8 Normal response to the Valsalva maneuver 	  20

1.9 Fourier transform of heart rate fluctuations 	  21

2.1 Respiration recording 	  25

2.2 ECG complex 	 26

2.3 Standard bipolar limb lead of electrocardiogram 	  26

2.4 (a) ECG signal (b) QRS pulse train
(c) IBI values (d) Interpolated IBI values 	  28

2.5 (a) 60 s respiration signal,(b) Corresponding 60 s IBI signal,
(c) Power spectrum of respiration signal in (a) , (d) Power
spectrum of the IBI signal in (b) 	  30

2.6 Cuff and patient interface module mounted on the hand 	  31

2.7 Finger cross-section view illustrating optoelectronic components and bladder . 33

2.8 Linear regression plot of systolic blood pressure vs. interbeat
interval during phase IV of the Valsalva maneuver 	  39

3.1 (a) WD of sine wave (b) WD of chirp (c) Instantaneous frequency of (a),
(d) Instantaneous frequency of (b) 	  43



LIST OF FIGURES
(continued)

Figure	 Page

3.2 (a) PDS of 5 seconds of surface EMG, (b) Instantaneous frequency
of 100 seconds of surface EMG 	  46

3.3 Instantaneous frequency during (a) Rest, (b) Paced 8 bpm ,
(c) Paced 12 bpm, (d)Paced 18 bpm 	  51

3.4 Vagal tone during (a) Rest, (b) 2 Met, (c) 3 Met,
(d) 4 Met, (e) 5 Met & (f) Recovery 	  54

3.5 (a) Vagal tone (b) Sympatho-vagal balance, during 2 minutes of rest,
6 minutes of exercise, and 4 minutes of recovery 	  56

3.6 Normal response to the Valsalva maneuver 	  61

3.7 Stroke survivor response to the Valsalva maneuver 	  61

4.1 WD of IIBI during exercise at 3 Mets 	  66

4.2 Vagal tone via WD of rest file 	  68

4.3 Vagal tone via WD of pre-Valsalva maneuver 	  68

xi



CHAPTER 1

INTRODUCTION

Biomedical engineering is the application of scientific and mathematical principles to

medical science. The goal of a biomedical engineer is to develop tools for enhanced

diagnosis and treatment of ailments that afflict mankind. The following document

chronicles the research conducted on the utilization of time-frequency analysis as a

non-invasive tool to quantify rapidly changing biological signals.

1.1 Time-Frequency Analysis

Time-frequency analysis was used to describe and understand how the frequency

content of a non-stationary signal was changing in time[1]. Traditional analysis dealt

with time and frequency analysis separately. Such individual descriptions were good

enough for situations where the frequency content was not changing in time. For non-

stationary signals traditional analysis does not fully describe what was happening.

For example, the Fourier transform displays the frequencies that existed for the

total duration of the signal, not the frequencies which existed at a particular time. By

examining the spectrum we can not ascertain when those frequencies existed. The

best way to appreciate the need for a combined time-frequency description was by

way of a pictorial example. The methods of calculation will be discussed later.

Figure 1.1 is the time-frequency distribution of a whale sound. The time wave form

was on the left running up the page. The energy density spectrum is shown below the

1
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Figure 1.1 Main square figure is the time-frequency distribution of whale sound.
The time wave foam is on the left running up the page. The Fourier
transform is shown below the main figure. (From Amin,M. et al.
"Methods and Applications for Time-frequency Analysis," Conference
Notes, University of Michigan,1993)

main figure. An inspection of the time wave form does not yield very much insight,

although in principle a great deal of information is present. The power spectrum of

the signal appears below the main figure. It shows that the frequencies ranged from

175 to 325 Hz and the magnitude shows the relative strength of each frequency.

However, the spectrum represents only the frequencies which existed during the

production of the sound; it does not show when they existed. The combined time-

frequency picture plots time versus frequency; it shows the frequencies that existed at

each time. The time-frequency representation shows the frequency components of the

2
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signal , how long the components lasted and how each component changed in time.

From the spectrum nothing can be said about the duration of these components and

where in time they existed.

In certain disciplines density functions are called distributions because they

indicate how things are distributed. Hence, what is called a density function in

mathematics is often called a distribution function in other disciplines. (Unfortunately

the term "distribution" in mathematics means something else, namely, the probability

of finding the value of the random variable to be less than a certain fixed value.)

Physics typically uses the phrase distribution to denote density and since the type of

time-frequency density functions considered were first developed in physics the term

distribution has stuck; hence the term "time-frequency distribution."

Time and frequency descriptions allowed us to calculate time and frequency

<g((.0)>= f g(6))1S(u))12dw 	 (1)

averages only, that is[2]

<g(t)>= f g(t)ls(t)12dt 	 (2)

where <g((0)> is the average frequency density and <g(t)> is the average time

density. The calculation of average density as a functions of time and frequency was

not addressed.
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<g(t,w)>=???

Where <g(t,0))> is the average density as a function of time and frequency. If we

do have a time-frequency description as represented by the combined density P(t,CO)

then we could calculate joint averages of time and frequency by the way of

<g(t,G))>=ffg(t,w)P(t,w)dtdco 	 (3)

The short-time Fourier transform was the first tool devised for analyzing a

signal in time and frequency[3]. The equation of the distribution is :

1 	 k,
St(co)- 	

it+
 s(t)e -1`" dt

V2n
(4)

where s(t') is the time signal and S t(0)) is the Fourier transform of a small piece of the

signal (figure 1.2). For each different time we selected a corresponding small piece

centered around the time,t, which gave a spectrum. The totality of these spectra gave

a time-frequency distribution. The selection of the small piece around the time of

interest was chosen using a window function. The phrase "window" indicated that we

were looking at only certain parts of the signal. We multiplied the signal s(t) by the

window function, h(t), centered around the time of interest T-t to obtain the weighted

signal where T was the time centered around the fixed time t (equation 5).



t-A 	 t 	 t+6,

Figure 1.2 The spectrum of a small piece of the signal around time,t, will emphasize
the frequencies at that time. Since the time interval is short compared
to the whole signal this process is called short-time Fourier transform.
(From Amin,M et al. "Methods and Applications for Time-frequency
Analysis" Conference Notes, University of Michigan, 1993)

sh (T ).---s(c)h(t - t)
	

(5)

Considering this signal as a function of I ,we computed its spectrum. Since we

presumably have chosen a window that emphasized the time t, the spectrum would

emphasize the frequencies at that time. In particular the spectrum was

St(co)-  1  f e -i'sh(t)dT
Vi 27C

(6)

which was the short-time Fourier transform.

The main shortcoming of the short-time Fourier transform was the trade off

between time and frequency resolution[2]. In order to improve time resolution we

had to choose a window which was very narrow around the point of interest, but that

resulted in a modified signal which was also narrow. We had artificially made a short

duration signal for the purpose of analysis that created a wide spectrum[4]. This was a

consequence of the time-bandwidth relation (uncertainty principle). A narrow window

5
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distorted the original spectrum and introduced a wide spectrum. Hence, good time

resolution was achieved with a decreased frequency resolution.

The concept of the short-time Fourier transform was limited by time-frequency

resolution. However, resolution limitation may be overcome by using the Wigner

distribution[2]. The Wigner distribution (WD) was introduced by Wigner (1932) and

incorporated into signal analysis by Ville (1948). The WD maps a one-dimensional

function of time into a two-dimensional function of time and frequency (figure 1.3).

The WD has served as a useful analysis tool in fields as diverse as quantum

mechanics, optics, acoustics, bioengineering, image processing, and oceanography [3].

It has been successfully implemented for the analysis of several biological signals:

ECG, [5] blood pressure, respiratory and beat-to-beat fluctuations, attributed to

Figure 1.3 Time-frequency representation
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changes in autonomic nervous system activity [6].

The Wigner distribution features perfect time-frequency resolution and also

some very interesting mathematical properties [2]. The equation for this distribution

is :

P w(t ,t) = 	 --121`ft s* (t- —21 t)s(t+ -2-1 t)dt
	 (7)

where s(t)=A(t)&4 `) represents the original time signal. A(t) is called the envelope

or amplitude; qt) is the phase. The time around the fixed time t is denoted as T .

The calculation is performed follows. At the time of interest multiply a piece of the

signal to the left with a piece on the right ( or fold the signal about time t) and repeat

it for each T. That defines s*(t- 1 /2t)s(t+ 1 /2T) as a function of T. Take the Fourier

transform with respect to T. That yields the spectrum for time t. The process is

repeated for all times of interest.

The WD satisfies a large number of desirable mathematical properties. There

are eleven desirable properties for any time-frequency distribution[7] :

1. "Non negativity"

A density represents a fraction of the components within a certain range;

therefore, it should not be negative.

2. "Realness"

The density should be real.

3.	 "Time shift"

When the original signal is translated by a specific time, the whole distribution
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should also be translated by that time.

4. "Frequency shift"

When the original signal is translated by a specific frequency, the whole

distribution should be shifted by the same frequency.

5. "Time Marginal"

The individual time density should be satisfied.

fp(t,0))do, =p 1 (0= is(0 12

where P i (t) is the time marginal (instantaneous signal power).

6. "Frequency Marginal"

The individual frequency density should be satisfied.

f P(t,w)dt=P2 (w)= IS(co) I 2
	 (9)

where P2(Q)) is the frequency marginal (signal's power density spectrum).

7. "Instantaneous frequency"

The first-order moment of the P(t,(0) with respect to (0 gave the instantaneous

frequency COW.
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w (t)= f coo) * P (t,co)tho
	 ( 1 0)

8.	 "Group delay"

The first-order moment of the P(t,(0) with respect to t gave the group delay

'c(C0).

t( ) = f * P(t, ) dt

9. "Time support"

Signals are finite and therefore have a definite beginning before which they

were zero and a definite ending after which they were zero. The time

-frequency distribution should be zero before and after the signal and at any

other place where the signal was zero.

10. "Frequency support"

Frequency support was comparable to time support. If the signal was

bandlimited, the time-frequency distribution would be zero outside the

frequency band.

