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ABSTRACT 

Computer Implementation of 
Mason's Rule and 

Software Development of Stochastic Petri Nets 

by 
Xiaoyong Zhao 

A symbolic performance analysis approach for discrete event systems can be 

formulated based on the integration of Petri nets and Moment Generating Function 

concepts [1-3]. The key steps in the method include modeling a system with arbitrary 

stochastic Petri nets (ASPN), generation of state machine Petri nets with transfer 

functions, derivation of equivalent transfer functions, and symbolic derivation of transfer 

functions to obtain the performance measures. Since Mason's rule can be used to 

effectively derive the closed-form transfer function, its computer implementation plays a 

very important role in automating the above procedure. This thesis develops the 

computer implementation of Mason's rule (CIMR). The algorithms and their complexity 

analysis are also given. Examples are used to illustrate CIMR method's application for 

performance evaluation of ASPN and linear control systems. Finally, suggestions for 

future software development of ASPN are made. 
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CHAPTER 1 

OBJECTIVES AND MOTIVATION 

This research work is motivated by the need in automating the moment generating 

function and Petri net based procedure for performance analysis of discrete event 

systems. Given a system in which an operation may take an arbitrarily distributed 

processing time, we can model this system as an arbitrary stochastic Petri net (ASPN). 

Then, the reachability graph is generated and transformed into a state machine Petri net 

with moment generating function included. The equivalent transfer functions are derived 

and performance measures are analyzed [1-3]. The method can result in a closed-form 

result for some classes of ASPNs. Since the transfer functions retain all the information 

of performance measures and thus often become very complex when the system state 

number grows, the human manipulation of this process becomes very difficult. The need 

arises to automate this process. One of the key steps is to use Mason's rule for derivation 

of an equivalent transfer function between the given nodes. Although the reduction 

methods can be used for some large and complex graphs, a computerized implementation 

of Mason's rule (CIMR) is more efficient and convenient. 

Mason's rule was invented in 50s for signal flow graphs. It has been used for 

analysis of circuits and control systems. The computer manipulation of the Mason's rule 

recently receives attention and similar work is reported in [10] in order to determine the 

symbolic transfer function of a linear system with a SPICE-like system description 

language. The work presented in this thesis differs from the previous work in the 

following aspects: 

1. Different motivations result in different system description environments; 

2. The algorithms are improved in this work and the applications are enhanced; 

3. The complexity analysis of the algorithms is conducted; 



4. CIMR is applied to develop new software for ASPN. 

The objectives of this thesis are to: 

1. Present an efficient method to implement a computerized solution of the Mason's 

rule including forward path search, loop search, and non-touching loop check, etc.; 

2. Provide the complexity analysis of the developed algorithms; 

3. Propose a Stochastic Petri Net Language (SPNL) that describes a State Machine 

Petri Net; 

4. Design and code a utility program (cimr) using C language to derive automatically 

an equivalent transfer function, which runs under UNIX; 

5. Illustrate the application of cimr for the performance evaluation of discrete event 

system; 

6. Illustrate the application of cimr for a complex net system in which it is very 

difficult to derive the transfer functions; 

7. Propose a scheme to develop a synthesis software tool for performance analysis 

and evaluation of ASPN via moment generating function. 
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CHAPTER 2 

INTRODUCTION TO PETRI NET AND 

METHODOLOGY 

Carl A. Petri developed a net-theoretic approach to model and analyze communication 

systems [6]. Petri nets have been proven to be useful tool for the modeling, performance 

evaluation and analysis of discrete event dynamic system [12-13]. Specifically, they are 

useful for modeling systems with the following characteristics: 

• Concurrency or parallelism: There are some systems, in which many 

operationstake place simultaneously. 

• Asynchronous operations: Machines complete their operations in variable 

amountsof time and so the model must maintain the ordering of the occurrence of 

events. 

• Deadlock: In this case, a state can be reached where none of the processes can 

continue. This can happen when two processes share two resources. The order by 

which these resources are used and released could produce a deadlock. 

• Conflict: This may occur when two or more processes require a common 

resource at the same time. For Example, two workstations might share a common 

transport system or might want access to the same database. 

• Event driven: The manufacturing system can be viewed as a sequence of discrete 

events. Since operations occur concurrently, the order of occurrence of events is not 

necessarily unique; it is one of many allowed by the system structure. 

These types of systems have been difficult to accurately model with differential 

equations and queueing theory. Petri nets can provide accurate models for the following 

reasons: 
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• Petri nets capture the precedence relations and structural interactions of concurrent 

and asynchronous events. 

• They are logical model derived from the knowledge of how the system works. As 

a result, they are easy to understand and their graphical nature is a good visual aid. 

• Deadlock, conflicts, and buffer sizes can be modeled easily and concisely. 

• Petri net models have a well developed mathematical foundation that allows a 

qualitative and quantitative analysis of the system. 

• Petri net models can also be used to implement real-time control systems for a 

automated manufacturing system. They can sequence and coordinate the subsystems 

as a programming logic controller does. 

2.1 Petri Net Structure and Graph 

A petri net is composed of a set of place P, a set of transition T, an input function 

I, an output function 0, and an initial marking mo. A graph structure is often used 

for illustration of Petri nets where a circle "0" represents a place and a bar "I" represents a 

transition. An arc with an arrow from a place to a transition defines the place to be an 

input to the transition. Similarly, an output place is indicated by an arc from a transition 

to the place. 

A formal definition used follows [3]: 

An ordinary Petri Net is a five-tuple (P, T, I, 0, m). 

P = {pi, p2, ... pr,}, n>0, and is a finite set of places; 

T = { ti, t2, ..., ts), s>0, is a finite set of transitions, PuT*0 and P n T = 0; 

I: P x T ---> N and is an input function that defines the set of directed arcs from P to 

T, where N={ 0, 1, 2, ...}; 

0: P x T —> N is an output function that defines the set of directed arcs from T to P; 
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m: P -4 N and is a marking whose ith component represents the number of tokens in 

the ith place. An initial marking is denoted by tno; 

The dynamic aspects of Petri net models are denoted by markings which are 

assignments of tokens to places of a Petri net. The execution of a Petri net is controlled 

by the number and distribution of tokens in the Petri Net. A transition is enabled if and 

only if each of its input places contains at least as many tokens as arcs exist from that 

place to the transition. When a transition is enabled, it may fire. When a transition fires, 

all enabling tokens are removed from its input places, and a token is deposited in each of 

its output places. 

The state of the Petri nets is defined by the marking. The change in state caused by 

firing a transition is defined by the next-state function. Given an initial state, the 

reachability set for the Petri net is the set of states that result from executing the Petri net. 

Both tree and graph have been used to represent the graph labeled with the present 

marking (i.e., the state) and the arcs represent transitions between states. 

Figure 2.1 shows a simple Petri net. Here, tokens reside in places, travel along 

arcs, and their flow through the net is regulated by the transitions. 

2.2 Behavioral Properties of Petri Nets 

2.2.1 Liveness 

A Petri net is live with respect to a marking, if for any marking in R (mo), it is possible to 

fire any transition in the net. Liveness guarantees the absence of deadlock. Thus if a 

transition is live, it is always possible to maneuver the Petri net from its current marking 

to a marking which would allow the transition to fire. 

2.2.2 Boundedness 

Boundedness is a generalization of safeness of a net with the situation that places can at 
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most hold a particular number of tokens. A place is k-bounded, if the number of tokens 

in that place cannot exceed an integer k, e.g., p is k-bounded if m(p) k, V me R (Z, 

mo). If V pe P, p is k-bounded, the Z is k-bounded. Since there are only a finite 

number of places in Petri net, we can find the k as the maximum of the bounds of each 



place and define a Petri net to be k-bounded if every place is k-bounded. In a 

manufacturing system, a bounded net implies that resource constraints have been met . 

2.2.3 Conservativeness 

A Petri net is conservative if, for any initial marking and a reachable marking ME R(mo), 

there exists an n x vector x, each of whose component is non-zero such that 

XTM = XTM0 

This says that the sum of the tokens weighted by x is constant. 

2.2.4 Reversibility 

A Petri net is resversible if for every me R(mo) then moe R(m ). Reversibility means that 

the initial mark is reachable from all reachable markings. This is important in a 

manufacturing system where failures occur and the system is able to be reinitialized. 

2.3 Stochastic Petri Nets (SPN) 

Stochastic Petri nets, evolved in late 1970's as Petri nets with exponential delay 

distributions. Important research work is referred to [18], [25-26], [27] and [28]. The 

researcher has contributed to theory, structural improvement, implementation and 

application of SPN in various fields as below. 

• Communication Systems 

Communication systems have a main feature of synchronization. Florin and Natkin 

[27] by using the existing isomorphism of Markov Process and SPN, has modeled 

synchronous network queues by SPN. They derived ergodic criterion and steady-

state solutions for the model. 

• Local Area Networks 
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E. Gressier [29] has shown modeling of Ethernet protocol by SPN. The results are 

based upon simulation. M. A. Marsan [26] has computed a performance model for 

Carrier Sense Multiple Access with Collision Detection protocol (CSMA) of a bus 

LAN. 

• Concurrent / Multiprocessor Systems 

Much work has been done recently in these areas. SPN modeling for multiprocessor 

systems [25], interprocess communication, distributed file systems and concurrent 

task synchronization has been shown [30]. 

• Manufacturing Systems 

SPN has also been used for modeling, design and control of manufacturing systems 

[1, 31, 32]. 

2.3.1 Timed Petri Nets (TPN) 

Time can be included in a Petri net model by associating time with the transitions, to form 

a timed transition Petri net (1-1'PN), or with the places, resulting in a timed place Petri net 

(TPPN). Both representations are equivalent [15]. 

In a TTPN, the firing of a transition takes a certain amount of time. Note that this 

time is fixed, which makes 'ITIINs deterministic. 

In a TPPN, a token enters a place and is unavailable for time di, after which it 

becomes available. In this net, only available tokens in a marking can enable a transition. 

During the unavailable period, another token may arrive in the place. A TPPN with all 

delays set zero reduces to an ordinary Petri net. 

The properties of Petri nets analyzed in the previous section can be applied to timed 

Petri nets by using the incidence matrix. An alternate approach attempts to cast these nets 

in a system-theoretic framework [16, 17]. A minimal algebra is applied to the Petri net 

models and concepts analogous to transfer function, input-output models, feedback, etc., 

are developed. The potential for this approach lies in its ability to build on analogies with 



traditional control theory concepts. Its is still to be proven that useful analogies exist and 

can be extended to systems that include shared resources. 

2.3.2 Definition of Stochastic Petri Net (SPN) 

Molloy has defined SPN as a Petri nets in which each transition firing delay is associated 

with an exponentially distributed random variable [18]. 

Stochastic Petri Nets (SPN) is defined as a six-tuple (P, T, I, 0, m, F) 

Where, 

P = {ph P2, ..., Pn}, n>0, is a finite set of place; 

T = { ti, t2, —, ts}, s>0, is a finite set of transitions, P L.)T*0 and P n T = 0.; 

I: P x T -4 N and is an input function that defines the set of directed arcs from P to 

T, where, N = {0, 1, 2, ...}; 

0: P x T ---> N is an output function that defines the set of directed arcs from P to T; 

m: P --> N is a marking whose ith component represents the number of tokens in the 

ith place. An initial marking is denoted by m0; 

F : T —4 R is a firing time delay function with an stochastic distribution function. 

2.3.3 Extensions to SPN 

Generalized stochastic Petri nets (GSPNs) [35-36] incorporate both timed transitions and 

immediate transitions. GSPNs permit the use of inhibitor arcs, priority functions, and 

random switches. These additional modeling capabilities follow the equivalence with 

Markov chains. The steady-state probabilities obtained from the Markov chain are used 

to compute the expected number of tokens in a place. Thus exact solutions can be 

derived by solving the equivalent Markov models; thereby deriving the performance 

measures. 

Marsan et al.[25] defined stochastic Petri nets where arbitrary distributed random 

firing delays can be associated to transitions. Zhou et a1.[3] call the nets arbitrary 



stochastic Petri nets (ASPN). An ASPN is a six-tuple Petri net (P, T, I, 0, m, 0 where 

f:T-->R is a firing delay function of arbitrary distributions [3]. ASPN extends above 

various kinds of Petri nets and allows various mechanisms such as inhibitor arcs, 

probability arcs, and priority firing. 

Moment generating function (MGF) [1, 3] based methods approach the performance 

analysis of SPN in a different way from the above methods which use Markov models. 

Instead of solving the resulting Markov models, MGF-based methods derive the MGF of 

interesting performance measures. For arbitrary stochastic Petri nets, where arbitrary 

distributions are incorporated into stochastic Petri nets, the method can be used to find a 

lower and an upper bound. Exact solutions can be obtained for those Petri nets where 

transitions with non-exponential distributions are converted into subnets in which each 

transition has a firing delay of exponential distribution by using the existing techniques 

[22, 34]. 

Other methods have been used for modeling and performance analysis of various 

DEDS, form example, Markov analysis, queuing networks, perturbation analysis, and 

discrete event simulation [24, 41, 39]. Compared with these methods, Petri nets have 

their unique features. The advantages of Petri nets include their ease of modeling, duo to 

their graphical representation, and their ability to model various event-driven system 

characteristics: concurrency, conflicts, non-determinism, and mutual exclusion. In 

addition, they are more compact models than Markov models. At the design stage, the 

use of Petri nets avoids the need to enumerate all states, which is often impossible in 

modern manufacturing systems. 

2.3.4 Transfer Function Analysis Method 

The evaluation and analysis of Stochastic Petri Nets is proposed to be done by using a 

methodology which is based on the concepts of Markov theory, control systems and 



symbolic computation methods. It is called the Moment Generating Function (MGF) or 

the Transfer Function approach. This technique has been recently formulated by Guo, 

DiCesare and Zhou [1]. The implementation of this technique involves five main steps: 

a) Reachability Graph Generation and Transformation to State Machine Petri 

Net 

It has been shown by Molloy and others [18], that the reachability graph of a 

bounded SPN is isomorphic to a finite Markov Chain. Using this theorem, each 

marking in the reachability graph of the underlying PN is considered as a place of a 

state machine Petri net. 

b) Computation of MGF and Transfer functions 

Each transitions of the transformed state machine Petri net is assigned a 

transfer function, which is the product of branch probability and moment generating 

function. The transfer function depends upon the firing distribution of the transition 

and number of markings directly reachable from the marking under consideration. 

c) Computation of Equivalent Transfer function 

The application of Mason's rule or net reduction techniques leads to 

computation of equivalent transfer functions of the net. The equivalent function is 

useful for study and evaluation of the net. 

d) Computation of Performance Parameters 

Finally, computation of various performance parameters of the SPN model is 

done by computing derivative of equivalent transfer functions. The implementation 

of this technique can provide important analytical parameters of the modeled system 

such as fault rate, conflict rate, deadlocks, production rate, cycle time and system 

throughput. 

