Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

> Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT
Development of a Composite User Equilibrium and System Optimization Assignment Model
by
Kimberly M. Stump

The Urban Transportation Modeling System (UTMS) is a set of procedures used by transportation planners to predict the volume of traffic that will flow through a network, and how the traffic is routed. This paper will focus on the final component of UTMS, traffic assignment, which assigns the traffic flows to actual routes in the network.

In this paper, two composite models which model both User Equilibrium and System Optimal assignments are presented. The composite models are solved using the GAMS (General Algebraic Modeling System) software, a powerful mathematical programming tool. The first model was based on Beckman's Formulation, (Beckman, MacGuire, Winsten, 1956). The second model was developed by the author and utilizes some unique features of the GAMS software in order to solve the problem of User Equilibrium. Finally, the results of the example problem are used to develop general conclusions regarding the applicability of the model, as well as areas of future improvement and research.

Development of A Composite User Equilibrium and System Optimization Assignment Model

by
Kimberly M. Stump

A Thesis
Submitted to the Faculty of New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of Master of Science
Interdisciplinary Program in Transportation
January, 1993

APPROVAL PAGE

Development of a Composite User Equilibrium and System
Optimization Assignment Model

Kimberly M. Stump

$1 / 8 / 93$
Dr. Lazar N. Spasovic, Thesis Advisor
Assistant Professor, School of Industrial Management,
Center for Transportation Studies and Research, NJIT

Dr. Loừis J. Pignătàro, Committee Member eti/s/9.3
Distinguished Professor, Transportation Engineering and
Director, Center for Transportation Studies and Research, NJIT

$\overline{\text { Dr. Athanassios K. Bladikas, Committee Member }}$
Associate Professor, Industrial and Management Engineering and Associate Director, Center for Transportation Studies and Research, NJIT

BIOGRAPHICAL SKETCH

Author: Kimberly M. Stump

Degree: Master of Science in Transportation

Date: January, 1993

Date of Birth:

Place of Birth:

Undergraduate and Graduate Education:

Master of Science in Transportation, New Jersey Institute of Technology, Newark, NJ, 1993

Bachelor of Science in Civil Engineering, University of Delaware, Newark, DE, 1987

Major: Transportation (Planning)

Professional Positions:

Project Engineer, Delaware Department of Transportation, Dover, DE, 1988-1991

Research Assistant, New Jersey Institute of Technology, Newark, NJ, 1991-1992

Traffic Engineer, Garmen Associates, Montville, NJ, 1992-1993

ACKNOWLEDGEMENT

The author wishes to express her sincere gratitude to her supervisor, Professor Lazar N. Spasovic, for his direction and friendship throughout this research.

The author also wishes to thank Professors Louis J. Pignataro and Athanassios K. Bladikas for serving as members of the committee.

Finally, the author wishes to thank her family for their words of encouragement and moral support, and Kenneth Hausman for his guidance and friendship throughout this research project.

TABLE OF CONTENTS

Chapter Page
1 INTRODUCTION 1
2 EXISTING METHODS TO SOLVE THE ASSIGNMENT PROBLEM 5
2.1 Introduction 5
2.2 Existing Transportation Planning Packages 5
3 AN EXAMPLE OF USER EQUILIBRIUM VERSUS SYSTEM OPTIMIZATION 9
3.1 Introduction 9
3.2 The Sample Problem 12
3.3 Solutions to Sample Problem Using MinUTP and TRANPLAN 14
4 DEVELOPMENT OF THE COMPOSITE USER EQUILIBRIUM AND SYSTEM OPTIMIZATION ASSIGNMENT MODELS 16
4.1 Introduction 16
4.2 The GAMS Model Based on Beckman's Formulation 18
4.3 The GAMS Model Based on the Author's Formulation 23
5 CONCLUSIONS 28
APPENDIX 32
REFERENCES 59

LIST OF TABLES

Table Page
3.1 Summary of Solutions for Sample Problem 14
3.2 Summary of Solutions for Sample Problem Using MinUTP and TRANPLAN 15
4.1 Summary of Solutions for Sample Problem Using Beckman's Formulation, Solved Using GAMS 23
4.2 Summary of Solutions for Sample Problem Using Author's Formulation, Solved Using GAMS 27
5.1 Summary of Solutions for Sample Problem Using All Approaches 28

LIST OF FIGURES

Figure Page
1.1 The Urban Transportation Modeling System 1
3.1 Sample Problem. 12
4.1 Structure of a GAMS Model 17

CHAPTER 1

INTRODUCTION

The Urban Transportation Modeling System (UTMS) is a set of techniques which is used by transportation planners to model urban travel supply and demand. UTMS is used to predict the number of trips made within an urban area during different times of the day, and where these trips originate and their destination. In addition, UTMS predicts the mode by which these trips are made and predicts the routes taken through the transportation network. The UTMS process is shown in Figure 1.1.

Figure 1.1 The Urban Transportation Modeling System (Source: Urban Transportation Planning A Decision-Oriented Approach, Michael D. Meyer and Eric J. Miller, 1984)

In order to simplify this complex process, the UTMS has been broken down into four discrete stages. The first stage in UTMS is the trip generation component. This step involves the analysis of land use and population statistics in order to estimate traffic
flows. The second stage is trip distribution, which predicts the destination of the flows from each of the origins, usually according to a gravity model (Meyer, M and E. Miller, 1984). The gravity model uses impedance (i.e., distance or travel time) to distribute traffic among origins and destinations. Modal split, the third step in UTMS, projects the split of the flows among the available modes of transport, such as highway and rail. The last component of the UTMS is traffic assignment, which assigns the traffic flows to actual routes in the network. It is this final component, the development of a traffic assignment model, which will be the subject of this paper.

