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ABSTRACT 

Evaluation Of Collision Properties 

Of Spheres Using High-Speed 

Video Analysis 

by 

Jian Yu 

Expenmental evaluation of the collision properties of spheres is performed using 

video image analysis techniques. A high-speed Kodak EktaPro1000 video camera is uti-

lized to record a collision sequence between two spheres at 1000 frames/sec, and then the 

images are analyzed to calculate three dimensional translation and rotation before and 

after the collision. These quantities are used to compute the collision properties for a pair 

of one inch nylon spheres, i.e. the coefficient of friction, and the coefficients of normal and 

tangential restitution. The focus of the thesis is on image analysis techniques that provide 

high accuracy results even though the image resolution is very low, i.e. 240x192 

The procedure developed here can be extended to smaller size spheres and can also be 

applicable to other motion analysis expenments involving low resolution images. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

In recent years a substantial increase of interest in the granular flow of materials has been 

seen. It can be applied to many industrial fields, such as in-plant and long-distance 

transport, manufacturing ceramics, casting of solid-fuel rocket propellant, pharmaceuticals, 

plastics, materials development, food, mineral processing operations and natural geological 

flows [1]. Due to a poor knowledge of the collisional behavior properties of granular 

material, it is very difficult for one to make scaling from laboratory bench-top prototype 

operations to large-scale commercial plants. It is like a "cut-and-try" art other than a 

reasonable design process [2]. The highly nonlinear nature of the granular flow poses 

enormous difficulties in developing constitutive models to predict behavior over a range of 

conditions. Considerable advances in the theoretical models of kinetics and dynamics about 

granular flow have been made and particle dynamic simulations can provide a way in which 

the theoretical models may be tested and validated in the absence of experimental data [3]. 

However, the results from these simulations strongly rely on the input particle material 

coefficients; sliding friction coefficient, normal restitution and rotational restitution 

coefficients. Clearly, problems will be encountered when experimental data is compared 

with theoretical models, if the matenal parameters governing particle collisions are 

uncertain. Therefore, it is necessary to devise a three-dimensional experimental technique 

to obtain these properties used by numerical simulations, theories and other experiments. 

1.2 Overview of the Experiment 

In the past, the experiments to measure the material collision parameters were two-

dimensional in nature. In this thesis, a three-dimension experiment is performed using 

Kodak EktaPro 1000 high speed video imaging system. Innovative image processing 
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techniques are utilized to automatically compute the particle velocities before and after 

sphere collisions. 

The experiment is devised by using two one-inch white nylon spheres colliding 

space. A Kodak EktaPro 1000 high speed video system is used to record the whole collision 

procedure. The video system is able to record at a speed up to 1000 frames per second and 

can be replayed immediately at a low speed. This capability allows one to visually check 

the quality of the collision image so that a series of proper frames can be chosen for further 

processing. In order to determine the orientation of the spheres, some random markers are 

drawn on sphere surfaces. The images recorded can be transferred from the EktaPro 1000 

video tape to the data images in a computer. Then, the images are processed individually to 

find the edges and the centers of spheres and markers. The markers are later matched from 

frame to frame to track their trajectories. This information is used to determine the collision 

position and the pre- and post-collision translational and rotational velocity vectors. 

The most challenging part of this experiment is to accurately evaluate the position 

and orientation of spheres with the limited resolution images. The subpixel technique [4] is 

employed for detecting edges to a high accuracy and the fuzzy c-shell algorithm [5] is 

utilized to accurately find the centers of spheres for determimng the translation, and to find 

the locations of markers for computing the sphere orientations. This experiment is unique 

in that it measures the actual angular velocity of spheres and the axis of rotation durmg their 

motion using automated image analysis. 

1.3 Statement of the Problem 

The purpose of this thesis is to evaluate the collision parameters of sphere using the Kodak 

EktaPro 1000 high speed video imaging system. Subpixel technique is employed to obtain 

high accuracy edges. The edge information is used to find the sphere center and marker 

location using the fuzzy clustenng method. Correspondence of the markers in a senes of 

frames is achieved by the proximal uniformity constraint [6]. The least squared error 
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method is utilized to determine the matrix of rotation between frames through use of 

information of the marker locations. The rotation matrix is employed to obtain the rotation 

angle and axis at different time steps. The translation displacements are measured through 

a simple difference of two sphere centers. The results are used to compute the velocity 

vectors based on the polynomial functions and the location of a collision is obtained using 

the velocity vectors. Finally, the collision coefficients are calculated by fitting straight lines 

to all the experimental results, as will be explained further on. 

1.4 Overview of the Remaining Chapters 

The chapter 2 briefly surveys the previous work in the field of hard sphere inelastic 

collision models, relevant experiments, and image processing techniques for edge 

detection, Hough transforms and fuzzy clustering methods. 

Chapter 3 describes the experimental setup. Chapter 4 discusses several techniques 

of image processing used in this thesis. Chapter 5 presents the algorithm to determine the 

translational and angular velocities of colliding spheres. Chapter 6 discusses the accuracy 

of the experiment. Chapter 7 presents the results of the work conducted. Chapter 8 

concludes the work with a summary of the various techniques used. 

Appendix A gives a brief description of the high speed Kodak EktaPro 1000 video 

system. Appendix B contains an algorithm for feature point correspondences. Appendix C 

describes the steps and programs used to evaluate collision parameters. 



CHAPTER 2 

LITERATURE REVIEW 

2.1 Granular Flow Model 

The granular flow modeling of phenomena involving particulates is relevant to many 

fields. Recent years have seen a tremendous increase of interest in the flows of granular 

materials whose rheology is dominated by the physical contact between particles and 

between particles and the containing walls. Due to its highly nonlinear nature, it is very 

difficult to develop constitutive models to predict behavior over a range of conditions. 

Kinetic theory models have taken advantage of the similarities between the shearing of a 

granular material and the dynamics of dense systems of colliding gas molecules [3]. 

Dynamic theory models and simulations have been done to test theoretical models. The 

results from these simulations rely on input parameters, such as the coefficients of friction, 

and the coefficients of normal and tangential restitution. However, experimental studies 

aimed at measurements of fundamental collision parameters are scarce [7] and are consid-

erably limited by the difficulties involved in measurement of three-dimensional transla-

tional and angular velocities. 

A two-dimensional experiment was performed on an air table maintained by a 

series of jets [8]. A disk shaped puck cut from a sphere was rebounded from a fixed block 

of a similar matenal to the disk. The experiment was in a dark room enabling the trajec-

tory of the puck to be photographed under stroboscopic lighting. Although the results of 

this experiment were useful in substantiating a modified Hertzian theory, it is difficult to 

extrapolate the two-dimensional experimental results to real three-dimensional collisions. 

Another two-dimensional experiment was performed. In this two-dimensional inclined 

chute flow experiment, the particle angular and translational velocities between collisions 

were calculated using a combined procedure of manually digitizing frames with software 

[9]. 

Recently, a three-dimensional experiment was performed using 3 millimeters glass 
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spheres. Two spheres were in free drop and there were no spin before collision. The colli-

sion procedure was grabbed by a regular camera [10]. 

2.2 Image Processing 

It is a very challenging subject in computer vision to perform motion analysis using a 

sequence of images and this has been an active research topic for more than a decade [3]. 

Because the images must be processed individually, and the information obtained from 

every image has to be collected to find the motion parameters, it would be more complex 

than processing a single image. There are many image processing methods that are 

involved with motion imagery. In this section, a brief survey follows on some methods 

employed in this thesis. 

2.2.1 Edge Detection 

Edges are curves in the image where rapid changes occur in brightness or in the spatial 

derivatives of brightness. Edge detection algorithms can tremendously reduce the image 

content and thus make post-processing of these images computationally less costly. Edge 

detection is necessary for object recognition, feature extraction, or for other image pro-

cessing applications. There are two major classifications of edge detectors, i.e. first deriva-

tive properties or second derivative properties. 

The first derivative edge operator in 2x2 region of pixels is defined by 

fX 
1 . . 