The main advantages of this technique are: 



1) It does not require simulation of transition firing delays for generation of 

reachability graph. This technique utilizes the leachability graph of the 

underlying Petri and imparts the timing information while analysis of the graph. 

2) It identifies all possible system states by SPN execution and also indicates 

system parameters. 

3) It provides detection of conflicts and deadlocks in the modeled system, for 

example, resource allocation problem and buffer overflow problem. 

4) It implements net reduction techniques to reduce complexity of the net and 

ease its analysis. 

5) Computation of performance indices of the modeled system. For example, 

steady-state probabilities, system throughput, fault rate, etc. 

• Definition of Moment Generating Function (MGF) 

For a random variable t with probability density function f(t), its Moment generating 

function (MGF) is defined [38] as 

Discrete case 

M(s) = / est  f(t)dt 

Continuous case 

Ks) = I es, f(t)dt  

where s is an arbitrary parameter and f(t) is a probability density function of random 

variable t. The n-th derivatives of MGF generates n-th moments of the function. 

• Properties of MGF 

a) The k-th moments are computed as 



asE(t19 = N. M(s) I sd3 

b) According to the definition of the pdf as the summation of probabilities, the value 

of MGF at sr.l equals to unity. 

00 
M(0) = .1 f(t)dt =1 

MGF for Exponential Distributions 

The exponential probability density function is given as, 

f(t) =--X,e-xt, t..0 

The MGF is computed as 

M(s) = f Xe(s-X)t  dt = J Xe(s-x)t  dt 
-0 

M(s) = — 
X-s 

The moments are, 

E(t) = —
1 

and E(t2) = —
2 

x2 2 

• Transfer Functions 

The concept of transfer functions from control theory is applied in this analytical method. 

The procedure is that after obtaining the reachability graph, we transform it to a State-

Machine Petri net (SMPN) with single input-single output transitions. We define a 

transfer function for each transition in the transformed SMPN as the product of MGF and 

the branch probability of firing P(t) of a transition. Thus a transfer function W(s) can be 

written as 

W(s) = P(t) M(s) 



Transfer function depends upon the marking and distribution of concurrent 

transitions. If the state i leads only to state j, by firing ti and no other concurrent 

transition exists at that state, then branch probability is 1. In case when two transitions ti 

and t2 with exponential distributions li and 12  are enabled concurrently at a marking, then 

the transfer functions are 

Xi  
Wi — a,2 + ki-S 

X2  
W2- 

X2+ Xi-S 

2.4 Procedure for System Performance Evaluation 

The moment generating function based Petri net performance evaluation methodology for 

ASPN consists of five stages: ASPN modeling, generation of reachability graph, 

generation of state machine Petri net, derivation of the transfer functions, and evaluation 

of performance measures. 

a) ASPN Modeling 

Using Petri net design methodologies such as bottom-up [19], top-down [20-21], 

and hybrid approaches [44], we can synthesize an ordinary Petri net model for a system 

based on its operations and relationship among these operations. After we get such an 

ordinary Petri net, time requirements for various operations result in an ASPN model 

where every transition is associated with an appropriate time delay that is either constant 

or random. The execution policy should be built up into such ASPN models to reflect the 

operations of practical systems. 

b) Generation of Reachability Graph 



Using conventional approaches [14], we can automatically generate a reachability 

graph of a Petri net. Such a graph represents all reachable states and their relationship 

among these states. Firing of a transition often implies a change from a state to another. 

c) Generation of State Machine Petri Net 

A state machine Petri net is generated based on the derived reachability graph and 

information on firing delays of transitions. In fact this state machine Petri net is an ASPN 

with a particular structure, i.e., each transition has exactly one input place and one output 

place. A place in the net can have multiple input and output transitions. The place with 

more than one output transition is called a choice place. It should be noted that in this 

net, a transition, which may differ from the original transition, is attached with a time 

delay variable computed based on that of the original transition in the ASPN and its 

relationship with other transitions in the net. The MGF of the firing delay of each 

transition in this state machine Petri net is computed. For a choice place, its branch 

probability is also calculated. Then the transfer function of each transition is derived, 

which also depends on different execution policies. 

d) Derivation of Transfer Functions 

For the above state machine Petri net, the transfer functions of interesting indices can 

be derived based on stepwise reductions It is noted that Mason's formula can be directly 

used in such a reduction process. A sequence, choice, or loop structure can be found to 

be equivalent of a transfer function. 

e) Evaluation of Performance Measures 

To obtain the i-th moments, we simply take the i-th (i?..1) derivative of a transfer 

function of a performance index. Means and derivations of certain measure can be 

obtained. The analytical results may be obtained by inverting their transfer functions. 

The mean time to a deadlock state is found. For the system with a deadlock resources 

such as passage time, reoccurrence time, and cycle time can also be derived for discrete 

event dynamic systems [2]. 



CHAPTER 3 

MASON'S RULE 

A linear system can be represented as a signal-flow graph in which each node represent a 

variable. The linear dependence T1 between the independent variable xi and a dependent 

variable xi is given by Mason's loop rule [7]: 

Pijk Dijk  
T. — 

A 

where Pi* = k th path from variable xi to variable xi , 

A = determinant of the graph, 

= cofactor of the path P.. , 

and the summation is taken over all possible k paths from xi to xi . The cofactor NI, is 

the determinant with the loops touching the path removed. The determinant A is 

N M,Q 

A = 1— / Ln  + LniLq — LrL,Lt  + , 
n=1 

where Lq  equals the value of the qth loop transmittance. In other words, 

A =1 — ( sum of all different loop gains) 

+ ( sum of the gain products of all combinations of 2 non-touching 

loops) 

— ( sum of the gain products of all combinations of 3 non-touching 

loops) 

+ 

Two loops are non-touching if they do not have any common nodes. 



Consider the following system shown in Figure 3.1 It can be difficult to reduce by 

block diagram techniques [7]. The forward paths are 

P1 = G1G2G3G4G5G6 

P2 = G1G2G7G6 

P3 = G1G2G3G4G8 

The feedback loops are 

L1 = - G1G2G7G6H3, 

L2 = - G1G2G3G4G8H3. 

L3 = - G1G2G3G4G5G6H3, 

L4 = - G7H2G2, 

L5 = - G2G3G4G5G2, 

L6 = - G4H4, 

L7  = - G8H1, 

L8 = - G5G6H1, 

Figure 3.1. Multiple-loop system 

Loop L5 does not touch loop L4 and loop L7 ; loop L3 dose not touch loop La; and all 

other loops are touched with each other. Therefore the determinant is 

A = 1 — ( Li + Ii2  + L3  + L4  + L5 + L6  + L7  + L8  )+( L6L1 + L6L4 + L7L4 ) 

The cofactors are 

Ai = A3 = 1 and 02= 1- L6 = 1 + G4H4 - 



Finally, the transfer function is then 

T
C(s) Pi + P2A2 + P3  

— R(s) A 

From this example, one can conclude usefulness of the Mason's rule. On the other 

hand, one may recognize the complexity of paths and loops search and their non-touching 

loop check when the system becomes complicated. This partially motivates the computer 

manipulation of the Mason's rule. 



CHAPTER 4 

DATA STRUCTURES AND ALGORITHMS 

This chapter discusses two representations of a directed graph and two travel algorithms, 

Depth-First Searching (DFS) and Breadth-First Searching (BSF)[9]. The 

combination of DFS and BSF in the directed graph are used to search all the loops and 

forward paths. Then algorithms for check of k-non-touching loops and the loops 

touching a forward path are derived. 

4.1 Representation for Directed Graphs 

A directed graph G consists of a set of vertices V and a set of arcs E. The vertices are 

also called nodes; the arcs could be called directed edges. One common representation 

for a digraph G=(V, E) is the adjacency matrix (Figure 4.1), where V=(1, 2, ... n) 

and E=(1, 2, ... e}. Its storage space is S2(n2). Its search time is 0(n2) [9]. 

(a) Representation of adjacency matrix (b) A directed graph 

Figure 4.1 A directed graph 



Another common representation for a directed graph G = (E, V) is called the adjacency 

list (Figure 4.2). Its storage space is fl(n+e), where e is the number of edges. Its 

search time is O(n+e) [9]. This representation will be used in our implementation. 

Figure 4.2 Adjacent list for a directed graph 

4.2 DFS and BFS Algorithms 

4.2.1 Depth-First Searching (DFS) 

Breadth-First Searching is to visit all nodes of a graph. Suppose we have a directed 

graph G in which all nodes are initially marked unvisited. Depth-First Searching works 

by selecting one node v of G as a start node; v is marked visited. Then each unvisited 

node adjacent to v is searched in turn, using depth-first search recursively. Once all 

nodes that can be reached from v have been visited, the search of v is complete. If some 

nodes remain unvisited, we select an unvisited node as a new start node. We repeat this 

process until all nodes of G have been visited. This algorithm has the complexity 0(e) 

[9]. 



4.2.2 Breadth-First Searching (BFS) 

In order to visit all node of a graph, Breadth-First Searching visits all nodes that are 

distance 1 form source at first, then visit all nodes that are distance 2 form source, and so 

on. We will use queue Q to put source into Q while it is not empty. The algorithm has the 

same complexity as DFS. 

4.3 Data Structures and Graph Declarations 

We define a link list structure to represent a given directed graph during the 

implementation of the Mason's rule as follows: 

Structure 1: store net node information for a given net graph 

struct list node _ 

I 

struct list_node *next; 

int id; 

double weighted 

int node_type; 

int input_arc_number; 

int in_p[MAX_INPUT_PLACE_NUMBER]; 

int out_p[MAX_OUTPUT_PLACE_NUMBER]; 

int visited flag; 

I 

struct list_node *place[MAX_NODE_NUMBER]; 

where 

id: the identification number of the place; 

weighted: a weight of directed graph, it refers to the transfer function in Petri net 

application 
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node_type: the type of place, it declares a place of SOURCE(input), 

DESTINATION(output), MULTI INPUT, or SINGLE_INPUT; 

input: the number of input arcs of the place; 

in p[ ]: the id of input place; 

out p[ ]: the id of output place; 

visited flag: a check flag( initially 0) for searching forward paths and loops. 

Structure 2: store the searching queue information during searching of loops and 

forward paths. 

struct searching_queue 

I 

int queue_no; 

int p_queue_no; 

int n_queue_no; 

int place[MAX_PLACE_NUMBER]; 

} 

struct searching_queue queue[MAX_QUEUE_NUMBER]; 

where 

queue_no: the number of current searching queue; 

p_queue_no: the number of previous queue; 

n_queue_no: the net queue numbers expanded from current queue. 

place[ ]: the place numbers of searched places. 

Declaration 1: A SOURCE denotes an original input place. 

Declaration 2: A DESTINATION denotes an output place. 

Declaration 3: A SINGLE_INPUT denotes a place that has only an input 

arc. 
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Declaration 4: A MULTI INPUT denotes a place that has multiple-input 

arcs. 

4.4 Loop Searching 

A loop or cycle in a direct graph is a path of non-zero length whose endpoint coincides 

with its source. A loop is a sequence of vertices vo,vi, ... ,vn, n>1 such that vi=vi, 

l_i<sjri, implies that i=1 and j=n. Given a graph G=(V, E), we wish to determine 

whether there are loops. The DEF algorithm can be used to solve this problem. If a back 

arc is encountered during a depth-first search of G, then clearly the graph has a loop. 

Conversely, if directed graph has a loop, then a back arc will always be encountered in 

any depth-first search of the graph. The combination of DFS and BFS algorithms is then 

applied to find all the loops. 

Algorithm 1 (Loop Searching): 

Step 1: Invoke the initialized net subroutine: 

place[iHout_pf ]=the id whose node i has an output arc into a node; 

place[i]--->int_p[ ]=the id whose node i has an input arc from a node; 

Determine place[i]—*node_type; 

Determine place[i]—)input; 

place[i]--wisited_flag; 

Step 2: If there no MULTI_INPUT place exists, then there doesn't exist 

loop(s) and the searching is done; 

Else store all the MULTI_INPUT places in loop[]. The number of 

MULTI NPUT place is S, and i=1; 

Step 3: If i>S, then the searching is done; 

Step 4: Start from the MULTI_INPUT place loop[i], 
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Set current queue to 1(c_queue=1); Put the number of loop[i] in the 

place[] array of queue 1, n_queue_no=1, and visited_flag =1; 

Step 5: If n_queue_no of queue 1 is equal to 0, then all adjacent out place of 

loop[i] has already been searched, i=i+1, goto Step 3; 

Step 6: Search adjacent out place of loop[i]: 

If there is only one adjacent out places, store this place number in the 

place!) of c_queue. The visited_flag of this adjacent output place is 

incremented by 1; 

If there are N (N>1) adjacent out place, we expand N queues. Put i 

the number of each adjacent out place in the place[] array of each 

expanded queue. For every expanded queue, p_queue_no=c_queue, 

n_queue_no=1, and visited_flag is incremented by 1. 

The n_queue_no of c_queue is set N, then c_queue=c_queue+N. 

Step 7: Check if the adjacent out place of current queue (c_queue) has been 

searched or not ( visited_flag > 1 ?); 

If yes, then check if this adjacent out place is the same as the starting 

MULTI_INPUT place or not? 

If yes, then we have a loop and store these numbers of places 

of this loop in array loops[][]. For current queue, n_queueno 

is decreased by 1, goto Step 10; 

Else this adjacent out place has been searched already. 

Therefore the n_queue_no of this current queue is decreased 

by 1. Goto Step 10; 

Else (visited_flag < 1) n_queue_no of c_queue is decreased by 1; 

Step 8: Check if the adjacent output place of current queue is a 

DESTINATION place or not? 



If yes, then the n_queue_no of current queue is decreased by 1, goto 

Step 10; 

Step 9: Check if the adjacent output place of current queue is an already 

searched MULTI_INPUT place or not? 

If not, goto Step 5; 

Else, the n_queue_no of current queue is decreased by 1; 

Step 10: Check if the n_queue_no of current queue is zero or not? 

If yes, we abandon this current queue. The n_queue_no of 

p_queue_no of this current queue must be decrement by 1. and 

visited_flag is also decreased by 1 for every place of this current 

queue; c_queue is decreased by 1; If c_queue=0 goto Step 5; Else 

goto Step 10; Else If c_queue=0 goto Step 5; Else goto Step 7. 

4.5 Forward Path Searching 

A path in a graph is a sequence of vertices v0, vi, ,v„, with n 1, such that 3 an arc 

vi,i) for i 5. n-1, and vi=vi implies that i=j, 051, j5.n. The vertex vo is the source of 

the path and vk  its endpoint; the n+1 is the length of the path. 

