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ABSTRACT 

Magnetohydrodynamic Behavior under 
Current Impulse Excitation 

by 
Shi Wu 

The effects of magnetic field on magnetohydrodynamic (MHD) channel 

flow between two parallel plates of infinite extent are investigated. The applied 

magnetic field is due to an infinite impulse current-carrying conductor located a 

small distance below the lower channel wall. Influence of the induced magnetic 

field, such that the magnetic Reynolds number (R„,) is less than unity but greater 

than zero, is included. The solution is obtained using the perturbation theory in 

the expansion of the field components in a double-power series in R„, and I. 

Calculations for the magneto-fluid components were carried out using personal 

computer. The computer programming is focused on the component of induced 

magnetic field B„,. It covers every single term of the tangential induced magnetic 

field component Bx, and the total component. The results can be used to develop 

applying impulse acceleration of exhaust plasma in a fusion-MHD power 

generator. 
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Chapter 1 

INTRODUCTION 

1.1 MAGNETOHYDRODYNANIIC FLOW PROBLEMS 

The research of seeking new, primary, energy resource while at the same time 

establishing other power generating schemes that result in an eventual increase 

of efficiency has being done by many scientists. Conventional power 

generating systems depend on their primary energy source. Fossil fuel reserves 

are becoming increasingly limited in supply. This impending shortage is 

already acute in many areas. The inefficiency of fossil fuel that increases 

pollution and contributes to fuel supply problems must be addressed head on. 

Magnetohydrodynamic power generating cycles augmenting a cycle for 

conventional steam systems will result in an increase in conversion efficiency 

because of MHD cycle's operating at high temperature, resulting in increased 

thermal efficiency. It has been reported that with fossil fuels, MHD would 

bring about a saving in fuel of about one third. And MHD affords the 

opportunity of reducing thermal pollution and related undesirables. More 

rigorous studies are needed in order to prove the feasibility of open cycle 

MHD on a commercial level. Problems to be solved relate to optimum channel 

dimensions, protection of channel walls from the hot conducting plasma, and 

fuel preparation. Other problems concern thermal efficiency of the channel, 

air preheating, and electrode distribution and orientation. The MHD generator 

has the following distinct advantages over conventional electric power 

generation methods. 1) It can handle extremely high temperatures. 2) It can 

handle very high power levels. 3) It has no moving parts or close tolerances. 

4) It can start and reach full power very rapidly. Solutions for the following 

magnetofluid components have to be obtained: 1) Total axial and transverse 
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magnetic fields (applied and induced). 2) Induced electric fields. 3) Total 

gas velocity components. 4) Pressure gradient and total pressure components. 

5) Magnetic pressure gradient and magnetic pressure components. 6) Induced 

current densities. This paper is focusing on the first part " Axial and transverse 

magnetic fields (induced)." 

Early work of the magnetohydrodynamic (MHD) effects in inviscid flow 

fields with large electrical conductivity and strong applied magnetic fields 

were investigated by several researchers. Among the dimensionless important 

groups in every magneto-fluid dynamic flow are 1) The magnetic Reynolds 

number R„,, which expresses the ratio of the induced magnetic induction to the 

applied field, and 2) the magnetic force coefficient , which is the ratio of the 

electromagnetic force per unit volume to the inertia forces per unit volume in 

the fluid. One-dimensional MHD flow has been researched by Resler and Sears 

(1958). Two-dimensional perturbation flows at infinite, and at large but finite 

magnetic Reynolds numbers have been discussed by Resler and Seras (1959); 

they showed that the vortex and current sheet that lies on the surface of a solid 

body in steady plane or axisyrrunetric aligned-fields flow of an ideal inviscid 

conductor become, at large but finite R„„ a boundary layer of large vorticity 

and distinct sizable current density. If this magnetohydrodynamic number is 

very small, this boundary layer consists of an inviscid boundary layer whose 

thickness is very small, underlain by a much thinner viscous sublayer within 

which the significant magnetic-field components are essentially constant. The 

viscous sublayer is described by the same equation as the viscous boundary 

layer at low R.. And many general solutions for finite magnetic Reynolds 

number and finite magnetic force coefficient have been obtained by Williams 

(1960). Hains has described a general method of characteristics for use in 

supersonic flow under these conditions: magneto-fluid flows in which the 



magnetic Reynolds number is very small, and the applied magnetic field 

remains unperturbed by currents produced in the fluid, where he considered 

small values of the magnetic force coefficient, and obtained solutions for both 

subsonic and supersonic flow. Ludford has studied the case in which R,, is 

small, the magnetic force coefficient is very large and only pressure and 

magnetic forces are present. The geometrical configurations to be studied were 

suggested by Scherman, in which a steady two-dimensional, uniform, slightly 

conducting, incompressible flow passes through a channel; at which a two 

dimensional uniform magnetic field, is applied to the flow and has the general 

defect of obstructing it. In a particular case studied by Scherman the magnetic 

field was due to a current flowing in a straight conductor lying outside the 

channel and perpendicular to the flow. 

In 1970s, Denno did significant research on MHD and got solutions for the 

induced magnetic field on plasma flow depending on different levels of 

ionization degree and the field strength. His studies included the cases of 

infinite and non-zero magnetic Reynolds number (R,,,) corresponding to 

situations of highly conducting and weakly ionized plasma, respectively. Since 

the most important of these features is the small value of the magnetic 

Reynolds number, the emphasis in his work was to derive expressions for the 

pressure gradient along the channel wall and to establish criteria for boundary 

layer separation where 05.R,,, 5_1. The effect of the induced field must be 

considered in the treatment of inviscid MHD channel flow. In Denno's paper 

also, MHD effects in an MHD channel flow are considered for the case where 

the fluid properties are such that the Reynolds number is less than unity but 

cannot be neglected. So that the induced magnetic field is taken into account. 

In [1], he described the magnetic flow between infinite parallel plates of 

arbitrary separation. Solution of the induced magnetic field perturbation 



equation, the flow-field perturbation equations and that for the total pressure 

gradient and the magnetic pressure gradient were solved. The study was also 

confined where R„, is of the order of 0.10 or greater, the induced magnetic field 

effects must be taken into account in any treatment of inviscid MHD channel 

flow resulting with boundary layer separation. For R,,, equals or greater than 

0.1, an increase in the adverse pressure gradient along the channel is observed 

to result in a considerable improvement in boundary layer separation, and 

providing protection to the channel from the high temperature fluid. As the 

channel height increases, the influence of the induced magnetic field increases, 

and the maximum magnitude of the total and magnetic pressure gradients due 

to the induced magnetic field along the wall increase with the channel height. 

A comprehensive analytical study of the magnetic and flow fields in an MHD 

channel using the principles of the theory of perturbation coupled to the 

concept of the magnetic boundary layer was developed in [1]. Denno used a 

close mathematical form using the perturbation theory and the existence of 

magnetic boundary layer approximation for solution of the magnetic and flow 

field perturbations for incompressible and inviscid plasma problems in a 

paralleled plate channel. It was established that perturbation in total plasma 

pressure is directly connected to channel height. As the channel height 

increases, total pressure may be reduced, while magnetic pressure continuous 

increase. Continuous increase in the magnetic pressure can be taken as a 

measure of power dissipation in the MHD flow. Few years later, the behavior 

of the weakened fusion plasma with its electrical conductivity changing 

linearly along the MHD channel length was investigeted. The results showed 

that fusion plasma with extremely high temperature and with high degree of 

ionization, if subjected to an applied magnetic field, will lead to a situation of 

aligned flow, with total boundary layer separation from channel wall; The 



present trend for utilizing fusion plasma in MHD generation field is by mixing 

it with a weakly ionized plasma to a level at which the mixture will attain a 

certain desirable level of ionization, although weakening a perfectly 

conducting fluid may not be the best approach. And Denno showed that to 

reduce the perfect conductivity of fusion plasma is a disadvantage. He 

indicated that an excellent conducting fluid for using MHD induction type 

generator is a challenge. 

Since the separation of the hot conducting fluid from the channel walls 

results in protecting the channel from the high-temperature, high-speed plasma, 

several investigators explored various schemes to use the MHD effects to 

reduce the amount of heat transfer from the fluid to the MHD channel. 

Investigations were conducted on an inviscid, incompressible flow under 

conditions of small magnetic Reynolds number to the extent that the induced 

magnetic field is neglected. In this thesis, the MHD effects in an MHD 

channel flow are considered for the case where the fluid properties are such 

that the magnetic Reynolds numbers is less than unity but cannot be neglected. 

Therefore, the induced magnetic field is taken into account. The fluid is 

assumed to be incompressible, inviscid, electrically conductivity such that 

O<R„, <1. 

1.2 STATEMENT OF THE PROBLEM 

The principle of MHD generation of electricity is that when a conducting fluid 

moves across a magnetic flux an e.m.f. is induced in it. When this gas is 

passed through the magnetic field an e.m.f. is induced, mutually perpendicular 

to the magnetic field direction and to direction of the gas flow. If suitable 

electrodes are placed in the appropriate position and connected to an external 

load, then this e.m.f. will produce a current capable of performing useful work. 



The generation of electricity in the MHD converter is based upon the Faraday 

effect: that is, a voltage is generated across a conductor that is caused to move 

through a magnetic field. Figure 1-1 shows the essential features. To simplify 

electrodynamics of MHD generators, many line conductors form currant sheet 

under the low plate electrode. 

Figure 1-1 Schematic of magneronydrodynamic converter 

Figure 1-2 shows a conducting fluid flowing between two infinite parallel 

plates of arbitrary separation. At the channel entrance, the plasma is of zero 

viscosity and incompressible. The applied magnetic field is due to an infinite 

length of current-carrying conductor located a small distance yo  below the 

lower channel wall. In one line conductor, the current equation is: 1(t)=15(1). 

1) The problem is: To solves for the induced magnetic field and variations in 

the flow field (work in two dimensions) within the MHD channel, due to 

impulse excitation. 

2) The problem objectives physically and mathematically: To develop clear 

impact of magnetic field perturbation on boundary layer separation. Let the 

infinite conductor be located at X = 0, Y = —yo  and carry a current I8(0,—yo,t). 



I8(0,—y° , t) is a function of x, y and t. And it only happens at x = 0,y = --yo, t 

can be any time. The field produced by current impulse conductor is identified 

as applied field Bo . The components of the applied magnetic field in 

dimensionless form is used to find the induced magnetic field Bx, : 

/ x 
BA = 2 5(0,—yo,t) (1) 

2g x2  +01 +YO) 

/ (Y+YO)  
Bxo z: 2 8(0,—yo,t) (2) 

2 7rx2 +(Y+Yo) 

In equation (1) and (2), t does not effect Bx0,B,,,, themselves. So that these two 

equations can be written as: 

/ x 
By0  = 2 8(0,— yo ) 

27r x2  “Y+YO) 

1 (Y+YO)  B= , 80, —Yo) xo 
2 7rx2+01+Y0)2  

Figure 1-2 Boundary layer development with magnetic field generated by 

impulse current-carrying conductor under lower electrode 

Derivation of the equations representing distortion in the magnetic field and in the 

flow field is presented in Chapter 2 of this paper; their solution is given in 

Chapter 3. 



The treatment involves the use of perturbation theory in the expansion of the 

magnetic-field and flow-field components in a double-power series in R„, and I, 

the magnetic Reynolds number and the magnetic interaction parameter, 

respectively. The effect of the induced magnetic field is to be determined. 



Chapter 2 

THEORY OF MHD 

2.1 TILE MAGNETO -FLUID EQUATIONS 

Various authors have given the basic equations for the flow field equations and 

electromagnetic field equations. The following equations (3) through (12) are very 

approximate and valid when the fluid is treated as a whole continuity as indicated 

in "Energy Conversion" by E. Walsh, Ronald Press (1967). 