The trip assignment function of UTMS is a process in which traffic flows between each origin-destination (O-D) pair are allocated to actual routes in a given network. The assignment procedures are based on two principles, which were developed by Wardrop (1952):
(1) Wardrop's First Principle: each individual selects a route between his origin-destination pair which will minimize his own travel cost. In this type of assignment, called "User Equilibrium", a traveler can not improve upon his own individual travel cost by changing to a different route.
(2) Wardrop's Second Principle: each individual selects a route so that the system-wide total transportation cost is minimized. In this type of assignment, called "System Optimization", a traveler can not improve upon the system-wide average cost of travel by changing to a different route.

In an uncongested network, application of both principles would yield the same route assignments. This result occurs because in an uncongested network, the links operate under free flow conditions, and the presence of additional travelers will not increase the travel cost of traversing a route. All of the travelers choose the minimum cost path, minimizing both individual user and total system travel cost. In a congested network,
however, the two principles do not generate the same route assignments. Traveling on a congested route could be the minimum path for an individual traveler, but would result in additional travel cost for everyone who has chosen this route. Even if this cost is very small, it will be multiplied by the number of travelers on the route and result in raising the total travel cost for that O-D pair significantly. Moreover, if a single link is utilized by several routes, then congestion on this link can have far reaching effects on the total system cost.

The most realistic assignment of flows through an unregulated network is based on a User Equilibrium model. If travelers have a choice, they will choose to minimize their own travel costs, at the expense of others. Unfortunately, the User Equilibrium assignment process has proven to be more difficult to model than the System Optimization process. Consequently, many transportation planning software packages use trip assignment models which are based on techniques which only approximate the User Equilibrium model, or which are based on a simplified form of the System Optimization model.

Although the User Equilibrium model more closely resembles a typical uncontrolled highway network, it is important to realize that a System Optimization model could be applied if there were a central authority which governed route choice, and whose goal was to minimize the total system travel cost. Implementing this plan has never been a tangible goal until the advent of recent technological advances in traffic management. The Intelligent Vehicle Highway System (IVHS) concept encourages the use of advanced information and congestion technology in order to better utilize the existing transportation network. Route guidance should play a major role in the proposed IVHS systems, but the specifics concerning route assignment have not been widely discussed. It is clear that the goal of the central authority which disseminates route choice information has a great effect on which path is recommended. Currently,
for profit companies such as "Shadow Traffic", sell congestion and travel time information, primarily to radio stations. Unlike these private companies, which seek to route users to minimize their individual delays, the authority may wish to route users in order to minimize total system delay. A prevailing question should be: "Does the authority assign trips according to User Equilibrium or System Optimization?". Both scenarios should be examined in depth before making this important policy decision. Therefore, a modeling framework which combines both User Equilibrium and System Optimization assignment models would be useful to the planner considering an IVHS system.

In Chapter 2, some of the commonly used traffic assignment software models, including MinUTP and TRANPLAN, are examined. In Chapter 3, the flow conditions which arise under User Equilibrium and System Optimization assignments for networks with fixed demand are examined. A simple example problem to illustrate the difference between User Equilibrium and System Optimization is presented. In Chapter 4, two composite models which model both User Equilibrium and System Optimal assignments, are presented. The composite models are solved using the GAMS (General Algebraic Modeling System) software, a powerful mathematical programming tool. The first model was based on Beckman's Formulation, (Beckman, MacGuire, Winsten, 1956). The second model was developed by the author and utilizes some unique features of the GAMS software in order to solve the problem of User Equilibrium. Finally, in Chapter 5 , the results of the example problem are used to develop general conclusions regarding the applicability of the model, as well as areas of future improvement and research.

CHAPTER 2

EXISTING METHODS TO SOLVE THE ASSIGNMENT PROBLEM

2.1 Introduction

There are many different personal computer (PC) transportation software packages available to perform the functions of transportation planning-- trip generation, distribution, modal split and trip assignment. Some of these models rely on techniques which try to estimate the User Equilibrium assignment, while others rely on the simpler System Optimization to assign traffic.

Most software packages contain one or several of the commonly used methods of solving the trip assignment problem. These are the all-or-nothing, all shortest-paths, or assignment by a stochastic method. Most UTMS software packages also contain features which allow the user to incrementally load the network with the travel demand. While these different methods attempt to approximate User Equilibrium conditions, the algorithms which are used by the software packages do not replicate the User Equilibrium solution. In addition, no UTMS software package could be found which modeled both User Equilibrium and System Optimization.

2.2 Existing Transportation Planning Packages

MinUTP, developed by Comsis Corporation, is a popular transportation planning software package (Comsis, July 1992). The software employs three methods for path routing in the trip assignment function:
(1) All-or-Nothing - all trips are assigned to a single minimum path. Even if there are multiple paths with the same minimum travel time, only one of the paths is used.
(2) All-Shortest-Paths - all trips are assigned to the minimum path, but if there are multiple minimum paths, the trips are equally divided among these links.
(3) Stochastic - if there are multiple efficient paths, the trips are divided among these paths according to an exponential function based on their relative efficiency (i.e., travel time).

Each of these assignment models are very simple, since they consider only the path free flow travel time in order to allocate traffic. Delay caused by congestion on the network links is not calculated. Further, in a congested network, these types of assignments do not model route choice according to either User Equilibrium or System Equilibrium.