The searching for forward paths starts from a given SOURCE_INPUT place to a 

given DESTINATION place. First of all, we visit all the adjacent places, and check to see 

if they are a DESTINATION place. We get a forward path if so. Otherwise, we check to 

see if it has already been searched. If it has already been searched, then this path is not a 

simple path, which implies that this is not a forward path. Therefore we abandon this 

path and choose another adjacent place and repeat the above procedures. This process 

will continue until all the adjacent places are processed. 
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Algorithm 2 (Forward Path Searching): 

Step 1: Invoke initialized net subroutine: 

initial queue, visited_flag and current queue; 

Step 2: Start to search from the SOURCE_INPUT place. Put the number of 

SOURCE place into the place[] array in which queue number is 1, t 

he p_queue_no is set to 0 and n_queue_no is set to 1, and the 

visited_flag of this SOURECE_INPUT place is increased by 1, and 

c_queue=1; 

Step 3: If n_queue_no of c_queue is equal to 0, then the searching is done. 

Step 4: Find all adjacent place of c_queue: 

If there exists only one adjacent out place, then put this place number 

into the place[] array of c_queue and n_queue_no of c_queue is set to 

1. The visited_flag of this adjacent output place is increased by 1; 

If there are N adjacent output place numbers stored in every place[] 

array of each new queue. Every n_queue_no of these N queues is set 

to c_queue+N; n_queue_no is set to 1; ans p_queue_no is set to 

c_queue. Further, every visited_flag of these N (N>1) adjacent 

output places is increased by 1. The n_queue_no of current queue is 

set to N, and then c_queue=c_queue+N; 

Step 5: Check if the place in c_queue or the N adjacent output place are a 

DESTINATION place or not? 

If yes, a forward path is obtained. Store this forward path in 

f paths[][]. The n_queue_no of current queue is decreased by 1. Goto 

Step 7. 

Step 6: Check if the visited_flag of these adjacent output place are greater than 

1 or not? 
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If not, goto Step 3; 

Else, this adjacent output place has already been searched. Therefore 

the n_queue_no of current queue is decreased by 1. 

Step 7: Check if the n_queue_no of current queue is equal to zero or not? 

If not, goto Step 6; 

Else, if c_queue is equal to 1, the searching is done. 

Else we abandon this c_queue, and the n_queue_no of 

p_queue_no of current queue is decreased by 1. Every 

visited_flag of this place of current queue is decreased by 1, 

c_queue=c_queue-1. Then goto Step 7. 

4.6 Check Non-touching Loops 

Assume we have got n loops by Algorithm 1, and they are stored in array loops[][], A 

method is, at first, to determine a vector set of combinations of comparing for the non-

touching loops. The combinations of k nontouching loops are given by 

n!  
(n-k )! k! (2_.k..n) 

Then we can check whether each combination of k loops are touching. This algorithm is 

derived as follows. 

Algorithm 3 (Check Non-touching Loops): 

/* Assume c is the index for loop i. n is the number of total loops. k is the number 

of loops to be compared for the non-touching case. k>=2. */ 

C[0] = -1; 
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for (i=1; i<=K; i++) C[i] = i;  

j = 1; 

while (j!=0 ) 

{ 

for (i=1; i<=k i++) output_comb_index(C[i]); 

check_nontouchingloops(k); 

j = K; 

while (C[i] = n-k+j) j--; 

C[j]++; 

for (i=j+1; i<=K; i++) C[i] = C[i-l] +1; 

} 

4.7 Check the Loops Touching Each Forward Path 

In order to get Ak in Mason' formula, we need to find those loops which touch the ith 

forward path. If a loop Li (0<i5.m, m is the number of loops) touches the kth forward 

path (Pk), then we have Li = 0 in A to obtain Ak. The algorithm for checking loops of 

touching path Pk  is below: 

Algorithm 4 (Check the Loops Touching Each Forward Path): 

for ( pi=1; pi<=total_path+number; pi++ ) 

{ j=0; 

for ( 11=1; li<=total_loop_number; li++ ) 

{ pj=0; 

while ( paths[li][++1j] !=0 ) 

{ 1j=0; 



while ( loops Eli] [++1i] !=0 ) 

if ( paths [pi] [pj] —loops [li] [1j] ) 

loop_of_touching_path [pi] [++j] =li; 

goto 

A: 

4.8 Complexity Analysis of the Algorithms and the Program 

The complexity of these four algorithms can be analyzed as follows. For Algorithm 1, 

Step 1 has the complexity of O(MN) where M is the maximum number of the loops, and 

N is the maximum number of nodes, both predefined in the program. Step 2 takes 0(n) 

where n is the number of nodes in the net; Step 3 takes 0(1); Step 4 takes O(MN). Step 

5 consists of assignment statements (i.e., 0(1)). Since in the worst case, the 'goto step 5' 

statement in Step 10 will be executed up to S time, we consider the complexity of Step 5 

is 0(S*1) (S is the maximum number which current queue is equal to 0); Step 6 takes 

0(na) where na  is the total number of output arcs in a node, which is less than the node 

number, i.e., n; Step 7 takes 0(Mqc*j*r) (where, j is the count number for searching a 

valid loop queue, r is the number of adjacent output places in a current queue, Mge  is the 

maximum number which the current queue is not equal to 0, and in the worst case the 

"goto step T' statement in the step 10 will be executed up to Mqc  time). Note that j<m, the 

number of loops, and r<n. Step 8 has complexity 0(1); Step 9 takes O(nb) where nb (<n) 

is the total number of the MULTI_INPUT place in the net; and Step 10 takes O(Mqc*r). 

Therefore, the overall complexity of Algorithm 1 is 0(MAX(MN, Mge  *j*r)). 



Similar analysis can be conducted for the other three algorithms. Algorithm 2 has the 

same complexity as Algorithm 1, i.e., O( MAX(MN, Mqr,*j*r)), O(an) for algorithm 3 

(when it is invoked until k=n time), where a is the cost of check_nontouching_loops(k)(It 

is O(i2*k)), and O(m2n2) for Algorithm 4. 

Based above analysis, Algorithm 3 has the exponential growth with the number of 

loops. Therefore, the program will have a larger cost on the time when solving Mason's 

rule. When n grows large, the computer resources will be used up and thus this is not 

applicable for a very large system if we do not select an optimal algorithm to implement 

the checking non-touching loops. 

Since Algorithm 3 has a larger amount of time cost (i.e., exponential growth), we 

present a procedure (Algorithm 5) for the chech_nontouching_loops(k) function to 

reduce the cost of the program in Algorithm 3 as follows: 

Algorithm 5 (Reduce time cost when checking non-touching loops): 

Step 1: Obtain the combinations for k=2; 

Step 2: If all the combinations of k=2 are the non-touching loops, then all the 

combinations of 35_11 are also non-touching loops (so that it is not 

necessary to continue to check the combinations of 3.5_n), and 

searching is done; 

Step 3: If all the combinations of k=2 are touching loops, there are not any 

non-touching loops, and searching is done; 

Step 4: If there are C nontouching combinations (C3) for all the 

combinations of k=2, we continue to check that if there are any 

combinations of the non-touching loops for k=3, ..., (n-1), (i.e., 

invoke chech_nontouching_loops(k) function for k=3, ..., (n-1). 



Similarly, we can derive the wost-cast complexity of algorithm 5 has the exponential 

growth (0(bn)). But, if the program invokes algorithm 5 instead of algorithm 3, its cost 

of checking non-touching loops will be greatly reduced. Thus, this result implies our 

scheme can be available for a more complicated net for the solution of Mason's rule. 



CHAPTER 5 

DESIGN SPECIFICATIONS OF CIMR 

5.1 Development Environment of CIMR 

The cimr is developed in UNIX using C language. UNIX provides us a very good 

programming environment. It can run on a range of computers from microprocessors to 

the largest mainframes. It is a good operating system, especially for programmers. C is 

a modern programming language and provides a fairly complete set of facilities for 

dealing with a wide variety of applications. C has all the useful data types, operators, 

control structures and a standard run-time library that includes useful functions for 

input/output, storage allocation, string manipulation, and other purposes. C programs 

are efficient and are generally quite portable across different computer hardware. The 

design of C also makes it natural to use top-down planning, structured and modular 

programming. 

A utility program 'cimr' runs under UNIX shell, cimr can process an input file 

while describes a state machine Petri net written by State Machine Petri Net Language 

(SMPNL), and creates an output file to describe transfer functions. The cimr also 

inspects the grammars of input file and create an error information list file. 

5.2 Modules of CIMR 

The functions of cimr are described as follows: 

main(argc, argv): the main model of the program; 

read input_file(): process input file of SMPNL; 

initial(): build the adjacency matrix and adjacency list 

queue for a net; 

print matrix(): output the matrix elements; 



build adj_list(): build adjacency list queue; 

initial_place_info field(): initialize the information fields of structure 1 in 

section 4.3; 

initial grow(): initialize the information fields of structure 2 in 

section 4.3; 

initial visited, flag(): initialize the check flag unit for searching 

forward paths and loops; 

find self loops(): search all loops for a net; 

check same loops(): check if there are any same loops; _ _ 

find_forwardpaths(): search all forward paths for a net; 

combination(n_loop, k): determine k loops (k=2, ... n) combinations to 

check that these loops which are touching or 

not; 

check nontouching_loops(): check non-touching loops for a net; 

output_nontouching_loops(): output all non-touching loops to an output file 

and CRT; 

loops_of touching_path(): find all loops which touch any paths in a net; 

appli masonjormulau: solve Mason's formula; 

calculate delta(): solve the determinant of the graph of a net; 

calculate delta i(): solve the cofactor of the path of a net. 



CHAPTER 6 

APPLICATION EXAMPLES OF CIMR 

6.1 An Example of Performance Analysis of SPN 

An application example is used to show application of Mason's rule to performance 

analysis of flexible manufacturing system (FMS). FMS is a system with automated 

machines, interconnected by automated material handling. The design, operation and 

control of these systems have to take into account numerous interactions occurring 

between concurrent and nondeterministic activities. The system is categorized as a 

discrete-event dynamic system. In these systems, the important performance parameters 

are machine utilizations, production rates, average queue size and waiting times. 

Figure 6.1 A flexible manufacturing system 

Figure 6.1 [3] is consider as a FMS, which has two work-states (WS1 and WS2) 

and two robots (R1 and R2). The workstations do identical job, which is, assembly of 



parts with the help of both robots. We assume that each workstation acquires its right 

robot first and then the robot on its left, to assemble the parts. 

Now, let's derive transfer functions by using CIMR method for performance 

evaluation of this system. 

Figure 6.2 is an ASPN model for the system and its reachability graph. Firing of 

transition t1 and t5 leads to a system deadlock. The dash arcs and transition t is for the 

resolution of the deadlock. The deadlock rate can be found with the moment generating 

function based method. 

Figure 6.2 (a) An ASPN model 



Figure 6.2 (b) The reachability graph of the ASPN in (a) 

Figure 6.2 A Petri net model and its reachability graph 

Time delays of transitions ti, t2, t3, t5, t6 and t7 are exponentially distributed random 

variables, and the firing times of transitions t4, t8, and t are constants: cl, c2 and c3. The 

state machine Petri net (Figure 6.3) of the system is given from its reachability graph 

and assume the transfer functions of the each transition are derived as Wi (i = 1...11) 

[3]. 



Figure 6.3 The state machine Petri net 

In order to derive the deadlock rate, let the SOURCE place be Mo and the 

DESTINATION place M0' as shown in Figure 6.4. In order to apply the Mason's 

rule, we map a state machine Petri net into a directed graph with weight of Wi (Figure 

6.5). 

Figure 6.4 A net for deadlock rate by Source-Sink Solution 



Figure 6.5 A mapped directed graph for the deadlock rate 

The structures and information fields for the graph in Figure 6.5 are given in Table 1. 

Table 6.1. Node structures and information fields for Figure 6.5 

place[01 Placci11 ,lac[2] p1ace131 04644) *GO/ P1ice(61 *cern placeitil Placc[0.  I 

id 0 1 2 3 4 5 6 7 8 9 

mdc_typ, SOURCE MULTI SINGLE SINGLE SINGLE SINGLE SINGLE SINGLE MULTI SINGLE 

mptit 0 2 1 1 1 1 1 1 2 1 

In_Pii 
in_p[0]=4 
in_p(1)=7 

m_p[0]=1 mp(01=2 
In-P{0]=3 m_p[0]=1 in_p[0]..5 in_p[0]=5 

mp[0]=2 

m. _pil]=5 
ni_p(01=8 

out_pn amp[ 0]= 1 cut-Pf W2 
we l)= 5 

a' p[W 3 

auk11 8 
out_p( 01= 4 out_p( 0 1 66I-Pi °j=  6 

as 1 8 
0]= 7 out_r1 0 1 out -Pi 0)4 

voiled_f 0 0 0 0 0 0 0 0 0 0 

The transfer function form input Mo to output M0' for the deadlock rate is derived by 

our computer algorithms for Mason's rule. 

/*****************************************************************/ 

/* filename: exl.i */ 

/* */ 



/* This is an input file by using SMPN language. It describes */ 

/* a State Machine Petri Net for Mason's rule application. After */ 

/* running command 'cimr filename.i[return]', you can get an */ 

/* output file(filename.o), which records some useful information*/ 

/* of transfer function for performance analysis of a net. 

/* Any text errors will reported to an output file(filename.e) 

/* after compiling. 

/* 

/*****************************************************************/ 

net=9; /* the total place numbers of the net place */ 

input=1; /* determine the id of an input place */ 

output=9; /* determine the id of an output place */ 

/* Determine the parameters of the State Machine Petri Net 

/* node=(ptrl,ptr2,ptr3), where, 'ptrl' refers to id of input 

/* place, 'ptr2' refers to id of output place, and 'ptr3' 

/* refers to the index of transfer function variables. 

node=(1,2,1); 

node=(1,5,2); 

node=(2,3,3); 

node=(2,8,4); 

node=(3,4,7); 

node=(4,9,8); 

node=(5,6,6); 

node=(5,8,5); 

node=(6,7,9); 

node=(7,1,10); 

node=(8,1,11); 

Figure 6.6 An input file of state machine Petri net 

A description language of State Machine Petri Net is written as an input file of net 

(Figure 6.6). Use running command 'cimr' under UNIX shell environment blow: 

$cimr filename 
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After running the above command we can obtain an output file (filename.o) which 

presents all solutions related to evaluation of the Mason's rule for a net (Figure 6.7). 