Consider a volume element in the coordinate system shown in Figure 1-2. The 

fluid is assumed as a whole continuum. If the fluid is moving with a certain 

velocity, and a scalar conductivity, then the current per unit area induced by the 

motion of the gas through a magnetic field of strength B is : 

j = a(VB — E) (3) 

where E is the internal electric field due to the load. It is customary to define a 

loading parameter K: 

, 
J/B  
E 

A = -- (4) 

So it can be written as:  

j = (1 — K)a-VB (5) 

Then the power P delivered to the load, per unit volume of the generator, is: 

Po  . JE = KO — K)ar 132 (6) 

The electric field and the power may be rearranged to give the output voltage and 

power per unit cube as a function of current. The results are: 

E = VB - 2:- (7) o- 

j2 
4 =iv/3—  Tr (8) 



that is the voltage varies linearly and the power quadratically with current just as is 

the case with most electric power sources. Of course in the MHD generator, as in 

conventional rotating machinery, these rules are not followed exactly if V, B, or o 

vary with current. 

The force F on a unit cube of the gas will be opposed to the gas motion and 

given by: 

F= jB . (1— K)aV B2 (9) 

In order for the gas to move through the generator against this force, there must be 

a pressure difference dp between the entrance and exit given approximately by 

Ap= FL. (1— K)crvB2  L (10) 

where L is the flow length of the generator. 

The rate at which the gas does work pushing itself through the magnetic field 

is: 

P
P . FV . (1— K)ar g (11) 

The ratio between the power output and the push work is the electrical efficiency 

rye , ( k is a constant): 

P 
lie  = = k (12) 

Pp 

Because the joule dissipation in this device occurs within the working fluid rather 

than in an external conductor, it is not lost energy, but it does represent a departure 

from thermodynamic reversibility. 

In MHD energy conversion the conditions encountered and the approximations 

used are quite different from those associated with fusion and astrophysical 

research. One of the more important differences is the value of a dimensionless 

quantity known as the magnetic Reynolds number R„, where: 

R. = Pocign (13) 



where A:, =permeability of free space 

o-  =gas conductivity 

V=gas velocity 

L=length characteristic of problem 

In general, R. is large compared with unity in fusion research and astrophysics, 

but equal to or less than unity in MHD conversion power generation. In 

engineering magnetogydrodynamics a modification of R„„ the mixed magnetic 

Reynolds number Rmx , also becomes important. 

A. Electromagnetic field equations 

1) The Charge Continuity Equations: 

v•j+=0 (14) 
0 

where pe  =electric charge density, j=current density. 

2) Ampere's Law: 

V x = po j, (15) 

V•R=0 (16) 

where B=magnetoc flux density, po=permeability of space 

3) Faraday's Equations: 

• 
v x = —

a3 (17) 

where E=electric field strength and the assumption is made that, in MHD flows, 

electron and ion densities are equal. 

4) Ohm's Law: 

7, = a(E0( -4-T7 x73) (18) 

where o=electrical conductivity, V=fluid velocity. 

5) The Energy Equation: 



7 
—  

W..= Ee• it —Jc a 
(19) 

For an MHD flow having the properties of being incompressible, inviscid, and 

steady, and with no applied electric field, the MHD equations in nondimensional 

parameters are: 

V•It.,---0 

V•B'=0 • 

V x B' = R,„(V' x13') 

(V •V)V = —V P +.1(17' x B') x B' (20) 

where 

, V 
V— =  

ref 

B =   B— 
Bref 

'Tref , Bref are reference values of velocity, magnetic flux density. 

RT71 = P o CIOVrefY0 

B: Flow field equations 

6) The momentum equation: 

1 p(TI xB)  
—VP±(PV)q= (21) 
P P 

It can be written 

1 S(E-Fqxr3)  
— VP1- (PV)q= x B (22) 
P P 

R„, is magnetic Reynolds number, a measure of the ration of the induced magnetic 

field with respect to the applied field. q is velocity vector. 

The magnetic and flow field components which satisfy 

Vx-.A1 =R„,(Px-f3) (23) 



are in the form: 

so 
B = Bo  + EER„,k B(n.k) 

n+k=1 

V •131 = 0 (24) 

VxA=Vo xBo (25) 

where n, k--- 0,1,2,  

B is expressed in type form of a double power series in R„, and 1. The fluid and 

magnetic properties are made dimensionless by referring them to undisturbed 

uniform values. Here S and R. are the magnetic force coefficient and magnetic 

Reynolds number, based on these uniform values of density (p.), field strength 

(B), velocity (V) and a representative length 1. 

Imagine now a cone-dimensional gas flow perpendicular to a magnetic field. In 

a generator E = (11 2)68V g Lg , so that the work done by unit volume of the gas in 

moving across the field a distance Ls  is : 

FLI, = (1 I 2)asV B2  Ls (26) 

The energy stored in the magnetic field per unit volume is :13 2 12x. The ratio of 

these is: 

B Work done by the gas 
R,,, = Po cigns, 7= = (27) 

Bo Energy stored in the field 

The magnetic Reynolds number has another useful interpretation. R,„ is a measure 

of the extent to which the gas motion can modify or deflect the field. In 

engineering applications it is important to know how much energy is dissipated in 

the solid conductors that create the applied magnetic field. 

Consider a flowing fluid conductor in a uniform magnetic field B, an e.m.f. is 

set up at right angles to the velocity vector V and the field B as shown in Fig 1-1 

and if the Hall number is very small then a current will flow parallel to the induced 

e.m.f. The induced e.m.f. is the charged particle separating force caused by the 



magnetic field. If no electrodes are immersed in the fluid, open circuit conditions 

prevail, then the electrons will flow downwards and the positive particles will flow 

upwards. As the charges separate there results a distribution of charge that 

opposes the induced e.m.f. and eventually is sufficient to balance the tendency for 

charge separation, e.m.f., and further current flow is prevented, E x Tg. 

In order to allow the e.m.f. to drive a current through an external load it is 

necessary to reduce the strength of the electrostatic field. This is achieved by 

immersing electrodes, which are connected to a load, into the fluid as shown in Fig 

1-1. A restricted flow of electrons then occurs from the cathode through the fluid 

to the anode returning to the cathode via the external load. The driving force on 

the electrons is equal to the difference between the induced e.m.f. and the 

electrostatic field E and is called the total e.m.f. The actual value of the total 

e.m.f. clearly depends on the value of E which depends, by Ohm's law, on the total 

ohmic resistance of electron circuit. If the external resistance is reduced to zero, 

there is an unrestricted flow of electrons from the cathode into the fluid and out 

via the anode. The electrostatic field E is now zero, with no charge separation 

occurring. This short-short-circuit condition has a current density equal to 

cr(V x B). The simple representation of a conducting fluid moving in a magnetic 

field becomes much more complicated when the fluid has an appreciable Hall 

Number great than 0.1. 

2.2 DERIVATION OF THE INDUCED MAGNETIC-FIELD 
EQUATIONS AND BOUNDARY CONDITIONS 

Magnetic-Field Equations 

Refering to (24) (25) where B, is the induced magnetic field, and we have 

that 

Vi , = 0 



Let K = ax  where ax  is a unit vector in the x direction. Equation (24) becomes 

V•B, = 0 

V x B, = ax  x (a xko  + ayByo ) = ad3,,o (28) 

By, is the y component of the external field Bo  since Bic, = x/8(0, —.Y0)/ [x2 +0 +.01 

where it should be stated that this is the same as (1), in normalized from. 

therefore, (25) becomes 

y1 (915:3x; x 
x2+ (1+ y)2 

.15(0 , -yo) (29) 

, + ar3x1 =0 (30) 
ex 

When (29) is differentiated with respect toy and (30) with respect to x, and then 

subtracted, we get 

8B.,  +  c Bxi  =  2x(1 +y) 
 /50, —yo) (31) 

ex' ay' [x2+(1+" )21 

(5—current impulse singular function, I=magnetude. 

Boundary Conditions: 

The fluid will pass in a transition sub layer of extremely small thickness 

from the channel wall to an inviscid boundary layer, the thickness of which 

depends upon the value of the magnetic Reynolds number R.. At the channel 

surface the flow velocity components Vy  and vx  are zero, but the values of Bx, and 

By, are unknown. The viscous and the inviscid layers merge smoothly, and hence 

the outer boundary values of V, and .81, for the viscous layer are given by the 

values assumed at y=0 in the inviscid layer. The same conditions exist in the 

viscous boundary layer for all values of the magnetic Reynolds number R„,. The 

thickness of the viscous layer is of the order of 1/ liTe, , where Re  is the true 



Reynolds number. Now recall (16), since Vo  is in the x direction and B, is two 

dimensional: 

--'1---- 
a3 

=a,V0B
Y° 

(32) 
a  

In the viscous layer, the two velocity components are zero, and hence Vo  will be 

replaced by zero; therefore, (32) becomes 

ailyi 619xi  = 0 (33) 
0 ac 

and also in this layer, the quantity ecc3) is of the order of 1/8 and e/clx is one of the 

order of 1, where 6 is the thickness of the viscous sub layer which is of the order 

of 1/[R: . Therefore, (33) becomes 

„ By, 
pox, = — (34) 

.‘flie  

The quantity By, will have some finite value at the channel wall and Re  is usually a 

large number. Hence, at channel wall, we find 

Bx,z,  0 at y=0, and y=L 

where L=arbitrary channel height. Therefore, the partial differential equation B11 , 

together with the established boundary conditions, becomes 

dBx,  dBx,  _ 2x(l+y)  
+ 18(0,—y0 ) (35) 

eX2 ey2 [X2+(l+Y)21 

Bx, = 0 at y=0, L and 

Bx, = 0 at x=±00 (36) 



Chapter 3 

PHASES OF COMPUTATIONS 

3.1 SOLUTION OF THE INDUCED MAGNETIC FIELD 
PERTURBATION EQUATIONS 

Chapter 2 presented the derivation the partial differential equation describing the 

component of the induced magnetic field to the first order in i?,„ (refer to Fig. 1-2) 

is given in Eq (35). with the boundary conditions expressed by Eq (36). 

The right-hand part of the partial differential equation (35) is 

2x(1 +y)  
16(0, — yo ) 

[x2+ (1+y)21 

If the numerator 2x(1 + y)18(0, yo ) is divided by the denominator [x2 +(1 + y)2r the 

Eq (35) can be written as follow: 

Bx, 
+ 

 Bx, 
— 16(0, yof 

2 
 + 

2y 4 (1 + y)2  4y (1+ y)2  
0x2 0y2 

X3 X3 x5 x' 

6(1 +y)4  6y (1+ y)4  8(1 +y)6  8y(1 +y)6  
x7 X

7 
X9 X9 

where y is any point across the two plates. 

This partial differential equation can be analyzed by Laplace transform. The 

most useful properties of the Laplace transform is the way in which it operates on 

derivatives. This property shows that the transform of derivatives can be evaluated 

in terms of the transform of the function. The technique for solving partial 

differential equation is that using Laplace transform to change partial differential 

equation to the ordinary differential equation. Then the inverse Laplace transform 

gives the solution of the problem. 

Now we will transform equation (37) for y keeping x as the variable along the 

channel axis: take Laplace transform with expecting to y 



Now we will transform equation (37) for y keeping x as the variable along the 

channel axis: take Laplace transform with expecting to y 

The left part of the equation becomes: 

1,92B --- --- 
x' +s2 Bx, - sB .1 (x,0)- B 2.1 (x, 0) 

axe 

Assume that 73xi (x,0)=0,(because from boundary conditions Eq (36): Bx, = 0, 

when y=0), so that the equation only has two items which are: 

c B,  + 
s2

137- 
Ox2  

Taking Laplace transform of the right part of the Eq (37), we get a differential 

Equation in terms of x with s carried along as the transform variable. 