11.	 "Reduced Interference"

The distribution should not contain cross terms between frequency

components. For a multicomponent signal, the spectrum of each signal should
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be clearly seen without interference.

The WD satisfies all but two of the desired properties. One undesirable

property of the WD is that it is not always positive, property 1. The WD also does

not satisfy property 11. If the input signal consists of groups of signals with distinct

characteristics, for example

if s(t) = s o(t) + s o(t),

then its WD can be expressed in terms of its components:

	'vs° .„(t , G)) = w„(t, w) w„(t, 6) ) + wsos„(t, )
	

(12)

where

W
sos. 

= f e 
12

"ft [s 0 (t + 	
n

'1-)s * (t 	 + s 
°
* (t — -1 )S (t + 	 (13)

	2 	 2	 2 n 2

is the WD of the cross terms of s o(t) and s ti(t ) which would cause an additional cross

spectrum in the time-frequency representation. For example, figure 1.4 shows the

Wigner distribution of a signal composed of the sum of two infinite duration sine

waves. The oscillating term in the middle of the two frequencies is the cross term.

In nature signals are real and the spectrum of a real signal satisfies S(-a)) =

S*(0). Therefore the energy density spectrum S(C)) 2 was always symmetric about

the origin (figure 1.5), that is S(CO) 2 S(-CO) 2. The average frequency would



Figure 1.4 The Wigner distribution of the sum of two infinite duration sine waves.
The oscillating teilli in the middle of the two frequencies is the cross
term. (From Amin, M. et al. "Methods and Applications for Time
-frequency Analysis" Conference Notes, University of Michigan 1993)

always come out to be zero because of the symmetry and therefore, this did not tells

us what was really going on. Secondly, if we wanted the spread of frequencies, the

spread would turn out to be roughly the distance between the two peaks while the

answer we want was the spread of the individual peaks. To obtain a value for

average frequency which was centered in the middle of the right hand peak we must

neglect the left peak in the averaging (equation 14).

11
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Figure 1.5 Symmetry of energy density around the origin of a real signal

<co>=f mw IS(6.))1 2dco	 ( 1 4)

There were two approaches we could take. First, continue to consider real

signals and when taking spectral averages integrate from zero to infinity rather than

- CO to co. Second, define a new signal which has the same spectrum as the positive

frequencies and zero spectrum for the negative frequencies.

The following method will describe how an imaginary signal was added to a

real signal to form a complex signal[2]. In particular we want to write a complex

signal of the form z(t)= s(t) 	 js i(t). By definition the analytic signal is one whose

spectrum consists of positive frequencies. The standard method to form the analytic

signal is to take the spectrum of the actual signal and delete the negative part of the

spectrum and then form the complex signal by Fourier inversion. In particular,

calculate S(0) from the real signal s(t).
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s(t)e "i'dt 	 (15)
47-rc —

Then form the real part, s(t), of the complex signal, z(t), with the positive part of

SO) only (equation 16). The factor of two was inserted so that the real part of the

complex signal would be equal to the real signal we started out with.

s(t)-2  1  f - S(co)e 71'th.°
fit °

The imaginary part of the complex signal, s i(t) turned out to be the Hilbert transfolin:

Si(t)- 	
S(t ) dt /

j t - t 1

(17)

For a simple harmonic signal described by s(t) = cosy it was clear what the

frequency was, but suppose we have a changing phase s(t) = A(t)cos((I)(t)). There

have been many proposals for how to formulate the concept of instantaneous

frequency. The generally accepted method was that it was the derivative of the phase

of the analytic signal [2]. If the signal was written as s(t) = A(t)ej`ixt ) the

instantaneous frequency was then 0),=q(t).
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1.2 Autonomic Nervous System

One system that changes rapidly in the human body was the autonomic nervous

system (ANS)[8]. The autonomic nervous system (ANS) is made up of two functional

divisions: the sympathetic (SMP) division and the parasympathetic (PSMP) division.

These two divisions are anatomically, physiologically, and functionally distinct [9]. In

general, the PSMP division enhances activities that gain and conserved energy, such

as slowing the heart. The SMP division increases energy expenditures and prepares

an individual for action by accelerating the heart . When SMP and PSMP nerves

innervate the same organ, they often (but not always) have antagonistic effects. At

rest there is considerably more parasympathetic activity to the heart than sympathetic.

The interplay of the SMP and PSMP outflow plays an important role in

circulatory function. For the heart, sympathetic fibers terminate at the sinus node

pacemaker, conduction system, atria, ventricles, and coronary vessels. While,

parasympathetic fibers in the vagus nerve terminate at the sinoatrial and

atrioventricular nodes, atrial and ventricular musculature, and coronary vessels (figure

1.6). Although inherent rhythmicity of the heart is due to a natural pacemaker

situated in the sinoatrial node, continuous beat-to-beat control of heart rate is

dependent on the relative balances between SMP and PSMP impulses delivered from

the brain to the sinus node.

Factors other than the cardiac nerves can also alter heart rate (HR). The HR

is also sensitive to changes in body temperature, plasma electrolyte concentrations and

hormones. However, those factors are normally of lesser importance than the SMP

and PSMP nerves to the heart [10].



Figure 1.6 Diagram depicting the nerve supply to the heart from
both divisions of the ANS.

15
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The ANS characteristically functions as a feedback control system. Although a

central command controls overall autonomic behavior, several reflexes provide quick

feedback to respond effectively to specific demands on the system. For example,

high in the neck , each of two major vessels supplying the head ( the common carotid

arteries) divide into two smaller arteries. At this division, the wall of the artery is

thinner than usual and contains a large number of branching, vinelike nerve endings.

This portion of the artery is called the carotid sinus. Its nerve endings are highly

sensitive to stretch or distortion. Since the degree of wall stretching is directly related

to the pressure within the artery, the carotid sinus serves as a pressure or stretch

receptor, called the "baroreceptor" (figure 1.7).

An area functionally similar to the carotid sinuses is found in the arch of the

aorta and is termed the "aortic arch baroreceptor." The carotid sinuses and aortic

arch constitute the "arterial baroreceptor." Afferent neurons from them travel to the

brain and eventually provide input to the neurons of the cardiovascular control

centers.

The large systemic veins, the pulmonary vessels, and the walls of the heart

also contain baroreceptors, most of which function in a manner analogous to the

arterial baroreceptor. The primary control center for the baroreceptor reflexes is a

diffuse network of highly interconnected neurons in the brainstem medulla called the

"medullary cardiovascular center." The neurons in this center receive input from the

various baroreceptors. This input determine the outflow from the center along axons

that terminate upon the cell bodies and dendrites of the PSMP neurons to the heart

and the SMP to the heart, arterioles, and veins. When the arterial baroreceptor
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Figure 1.7 Location of arterial baroreceptor.
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increases its rate of discharge, the result is a decrease in sympathetic outflow to the

heart, arterioles, and veins, and an increase in parasympathetic outflow to the heart.

A decrease in baroreceptor firing rate results in the opposite pattern. The

baroreceptor reflexes are short-term regulators of arterial pressure but adapt to a

maintained change in pressure. Thus, in patients who have chronically elevated blood

pressure, the baroreceptor continues to oppose minute-to-minute changes in blood

pressure, but at a higher level [11].

1.3 Baroreceptor Reflex Sensitivity Index

The baroreceptor reflex sensitivity index (BRSI) is a marker of the baroreflexive

control of blood pressure. BRSI is used to gauge the functioning levels of the

different branches of the ANS[12]. BRSI is expressed as the slope of a regression

coefficient line relating systolic blood pressure (SBP) and the cardiac cycle length.

Thus, BRSI can be calculated from the ratio of delta R-R to delta SBP (expressed as

ms/mm Hg).

The Valsalva maneuver has been shown to be an accurate indicator of

baroreceptor reflex sensitivity [13]. The original Valsalva maneuver was described in

1704. It was a technique used for expelling pus from the middle ear. Later in 1851,

an "imperceptible pulse" was described by Weber. This pulse can be related to the

tachycardiac response that occurred during phase II of the Valsalva maneuver. Today

the Valsalva maneuver is used clinically for the assessment of various cardiovascular

disorders [14].	 The Valsalva maneuver is a simple, non-invasive method of testing

BRS since it can elicit significant rapid changes in heart rate, blood pressure, and
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ECG [15].

The Valsalva maneuver is divided into four phases (figure 1.8 and Table 1.1)

[16]. Phase I, a transient increase in systemic blood pressure with the onset of

straining, reflects increased intrathoracic pressure. Phase II, a gradual decrease in

pulse pressure and stroke volume due to a decrease in venous return, is often referred

to as the active phase of the Valsalva maneuver. During phase HI (initial release of

straining) , the blood pressure transiently decreases further as a result of pooling of

the blood in an expanded pulmonary vascular bed due to an abrupt decrease in

intrathoracic pressure. This phase is rapidly followed by phase IV, characterized by

an "overshoot" of the systemic pressure over baseline values. Each of these phases is

accompanied by a specific reflex change in heart rate that was modulated by

baroreceptor mechanisms. In figure 1.8 the vertical variation in the dark horizontal

lines represent the interval between consecutive heart beats. This is called the

interbeat interval (IBI) [17]. Reflex tachycardia occurs during the hypotension of

phase II displayed as a decrease in the horizontal dashes showing the decreased

distance between heart beats. Reflex bradycardia is associated with the over shoot (or

hypertension) of phase IV. The horizontal lines increase denoting the increased

distance between heart beats.

1.4 Heart Rate Variability:
A Signature of Autonomic Function

Traditionally, the effect of the autonomic nervous system on heart rate has been

investigated through two approaches. First, the average heart rate was measured

under normal conditions as a reference, and then the average heart rate was measured
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Figure L8 Normal response to the Valsalva maneuver

Table 1.1 Four Phases of the Valsalva Maneuver

Phase Action Blood Pressure Pulse Rate

I Onset of straining Increases Stable

II Continued straining Decreases Increases

III Release of straining Decreases Stable

IV Continued release Increases Decreases
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under different drug treatments - atropine to block the parasympathetic nervous system

and propranolol to block the sympathetic nervous system[18]. Recently, a second

approach has used power spectrum analysis to analyze a biological rhythm such as

heart rate, which consists of a time series of successive events, into a number of

sinusoidal waves of different amplitudes and frequencies under different drug

treatments [19].