Output file: exl.o 

The adjacncy matrix(9x9): 

0 1 0 0 2 0 0 0 0 

0 0 3 0 0 0 0 4 0 

0 0 0 7 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 

0 0 0 0 0 6 0 5 0 

0 0 0 0 0 0 9 0 0 

10 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 11 

0 0 0 0 0 0 0 0 0 

* The elements which are not equal to zero in the matrix refer to the 

index of the transfer function (Wi). 

Adjacency List Queue: 

(1)--> w1(2)--> w2(5) 

(2)--> w3(3)--> w4(8) 

(3)--> w7(4) 

(4)--> w8(1) 

(5)--> w6(6)--> w5(8) 

(6)--> w9(7) 

(7)--> w10(1) 

(8)--> w11(9) 

(9) 

* Wi refers to the transfer function. 

Loop(s): 

Ll: (1)->(5)->(6)->(7)->(i) 

(W2 W6 W9 W10 ) 

L2: (1)->(2)->(3)->(4)->(1) 

(W1 W3 W7 W8 ) 



The forward path(s) from node 1 to node 9: 

P1: (1)->(5)->(8)->(9) 

(W2 W5 Wll ) 

P2: (1)->(2)->(8)->(9) 

(W1 W4 Wll ) 

Combinations for checking nontouching loops: 

k=2: 

Non-touching_loops: 

Loops touching forward path: 

Loops of touching path P1: Ll L2 

Loops of touching path P2: Ll L2 

SOLUTION OF MASON'S RULE FOR THE INPUT NET: 

DELTA = 1-(L1+L2) 

DELTA1 = 1-(0+0) 

DELTA2 = 1-(0+0) 

MASON'S VALUE(out/in): T(s) = (P1 * DELTA1 + P2 * DELTA2 ) / DELTA 

End of Execution! 

Figure 6.7 A output file of Mason's rule computer implementation 

Therefore, we get: 

The first forward path : Pi = wi w4 wil, 

The second forward path : P2= w2 w5 wil, 

There are two self-loops: Li = wi w3 w7 wg, 

L2 = w2 w6 w9 w10- 

Non-touching loops: None 



Where, loop L1 touches loop L2. Therefore, the determinant is 

A = 1- ( Li +I-2 ) 

The cofactor of the determinate alone path (Pi) is evaluated by removing the loops that 

touch path (P1) from A (or P1 touches all loops). Therefore, we have 

P1=0, 

P2=0, 

Ai=1- 0 =1, 

Similarly, since P2 touches all loops, the cofactor for path 2 is 

P1=0, 

P2=0, 

A2=1- 0 =1 

Total gain (Mo —> Mo' ): T = (1/A) k; P k Ak 

Thus, the transfer function from source place M0(s) to sink place Mot(s) is: 

WE(s) : Mmo
r.16((Ass))1+ p2 

02 

A 
_ P i + P2  

1- Ll - L2 

— (wiwa + w2 w5) w11  
1 1 - w1w3w7w8 - W2 W6W9W10 

Its moment generating function is 

ME(s) = WE(S)  
WE(0) 

Then the mean recurrence time from initial state to deadlock state: 

TR — 
aME 

 (s) 1  — as •s=0 

The mean sojourn time is 



amE (s) 1 TS = as s.3 

where ME is the moment generating function by replacing the transfer functions wi(s) 

(i*11) with one. Therefore, the deadlock rate is 

TS 
Rd = T12 

Supposing the deadlock resolution time is a parameter, we can lead to a deadlock rate of 

the closed-form [3]. 

6.2 An Example of A Linear System 

The example (Figure 3.1) in Chapter 2 can be solved by cimr for deriving transfer 

function as shown in Figure 6.8 and Figure 6.9, where 

W1=1, W2=G 1, W3=G2, 

W4=G3, W5=G4, W6=G5, 

W7=G6, W8=G7, W9=G8, 

W10=-H4, W11=-H1, W12=-H2, 

W13=-H3, W14=  1 

/*******************************************************************/ 

/* filename: ex2.i */ 

/* */ 

/* This is an input file by using SMPN language. It describes */ 

/* a State Machine Petri Net for Mason's rule application. After */ 

/* running command 'cimr filename.i[return]', you can get an */ 

/* output file(filename.o), which records some useful information */ 

/* of transfer function for performance analysis of a net. */ 

/* Any text errors will reported to an output file(filename.e) */ 



/* after compiling. */ 

/* */ 

/*******************************************************************/ 

net=9; /* the total place numbers of the net */ 

input=l; /* determine a source id of a place */ 

output=9; /* determine a destination id of a place */ 

/* Determine the parameters of the State Machine Petri Net */ 

/* node=(ptrl,ptr2,ptr3), where, 'ptrl' refers to id of input */ 

/* place, 'ptr2' refers to id of output place, and 'ptr3' */ 

/* refers to the index of transfer function variables. */ 

node=(1,2,1); 

node=(2,3,2); 

node=(3,4,3); 

node=(4,5,4); 

node=(4,7,8); 

node=(5,6,5); 

node=(6,5,10); 

node=(6,7,6); 

node=(6,8,9); 

node=(7,3,12); 

node=(7,8,7); 

node=(8,2,13); 

node=(8,6,11); 

node=(8,9,14); 

figure 6.8 Description file of the net shown in figure 1 

Output file: ex2.o 

The adjacncy matrix(9x9): 

0 1 0 0 0 0 0 0 0 

0 0 2 0 0 0 0 0 0 

0 0 0 3 0 0 0 0 0 

0 0 0 0 4 0 8 0 0 

0 0 0 0 0 5 0 0 0 



0 0 0 0 10 0 6 9 0 

0 0 12 0 0 0 0 7 0 

0 13 0 0 0 11 0 0 14 

0 0 0 0 0 0 0 0 0 0 

* The elements which are not equal to zero in the matrix refer to the 

index of the transfer function(Wi). 

Adjacency List Queue: 

(1)--> wl (2) 

(2)--> w2(3) 

(3)--> w3(4) 

(4)--> w4(5)--> w8(7) 

(5)--> w5(6) 

(6) --> w10 (5) --> w6 (7) --> w9(8) 

(7) --> w12 (3) --> w7 (8) 

(8)--> w13(2)--> wll (6) --> w14 (9) 

(9) 

* Wi refers to the transfer function. 

Loop(s): 

Ll: (2)->(3)->(4)->(7)->(8)->(2) 

(W2 W3 W8 W7 W13 ) 

L2: (2)->(3)->(4)->(5)->(6)->(8)->(2) 

(W2 W3 W4 W5 W9 W13 ) 

L3: (2)->(3)->(4)->(5)->(6)->(7)->(8)->(2) 

(W2 W3 W4 W5 W6 W7 W13 ) 

L4: (3)->(4)->(7)->(3) 

(W3 W8 W12 ) 

L5: (3)->(4)->(5)->(6)->(7)->(3) 

(W3 W4 W5 W6 W12 ) 

L6: (5)->(6)->(5) 

(W5 W10 ) 

L7: (6)->(8)->(6) 

(W9 W11 ) 

L8: (6)->(7)->(8)->(6) 

(W6 W7 W11) 



The forward path(s) from node 1 to node 14: 

P1: (1)->(2)->(3)->(4)->(7)->(8)->(9) 

(W1 W2 W3 W8 W7 W14 ) 

P2: (1)->(2)->(3)->(4)->(5)->(6)->(8)->(9) 

(W1 W2 W3 W4 W5 W9 W14 ) 

P3: (1)->(2)->(3)->(4)->(5)->(6)->(7)->(8)->(9) 

(W1 W2 W3 W4 W5 W6 W7 W14 ) 

Nontouching_loops: 

k=2: { Ll L6 }, {L4 L6}, {L4 L7 I 

Loops touching forward path: 

Loops of touching path P1: Ll L2 L3 L4 L5 L7 L8 

Loops of touching path P2: Ll L2 L3 L4 L5 L6 L7 L8 

Loops of touching path P3: Li L2 L3 L4 L5 L6 L7 L8 

SOLUTION OF MASON'S RULE FOR THE INPUT NET: 

DELTA = 1-(L1+L2+L3+L4+L5+L6+L7+L8)+(L1*L6+L4*L6+L4*L7) 

DELTA1 = 1-(0+0+0+0+0+L6+0+0)+(0*L6+0*L6+0*0) 

DELTA2 = 1-(0+0+0+0+0+0+0+0)+(0*0+0*0+0*0) 

DELTA3 = 1-(0+0+0+0+0+0+0+0)+(0*0+0*0+0*0) 

MASON'S VALUE(out/in): T(s) = (P1 * DELTA1 + P2 * DELTA2 + P3 * DELTA3 

) / DELTA 

End of Execution! 

Figure 6.9 Computer solution of Mason's rule for the net shown in Figure 3.1 



6.3 An Example of A Complicated Net 

Figure 6.10 is a net graph that has 25 loops and 5 forward paths. There are 19 places, 

Input is node 1 and output is node 19. The more loops, the more complicated to derive 

the transfer functions for a net graph. Therefore it is not easy to do that by hand. We 

use cimr to derive the transfer functions for the net . The results of cimr are shown in 

Figure 6.11 (Input file of cimr) and Figure 6.12 (Output file of cimr). 



Figure 6.10 A Complicated Net 



/*******************************************************************/ 

/* filename: ex3.i */ 

/* */ 

/* This is an input file by using SMPN language. It describes */ 

/* a State Machine Petri Net for Mason's rule application. After */ 

/* running command 'cimr filename.i[return]', you can get an */ 

/* output file(filename.o), which records some useful information */ 

/* of transfer function for performance analysis of a net. */ 

/* Any text errors will reported to an output file(filename.e) */ 

/* after compiling. */ 

/* */ 

/*******************************************************************/ 

net=19; /* the total numbers of the net place */ 

input=1; /* to determine the id of an input place */ 

output=19; /* to determine the id of an output place */ 

/* Determine the parameters of the State Machine Petri Net */ 

/* node=(ptrl,ptr2,ptr3), where, 'ptrl' refers to id of input */ 

/* place, 'ptr2' refers to id of output place, and 'ptr3' */ 

/* refers to the index of transfer function variables. */ 

node=(1,2,1); 

node={2,3,2); 

node=(3,4,3); 

node=(4,5,4); 

node=(5,6,5); 

node=(6,7,6); 

node=(7,8,7); 

node=(8,9,8); 

node=(9,10,9); 

node=(10,11,10); 



node=(11,12,11); 

node=(5,13,12); 

node=(13,14,13); 

node=(13,7,14); 

node= (14,8,15) ; 

node=(15,16,16); 

node=(10,15,17); 

node=(10,16,18); 

node=(11,16,19); 

node=(16,1,20); 

node=(5,17,21); 

node=(5,7,22); 

node=(17,7,23); 

node=(18,2,24); 

node=(12,1,25); 

node=(11,18,26); 

node=(12,19,27); 

Figure 6.11 Input file of cimr in Figure 6.10 

Output file: ex3.o 

The adjacncy matrix(19x19): 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 



0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 5 22 0 0 0 0 0 12 0 0 0 21 0 0 

0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 10 0 0 0 17 18 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 19 0 26 0 

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 

0 0 0 0 0 0 14 0 0 0 0 0 0 13 0 0 0 0 0 

0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 

0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

* The elements which are not equal to zero in the matrix refer to the 

index of the transfer function(Wi). 

Adjacency List Queue: 

w1(2) 

w2(3) 

(3)--> w3(4) 

w4(5) 

w5 (6) --> w22 (7) --> w12 (13) --> w21 (17) 

(6)--> w6(7) 

(7)--> w7(8) 



(8)--> w8 (9) 

(9) --> w9(10) 

(10)--> w10(11)--> w17(15)--> w18(16) 

(11)--> w11(12)--> w19(16)--> w26 (18) 

(12)--> w25(1)--> w27 (19) 

(13) --> w14 (7) --> w13 (14) 

(14)--> w15(8) 

(15)--> w16(16) 

(16)--> w20(1) 

(17)--> w23(7) 

(18)--> w24 (2) 

(19) 

* Wi refers to the transfer function. 

Loop(s): 

Ll: (1)->(2)->(3)->(4)->(5)->(13)->(14)->(8)->(9)->(10)->(16)->(1) 

(W1 W2 W3 W4 W12 W13 W15 W8 W9 W18 W20 ) 

L2: (1)->(2)->(3)->(4)->(5)->(13)->(14)->(8)->(9)->(10)->(15)->(16)- 

>(1) 

(W1 W2 W3 W4 W12 W13 W15 W8 W9 W17 W16 W20 ) 

L3: (1)->(2)->(3)->(4)->(5)->(13)->(14)->(8)->(9)->(10)->(11)->(16)- 

>(1) 

(W1 W2 W3 W4 W12 W13 W15 W8 W9 W10 W19 W20 ) 

L4: (1)->(2)->(3)->(4)->(5)->(13)->(14)->(8)->(9)->(10)->(11)->(12)- 

>(1) 

(W1 W2 W3 W4 W12 W13 W15 W8 W9 W10 W11 W25 ) 

L5: (1)->(2)->(3)->(4)->(5)->(7)->(8)->(9)->(10)->(16)->(1) 



(W1 W2 W3 W4 W22 W7 W8 W9 W18 W20 ) 

L6: (1) ->(2) ->(3) ->(4)->(5) ->(7)->(8) ->(9)->(10) ->(15) -> (16) ->(1) 

(W1 W2 W3 W4 W22 W7 W8 W9 W17 W16 W20 ) 

L7: (1) ->(2) ->(3) ->(4) ->(5) ->(7) ->(8) ->(9)->(10)->(11) ->(16) ->(1) 

(W1 W2 W3 W4 W22 W7 W8 W9 W10 w19 W20 ) 

L8: (1) ->(2) ->(3)->(4) -> (5)->(7) ->(8) ->(9) ->(10) ->(11)->(12) ->(1) 

(W1 W2 W3 W4 W22 W7 W8 W9 W10 W11 W25 ) 

L9: (1) ->(2) ->(3) ->(4) ->(5) ->(6)->(7)->(8)->(9)->(10)->(16)->(1) 

(W1 W2 W3 W4 W5 W6 W7 W8 W9 W18 W20 ) 

L10: (1)->(2) ->(3) ->(4)->(5)->(6)->(7)->(8)->(9)->(10)->(15)->(16)-

>(1) 

(W1 W2 W3 W4 W5 W6 W7 W8 W9 W17 W16 W20 ) 

L11: (1)->(2) ->(3) ->(4) ->(5)->(6)->(7)->(8)->(9)->(10)->(11)->(16)-

>(1) 

(W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W19 W20 ) 

L12: (1) ->(2) ->(3) ->(4) ->(5)->(6)->(7)->(8)->(9)->(10)->(11)->(12)-

>(1) 

(W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W25 ) 

L13: (2) ->(3) ->(4)->(5) ->(13) ->(14) ->(8) ->(9) ->(10) ->(11) ->(18) ->(2) 