= -27t  [f(/ + 1) + 1) +f(i+ 1,i) 

f y  = Zi[Az +1,j + 1) —f(i + 1,j) + f(i,j +1) —f(i,j)] 

where ti is the spacing between picture cell centers. This definition can be expanded to 

other regions. The first derivative edge operators are directional, producing results that 

depend on the orientation of the edge. The gradient operator, i.e. vector (fx, fy), can main- 

tain its magnitude and orientation. The edge usually occurs at the largest magnitude of 
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gradient image. A squared gradient operator gets high values at edges but it does not tell 

us anything about the direction of the edge. This information is in the gradient itself. The 

Sobel's operator is a widely used edge detection operator. The main idea is to estimate the 

gradient (fx, fy) employing the eight neighbor pixels with equal weight in a 3x3 region of 

pixels [10,11]. The corner pixels have a factor of 2 less than the four pixels in the main 

directions because they are further apart (with a factor /2) and their difference vectors 

make 45° with the two main directions (another factor 12-). A digital gradient may be 

computed by convolving the two windows with an image, one window giving the x com-

ponent fx  of the gradient and the other giving the y component fy. The Sobel operator is a 

nonlinear computation of the edge magnitude at (i, j) in an image defined by J  (fx2 + fy) 

1 f 
and its angle is defined by tan' -f.-

x 
 . Canny's edge operator follows three main perfor-( 

Y 

mance criteria for edge detection: good detection, good localization and a singular 

response to a single edge [12]. It supposes that edge detection is performed by convolving 

the noisy edge with a spatial function and by marking edges at the maxima in the output of 

this convolution. The first two criteria on their own are inadequate to produce a useful 

edge detector and the third criterion gives an operator that has a very low probability of 

giving more than one response to a single edge. An analytic form for the operator was 

found, which is a sum of four complex exponents and is approximated by the first deriva-

tive of a Gaussian. In one dimension, the maxima in the output of this first derivative oper-

ator correspond to the zero-crossings in the output of a second derivative operator. 

In second derivative edge operators, edges are detected as the point where the 

second derivatives of the image cross zero, i.e. the sign is different between detected edge 

pixels. The Laplacian and quadratic variation are rotationally symmetric operators and the 

quadratic variation happens to be equal to the square of the Laplacian but only the Lapla-

cian retains the sign of the brightness difference across the edge. This allows us to recon-

struct the original image from the edge image [13]. Mexican hat operators are filters of the 
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form V2 G where V2 is the Laplacian and G is the two dimensional Gaussian distribution 

[14]. The main idea is to smooth the image with a Gaussian shaped filter and then find the 

edges using the laplacian in the smoothed image. The operator introduced by Marr & Hil-

dreth is probably the most widely used operator in this class [15]. They propose using zero 

crossings of the operator D2G (x, y) on the given image, where G (x, y) is a two-dimen- 

sional Gaussian distribution function and D2  is the second derivative operator for detect-

ing intensity changes in the image. The Gaussian operator is used to satisfy localization 

requirements in both the spatial and the spectral domains. For the sake of reducing compu- 

tations, the operator D2G is replaced by the rotation invariant operator V2 G also called 

Laplacian of Gaussian or LoG. Zero crossings of V2G at different scales are obtained by 

using V2 G with different widths. If the expected edges are closed, the detected edge using 

LoG produces a better result than using first derivative operators. 

2.2.2 Ellipse and Circle Detection 

There are several useful methods to detect quadratic surfaces or curves, such as least 

squared approach, Hough transforms [16-18] and fuzzy clustering technique [19-23]. 

These techniques are efficient but each has its own constraints. If edge data are available 

in the form of an object boundary itself, the least squared technique can give a good result. 

But if the objects are spread out over the image space, or there is noise that is sometimes 

unavoidable, the result is poor. 

The Hough Transform, HT, was first introduced as a method of detecting complex 

patterns of points in binary image data [16]. The main idea behind HT methods is to 

involve a mapping from features in the image space, which consists of image pixels, to 

sets of points in the parameter space which consists of parameters describing the features 

of images. In these methods each image point is treated independently and therefore the 

method can be implemented using more than one processing unit. It can recognize partial 
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or slightly deformed shapes. The HT method is robust and random image points or noise 

points are unlikely to contribute much to the accumulator bin consisting of the processing 

results of all image points. This is the major advantage of HT. The major disadvantage, 

however, is that it requires a very large amount of computer storage and that it is very 

computationally intensive. Several methods have been proposed to overcome these disad-

vantages. For reducing the computation cost, the problem was broken down into multiple 

stages through the use of gradient information [17]. For decreasing the computer storage, 

adaptive Hough transform, AHT, was introduced, where a small accumulator array and its 

resolution and position are iteratively adjusted [18]. These two approaches can be used 

together thereby decreasing the storage and computation requirement compared with the 

conventional HT, but if it compared with adaptive fuzzy c-shell algorithm, AFCS [19], 

which will be introduced below, it still has a high cost in the computation and computer 

storage in the circle and ellipse detection. 

There are several fuzzy clustering algorithms available to detect ellipses and 

circles in images. Most of these algorithms are based on objective function minimization 

to generate a partition data where the weighted sum of the distances of the feature vectors 

from cluster prototypes are minimized. The cluster prototype can be a point or a line or a 

plane, etc. [20]. The fuzzy memberships are utilized as weighting factors. The partitions 

are either hard or fuzzy. Thus if the prototype is a circle, the distances are measured from 

the circle and the algorithm tends to detect circles in the data. However, until recently, it 

has been difficult to detect clusters other than the linear types. The fuzzy c-shell algo-

rithms created by Dave [19,21-23] can detect the clusters that are described by circles and 

ellipses. This opens a new class of algorithms where the prototype can be a non-linear 

curve or surface [24]. In chapter 4, we will experimentally evaluate the AHT and AFCS 

algorithms. 



CHAPTER 3 

EXPERIMENTAL SETUP 

3.1 Collision Mechanics 

The main objective of this thesis is to measure the properties of particles in collision, i.e., 

the coefficient of friction, and normal and tangential restitution coefficients. In order to 

compute these quantities, the pre- and post-kinematic trajectory of two spheres colliding in 

three dimensional space needs to be obtained. This data can be processed to compute the 

desired properties using a known collision operator [2]. A brief description of the relevant 

definitions and equations from [2] is presented below. The change in the relative velocity 

of two colliding spheres can be modeled using normal (e) and tangential (3) coefficients 

of restitution, such that 0 5 e 5 1 and —15 (3 5 1. In what follows, primed and unprimed 

symbols are the values immediately after and before a collision, respectively. These 

coefficients can be defined by the relations below, where the incident normal and angular 

velocities after a collision are altered such that 

l•12 • )11 ( I*12 • v21) and ?12 21 X g112 = -f3(I12Xg12)  

where -i1 12 is a unit vector connecting the centers of particles 1 and 2, 

g12 = v 21

-6 
12 x 6

12) is the total relative velocity of the contact point, 

(1)12 (7)1 + w2 , and v21  = v 1  — v2. The (3 values of -1, 0 and +1 physically correspond 

to contacts which are perfectly smooth, rolling and perfectly rough, respectively. The 

model admits either a sliding contact, where it is assumed that the tangential force is at the 

friction limit during the contact, or a rolling contact. This is depicted in Figure 3.1a, where 

130  is a predetermined constant value of the rotational restitution coefficient. If the 

assumed sliding solution yields a 13 value greater than 130, then the rolling solution is oper-

ative. 

9 
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In above figures, (vivn) is the ratios of the normal to tangential velocities before 

the collision. The rolling and sliding solutions in Figure 3.1b are given by the equations, 

v' v' 4/t, 2 vs 
— = --p° -v and —

Vn 
S  = — (1 + e)(1+— 

1 
 )+— , where K =  — for spheres 

vn K vn m62 5 

of diameter a. For spheres of equal mass and diameter, the values of vs  and vn  are corn- 

puted as v SI = v 
212  

+ x (612) = vs  and vn  = y 12 ; 129 where the tangential corn- 

    

ponent of the velocity is given by vt  = v12 — Vn 12 • 

e 
• 

0111.- vn  

Relative Normal Velocity 

Figure 3.1c Coefficient of restitution with relative normal velocity 

When the relative normal velocity increases, the coefficient of restitution decreases 

[30]. This is depicted in Figure 3.1c. 
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The steps required to compute the needed coefficients include computing the 

normal component of relative velocity vn, and the tangential component of surface velocity 

vs, both before and after the collision, and then fitting appropriate lines to many data points 

plotted in the form of Figure 3-1b. 