From the drug studies three discrete frequency ranges were found to be of

importance (figure 1.9) : a very low frequency range (VLF 0.02 to 0.06 Hz); a low

0.06 	 0.15
	

0.50
Frequency (Hz)

Figure 1.9 Fourier transform of heart rate fluctuations, indicating very-low
frequency, and high-frequency peaks. (From Akselrod, S. et al.
Science,1981)
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frequency range (LF, 0.06 to 0.15 Hz); and a high frequency range (HF, 0.15 to

0.40Hz) [19]. The very low frequency band was equated with the renin-angiotensin

system; the LF band with blood pressure and baroreflex control; and the HF band

with respiration. The HF band is mediated by parasympathetic pathways, while the

LF band is mediated by both parasympathetic and sympathetic pathways.

Parasympathetic blockade with atropine abolishes the HF heart rate fluctuations and

substantially reduces the LF component. Additional propranolol further diminishes

the LF band, but has an effect on the HF peak [20].

Assessment of parasympathetic activity from spectrum analysis is obtained via

a measurement of the area under the HF peak . Sympathetic activity is less easy to

quantify using this methodology. A better concept was that of "sympatho-vagal

balance" which recognize both reciprocal and non-reciprocal parasympathetic and

sympathetic influences on heart rate with a further measure, the LF:HF ratio [21,22].

1.5 Scope of Thesis

The aim of time-frequency analysis was to understand and develop the tools that can

describe a time varying spectrum. In our research we have developed a tool to better

understand the information contained in an interbeat interval signal. Expansion of the

concept of spectral analysis of heart rate variability into time-frequency analysis gave

us the ability to observe how the high frequency and the ratio of LF:HF changed as a

function of time. For biological processes that are occurring very rapidly it was

possible to understand and measure how the parasympathetic and sympatho-vagal

balance changed. This was quantitatively assessed by taking the area under the HF
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and LF ranges as a function of time from the time-frequency distribution. Such

calculations were not possible without the utilization of time-frequency analysis.

Interbeat interval data were collected for various protocols. Normal and stroke

subjects performed the Valsalva maneuver where ECG and continuous blood pressure

data were collected. BRSI was calculated as a reference to gauge the severity of

depressed baroreceptors and provide a tool for detecting impaired autonomic nervous

systems. Time-frequency analysis was then applied before and after the maneuver to

ascertain the changes in the autonomic system. The time frequency analysis of

individuals with depressed baroreceptors were compared to those with normal

baroreceptors. Time-frequency analysis was also applied to normal individuals

performing an exercise test. The parasympathetic and sympatho-vagal changes were

observed during rest, exercise and recovery.

Instantaneous frequency is the frequency that exists at a particular time. A

paced breathing protocol was utilized to assess the validity of this measurement in

understanding how the frequency content of the IBI changes during different rates of

breathing. Instantaneous frequency was also utilized to study how electromyographic

signals change during muscle fatigue experiments.



CHAPTER 2

METHODS

The following chapter documents the methods for acquisition of biological signals,

experimental protocols and signal processing tools utilized for time-frequency

evaluation of autonomic function. The biological signals acquired were respiration

rate, interpolated interbeat interval, blood pressure, and metabolic activity.

Experimental protocols consisted of baroreceptor reflex sensitivity evaluation, paced

breathing, and exercise on both a kinetron and a bicycle. Signal processing tools

were then used to derive clinically meaningful information for the biological signals

collected during each protocol.

2.1 Acquisition of respiration

A RESP I impedance pneumograph (UFI, Morrow Bay CA) converted ventilation into

an analog signal. The analog data were fed into a DAS-16 analog-to-digital converter

(Keithley MetraByte/Asyst, Natick MA). The converted digital data then were stored

on and IBM-compatible 286 computer with 2 Mb RAM and 170 Mb hard drive, using

Streamer v3.25 data acquisition software (Keithley MetraByte/Asyst, Natick MA).

Electrodes on each side of the thorax provided an indication of rate of ventilation by

measuring the impedance of the tissue. The resistivity in the lungs changed in

response to increased air in the tissue. Figure 2.1 displays a typical respiration curve

from a healthy individual. The resistance increased during inhalation and decreased

during exhalation.

24



Figure 2.1 Respiration recording.

2.2 Acquisition of InterBeat Interval

The electrocardiogram (ECG) was primarily a tool for evaluating the electrical events

within the heart (figure 2.2). The first deflection, the P wave, corresponds to atrial

depolarization. The second deflection, the QRS complex, is the result of ventricular

depolarization. The final deflection the T wave, is the result of ventricular

repolarization.

Figure 2.3 shows the standard bipolar limb leads for the ECG[26}. In lead I,

the negative terminal of the electrocardiograph is connected to the right arm and the

positive terminal to the left arm. In lead II, the negative terminal is connected to the

right arm and the positive terminal to the left leg. In lead III, the negative terminal is

connected to the left arm and the positive terminal to the left leg. The reference point

(ground) is connected to the right leg.

25
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Figure 2.2 ECG complex

RA LA

Figure 2.3 Standard bipolar limb leads of electrocardiogram.
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Diagnostic ECG adhesive silver/silver chloride surface electrodes (Medtronic,

Haverhill MA), connected by wire were placed on each subject to collect ECG data.

The positive electrode was placed on the torso rather than on the left lower extremity

in order to minimize electromyographic noise produced by the leg muscles during

exercise. A good, low-resistance electrical connection between patient and electrode

was essential for clean, interference-free ECG data. Failure to properly prepare the

skin site caused base line shifts and noise from patient motion and respiration. Each

skin site was prepared in the following manner: (1) The site was thoroughly rubbed

with an alcohol swab. Then a dry piece of gauze pad was used to rub the site until it

became slightly red. This removed the non-conductive outer layer of skin. (2)

Application of the electrode to the prepared site was performed by running your

fingers around the foam pad, smoothing it from the center out. This process was

repeated for all sites.

A Q4000 monitor(Quinton Instrument CO., Seattle, WA) was used to acquire

the ECG and detect QRS complexes. The QRS detection method in the Q4000

monitor was derived from leads I, II, and III. A rectangular pulse was created each

time the QRS complex was detected (figure 2.4b). The resulting signal was then

processed by a DAS-16 analog-to-digital converter (Keithley MetraByte/Asyst, Natick

MA). The converted digital data was then stored on an IBM-compatible 286

computer with 2 Mb RAM and 170Mb hard drive, using Streamer v3.25 data

acquisition software (Keithley MetraByte/Asyst, Natick MA).

The interbeat interval (IBI) represented the distance between two consecutive

QRS complexes. Spectral analysis of heart rate variability was used to provide
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estimates of the sympathetic and parasympathetic influences without drugs or other

invasive procedures. The basic proposition behind these analyses was that the two

autonomic branches influenced heart rate in a frequency-dependent way. Therefore,

Figure 2.4 (a) ECG signal (b) QRS pulse train (c) IBI values, (d) Interpolated IBI
values (From Shin, Shaw-Jyh et al., "Assessment of Autonomic
Regulation of Heart Rate Variability by Method of Complex
Demodulation," IEEE Transactions on Biomedical Engineering, vol 36.
Feb 1989)
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the power spectrum of normal interbeat interval variability was characterized with two

major, identifiable peaks through pharmacological studies. The best-known and best-

defined peaks reflected changes in interbeat interval that cycle up and down at the

same frequency as respiration. This respiration peak corresponds approximately to the

well-known "normal sinus arrhythmia," and it was purely parasympathetic in origin

[23]. In addition to the respiration peak, there was a low frequency peak that was

mediated by both the sympathetic and parasympathetic systems.

The samples of the respiration signal were equidistant (0.1s apart); however,

the IBI samples were not equidistant along the time axis since they occur whenever a

QRS complex is detected. In order to produce equidistant IBI samples suitable for

analysis and synchronized with the respiration signal, interpolation is needed. The

method of backward step function interpolation [24] clearly showed the respiration

frequency peak in the power spectrum of the interpolated IBI signal (figure 2.5) and

was the easiest to implement. The method assumed that no new information about the

course of the time series was available until the next heart beat had occurred.

Therefore, all of the interpolated values between a beat at time T(m-1) and the next

beat at time T(m) was set equal to the time difference between T(m) and T(m-1),

which was the interbeat interval. For example, in figure 2.4c if a beat occurs at time

2sec and the next beat occurs at time 2.9sec, the interpolated values between time

2sec and time 2.9sec are all 0.9sec (figure 2.4d). The heart rate variability signal

used in this work was this interpolated IBI signal.
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Figure 2.5 (a) 60s respiration signal. (b) Corresponding 60s IBI signal. (c) Power
spectrum of the respiration signal in (a). (d) Power spectrum of the IBI
signal in (b). (From Shin, Shaw-Jyh et al. "Assessment of Autonomic
Regulation of Heart Rate Variability by Method of Complex
Demodulation," IEEE Transactions on Biomedical Engineering vol 36.
Feb 1989).

2.3 Acquisition of Blood Pressure

Real-time pulse blood pressure data was collected as an analog signal using a Finapres

Model 2300 Blood Pressure Monitor (Ohmeda, Englewood CO). Analog data was fed

into a DAS-16 analog to digital converter (Keithley MetraByte/Asyst, Natick MA).

The converted digital data was then stored on an IBM-compatible 286 computer with

2Mb RAM and 170 Mb hard drive, using Streamer v.3.25 data acquisition software

(Keithley MetraByte/Asyst, Natwick MA).

This Finapres measures arterial blood pressure in the finger using a method
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originally devised by Dr. Jan Penaz[25]. The 2300 Finapres monitor provided

continuous measurement of finger arterial blood pressure displaying the pressure

waveform, digital values of systolic, diastolic, and mean pressure as well as pulse rate

and a time annotated trend display. To provide the dynamic response required to

accurately measure the arterial pressure waveform, the cuff's pressure servo valve and

pressure transducer were located in the patient interface module (figure 2.6).