(W2 W3 W4 W12 W13 W15 W8 W9 W10 W26 W24 ) 

L14: (2) ->(3)->(4)->(5) ->(7) ->(8) -> (9) -> (10) -> (11) -> (18) ->(2) 

(W2 W3 W4 W22 W7 W8 W9 W10 w26 W24 ) 

L15: (2) ->(3)->(4) -> (5) ->(6) ->(7) -> (8) -> (9)->(10) ->(11) -> (18) ->(2) 

(W2 W3 W4 W5 W6 W7 W8 W9 W10 W26 W24 ) 

L16: (7) ->(8) ->(9)->(10) ->(16) ->(1) ->(2) ->(3)->(4) ->(5) ->(17) ->(7) 

(W7 W8 W9 W18 W20 W1 W2 W3 W4 W21 W23 ) 

L17: (7)->(8)->(9)->(10)->(16)->(1)->(2)->(3)->(4)->(5)->(13)->(7) 



(W7 W8 W9 W18 W20 W1 W2 W3 W4 W12 W14 ) 

L18: (7)->(8)->(9)->(10)->(15)->(16)->(1)->(2)->(3)->(4)->(5)->(17)- 

>(7) 

(W7 W8 W9 W17 W16 W20 W1 W2 W3 W4 W21 W23 ) 

L19: (7)->(8)->(9)->(10)->(15)->(16)->(1)->(2)->(3)->(4)->(5)->(13)- 

>(7) 

(W7 W8 W9 W17 W16 W20 W1 W2 W3 W4 W12 W14 ) 

L20: (7)->(8)->(9)->(10)->(11)->(18)->(2)->(3)->(4)->(5)->(17)->(7) 

(W7 W8 W9 W10 W26 W24 W2 W3 W4 W21 W23 ) 

L21: (7)->(8)->(9)->(10)->(11)->(18)->(2)->(3)->(4)->(5)->(13)->(7) 

(W7 W8 W9 W10 W26 W24 W2 W3 W4 W12 W14 ) 

L22: (7)->(8)->(9)->(10)->(11)->(16)->(1)-->(2)->(3)->(4)->(5)->(17)- 

>(7) 

(W7 W8 W9 W10 W19 W20 W1 W2 W3 W4 w21 W23 ) 

L23: (7)->(8)->(9)->(10)->(11)->(16)->(1)->(2)->(3)->(4)->(5)->(13)- 

>(7) 

(W7 W8 W9 W10 W19 W20 W1 W2 W3 W4 W12 W14 ) 

L24: (7)->(8)->(9)->(10)->(11)->(12)->(1)->(2)->(3)->(4)->(5)->(17)- 

>(7) 

(W7 W8 W9 W10 W11 W25 W1 W2 W3 W4 W21 W23 ) 

L25: (7)->(8)->(9)->(10)->(11)->(12)->(1)->(2)->(3)->(4)->(5)->(13)- 

>(7) 

(W7 W8 W9 W10 W11 W25 W1 W2 W3 W4 W12 W14 ) 

The forward path(s) from node 1 to node 19: 

P1: (1)->(2)-->(3)->(4)->(5)->(17)->(7)->(8)->(9)->(10)->(11)->(12)- 

>(19) 



(W1 W2 W3 W4 W21 W23 W7 W8 W9 W10 W11 w27 ) 

P2: (1)->(2)->(3)->(4)->(5)->(13)->(14)->(8)->(9)->(10)->(11)->(12)- 

>(19) 

(W1 W2 W3 W4 W12 W13 W15 W8 W9 W10 W11 W27 ) 

P3: (1)->(2)->(3)->(4)->(5)->(13)->(7)->(8)->(9)->(10)->(11)->(12)- 

>(19) 

(W1 w2 W3 W4 w12 W14 W7 W8 W9 W10 W11 W27 ) 

P4: (1)->(2)->(3)->(4)->(5)->(7)->(8)->(9)->(10)->(11)->(12)->(19) 

(W1 W2 W3 W4 W22 W7 W8 W9 W10 W11 W27 ) 

P5: (1) -> (2)->(3) ->(4)->(5) -> (6)->(7) ->(8)->(9) ->(10) ->(11) ->(12)- 

>(19) 

(W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 Wll W27 ) 

Combinations for checking non-touching loops: 

k=2: 

Non-touching_loops: 

Loops touching forward path: 

Loops of touching path P1: Ll L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 

L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24 L25 

Loops of touching path P2: Li L2 L3 L4 L5 L6 L7 L8 L9 L10 Lll L12 L13 

L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24 L25 

Loops of touching path P3: Li L2 L3 L4 L5 L6 L7 L8 L9 L10 Lll L12 L13 

L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24 L25 

Loops of touching path P4: Li L2 L3 L4 L5 L6 L7 L8 L9 L10 Lll L12 L13 

L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24 L25 



Loops of touching path P5: Ll L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 

L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24 L25 

SOLUTION OF MASON'S RULE FOR THE INPUT NET: 

DELTA = 1-(Ll+L2+L3+L4+L5+L6+L7+L8+L9+L1O+L11+L12+L13+L14+L15+ 

L16+L17+L18+L19+L20+L21+L22+L23+L24+L25) 

DELTA1 = 1-(0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0) 

DELTA2 = 1-(0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0) 

DELTA3 = 1-(0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0) 

DELTA4 = 1-(0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0) 

DELTA5 = 1-(0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0) 

MASON'S VALUE(out/in): T(s) = (P1 * DELTA1 + P2 * DELTA2 + P3 * DELTA3 

+ P4 * DELTA4 + P5 * DELTAS ) / DELTA 

End of Execution! 

Figure 6.12 Output file of cimr in Figure 6.10 



CHAPTER 7 

CONCLUSIONS AND FURTHER RESEARCH 

This thesis has presented an approach to implementation of the computerized solution for 

Mason's rule, and it is a part of software tool development for study, evaluation and 

analysis of ASPN. An executable program (Cimr) written by C language has been 

developed. It is able to evaluate the Mason's rule under UNIX environment. A 

complicated example in which it is very difficult to derive transfer functions is also tested. 

The implementation will play a very important role in the automation of performance 

analysis using moment generating function based approach for arbitrary stochastic Petri 

nets. The results can also find their applications in reduction of linear control systems. 

The methodology of Petri Net is a graphical tool for modeling and analysis of 

discrete system. However, the modeling, design and analysis for Petri nets need be 

automated with the help of the synthesis methodologies and computer software 

technology. In order to implement computerized performance evaluation, modeling and 

system analysis for nets, our further and partially completed research and development 

for a software package are as follows: 

a) ASPN language 

In order to implement a computerized performance evaluation, modeling and 

analysis, we define and describe an ASPN language as discrete event dynamic system 

programming language. The method of definition employed is referred to as Backus-

Naur form [46], or NBF. We present a BNF description of the ASPN language as the 

grammar of Petri net language. The BNF definition of ASPN language includes: 

• program definition (program, heading and block) 

• variable definition (integer, float and character type) 

• constant definition (letter, digit, integer, real, sign, string) 



• statement definition (assignment statement, place statement, arc statement, 

marking statement, net input and output statement, function call statement, 

compound statement, empty statement etc.) 

There are several main advantages to define an ASPN language: 

• We can design, model and analyze a Petri net by using the methodology of 

programming language; 

• A language of PN benefits to the computerized processing for the complicated net 

construct 

• The combination of the language and graphical methodologies will be helpful to 

develop a new and efficient software tool for DEDS. 

b) Compiler of ASPN language 

A compiler needs to be developed to transfer source code of ASPN program 

describing an ASPN into its object program code run under UNIX. The development of 

the compiler can be implemented by using a UNIX tool, yacc [45]. yacc is a parser 

generator, that is, a program for converting a grammatical specification of a language. 

c) Reachability Graph Generator (RGG) 

The reachability graph of a PN is a set of all reachable markings (states) from an 

initial marking mo (initial state). Given a PN, we can obtain as many new markings as 

the number of enabled transitions. From each new marking, we can reach more 

markings. This process results in a tree representation of the markings, which is known 

as the Reachability Graph. The generation of reachability graph in the program is done by 

the function firing( ) [42]. It is one of the key functions of the program and calls several 

other functions during execution. It also calls itself for next firings until it terminates 

upon some conditions [42]. 

d) Library of ASPN function (LAF) 

It is necessary to develop a library of ASPN function. These functions shall include: 

• PN property class 



• PN analysis class 

• Transfer function class 

• Performance evaluation class 

e) Computer Implementation of Mason's Rule (CIMR) 

A running program 'cimr' has been completed. It can be either as a command of a 

new software tool or as the function call of ASPN language. 

f) Graphical User Interface and Environment 

Our goal is to design a Graphical User Interface (GUI) to put the modeling and 

performance analysis of ASPN into a window environment with a better look and feel. 

GUI describes a user interface that makes use of windows, menus, and other graphical 

objects and that, to a large extent, allows users to interact with the application by pointing 

and cliking mouse button. From an application developer's point of view, a GUI is a 

combination of a window manager, a style guide, and a library of routines (toolkit) that 

can be used to build the interface [43]. 

X-window is a windowing system capable of organizing graphics output in a 

hierarchy of windows on the screen. This capability and the ability to accept inputs from 

keyboard and mouse make X-window ideal for handling user interaction [43]. 

A GUI has four components: 

• Window system 

The graphical window system organizes output on the display screen and performs 

the basic text and graphics drawing functions. 

• Window manager 

The window manage provides the mechanism by which, when several window are 

on the screen, users can indicate the window with which they intend to interact. 

• Toolkit 

The toolkit is a library of routines with a well-defmed programming interface. 

• Style guide 



The style guide specifies the appearance and behavior of the user interface of 

an application. 

The X programming interface, Xlib, allows you to create window and handle basic 

input and output to build any graphical user interface you want. It is used to design and 

build a GUI for modeling and analyzing of ASPN. Figure 7.1 shows basic functional 

blocks for development of ASPN software. 

Generally, a new software tool for ASPN based on above will be the integration of 

Petri nets, moment generating function concepts, programming design and graph 

environment. It will result in a powerful and unified tool for DEDS. 



Figure 7.1 Basic functional blocks for development of ASPN software. 



APPENDIX - SOURCE CODE OF CIMR 

1 #ifndef LINT 

2 static char sccsid[] = "@(#)Computer Implementation of Mason's 

Rule V.1.00 02/15/92 "; 

3 #endif 

4 

5 /***********************************************************/ 

6 

7 /* This is the source code of the implementation of Mason's 

8 rule. It solves the transfer function foLm a given input 

9 node 'i' to a given output node 'j' in a State Machine 

10 Petri Nets. The program is also a part of the software 

11 developments for the computerized performance evaluation 

12 of Arbitrary Stochastic Petri Nets(ASPN). 

13 

14 Author: Xiaoyong Zhao 

15 Department of Computer & Information Science 

16 New Jersey Institute of Technology 

17 */ 

18 /***********************************************************/ 

19 

20 

21 #include<stdio.h> 

22 #include<string.h> 

23 #include<math.h> 

24 #include<memory.h> 

25 

26 #define FALSE 0 

27 #define TRUE 1 

28 #define MAX NODE 50 

29 #define MAXI 20 

30 #define MAX2 1000 

31 #define MAX PATH 100 

32 #define MAXLINE 128 

33 #define DEFAULT NO 30 



34 

35 #define SOURCE 10 

36 #define SINGLE 11 

37 #define MULTI 12 

38 #define DESTIN 13 

39 

40 

41 void read_input_file(); 

42 void initial(); 

43 void print matrix(); 

44 void build adj_list(); 

45 void initial_place_info_field(); 

46 void initial_qrow(); 

47 void initial_visitedflag(); 

48 void find loops(); 

49 void check_same_loops(); 

50 void findforward_paths(); 

51 void combination(); 

52 void check_nontouchingloops(); 

53 void output_nontouching_loops(); 

54 void loops_of_touching_path(); 

55 void applimason_formula(); 

56 void calculate delta(); 

57 void calculatedeltai(); 

58 

59 struct list_node 

60 

61 struct list_node *next; 

62 int id; 

63 int w; 

64 int node_type; 

65 int input; 

66 int in_p[MAX1+1]; 

67 int out_p[MAx1+1]; 

68 int visited; 

69 ); 



70 

71 struct list node *talloc(); 

72 struct list_node *place[MAXNODE+1],*ptr; 

73 

74 struct operate 

75 { int qno; 

76 int pqno; 

77 int nqno; 

78 int place[MAX1+1]; 

79 1; 

80 struct operate qrow[MAX2+1]; 

81 

82 unsigned int loopmat[MAX2+1][MAXNODE+1]; 

83 unsigned int w_of_loop[MAX2+1][MAXNODE+1]; 

84 unsigned int pathmat[MAXPATH+1][MAXNODE+1]; 

85 unsigned int w_of_path[MAXPATH+1][MAX_NODE+1]; 

86 unsigned int comb_mat[MAXNODE+1]; 

87 int nontouching_loops[51][MAXNODE+1]; 

88 int loop_of_touch_path[MAX_PATH+1][MAX_NODE+1]; 

89 

90 unsigned int matrix[MAXNODE+1][MAXNODE+1]; 

91 int cqueue; 

92 int multi_place=0; 

93 unsigned int ji,x,y,n,t=1; 

94 unsigned int total_loop_number; 

95 unsigned long int touching index=0; 

96 unsigned int nontouching_index=0; 

97 int loop_in_delta[MAX2]; 

98 int check_nontouching_done=FALSE; 

99 

100 char filename[20]; 

101 char filename o[20]; 

102 char filename e[20]; 

103 char filename m[20]; 

104 char strings[]="more -d "; 



105 char stringsl[]="SOLUTION OF MASON'S RULE FOR THE INPUT 

NET: \n"; 

106 char 

strings2[]=" \n"; 

107 char strings3[]=" Wi refers to the transfer function.\n"; 

108 char strings4[]=" The elements which are not equal to zero 

in the metrix refer to the\n index of the transfer function(Wi)."; 

109 

110 FILE *fp_o; 

111 FILE *fp_i; 

112 FILE *fp_e; 

113 FILE *fpm; 

114 

115 

116 

117 

118 main(argc,argv) 

119 int argc; char *argv[]; 

120 { 

121 int i=0; 

122 char c; 

123 char *p; 

124 

125 if (argc<2) 

126 { printf( "Usage: cims filename\n"); 

127 exit(1); 

128 } 

129 if ( (fp_i=fopen(argv[1],"r"))==NULL) 

130 { printf( "append: error opening file %s\n",argv[1]); 

131 exit(1); 

132 1 

133 p=strchr(argv[1],'.'); 