1.  e_y  
Lyr0 ' ° 2 °s  

28( —y  

L x3 x
= 3 

—yo )1= 

 X3  
2 rya

(0, —yo )e-Ysdy = 0 
X3 

J 

f
p5(0,-yo )e-"dy = f vdu , v = y,u = f e' 8(0,-Y Ody = erY° 

uv = ye° , Judv = f esY°dy = yerY° 

2 2  L
.,
[4(1+  y)  so

,  yo\' 
 ],_ 4 

xs x 
e

_ yos  , L
y
[4y(1 + y)  

(
5(0,...y0

)].,. 0  

xs s  

Lyi 6(1 +y)2  8,(0, y0 )1= 67 e"°5 , Lyi6Y(1+7 Y)2  
x7 

5(0, -yo  )] = 0 
L j x L x 

2 2  Ly18(1+y)  8(0, yo  )1= e-h 
x 

5 , Lyr8Y(1 9
+  

Y)(50,-Yo d = 0 
L x9 j x L  

So, Eq (37) becomes: 

0 Bx,  ± 1-j- _[ 2 -4+6- 8 ] 
e _yos (37) 0 xi  - 3 5 7 

axe x x x x
9 



This is a linear differential equation for which the general homogeneous solution is 

known. The method that is used here can determine the complete solution. This 

method is depicted fully and clearly in chapter 1 "Particular solutions by variation 

of parameters" (p.25 - p.27) in "Partial differential equations". Suppose that the 

general homogeneous solution of the equation: 

d"-1  —cry 
+a,(x) + ••+a,,_1(x)dY +a„(x)y = h(x) (A) de dx.-1

y 
cix  

has been obtained in the form: 

,, 
yH  =Eckuk (x) (B) 

k=1 

where the u's are n linearly independent homogeneous solutions and the c's are n 

arbitrary constants or "parameters." We will find that a particular solution of the 

complete equation can be obtained by replacing the constant parameters ck  in the 

solution of the associated homogeneous equation by certain functions of x. Thus, 

we assume that 

yp  = 1 C k(X)U k(X) (C) 
k=1 

is a solution of the equation and attempt to choose the n functions c, suitably. 

Since we have n functions to determine, and since the requirement that yp, satisfies 

the equation represents only one condition, we have n-1 additional conditions at 

our disposal. 

Differentiating Eq (c) and using primes to denote differentiation with respect to 

x, we obtain: 

dY P " . 
---=ECkuk +Iquk (D1) 
efr k=1 k=i 

There then follow: 



d2  y p ^ ^ 
---

_
j_ = E cku,"±E cklik (D2) 

cLE2 k=1 k=1 

As the second condition, we require again that the sum of the terms involving 

derivatives of the C's vanish. 

n 
E c‘u; = 0 (D3) 
k=1 

Proceeding in this way through the nth derivative, we have as our nth derivative is: 

cry ^ 

n  
= E c uk w + E C;U k(n-" 

Cfr k=1 k=1 

By introducing the expressions for yi, and its derivatives into the left-hand side 

of Eq (A), we find that the final condition, that Eq (C) satisfy Eq (A), becomes: 

,, . ,, ,, 
Ly p  =ECk u,'")  + a,(x)ECkuk(7")+. • - +an(x)ECkuk  +Equ k(''-' )  = h(x) 

k=1 k=1 k=1 k=1 

Since each function uk  satisfies Eq (A) with h(x) replaced by zero, and since each 

bracket in the first summation is precisely the result of replacing y in the left-hand 

side of Eq (A) by a function uk, the first summation vanishes identically, and the 

final condition becomes: 

. 
E cuk(n-n = h(x) (D4) 

• k=1 

If the solutions C'/, ..., C'n are integrated and the result put into the Eq (C), the 

result is a particular solution of Eq (A) for any choice of the n. constants of 

integration. In particular, for a second-order linear equation of the form: 

2 —
dzy 

+ al (x)dY + a2 (x)y = h(x) dic dx  

there follows: 

y = C,(x)u,(x)+ C2 (X)U2 (X) 

where 



0 u2  

C' = 
h u

2
' 

= 
h(x)u2(x) 

 
Kui (x),u2(x)] 

u,' u2' 

and, similarly, 

h(x)u,(x)  
C2' = 

W{Iii  (X), U2(x)] 

Thus we can write: 

(x) = h(x)u2 (x ) + c, 
W(u, (x), u2  (x)) 

h(x)u,(x)  
C2(x)= etc + c2 

W(Ui  (X), U2(x)) 

Getting back to the differential equation, assume two independent homogenous 

solutions are: 

U,(x)= 
e' +e" , U2  (X) = e 

21 
'— e'  (38) 

2  

e' e"— e' 

Wronskian is W(u,(x),u2 (x)) = etj(x) (4x.
) 

(e' + le')— 1(e' —e')-
1
(ise" —ise') 

2 2i 2i 2 

1 
(2is+2is)=s 

General solution for Eq (37) can be written as: 

13x, = C, (x)U, (x)+ C2  (X)U2  (X) (39) 

f(x)U2(x)  
C,(x)— (40) 

W(U, (x), U2(x))dx + 
c 



f (x)(11 (x)  
C2 (X) = r (41) 

i W(U, (x), U, (x))
dr + c

2 

C,(x)= 
r  A  CY' 1  2 4 6 8 Y  ex— Culdr + c 1 i s Lx 

+
3  x s  x7  x9  A 2i 

.  A e-Yos I.( 2 4 + 6 8 Y  e" x — e-wc\ dx +c, 
s .1  x xs  x7  x9 A 2i i 

.
- 

 A e-Y°s(r  e' r e' dx  f2er  dc  +  2e  dx  
s i ix 3  J ix3 J ixs J ix5  

+
r 3ex dx  r  3e  c fr r  4er  dx  + f 4e  dr)+c. 

1 
i ix' J ix7 J ix9 J ix9  

Ci (x)U(x) = A e
-''°S e-  ' + eisr  re' 

a
k re-' dr  f 2eux  dr  + f  2e  dx  

s 2 J ix' j ix 3 j 
iX

5 j ix5  

34 eel'  cfr pe  dr 
 r  4eLsx d

x 
 + i 4e   cbc)._ {ux + el 

± c 1 j rx7 
j iX7 j iX9 j ix9 2 

C.,(x)= r A e—Y°s1 23 
4, + 67 8 yetvc+eldx+c2 J S X X X X9 ) 2 

— s i — x 5 +z 

eYos  ( 2
x3 

 4 + 6
il 
 8 y  e'''  c 

 2
+ C)dc+c2 

5 x9  A  

. A elf  ez' d
x  + r e-. dr  1 2eLa  dx  f  2e  dr  

j j s x3 x3 
x

5 i xs  

+
r3e7  thc  4 _ r3e 

7 
  dc  f 4e: dx 4e 

9 
  dx)+c2  

i x J x J x J x 

C2 (X)U2 (x) = A e's  ( e-  'sr  — el(  r  e: 
Il
k + r e dr  f 2e"  dy  f  2e  dr  

s 2i J x J x3 J x5 J rs 

+J 
  3eux  d

x 
 + pe 

7 
  d

ic 
 r 4e: dx  r  4e 

9 
  dr  j+c2rel  

x J x J x J x 2i 



-um 

CI (x)U, (x) + C2 (x)U2(x) -_ 
A CY.' ( e"." + e2")(f e" dx j e  dx f 2e' 

5  dx + 5  2e  dx 

+5 

i s 2 ) J ix3 ix 3 x ixs  

3e =  dx  f 3e  * f4eux  cfr + r 4 e  d+ c 1  r+ e-ijx ) 
ix' J ix' J ix9 J ix9 2 

-ux 
+ A e-yos   (e Mr  - ems` )(f e: dx ± f e-" dc  f  2eux  dx  pe  dc 

s 2i J x .1 x 3 j X5 x5  

+ 53e dx .4_ f 3e  dx _ f 4e' dx  _ $ 4e  4e  As.) +c2  [e." z  -e 
J  x 7 J X 7 ,I x9 j x9 4" 2i 

Now Eq (39) becomes: 

A e ( e's x y f  2e:  dx  f  4 e' dx  + f  6e 'g  dx 5  8e -I  dx) CI  (x)U, (x)+ C2  (X)U2  (X) --- 
s 21 A-1  x .1  x5 .1 x7 

X
9 

{
,

+c 

+ A e-hs ( e'y _i 2e= dr  + f 4e' dx  _ ( 6e" dr  + f 8e" dr) 
s 2i A i x3 j X5 j X7 j X

9 

es' + e'  
2 ) + c2{e'xr -2ze' ) 

-. -. r 2  cisxdx -- - e — - isi —e  dx 
J  x3 

X
2 

X
2 

e' [e-' e-'.r 
=- LS — - 1Sf ---- dd 

X
2 X x 

e'r 
+ 

is  esx  2 se' _r_ = S - (4-4,  
X

2 x x 

r  4 e' - dx _ e' ±i s  f e-' _ _____ dx 
i x 5 x 4 

X
4 

= —

C. 

+ is -ejx  - —I'S f L- ux dX] 
x4 3x3  3 x3  

e-'' is e'sx s2  e-" +is'  e ux  s4  s 
e' dx _ dx  

x4 3x3  6x2  6x 6 x 



i  
1  6 e ux  - = e

. 
s fe
.  - abc   _ _ i  

x7 x6 x6 

are 

Cux 
 + 

is e'  +
.52 e' is' e'  sae's   +

is's e"  .56  se" 
= 

_ dc  
x6 5 x5 20 x4  60 x3  120 x2  120x 120 x 

r 8 e-' - e' +i 4 e'  _  atc  
j x9 

dlr. _ 
X

8 X
8 

e-ux  is e' 5.2  e' 
 + 

is3  Cis' 
 + 

s4  e-i" is5  e" s6  e' 
 +

is7  e' .58   se' 
=  _dr  

x8 7 x7 42x6  210x5  840 x4  2520x3  5040x2  5040x 5040 x 

r e's f 2 e'cfr = e" _iss_e 
Cox 

x3 2 X
2 

e'' . — — — is[ e Set  dx — — — + 7.5 — 1 
X

2 X X 

. e'ix + is er'  + 
s2 

 r  e'' dx  

x2 x j x 

La 4 e'd
c 
 = _ e' ±is f_e dx  

J xs x4 x4  

e'er e'er ± _ 
— + i — s[ e is  fe _ — — dc i 

x4 3x3  3 x3  

ewr is e'sx 
 + 

s2  ew`  +is3  e'rr  s4  e' A..  

x4 3 x3  6x2  6x 6 x 

r  6e-d, __ e'er _is  j____ei r thc  J 
 x7 6 

X
6 

= e"x + is eu'r .52  e'sx is' e'  +  s4  er + is5  e'er s6  e' 

x6 5x5  20 x4  60x3  120x2 
+ 

 120x 120 x 

f _e' _ 8  ex dx -- ' is' 
e'er  dr 

j x9 x8 x8 

eisx is elsr 
 +

.52 e'' + is3  el" s4  ex is5  e' s6  e is7 e s8  fez- dc 
= + + + 

x' 7 x7  42 x6  210 x5  840 x4  2520 x3  5040x2  5040x 5040 x 

BrI = CI  (X)U1  (X) + C2 (X)U2 (X) 