Figure 2.6 Cuff and patient interface module mounted on the hand.(From 2300
Finapres Blood Pressure Monitor Operation Manual. Ohmeda CO. 1991)
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The technique used an external pressure (the finger cuff) to equal the arterial

pressure. When the external pressure equaled the arterial pressure the transmural

pressure will be zero. With this technique the arterial walls would not change in size.

The blood volume in these arteries would not change resulting in no change in the

photoplethysmogram. A finger cuff containing photoelectric components for

measuring blood plethysmography and a bladder for applying pressure to the finger

was wrapped around the patient's finger and connected to the patient interface module.

The blood volume was measured by a small photoplethysmograph located in the finger

cuff (figure 2.7). Where the Penaz method used a constant pressure to "zero

transmural pressure", the Finapres applied the reverse of this concept. The

photoplethysmogram varied from the set point. A servo-valve caused a decrease or

increase in the cuff pressure. This in return allowed for the photoplethysmogram to

maintain a set point. The cuff pressure can be measured with an electric pressure

transducer and the resulting signal displayed as arterial pressure. It was important to

note that the manufacturer of the Finapres stated that the finger arterial pressure

measured may not always reflect or correlate with the central arterial pressure [25].

However, it has been reported that blood pressure values obtained in this manner are

comparable (+1- 4mm Hg) to those obtained using intra-arterial cannulas [26].

To optimize Finapres measurements the following should be

observed: (1) The hand should be as relaxed as possible. (2) For best results use the

cuff on fingers with good circulation. Fingers with poor circulation would produce

low blood pressure values and dampened(rounded) waveforms. (3)Position the finger

so that it was level with the patient's heart. If this was not practical, make the
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Figure 2.7 Finger cross-section view illustrating optoelectronic components and
bladder. (From 2300 Finapres Blood Pressure Monitor Operation Manual.
Ohmeda CO 1991)

following correction:

-Subtract 2 mmHg from the blood pressure reading for each inch the finger

was lower than the heart (-0.8 mmHg/cm)

-Add 2 mmHg to the blood pressure reading for each inch the finger was

higher than the heart (+0.8 mmHg/cm).

The most common misapplication of the cuff was: (1) Incorrect orientation of the

optoelectronic components (i.e. not on the sides of the finger) (2) Cuff wrapped too

loosely or too tightly (3)Incorrect cuff size.
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2.4 Acquisition of Volume of 0 2/kg

Metabolic data was collected using the Q-Plex Cardio-Pulmonary Exercise System

(Quinton Instrument Co. Seattle, WA). Subjects breathed through a #7900 two-way

mask with low-resistance one-way valve (Hans-Rudolph, Kansas City MO). To

collect metabolic data, the Hans-Rudolph mask was placed over the subject's mouth

and nose and was secured using an elastic strap. The mask was connected to the

metabolic data collection equipment. Gas analyzers were calibrated with

commercially prepared gas mixtures to insure calibration. The microcomputer was

calibrated before each subject was tested by inserting percentages of 02 and CO2 from

standard gas samples, room temperature, relative humidity, barometric pressure, gas

vapor pressure, and weight of the subject.

Metabolic data were collected by measuring over comparable metabolic

equivalents (MET). As V02 is measured precisely using expired ventilatory gases,

1 MET is defined as the VO 2 expended at rest, and higher METs are defined as

multiples of resting V0 2 (e.g. 2METs = 2 * resting V0 2).

2.5 Experimental Setup

Several signal processing methods were attempted on different experimental protocols

to assess autonomic integrity and function. The baroreceptor reflex sensitivity index

protocol was a noninvasive method of assessment of autonomic integrity. Time-

frequency analysis was applied during protocols where heart rate changed either

slowly or rapidly to study autonomic control of heart rate. The IIBI file produced

during the paced breathing protocol represented slow changes in heart rate, whereas
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the IIBI file produced during exercise represented a more dynamic change in heart

rate. Two exercise protocols were employed to maintain equivalent exercise intensity

for each subject. The exercise protocol on the kinetron employed the metabolic rate

while the exercise protocol on the bicycle used heart rate to achieve equivalent

exercise intensity for each subject. The time-frequency distribution represented a

great deal of information and two methods were used to extract information from the

distribution. The first used instantaneous frequency and the second involved the

calculation of vagal tone and sympatho-vagal balance from the time-frequency

distribution.

2.5.1 Baroreceptor Reflex Sensitivity Index

To measure BRS the Valsalva maneuver was performed. The Valsalva maneuver is a

simple, non-invasive method of testing baroreflex sensitivity, as it can elicit significant

rapid changes in heart rate, blood pressure, and ECG [15]. The subject was seated

and diagnostic ECG adhesive silver/silver chloride surface electrodes were placed on

each subject to record ECG and blood pressure data. The Finapres cuff and

transducer were attached to the subject to obtain systolic blood pressure. The subject

was instructed to blow into the sphygmomanometer and maintain an expiratory

pressure of 40 mmHg for 15 seconds. Each subject performed three Valsalva

maneuvers, separated by a rest period of 1 minute. ECG and blood pressure data

were recorded two minutes before the Valsalva maneuver, during the Valsalva

maneuver, and for one hundred and forty five seconds after the Valsalva maneuver.
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2.5.2 Paced Breathing

A box was constructed where by a sequence of lights alternated between red and

green lights at frequencies of 0.13, 0.20 and 0.30 Hz. Subjects in a seated position

were asked to inhale during green light illumination and exhale during red light

illumination. Breathing at those frequencies corresponded to 8, 12, and 18 breaths

per minute (bpm). Two minute files containing ECG and respiration were collected

while the subject performed the different rates of breathing.

2.5.3 Exercise Protocol on Kinetron

Exercise was performed on a Kinetron Exercise and Training System (Cybex,

Ronkonkema, NY) which permitted varying degrees of isokinetic exercise. The

position of the patient and speed of exercise were adjusted manually to select the

energy requirements required to exercise. Data were collected and analyzed on 5

healthy control subjects (3 female, 2 male) , mean age 29.6 ± 9.0 years (range 23-

43). Each subject was seated on the Kinetron. Expiratory gases were collected

continuously todetermine 02 and CO2 fractions and to calculate each subjects' total

body oxygen consumption (V0 2). The Finapres was connected to each subject to

collect real-time pulse and blood pressure data. ECG data were collected as tolerated

during rest, 2Met, 3Met, 4Met, 5Met. and normal relaxed breathing immediately

following exercise (recovery) was also collected.

2.5.4 Exercise Protocol on Bicycle

The cycling protocol consisted of riding a cycle ergometer (Lifecycle, CA ) at 80
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rev/min as dictated by the visual speedometer readout. The initial workload consisted

of pedalling at 80 rev/min in an unloaded condition. Thereafter, the workload

(resistance) was varied by a computer algorithm in order that the subject could

maintain a heart rate of 70% of age predicted maximum. Age predicted maximum

heart rate was calculated as 220 minus the age of the subject. The subjects sat on a

bicycle for two minutes at rest and performed no physical activity. The subjects were

then instructed to pedal comfortably for two minutes until their heart rate achieved 70

% of age predicted maximum. They maintained this pace for another four minutes

for a total of 6 minutes of exercise. They were then asked to halt and rest without

physical exertion for four minutes. ECG and respiration were collected in a

continuous file of 12 minutes.

2.6 Data Analysis

2.6.1 Baroreceptor Reflex Sensitivity Index

The ECG and blood pressure data analysis were performed on an IBM-compatible

486/50MHz computer. The data analysis software package used was S-Plus for

windows v3.1 (Statistical Sciences, Seattle WA), which includes modern statistical

techniques and permitted the writing of custom S-Plus programs.

An S-Plus algorithm (see appendix C) was utilized to determine IBI. A

software program was written to obtain the systolic values from the blood pressure

curve. See Appendix A and C for details on BRSI calculation procedure and

associated S-Pus Programs.

BRS was analyzed using methods previously described by LaRovere, [27]



38

which have been shown to be valid and reliable by Golstein [28]. BRS analysis

utilized S-Plus for Windows data analysis software. ECG data were analyzed for

detection of all sinus QRS complexes. Systolic blood pressure and R-R intervals were

calculated as increments with respect to baseline measurements. The R-R intervals

were plotted against the preceding arterial pulse as noted on the Finapres. Linear

regression analysis was performed during the period between the beginning and end of

the first significant rise in blood pressure of 20-30 mmHg. Change in blood pressure

served as the independent variable, and change in R-R interval served as the

dependent variable (figure 2.8). Regression lines with a correlation coefficient ≥

0.80 were accepted for analysis. The slope of the line represented the baroreflex

sensitivity index (BRSI), and was obtained by calculating the mean value of the three

measurements. BRSI values below 3.0 msec/mmHg were considered to be "markedly

depressed."

2.6.2 Instantaneous Frequency

Instantaneous frequency was the "average" frequency that existed at a particular time.

It was calculated from the derivative of the phase of a signal, ωi=φ /(t). The

instantaneous frequency was also determined from the first conditional moment of the

Wigner distribution.

where 9'(t) is the derivative of the phase of the signal s(t)= A(t)e jφ(t). An algorithm
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Figure 2.8 Linear regression plot of systolic blood pressure vs. interbeat interval
during phase IV of the Valsalva maneuver.

was written to calculate the instantaneous frequency form the Wigner distribution (see

appendix C). The instantaneous frequency was calculated as a mean of extracting

information about autonomic function from the Wigner distribution.

2.6.3 Vagal tone and Symptho-vagal balance via Wigner Distribution

The IBI was calculated using a program written in S-Plus (appendix C). It was then

converted to an ASCII file that was loaded into Matlab. The very low frequency

components contained in a signal [17] were sometimes an artifact caused either by the

instruments used to acquire the signal or by such effects as movement. Those very

low frequency components smear the power spectrum of the signal at low frequencies,

and can smear the result of the processing. Therefore, the IBI was detrended using a
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lowpass Butterworth filter with a cutoff frequency of 0.03Hz. Using the algorithm

for the Wigner distribution the time-frequency analysis was performed. The area

under the bands designating the LF and HF components was calculated for all time.