In order to assign the traffic more realistically, MinUTP allows the user to incrementally load the network with the traffic. Assignment is based on the All-orNothing minimum path assignment, however, only a portion of the total traffic is assigned on each pass. Adjusted travel times based on the Bureau of Public Roads (BPR) congestion curve are then calculated, and are used to determine the minimum path for the next increment of traffic (U.S. Bureau of Public Roads, 1964). The BPR Curve adjusts travel time on a highway link in proportion to the volume to capacity ratio (V/C) for that link. The Bureau of Public Roads (BPR) Congestion Curve equation is presented below:

$$
\text { Time }_{\text {adjusted }}=\text { Time freeflow }^{*}\left\{1+c^{*}(\text { volume/capacity })^{4}\right\}
$$

where:

> Time adjusted $=$ travel time on congested link
> Time freeflow $^{=}$travel time on uncongested link
> $c=0.15$
volume $=$ link volume
capacity $=$ link capacity

MinUTP allows for up to ten passes of this kind. Final assignment values can be based on the last iteration, an average of all iterations, a summation of incremental accumulations, or an "Equilibrium volume adjustment". The title "Equilibrium" is misleading because it does not refer to User Equilibrium but, according to the MinUTP User's Manual (1992), to a "process whereby link volumes are obtained by weighing the volumes from each iteration". Further, the Manual states that this process is considered by some to be the most appropriate technique to use in trip assignment. Indeed, this method does consider congestion and its effect on link impedances, and weight certain iterations in an attempt to approximate the User Equilibrium solution. Still, this method is constrained by the ten iteration limit, and for a large network, may vary from the User Equilibrium solution.

TRANPLAN, distributed by the Urban Analysis Group, is another popular transportation modeling software (The Urban Analysis Group, 1990). Like MinUTP, it employs three different types of assignment (loading) models. These assignment models are listed below:
(1) All-or-Nothing - all trips are loaded on the minimum paths (impedances may be based on time, distance, cost, or other user specified parameters).
(2) Stochastic Highway Load - trips are assigned to all reasonable paths, each path receiving a fraction of trips which are proportional to a user specified diversion parameter.
(3) Equilibrium Highway Load - iterative series of all-or-nothing assignments, with an adjustment of travel times in accordance with the BPR curve. The trips are assigned so as to minimize the impedance of each trip.

Like MinUTP, TRANPLAN has several user options to be used in conjunction with the basic assignment models so that they model actual route choice more realistically. The user may choose multiple pass runs, adjusting the time impedances link by link. Incremental loading of the all-or-nothing assignment model is also allowed, with limited iterations available.

TRANPLAN'S Equilibrium Highway load assignment is somewhat different from MinUTP's Equilibrium assignment model. The basis of TRANPLAN's Equilibrium load model is stated in the description of the Equilibrium Highway Load located in TRANPLAN's User Manual (The Urban Analsis Group, 1990), which states:
"Equilibrium, in the context of transportation assignments, occurs when no trip can be made by an alternate path without increasing the total travel time of all trips in the network." 1

This implies that the model is based on System Optimization of the network. This is not the case, however. The assignment algorithm assigns the volumes so that the link volumes are as close as possible to the User Optimized equilibrium loadings. The assignment is an iterative process, and the final assignment is a weighted average of the iterations. Again, the actual model attempts to estimate the User Equilibrium routing but does not explicitly calculate the solution.

[^0]
CHAPTER 3

AN EXAMPLE OF USER EQULLIBRIUM VERSUS SYSTEM OPTIMIZATION

3.1 Introduction

When transportation demand is fixed, the following flow conditions arise if network assignment is made under System Optimization (for each O-D pair):

$$
M C_{p I}=M C_{p m} \leq M C_{p m+1} \leq M C_{p n}
$$

where:
$M C_{p}=$ marginal cost on path p
$h_{p j}>0 \quad j=1, \ldots m$
$h_{p j}=0 \quad j=m+1, \ldots n$

Therefore, it is possible to solve for System Optimization by calculating the marginal costs for all paths for each O-D pair, and assigning the traffic to the paths with the minimum marginal costs. The logic behind this definition of a System Optimized flow pattern is straightforward. The objective of an assignment in accordance with Wardrop's Second Principle is to minimize the total system cost. The marginal cost on path \mathbf{P} is defined as the "cost" of adding one unit of flow onto path P. Consequently, the flow will be assigned to the path with the lowest marginal cost, so as to keep the total system cost at a minimum.

Wardrop's Second Principle can also be expressed in the following mathematical programming problem form:

$$
\text { Minimize } Z=\sum_{a \in A} c_{a}\left(f_{a}\right)^{*} f_{a}
$$

subject to:

$$
\begin{gathered}
T i j-\sum_{p \subseteq P_{j} j} h_{p}=0 \text { for } \forall \mathrm{i}, \mathrm{j} \\
f a-\sum_{p \subseteq P_{i j}} \delta_{a p} * h_{p}=0 \text { for } \forall i, j \\
h\left(p_{j}\right) \geq 0 \quad j=m+1, \ldots n
\end{gathered}
$$

where:

$$
\begin{aligned}
& \delta_{a p}=1 \text { if arc } a \text { is included in path } p \\
& \delta_{a p}=0 \text { otherwise } \\
& T_{i j}=\text { travel demand from } i \text { to } j \\
& h_{p}=\text { flow on path } p \\
& f_{a}=\text { flow on arc } a \\
& c\left(f_{a}\right)=\text { cost function }
\end{aligned}
$$

The objective function calculates total system cost, so the minimization of this function produces the desired flow pattern for System Optimization. The first constraint ensures that flow on path P includes the flows for all of the arcs contained in that path. The second constraint results in the conservation of flow along all of the utilized paths, from each origin to destination. This formulation produces the same flow pattern as was previously described for System Optimization, and is relatively simple to solve.