3.2 Experimental setup 

The main idea is to experimentally determine the rolling and sliding solution curves as 

depicted in Figure 3.1b. This is accomplished by computing values of vs/vn  directly before 

and after the collisions. By making use of the equations which define these two solutions 

and the experimental data, it is possible to calculate the values of µ, β 0  and e. 

Determination of the necessary kinematic data, i.e., vs/vn  and v's/vn  , is done with the 

Kodak system and subsequent motion analysis of the video images. The details of the 

method are described in chapter 4 and chapter 5. 

Since collision parameter evaluation of spheres requires estimation of pre- and post-

collisional position, velocity and angular velocity vectors of the spheres, an experiment 

apparatus is devised to collide two one-inch white nylon spheres in free space. In order to 

determine the orientation of spheres, random markers are drawn on their surfaces. 

Figure 3.2a The first experimental apparatus 

A picture of the first apparatus is shown in Figure 3.2a. Two identical plastic tubes 

are mounted on the stands which are installed on a base. The tubes themselves are able to 



rotate about the stands and can be set the desired angle so that two spheres can collide at 

any desired angle. The spheres are held at the top of tubes by the solenoids which mounted 

on the end of the tube. The solenoids are connected to a triggering device controlled by a 

PC486. When the triggering device is activated the PC486, the solenoids are released and 

spheres roll down in the tubes under the action of gravity. When they exit the tubes, they 

are in free flight and collide in space. In this apparatus, since the spins are opposite to each 

other, the values of relative surface velocities are very small, so that this apparatus does not 

provide a wide range of values for pre-collision ratio vs/vn. 

Figure 3.2b The second experimental apparatus 

Figure 3.2c Schematic diagram for the second apparatus 

In order to obtain the wide range of the values of vs/vn, a better experimental 



apparatus is designed and built. In this apparatus, two adjustable micro-positioning slides 

are installed on a base. One is mounted horizontally, while the other is placed vertically. A 

plastic tube is then mounted on the each micro-positioning slide in the horizontal direction 

and in a vertical plane. This allows a range of vertical offsets between the center lines of 

tubes as well as horizontal displacement between the tube ends. Consequently, this 

flexibility allows a wide range of vs/vn  values. The spheres are inserted into the tubes and 

firmly placed against pressure pushers mounted at the end of tubes. The pushers are 

controlled by a triggering system connected to the PC486. The PC486 can control the 

triggering system and Kodak Ektapro 1000 high speed video system using software 

previously developed [25]. When triggering system controlled by the PC486 turns on the 

pressure pushers, they push the two spheres at the same time and the spheres are shot out 

from the tubes. The two spheres are in free flight upon release from the tubes and collide 

in space. The whole collision procedure is recorded by Kodak Ektapro 1000 system. The 

pressure pushers are connected to the pressure regulator which adjusts the value of pressure 

in the pushers. This enables an adjustment of the impulse which the pushers impact to each 

sphere so that a range of collision velocities can be obtained. Figure 3.2b and 3.2c show the 

picture of the experimental device. 

Figure 3.3 Schematic diagram 
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The Kodak Ektapro 1000 high speed video camera is placed in such a position that 

the collision area is within its field of view. A communication link exists between the 

PC486 and Kodak system. Images can be observed on the monitor. The recording speed is 

set at 1000 frames per second. The system has a playback capability of 30 frames per 

second and can be further slowed down by jogging the frames step by step. This allows us 

to observe the collision procedure at an extremely slow rate. The schematic diagram is 

shown in the Figure 3.3. 

Analysis of collision parameters involves the estimation of translation and rotation 

of spheres. The translational motion is evaluated by observing the difference of the sphere 

centers between two interval frames, while the rotational motion is required to compute the 

rotation angles and rotation axis between the frames using the marker location information 

and then to decide the angular velocity vector. 

After the collision of spheres has been recorded, it is replayed and a sequence of 

image frames is selected for image processing. Three pre-collision frames and three post-

collision image frames are selected and the interval between frames is 2 milli-second. 

These images are transferred from the video tape to the PC486 hard disk. Then, the images 

are processed individually to find the edges, the two-dimensional centers of the spheres and 

markers. The markers are later matched from frame to frame to track their trajectories. The 

information is used to determine the collision position and pre- and post-collision velocity 

vectors. 

Since the image obtained is two-dimensional, a mirror is placed directly above the 

collision space at an angle of 45 degrees from the honzontal and made to face to the camera 

to obtain the top view of the spheres. Thus in each image frame, the two orthogonal views 

are obtained, i.e., the front view and the top view. The location and orientation of spheres 

in three dimension is obtained through processing images of the two orthogonal views. 

However, since the tubes are mounted in a vertical plane in the second apparatus, the whole 

sphere collision procedure is also in the same vertical plane. Therefore, we only need to 
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process the front view image to obtain the location information about spheres because the 

position of spheres in the out-plane direction only has a small difference during the 

collision. In order to validate this, a test is done. The coordinates of collision spheres are 

shown in the Table 3.1 and 3.2. In this test we suppose the coordinates in the out-of-plane 

direction are constant in each image frame. The relative normal and surface velocities, and 

the relative errors are shown in Table 3.3. It can be seen, the involved relative error of 

relative normal and surface velocities is less than 0.5%. Therefore to simplify the 

experiment procedure, we only process front view images in the second apparatus 

experiments. 

Table 3.1 Coordinates of sphere 1 (in sphere diameters) 

6 ms before 
collision 

3 ms before 
collision 

just 
collision 

3 ms after 
collision 

6 ms after 
collision 

X direction 0 0.044 0.199 -0.025 -0.156 

Y direction 0 -0.274 -0.557 -0.769 -0.978 

Z direction 0 0.021 0.028 0.053 0.059 

Table 3.2 Coordinates sphere 2 (in sphere diameters) 

6 ms before 
collision 

3 ms before 
collision 

just 
collision 

3 ms after 
collision 

6 ms after 
collision 

X direction 0 0.042 0.073 0.257 0.467 

Y direction 0 0.262 0.504 0.699 0.874 

Z direction 0 0.001 0.016 0.020 0.015 

Table 3.3 Relative normal and surface velocities (ins/second) 

lin  v'n  vs  Vs  

Z = Actual value -68.330 48.052 170.586 149.526 

Z = Constant value -68.588 47.824 170.679 149.608 

Relative error % -0.38 0.47 0.05 0.05 



CHAPTER 4 

IMAGE PROCESSING 

In order to get the location of spheres and markers in each image frame, several image 

processing techniques are used, i.e., Laplacian of Gaussian operator, sub-pixel accuracy 

zero-crossing to get the edge of spheres and markers, labelling the edges to obtain the clas-

sifying edge points and calculation of centers using an adaptive fuzzy cluster c-shell 

method. 

4.1 Laplacian of Gaussian Filter 

Because the edge of spheres and markers is closed curves and the subpixel accuracy zero-

crossing is applied, it is better to use the Laplacian of Gaussian filter to obtain useful 

results. The Laplacian of Gaussian, LoG, where a standard deviation of the Gaussian 

equals 2 is used for pre-processing to get zero-crossing image, which is equivalent to trun-

cate grey level images at a size of 17 by 17 pixels centered by each precessing point. Then, 

by detecting zero-crossing in the image, we can get the edge of spheres and markers in 

each image frame. 