134 if (p!=NULL) strcpy(P,"\O"); /* get the file name before 

the part of '.' */ 

135 

136 strcpy(filename_brargv[1]); 



137 stropy(filename_er argv[1]); 

138 stropy(filename m,argv(1)); 

139 strcat(filename_o, ".0"); /* get the file name of output 

file */ 

140 strcat(filename_e, ".e"); /* get the file name of error 

info. file */ 

141 strcat(filename m, ".m"); /* get the file name of Mason' 

rule solution info. file */ 

142 

143 fp_o=fopen(filename_o,"w"); 

144 fprintf(fp_o,"Output file: %s\n\n",filename_o); 

145 fp_e=fopen(filename_e,"w"); 

146 fprintf(fp_e,"Output file: %s\n\n",filename_e); 

147 fpm=fopen(filenamem,"w"); 

148 fprintf(fp_m,"Output file: %s\n\n",filename m); 

149 

150 read_input_file(); 

151 initial(); 

152 

153 printf( "Start to search self loops ..."); 

154 find loops(); 

155 printf( "\nObtain %d loops\n",total loop number); 

156 printf( "Start to search paths ..."); 

157 findforward_paths(); 

158 printf( "\nObtain %d paths\n",pathmat[0][0]); 

159 

160 printf( "Start to check nontouching loops ..."); 

161 fprintf(fp_o,"Combinations for checking nontouching 

loops:\n"); 

162 fprintf(fp_o,"  

\n"); 

163 for (ji=2;ji<=total_loop_number;ji++) 

164 { 

165 fprintf(fp_o, "k=%d: ",ji); 

166 printf( "\nK = %d,",ji); 

167 combination(total_loop_number,ji); 



168 if (check_nontouching_done—TRUE) goto D; 

169 1 

170 D: printf( "\nChecking nontouching loops done\n"); 

171 

172 output_nontouchingloops(); 

173 loops_of_touching_path(); 

174 appli mason_formula(); 

175 

176 fclose(fp_o); 

177 fclose(fp_e); 

178 fclose(fp_i); 

179 fclose(fpm); 

180 

181 strcat(strings,filenamec); 

182 system( strings); 

183 exit(0); 

184 1 

185 

186 /*************************************************************/ 

187 

188 void read_input_file() 

189 { 

190 int line,i,j,jj,e,c; 

191 int error line no[500]; 

192 int number; 

193 int par_l,par_2,par_3; 

194 char string[128]; 

195 char par[20]; 

196 char namel[20]; 

197 char ascii[20]; 

198 char *error[500]; 

199 char buffer[128]; 

200 char *pptr; 

201 char *alloca(); 

202 clear matrix(); 

203 line=i=e=0; 



204 while ( fgets(buffer,MAXLINEf fp_i)!=NULL) /* read a line 

*/ 

205 { ++line; 

206 error[e]=alloca(128); 

207 pptr=buffer; 

208 for (i=1;i<=128;i++) 

209 string[i]=1 \0'; 

210 i=0; 

211 j=0; 

212 while ( buffer[i]!='\n') /* move out '\t' and ' */ 

213 { 

214 if ( buffer[i]!=" && buffer[i]!='\t') 

215 string[j++]= buffer[i]; 

216 i++; 

217 

218 string[j]=1 \0'; 

219 

220 if (string[0]=='/' && string[1]=='*') 

221 { /* check expaination statment */ 

222 1=1; 

223 while ( string[++i]!='\n' && i<=128) 

224 if (string[i]=='*' && string[i+1]=='/' && 

string[i+2]=='\0' ) 

225 { c=4; 

226 goto A; 

227 } 

228 goto B; 

229 

230 

231 if (string[0]-1 \01 11 string[0]=='\n') 

232 { c=4; 

233 goto A; /* if it is a space line */ 

234 

235 

236 



237 /* check if there are explaination statments after a 

statment*/ 

238 i=0; 

239 while ( string[i++]!=';') ; 

240 if (string[i]!=1 \01) 

241 { j=i; 

242 if (string[i]=='/' && string[i+1]=='*1  ) 

243 

244 i++; 

245 while ( string[++i]!=1 \n' && i<=128) 

246 if (string[i]=='*' && 

string[i+1]-1 /' && string[i+2)==1 \01  ) 

247 

248 string[j]=1 \01 ; 

249 goto C; 

250 1 

251 goto B; 

252 

253 else goto B; 

254 

255 

256 C: if ( string[j-1]!=';' ) goto B; /* check if miss a 

I ;t */ 

257 

258 

259 i=0; 

260 while ( string[i]!= '=' && i<20) 

namel[i++]=string[i]; 

261 namel[i++]=0\0,; 

262 

263 if (strcmp(namel,"net")==0) c=0; 

264 else if (strcmp(namel,"input")==0) c=1; 

265 else if (strcmp(namel,"output")==0) c=2; 

266 else if (strcmp(namel,"node")==0) c=3; 

267 else c=DEFAULTNO; 

268 



269 A: switch (c) 

270 { case 0: 

271 j=0; 

272 while ( string[i]!=';') 

273 { 

274 if ( string[i]<1 01  II string[i]>'9') goto 

B; 

275 ascii[j++]=string[i++]; 

276 1 

277 ascii[j]=string[i]; 

278 if ((n=atoi(ascii))==0) goto B; /* get the 

node no. of the net */ 

279 break; 

280 case 1: 

281 j=0; 

282 while ( string[i]!=';') 

283 1 

284 if ( string[i]<'0' II string[i]>1 9') goto 

B; 

285 ascii[j++]=string[i++]; 

286 } 

287 ascii[j]=string[i]; 

288 if ((x=atoi(ascii))>n) goto B; /* get a 

source node id */ 

289 break; 

290 case 2: 

291 j=0; 

292 while ( string[i]!=';') 

293 1 

294 if ( string[i]<'0' II string[i]>'9') goto 

B; 

295 ascii[j++]=string[i++]; 

296 } 

297 ascii[j]=string[i]; 

298 if ((y=atoi(ascii))>n) goto B; /* get a 

destination node id */ 



299 break; 

300 case 3: 

301 if ( string[i++]!='(' ) goto B; 

302 j=0; 

303 while ( string[i]!=',') 

304 if ( string[i]<'0' II string[i]>'9') goto 

B; 

305 else ascii[j++]=string[i++]; 

306 ascii[j]='\0'; 

307 i++; 

308 if ((par_l=atoi(ascii)) >n) goto B; /* get 

the first parameter for node statment */ 

309 j=0; 

310 while ( string[i]!=',') 

311 if ( string[i]<'01  II string[i]>'9') goto 

B; 

312 else ascii[j++]=string[i++]; 

313 ascii[j]='\0'; 

314 i++; 

315 if ((par_2=atoi(ascii))>n) goto B; /* get the 

second parameter for node statment */ 

316 j=0; 

317 while ( string[i]!=")') 

318 if ( string[i]<'0' II string[i]>'9') goto 

B; 

319 else ascii[j++]=string[i++]; 

320 ascii[j]='\0'; 

321 par_3=atoi(ascii); /* get the 3th parameter 

for node statment */ 

322 if ( string[i]!=')' II string[i+1]!=';' ) 

goto B; 

323 matrix[par_1][par_2]=par_3; 

324 break; 

325 case 4: break; 

326 B: default: error[e]=strcpy(error[e],pptr); 

327 error_line_no[e++]=1ine; 



328 break; 

329 1 

330 1 

331 if (e>0) /* output error info. for the input file */ 

332 ( for (j=0;j<e;j++) 

333 { printf( "***** ERROR: line %d: %s\n", 

errorlineno[j], error[i]); 

334 fprintf(fpe, "***** ERROR: line %d: %s\n", 

errorline_no[j],error[j]); 

335 1 

336 printf( "ERROR(S): %d\n",e); 

337 fprintf(fp_e, "ERROR(S): %d\n",e); 

338 exit(1); 

339 1 

340 1 

341 

342 

343 

/***************************************************************/ 

344 

345 void initial() 

346 ( 

347 int i,j; 

348 

349 print matrix(); 

350 build_adj_list(); 

351 

352 

353 

354 

/***************************************************************/ 

355 

356 clear matrix() 

357 { 

358 int i,j; 

359 



360 for (i=1;i<=n;i++) 

361 for (j=1;j<=n;j++) 

362 matrix[i][j]=0; 

363 

364 

365 

366 

/***************************************************************/ 

367 

368 void print_matrix() 

369 { 

370 int i,j; 

371 

372 fprintf(fp_o, "The adjacncy matrix(%dx%d):\n",n,n); 

373 fprintf(fp_o, " \n"); 

374 for (i=1;i<=n;i++) 

375 for (j=1;j<=n;j++) 

376 

377 fprintf(fp_o, "%d ",matrix[i][j]); 

378 if (j==n) 

379 

380 fprintf(fp_o, "\n"); 

381 

382 1 

383 fprintf(fp_o,"%s",strings4); 

384 

385 

386 

387 

/*****************************************************************/ 

388 

389 void build_adj_list() 

390 { 

391 int i,j; 

392 

393 for (i=1;i<=n;i++) 



394 { 

395 place[i]=talloc(); 

396 if ( place[i]==0) { printf( "\n***** ERROR: invalid 

address!\n"); 

397 exit(1); } 

398 ptr=place[i]; 

399 ptr->id=i; 

400 for (j=1;j<=n;j++) 

401 { 

402 if (matrix[i][j]!=0) 

403 

404 ptr->w=matrix[i][j]; 

405 ptr->next=talloc(); 

406 if ( ptr->next==0) { printf( "\n***** ERROR: invalid 

address!\n"); 

407 exit(1); 1 

408 ptr=ptr->next; 

409 ptr->id=j; 

410 ptr->visited=0; 

411 

412 1 

413 ptr=NULL; 

414 

415 fprintf(fp_o, "\n\nAdjacency List Queue:\n"); 

416 fprintf(fp_o, " \n"); 

417 for (i=1;i<=n;i++) 

418 

419 ptr=place[i]; 

420 while (ptr!=NULL && ptr->id!=0 ) 

421 { 

422 if (ptr->w==0) 

423 fprintf(fp_o, "(96d)",ptr->id); 

424 else 

425 fprintf(fp_o, "(%d)--> w%d",ptr->id,ptr->w ); 

426 

427 ptr=ptr->next; 



428 } 

429 fprintf(fp_o, "\n"); 

430 1 

431 fprintf(fp_o,"%s",strings3); 

432 } 

433 

434 

435 

/*****************************************************************/ 

436 

437 void initial_place_info_field() 

438 

439 int i,j,r; 

440 

441 for (i=1;i<=n;i++) 

442 {r=0; 

443 for (j=1;j<=n;j++) 

444 if (matrix[i][j]!=0) place[i]->out_p[r++]=j; 

445 

446 

447 for (j=1;j<=n;j++) 

448 { r=0; 

449 for (i=1;i<=n;i++) 

450 if (matrix[i] [j] !=0) place[j]->in_p[r++]=i; 

451 

452 

453 for (i=1;i<=n;i++) 

454 { r=0; 

455 while ( place[i]->in_p[r++]!=0) place[i]->input++; 

456 

457 

458 for (i=1;i<=n;i++) place[i]->visited=0; 

459 

460 for (i=1;i<=n;i++) 

461 if (place[i]->input>1) place[i]->node_type=MULTI; 

462 else place[ii->nodetype=SINGLE; 



463 

464 

465 1 

466 

467 

468 

/*****************************************************************/ 

469 

470 struct list node *talloc() 

471 

472 int *malloc(); 

473 return((struct listnode*)malloc(sizeof(struct list node))); 

474 

475 

476 

477 

/*****************************************************************/ 

478 

479 /* 

480 void copy_matrix() 

481 

482 int i,j; 

483 

484 for (i=1;i<=n;i++) 

485 for (j=1;j<=n;j++) 

486 m[i] [j]=matrix[i] [j]; 

487 

488 

489 */ 

490 

491 

/*****************************************************************/ 

492 

493 void find loops() 

494 

495 { 



496 int i,j,r,pi=1,pj=1; 

497 int N1,k,s=0; 

498 int multi_place=FALSE; 

499 int loop[MAX_NODE+1]; 

500 int pqindex[MAX2+1]; 

501 

502 ; 

503 initial_qrow(); 

504 initial visited flag(); 

505 for (i=0;i<=MAX2;i++) 

506 for (j=1;j<=MAX_NODE;j++) 

507 loopmat[i] [j]=0; 

508 

509 cqueue=1; 

510 place[x]->node_type=MULTI; 

511 

512 L2: for (i=1;i<=n;i++) 

513 if (place[i]->node_type==MULTI) 

514 { loop[++s]=place[i]->id; 

515 multiplace=TRUE; 

516 } /* there are multi-places */ 

517 loop[0]=s; 

518 if (multi_place==FALSE) goto L12; 

519 i=1; 

520 L3: if (i>s) goto L11; 

521 L4: initial grow(); 

522 initial_visitedflag(); 

523 r=0; 

524 cqueue=1; 

525 qrow[1].qno=cqueue; 

526 grow[1].pqno=0; 

527 grow[1].nqno=1; 

528 grow[1].place[r]=loop[i]; 

529 place[ loop[i]]->visited=1; 

530 k=0; 

531 pqindex[++k]=1; 



532 L5: if (qrow[1].nqno<=0) 

533 i++; 

534 goto L3; 

535 1 

536 L6: ; 

537 if (place[grow[cqueue].place[r]]->out_p[0]-0) goto L7; 

538 if (place[grow[cqueue].place[r]]->out_p[0]!=0 && 

539 place[grow[cqueue].place[r]]->out_p[1]-0) 

540 { qrow[cqueue].place[r+1]= 

place[qrow[cqueue].place[r]]->outp[0]; 

541 grow[cqueue].nqno=1; 

542 place[grow[cqueue].place[++r]]->visited++; 

543 

544 else ( 

545 N1=0; 

546 while (place[grow[cqueue].place[r]]->outp[N1++]!=0) 

547 { grow[cqueue+N1].place[0]= 

place[grow[cqueue].place[r]]->out_p[N1-1]; 

548 grow[cqueue+N1].qno=cqueue+N1; 

549 grow[cqueue+N1].nqno=1; 

550 grow[cqueue+N1].pqno=cqueue; 

551 place[cfrow[cqueue+N1].place[0]]->visited++; 

552 

553 grow[cqueue].nqno=N1-1; 

554 cqueue=cqueue+N1-1; 

555 r=0; 

556 pqindex[++k]=cqueue; 

557 

558 

559 L7: if (place[grow[cqueue].place[r]]->visited>1) 

560 if ( qrow[cqueue].place[r]==loop[i]) 

561 { /* get a loop */ 

562 pj=0; 

563 for (j=1;j<=k;j++) 

564 r=0; 

565 while ( grow[pqindex[j]].place[r]!=0 ) 