See Appendix B and C for procedures and programs. The LF band corresponds to

0.05 to 0.15 Hz and the HF band corresponds to 0.15 to .040Hz. The symptho-vagal

balance was determined from the ratio of the LF to HF components.



CHAPTER 3

RESULTS AND DISCUSSIONS

The following section presents the progression of research conducted on time-

frequency analysis of biomedical signals. The first step was the verification of the

computer software written to perform the Wigner distribution through artificially

generated signals. After gaining an understanding of the parameters that affected the

time-frequency distribution the first biological signal was tested.

Electromyographic experiments conducted on muscular fatigue at Kessler

Institute for Rehabilitation provided data where the time-frequency nature of the signal

was understood. As a preliminary test run of time-frequency analysis the data were

tested and compared to the traditional time and frequency analysis used to quantify

muscular fatigue.

After successful application of the computer software and the interpretation of

the data from artificially generated signals and the electromyographic data our

research efforts focused on heart rate variability. An assortment of heart rate

variability data under various protocols was analyzed using time-frequency analysis.

These protocols included paced breathing, exercise, and the implementation of the

Valsalva maneuver. Observing significant qualitative differences in the measurement

of the autonomic nervous system using time-frequency analysis on heart rate

variability data prompted the development of techniques to quantify the results in a

clinically meaningful way.

41
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3.1 Computer Generated Signals

Two computer software programs utilizing time-frequency principles were tested. The

first program performs the Wigner distribution and the second derives instantaneous

frequency from the results of the Wigner distribution (see appendix C for computer

programs). The time-frequency concepts governing the Wigner distribution and the

instantaneous frequency have been discussed in chapter one.

Artificial signals were generated using Matlab which is an interactive software

package developed for scientific and engineering computation. It integrates numerical

analysis, matrix computation, signal processing and graphics. The computer program

for generating a single component sinusoid is included in appendix C. Time-

frequency representation of the sinusoid is displayed in figure 3.1a. The Wigner-

distribution revealed that the single component sinusoid was composed of one

frequency component that does not change throughout the file. The instantaneous

frequency (figure 3. ib) also revealed that as time progressed the frequency at each

instant of time was constant.

A more complicated artificial signal is the chirp. A "chirp" is a sinusoid

where the frequency increases linearly with time (see appendix C for computer

program to generate chirp). Figure 3.1c displays the results of the Wigner

distribution on the chirp. The distribution shows that as time progresses the frequency

content increases in a linear fashion. The instantaneous frequency of the chirp

indicates that the frequency increases as a function of time. (figure 3.1d).

The computer program written to calculate the Wigner Distribution forms a

matrix consisting of rows representing frequency and columns representing time.
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Every cell defined by a row (frequency) and column (time) containes the amplitude of

the frequency components present at that time Each index representing the rows and

columns may be translated to frequency in Hz and time in seconds. Manipulating the

translation factor decreased or increased the resolution of the time-frequency

distribution. The following two paragraphs will describe the methods used to convert

index numbers to time and frequency and the role Fourier transform size, skip size

and sample rate played in the process of time-frequency resolution.

Each column or time slice represented the frequency components present for a

given segment of the signal. The Wigner distribution performed this calculation at the

time of interest by multiplying a piece of the signal to the left with a piece on the

right. If the Fourier transform size was chosen then the first time slice would occur

at half the Fourier transform size in order to be able to multiply a piece of the signal

to the left with a piece on the right. For example , if the Fourier transform size was

512 then the first time slice would occur at point 256 of the original signal. The next

time slice was calculated by adding a number to point number 256. In the program

used to calculate the Wigner distribution this parameter was called "skip". A typical

number for skip in our applications was 25. For example, the second time slice

would then occur at point 281 of the original signal which was 256+25 and the third

at point 306 of the original signal which was 281+25. For each time slice the

Fourier transform size remains the same. The last time slice does not correspond to

the last point of the file but the point on the original signal that would allow

multiplication of a piece of the signal on the left with a piece on the right. The

number of time slices that may adequately be taken for a given Fourier transform size
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and skip size was

# of time slices = (# of original signal points - Fourier transform size)/skip.

The corresponding real time value for each time slice = {1/2* Fourier transform size

+ (time slice)*(skip size)}/sample rate. Division by the sample rate converted points

to seconds. For example, if we sampled data at 20 points/second with a Fourier

transform size of 512 and a skip of 25 and wanted to know what time in seconds the

third time slice corresponded to the calculation above would yield 16.6 seconds on

the original time signal. The time resolution therefore was determined by the number

of time slices calculated. By decreasing the skip size or the Fourier transform size the

number of time slices would be augmented resulting in increased time resolution.

The rows of the matrix resulting from the Wigner Distribution represented

frequency. Each row was in terms of an index number that was converted to

frequency in Hz. In order to convert the index number we multiplied the index

number by the ratio of the sample rate to the Fourier transfoiin size. This ratio was

called the "frequency resolution." By decreasing this ratio it was possible to increase

the frequency resolution. For example, a sample rate of 20 points per second and a

Fourier transform size of 512 yielded a frequency resolution of .039 Hz.

3.2 Electromyographic Signal

An electrode placed on the skin over the muscle fibers or within the muscle detects

the electromyogram (EMG) signal, which is a summation of the motor unit action

potential trains within its vicinity [29]. The electrical manifestation of the

neuromuscular activation associated with a contracting muscle is called the EMG
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signal [30]. The amplitude of the EMG signal changes depending on the amount of

muscle activity. Amplitudes vary from 50 microvolt to 1 millivolt, with frequencies

ranging from 10 Hz to 3000 Hz, depending on the type of electrode, the placement

of the electrode, and the activity of the muscle [31].

Two medical residents at Kessler Institute for Rehabilitation began a project to

determine if the power spectrum obtained from fine wire electrodes could be used as

an indication of muscle fatigue in the same manner that surface electrodes were used

[32]. Muscular fatigue implied that as a contraction was held the muscle was

weakening through time until failure (when the contraction can no longer be

maintained) occurred. Muscular fatigue was associated with the inability to maintain

the desired force output, muscular tremor, and localized pain [29]. The Fourier

transform of five seconds of EMG data from the biceps brachii showed the

distribution of energy versus frequency for the original signal. By squaring the

amplitude of the frequency spectrum, the power density spectrum (PDS) was produced

(figure 3.2a).

If the Fourier transform was applied to consecutive time sections of the

original EMG signal, multiple power density spectrums were produced. The power

density spectrum of the surface myoelectric signal compressed towards the lower

frequencies during sustained muscle contraction [33]. This compression towards

lower frequencies can be quantified. Many parameters values have been utilized, but

the median frequency was the most popular. The median frequency was the

frequency at which the area of the PDS was divided into two equal portions. The

median frequency decreased with time during sustained isometric contractions. The
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rate of decrease was higher when the contraction force was higher [29].

A method to apply time-frequency analysis to quantify the decrease of

frequencies to the lower end was attempted. The Wigner distribution was applied to

the entire EMG signal and the instantaneous frequency was derived (figure 3.2b).

The instantaneous frequency was the frequency that exists at a particular instant of

time. In order to compare median frequency with instantaneous frequency a least

squared line was fitted to the median frequency plot and the instantaneous frequency

plot. The slope of the least squared line fit for the median frequencies was -.15

Hz/sec and that for instantaneous frequency was -.1 Hz/sec. Only one file was tried

since the goal of the project was to see if time-frequency analysis could be used as

another method of quantifying the compression towards the lower frequencies during

isometric contraction. Future research on the utilization of instantaneous frequency

should shed light on its applications in the study of electromyographic signals.

3.3 Heart Rate Variability

The interpolated interbeat interval (IIBI) signal acquired from the ECG data revealed

information about the role the autonomic nervous system (ANS) played in regulating

the heart. The IIBI signal contained information about the spacing between

consecutive R to R peaks which was regulated by the ANS. As mentioned in chapter

one drug studies have shown that the areas under certain peaks of the Fourier

transform of the IIBI signal were related to autonomic function. The high frequency

range (0.15 to 0.40 Hz) was mediated by parasympathetic pathways, while the low

frequency range(0.06 to 0.15 Hz) was mediated by both parasympathetic and
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sympathetic pathways. Assessment of parasympathetic activity from spectrum analysis

was obtained via a measurement of the area under the high frequency peak.

Sympathetic activity was less easy to quantify using this methodology. A better

concept was that of "sympatho-vagal balance" which recognized both reciprocal and

non-reciprocal parasympathetic and sympathetic influences on heart rate with a further

measure, the LF:HF ratio.

The spectral analysis of IIBI signals at best described the average

parasympathetic activity or symptho-vagal balance. For situations where the ANS was

changing very rapidly such an analysis technique was not adequate. Time-frequency

analysis provided an improved way of looking at the information contained in an IIBI

signal. Instantaneous frequency derived from the Wigner distribution of the IIBI

could potentially extract information about the changes in the ANS. Variations in the

HF range and the ratio of the LF:HF as a function of time was revealed using time-

frequency analysis. The area under the time-frequency representation yielded the

vagal tone or sympatho-vagal balance for every instant of time for a given signal.

Besides serving as a qualitative tool in describing the influence of the ANS on the

heart, quantitative measures were obtained to serve as possible clinical measures of

ANS evaluation.

3.3.1 Detrending

The IIBI signals that were analyzed contained a very low frequency component (0-.03

Hz) due to baseline drift. As a result, the frequency ranges of interest were over

shadowed by this large component. In order to eliminate this and to observe the
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other frequencies that were present we utilized a digital lowpass filter. Infinite-

duration unit pulse response (IIR) filters caused phase shifts which result in a time

delay and transient responses at the beginning of the filtered data. This effect

caused the whole time series to be shifted and some points at both ends of the data

series were lost. Since our data series were time-locked during different trials, the

results after filtering needed to have the same time periods as before filtering. To

obtain a signal with precisely zero-phase distortion the data were filtered in the

forward direction and then the filtered sequence was reversed and run back through

the filter. Care was taken to minimize start up and ending transients by matching

initial conditions. Such processing was required to maintain the integrity of the time

signal after the low frequency component was removed.