4.2 Subpixel Zero-crossing 

The Kodak Ektapro imager has a frame resolution of 240x192 pixels. The diameter of 

sphere used in the experiment is equivalent to about 40 pixels in the image. Based on the 

calibration of the position accuracy [3], using Canny's edge detection operator and shell 

clustering to find the center of a sphere, the accuracy of position measurement is one quar-

ter of a pixel, which is equivalent to an accuracy of 1/160 of a sphere diameters. This 

accuracy for the position is acceptable but because the time interval between image frames 

is very short, i.e. two milliseconds, the accuracy for the velocities based on the time inter-

val and the difference of center positions between images is not good enough. In order to 
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get more precise position data and thus obtain better accuracy of velocities, a subpixel 

technique is applied [4]. 

The idea of the subpixel method is to make an interpolation in the neighborhood of 

zero-crossing in the LoG image. It is equivalent to further dividing a pixel into n pixels at 

a dimension in the zero-crossing areas and thus the edges obtained from zero-crossing in 

the nxn times the original zero-crossing areas has the accuracy of 1/n pixels. In this 

method, it is assumed that the LoG image can be well fitted by a Chevyshev discrete 

orthogonal polynomial function in the neighborhood of a zero-crossing. Through sam-

pling the function on a regular grid chosen, subpixel values are obtained. Since the accu-

racy is a pixel in the regular zero-crossing, thus, a 3x3 neighborhood grid can include the 

actual point of zero-crossing and has more accuracy. The variables of the polynomial 

function are image row and column coordinates. The 3x3 grid Chevyshev two-dimen-

sional discrete orthogonal polynomial set {P} is 

Po  = 1, P1  = r, P2  = C, P3  = r2  — P4  = rc, P 5  = 2  

and 

P6 = rP3,  P7 = cP5' P8 = P3P5 

where r and c are the coordinates in the row and column directions, respectively, which the 

origin of the coordinate is at the center of 3x3 local image. 

Let /Log  be the LoG image. For each single precision zero-crossing at location 

(r, c), the interpolation function in the 3x3 grid is given by 

8 
E anPn(recs) LoG(1.  s'C = 

n = 0 

where the nine constant coefficients are given by 
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EEP n(r,c)I LoG(r,c) 

a =  r c  n  EEp2n(r,c) , n=0, 1,...,8 and r,c=-1, 0, 1. 

r c 

and the r s  and cs  describe subpixel coordinates in the row and column direction. 

The algonthm is: 

- find the zero-crossing position in the pixel image. 

- calculate the nine constant coefficients. 

- compute the subpixel values in a desired number of sampling. 

- find the zero-crossing position in the subpixel image. 

According to Huerta and Medioni [4]. this method has following advantages: 

(i) Subpixel sometimes allows to remove the ambiguity met by an edge linking procedure. 

(ii) Extracting zero-crossings with 1/n pixel precision using a space constant in LoG filter 

give very similar results to that extracting zero-crossings with pixel precision using n 

times of the space constant, from an n times resolution image. 

In order to test the accuracy of the pixel and subpixel, an experiment is conducted. 

The sphere is mounted on a two-axes micro-positioning stage with 0.01 mm accuracy, 

Then the micro-stage motion is calibrated to the image motion. On this calibration, the 

sphere is moved equivalent to 2 pixels in both directions, in eight steps, each step being 1/ 

4 pixels. The edge detection of LoG and zero-crossing in the pixel and subpixel, having a 

1/4 pixel accuracy, is done respectively. The edge data in the pixel and subpixel is ana-

lyzed using adaptive fuzzy cluster c-shell method to find the center of sphere. The results 

of this experiment are plotted in Figure 4-1, where the points indicate the actual measure-

ments in the pixel and subpixel, while the line indicates actual values. As can be seen, the 

results of the subpixel are much better than those of the pixel and the actual accuracy of 

position measured from the subpixel is much down to 1/4 pixels. 



Figure 4.1a Companson of subpixel vs. pixel in x direction translation 

Figure 4-lb Comparison of subpixel vs. pixel in y direction translation 



Figure 4.1c Comparison of subpixel vs. pixel in x-y direction translation 

4.3 A Sequential Labelling 

After the edge of spheres and markers is obtained from zero-crossing, the points of the 

edges are classified to determine which points belong to which set of the edge, i.e. the 

spheres' or the markers'. This procedure is prepared for the next processing to find the 

center of the spheres and markers in each image frame. The idea of labelling is to examine 

the pixel where its left and top side neighbors have been examined. If this pixel is not zero 

value and at least one of the neighbors has been labelled, one of the labels is copied. If no 

neighbors have been labelled, a new label is selected for this pixel. The image is scanned 

in this way row by row, top to bottom and left to nght. The sequential labelling algorithm 

is as follows [13]: 

Suppose a pixel A is examined, its neighbor B, C and D have been examined. 

DC 

B A 

if (A=0) move on and examine the next pixel 
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else if (D >0) A=D 

else if (B>0) 

A=B 

if (C>0 and C!= B) B=C 

else if (C>0) A=C 

else A = new label. 

end if 

4.4 AFCS Algorithm 

After the labelled edge image is obtained, The AFCS algorithm is applied to find the cen-

ter of spheres and markers in each of the labelled edges in each image frame. Because the 

edge of a sphere in the image is in the form of a circle, the circle detection algorithm gives 

satisfactory results, while the circular markers on the surface of a sphere usually have the 

edges of ellipses in the image, the ellipse detection must be used. Here we also use AHT 

algorithm to find the sphere center and compare the two methods using the same approach 

as discussed in section 4.2. The results are plotted in Figure 4-2. As can be seen, the AFCS 

algorithm is much better than AHT algorithm in finding the location of the sphere. Besides 

this advantage, the AFCS algorithm has some other advantages over the AHT algorithm. 

The AFCS algorithm needs less computer memory, has less computing cost and does not 

require edge gradient information. 

The sphere center obtained from AFCS in the front view image is two-dimen-

sional. The top view image is obtained from the mirror which is placed right behind the 

collision space at an angle of 45 degree to the place of the camera. From this top view, the 

third coordinates of the sphere centers are obtained in each frame. The evaluating of the 

three-dimension coordinate of markers is discussed in the next chapter. 



Figure 4.2a Comparison of AHT vs. AFCS in x-direction 

Figure 4.2b Comparison of AHT vs. AFCS in y-direction 



Figure 4.2c Comparison of AHT vs. AFCS in x-y direction 

After the location of the spheres and markers is obtained in each frame for an 

experiment, the markers are matched from frame to frame to track their trajectories. Cor-

respondence of the markers in the series of frames is achieved using the proximal unifor-

mity constraint [6]. The details of the algorithm can be found in the Appendix B and in 

reference [26]. In this method, the initial correspondence must be given in the first two 

frames and then the corresponding markers are tracked using the previous marker location 

information. In most cases, the algorithm is found to work well but when the markers are 

too close to each other, it fails to make a correct correspondence. 



CHAPTER 5 

DETERMINATION OF TRANSLATIONAL AND 

AUGULAR VELOCITY VECTORS 

In order to obtain the collision parameters of material, the translation and rotation velocity 

have to be computed. The translational velocity can be determined by the difference of 

sphere centers between frames while the rotation velocity is required to compute the rota-

tion angles and rotation axis between the frames first using the marker position informa-

tion and then to decide the angular velocity vector. 

The image frames coordinates are generated by the original in the left top corner of 

the image. The X-Y plane is parallel to the camera, X in the vertical direction and Y in a 

horizontal direction. The other horizontal axis, Z, is determined by the right hand rule, to 

the place of the camera. The image coordinate unit is the pixel. It can be scaled to the inch 

unit by counting the number of pixels for a sphere diameter (d=l"). It can be obtained at 

the same time the locations of the sphere centers are computed. 

5.1 Translational Velocity 

First let us consider the horizontal velocities. Due to the existence of air drag on the mov-

ing spheres, the components of velocity in horizontal direction are not constants even 

though the changes are not great at a very short time intervals. In order to accurately deter-

mine the velocity suppose, the air reaction forces are constant, but different in each hori-

zontal direction before or after the collision penod. Thus there exist different constant 

acceleration in the two horizontal directions, x and z which we call ax  and az. The vertical 

velocity is determined by considering the acceleration due to gravity which is also reduced 

due to air drag. This is also assumed to be constant, az. 