Solving for User Equilibrium produces this particular flow pattern:

$$
C_{p l}=C_{p m} \leq C_{p m+1} \leq C_{p n}
$$

where:

$$
\begin{aligned}
& C_{p}=\text { cost of travel on path } p \\
& h_{p j}>0 \quad j=1, \ldots m \\
& h_{p j}=0 \quad j=m+1, \ldots n
\end{aligned}
$$

In this case, the flow pattern relies only on the minimum path cost for each O-D pair. If there is a lower cost path available to a user, he/she will seek to switch to that path. The path switching continues until all of the users have minimized their own individual travel time. The mathematical programming formulation of this problem is not straightforward. Beckman (1956) introduced a form, often called "Beckman's Equivalent Optimization Problem", which is presented below:

$$
\text { Minimize } Z=\sum_{a \in A} \int_{0}^{f a} c(f a) d f a
$$

subject to:

$$
\begin{aligned}
& T_{i j}-\sum_{p \subseteq P i j} h_{p}=0 \text { for } \forall i, j \\
& f a-\sum_{p \subseteq P i j} \delta_{a p} * h_{p}=0 \text { for } \forall i, j \\
& h_{p} \geq 0
\end{aligned}
$$

where:

$$
\begin{aligned}
& \delta_{a p}=1 \text { if arc } a \text { is included in path } p \\
& \delta_{a p}=0 \text { otherwise } \\
& T_{i j}=\text { travel demand from } i \text { to } j \\
& h_{p}=\text { flow on path } p \\
& f_{a}=\text { flow on arc } a \\
& c\left(f_{a}\right)=\text { cost function }
\end{aligned}
$$

In order to solve this problem it is essential that the cost function be differentiable. Then the derivative may be taken and set equal to zero to determine where the minimum occurs. Although this particular equation has no economic or engineering meaning, it useful in determining the User Equilibrium flow patterns.

3.2 The Sample Problem

In order to better illustrate the difference between the User Equilibrium and System Optimal solutions, a small example problem is presented. The parameters of the problem are presented in Figure 3.1. The impedance is defined using the Bureau of Public Roads (BPR) travel time equation, and the fixed demand is 1500 trips from origin A to destination B.

Fixed Demand $=1500$ trips from A to B.

Link Characteristics					
Link	Capacity [vph]	Speed [mph]	Distance [miles]	Direction	
1	1500	50	5.0	one-way	
2	1500	50	5.0	one-way	
3	1200	35	3.0	one-way	
4	1200	35	3.0	one-way	
5	1200	35	1.0	two-way	

Figure 3.1 Sample Problem

Under User Equilibrium, the trips are assigned by applying the logic in Wardrop's First Principle. Each user will choose a path so that his travel time is minimized, and that he can not improve upon that travel time by taking a different path. In this simple network, there are only four possible paths from A to B, that are defined as follows: Path 1 consists of links 1 and 2; Path 2, links 3 and 4; Path 3, links 1, 5 and 4; and Path 4, links 3, 5 and 2.

The problem is to assign flows such that the cost for each individual user is minimized. In order to find the minimum value for this function, it is necessary to take the derivative and set this equal to zero. The key to determining the solution to the sample problem is the differentiable cost function, the BPR Curve. When the BPR curve is substituted for $\mathrm{c}(\mathrm{x})$, the minimum occurs at:

$$
f a * \text { Time freeflow }^{*}\left\{1+0.03^{*}(\text { volume } / \text { capacity })^{4}\right\}=0
$$

This is the basis the formulation of Beckman's Model. The solution to this equation produces the User Equilibrium flow pattern. The solution to the sample problem is presented in Table 3.1, listed under "User". Note that the trips are distributed so that the resultant path travel times are identical.

The System Optimization solution uses the logic of Wardrop's Second Principle to arrive at a solution, in order to minimize the system's total travel time. In this case, the marginal costs of each cost function are determined in order to determine the optimal flow. The marginal path cost is simply the partial derivative of the BPR curve, with respect to flow (or the traffic volume in our equation)

The System Optimal solution for this sample problem is presented in Table 3.1, listed under "System". Note that a majority of the travelers are assigned to path 2, which has the lower capacity and the lower impedance. Many of the trips are assigned to path

1, which has a higher travel time then path 2 . This allows path 2 to maintain its minimal travel time for a selected group of users, thereby lowering the total system travel cost.

Table 3.1 Summary of Solutions for the Sample Problem

	Path 1		Path 2		Path 3		Path 4		Total
Model	Flow $[$ trips $]$	Travel Time $[\mathrm{min}]$	Flow [trips]	Travel Time $[\mathrm{min}]$	Flow [trips]	Travel Time $[\mathrm{min}]$	Flow $[$ trips $]$	Travel Time [min]	System Cost $[\mathrm{min}]$
User	268	12.0	1232	12.0	0	12.9	0	12.9	18,000
System	642	12.1	139	10.7	0	12.9	0	12.9	16,923

As can be seen from this short example, the User Equilibrium assignment can vary quite significantly from the System Optimal assignment. It is important to note that although path 1 was clearly the minimum path for most of the travelers, the total demand was greater than the capacity. Path 2 was able to handle any or all of the travel demand without becoming congested.