3.3.2 Instantaneous Frequency of Paced Breathing

The first application of time-frequency analysis of heart rate variability involved the

calculation of instantaneous frequency from IIBI signals obtained during paced

breathing. Instantaneous frequency represented the frequency that was present at a

particular time. As a first attempt at developing tools to extract the information

hidden in an [MI signal the instantaneous frequency showed promise.

Five healthy subjects ( range 20-45 years) were paced at 8, 12 and 18 breaths

per minute. The Wigner distribution was applied to these IIBI files and the

instantaneous frequency calculated. Figure 3.3 represented the instantaneous

frequency of a subject during paced breathing. The instantaneous frequency varied

slightly at the various pacing frequencies; however, the mean rate was at the
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designated pacing. For example, the subject pacing at 8 breaths per minute (figure

3.3b) showed an instantaneous frequency hovering around 0.13 Hz. At the other

rates of breathing the same correlation may be attained.

The paced IIBI signals were chosen because they were simple and the results

easily interpretable. The analysis showed us that there were no errors in the

processing of the IIBI signals since the results of the instantaneous frequency

calculation correlated well with the breathing rates. The next step was then to apply

time-frequency analysis to more complicated signals.

3.3.3 Vagal Tone via Wigner Distribution During Exercise on a Kinetron

The three dimensional time-frequency representation of an NM signal described the

signal in time and frequency. However, extracting useful information from time-

frequency analysis was an art combining engineering and physiology. In chapter one

spectral analysis of IIBI signals was used to derive information on the activity of the

ANS. The area under the HF range (0.15 to 0.40 Hz) was used as a measure of the

functional state of the parasympathetic (PSMP) division. Time-frequency analysis

allowed us to obtain more information than spectral analysis about the ANS. Spectral

analysis only provided an average of the PSMP division for a given file. However,

time-frequency analysis provided instantaneous change of the PSMP division. Since

time-frequency analysis yielded the frequency components for each instant of time it is

possible to calculate the area under the HF range for each instant of time. As a

result, a measure of the activity of the PSMP was calculated for each instant of time.

Five subjects (range 20-45 years) were asked to exercise using the protocol for
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the Kinetron described in chapter two. Six two minute files containing IIBI data were

collected for each stage of the rest, exercise and recovery stages of the protocol. The

Wigner distribution was applied to each file. The instantaneous vagal tone was

calculated by determining the area under the HF range for each instant of time.

Figure 3.4 contains the typical result of a healthy individual. The mean vagal tone

decreased as the metabolic intensity (Mets) was increased. In figure 3.4b and 3.4c the

mean vagal tone drops from 500 V 2/Hz to 150 V2/Hz respectively as the metabolic

consumption of 0i/kg was increased from 2 times normal to 3 times normal. A

steady decline of parasympathetic activity was present as the consumption of 0 2/kg

was increased to 4 and 5 Mets (figure 3.4d and 3.4e respectively). After a two

minute file at 5 Mets was collected the subject was asked to keep pedaling as the next

file on the computer was prepared to acquire the transition from exercise to rest.

This file was called the recovery file. The mean vagal tone at 5 Mets was 25 V 2/Hz

and the mean vagal tone during recovery was 150 V 2/Hz. The mean increase

signified a return of the PSMP division to a resting state after exercise.

The change in the mean vagal tone derived from the Wigner distribution

during the protocol corresponded with the vagal tone obtained through spectral

analysis. However, time-frequency analysis allowed us to understand how the vagal

tone varied during the two minute file. Every file in figure 3.4 showed fluctuations of

the PSMP division during a particular stage of the protocol. These fluctuations

represented changes in the PSMP activity as a function of time. Such information

about the changes of the HF range were not available through spectral analysis.



Figure 3.4 Vagal tone during (a) Rest, (b) 2 Met, (c) 3 Met, (d) 4 Met
(e) 5 Met	 (t) Recovery
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3.3.4 Vagal Tone and Sympatho-Vagal Balance via Wigner Distribution
during Exercise on a Bicycle

The time-frequency vagal tone study during exercise on the kinetron brought about an

interesting question. Observing figure 3.4e and 3.4f the vagal tone increased

dramatically from the end of the 5 Met file to the beginning of the recovery file,

instead of a continuous change as would be expected. As a result, we believed that

crucial information was lost during the transition. This observation was present for all

subjects tested. In order to study the recovery utilizing time-frequency analysis a new -

protocol was designed using an exercise bicycle. The details of the protocol were

discussed in chapter two. The protocol consisted of acquiring data two minutes prior

to exercise (rest), six minutes of exercise at 70% of age predicted maximum heart rate

and two minutes following the halt of exercise (recovery). The IIBI signal was

acquired in a single file to prevent the loss of any information during the protocol.

The Wigner distribution was utilized to perform time-frequency analysis. The

vagal tone was obtained for the entire file by calculating the area under the HF range

for each instant of time. The symptho-vagal balance ( the ratio of the LF to HF

range) was also obtained. As mentioned earlier drug studies had indicated that the LF

range was a mixture of the activity of the sympathetic and parasympathetic divisions.

The ratio was an indication of both reciprocal and non-reciprocal parasympathetic and

sympathetic influences on the heart rate. Time-frequency analysis extended this

concept of symptho-vagal balance so that for a given file the instantaneous change of

this ratio may be calculated.

Ten subjects (range 19-53 years) were asked to perform the bicycle protocol

described in chapter two. The Wigner distribution was applied to the IIBI signal and
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the vagal tone and symptho-vagal balance calculated. Figure 3.5 displays the typical

response of a normal healthy individual to the protocol. Figure 3.5a displays a drop

of vagal tone as the subject initiated exercise at the two minute mark. During the six

minutes of exercise the vagal tone activity was suppressed. At the eight minute mark

the subject was asked to halt exercise and the vagal tone activity increased

dramatically to normal levels. The rapid change in the vagal tone described through

time-frequency analysis explained why there was such a drastic difference between the

end of the 5 Met file and the recovery file in the pilot study conducted using the

kinetron protocol. By the time the recovery file was prepared most initial changes

were missed.

Since the exercise protocol on the bicycle was similar to the flight or fight

response [34] we would expect a reciprocal relation to exist between the

parasympathetic and sympathetic systems. Figure 3.5b displays the activity of the

sympatho-vagal balance as a function of time. At the two minute mark where

exercise began the symptho-vagal balance increased. The increased activity was

maintained during the exercise session. When the subject was asked to halt exercise

at the eight minute mark the symptho-vagal balance decreased to rest conditions.

Observing the graphs in figure 3.5 it was evident that the reciprocal relations between

the parasympathetic and sympathetic influences on the heart was depicted using this

technique.

In all ten subjects the behavior of the vagal tone and symptho-vagal balance

were similar. The qualitative significance of the visual depiction of the ANS

warranted the design of techniques to quantify these changes. Several methods were
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attempted to quantify the data. The first involved calculating the mean vagal and

symptho-vagal balance for the three sections. These sections corresponded to rest,

exercise and recovery. The second method to quantify the data involved calculating

the area of the vagal tone and the symptho-vagal balance as a function of time for

rest, exercise, and recovery. The last method involved calculating the slope of the

transition from exercise to recovery. The results of these calculations for all ten

subjects are summarized in table 3.1.

The mean vagal tone for each subject decreased from rest to exercise and then

increased from exercise to recovery. The mean sympatho-vagal balance for each

subject described a reciprocal relationship between parasympathetic activity and

sympathetic activity. In all ten subjects the sympatho-vagal balance increased from a

rest to exercise and decreased from the exercise to recovery.

The area under the vagal tone and symptho-vagal balance curves derived from

the Wigner distribution depicted a similar relationship for all ten subjects. The vagal

area decreased from rest to exercise and increased from exercise to rest. The

sympatho-vagal area increased from rest to exercise and decreased from exercise to

rest.

The slope of vagal recovery differed for each individual. However, a

retrospective questionnaire inquiring the number of times an individual exercised per

week revealed an interesting pattern in the data. The subjects who responded as

having exercised at least three times a week had a slope of vagal recovery greater than

10 while those that did not had a slope below 10.
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Table 3.1 Quantitative Results from Time-Frequency Analysis of
Exercise Protocol on Bicycle

'object • ge	 "Mean Vagal (V7Fiz) - ea Vagal (V4 s)	 -Mean ympo-Vaga1
(V'/Hz)

CA 	 Sympo-vagat

(V's)

Mean
Heart Rate
(Beatsimtn)

Slope of Vagal
Recovery (V')

071994a 19 . 160
•est .84E3 600 .16 .10 56
xercise .05E3 .62 .50 134.5

I' ecovery 3.0E3 417 .24 .19 87
1071994a .57
I' est 583.6 08 .29 .21 89
I xercise 28.0 2 .47 .38 131
•ecovery 78.5 63 .40 .33 123

071594a f 3 1.7
•est 1.3E3 900 .18 .12 78.0
xercise .03E3 4 .55 .44 135.0

I' ecovery .024E3 0 .39 .31 121
G071994a 70
' est 2.5E3 1750 .14 .10 58
xercise .14E3 119 .57 .46 120

•ecovery .46E3 67 .18 .14 98
D 071994a 44
Rest 2.3E3 1667 .32 .23 51.3
Exercise .18E3 144 .64 .51 119.3
Recovery 1.06E3 833 .38 .30 68.0

072194b 30 10
Rest .37E3 158 .47 .33 67

xercise .075E3 61 •.48 .38 118
•ecovery 1.1E3 833 .30 	 - .24 96
1072194a 31 83

I' est 1.03E3 25 .45 .31 71
Exercise .04E3 36 .70 .56 126
•ecovery 1.3E3 1042 .25 .20 89

072594a 3
•est 4919 350 .55 .39 62
xercise 56.6 .70 .56 120

•ecovery 265.6 16 .30 .24 89
072594a 3 1.4

' est 892.7 633 .35 .25 .94
xercise 26.7 1 .45 .36 111

Recovery 71.2 57 .26 .20 104
'072294a 53 2
' CSC -608.0 33 .33 .24 64
Exercise 46.2 36 .73 .58 110
Recnvery 164 c 1 '11 40 - 161 94
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3.3.5 Time-Frequency Analysis of IIBI from the Valsalva Maneuver

The applications of time-frequency analysis up to this point dealt with signals from

healthy normal individuals. Such an approach was taken to facilitate the development

of the time-frequency processing techniques. Individuals with impaired ANS would

have complicated the interpretation of the time-frequency results and placed doubt on

the processing techniques. The confirmation of the results from time-frequency

analysis of IIBI from paced breathing and the two exercise protocols in healthy

individuals provided evidence that the proper signal processing techniques were being

used. The next step was the application of time-frequency analysis to subjects that

were impaired. In order to classify individuals with impaired ANS BRSI was

calculated. Time-frequency analysis was then applied to the IIBI obtained during

implementation of the Valsalva maneuver to categorize impaired ANS similar to the

manner in which BRSI was utilized to characterize the extent of damage to the ANS.