566 

loopmat[pi][++pj]=cfrow(pqindex[j]).place[r++]; 

567 

568 

569 if (loopmat[pi] [1]==loopmat[pi] [pi]) 

570 { /*don't need the last node because 

it is also the first node of the loop. */ 

571 loopmat[Pi][Pj]=0; 

572 loopmat[pi][0]=pj-1; 

573 pi++; 

574 1 

575 else for (i=0;i<=n;i++) 

576 loopmat[pi][i]=0; /* This is not a loop, 

clear it. */ 

577 grow[cqueue].nqno--; 

578 goto L10; 

579 

580 else { grow[cqueue].nqno--; 

581 goto L10; 

582 

583 L8: if (grow[cqueue].place[r]==y) 

584 cirow[cqueue].nqno--; 

585 goto L10; 

586 

587 L9: for (j=1;j<=loop[0];j++) 

588 if ( grow[cqueue].place[r]==loop[j] && 

589 place[grow[cqueue].place[r]]->visited >1) 

590 { grow[cqueue].nqno--; 

591 goto L10; 

592 } 

593 goto L5; 

594 L10: if ( cirow[cqueue].nqno==0) 

595 { grow[grow[cqueue].pqno].nqno--; 

596 r=0; 

597 while ( grow[cqueue].place[r]!=0) 

598 place[grow[cqueue].place[r++]]->visited--; 



599 cfrow[cqueue].qno=0; /* clear current queue */ 

600 qrow[cqueue].pqno=0; 

601 cirow[cqueue].noino=0; 

602 for (j=0;j<=MAX1;j++) 

603 qrow[cqueue].place[j]=0; 

604 cqueue--; 

605 if (cqueue<=0) goto L5; 

606 pqindex[k]=cqueue; 

607 if (pqindex[k]==pqindex[k-1]) k--; 

608 r=0; 

609 goto L10; 

610 } 

611 else { if (cqueue<=0) goto L5; 

612 goto L7; 

613 

614 Lll: loopmat[0][0]=pi-1; 

615 check_same_loops(); 

616 fprintf(fp_o, "\n\nLoop(s):\n"); 

617 fprintf(fp_o, " \n"); 

618 fprintf(fp m, "\n\nLoop(s):\n"); 

619 fprintf(fp_m, " \n"); 

620 i=0; 

621 j=0; 

622 k=0; 

623 for (r=1;r<=loopmat[0][0];r++) 

624 

625 while ( loopmat[++i][j+1]!=0) 

626 

627 fprintf(fp_o, "L%d: ", ++k); 

628 fprintf(fp_m, "L%d: ", k); 

629 while ( loopmat[i][++j]!=0) 

630 fprintf(fp_o, "(%d)->", loopmat[i][j]); 

631 j=0; 

632 /* output the ith id of the loop, because a loop will return 

to its initial place */ 

633 fprintf(fp_o, "(%d)\n",loopmat[i][1]); 



634 

635 /* get the transfer functions for each path. The transfer 

636 function is noted as varible 'Wi'. 'strct list node' has 

637 recorded the 'Wi' in the list queue of a state machine Petri 

638 net. Note: 'Wi' is a function vriable of 's' and is noted as 

639 Wi(s) in Moment Generating Function -based method. 

640 */ 

641 j=0; 

642 fprintf(fp_o, " ("i ); 

643 while ( loopmat[i] [++j] !=0) 

644 

645 ptr=place[loopmat[i][j]]; 

646 if (loopmat[i][j+1]!=0) 

647 while ( ptr->next->id!=loopmat[i][j+1]) ptr=ptr- 

>next; 

648 else { /* The loop come back to the lth node id */ 

649 while ( ptr->next->id!=loopmat[i][1]) ptr=ptr-

>next; 

650 } 

651 w_of_loop[i][j]=ptr->w; /* obtain the index of 'Wi' 

*/ 

652 fprintf(fp_o, "W%d ", w_of_loop[i][j]); 

653 fprintf(fpm, "W%d ", w_of_loop[i][j]); 

654 

655 1 

656 j=0; 

657 fprintf(fp_o, ")\n"); 

658 fprintf(fp_m, "\n"); 

659 

660 

661 1 

662 fprintf(fpo, "\n"); 

663 return; 

664 L12: printf( "There doesn't exist any loop(s) in the net."); 

665 

666 



667 

/*****************************************************************/ 

668 

669 

670 void check_same_loops() 

671 { 

672 unsigned long int add sum[MAX2+1]; 

673 unsigned long int mult_sum[MAX2+1]; 

674 int i,j=1,v=0,k,r; 

675 unsigned int 1p[MAX2+1][MAXNODE+1]; 

676 

677 

678 for (i=1;i<=MAX2;i++) 

679 

680 add sum[i]=0; 

681 multsum[i]=1; 

682 1 

683 

684 for (i=1;i<=loopmat[0][0];i++) 

685 

686 while ( loopmat[i][j]!=0) 

687 addsum[i]=add_sum[i]+loopmat[i][j++]; 

688 j=1; 

689 

690 j=1; 

691 for (i=1;i<=loopmat[0][0];i++) 

692 1 

693 while ( loopmat[i][j]!=0) 

694 mult_sum[i]=mult_sum[i]*loopmat[i][j++]; 

695 j=1; 

696 

697 

698 v=0; 

699 for (i=1;i<=loopmat[0][0];i++) 

700 for 0=1;i<=loopmat[0][0];j++) 



701 if (i!=j && loopmat[j][0]!=0 && loopmat[i][0]!=0 && 

loopmat[i] [0]==loopmat[j] [0] ) 

702 if (add sum[i]==addsum[j] && 

multsum[i]==mult_sum[j] ) 

703 

704 v=0; 

705 while ( loopmat[j][++v]!=0) 

706 if (loopmat[i] [1]==loopmat[j] [v]) break; 

707 k=v; 

708 r=0; 

709 while ( loopmat[j][v]!=0) 

1p[j][++r]=loopmat[j][v++]; 

710 for (v=1;v<k;v++) 

1p[j][++r]=loopmat[j][v]; 

711 v=0; 

712 r=0; 

713 while ( loopmat[i][++r]!=0) 

714 if (loopmat[i][r]!=lp[j][r]) v=1; 

715 /* 

716 if (v==1) 

717 

718 v=0; 

719 fprintf(fpm, "%d: ",i); 

720 while ( loopmat[i][v]!=0 ) 

721 fprintf(fpm, "%d->",loopmat[i][v++]); 

722 fprintf( fpm,"\n"); 

723 v=0; 

724 fprintf(fpm, "%d: ",j); 

725 while ( loopmat[j][v]!=0 ) 

726 fprintf(fpm, "%d->u,loopmat[j][v++]); 

727 fprintf( fp_m,"\n"); 

728 fprintf(fpm, "%d\n",j); 

729 v=0; 

730 

731 */ 

732 v=0; 



733 while ( loopmat[j][v]!=0 ) 

734 loopmat[j][v++]=0; 

735 v=0; 

736 

737 /* get total loops */ 

738 j=1; 

739 r=0; 

740 for (i=1;i<=loopmat[0][0];i++) 

741 if ( loopmat[i][1]!=0 ) 

742 

743 while ( loopmat[i][++r]!=0) 

744 loopmat[j][r]=loopmat[i][r]; 

745 while ( loopmat[j] [r] !=0) 

746 loopmat[i][r++]=0; /* when shift a loop, we 

must clear zeao behind their varible. */ 

747 j++; 

748 r=0; 

749 

750 total_loop_number= --j; 

751 loopmat[0][0]=j++; 

752 for (i=j;i<=MAX2;i++) 

753 for (r=0;r<=MAXNODE;r++) 

754 loopmat[i][r]=0; 

755 return; 

756 1 

757 

758 

759 

760 

761 

/*****************************************************************/ 

762 

763 

764 void findforwardpaths() 

765 { 

766 int i,j,r=0,k,pi=1,pj=1; 



767 int N1; 

768 int pqindex[MAX2+1]; 

769 

770 P1: initial_qrow(); 

771 initial visited flag(); 

772 cqueue=1; 

773 for (i=1;i<=MAX PATH; i++) 

774 { pqindex[i]=0; 

775 for (j=1;j<=MAXNODE;j++) 

776 pathmat[i] [j]=0; 

777 

778 P2: r=0; 

779 qrow[1].place[r]=x; 

780 qrow[1].qno=cqueue; 

781 qrow[1].pqno=0; 

782 grow[1].nqno=1; 

783 place[x]->visited++; 

784 cqueue=1; 

785 k=0; 

786 pqindex[++k]=1; 

787 

788 P3: if ( grow[cqueue].nqno==0 ) goto P8; 

789 P4: if ( place[grow[cqueue].place[r]i->out_p[0]==0) goto 25; 

790 if ( place[qrow[cqueue].place[r]]->out_p[0]!=0 && 

791 place[grow[cqueue].place[r]]->out_p[1]-0 ) 

792 { cirow[cqueue].place[r+1]= 

place[qrow[cqueue].place[r]]->out_p[0]; 

793 cirow[cqueue].nqno=1; 

794 place[cirow[cqueue].place[++r]]->visited++; 

795 goto P5; 

796 

797 else { N1=0; 

798 while (place[cfrow[cqueue].place[r]i->out_p[N1++] 

!=0) 

799 { 

cfrow[cqueue+N1].place[0]=place[cfrow[cqueue].place[r]]->out_p[N1-1]; 



800 cfrow[cqueue+N1].qno=cqueue+N1; 

801 cirow[cqueue+N1].nqno=1; 

802 cfrow[cqueue+N1].pqno=cqueue; 

803 /* place(cirow[cqueue+N1].place[0]]->visited++; */ 

804 1 

805 qrow[cqueue].nqno=N1-1; 

806 cqueue=cqueue+N1-1; 

807 place(cirow[cqueue].place[0]]->visited++; 

808 r=0; 

809 pqindex[++M=cqueue; 

810 

811 

812 P5: if ( grow[cqueue].place[r)==y) 

813 { /* get a path */ 

814 pj=0; 

815 for (i=1;i<=k;i++) 

816 { r=0; 

817 while ( grow[pqindex[i]).place[r]!=0) 

818 

pathmat[pi][++pj]=cirow[pqindex[i]].place[r++]; 

819 

820 pi++; 

821 grow[cqueue].nqn0--; 

822 goto P7; 

823 1 

824 P6: if ( place[grow[cqueue].place[r]]->visited > 1) 

825 { cirow[cqueue].nqn0--; 

826 goto P7; 

827 

828 else goto P3; 

829 P7: if ( grow[cqueue].nqn0==0) 

830 

831 if (cqueue==1) goto P8; 

832 else /* abandon this current queue */ 

833 { grow[grow[cqueue].pqno].nqno--; 

834 r=0; 



835 while ( qrow[cqueue].place[r]!=0) 

836 place[qrow[cqueue].place[r++]]->visited--; 

837 for (i=0;i<=MAX1;i++) 

838 grow[cqueue].place[i]=0; 

839 cqueue--; 

840 if ( qrow[cqueue].nqno==1) /* or say it !=0 */ 

841 place[qrow[cqueue].place[0]]->visited++; 

842 pqindex[k]=cqueue; 

843 if (pqindex[k]==pqindex[k-1]) k--; 

844 r=0; 

845 goto P7; 

846 1 

847 1 

848 else goto P6; 

849 

850 P8: fprintf(fp_o,"\n\nThe forward path(s) from node %d to 

node %d:\n",x,y); 

851 fprintf(fp_o, el  

---\n"); 

852 fprintf(fpm,"\n\nThe forward path(s) from node %d to 

node %d:\n",x,y); 

853 fprintf(fpm, 

---\n"); 

854 i=0; 

855 j=0; 

856 while ( pathmat[++i][++j]!=0) 

857 { 

858 fprintf(fp_o, "P%d: ", i); 

859 fprintf(fpm, "P%d: ", i); 

860 while ( pathmat[i][j+1]!=0) 

861 fprintf(fp_o, "(%d)->", pathmat[i][j++]); 

862 fprintf(fp_o, "(%d)", pathmat[i][j]); 

863 fprintf(fp_o, "\n"); 

864 

865 /* get the transfer functions for each path. The transfer 

866 function is noted as varible 'Wi'. The 'strct list node' has 



867 recorded the 'Wi' in the list queue of a state machine Petri 

868 net. Note: 'Wi' is a function of vriable 's' and is noted as 

869 Wi(s) in Moment Generating Function -based method. 

870 */ 

871 j=0; 

872 fprintf(fp_o, " (", i ); 

873 while ( pathmat[i] [++j] !=0) 

874 

875 if (pathmat[i][j+1)!=0) 

876 

877 ptr=place[pathmat[i][j]); 

878 while (ptr->next->id!=pathmat[i][j+1]) ptr=ptr-

>next; 

879 w_of_loop[i][j]=ptr->w; /* obtain the index of 

twit */ 

880 fprintf(fp_o, "W%d ", wof_loop[i][j]); 

881 fprintf(fp m, "W%d ", wof_loop[i][j]); 

882 1 

883 

884 

885 j=0; 

886 fprintf(fp_o, ")\n"); 

887 fprintf(fpm, "\n"); 

888 

889 

890 

891 fprintf(fp_o, "\n\n"); 

892 fprintf(fp m, "\n\n"); 

893 pathmat[0][0]=i-1; 

894 return; 

895 } 

896 

897 

898 

/****************************************************************/ 

899 



900 

901 void initial_qrow() 

902 { 

903 int i,j; 

904 

905 for (i=1;i<=MAX2;i++) 

906 { 

907 grow[i].gno=0; 

908 cirow[i].pqno=0; 

909 cirow[i].nqno=0; 

910 for (j=1;j<=MAX1;j++) 

911 qrow[i].place[j]=0; 

912 1 

913 return; 

914 

915 

916 

917 

/*****************************************************************/ 

918 

919 

920 void initial_visited_flag() 

921 { 

922 int i; 

923 for (i=1;i<=n;i++) place[i]->visited=0; 

924 return; 

925 } 

926 

927 

928 

/*****************************************************************/ 

929 

930 /* This combination algorithm is to check touching and 

931 non-touching loops in the implementation of Mason's rule. We 

932 can assign each loop an array index(cc[i]), where i=1,2,...n. 

933 Then, we have to decide that which combination of k value be 



934 compared for the touching and non-touching cases. 