3.3 Solutions to the Sample Problem Using MinUTP and TRANPLAN

How would MinUTP and TRANPLAN perform on this simple example? The problem was solved using both software packages. The MinUTP results were calculated by two different methods: using the All-or-Nothing (AON) assignment, and the AON assignment with the Equilibrium Volume adjustment (3 iterations). Two different assignment models were also run for TRANPLAN: the AON assignment was determined, along with the Equilibrium Highway Load assignment (3 iterations). Although this problem is very small, the results provide an indicator of how the different software packages perform. These results are presented in Table 3.2.

Table 3.2 Summary of Solutions for the Sample Problem Using MinUTP and TRANPLAN

	Path 1		Path 2		Path 3		Path 4		Total
Model	Travel Time [min]	Flow [trips] $]$	Travel Time [min]	Flow [trips] $]$	Flow [trips] $]$	Travel Time [min]	Flow [trips]	Travel Time $[\mathrm{min}]$	System Cost $[\mathrm{min}]$
MinUTP									
AON	0	12.0	1500	14.1	0	12.9	0	12.9	21,079
Equil	266	12.0	1234	12.0	0	12.9	0	12.9	18,012
TRANPLAN									
AON	0	12.0	1500	14.1	0	12.9	0	12.9	21,079
Equil	270	12.0	1230	12.0	0	12.9	0	12.9	17,987

As can be seen from the results, running an AON assignment for this sample problem produces a very unrealistic assignment. The AON assignment does not consider any congested travel times when choosing the shortest path. On the other hand, MinUTP's AON assignment with the equilibrium adjustment did quite well - the assignment is very close to the calculated User Equilibrium results. For a simple network such as the sample problem, the algorithms employed by MinUTP seem to replicate User Equilibrium quite well, with only a small margin of error. For larger networks which involve much more traffic volumes, however, the error may be a significant factor.

TRANPLAN's AON assignment calculates the assignment in the same manner as MinUTP's model, so the solution was exactly the same. Again, this method was very unrealistic. TRANPLAN's Equilibrium Highway Load assignment model is very close to User Equilibrium results. In fact, the small discrepency of this assignment with respect to the calculated value for User Equilibrium appear to be due to rounding errors. Still, these results are only an estimation of User Equilibrium.

CHAPTER 4

DEVELOPMENT OF THE COMBINED USER EQUILIBRIUM AND SYSTEM OPTIMAL ASSIGNMENT MODELS

4.1 Introduction

In order to compare a User Equilibrium model with a System Optimization model, a new formulation which would allow the problem to be solved both ways was developed. A more accurate User Equilibrium solution than the one supplied by the popular transportation software packages was sought, and two different mathematical programming formulations were used to model the network assignment process. By changing the objective functions and adding some constraints to our mathematical programs, the same data set is used to generate both the User Equilibrium and System Optimal solutions.

Using mathematical programming is not a new approach to solving the assignment problem, for many assignment algorithms are based on mathematical programming (Florian, M., et al., 1979; LeBlanc, L.J., et al., 1975). However, formulating and solving models for large networks was difficult. Since most "real world" networks were very large and would demand the formulation of hundreds of constraints, the Mathematical Programming method has never been practical outside of academic applications.

The advent of the GAMS (General Algebraic Modeling System) has provided a convenient, easy to use personal computer software package able to formulate and solve large mathematical programs. GAMS combines the use of relational databases with mathematical programming theory. Instead of explicitly defining long constraints and multi-term objective functions, GAMS is able to generate these equations, simply by reading the form of the equation and writing them over a user specified set of ranges.

This simplifies the data entry tremendously, and makes revisions and multi-runs much easier and quicker to perform.

The basic components of the GAMS Model are presented in Figure 4.1.

INPUTS

```
SETS
    Declaration
    Assignment of Members
```

Data (PARAMETERS, TABLES, SCALARS
Declaration
Assignment of Members

```
VARIABLES
    Declaration
    Assignment of Members
    (Optional) Assignment of Bounds
    and/or Initial Values
```

```
EQUATIONS
    Declaration
    Definition
```

 MODEL and SOLVE Statements
 (Optional) DISPLAY Statements

Figure 4.1: Structure of a GAMS Model (Source: GAMS: A User's Guide, Brooke, , D. Kendrick, A. Meeraus, 1988)

The input data base is coded in free format, and data entry is accomplished through the use of tables. Instead of relying on an iterative process to estimate the solutions, the mathematical programs allow a direct solution for User Equilibrium and System Optimization to be calculated. Since the same data set can be used for each objective,
the results can be compared quite easily. The GAMS Model is a database which is coded in free format, but must consist of statements in the GAMS language.

In order to illustrate the basics of GAMS and of the different model formulations, the input data base is presented in this chapter. First, the creation of the GAMS model based on Beckman's Formulation is described. In addition, the second model, the Author's Model, is presented, and the logic behind its formulation described. Rather than dwell on the syntax of GAMS, this paper shall concentrate on the basic components of the model, their definition, and their assignment. For more details regarding the GAMS language and software, the reader is directed to GAMS: A User's Guide (1990).

4.2 The GAMS Model Based on Beckman's Formulation

The first component of a GAMS model is Sets, which are the indices in the algebraic representations of models. In the case of the sample problem, several different sets are defined below, and then assigned members:

SETS

I Origins $/ \mathrm{A} /$
J Destinations /B/
L Links /1*5/
P Paths /P1*P4/;

The sets "I", "J", "L", and "P" are declared to be existent; the members of each set are also defined, separated by commas. These sets are static sets, (i.e., their members will not change). The sets define the domains over which our model will solve. The "*" function allows definition of sets without explicitly listing all of the members. "1*4" declares members $1,2,3$ and 4 . This function simplifies large data set declaration.