+ . A e-Y.N ( 2i 2i 21s2  21 21s2 21s4 21 2.1s2 Vs's 21s6  

21 x 3x3 
+ + 

6x 5x5  60x3 
+ 

120x 7x7 
+ 

210x5  2520x3  5040x 

+
A e---'os (_s e„x  se"

:  d
x  + s e, s e'er` _ sL3  es, s fi-7_ dr + s_:_3  e, ff'__%bc ) 

2i x 6 x 6 x 

A e-Yes  ( s5 . e'  , 3' , ex „ s7 = u' „ si 

+
 

2i 120 
e 

x 
(IX + 

120 
—e 

x 5040 
—:-- — e—  j 

C
—ux

x 
 + 

5040 
---:--e-wc  f!uld:C) 

x 

(e' + el.  + 
c2

( er` + 1 
+ci  

2 21 

1 1 s2 5 s2 s4 1 s2  
= e ).3  - - - + + [ + +  S

4 S6  

X 3 x3  6x 5 x5  60 x3  120x 7 x7  210x5  2520x3 
+ 

5040x 

+ —Y-1-se
27 

-  s2  ex E,(-isx)+ s2  c'D` E,(isx)- 
6  
1A- e 

6 
E,(-isx)+ 3- - .-:1  • e-z-"E, (isx) 

e-Y°s [ s6 s6 S
7 S

7 

+ 
2i 120 

e''' E,(-isx)+ 
120 

eLv` E,(isx) 
5040 

er 
5040 

 E,(-isx)+ e' E,(isx)] 

+c (ez' - i - e-') +c2r e's x — e-') (42) 
1 2 ) 2i ) 

Taking the inverse transform of Eq (42): 

1 1 1  
Bx, = (5(y-yo)(-x - -3--x3 + -i--x5 

- 7----
x7

) + 
gy

2 ( c5(y _ yo  ))( 1 1 + 
1  

6x 60x3  210x5  

+ g4 i 
 _ \(  

ko(Y Y0)) 120x 252 1 )+ 0 6 (t5(Y Yo 450 1 ) 0y 0 x3 0x 

+K,(5(y + ix) + K2 5(y - ix) 

+ -6x(Y-30 +2+2x3  -20x(Y-Yo )4  + 40x3 (Y-Y02-  4 x5  

((Y -Y0)2+x2)3 (Y -Yo )2 + x2Y 

-42x(Y-Y0 )6 +210x3 (Y-Y04-126x5 (Y-Y0)2 +6x7  
+ 

((Y-Y0)2+x2)7 



-72x(Y-.a+672 x3(Y-yo t -1008x5 U-Yor+ 288x7(Y-.02 - 8 x9  + (43) 
0Y-Y0)2 + xl 

By putting boundary condition into Eq (43), we found K1,K2 = 0. 

By, can be found from Eq (33): 

a3y1  613x1  = 0 (33) 
c5) a 

Therefore, 

By, = - f-a-&-dy+ 0(x) (44) 
a 

where t(x) is a function of x only. 

i  a -6x0)-y0)2+2x3 
 +

-20x0)-.04+4ox3cy-y02-4x5  
13,1=-J—, + , dY 

" V.))  - Y 02  ± x 2Y GY - Y 0)2  + x2Y 

e -42x(y-yor+210x3 (y-y0)4 -126x5(y-y0)2 ±6x7  
-fa + dY 

-f

GY 
7 

- YD)2  + x 2) 
 

e -72 x (Y -.Y0)8 + 672 x3 (Y-Y0)6  - 1008  xs  CY - Yo )4  + 288x7(Y-Y0)2-8x9  
a-  + 

0) 
9 

--Y0)2 + X2) ( 
dY 

. -6,x(y-y0)3+x4(Y-Y0)-F(Y-Yo)5  

X2((Y-  YO)2 + X2)3  

-30 X2(Y-Y0)5+  30 X4 (Y-Y0)3-  2 X6(Y-Y0)+ 2(Y-Y0)7  
+ 

X2(0 5  1-Y0)2 + x2) 

-84 X2(Y-Y0)7+  210 X4 0)-10)5-  84 XV-Y0)3 +3X8(Y-Y0)+30/-y0)9  
+ 

x2((y - yo  )2 + x2)7 



-180 x2 (v —.Y0)9 + 840 x40, —307 — 728 x6(Y — Yo)5 +180 AY --303 — 4 xl°(Y — yo)+ 4(Y — Yo)"  

x2((y — Yo)2  + x2)9  

It can be easily shown, using the Weirstrass M test, that the infinite-series 

solution, justifies the process of differentiation. The term 0(x) is found by 

applying the boundary condition that By, is bounded at x = ±00.Thus, 0(x)=0. The 

total solution for Br, is given by the total magnetic field can be expressed as: 

Bx  =Bx0  + 1?„,Bx, 

By, = By° ± R„,By, 

Results: 

li 1 1 1 1 ) ( s(  , 1)( 1 1  
13'1  = SCY — Yo

—x-  — 3x3  ± 5x5  — 7 x7)4" aye ‘-‘.7 -Y°116X 60x3+  2101 x5) 

g 
0 ) 

(  1 
1 )+  ( OCY Yo))( ) ± ay — cXY ) 4 ( Y 120x 2520 x3  ay6 5040x 

+K,5(y + ix) + K2 5(y — lx) 

—6x (Y — Yo)2  +2 x3 —20x(Y —  Yo)4  + 40 x3 (Y — yo)2  —4 x5  + , + 
((Y — Y0)2+x2)-

„ 

(0 / — Yo)2  + x2)5  

+
-42x (Y — Yo )6 + 210  x3 (Y —  yo )4  — 126 x5  (y — yo  )2  + 6 x2  

((Y — Y0)2  + x2)7  

—72x (Y — Y0)8 + 672  x3(Y—.Y0)6—  1008 xs  (Y — Y0 )4  + 288 x7U —)02  — 8 x9  + (45) 
(31— .Y0)2 +x2y 

3.2 THE COMPUTER PROGRAMMING AND 
CALCULATION 



Calculations for the magneto-fluid components were carried out using the personal 

computer. The computer programming and calculation is focused on the .8x, 

component. 

Some functions of SIMULINK which have been used in this paper are 

discussed as following: 

1) Function Functions: 

Matrix operations are fundamental to SIMULINK. But a class of functions in 

SIMULINK work not with numerical matrices, but with mathematical functions. 

These function functions include; 

• Numerical integration 

• Nonlinear equations and optimization 

• Differential equation solution 

Mathematical functions are represented in SIMULINK by function M-files. 

For example, the function : 

—6x(y — Y0 )2 +2x3  Bxi 1 7----- / ‘3 

0)---Y0)2±X2) 

is made available to SIMULINK by creating an M-file called Figl 1.m: 

function Bx 1 1 = Fig(n,y) • 

Bxl 1 =((-6*x*(y-0.01).A2+2*x.A3)./ki(ky/--_0.01).A24.x.A2).A3)); 

A gragh of the function is 

x=-100:1:n; 

plot (x,Bx 1 1) 

2) Graphing: 

Scientific and engineering data are examined graphically in SIMULINK using 

"graph paper" commands to create plots on the screen. There are many different 

types of "graph paper" from which to choose: 



• Plot: linear x-y plot 

• loglog: loglog x-y plot 

• semilogx: semi-log x-y plot (x-axis logarithmic) 

• semilogy: semi-log x-y plot (y-axis logarithmic) 

• polar: polar plot 

• mesh: 3-dimensional mesh surface 

• contour: contour plot 

• bar: bar chart 

• stairs: stairstep graph 

Figure 3-1 Axial component of induced magnetic field /3 11  (as an example) 

Once a graph is on the screen, the graph may be labeled, titled, or have grid 

lines drawn in 

• title: graph title 

• xlabel: x-axis label 

• ylabel: y-axis label 



• text: arbitrarily positioned text 

• gtext: mouse-positioned text 

• grid: grid lines 

The plot command creates linear x-y plots. Once plot is mastered, logarithmic 

and polars are created by substituting the words loglog, semilogs, semilogy, or 

polar for plot. all five commands are used the same way; they only affect how the 

axis is scaled and how the data are displayed. Notice that the data are auto-scaled 

and that x- and y-axes are drawn. As this point. depending upon the exact 

hardware you are using, the screen full of commands that you have typed in may 

have vanished to make way for the gragh display. SIMULINK has two displays, a 

graph display and a command display. There are two ways to plot multiple lines 

on a single graph. The first is to give plot two arguments, as in plot (x,y), where 

either x, y, or both are matrices. Since we do not use matrices, we use the second, 

and easier, way to plot multiple lines on a single graph is to use plot with multiple 

arguments: 

plot (xl, Bx11, x2, Bx12, x3, Bxl3) 

the variables xl, Bx11, x2, Bxl2, x3, Bx13 etc. are pairs of vectors. Each x-y pair 

is graphed, generating multiple lines on the plot. Multiple arguments have the 

benefit of allowing vectors of differing lengths to be displayed on the same graph. 

As before each pair uses a different line type. the linetypes used on a graph may 

be controlled if the defaults are not satisfactory. Point plots using various symbols 

may also be selected. For example, 

plot (xl, Bxl 1, 'x') 

draws a point plot using x-mark symbols while 

plot (xl, Bxll,':', x2, Bx12, '+') 



uses a dotted line for the first curve and the plus symbol + for the second curve. 

Some systems that support color, line- and mark-colors may be specified in a 

manner similar to line- and mark-types. For example, the statements 

plot (x, Bxl 1, 'r') 

plot (x, Bx12, '+g') 

use a red line on the first graph and green +marks on the second. Other colors are: 

red, green blue, white, invisible. If hard-copy does not support color, the various 

colors on the interactive display are mapped to different linetypes for output. In 

the next chapter, three demension plot is made, so the 3-D mesh surface and 

contour plots are introduced here: The statement mesh creates a three dimensional 

perspective plot of the elements in matrix Z. A mesh surface is defined by the Z 

coordinates of points above a rectangular grid in the x-y plane. The plot is formed 

by joining adjacent points with straight lines. 

3) M-files: scripts and functions 

SIMULINK are usually used in a command driven mode; when single-line 

commands are entered, they processes them immediately and displays the results. 

They are also capable of executing sequences of commands that are stored in files. 

Together, these two modes form an interpretive environment. Disk files that 

contain SIMULINK statements are called M-files because they have a file type of 

".m" as the last part of the filename. An M-file consists of a sequence of normal 

SIMULINK statements, possibly including references to other M-files. An M-file 

can call itself recursively. One use of M-files is to automate long sequences of 

commands. Such files are called script files or just scripts. A scond type of M-file 

provides extensibility to SIMULINK. Called function files, they allow new 

functions to be added to the existing function. Much of the power of SIMULINK 

derives from this ability to create new functions that solve user-specific problems. 