Suppose the frame farthest from the collision position in the three pre- or post-col-

lision frames is called the first frame, while the frame nearest the collision position is 
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called the third frame. Fig. 5.1 depicts a trajectory of the sphere before and after collision. 

The dark filled-in circle in the figure represents the other sphere. Sphere positions in three 

pre- and post-collision subsequent frames are known. Then we determine the collision 

velocities of spheres. 

Figure 5.1 Schematic diagram of moving sphere 

Based on the constant acceleration of the moving spheres, the moved distance of 

spheres, S. is described by 

where the V0 is initial velocity, a is the constant acceleration and t is time. 

Upon rewriting Eq. (5-la), it is found that, 

where S (1 - 2) i and S (1 - 3) i are difference of the sphere positions between the first frame 

and the second frame, and between the first frame and the third frame, respectively. Here 

∆ti  _ land ∆ti  _ 3 are the corresponding time intervals between frames. V11  is velocity at 

the first frame, ai  is the constant accelerations and i = x, y, z. 

From above two equations, 171i  and al  can be obtained 
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vu  
S (1 - 2) At2 -3 (2At1-2 + At2 -3) - S (2 -3)1At21-2 

(5-2b) 
A tl -2At2 -3 (Atl -2 + At2 -3) 

 

where S (2  _3)1 is the difference of sphere positions between the second frame and the 

third frame. 

Based on the assumption of the constant accelerations, the velocity at the third 

frame is 

V31 =vii + ai  (Ati  _2 + At2 _ 3) 

So, from Eqs. (5-2), we can get 

V31 
S(2 -3)iAt1-2 (2At2-3 + At1-2) -S(1-2)i.622-3 

At1-2At2_3 (At, _2 + At2 _ 3) 

The components of the collision velocities can be determined by the above equations. 

5.2 Angular Velocity 

The rotational motion analysis involves evaluation of the rotation angle and the rotation 

axis of each sphere between subsequent frames in order to estimate the angular velocities. 

To accomplish this, first, relative coordinates, the origin of each sphere center and 

the axes parallel to the image coordinate's, are required. The center positions of the mark-

ers in the correspondent sphere is described by the relative coordinates whereby the trans-

lation displacements are removed and the only rotation contribution is considered for the 

markers. Since the center of markers in the image is two-dimension, (Xi, Y1), the off image 

plane coordinate Z1  is determined by equation 

Zi  = ,\17-2  - 4 - Y2 (5-5) 

where r is radius of the sphere. 

(5-3) 

(5-4) 
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5.2.1 Determination of the Angle and Axis 

In order to determine the angle and the axis of rotation, a 3x3 rotation matrix [R] must be 

evaluated. Suppose a coordinate frame F rotates through an angle of 0 to a new coordinate 

frame F' in which the z' axis is the same as the rotation axis having a unit vector k'. The 

rotation matrix between the two coordinate frames is given by, 

Rot (k', 0) = R = 

Nx 0x Ax  

N 0 A 
Y Y Y 

NZ  0,A., 

(5-6) 

   

The columns of R are unit vectors in frame F', i.e. N, 0 and A, expressed in the frame F. If 

a vector is described in the frame F as P and P' in the frame F', then 

P = RP' (5-7) 

In order to construct the matrix R, we will imagine that rotating around the vector k' is 

equivalent to rotating around z' axis of frame F' 

Rot (k', 0) = Rot (z', 0) (5-8) 

So, Rotating P around k' is equivalent to rotating P' around z' 

Rot (k', 0) P = RRot (z', 0) P' (5-9) 

Substitute equation (5-7) to equation (5-9) 

Rot (k', 0) RP' = RRot (z', 0) P' (5-10) 

Since R exists invert matrix, Thus we get 

Rot (k', 0) = RRot (z', 0) R-1 (5-11) 

Since Rot(z',(3) is rotation around z' about angle 0, we can get 

Rot (z', 0) = 
cost) -sine 0 

sm0 cos° 0 
0 0 1 

(5-12) 

   

By expanding the equation (5-11) and Simplifying the matrix according to the following 

relationship 

(i) The dot product between any tow vectors, N, 0 and A, is zero for the vectors are 
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orthogonal. 

(ii) The magnitude of any vectors N, 0 and A is equal 1 for they are the umt vector. 

(iii) The z' unit vector is able to be got from cross product of vectors N and 0. 

Because the rotation axis is arbitrary, Therefore the matrix R is equal to Rot(k',0) and the 

following equation is obtained 

[Nx  Ox  Ax  
RRot (z', 0) 12-1  = N 0 Ay  

NZ 
Y Y 

Nz  0, A, 

  

   

   

KxKxVers0 + cos° KyKxVers0 - K,sin0 KzKxVers0 + Ky  sin() 

KyK1Vers0 + Kz  sin 0 KyKyVers0 + cos 0 KyKyers0 - Kxsin0 

K,KxVers0 - Ky sin0 KyK,Vers0 +Kxsin0 K,K,Vers0 + cos0 

(5-13) 

 

   

where Vers0 = 1- cos 0. 

This is rotation matrix. If we know all the nine components, we can get the rotation 

angle and axis of the sphere. Summing diagonal term of matrix in Eq. (5-13), 

Nx + Oy + = (Kx2  + Ky2  + Kz2) Vers0 + 3 cos 0 (5-14) 

Since ifq, + Ky + K2  = 1, therefore we get 

Nx +Oy +Az -1 
cos° =  

2 
Substrate symmetrically placed off-diagonal terms of matrix in Eq. (5-13) 

0,- Ay  = 2Kxsin0 

Ax  - NZ  = 2Kysin0 

Ny -Ox  = 21c sine 

(5-15) 

(5-15a) 

(5-15b) 

(5-16c) 

We may define the rotation to be positive about the vector K such that 0 5 0 5 180. By 

squaring both sides of above equations. and combining the Eq. (5-15), 

we get 

,1 (0 -Ay) 2 (Ax - N z) 2 (Ny - 0x) 2 
tan@ - z  

Nx +Oy +Az -1 
(5-17) 



Thus we can calculate the angle of 0 using above equation. From Eqs. (5-17) we get 
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0, — Ay  

Kx = 2sin0 

K 
Y 

= AX — NZ  
2 sin 0 

N
Y 
 —0

x Kz = 2sine 

(5-18a) 

(5-18b) 

(5-18c) 

As can be seen when the angle is very small, owing to the small magnitude of both 

numerator and denominator in above equations, the axis of rotation is not well defined. 

The vector K should be renormalized to ensure that IKI = 1. It can be observed again that 

there exists a critical case, at 0 = 180°, the denominator in the above equations is of the 

form 0, so that no information about K vector can be got. In order to avoid it, equating the 

diagonal elements of the equation we can derive 

Kx  = sgn (Oz  —Ay) 

Ky  = sgn (Ax  —Nz) 

Nx —cose 
1— cos° 

0
Y 

- COSO 

1 - COSO 

(5-19a) 

(5-19b) 

(5-19c) 
Az  — cos 0 

KZ  = sgn (Ny  — Ox)  
1— cos 8 

1, e > 0 
where sgn (e) = {

-1, e < 0 

In order to more accurately determine the components of the unit vector K, only 

the largest element of K is achieved from Eqs. (5-19). Others are obtained by summing 

pairs of off-diagonal elements of Eqs. (5-13). There are three cases to get the components. 

Case 1: if Kx  is the largest in the Eqs. (5-19), then 
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N +0 
K — Y x (5-20a) 

Y 2KxVers0 

Ax +N, 

Kz 2KxVers0 
(5-20b) 

 

Case 2: if K is the largest in the Eqs. (5-19), then 

Ny +Ox  

Kx 2KyVers0 
(5-21a) 

 

K — 
 0z+A

Y (5-21b) KZ 
2K Vers0 

Case 3: if Kz  is the largest in the Eqs. (5-19), then 

(Ax  + NZ) 
Kx  —  (5-22a) 

2KzVers0 

Oz +Ay  
K

Y 
—

2KZ  Vers0 
(5-22b) 

From the equations above we can get the rotation axis unit vector K. If the angle of rota-

tion is in the first quarter i.e. 0 < 90 , the Eqs. (5-18) are recommended. Else the equations 

from (5-19) to (5-22) are utilized. 