The next component of the GAMS model is the Data. Data entry was accomplished through the use of Parameters, Tables, and Scalars. For the sample
problem, input values are needed for the travel demand between the origins and destinations. In addition, definition and assignment values for capacity and free flow travel time are required. Both the "Table" and "Parameter" functions for the data entry are listed below.

TABLE VOLUME(I,J,*) travel demand from A to B
TRIPS
A.B $1500 ;$

PARAMETER CAP(L) capacity of the links
/1 1500
21500
31200
41200
5 1200/;
PARAMETER SPEED(L) freeflow speed on the links
/1 50
250
35
435
5 35/;
PARAMETER DISTANCE(L) distance on the link
/1 5
25
$3 \quad 3$
43
$51 /$;

In this step, the parameters "VOLUME (I,J,*)", "CAP(L)", "SPEED(L)", and "DISTANCE(L)" are defined. Notice that a domain is declared for each data parameter. The ability to define data (and later, equations) over a set domain is a very important feature of the GAMS model, thus allowing the derivation of a large model from a relatively small table of numbers. The capacity and freeflow travel time are link characteristics, so they are defined over the entire set of links "L". "VOLUME" is a three-dimensional table, defined over the set of ordered pairs " (I, J) " and by "trips". The "*" listed in the domain is a wildcard domain value, used here because "trips" is a not a previously defined set.

In addition to these data parameters definintion of mapping sets (or correspondence matrices) is needed under the data function. These data tables, parameters, or scalars, are set up to define a correspondence between the defined SETS. For the example, there are several correspondence matrices needed, as shown below:

TABLE ODPATH(I,J,P) origin-destination to link mapping set
P1 P2 P3 P4
A.B $1 \begin{array}{llll}1 & 1 & 1 ;\end{array}$

TABLE LINKPATH(L,P) link to path mapping set
P1 P2 P3 P4

These tables declare a correspondence of origin-destination A.B to paths 1, 2, 3 and 4, via "ODPATH $(\mathrm{I}, \mathrm{J}, \mathrm{P})$ ". This means that paths $1,2,3$ and 4 travel from origin A to destination B. Table "LINKPATH(L,P)" sets up a correspondence from links to paths. For example, link 1 is included in links that make up path 1 , but not in the links for path 2. Link 3 is included in the links that constitute path 2, but not in path 1. A blank value, interpreted as a zero value by GAMS, means that there is no correspondence. These mapping sets are vital when equations are set up, in order to limit the defined domains.

The next component of the GAMS model that needs consideration is the Variables. The decision variables (endogenous variables) are declared and assigned over a domain, if pertinent. In addition, every variable must be assigned a type such as FREE (the default value), POSITIVE, NEGATIVE, BINARY, or INTEGER. Keep in mind that the objective function variable must be a scalar quantity and must be "free". Declaration and assignment of the domains for the decision variables are shown below:

POSITIVE VARIABLES
$\mathrm{F}(\mathrm{L})$ flow on a link
$\mathrm{H}(\mathrm{P})$ flow on a path;

VARIABLES

UE objective function for user equilibrium
SO objective function for system optimal;

The existence of flow over the set of all links, " $\mathrm{F}(\mathrm{L})$ ", and flow over the set of all paths, " $\mathrm{H}(\mathrm{P})$ " is declared. Bounds are assigned to our variables (0 to positive infinity), by defining them as "POSITIVE". The objective functions, "UE" and "SO", are kept free.

The next step in the GAMS model formulation is the Equations. This is where GAMS powerful use of relational databases is most apparent. If a group of constraints has the same basic structure, all of the constraints are created by the GAMS software simultaneously, instead of being entered individually by the user. The "EQUATION" function encompasses both equality and inequality constraints, as well as the objective functions. Equations must be declared and defined in separate statements, as shown below:

```
EQUATIONS
DEMAND(I,J) travel demand from origin i to destination j
FLOW(L) defines flow on a given link
OBJSYS objective function under system optimization
OBJUSER objective function under user equilibrium;
DEMAND(I,J) .. SUM(P$ODPATH(I,J,P), H(P)) =E= VOLUME(I,J,'trips');
FLOW(L) .. SUM(P $LINKPATH(L,P), H(P)) = E= F(L);
OBJSYS .. SUM(L, (F(L)* DISTANCE(L)/SPEED(L))* (1 + 0.15*
POWER((F(L)/CAP(L)),4)))=E=SO;
OBJUSER .. SUM(L, (F(L)* DISTANCE(L)/SPEED(L))* 1 + 0.03*POWER ( \(\mathrm{F}(\mathrm{L}), 4 / \mathrm{POWER}(\mathrm{CAP}(\mathrm{L}), 4)=\mathrm{E}=\mathrm{UE}\);
```

The first constraint, "DEMAND $(1, J)$ ", ensures that the flow which exists between each O-D pair utilizes one or all of the paths which is enumerated for this purpose. In this manner, the conservation of flow from origin I to destination J along the defined paths is ensured. The equation specifically states that the summation of all the flows, $H(P)$, over the set of all paths P which share the same $O-D$ pair as reported in the
mapping set ODPATH $(\mathrm{I}, \mathrm{J}, \mathrm{P})$, must equal the volume which is assigned in the table "Volume". The "\$" is called a dollar operator and controls the range of the summation according to the referenced mapping set. This is a very important operator in the GAMS language because it can restrict the set elements which contribute to the total summation.