Both types of M-files, scripts and functions, are ordinary ASCII text files, and are 



created using an editor or word processor of your choice. In this paper, function 

files are used. If the first line of an M-file contains the word "function", the file is 

a function file. Here is a list of the function files which are used to plot curves: 

1) Figure 1.m: it is used to graph Bxl 1 (first term of Bxl) Figure 4-la to 

Figure 4-8b 

2) Figure 2.m: it is used to graph Bx12 (second term of Bxl) Figure 4-9a to 

Figure 4-17b 

3) Figure 3.m: it is used to graph Bx13 (third term of Bxl) Figure 4-18a to 

Figure 4-25b 

4) Figure 4.m: it is used to graph Bx14 (fourth term of Bxl) Figure 4-26a to 

Figure 4-33b 

5) Figure 5.m: it is used to graph total Bx1 Figure 4-34a to Figure 4-41b 

6) Figure 6.m: it is used to graph Bx16 ( 5-function term) Figure 4-42 

7) Figure 7.m: it is used to graph Figure 5-1 (3-D total Bxl ) 



Chapter 4 

DISCUSSION AND RESULTS 

The tangential induced magnetic field component Bx, is given by the following 

equation: 

) 
Bxi = .5(Y —Yo)(— 

1 
 -- 

1 
 + 

I 
 — 

1 
x 3x3  5x5  7x' 

—6x(Y — Yo)2 + 2 x3  —20x (Y — yo)4 + 40x3 (Y —.Y0)2 -4 xs  +  , „ + 
(0) — Yo)2+x2 / ((Y — Yo)2 +x2)

s 
 

—42x(y — Y0)6 +210x3 (Y — yo)4 -126x5 (y — Yo)2 +6x7  
± 

(0' — Yo )2 + x2)7  

—72x(y—y0 )8 + 672 x3(y—y0)6-1008x5(y—yo)4  + 288x7(Y —)02—  8 x9  
+ 

0Y — Y0)2 + 49  

Figure 4-la illustrate the first term of the total induced magnetic field which is: 

—6x(y—Yo )2 +2x3  at  y=1, 100<x<100, 
(0) — Y0)2-1-0 

The plot indicate that the functional behavior is a doublet and symmetrical with 

respect to "0". When x=±0o, Bx, goes to zero, the value of B., changes from 0 to 

2.0 almost linearly, while x changes from -2.0 to -0.5, it changes from +2.0 to -2.0 

linearly, while x changes from -0.5 to +0.5, then B., changes form -2.0 to 0 while 

x changes from +0.5 to +2.0. The maximum deflection is at x=±0.5. If we plot a 

curve whose x changes from -2 to +2, the maximum deflection will be much clear. 

Based on this plot, the following results were obtained: The field perturbation is 

sensitive to y. We consider that y can changes from 0 to infinity and the current 



carrying conductor of infinite length is located at y =y0 . We assume that 

yo  = 0.1(yo  is known as the reference length), which is very small. Compared with 

infinite number, 0.1 is a very small number ( relatively approaching zero), so the 

point we are discussing is very close to the current carrying conductor. ( We only 

discuss one current carrying conductor situation, we don't discuss the current 

sheet which is actually a boundary layer.) The differential equation for 13x, we had 

is: 

nx, eBx, 2x(1 + y)  
I5(0,—yo ) 

(3x2  0y2  [x2+(l+y)21 

And its boundary conditions is : 

Bx, = 0 at y=0,L and 

Bx, = 0, x=±0o 

From Figure 4-1a, we see that Bx1 = 0 when x=±0o. therefore, the solution that we 

got agrees with the established boundary conditions. We will discuss the other 

boundary condition later. Using Figure 4-1b, we can see much clear how the 

curve changes when x is very small. 

To plot the same function using y=5, we obtain Figure 4-2a and Figure 4-2b 

that is also a doublet. Comparing this result with that we conclude that the 

maximum magnitude of the Bx, whose y=1 is much less then that of y=0. Its width 

is the frequency span between the upper end lower half-power point is wider then 

the first one. The curve looks like been pulled open. The plots indicate that the 

curve is also a doublet and symmetrical with respect to "0". When x=±- co, Bx, 

goes to zero, the value of Bx, changes from 0 to 0.01, while x changes from -8.0 to 

-2.0, it changes from +0.01 to -0.01 almost linearly, while x changes from -2.0 to 

+2.0, then Bx, changes form -0.01 to 0 while x changes from +2.0 to +8.0. The 

maximum deflection is at x=±2.0. If a curve whose x changes from -8.0 to +8.0 is 



while x changes from +2.0 to +8.0. The maximum deflection is at x--=±2.0. If 

a curve whose x changes from -8.0 to +8.0 is plotted, the maximum deflection 

will be much clear. The solution given here tells us that: When y changes 

from 1 to 5, the maximum field perturbation changes from 0.5 to 0.01. This 

means that : the larger the point from the current carrying conduct, the less 

the perturbation. So we assume that : with the increase of y, the maximum 

field perturbation will be smaller and smaller. 

The sharp of the curve in Figure 4-3a is almost as same as that in Figure 4-

2a. But the maximum magnitude of B1 is much less then that in Figure 4-2a. 

The plot indicates that the curve is also a doublet and symmetrical with 

respect to "0." When x=±0o, B1 go to zero, the value of B1 changes from 0 

to 2x10-3, while x changes from -20.0 to -6.0, it changes from +2x10-3  to -2x 

10' , while x changes from -6.0 to +6.0, then k1 changes form -2x10-0.01 

to 0 while x changes from +6.0 to +20.0. The maximum deflection is at x=± 

6.0. If a curve is plotted whose x changes from -20.0 to +20.0, the maximum 

deflection will be much clear. The bandwidth of the curve is wider than that 

of in Figure 4-2. Thus roughly speaking, we may say that the maximum 

magnetic field strength occurs far from the current carrying conductor and 

goes to smaller and smaller while y increases. 

From Figure 4-4a,b, we see that that the curve is also a doublet and 

symmetrical with respect to "0". k1 changes from 0 to 1.5x1e, while x 

changes from -100.0 to -20.0, it changes from +1.5x1e to -1.5x1e , while x 

changes from -20.0 to +20.0, then B1 changes form -1.5x1e to 0 while x 

changes from +20.0 to +100.0. The maximum deflection is at x----±20.0. 

From Figure 4-5, we see that the curve is also a doublet and symmetrical 

with respect to "0". k1 changes from 0.5x to 1.5x10-6, while x changes 

from -100.0 to -40.0, it changes from +1.5x10 to -1.5x10 , while x changes 



from -40.0 to +40.0, then B., changes form -1.5x10-6 to 0.5x10-6 while x 

changes from +40.0 to +100.0. The maximum deflection is at x=±40.0. 

From Figure 4-6, (y=200), we see that the curve is changed to the one which 

looks like a cos(x) function curve. The reason we got this is that we chose x 

whose range is from -100.0 to +100.0. If we use the range whose x changes from -

500.0 to +500.0, we will get a curve very similar to these curves we got before. 

Now the maximum magnetic perturbation is getting very small that is only 1.6x 

io-7 . B., changes from +1.6)i0' to -1.6x10-7 , while x changes from -100.0 to 

+100.0, and the change is as almost same as that of cos(x) function. 

Now lets take a look at the curve whose y=500.0 (Figure 4-7aand Figure 4-7b). 

Like the preceding sections, x changes from -100.0 to +100.0. The solution given 

here is a special one. When x changes from -100.0 to +100.0, the magnetic field 

perturbation changes linearly from 9.0x10' to -9.0x10". The slope of the line is 

very small. But when we use the big x, we can get the curve that has the same 

sharp as others. The difference is the maximum magnetic perturbation is much 

less than those we discussed before. 

The last plot we discuss about the first item is Figure 4-8. Using the same 

change of x, we got the same sharp of the curve of 13.„ the only difference is that 

the slopes of the lines. In Figure 4-8a, the unit of B., is 2x10-'°, but the unit of 

Bx, we used for Figure 4-7 is 2x10-1°. This curve happens when . 1000.0. Also, 

in Figure 4-8b which shows the change of B., while -1500<x<1500. 

Figure 4-la to Figure 4-8b illustrate the magnitude perturbation in the axial 

component of the induced magnetic field corresponding to a threshold value of the 

magnetic Reynolds number ( for the first term of the solution). The plots indicate 

that field perturbation is sensitive to y, with almost zero value at the surface of 

both electrodes. The location of electrodes is at y=0„ .)L, and the current 

carrying conductor is located at y = y0 . In the preceding section, different plots are 



shown separately. Later we will put the curves with different y together, (select 

y=1, y=1,5, y=2.5), see how the curve changes with different y. 

Figure 4-9a to Figure 4-16b illustrate the second term of B., : 

—20x  — yo + 40 x3  - - 4 x5  

(0' —.Y0Y+x2Y 

From Figure 4-9a, we see that Bx,=0 when x=±00. therefore, the solution we 

that we have also agrees with the established boundary conditions. We will 

discuss the other boundary condition later. From the plot, we see that the curve is 

a doublet. When x=±co, Bx, goes to zero, the value of Bx, changes from 0 to -

0.05, while x changes from -1.5 to -0.5, it changes from -0.5 to 3.5 almost linearly, 

while x changes from -0.5 to +0.5, then Bx1  changes from 3.5 to -3.5 while x 

changes from -0.5 to +0.5. The maximum deflection is at x=±0.5 which is ±3.5. 

Since the curve is a doublet, so that the right part is symmetrical as left part with 

respect to "0". Now we can compare this plot with Figure 4-la which is the first 

term of B., whose y is also " 1" . When x is very large number, both field 

perturbations are infinite. The major change of curve in Figure 4-lb happens 

while xis between -1.5 and 1.5. And major change of curve in Fig 4-9b happens 

while x changes from -2.0 to 2.0. So that we can say that if the distance of point 

we measured to the point that the infinite current carrying conductor is small, both 

of them should be considered. First difference between these two is: the 

maximum magnitude of Figure 4-lb is about 1.5, and the one of Figure 4-9b is 

around 3.5. Second is that the curve in Figure 4-lb changes very smooth when x 

changes from -co to 0 and as same as when x goes from 0 to co. In Figure 4-9b, 

before the curve goes up, there is a small hollow; at the symmetry side before it 

goes to infinite, there is a small protruing. Before going any further, we guess 



that the maximum field perturbations will be smaller and smaller while y be 

chosen larger and larger. 

Figure 4-10 is obtained after putting y=5 into that second term. As same as the 

other plots, when x=-co, the field perturbation is zero; when a-=-Foo, it is zero also. 

The major change happens near where the current carrying conductor is located (-

4<x<4). That part of the curve is very similar to the function sin(x). Negligence of 

the part x<-4, x>4, the field perturbation of that term can be described as a 

sinusoidal function. 

To plot the curve using y=10, we obtain Figure 4-11a and Figure 4-11b which 

are also doublets. Comparing this result with that y=5, we conclude that the 

maximum magnitude of the Bx, which y=10 is much less then that of And its 

bandwidth is wider then the first one. It looks like that the curve has been pulled 

open. The plot indicate that the curve is also a doublet and symmetrical with 

respect to "0". When x=±co, B11  goes to zero, the value of Bx, changes from 0 to 

3x 0-5, while x changes from -8.0 to -3.0, it changes form +3x10-5  to -3x10-5, 

while x changes from -3.0 to +3.0, then 13,0  changes form -3x10-5  to 0 while x 

changes from +3.0 to +8.0. The maximum deflection is at about x=±3.0. If we plot 

a curve whose x changes from -15.0 to +15.0, the maximum deflection will be 

much clear. The solution given here tells us that: When y changes from 5 to 10, 

the maximum field perturbation changes a lot, from 0.001 to 3x10-5. This means 

that : the longer the distance from the point to the current carrying conduct, the 

less the field perturbation . That identical is agree to the presume which we 

assume before. With the increase of y, the maximum field perturbation will be 

smaller and smaller. 

The sharp of the curve in Figure 4-12 (y--50) is almost as same as that in 

Figure 4-11 and Figure 4-10, but the maximum magnitude of B11  is much less that 

in Figure 4-11. The plot indicates that the curve is also a doublet and symmetrical 



with respect to "0". When x=±03, Bx, goes to zero, the value of Bx, changes from 

0 to 1x10-8, while x changes from -30.0 to -15.0. The field magnitude changes 

form + 1x10-8  to -1x10-8, while x changes from -15.0 to +15.0, then Bx, changes 

form -1x10-8  to 0 while x changes from +15.0 to +30.0. The maximum deflection 

is at x=±15.0. The bandwidth of the curve is wider than that of in Figure 4-11. 