935 */ 

936 

937 

938 void combination(n_loops,k) 

939 

940 int k, nloops; 

941 { 

942 int i,j,r,cc[100]; 

943 

944 

945 cc[0]= -1; 

946 for (i=1;i<=k;i++) cc[i]=i; 

947 j=1; 

948 while ( j!=0) 

949 

950 /* get one of the combinations for k, begin from 

combmat[k][1]. com mat[][] will be update when call the combination 

function each time. */ 

951 

952 /* 

953 fprintf(fp_o, "( "); 

954 */ 

955 for (i=1;i<=k;i++) 

956 

957 comb mat[i]=cc[i]; 

958 /* 

959 fprintf(fp_o, "L%d ",comb mat[i]); 

960 */ 

961 1 

962 /* 

963 fprintf(fp_o, "), "); 

964 */ 

965 check_nontouchingloops(k); 

966 

967 j=k; 



968 while ( cc[j]==n_loops-k+j) 

969 j--; 

970 cc[j]++; 

971 for (i=j+1;i<=k;i++) 

972 cc[i]=cc[i-1]+1; 

973 

974 /* we have got a set of combinations for k */ 

975 fprintf(fp_o, "\n\n"); 

976 

977 /* we output the ID of the touching loops for k case */ 

978 nontouching_loops[0][0]=nontouchingindex; 

979 if (nontouching_loops[0][0]==0) 

check_nontouching_done=TRUE; 

980 /* after checking k=2, if all loops of k=2 are 

nontouching, the check done */ 

981 

982 t=touchingindex+1; 

983 1 

984 

985 

/*****************************************************************/ 

986 

987 /* After getting a combination of IDs of k loops, this 

988 function will check if touching or non-touching for these 

989 loops. After checking, we get a touching combination and save 

990 the IDs of touching loops in touchin_loops[i][j], and begin 

991 at i=1, j=1 */ 

992 

993 void check_nontouching_loops(k) 

994 int k; 

995 ( 

996 int i,j,ii,iii,s; 

997 

998 i=0, iii=1; 

999 j=1; 



1000 /* begin to compare the elments of two loops to check them 

if touching each other. */ 

1001 while ( ++j<=k ) 

1002 { 

1003 while ( loopmat[combmat[iii]][++i]!=0 ) 

1004 

1005 ii=0; 

1006 while ( loopmat[comb mat[j]][++ii]!=0 ) 

1007 if (loopmat[comb mat[iii]][i]== 

loopmat[combmat[j]][ii] ) 

1008 return; 

1009 

1010 i=0, iii++; 

1011 } 

1012 /* nontouching loops */ 

1013 nontouching_loops[++nontouching_index][0]=k; 

1014 for (s=1;s<=k;s++) 

1015 nontouchingloops[nontouching_index][s]=comb mat[s]; 

1016 return; 

1017 

1018 

1019 

1020 

/***************************************************************/ 

1021 

1022 /* 

1023 void output_touching_loops() 

1024 { 

1025 int i,j,k; 

1026 

1027 i=1; 

1028 k=2; 

1029 

1030 fprintf(fp_p, "\nTouching_loops:\n"); 

1031 fprintf(fp_o, " "); 

1032 



1033 while ( i<=touching_loops[0][0]) 

1034 { 

1035 fprintf(fp_o, "\nk=%d: ",k ); 

1036 while (touching_loops[i][0]==k) 

1037 

1038 j=0; 

1039 fprintf(fp_o, "); 

1040 while ( touching_loops[i][++Th=0) 

1041 fprintf(fp_o, "L%d ", 

touching_loops[i][j] ); 

1042 fprintf(fp_o, "); 

1043 i++; 

1044 

1045 fprintf(fp_o, "\n"); 

1046 k++; 

1047 

1048 fprintf(fp_o, "\n\n"); 

1049 

1050 } 

1051 */ 

1052 

1053 

/***************************************************************/ 

1054 /* There are k=2,3,4,... combinations of nontouching loops. 

1055 We have obtained that the total number of nontouching loops 

1056 stored in array varible 'nontouching_loops[0][0]'. 

1057 'nontouching_loops[i][01 1  stores the value 'k' of the 

1058 combination case of each nontouching loop. This subroutin is 

1059 to output each nontouching loop and their combination case 

1060 value 'k'. */ 

1061 

1062 void output_nontouching_loops() 

1063 { 

1064 int i,j,k; 

1065 

1066 i=1; 



1067 k=2; 

1068 

1069 fprintf(fp_o, "\nNon-ouchingloops:\n"); 

1070 fprintf(fp_o, " "); 

1071 

1072 while ( i<=nontouching_loops[0][0]) 

1073 

1074 fprintf(fp_o, "\nk=%d: ",k ); 

1075 while (nontouching_loops[i][0]==k) 

1076 

1077 j=0; 

1078 fprintf(fp_o, "{ "); 

1079 while ( nontouching_loops[i][++j]!=0) 

1080 fprintf(fpo, "L%d 

",nontouching_loops[i][j]); 

1081 fprintf(fpo, "), "); 

1082 i++; 

1083 1 

1084 k++; 

1085 

1086 fprintf(fp_o, "\n\n"); 

1087 

1088 1 

1089 

1090 

/*****************************************************************/ 

1091 /* This function gets the loops of touching a path. We check 

1092 each path and see if there are any loops which touch this 

1093 path. Array lloop_of_touchpath[pi][j]' stores the id of 

1094 these loops, where 'pi' is the id of paths, 'j' is the id of 

1095 these loops */ 

1096 

1097 void loops_of_touchingpath() 

1098 

1099 ( 

1100 int pi,pj,li,lj; 



1101 int i,j; 

1102 

1103 fprintf(fp_o, "\n\nLoops touching forward path:\n"); 

1104 fprintf(fp_o, "). 

1105 

1106 for (pi=1;pi<=pathmat[0][0];pi++) 

1107 { 

1108 fprintf(fp_o, "\nLoops of touching path Pfd: ",pi); 

1109 

1110 j=0; 

1111 for (li=1;li<=total_loop_number;li++) 

1112 { pj=0; 

1113 while ( pathmat[pi][++pj]!=0) 

1114 { 1j=0; 

1115 while ( loopmat[li][++1j]!=0) 

1116 if ( pathmat[pi][pj]==loopmat[li][1j]) 

1117 { loop_of_touchpath[pi][++j]=1i; 

1118 fprintf(fp_o, "L%d ",1i); 

1119 goto D; 

1120 

1121 

• 1122 D: 

1123 

1124 

1125 fprintf(fp_o, "\n\n"); 

1126 } 

1127 

1128 

1129 /* output the terms behind the lth term */ 

1130 

1131 

1132 

/*****************************************************************/ 

1133 

1134 void appli_mason_formula() 

1135 



1136 int i,ii; 

1137 

1138 fprintf(fp_o, "\n\n%s%s\n",stringsl,strings2); 

1139 fprintf(fp_m, "%s%s",stringsl,strings2); 

1140 

1141 calculate delta(); 

1142 fprintf(fp_o, "\n"); 

1143 

1144 for (ii=1;ii<=pathmat[0][0];ii++) 

1145 calculate_delta_i(ii); 

1146 fprintf(fp_o, "\n"); 

1147 

1148 fprintf(fp_o, "\n\nMASON'S VALUE(out/in): T(s) = ("); 

1149 fprintf(fpm, "\n\nMASON'S VALUE(in/out): T = ("); 

1150 for (i=1;i<pathmat[0][0];i++) 

1151 

1152 fprintf(fp_o,"P%d * DELTA%d + ",i,i); 

1153 fprintf(fp m,"P%d * DELTA%d + ",i,i); 

1154 

1155 fprintf(fp_o,"P%d * DELTA%d ) / DELTA\n",i,i); 

1156 fprintf(fp_m,"P%d * DELTA%d ) / DELTA\n",i,i); 

1157 

1158 fprintf(fp_o, "\n\nEnd of Execution!"); 

1159 

1160 return; 

1161 1 

1162 

1163 

/*************************************************************/ 

1164 /* We need to determin the value of each loop for each 

1165 DELTAi. If a loop touches the ith path, then the value of the 

1166 loop is zero or the state of the loop is '-1' ( We use '-1' 

1167 in this function and the expresstion of the loops is refered 

1168 to loop_in_delta[]'). The loop will be removed from DELTA, if 

1169 it is '0' or '-1'. The meanning about this see the definition 

1170 of Mason's rule. 



1171 */ 

1172 void calculate_delta_i(pi) 

1173 int pi; 

1174 { 

1175 int i,j,r; 

1176 

1177 for (i=1;i<=total_loop_number;i++) 

1178 { 

1179 j=1; 

1180 while (i!=loop_of_touchpath[pi][j] && 

loop_of_touchpath[pi][j]!=0) j++; 

1181 if (loop_of_touchpath[pi][j]==0 ) 

1182 loop_in_delta[i]=j; /* loop j does not touch the 

ith path */ 

1183 else loop_in_delta[i]= -1; /*loop touches the ith path 

and it will be removed from DELTA. */ 

1184 

1185 

1186 loop_in_delta[i]=0; /* the last unit is set to zero */ 

1187 

1188 

1189 

/*****************************************************************/ 

1190 

1191 /* We have already obtained the loops for DELTAi, i.e. if a 

1192 loop touches the ith path, it will be removed from DELTA 

1193 where Li=-1 or Li=0). Therefore we can get DELTAi as follows: 

1194 */ 

1195 j=0; 

1196 if ( total_loop_number>0 ) 

1197 1 

1198 fprintf(fp_o, "DELTA%d = 1-(",pi); 

1199 fprintf(fpm, "DELTA%d = 1-(",pi); 

1200 

1201 /* ouptput the ith loop behind '(' */ 

1202 if (loop_in_delta[++j]!= -1 && loop_in_delta[j]!=0) 



1203 

1204 fprintf(fp_o, "Lq5d",j); 

1205 fprintf(fpm, "L%d",j++); 

1206 } 

1207 else if (loop_in_delta[j++]!=0) 

1208 

1209 fprintf(fp_o,"0"); 

1210 fprintf(fp m,"0"); 

1211 

1212 

1213 if ( total_loop_number>=j ) 

1214 for (i=j;i<=total_loop_pumber;i++) 

1215 if (loop_in_delta[i]!= -1) 

1216 { fprintf(fp_o, "+L%d",i); 

1217 fprintf(fpm, "+L%d",i); 

1218 1 

1219 else 1 

1220 fprintf(fp_o, "+0"); 

1221 fprintf(fp m, "+0"); 

1222 

1223 

1224 /* output the multiply of nontouching loops */ 

1225 if ( nontouchingloops[0][0]>0 ) 

1226 

1227 j=1; 

1228 i=1; 

1229 /* output the lth term for the multip. of 

nontouching loops */ 

1230 if (loop_in_delta[nontouching_loops[i][j])!= -1 ) 

1231 { /* is not the state '-1' */ 

1232 

fprintf(fp_o,")+M%d",nontouching_loops[i][j]); 

1233 

fprintf(fp_m,")+M%d",nontouching_loops[i][j]); 

1234 1 

1235 else { fprintf(fp_o,")+(0"); 



1236 fprintf(fp m,")+(0"); 

1237 

1238 

1239 

1240 /****** output the terms behind the lth term ********/ 

1241 for (i=1;i<=nontouching_loops[0][0];i++) 

1242 

1243 while ( nontouching_loops[i][++j]!=0 ) 

1244 

1245 if (loop_in_delta[nontouching_loops[i][j]]!= 

-1 ) 

1246 { /* is not the state '-1' */ 

1247 fprintf(fp_o, 

"*L%d",nontouching_loops[i][j]); 

1248 fprintf(fp m, 

"L%d",nontouching_loops[i][j]); 

1249 

1250 else { fprintf(fp_o,"0"); 

1251 fprintf(fp_m,"0"); 

1252 

1253 

1254 

1255 if ( nontouching_loops[i+1][1]!=0 && i<= 

nontouching_loops[0][0]) 

1256 { 

1257 if 

(loop_indelta[nontouching_loops[i+1][1])!= -1 ) 

1258 { 

1259 

fprintf(fp_o,"+L%d",nontouching_loops[i+1][1]); 

1260 

fprintf(fp_m,"+L%d",nontouchingloops[i+1][1]); 

1261 

1262 else { fprintf(fp_p,"+0"); 

1263 fprintf(fpm,"+0"); 

1264 1 



1265 

1266 j=1; 

1267 1 

1268 1 

1269 

1270 fprintf(fp_o, ")\n"); 

1271 fprintf(fp m, ")\n"); 

1272 

1273 1 

1274 else fprintf(fp_o, "DELTA%d = 1\n",pi); 

1275 fprintf(fp m, "DELTA%d = 1\n",pi); 

1276 

1277 

1278 

1279 

1280 

1281 

1282 

1283 

/*************************************************************/ 

1284 

1285 void calculate delta() 

1286 ( 

1287 int i,j; 

1288 

1289 j=1; 

1290 i=1; 

1291 if ( total_loop_number>0 ) 

1292 

1293 fprintf(fpo, "DELTA = 1-(L%d",i); 

1294 fprintf(fpm, "DELTA = 1-(L%d",i); 

1295 if ( total_loop_uumber>1 ) 

1296 for (i=2;i<=total_loop_number;i++) 

1297 { 

1298 fprintf(fp_o, "+L%d",i); 

1299 fprintf(fp m, "+L%d",i); 



1300 

1301 if ( nontouching_loops[0][01>0 ) 

1302 /* output the multiply of nontouching 

loops */ 

1303 j=1; 

1304 i=1; 

1305 fprintf(fp_o,")+(L%d",nontouching_loops[i][j]); 

1306 fprintf(fp m,")+(L%du,nontouchingloops[i][j]); 

1307 for (i=1;i<=nontouching loops[0][0];i++) 

1308 { 

1309 while ( nontouchingloops[i][++j]!=0 ) 

1310 

1311 fprintf(fpo, "*L%d", 

nontouching_loops[i][j]); 

1312 fprintf(fpm, "*L%d", 

nontouchingloops(i)(j]); 

1313 

1314 if ( nontouchingloops[i+1][1]!=0 ) 

1315 { if (nontouching_loops[i+1][0]%2==0) 

1316 { /* for combination k=2,4,6,8,... */ 

1317 fprintf(fp_o, u+L%d", 

nontouchingloops[i+1][1]); 

1318 fprintf(fpm, "+L%d", 

nontouchingloops[i+1][1]); 

1319 j=1; 

1320 } 

1321 else {/* for combination k=3,5,7,9,...*/ 

1322 fprintf(fp_o, "-L%d", 

nontouchingloops[i+1][1]); 

1323 fprintf(fpm, "-L%d", 

nontouching_loops[i+1][1]); 

1324 j=1; 

1325 1 

1326 

1327 

1328 



1329 fprintf(fp_o, ")\n"); 

1330 fprintf(fp m, ")\n"); 

1331 } 

1332 else 

1333 fprintf(fp_o, "DELTA = 1\n"); 

1334 fprintf(fp m, "DELTA = 1\n"); 

1335 } 

1336 

1337 } 

1338 
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