The next constraint, "FLOW(L)", calculates the total flow on each link. Generally, the equation states that the flow on each link L must be equal to the summation of all the pathflows, $H(P)$, over the set of paths. The dollar operator ensures that, as each path is summed, only links contained in the LINKPATH mapping set are included in the total flow for that path. The traffic flow on each link is needed in the calculation of adjusted impedances for each link.

The "OBISYS" equation is the objective function for the System Optimized solution. Recalling that the objective of System Optimization is to minimize the total system wide travel cost, this problem is set up as a minimization problem. The objective equation states that the summation, over the set of all links, of the flow on link L multiplied by the impedance of link L is equal to " SO^{\prime}.

The methodology behind the objective function for User Equilibrium, "OBJUSER", is based on Beckman's Formulation of the problem. The objective function is the derivative of the BPR Equation. The equation "OBJUSER" states that the summation, over the set of all links, of the equation listed above is equal to "UE". Although this particular equation has no real economic meaning, it will indicate which values of $f(L)$ minimize user cost.

Finally, after the sets, data, variables and equations are listed, the modeling is begun by calling up the "MODEL" and "SOLVE" functions, below:

MODEL SYSTEMOPT/OBJSYS,DEMAND,FLOW/;

 SOLVE SYSTEMOPT USING NLP MINIMIZING SO:
MODEL USEREQUIL/OBJUSER,DEMAND,FLOW/; SOLVE USEREQUIL USING NLP MINIMIZING UE:

The output obtained from this run is contained in the Appendix. The first portion of the GAMS output files is merely an echo of the original input file. The remaining portion of the output lists the results. These results are summarized in Table 4.1 below:

Table 4.1 Summary of Solutions for the Sample Problem Using Beckman's Formulation, Solved Using GAMS

	Path 1		Path 2		Path 3		Path 4		Total
Model	Flow [trips]	Travel Time [min]	Flow [trips]	Travel Time [min]	Flow [trips]	Travel Time [min]	Flow [trips]	Travel Time [min]	System Cost [min]
User	268	12.0	1232	12.0	0	12.9	0	12.9	18,000
System	642	12.1	858	10.7	0	12.9	0	12.9	16,923

4.3 The GAMS Model Based on the Author's Formulation

Because of its special features, the GAMS software allows a unique formulation of the User Equilibrium problem, significantly different from Beckman's Model previously discussed. This model is denoted as the "Author's Model".

The Sets for the problems were the same as previously stated. These are listed below:

SETS

I Origins $/ \mathrm{A} /$
J Destinations /B/
L Links /1*5/
P Paths /PI*P4/;

The Data entry was also very similar to the GAMS Model of Beckman's Formulation, with the exception of an additional parameter called "COEFF(L)". This parameter allows the user to specify a value for the coefficient c in the BPR Curve. This gives greater flexibility for solving a problem if all of the links do not use the standard 0.15 as a value for the coefficient. For the sample problem, all of the links use a value
for the coefficient of 0.15 . The data entry and mapping step for this model is presented below:

TABLE VOLUME ($\mathrm{I}, \mathrm{J}, *$) travel demand from A to B
TRIPS
A.B 1500 ;

PARAMETER CAP(L) capacity of links
/1 1500
21500
31200
41200
5 1200/;
PARAMETER SPEED(L) freeflow speed on the links
/1 50
250
$3 \quad 35$
435
5 35/;
PARAMETER DISTANCE(L) distance on the link

43
5 1/;
PARAMETER COEFF(L) value of c to be used in BPR curve
/1 0.15
20.15
30.15
40.15

5 0.15/;
TABLE ODPATH(I,J,P) origin-destination to link mapping set
P1 P2 P3 P4
A.B $1 \begin{array}{lll} & 1 & 1 ;\end{array}$

TABLE LINKPATH(L,P) link to path mapping set
P1 P2 P3 P4
111
$\begin{array}{lll}2 & 1 & 1\end{array}$
$3 \quad 1 \quad 1$
4
5
11
1 1;
The Variables are the next step in the GAMS model Component list. Many of the Variables remained the same, but the Model required the addition of two new positive
variables, called $" \operatorname{PCOST}(\mathrm{P})$ " and $" \mathrm{MCOST}(1, \mathrm{~J})$ ". The $\operatorname{PCOST}(\mathrm{P})$ is a path characteristic, representing the unit time cost of traveling a path. "MCOST(I,J)" is the minimum value of all of the calculated values for the set of $\operatorname{PCOST}(\mathrm{P})$, for each I and J (O-D pair). The entire list of variables is presented below:

POSITIVE VARIABLES

$\mathrm{F}(\mathrm{L})$ flow on a link
$\mathrm{H}(\mathrm{P})$ flow on a path
PCOST(P) average time cost of traveling on a path
MCOST(I,J) minimum travel time of all paths for each O-D;

VARIABLES

UE objective function for user equilibrium
SO objective function for system optimal;