5.2.2 Determination of Rotation Matrix 

As can be seen in Eq. (5-6), the angle and axis of rotation are the function of the nine ele-

ments in the rotation matrix R. If these elements are determined, we can evaluate the angle 

and the rotation axis. 

Suppose there is a marker at position P' on a sphere. When the sphere is rotated a 

angle, the new position of the marker, at P, is constrained by P = RP' . Since the corre- 
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spondent marker position is represented by the three-dimension coordinate, it produces 

three equations. If three markers is selected, they give nine linear equations and the matrix 

representing the nine equations is unsingular because the markers which are randomly 

marked do not lie on a line. So, this system has a unique solution. Theoretically, at least 

three points are required to obtain the nine rotation elements. However, in practice, 

because there exit errors in the evaluation of the coordinates. This approach will not give a 

good result. We propose the least-squared error approach and use at least five points to 

solve this problem. 

Assume that P' 1  and Pi  represent the relative coordinates of the same marker on a 

sphere obtained from sequence of frames. These corresponded coordinates satisfy 

Pi  = RP' t, i = 1, ..., n (5-23) 

Because of the errors of estimation of the coordinates, there exist errors in the above equa-

tions. They are represented as 

Er1  = RP' i — Pp  i = 1, ..., n (5-24) 

The total squared error is 

G (P') = LErTEri (5-25) 

It can be observed, the total squared error is the function of nine rotation elements. differ-

entiating the above equation to minimize the total squared error 

aG = o av 
where V = N 0i, Ai, i = x, y, 2 

we can get the linear equations to solve the nine elements 

(5-26) 
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where 

B'Dx  = C„ 

B'D = C Y Y 

B'Dz  = Cz  

(5-27) 

(5-28) 

(5-29) 

LAT,  EX'ir i  EX' iZ' i  
1 1 , 

EX' in Er?' Ezir i  
i i i 

Licizi  LZ'iri  VI 
_ i 1 1 

Exiiwi  Eriwi  EZ'iWi  
_ / i i 

D w — [ w, Ow, AwiT 

B' = 

CW = 

(5-30) 

T 

(5-31a) 

(5-3 ib) 

where W = X, Y, Z. 

In the actual experiments, we can get the five to eight markers in an image and 

obtain the rotation matrix using equations from (5- 27) to (5-31). 

5.2.3 Determination of the Angular Velocity 

After we obtain the angle and axis of the sphere, the angular velocity is able to be evalu-

ated. Suppose the sphere has rotated an angle of 01 _ 2  between framel and frame2 around 

an axis passing through the center of the sphere having direction cosines as Kxi, Ky1  and 

Kzi  and an angle of 02  _ 3  between frame2 and frame3 around an axis having direction 

cosines as Kx2, Ky2 and Kz2. The components of angular velocity vector in the first or 

third frame are 

estimated using the same way as the translation velocity. We get 

Ali 
0 At (2At + At ) — 0 At2  li 2 -3 1-2 2 -3 21 1-2 

(5-32) At1-2At2 -3 (At1-2 + At2 -3) 

 

1131  
(32i611- 2 (2At2 -3 + Atl -2) -3 

(5-33) At/  _ 26,t2  _ 3  (Ati  _ 2  + At2  _ 3) 
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where 0.. = K..0. i = x, y, z, j = 1, 2, respectively. /./ / 

5.3 Collision Position 

The collision position is able to be calculated using the sphere velocities and positions in 

the nearest collision frame. The distance of the sphere from this frame to the collision 

position can be determined by Eq. (5-la). Since the time period from the nearest collision 

frame to the collision is very small, the contribution of acceleration can be ignore in the 

Eq. (5-la). Suppose that the coordinates of the sphere A in the nearest collision frame are 

(X, Y, Z) and the velocity components are (Vs  , Vy  , Vz) while the sphere B's are (X', Y', Z') 

and (V's  , V'y  , V',), respectively. Then after the spheres flight a distance in a time period, 

t, they collide in space. The differences between the colliding sphere centers are given by 

OW, = AW+AVwt (5-34) 

where W = X, Y, Z, OW, = We, — We  ATV, = W — W, AVw  = V w  — Vw  and the subscript 

"c" describes the collision position. When the two spheres are just collision, the difference 

of their centers is equal to the sphere diameter. So, we get 

D2  = (AW+AVwt) 2 (5-35) 

Since the diameter of the two spheres is 1-inch we expend the above equation and 

obtain 

ate  + 2bt + c = 0 (5-36) 

where a = VVw2  , b = ;AWAVw  and c = ;AW2  . The time t can be solved from 

the above equation 

— b ± , I b2 
- ac 

t —  
a (5-37) 

If b2  — ac > 0, the equation has two solutions. 
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The image frame we selected is the nearest collision frame, recorded at a 1000 

frames per second rate. The spheres have not collided yet in the pre-collision frame while 

have collided in the post-collision frame and the time begins from this frame. Thus the 

time t can be decided by the following relations. 

- In the pre-collision frame, the time t > 0, otherwise t <0. 

- The magnitude of t < 1 milli-second. 

The difference of the two sphere centers in the collision position is decided by Eq. (5-34) 

and the collision normal unit vector is calculated using these components. 



CHAPTER 6 

THE ACCURACY ANALYSIS OF THE EXPERIMENT 

In this chapter, we will examine the accuracy of the whole technique proposed in the 

experiment. There are some aspects involving the accuracy of the experiments, such as the 

limited resolution of the camera and the error in evaluating the centers of the spheres and 

markers that give rise to errors in the velocities. In Chapter 4, we have discussed the 

subpixel technique to solve the issue of the limited resolution of the camera, the fuzzy c-

shell technique to get the more accurate centers of the spheres and markers. In addition, 

experiments have been conducted to test the translational accuracy by using these 

techniques. In what follows, additional experiments are conducted to examine the accuracy 

of the overall experimental procedure. 

To test the accuracy of the translation, we simply dropped a steel sphere and 

recorded its motion to compute the gravitational acceleration. The sphere is held by a 

magnetic trigger which is fixed in a frame above the floor. The trigger is controlled by a 

PC486. When the PC486 turns the trigger switch off, the sphere drops down, and at the 

same time the camera catches the images of the sphere dropping process while the video 

system stores the images on a tape and the rate of the camera to grab the image is 250 

frames per second. The images are then transferred to the PC486. The motion recorded on 

the imager is calibrated to the real motion by using the knowledge of the pixel size of the 

sphere. There are over 10 frame images processed for each sphere drop experiment. The 

interval chosen between image frames processed is 8 milli-second. Subpixel and fuzzy c-

shell techniques are employed to detect the edge and to find the center of the sphere in each 

image. There are approximately 33 pixels in the diameter of the sphere in the processed 

image. Since, in the collision experiment, more than 40 pixels are used, greater accuracy 

should be achieved. After the center coordinates of the sphere for all images of an 

experiment are obtained, regression analysis is used to fit the curve using quantic functions 
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from which the gravity acceleration value is obtained. A typical experimental result is 

plotted in Figure 6.1. 

Figure 6.1 Results of translation test 

For the statistic analysis ten such experiments were performed to verify 

repeatability of the results. Table 6.1 lists the computed values of g. As can be observed, 

the accuracy of translation measurement is very high even though the number of pixels in 

the sphere diameter in this experiment is less than the actual collision experiment. 