Thus roughly speaking, we may say that the maximum magnetic field strength 

occurs far from the current carrying conductor and goes to smaller and smaller 

while y increases. From Figure 4-12, Figure 4-4, we see that the maximum of the 

magnetic field of the second term is much less than that of first term with the same 

y which is 50. If we put both curves in Figure 4-4, Fig 4-12 together, probably we 

can only see one curve which is the curve of the first term of /311 , the other one is 

just a line. In that case, the second term need not be taken into account. 

The curve of the second term whose y=100 (Figure 4-13) is also a doublet and 

symmetrical with respect to "0". BX, changes from 0 to 3.2x10-", while x changes 

from -70.0 to -30.0. Bx, changes form +3.2x10-1° to -3.2x10-1° , while x changes 

from -30.0 to +30.0, then Bx, changes form -3.2x10" to 0 while x changes from 

+20.0 to +100.0. The maximum deflection is at .r=±30.0. 

From Figure 4-14 (y=200), we see that almost all of the change of the magnetic 

field Bx, occurs in a wide interval between -100cx<100, the maximum field 

perturbation occurs at x= ±50. But the maximum Br, is only 1.0x10-", even we 

did not plot the curves have big y , we can say that with the increasing of y, the 

maximum Bx, will be smaller. 

Lets discuss two more curves for the second term of the field perturbation. The 

curve in Figure 4-15 shows change of Bx, with y=500.0 and -100.0cr<100.0. 

From the curve, we see that Bx, goes from 10x10-13  when x=-100.0 down to -10x 

10-13  almost linearly. The reason we got this curve which is different from those 

we had before is that the bandwidth of the curve is very wide. It can not be seen 



the whole change by using small -100cx<100. If we use big x, for instance, x 

changes from -300 to 300, we can get a curve like those curves we got in the 

preceding section. Here, a curve (Figure 4-15b) has different x value had been 

made which has the familiar sharp. And we are sure that B., is zero even Figure 4-

15a does not show the value of x--4-1-00. 

The last picture we discuss for this term is Figure 4-16 whose y is 1000.0. We 

have the same situation as Figure 4-15 whose x was not chosen big enough to be 

seen the whole change of the Bx, . But choosing small x, we can see very clearly 

how the magnetic field changes when x is small, but y is big. Now the maximum 

Bx, is about 2x10-15, so its a very small number which will not be taken into 

account. 

Figure 4-12 (y=50), Figure 4-13 (y=100), Figure 4-14 (y=200), Figure 4-15 

(y=500) and Figure 4-16 (y=1000), the resulting patterns. After propagating y, 

curve spreads to wider. The plots were made for various values of y given in Fig 4-

9 to Fig 4-16. When y=1, the sharp of curve is very similar to the curve in Figure 

4-1, whose y=1, but in the opposite direction. Substituting y=5 for the second term 

of Bx1 , we obtain the curve in Figure 4-10, which is also very similar to curve in 

Figure 4-2 and in the opposite direction. Taking another y=10, we find some 

difference between this curve and the curve in Figure 4-3. It looks like a triplet. 

Before going up, it goes down first, and its symmetrical. By plot all those curves 

whose y changes from 10 to 1000, Figure 4-9 to Figure 4-16 are obtained. When y 

varies from 0 to 1000, the maximum values of Bx, goes to smaller and smaller. In 

Figure 4-16, the unit of B axis is 5x10-16 which is very small. 

Similarly for third term of Bx, : 

—42x(y—y0)6+210x3(Y—yo)4-126x5(y—y0)2+6x7 , 0<y<1000, -100<x<100 
(u — yo)2 + x2)7 



the sharp of the curves we get is very similar to that we got for the second term. 

But for every single curve, the magnitude of B., is smaller than the one for the 

second term that both of them has the same y. 

Figure 4-17a illustrate the first term of the total induced magnetic field whose 

y=1, -100<x<100, The plot indicate that the curve is a doublet and symmetrical 

with respect to "0". When x=±0o, B., goes to zero as others, the value of B., 

changes from 0 to 5.0, while x changes from -0.5 to -0.2, it changes form +5.0 to -

5.0 almost linearly, while x changes from -0.2 to +0.2, then B., changes from -5.0 

to 0 while x changes from +0.2 to +0.5. The maximum deflection is at x=±0.2. If 

we plot a curve whose x changes from -6 to +6, the maximum deflection will be 

much clear. There is a difference between this one and the proceeding plots: Near 

the current carrying conductor, the magnetic field rises and falls, looks like a big 

boublet and a small doublet combined together. Weather it effects the whole 

function will be seen lately. We consider that y can changes from 0 to infinity and 

the current carrying conductor of infinite length is located at y = —yo. We assume 

that yo  = 0 1, which is very small. Compared with infinite number, 1.0 is a very 

small number, so the point we are discussing is very close to the current carrying 

conductor. (We only discuss one current carrying conductor situation.) From 

Figure 4-17a, we see that 13x.,=0 when x=±-co. therefore, the solution we got 

agrees with the established boundary conditions. We will discuss the other 

boundary condition later. 

To plot the curve using y=5, we obtain Figure 4-18 which is also a big doublet 

plus a small doublet. Comparing this result with that . 1, we conclude that the 

maximum magnitude of the B., which y=5 is much less then that of y=1. And its 

bandwidth which is the frequency span between the upper end lower half-power 

points is wider then the first one. (Sounds like each term is the same). The curve 

looks like been pulled open. The plot indicate that the curve is symmetrical with 



respect to "0". When x=±co, Bx, goes to zero, the value of Bx, changes from 0 to 

7x10-5, while x changes from -3.0 to -1.0, it changes from +7x10-5  to -7x 10-s while 

x changes from -1.0 to +1.0, then Bx, changes form -7x10-5  to 0 while x changes 

from +1.0 to +3.0. The maximum deflection is at x=±1.0. If we plot a curve whose 

x changes from -10.0 to +10.0, the maximum deflection will be much clear. The 

solution given here tells us that: When y changes from 1 to 5, the maximum field 

perturbation changes from 5 to 7x10-5. This means that: the larger the point from 

the current carrying conduct, the less the perturbation. Even we changed y from 1 

to 5, we got such a difference. So we assume that : with the increase of y, the 

maximum field perturbation will be much smaller and smaller. The sharp of the 

curve in Figure 4-19a is almost as same as that in Figure 4-18a. But the maximum 

magnitude of Bx, is much less that in Figure 4-18a. The plot indicates that the 

curve is also two doublet and symmetrical with respect to "0". When x=±03, Bx, 

goes to zero, the value of Bx, changes from 0 to 5x10-7, while x changes from - 

5.0 to -2.5, it changes form +5x10-7  to -5x10-7, while x changes from -2.5 to +2.5, 

then Bx, changes form -5x10-7  to 0 while x changes from +2.5 to +5.0. The 

maximum deflection is at x=±2.5. The bandwidth of the curve is wider than that 

of in Figure 4-18. Thus roughly speaking, we may say that the maximum magnetic 

field strength occurs far from the current carrying conductor and goes to smaller 

and smaller while y increases. From Figure 4-20 (y=50), we see that the sharp of 

the curve is as same as the of the one in Figure 4-19. Bx, changes from 0 to 6.5x 

10', while x changes from -22.0 to -10.0, it changes form +6.5x10-12  to -6.5x 

10'2 , while x changes from -10.0 to +10.0, then Bx, changes form -6.5x1e2  to 0 

while x changes from +10.0 to +22.0. The maximum deflection is at x=±10.0. 

Compared with the unit of Fig 3-3, 2x Hy' is very small. So that we can say: For 

this term, when y goes to greater, it will not be taken account, because of the small 

magnitude. The following plots will have the same program. From Figure 4-21, 



we see that the curve is also two doublets and symmetrical with respect to "0". B., 
changes from 0 to 5x10-14, while x changes from -50.0 to -20.0, it changes form +5 

x10-14  to -5x10-14, while x changes from -20.0 to +20.0, then Bs, changes from -5x 

10-14  to 0 while x changes from +20.0 to +50.0. The maximum deflection is at x--.---± 

20.0. From Figure 4-22a, (y-. --200), we see that the curve's unit is changed to lx 

10-16 , the maximum magnetic perturbation is getting very small which is only 4.0x 

10-16 . Bs, changes from 0 to 4.0x1016, while x changes from -100.0 to -40.0, and 

then it goes down from 4.0x10-16  to 0 and going to -4.0x1('6  while x changes from 

-40.0 to 0 then to 40.0. This part shows the maximum deflection. After x>40.0, 

Bs, goes up again until it maintain "0". As we said before, the maximum 

magnitude of Bx, is very small. 

Now lets take a look at the curve whose y=500.0 (Figure 4-23). Like the 

preceding sections, x changes from -100.0 to +100.0. The solution given here is a 

special one. When x changes from -100.0 to +100.0, the magnetic field 

perturbation changes almost linearly from 6.5x10-19  to -6.5x10-'9 . The slope of the 

line is very small. If we use 100.0 as the unit of x , and use 1 unit of Bx„ this 

curve will not be seen. 

The last plot we discuss about the third item is Figure 4-24a and Figure 4-24b. 

Using the same change of x, we got the same sharp of the curve of B„ the only 

difference is that the slopes of the lines. In Figure 4-24a, the unit of 13, is lx 

10-21, but the unit of Bx, we used for Figure 4-23a is 2x10-19. This curve happens 

when y=1000.0. 

Figure 4-17a to Figure 4-24b illustrate the third term of the magnitude 

perturbation in the axial component of the induced magnetic field corresponding to 

a threshold value of the magnetic Reynolds number ( for the first term of the 

solution). The plots indicate that field perturbation is very sensitive to y. In the 

preceding section, different plots are shown separately. If we put the curves with 



different y together, (select y=1, )10, y=100), see how the curve changes with 

different y. The result we have is : Only the one whose y=1 could be seen from 

the plot. With this solution, we may say that for the third term of Bx„ only the 

ones have very small y need to be taken into account. 

Figure 4-25a to Figure 4-32b illustrate the fourth term of Bx, : 

—72x (y —yo  )1' + 672 x3  (y — yo  )6  — 1008 x5  (y —yo  )4  + 288 x7(y—y0 )2 -8 x9  

(0) — Yo )2 + X2)9 

From Figure 4-25, we see that Bx1 =0 when x=-±cc. therefore, the solution we 

got also agrees with the established boundary conditions. From the plot, we see 

that the curve has two doublets. One of the doublets is bigger. When x=±0o, k, 

goes to zero, the value of k, changes from 0 to 7.0, while x changes from -0.5 to 

-0.2. It changes from 7.0 to -7.0 linearly, while x changes from -0.2 to +0.2, then 

Bx, changes from -7.0 to 0 while x changes from 0.2 to 0.5. The maximum 

deflection is at x=±0.2 which is ±7.0. Since the curve is a doublet, so that the right 

part is symmetrical as left part with respect to "0". When x is very large number, 

both field perturbations are zero. The major change of curve in Figure 4-25b 

happens while x is between -0.5 and 0.5. And major change of curve in Figure 4-

lb to Figure 4-9b all happen at a narrow x. So we can say that if the four terms are 

together, every term needs to put into the curve. The curve should be the one that 

these four terms combined together. In Figure 4-25, before kl  goes up, there is a 

small hollow; at the symmetry side before it goes to infinite, there is a small 

protruing. Before going any further, we guess that the maximum field 

perturbations will be smaller and smaller while y be chosen greater and greater. 

Figure 4-26 is obtained after putting y=5 into that fourth term. As same as the 

other plots, when x=-09, the field perturbation is zero; when x=-Fcc, it is zero also. 