Figure 3.6 is the normal response of a healthy individual to the Valsalva

maneuver. During phase IV of the Valsalva maneuver the subject began to increase

systolic blood pressure rapidly from a low of 80 mmHg to a high of 155 mmHg. As

the heart rate began to decrease during continued release the IIBIs increased rapidly.

However, this was not the case with a stroke survivor. Figure 3.7 demonstrates the

response of a stroke survivor to the Valsalva maneuver. During phase IV the blood

pressure increased rapidly from a low of 80 mmHg to a high of 200mm Hg as in the

normal case but the IIBIs do not increase as rapidly. The heart rate takes longer to

slow down and the IIBI intervals do not begin to increase until some time later.

The visual distinction between the response of a healthy vs. stroke may be
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quantitatively measured via the BRSI index. A pilot study was conducted where 5

healthy control subjects (3 female, 2 male) , mean age 26.6 ± 9.04 years and 5 stroke

survivors (4 male, 1 female), mean age 53.0 ± 9.35 years were tested. The

quantitative results of the study are shown in table 3.2. The mean BRSI in control

subjects was 8.0 ms/mmHg and in stroke survivors, was 1.5 ms/mmHg. Using

analysis of variance (ANOVA), a significant group effect was observed (p =0.024).

All normal BRSI were above 3.0 ms/mmHg and all stroke survivors were below 3.0

ms/mmHg denoting clinically a depressed ANS.

Time-frequency analysis was applied to four stroke survivor (range 41-64

years) and four healthy individuals (range 40-55 years). The analysis began at the

highest IIBI value to measure the recovery of the ANS of normals vs. strokes. From

qualitative observations the vagal tone dropped in all cases after the highest IBI was

achieved. However, the time it took various individuals to return to homeostasis was

not the same. Various attempts were made to measure the drop of vagal tone from the

highest IIBI value. The difference between the initial vagal tone and the final was

calculated. A percentage drop was also determined and the slope of the vagal drop

was assessed using a least squared line fit. There also existed a delay before the vagal

tone began to drop. The length of this delay was also calculated. The results of these

calculation are presented in table 3.3.

The vagal drop, % vagal drop, slope of vagal drop and delay before vagal tone

drop between stroke survivors and normals did not show any patterns of difference

between the two populations. One possible reason could be that the subjects were not

age and sex matched resulting in the varied pattern obtained. A second reason could
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Table 3.2 Baroreceptor Reflex Sensitivity Index of Normal vs. Stroke Survivors

Normal Subjects

Ma11Subject Age/Sex (I\4/F) f 3/F 	 23/F 4/F 35/M
NMI=BRSI: Valsalva maneuver (ms/mmHg) ummusgi .41

Stroke Survivors

Subject Age/Sex (M/F) 3/F 	 WM 7/M 60/M 64/M
MillBRSI: Valsalva maneuver (ms/mmHg) 2=11.04 1.80 1.95

Table 3.3 Time-Frequency Analysis of Post Valsalva between Stroke and Normal

Subject Vagal Drop
(V2/Hz)

% Vagal Drop
•

Delay (s)

BV51126 293.3 78 41.5

H12.138 52 -2.33 27.8

G12228z 340 	 - - r6 -3.28 28.1

K050294a 557 80 -7.3 36.1

D050494a I.38E4 94 -200 21.55

H050494e 237 -3.8 16.5
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be that a large enough population was not tested to reveal any significant findings.

Further research is required in order to assess the usefulness of time-frequency

analysis of phase IV of the Valsalva maneuver as a predictive indicator of autonomic

function impairment.



CHAPTER 4

CONCLUSIONS

Spectral analysis of heart rate variability was used to provide estimates of the

sympathetic and parasympathetic influences without the use of drugs or invasive

procedures. However, there were many situations where heart rate changed rapidly

over time and the control of those changes by the autonomic nervous system (ANS)

was of considerable interest. Calculation of vagal tone and sympatho-vagal balance

from the time-frequency distribution described the changes of parasympathetic and

sympathetic influences on heart rate.

4.1 Vagal Tone and Sympatho-vagal Balance
via Wigner Distribution

The time-frequency distribution of an interpolated inter-beat-interval (IIBI) signal

attained during rapid changes of heart rate represented a complicated signal. For

example, figure 4.1 represents the Wigner distribution for the IIBI attained during

exercise at 3 Mets. The distribution contains a lot of information but the problem

arose in extracting the information in a clinically meaningful way.

Several methods were attempted to extract information from the Wigner

distribution. Two methods attempted were filtering techniques and calculation of

instantaneous frequency. Filtering the IIBI data removed a direct current (dc) trend

from the time-frequency distribution but did not yield clinically relevant

interpretations. Calculation of the instantaneous frequency of the IIBI from paced
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Figure 4.1 WD of IIBI attained during exercise at 3 Mets.

files showed a correlation between the respiratory rate and the frequency of the IIBI.

When applied to IIBI signals attained during complex protocols such as exercise the

instantaneous frequency did not correlate with any physiological interpretations.

Therefore, other methods were attempted to derive information from the Wigner

distribution.

The expansion of the concept of spectral calculation of vagal tone and

sympatho-vagal balance to time-frequency produced significant clinical findings.

Vagal tone is the assessment of parasympathetic activity from spectrum analysis by

measurement of the area under the high frequency peak. Time-frequency calculation
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of vagal-tone estimated how the parasympathetic activity varied as a function of time.

Similarly the smypatho-vagal balance recognized the reciprocal parasympathetic and

sympathetic influences on heart rate through the ratio of low frequency to high

frequency. Time-frequency calculation of the sympatho-vagal balance indicated how

this ratio changes as a function of time.

The calculation of vagal tone and sympatho-vagal balance via time-frequency

analysis provided information not obtained from spectral analysis. First, time-

frequency analysis described vagal tone and sympatho-vagal balance as a function of

time. Second, the slope of vagal tone and sympatho-vagal balance provided a means

of assessing autonomic integrity. Finally, time-frequency analysis of heart rate

variability indicated a means of assessing mental state. In rest files where the anxiety

level was low vagal tone increased (figure 4.2). However, in pre-Valsalva files where

the subject was anticipating the initiation of the Valsalva maneuver the vagal tone

decreased (figure 4.3).

4.2 Baroreceptor Reflex Sensitivity Index

Baroreceptor reflex sensitivity index was one method of categorizing patients

suspectable to cardiac complications. However, it should not be used as the sole

method of assessing patients prone to cardiac infarctions. With other measurements

such as heart rate variability (HRV) the two add strength to predicting a patient's

susceptibility to cardiac abnormalities.

A longitudinal study conducted on stroke patients indicated that they had a

fifty percent likelihood of suffering a heart attack [35,36]. During rehabilitation
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stroke patients may perform activities that are strenuous and in some cases lead to a

heart attack[37]. If there are non-invasive methods of assessing this, better care may

be taken in rehabilitating such patients who are at a greater risk. We looked at BRSI

as a means of categorizing stroke patients at risk for myocardial infarctions.

The pilot study on BRSI indicated that there was a drastic difference between

normal subjects and stroke survivors. The BRSI of those surviving a stroke was less

than the threshold for normal subjects. However, it must be stated that the study was

a pilot study and contained room for improvement. First of all the study was not age

and sex matched. In future research of BRSI age and sex matched individuals will be

tested. Second, a larger population should be tested. In our short study stroke

patients showed a depressed BRSI. As a predictive indicator of myocardial infarction

these subjects would be categorized as at a high risk for myocardial infarction. The

only way to verify this would be to conduct a longitudinal study where by BRSI

values were obtained over a longer time span. However, there will be stroke

survivors whose BRSI will not be lower than the threshold for depression. The only

way to verify predictability of the test would be to conduct a longitudinal study.

The implications for BRSI is wide spread. BRSI has been shown to be useful

in other patient populations such as diabetes[381. With a method of risk categorization

it is possible to tailor treatment to stroke patients. Individuals with a low BRSI may

be given medication and less strenuous exercise in order to help them increase BRSI.

BRSI is one measure of the autonomic nervous system and combined with others it

will serve as a strong clinical tool in the treatment of a stroke patient population.
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4.3 Future Work

The possibilities of risk categorization of individuals with possible cardiac

complications is a benefit to the patient and the physician.. The techniques and

methods have been designed to carry out the signal processing. The next step is the

designing of a protocol to answer question about the prediction of disease states or the

assessment of the severity of the disease process. Subjects will need to be recruited to

test the validity of BRSI.

An interesting observation from the data and the experimental setup was the

fact that time frequency analysis was utilized to assess metal anxiety. However,

without a properly designed protocol it will not be possible to verify these

observations.

The difficulty with time frequency analysis was the ability to pull out the

relevant information. The time-frequency distribution contained a lot of information

and knowing how to extract it from the three dimensional graph was important.

Looking at the three dimensional graph sometimes visually does not show anything.

However, with the calculation of slope ,means and areas it was possible to extract the

information .

The utilization of time-frequency analysis is vast. It may be used to study

electromyographic changes during various conditions or to assess ANS damage. A

future project may be the assessment of ANS damage in spinal cord injury patients.