Table 6.1 Summary of Results for Gravity Acceleration (inch/sec2) 

384.8 383.9 384.6 384.5 382.9 385.4 383.8 383.7 385.7 385.4 

Average Gravity Acceleration = 384.47 

Standard Deviation = 0.89 

Normalized Errort = 0.5% 

t. Normalized by g = 386.4 inch/sec2  



In order to test the accuracy of measuring rotations, a similar experiment is also 

conducted. In this experiment, a circular disk on which there are five dark markers is 

mounted on a motor shaft to test the rotation accuracy of the Kodak Ektapro 1000 system 

and whole processing method. The motor is controlled by a distributor and its rotation rate 

is displayed on a meter with an accuracy of 0.5 rpm. The camera grabs the images of 

rotating circular disk, the video system stores them on the tape and later, images are 

transferred to the PC486. The rate of rotation for the motor is 997 rpm and the camera 

catches the images at 1000 frames per second. There are 15 image frames processed and 

the minimum interval between image frames is 1 milli-second. Therefore, the minimum 

angle of rotation between frames is 5.982 degrees. The accuracy of different rotation angles 

is checked. For each rotation angle, data from many sequential frames are used. For 

instance, 14 calculations are done between image frames for the 5.982 degree test: framel-

frame2, frame2-frame3, etc. The least squares method is employed to compute the disk 

rotation angle between frames by making use of all five feature points. The Table 6.2 

summarizes the angle results for the first 45 degrees, including the relative error and 

standard deviation. Comparison with the computed rotation is done by fitting a linear 

regression line to the actual rotation (based on experimental values read on meter). This is 

shown on Figure 6.2, where the points indicate the computed data, while the line indicates 

the actual value of rotation. 

Table 6.2 Summary of Results for Angles of Rotation (degree) 

Actual 
Anglet 

5.982 11.964 17.946 23.928 29.910 35.892 41.874 

Repetitions 14 13 12 11 10 9 8 

Computed 
Angle 

5.993 11.974 17.973 23.961 29.965 35.938 41.864 

Rel. Error%t 0.18 0.08 0.15 0.14 0.18 0.13 -0.02 

Deviation 0.221 0.262 0.272 0.202 0.232 0.245 0.247 

t. All angles are measured in degrees 
t. Relative error% = ( Actual - Calculated )/Actual * 100 



Figure 6.2 Results of rotation test 

Based on these tests, it is concluded that the accuracy of the overall procedure is 

very high for use in the actual expenments. 



CHAPTER 7 

DETERMINATION OF THE COLLISION PARAMETERS 

AND RESULTS 

7.1 Determination of Collision Parameters 

After we obtain the collision position of the spheres and the velocity vector expressed in 

image coordinates, we can calculate the normal direction relative velocity and the tangen-

tial direction relative velocity based on frictional hard-sphere collision operator [2]. 

Consider a collision between two frictional, inelastic spheres with centers located at 

ra, rb, traveling with velocities Va, Vb  before collision, 1P a, V b  after collision and having 

rotational velocities na, nb. 

rb — ra  — unit vector from the sphere a to the sphere b (at contact), rab rb —ra 

Vb  — Va  = relative velocity, V ab = 

V t  = rab x (V ab  X rab) = tangential direction relative velocity, 

Vs  = Vt + (rab  X K2a  rab X Qb) = relative surface velocity (tangential direction), 

V 
ks  = 

V 
 = unit vector in direction of incident surface velocity. 

, 

For the spheres before collision: 

vn = Vab•l•ab = normal component of relative velocity, 

vs = vs•ics = tangential component of surface relative velocity. 
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For the spheres after collision: 

Vab rab = normal component of relative velocity, 

s  = s  • ks  = tangential component of surface relative velocity. 

Application of the operator also gives rise to two straight lines if plotted as 

—v's/vn  , vs. the tangent of the effective incident angle, v/vn. The sliding solution line is 

decided by the equation, 

vs
11 
) V

, 
= — p. (e 1) + 

K
—) + (

vn 

and the equation for the rolling solution line is, 

v's 
(

vs
) — vn —13° (----vn  

(7-1a) 

(7-lb) 

where K = 2/5 for the uniform density spheres, 130  is the rotational restitution coefficient, 
v' 

also defined as po  = p. is the coefficient of sliding friction and e is the restitution 
vs v' n  

coefficient, also defined as e = --. 
v 

 
n  

For the convenience, all the vectors are calculated in the form of components on 

the coordinate axes. When the normal component of relative velocity and the tangential 

component of surface relative velocity in pre- and post-collision are obtained, the veloci-

ties are employed to determine the collision parameters. Since there unavoidably exits the 

error for the evaluation of the velocities, in order to obtain more accurate results about col-

lision parameters, a linear regression analysis is applied on the data and then this is fit to 

the model given by Eqs. (7-1). 



7.2 Results 

In this section, the results for the experiments of two spheres colliding in space are pre-

sented. The images chosen in the experiment are processed and very good edge images are 

obtained using the subpixel zero-crossing technique. The AFCS algorithm created by Dr. 

Rajesh Dave is utilized and this yielded excellent results for the location of the sphere and 

maker centers. The figures, tables and graphs in the section present a good explanation of 

automatic evaluation of collision coefficients by the image processing technique. 

Figure 7-1 shows an image before collision where the top two spheres are the top 

view image obtained from the mirror, the bottom two spheres are the front view image and 

there are some markers on the spheres to determine the orientation of the spheres. 

Figure 7-2 shows a sequence of three pre-collision image frames and three post-

collision frames selected in an experiment. 

Figure 7-3 shows the sphere and marker edge images and their locations where 

plus symbols indicate marker locations detected by AFCS algorithm. 

Figure 7.1 A grey level image before sphere collision 



No. 1 

No. 2 

No. 4 

No. 5 

No. 3 No. 6 

Figure 7.2 A sequence of grey level images. 



No. 1 

No. 2 

No. 3 

No. 4 

No. 5 

No. 6 

Figure 7.3 A sequence of edge images. 
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Figure 7.4 Experimental results for the collision parameters 

Figure 7-4 shows the results for evaluation of collision coefficients for all experi-

ments where the sliding solution line and the rolling solution line are simulation results 

based on Maw et al theory [28] while the circle points are the experimental results. The 

parameters used in the simulation [28] are shown in Table 7.1. 

Table 7.1 Properties of Spheres 

Density 
(g/ cm ) 

Sphere Diameter 
(cm) 

Coefficient 
of Friction 

Poisson's 
ratio 

Young's Modulus 
1010  dynes/cm2 

1.15 2.54 0.08 0.25 2.3-3.8 

From this figure and using Eqs. (7-1), two best fit lines are obtained, and the colli-

sion parameters are computed. For one inch nylon spheres, the values obtained are e = 

0.74, 0 = 0.69 and 1.1 = 0.08 respectively. 



CHAPTER 8 

CONCLUSION 

The Kodak EktaPro1000 high speed image system has been effectively used to get clear 

images of the two colliding spheres. 

The subpixel zero-crossing technique has proven to be successful for detecting 

edges in the limited image resolution. This techmque based on the interpolation indeed 

gives subpixel precision. It is very useful to get high accuracy edges especially in the low 

resolution images. 

The algorithm based on the adaptive fuzzy c-shell theorem has proven to be 

remarkably successful in detecting shapes characterized by sphere and ellipse. It has been 

shown to have some advantages over the AHT method. By comparing with AFCS, the 

AHT method is slower in computation, is less accurate in finding the location of spheres 

and ellipses, requires more memory and sometimes needs edge gradient information. 

The method to calculate the velocities of the two colliding spheres has shown to be 

effective. It has considered the influence of the air reaction force so that it may obtain the 

more accurate velocities at the colliding position and get better precision of the colliding 

position computed by the velocities. 

The collision coefficients are calculated by linear regression about all experiments 

and compare with theoretical predictions of Maw et al. In the rolling solution, the results 

are fit very good while in the sliding solution, data shows a little scatter when the ratio of 

vivn  is greater than 5. This is produced by glancing of the colliding spheres so that the 

value of the relative normal velocity is too small. 

The program to match the markers among the frames [26] is achieved using proxi-

mal uniformity constraint. In most of the cases, it works well but due to some limitation of 

the algorithm, occasionally it cannot get a correct result, especially when the markers are 

too close each other. 
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In summary, all the methods implemented here have performed very well and 

allowed us to correctly evaluate the coefficients of collision. 

The experimental procedure developed here can be applied for different sphere 

sizes as well as collision between a sphere and a flat surface. The experimental apparatus 

needs to be modified when spheres of much smaller dimensions, e.g. 1 to 3 mm are used. 