The major change happens near where the current carrying conductor is located (— 



2.0<x<2.0). To plot the curve using .)5.0, we obtain Figure 4-26 which is also a 

doublet. Comparing this result with that y=5, we conclude that the maximum 

magnitude of the B., which y=5 is much less then that of y=1. And its bandwidth 

is wider then the first one. It looks like that the curve has been pulled open just 

like the others. The plot indicate that the curve is also a doublet and symmetrical 

with respect to "0". When x=i-oo, B., goes to zero, the value of B., changes from 

0 to 3.5x10-6, while x changes from -2.0 to -1.0, it changes form +3.5x 10' to -3.5x 

10-6, while x changes from -1.0 to +1.0, then BY, changes form -3.5xi0-6  to 0 

while x changes from +1.0 to +2.0. The maximum deflection is at about x=±1.0. 

If we plot a curve whose x changes from -15.0 to +15.0, the maximum deflection 

will show very clear. The solution given here tells us that: When y changes from 1 

to 5, the maximum field perturbation changes a lot, from 7.0 to 3.5x10-6. This 

means that : the longer the distance from the point to the current carrying conduct, 

the less the field perturbation. That identical is agree to the presume which we 

assume before. With the increase of y, the maximum field perturbation will be 

smaller and smaller. 

The sharp of the curve in Figure 4-27 (y=10) is almost as same as that in Fig 4-

25 and Figure 4-26, but the maximum magnitude of B., is much less that in Fig 4- 

26. The plot indicates that the curve is also a doublet and symmetrical with 

respect to "0". When x=±co, B., goes to zero, the value of Bx, changes from 0 to 

0.7x10-8, while x changes from -4.0 to -2.0. The field magnitude changes form 

+0.7x10-8  to -0.7x10-8, while x changes from -2.0 to +2.0, then B., changes form 

-0.7xi 0' to 0 while x changes from +2.0 to +4.0. The maximum deflection is at 

x=±2.0. The bandwidth of the curve is wider than that of in Figure 4-26. Thus, 

we may say that the maximum magnetic field strength occurs far from the current 

carrying conductor and goes to smaller and smaller while y increases. From 

Figure 4-27, Figure 4-19 Figure 4-11 and Figure 4-3, we see that the maximum of 



the magnetic field of the third term is much less than that of first term with the 

same y which is 10.0. If we put both curves in Figure 4-3, Figure 4-11, Figure 4-

19, Figure 4-27 together, probably we can only see one curve which is the curve of 

the first term of B.1 , the other one is just a line. In that case, only the first need to 

be taken into account. 

The curve of the second term whose y=50 (Figure 4-28) is also a doublet and 

symmetrical with respect to "0". B x, changes from 0 to 3.2x 10-15  , while x changes 

from -18.0 to -8.0. B., changes form +3.2x10-'5  to -3.2x10-15  , while x changes 

from -8.0 to +8.0, then B., changes form -3.2xi0-'5  to 0 while x changes from 

+8.0 to +18.0. The maximum deflection is at x=±8.0. 

From Figure 4-29 (y=100), we see that almost all of the change of the magnetic 

field Bs, occurs in a wide interval between -100x<100, the maximum field 

perturbation occurs at x= ±18. But the maximum B., is only 7.0x10-18, even we 

did not plot the curves have big y , we can say that with the increasing of y, the 

maximum B., will be smaller. 

Lets discuss a couple of more curves for the fourth term of the field 

perturbation. The curve in Figure 4-30 shows change of B., with y=200.0 and -

100.0<x<100.0. From the curve, we see that Br, goes from 0 to 1.4x10-2° when 

x=-75.0 to -40.0. The maximum perturbation is very small 1.4x10-20, this happens 

at x=-40.0. 1.4x10-" is a very small number, this will not effect anything. Neither 

does Figure 4-31 and Figure 4-32. Before doing anything, we think that both 

curves in Figure 4-31 and Figure 4-32 has very small magnitude. They are too 

small to be taken into account. 

Figure 4-31a shows the fourth term of B., when y=500. But from Figure 4-31a, 

we can not see the whole change of the field. We have to use big x, for instance, x 

changes from -300 to 300, we can get a curve like those curves we got in the 

preceding section. In Figure 4-31a, we can get the maximum magnitude (B,r, =3.5x 



10-') when x=75.0. Here, a curve (Figure 4-31b) has different x value had been 

made which has the familiar sharp. And we are sure that B., is zero even Figure 4- 

31a does not show the value of x-4-±co. 

The last picture we discuss is Figure 4-32a whose y is 1000.0. We have the 

same situation as Figure 4-32a whose x was not chosen big enough to be seen the 

whole change of the B.,. But choosing small x, we can see very clearly how the 

magnetic field changes when x changes, but y is large. Now the maximum Bx, is 

about 2x10-27, so its a very small number which will not be taken into account. 

Figure 4-25 (y=1), Figure 4-26 (y=5), Figure 4-27 (r10), Figure 4-28 (50), 

Figure 4-29 (y=100), Figure 4-30 (y=200), Figure 4-31 (y=500) and Figure 4-32 

(y=1000) are the resulting patterns. After propagating y, curve spreads to wider. 

Combining the four terms together, which is : 

—6x(y — Y0 )2 +2x3 -20x0) — Y0)4 +40x3 CY — Y02 -4x5  

(0)--Y0)2±x2)3 + 0.Y Yo + x2Y 

—42x(Y — Y0)6 +210x3 (Y — Y0)4-126x5 (Y — Y0)2 +6x7  

((Y —Y0Y+xl 

—72x ()) Yo)8  + 672 x3 (y—y0 )6 — 1008x5 (Y — Yo)+288x7CY-Y02 -8x9  

( — Y0)2 +4 01   

we obtain following curves. Figure 4-33a to Figure 4-40b are the plots for the 

total Bx, . Comparing these curves with the curves in Figure 4-1 to Figure 4-9, we 

can easily find that they almost have the same magnitude and same shape. The 

reason is very simple. Compared with other three terms, the first term has the 

largest unit of the B axis. For example, if we use the same y=5, the unit of B axis 

of Figure 1-3 is 0.005, but the unit of B axis of Fig 2-3 is 0.0008, the unit of B axis 

of Fig 3-3 is 2x10-5  and the unit of B axis of Fig 4-3 is 1xi0. So if we put all 



these four terms together, only the first term is the main term whose curves show 

on Figure 4-33 to Figure 4-40. 

From Figure 4-33a, we can see that B., =0 when x=±00. therefore, the solution 

that we got agrees with the established boundary conditions of B.1 . The curve is a 

doublet with maximum magnitude 17.0. The value of B., changes from 0 to 17.0 

when x changes from -1.0 to -.02. At x=-0.2, B., gets the peak value which is 

17.0. While x is changing from -0.2 to .02, B., is changing from peak value 17.0 

to -17.0. Than it goes from -17.0 up to 0 when x changes from 0.2 to 1.0. 

To plot the curve using y=5, we obtain Figure 4-34a and Figure 4-34b which 

are doublets. Comparing this result with that y=1, we conclude that the maximum 

magnitude of the Bx, whose y=5 is much less then that of y=1. The maximum 

magnitude is about 0.012 which is only 1/1000 of that )1. We can discover also 

that the x width that Br, changes from 0 to maximum is wider then the first one 

(y=1). The curve looks like been pulled open. The plot indicate that the curve is 

also a doublet and symmetrical with respect to "0". This means that : the more the 

distance from the point of y to current carrying conduct, the less the perturbation. 

So we assume that : with the increase of y, the maximum field perturbation will be 

smaller and smaller. 

The sharp of the curves in Figure 4-35a and Figure 4-35b are almost as same as 

that in Figure 4-34 and Figure 4-33. But the maximum magnitude of Bx, is much 

less then that in Fig 5-1 (1/10000), even much less then that in Fig 5-2 (1/10). The 

plot indicates that the curve is also a doublet and symmetrical with respect to "0". 

When x=±co, B., goes to zero, the value of B., changes from 0 to 1.5x1e, while 

x changes from -20.0 to -4.0, it changes form +1.5x1e to -1.5x1e , while x 

changes from -4.0 to +4.0, then B., changes form -1.5x10-3  to 0 while x changes 

from +4.0 to +20.0. The maximum deflection is at x=±4.0. If we plot a curve ( 

Figure 4-35b) whose x changes from -20.0 to +20.0, the maximum deflection will 



be much clear. The bandwidth of the curve is wider than that of in Figure 4-34. 

We may say that the maximum magnetic field strength occurs far from the current 

carrying conductor and goes to smaller and smaller while y increases. 

From Figure 4-36, we see that the curve is also a doublet and symmetrical with 

respect to "0". B.., changes from 0 to 1.5x10-5, while x changes from -100.0 to - 

20.0, it changes from +1.5xio-5  to -1.5xi0-5  , while x changes from -20.0 to +20.0, 

then Bx, changes form -1.5x10-5  to 0 while x changes from +20.0 to +100.0. The 

maximum deflection is at x=±20.0. 

Figure 4-37a and Figure 4-37b show the change of Bx, when y=100. 

There is no large difference between this curve and those others in sharp. 

The maximum magnetic perturbation is 1.5xio-6  which is 1/10 of that when 

y=50. In Figure 4-37a we can not see how Bx, is when x=±00, because that 

Bx, changes from 0 to maximum is out of range -100<x<100 as we usually 

use. But the plot in Figure 4-37b shows us very clearly that Bx, always goes 

to 0, when x=±0c . 

From Figure 4-38a, (y=200), we see that the curve is changed to the one which 

looks like a cos(x) function curve. The reason we got this is that we chose the 

range of x from -100.0 to +100.0. If we use the range whose x changes from -

400.0 to +400.0, we will get a curve (Figure 4-38b) very similar to these curves we 

got before. Now the maximum magnetic perturbation is getting very small which 

is only 1.6x10-7 . Bx, changes from +1.6x10-7  to -1.6x10-7, while x changes from 

-100.0 to +100.0, and the change is as almost same as that of cos(x) function. 

Now lets take a look at the curve whose y=500.0 (Figure 4-39a and Figure 4-

39b). Like the preceding sections, x changes from -100.0 to +100.0. The solution 

given here is a special one. When x changes from -100.0 to +100.0, the magnetic 

field perturbation changes linearly from 9.0x10-9  to -9.0x10-9 . The slope of the 

line is very small. But when we use the big x, we can get the curve (Figure 4-39b) 



which has the same sharp as others. The difference is the maximum magnetic 

perturbation is much less than those we discussed before. 

The last plot we discuss about B., is Figure 4-40a. Using the same change of x, 

we got the same sharp of the curve of Br, , the only difference is that the slopes of 

the lines. In Figure 4-40a, the unit of B., is 2x10-'°, but the unit of B., we used 

for Figure 4-39 is 2x10-10 . This curve happens when .31000.0. Also, in Figure 4-

40b which shows the change of B., while -1500<x<1500. 

Figure 4-33 to Figure 4-40 illustrate the magnitude perturbation in the axial 

component of the induced magnetic field corresponding to a threshold value of the 

magnetic Reynolds number ( for the first term of the solution). The plots indicate 

that field perturgbation is sensitive to y, with almost zero value at the surface of 

both electrodes. The location of electrodes is at .}0„ y=L, and the current 

carrying conductor is located at y =—y0. In the preceding section, different plots 

are shown separately. Now we put the curves with different y together, (select 

y=l, y=1.5, .r2), see how the curve changes with different y. 