Measuring ANS response during voiding may indicate the severity of the damage to

the urinary system. It is known how the autonomic nervous system operates during

voiding. Comparison of the rate of change of the vagal tone or amplitude of healthy
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subjects to spinal cord injured subjects may allow us categorize the severity of the

injury.

There are may distributions that can perform time frequency analysis[1]. Each

one has its own special properties. Depending on the nature of the signal some

distributions may yield better results than others. Application of these other

distributions to the fight or flight response files may be of interest. If there are other

distributions that will yield better resolution of time and frequency and less noise, it

might be advantageous to explore them.

BRSI may also be determined in the frequency domain[39]. This is another

technique to evaluate the baroreceptor reflex. It might be interesting to compare the

calculation of the time analysis technique to the frequency analysis technique. ECG

and blood pressure are required for the calculation of BRSI using the frequency

analysis technique. The data has already been acquired. What is required is the

development of the computer software to extract the necessary information from the

data.



APPENDIX A

PROCEDURE FOR CALCULATING
BARORECEPTOR REFLEX SENSITIVITY INDEX

1. R0371.FIN_PSLWSU(R0371)
pslwsu runs iws and creates an undecimated and decimated file.

2. plot(R0371[,3])
Plot entire raw file containing blood pressure in colum 3 to choose interval
containing phase IV of Valsalva.

3. plot (R0371[6000:7000,3],col=2)
Plot approximate region of phase IV of Valsalva. (col=color)

4. par(new=T)
Allows you to superimpose blood pressure and IBI.

5. plot(R0371.fin$ibiu[6000:7000])
plot same region of undecimated IBI data.

6. From superimpose plot locate index on x-axis where blood pressure and IBI
begin to increase together. (ie. blood pressure increasing while heart rate is
decreasing.)

7. plot(R0371[6500:6900,3],col=2)
plot specific region containing phase IV of Valsalva.

8. R0371.bp_bp(R0371[6500:6900,3],R0371.fin$ibiu[6500:6900])
Calculates the systolic blood pressure peaks of phase IV of the Valsalva and its
corresponding IBI values. A plot is generated with a least squared fit line with
blood pressure on the x-axis and IBI on the y-axis.

9. cor(R0371.bp$ppkv, R0371.bp$d)
Gives the correlation coefficient between systolic blood pressure peaks and
corresponding IBI.

10. R0371.bp$line
Gives slope and intercept of least squared fit line.

11. 	 BRSI= slope * 4.086*5
Converts slope index to ms/mmHg.
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APPENDIX B

PROCEDURE FOR PERFORMING TIME-FREQUENCY ANALYSIS

1. From the .fin file obtain the ibi file and convert to .asc inorder to load to
matlab. note: extension is not .asc but is still ASCII file.
write (jo62794.fm$ibi,file='j062794.ibit,ncol=1)

2. Load into matlab
load c:\users\larry\j062794.ibi

3. In order for the program to run the following changes in variable must be
made. note: this is for graphical labeling
rawdata=j062794';
top = '062794';

4. Run program
sympar

5.	 The following information will be useful in answering the questions the
program asks.(parts a and b are for the lowpass filter used for detrending)
a. Order of filter is usually 5.
b. Cutoff frequency is usually .03
c. Sample rate of data is usually 20
d. Range for LF range

i)Rest, 12& 18 bpm (.05-.15 Hz) for program enter index (1:4)
ii) 8 bpm (.05-.1 Hz) for program enter index (1:4)
iii) Exercise and Recovery (.05-.15 Hz) for program enter index (1:4)

e Range for HF range
i)Rest, 12 & 18 bpm (.15-.4 Hz) for program enter index (4:10)
ii) 8 bpm (.1-.4 Hz) for program enter index (4:10)
iii)Exercise & Recovery (.15-.8 Hz) for program enter index (4:20)

note: In order to calculate index values divide the desired frequency by
frequency resolution. Usually the frequency resolution is .0391 for an FFT of
512 and a sampling rate of 20. Index numbers are whole numbers so round.

6.	 After performing analysis on a file clear the matlab command window before
starting another. This is to prevent writing over existing variables.
clear.
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APPENDIX C

COMPUTER PROGRAMS

BP was written in S-Plus to ascertain systolic blood pressure from Finapres blood
pressure curve.

BP

function(x, y)
{

sm <- smooth(x)
ppk <- peaks(sm, span = 130)
ppkp <- grep(T, ppk)
ppkv <- sm[ppkp]
d <- YEPPkP1
plot(ppkv, d)
line <- (lsfit(ppkv, d))
abline(line)
y <- list(d = d, ppkp = ppkp, ppkv = ppkv, line

line)

}

The following programs were written in S-Plus to attain D31.

Ilt
function(x, sr = 1)
{

y <- NA
for(i in 1:length(x)) {

y <- c(y, rep(x[i], round(x[i]/sr)))

}

y < - y[2:length(y)]

}

PSLWSU
function(x)
f

jks <- x[, 2]
as <- grep(T, diff(jks) > 1000)
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ljs <- lsbp(x, aa)
'is

}

LSPB
function(x, x.pk, nt = 8192, ns = 6, decimate = 10, tooruff

= 0.8, f = 0.1, id = 10, sd = 10)

mruff <- max(abs(ruff(diff(x.pk))))
if(mruff > = tooruff)

print(paste("ibi's may be too ruff", tooruff,
sep = ""))

x.ecg <- x[, 2]
x. iu <- iibi(diff(x.pk))
x.i <- x.iu[seq(1, len(x.iu), decimate)]
x.sq <- sqdt(x.i, f = f, id, sd)
x.isp <- spect(x.i - x.sq, nt = nt, ns = ns)
x.rpd <- x[seq(1, len(x[, 1]), 10), 1]
x.riw <- lowess(1:len(x.rpd), x.rpd, f = 0.3, iter

= 2, delta = ceiling((length(x.rpd) * 0.3)/
8))$y

x.rsp <- spect(x.rpd - x.r1w, nt = nt, ns = ns)
z <- list(pk = x.pk, ibi = x.i, ibiu = x.iu, sq =

x.sq, rpd = x.rpd, riw = x.rlw, isp = x.isp,
rsp = x.rsp, ecg = x.ecg, )

z
}

The following program written in Matlab was utilized to perform time-frequency
analysis on UBI data.

SYMPAR
%Program calculates the Vagal tone and Sympo-vagal ratio.

order=input('Please enter the order of the lowpass filter. ');
freq=input(Tlease enter the cuttoff frequency for LPF. ');
sample=input('Please enter the sample rate of the data. ');
nfreq=freq/sample;
[poles,zeros] =butter(order,nfreq);
dtrend=filtfilt(poles,zeros,rawdata);
dtrendata=rawdata-dtrend;
[row,col] = size(dtrendata);
1=1:col;
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%This part is for testing Janse Kaiser Wiper calculatin algorithmwith
% no window
fs=1000;
k=(col-512)/25; 	 %the number of spectra we compute
m=512; 	 % The size of the fft we will be computing.
T=1/fs;

w =ones(size(1:m));
x=hilbert(dtrendata); % Forms the analytic funcion of x
L=m/2;
skip =25; 	 % Number of points we skip to get the next segment.
p=129; 	 %the number of freq vals we will be plotting
1=-(L-1):(L-1);
n=L;
for i=1:k

%Here I think 0 lag is at the Lth point, hence the first
% time location is at LT=128*.001 or .128 sec; hmmm.

g=x(n+1).*conj(x(n-I));
g(2*L)=0;
y=w.*g; % Apply window to g or kernal.

Y=2/m*abs(fft(y,512)); % evidently because it's analytic we only need 2/N
Z(:,i)=Y(1:p)';
n=n+skip;

end
%f=fs/(2*N)*(0:(N-1));
%plot(f,Y)
%Again it's strange. The fft has no mirror freqs because of analytic.
%But it looks like a perfectly good fft. I don't know what to say.
%It seems magic. Freq says 125 hz, amplitude says 1.
g =max(Z);
g=max(g);

Z1=Z;
clear Z;
Z=Z1(1:30,1:k);

LFC = input('Please enter the low frequency range in index numbers. ');
symvag=sum(Z(LFC,1:k));
HFC=input('Please enter the high frequency range in index numbers. ');
vagal = sura(Z(HFC , 1 : k));
synatopar=symvag./vagal;



%This is a file for determining the instantaneous frequency from the Wigner
%distribution.
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n=128;
skip=25;
[r,c]=size(Z);
for i=1:c;
W =Z(:,i);
Y=(1:r)';
M=W.*Y;
S=sum(M);
F=surn(W);
E(i)=S/F;
end

%The number of frequency values.

%Determines the size of the matrix created by wgjka4.m.
%Repeation based on number of columns.
%W is assigned the values of the column.

%Y represents the frequencies.

%Sum of the Wigner Distribution values.

% Plotting commands
subplot(3,1,1);
plot(I,rawdata,'r',I,dtrend,'g');
title(top);
xlabel('time')
ylabel('amplitude')

subplot(3 , 1,2);
plot(dtrendata);
title('D3I detrended');
xlabel('time');
ylabel('amplitude');

subplot(3,1,3);
plot(E);
xlabel('time');
ylabel('frequency');
title('Instantaneous frequency');

print

subplot(1,1,1);

subplot(2 ,1 , 1) ;
mesh(Z);
xlabel('time');
ylabel('frequency');
title(top);



subplot(2, 1 ,2) ;
contour(Z);
xlabel('time');
ylabel('frequency');
title('Contour plot of WD');

print

subplot(3 , 1 , 1) ;
plot(symvag);
gtext(top);
title(' Mixture of Sympathetic and Parasympathetic');
xlabel('time');
ylabel(lamplitude');

subplot(3 , 1 ,2) ;
plot(vagal);
title('Parasympathetic range');
xlabel('time');
ylabel('amplitude');

subplot(3 , 1 ,3);
plot(symtopar);
title(' Ratio of Low Frequency to High Frequency')
xlabel('time');
ylabel('amplitude');

print

Programs used to generated sine and chirp.

Sine
n=1:100;
x=sin(2*pi*10*n);

Chirp

n=1:100;
1=1:50;
x=sin(2*pi*1 .*n)
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