The motion analysis technique, however, remains the same if a magnifying lens for the 

camera is used. Small differences in the value of some of these parameters produce 

significant difference in the results of simulations [27], therefore better experimental 

evaluation of such parameters is necessary in order to make dependable comparisons 

between the experiments and theory or simulations. The technique developed here should 

prove to be very useful in a variety of experiments in the granular flow. 



APPENDIX A 

SPECIFICATIONS OF THE KODAK SYSTEM 

PROCESSOR 

Controls 

Menu-driven Keypad: LCD display provides user access to all system 

functions. Includes six dedicated functions keys 

and ten-multi-function keys. 

Power Switch: Easily accessible. 

Eject Switch: Ejects tape cassette. 

Operating Features: 

Recording Technique: Linear FM. 

Recording Medium: 1/2" high density tape. 

Tape Handling: Cassette (700ft.) 

Frame Rates: Records at 30, 60, 125, 250, 500, 1000 

full frames/sec. Up to 6000 pictures/sec. 

Frame Formats: 1, 2, 3, 4 or 6 pictures/frame 

Recording Time: A minimum of 16 minutes at 30 fps and a 

minimum of 30 seconds at 1000 fps. 

Normal Playback: 30 frames per second. 

Single Step: Displays one frame at a time, forward or reverse. 

Jog: Displays successive frames, forward or reverse, 

at a slow, continuous rate. 

Fast Forward/Rewind: Moves tape at 300 ips forward or reverse. This 

rate is faster than the highest recording speed. 
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BOT/EOT: Optically senses the beginning of tape and the 

end of tape to prevent overruns. 

Search: Moves the tape to a given video frame. 

Heads 

Record & Playback: 

Erase: 

Two Microgap heads, each providing 19 

channels-- 16 video, 2 timing, and 1 

unsupported. 

Permanent magnet. 

Video Output 

Compatible with: NTSC or PAL 

Gamma Correction: Variable from 0.1 to 1.0 

Grey Scale: 256 levels. 

Size: 17"x22"x12 1/4". 

Weight: Approximately 80 lbs. 

Power: 110/220 VAC, 60/50 Hz, 8 amps/4 amps. 

IMAGER 

Control Keys: Live, Record & Stop 

I/O Jacks: Video, Audio, & Remote Trigger. 

Sensor: 192x240 pixel NMOS array. 

Lens Mount: C-Mount, with electronic remote control 

capability for zoom, focus and exposure. 

Tripod Mount: 1/4-20 and 3/8-16 with standard ANSI hole 
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pattern. 

Cables: 15 ft. standard. 

Size: Approximately 9"x4"x5" 

Weight: Approximately 5 lbs. 

Power: Derived from processor. 

KEYPAD 

Dedicated-function Keys 

Live: Displays live image on viewfinder and monitor. 

Record: Starts recording. 

Stop: Stops recording or playback and freezes the last 

image in frame store. 

Replay: Moves tape to first frame of most recent 

recording session and plays back at 30 fps. 

Play: Plays a recording in any selected playback mode. 

Help: Provides short cut paths through menu tree. 

System Software Menu 
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System Setup: 

Move Tape: 

Video Display: 

Environment:  

Controls Imager selection, overlay format, 

position and size, frame rate and division factor, 

automatic lens functions and session numbers. 

Controls playback mode and event markers. 

Enables reticle, gamma adjustment, interlaced 

video and saved image. 

Controls time and date. 



k — 1 k k k + 1 
Xp ' Xq — Xq' Xr 

m m 

E, E 
x=lz =1  

APPENDIX B 

PROXIMAL UNIFORMITY FUNCTION 

The aim is to obtain a one to one correspondence Fk  between points of the kth frame and 

the (k + 1)th frame. It is assumed that objects in space move a small distance in a small 

amount of time and their motion is smooth or uniform. Therefore the location of a point 

from one frame to the next will be in the proximity of the previous location and the 

objects are assumed to follow a proximal uniform path. A proximal uniformity function 

d, was proposed which obeys the following criteria. 

• In the two successive frames selected the speed of the 

objects does not change much. 

• Direction in the two successive frames do not change 

much. 

• There is very small displacement between any two successive 

frames. 

The proximal uniformity function is defined as follows: 

o(Xk
p
-1,Xk

q' X
k+1

) — 

k — 1 k k + 1 Xx , X k_1 -X
k 

k_i , X 
0213 (.1) 4:1) (X) Z 

X
k 

X
k + 1 

q' r 
m m 

E E 
x=1z =1 

Xk 1 I Xk + 1 
ir  cy, (x) - z 
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where 1 S p, q, r m; 2 S k m 1; q = ark 1 (p) ;   Xkg, X rk ± 1 is the vector 

from point q in frame k to the point r in frame k + 1 and 11 XII denotes the magnitude of the 

vector X. The ith point in the jth frame is denoted by the vector X i in 2-D coordinates. 

A major assumption being made with this proximal uniformity function is that F1, an 

initial correspondence, is known. Knowing the initial correspondence the algorithm cor-

rectly marks the trajectories of the points from frame to frame. The correspondence Fk  is 

— 1 k determined by minimizing the cost function ES (Xp  , Xq, Xrk + 1) 

Implementation of the Algorithm 

For k = 2 to n - 1 do 

• A matrix M (m * mk+i ) is constructed, where 

k MU, = (Xk — 1 , Xq' 
Xk + 1 
 ) ' when Fk-1(p) = 

mk points from the kth frame are along the rows and 

mk+1 points from (k+ 1)th frame along the columns. 

• If (ink+i < mk) then it is a case of occlusion so do 

i. For a =1 to mk+1  do 

* The minimum element [lri} • in each column j of M is 

identified. 

* The priority matrix B is computed such that 

Bud,. E m u, A . 

* The pair Up J] with the highest priority value BUi,j1 

is selected and assignment Fk(ii) = j is made. 

* Row /1 . and column] are masked in M. 
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ii. The points mk  - mk+i  for which correspondence 

has not been found are identified. New feature 

points are created in frame k+1 for the missing 

points by extrapolating the correspondence from 

frame k - 1 to frame k. 

iii. Set mk+i  = m 

else there is no occlusion 

iv. The row i and the column i in M is masked. 

Points in the frame k that do not have corresponding points in the frame k + 1 are 

identified and new points are created corresponding to those missing points. If a point a in 
k frame k with coordinates (xcr ya

k ) which correspond to a point c in frame k- 1 with 

coordinates (xck —1  , yck — 1) does not have a corresponding point in the frame k + 1, then 

a point b with coordinates (xbk + 1 , ybk+ 1  ) is created to correspond to point a with the 

equations, 

k+1 k k k-1 xb = xa+ (xa —xc ) 

k+1 k k k-1 
Yb = Ya + (Ya — Yc ) 

This extrapolation ensures smoothness in velocity, both in magnitude and direction. 



APPENDIX C 

THE PROCEDURE OF EVALUATING COLLISION PARAMETERS 

Kodak Ektapro 1000 high speed video camera captures images of two sphere collision and 

later frames of image are transferred to data images in a PC486. In order to obtain the 

velocities of colliding spheres, six frame images are processed for each collision experi-

ment, i.e., three pre-collision frames and three post-collision frames. The processing steps 

are in following. 

For each image frame, use 

* lap _of gaussian in Visilog package to get LoG image, 

* pix2sub 3 or pix2sub 4 to expand the LoG image to 9 or 16 times based 

on the subpixel technique, 

* tovisi in the PC to write the expanded image to the Visilog format, 

* subtract in Visilog package to transform the shifted image into the LoG 

image, 

* zero xing in Visilog package to get the edge image, 

* label in Visilog package to obtain the labeled edge image, 

* afc 1 to get the 2-D central coordinates of spheres and markers. 

For all image frames, use 

* match to match markers among the six frames, 

* ch _ rel coord to transfer the marker center to relative coordinates original 

at the corresponding sphere center, 

* coef to calculate the pre and post-collision normal and surface 

velocities. 

For all experiments, use linear regression method to obtain rolling and sliding lines 

and collision parameters. 
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