So far we have not discussed the fifth term yet which is a function of 8: 

.5(y_ yo
)( 1 + 1 _ 1 

3x 3  5x' 7x' 
This 8 function will only be effective when y = yo y = yo, with any value of x along 

the MHD channel, whether upstream or downstream. The magnitude of the 5 

function is an infinite impluse. However, we chose the magnitude of the function 

as 1000 which can be used on the computer. Figure 4-41 shows this term. The 

curve is a doublet which has big magnitude, and it goes to 0 when x=±03. The 

physical picture shows a conducting fluid flowing between two infinite paralleled 

electrodes of an arbitrary height, L. The source of the magnetic field is an infinite 

conductor carrying current which has 5 function and located at a distance y0  below 

the lower channel wall. Those plots we already discussed indicate that field 



perturbation is loosely sensitive to the distance between the position of any y and 

the position of the infinite conductor. y is channel height in all figures. 

Figure 4-41 Axial component of total induced magnetic field 5, y=0.01 

Figure 4-42 Axial component of total induced magnetic field, y=1.0, 1.5, 2.0 



Chapter 5 

CONCLUSIONS 

1) The solutions considered in the preceding chapter shows that solutions for 

magnetic and flow field perturbations for an incompressible and inviscid plasma in 

a parallel plate channel can be obtained in a closed mathematical form using the 

perturbation theory and the existence of magnetic boundary layer approximation. 

(A threshold value for the magnetic Reynolds number of 0.1 that corresponds to 

the beginning of boundary layer separation was assumed. 

The induced magnetic field is due to an infinite linear superconductor carrying 

alternate current /5(0, —yo ) located a small distance yo  below the lower channel 

wall, and has only two components normal to the two electrodes. This geometrical 

configuration of the two parallel plates is actually an exact simulation for an MHD 

generator whose operational duct could be either the main divertor channel near 

the scrape-off region or the exhaust chamber of the tokamak fusion reactor. The 

source of external induction is centered on a coil wound around either the director 

duct or its exhaust chamber. The coil is biased with alternate field which is 

intended to contribute further to streamlining the feral magnetic field system in the 

reactor. 

Solutions for the induced magnetic field were obtained by the method of 

mathematical perturbation and using the concept of magnetic boundary layer 

approximation, listed as follows: 

1 1 1 1 
B., = (5(Y — Yo )(x — 3x3 + 5x5 — 7x'

1 

—6x(y—Y0 Y-F2x3  —20x(Y — Y0)4 +40x3 (Y — Y0 )2 -4x5  
+ 3 + 

(0)-Y0)2+X2) (01-Y0)2 +X2)5 



+
-42x(y — y0)6 +210x3(Y — Y04-126x9 (V — Y0)2 +6x7  

((Y — Y0)2 +x2)7  

—72x(y —.Y0)8  +672 x3(Y — y0)6-1008x5 (.Y —y0)4 + 288x7(Y — Y0)2 -8x9  + 
((Y — Y0)2 +x2Y 

The computer programming and calculation covered every single term of the 

tangential induced magnetic field component Bx, and the total tangential induced 

magnetic field component as given here. The software SIMUL1NK had been used 

in this paper. All M-files which are used to plot the functions of single term of 

induced magnetic field and total induced magnetic field can be updated in future. 

The result shows that when y is very small, Bx, is obtained as the equation as 

shown before; when y is greater than 5.0, Bx, can be expressed as the first term of 

total Bx, : 

—6x(y — Y0 )2 +2x3  Bx, .--  , 
(CY -3)0 )2+ x'Y 

This will cause the calculations much simple. 

2) The computer simulation indicates that magnetic field perturbation is very 

small (almost zero ) value at the surface of the low electrode which is near the 

alternate current carrying conductor of infinite length. Then the magnetic field 

perturbation gets the greatest value when y is near 1.0. While y increases, the 

maximum magnetic field perturbation goes smaller and smaller, and the 

bandwidth of the curve becomes wider and wider. Roughly speaking, we may say 

that while y changes from 1.0 to infinite number, the curve of magnetic field 

perturbation becomes flatter. This change can be seen very clearly in the follow 

figure. (Figure 5-1): 



Figure 5-1 Axial component of induced magnetic field 

(Close y were chosen for plotting Figure 5-1. Because while y increases, the 

maximum magnetic field perturbation drops very fast. If y are too far apart, the 

big y's curve will on top of another.) 

The command of 3-D Mesh surface is used to create a 3-D plot as follow. This 

three dimension plot shows the change of x, y and Bx, very clearly. 

3) The solution which is obtained in this paper can be used to solve the induced 

magnetic field which is caused by alternate current carrying sheet. The method is 

that regarding the alternate current carrying sheet as many single current carrying 

conductors. Then using the process of summing : 

. 
B,x, = EBx, 

x=x+a 

a is the distance between each two conductors. A., is magnetic field of the current 

sheet. 



4) The results can be used to develop applying pulsed acceleration of exhaust 

plasma in a fusion-MHD power generator. The external portion of the exhaust 

chamber for divertor of the PRDM fusion reactor could serve as an accelerator-

induction generator channel. This can be accomplished by placing accelerating 

DC field on the AC ( current impulse singular function) exciting field on the 

outward part. Determining the effectiveness of the magnetic field system for the 

AC induction generator in confining the ploloidal field within the separatrix 

surface is required for designing the AC-MHD induction generator. 

Figure 5-2 3-D axial component of induced magnetic field 



APPENDIX 

Figure 4-la Axial component of induced magnetic field 1, r1, -100<x<100 

Figure 4-lb Axial component of induced magnetic field 1, y=1, -2<x<2 



Figure 4-2a Axial component of induced magnetic field 1, y=5, -100<x<100 

Figure 4-2b Axial component of induced magnetic field 1, y=5, -8<x<8 



Figure 4-3a Axial component of induced magnetic field 1, y=10, -100<x<100 

Figure 4-3b Axial component of induced magnetic field 1, r10, -20<x<20 



Figure 4-4 Axial component of induced magnetic field 1, y=50, -100<x<100 

Figure 4-5a Axial component of induced magnetic field 1, y=100, -100<x<100 



Figure 4-5b Axial component of induced magnetic field 1, y=100, -150<x<150 

Figure 4-6a Axial component of induced magnetic field 1, y=200, -100<x<100 



Figure 4-6b Axial component of induced magnetic field 1, r.-200, -300<x<300 

Figure 4-7a Axial component of induced magnetic field 1, y=500, -100<x<100 



Figure 4-7b Axial component of induced magnetic field 1, y=500, -700<x<700 

Figure 4-8a Axial component of induced magnetic field 1, y=1000, -100<x<100 



Figure 4-8b Axial component of induced magnetic field 1, y=1000, -1000<x<1000 

Figure 4-9a Axial component of induced magnetic field 2, y=1, -100<x<100 



Figure 4-9b Axial component of induced magnetic field 2, r--1, -2<x<2 

Figure 4-10a Axial component of induced magnetic field 2, y=5, -100<x<100 



Figure 4-10b Axial component of induced magnetic field 2, y=5, -4<x<4 

Figure 4-11a Axial component of induced magnetic field 2, y=10, -100<x<100 



Figure 4-11b Axial component of induced magnetic field 2, y=10, -10<x<10 

Figure 4-12a Axial component of induced magnetic field 2, y=50, -100<x<100 



Figure 4-12b Axial component of induced magnetic field 2, y=50, -40<x<40 

Figure 4-13 Axial component of induced magnetic field 2, y=100, -100<x<100 



Figure 4-14a Axial component of induced magnetic field 2, y=200, -100<x<100 

Figure 4-14b Axial component of induced magnetic field 2, y=200, -150<x<150 



Figure 4-15a Axial component of induced magnetic field 2, y=500, -100<x<100 

Figure 4-15b Axial component of induced magnetic field 2, y=500, -400<x<400 



Figure 4-16a Axial component of induced magnetic field 2, y=1000, -100<x<100 

Figure 4-16b Axial component of induced magnetic field 2, y=1000, -1000<x<1000 



Figure 4-17a Axial component of induced magnetic field 3, y=1, -100<x<100 

Figure 4-17b Axial component of induced magnetic field 3, y=1, -2<x<2 



Figure 4-18a Axial component of induced magnetic field 3, y=5, -100<x<100 

Figure 4-18b Axial component of induced magnetic field 3, y=5, -4<x<4 



Figure 4-19a Axial component of induced magnetic field 3, y=10, -100<x<100 

Figure 4-19b Axial component of induced magnetic field 3, )=10, -8<x<8 



Figure 4-20a Axial component of induced magnetic field 3, y=50, -100<x<100 

Figure 4-20b Axial component of induced magnetic field 3, y=50, -60<x<60 



Figure 4-21 Axial component of induced magnetic field 3, y=100, -100<x<100 

Figure 4-22a Axial component of induced magnetic field 3, y=200, -100<x<100 



Figure 4-22b Axial component of induced magnetic field 3, y=200, -150<x<150 

Figure 4-23a Axial component of induced magnetic field 3, y=500, -100<x<100 



Figure 4-23b Axial component of induced magnetic field 3, y=500, -400<x<400 

Figure 4-24a Axial component of induced magnetic field 3, y=1000, -100<x<100 



Figure 4-24b Axial component of induced magnetic field 3, y=1000, -1000<x<1000 

Figure 4-25a Axial component of induced magnetic field 4, y=1, -100<x<100 



Figure 4-25b Axial component of induced magnetic field 4, y=1, -1<x<1 

Figure 4-26a Axial component of induced magnetic field 4, y=5, -100<x<100 



Figure 4-26b Axial component of induced magnetic field 4, y----5, -4<x<4 

Figure 4-27a Axial component of induced magnetic field 4, y=10, -100<x<100 



Figure 4-27b Axial component of induced magnetic field 4, y=10, -8<x<8 

Figure 4-28a Axial component of induced magnetic field 4, y=50, -100<x<100 



Figure 4-28b Axial component of induced magnetic field 4, y=50, -40<x<40 

Figure 4-29a Axial component of induced magnetic field 4, y=100, -100<x<100 



Figure 4-29b Axial component of induced magnetic field 4, y=100, -60<x<60 

Figure 4-30a Axial component of induced magnetic field 4, y=200, -100<x<100 



Figure 4-30b Axial component of induced magnetic field 4, y=200, -150<x<150 

Figure 4-31a Axial component of induced magnetic field 4, y=500, -100<x<100 



Figure 4-31b Axial component of induced magnetic field 4, y=500, -400<x<400 

Figure 4-32a Axial component of induced magnetic field 4, y=1000, -100<x<100 



Figure 4-32b Axial component of induced magnetic field 4, y=1000, -800<x<800 

Figure 4-33a Axial component of total induced magnetic field, y=1, -50<x<50 



Figure 4-33b Axial component of total induced magnetic field, y=1, -50<x<50 

Figure 4-34a Axial component of total induced magnetic field, y=5, -100<x<100 



Figure 4-34b Axial component of total induced magnetic field, y=5, -10<x<10 

Figure 4-35a Axial component of total induced magnetic field, y=10, -100<x<100 



Figure 4-35b Axial component of total induced magnetic field, y=10, -20<x<20 

Figure 4-36 Axial component of total induced magnetic field, y=50, -100<x<100 



Figure 4-37a Axial component of total induced magnetic field, y=100, -100<x<100 

Figure 4-37b Axial component of total induced magnetic field, y=100, -200<x<200 



Figure 4-38a Axial component of total induced magnetic field, y=200, -100<x<100 

Figure 4-38b Axial component of total induced magnetic field, y=200, -400<x<400 



Figure 4-39a Axial component of total induced magnetic field, y=500, -100<x<100 

Figure 4-39b Axial component of total induced magnetic field, 
y=500, -1000<x<1000 



Figure 4-40a Axial component of total induced magnetic field, 
y=1000, -100<x<100 

Figure 4-40b Axial component of total induced magnetic field, 
y=1000, -1500<x<1500 
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