The next step in the GAMS formulation of the model is the equations. Once again, the "DEMAND" equation is used in order to conserve flow along the paths, from the origins to the destinations. Likewise, the "FLOW" equation defines the flow on the links, $\mathrm{F}(\mathrm{L})$, and its relationship to the flow along the paths, $\mathrm{H}(\mathrm{P})$. Also included are two additional equations which are not found in Beckman's Model formulation. The "PATH $\operatorname{COST}(P)$ " equation simply calculates the average travel cost for each path. The impedances are calculated over the set of paths, but the set is restricted to those links that are identified in the mapping set LINKPATH (L,P) as being used in that path. In addition, there is an equation called "MINPATH (I, J) ", which utilizes a special GAMS function called "Smin". This operator is used to find the smallest values over the domain of a specific set. In the case of the sample problem, minimum value of the average path cost, $\mathrm{PCOST}(\mathrm{P})$, is needed over all of the paths corresponding to a particular O-D pair (I, J). The "MINPATH" equation allows the SMIN operator to find the minimum value for $\operatorname{PCOST}(\mathrm{P})$ for each (I, J), over the set of all paths. This set of paths is restricted by the dollar operator, which conducts the search over the paths which correspond to the
particular O-D pair, as stated in the mapping set ODPATH(I,J,P). The equations, along with the model statements, are listed below:

EQUATIONS

DEMAND(I, J) travel demand from origin i to destination j FLOW(L) defines flow on a link as total of its pathflows
PATH COST(P) average path cost on path p MINPATH(I,J) finds the min average path cost for a given O-D OBJSYS objective function under system optimization OBJUSER objective function under user equilibrium;

DEMAND(I,J) .. SUM(P\$ODPATH(I,J,P), H(P)) =E=VOLUME(I,J,'trips');
FLOW(L) .. SUM(P \$LINKPATH(L,P), H(P)) $=\mathrm{E}=\mathrm{F}(\mathrm{L})$;
PATH COST(P) .. SUM(L \$LINKPATH(L,P), (DISTANCE(L)/SPEED(L)) * $(1+$ $\operatorname{COEFF}(\mathrm{L}) * \operatorname{POWER}((\mathrm{~F}(\mathrm{~L}) / \operatorname{CAP}(\mathrm{L})), 4)))=\mathrm{E}=\operatorname{PCOST}(\mathrm{P})$;

MINPATH(I,J) .. SMIN(P\$ODPATH(I,J,P), PCOST(P)) $=\mathrm{E}=\operatorname{MCOST}(\mathrm{I}, \mathrm{J}) ;$
OBJSYS .. SUM(L, (F(L)* (DISTANCE(L)/SPEED(L)))* $\left(1+\operatorname{COEFF}(\mathrm{L}){ }^{*}\right.$ POWER $((\mathrm{F}(\mathrm{L}) / \mathrm{CAP}(\mathrm{L})), 4)))=\mathrm{E}=\mathrm{SO}$;

OBJUSER .. SUM((I,J,P),H(P)*(PCOST(P) - MCOST(I,J)))=E=UE;
MODEL SYSTEMOPT/OBJSYS,DEMAND,FLOW/;
SOLVE SYSTEMOPT USING NLP MINIMIZING SO:

MODEL USEREQUIL/OBJUSER,DEMAND,FLOW,PATH COST,MINPATH/; SOLVE USEREQUIL USING DNLP MINIMIZING UE:

The objective function for System Optimization, SYSTEM, is the same as for the previously explained model. This function, which is minimized in the "Model" statement, equates the total sytem wide travel costs to "SO".

The objective function for User Equilibrium, "OBJUSER", differs greatly from Beckman's formulation. The objective function equates the difference between the path cost for a given $P, \operatorname{PATH} \operatorname{COST}(\mathrm{P})$, and the minimum path cost, $\operatorname{MCOST}(\mathrm{I}, \mathrm{J})$, for the same O-D pair. The Model statement begins an iterative process of loading the network. After each iteration (new loading), the "MINPATH (I, J) " equation searches the paths for each (I, J) for the minimum path cost. This iterative process continues until the difference between the minimum cost paths and the utilized paths $(H(P)>0)$ for each O-D pair is at
a minimum. The GAMS output file for this case is also contained in the Appendix. The results of the sample problem are summarized in Table 4.2.

Table 4.2 Summary of Solutions for the Sample Problem Using Author's Formulation, Solved Using GAMS

	Path 1		Path 2		Path 3		Path 4		Total
Model	Flow [trips]	Travel Time $[$ min]	Flow [trips]	Travel Time [min]	Flow [trips]	Travel Time $[$ [min]	Flow [trips]	Travel Time $[$ min]	System Cost $[$ min]
User	268	12.0	1232	12.0	0	12.9	0	12.9	18,000
System	642	12.1	858	10.7	0	12.9	0	12.9	16,923

This objective statement models the logic behind Wardrop's First Principle precisely. Each user searches for his minimum cost path, and if it happens that the addition of volume onto this path causes another route to become the minimum path, the user will seek to switch to this route. The ability of the GAMS operator "SMin" to search a selected set for the minimum value allows this type of behavior to be modeled.

CHAPTER 5

CONCLUSIONS

Both the GAMS Model of the Beckman's Formulation and the Author's Model calculated the correct User Equilibrium and System Optimal for the small example problem. The results of using all the approaches that were discussed in this paper to solve the sample problem are presented in Table 5.1. Because of the flexibility of the GAMS software, larger networks do not require a reformulation of the models, but just the addition of data.

Table 5.1 Summary of Solutions for the Sample Problem Using All Approaches

	Path 1		Path 2		Path 3		Path 4		Total
Model	$\begin{gathered} \text { Flow } \\ \text { [trips] } \end{gathered}$	Travel Time [min]	$\begin{gathered} \text { Flow } \\ \text { [trips] } \end{gathered}$	Travel Time [min]	Flow [trips]	Travel Time [min]	Flow [trips]	Travel Time [min]	System Cost [min]
MINUTP									
AON	0	12.0	1500	14.1	0	12.9	0	12.9	21,079
Equil	266	12.0	1234	12.0	0	12.9	0	12.9	18,102
TRANPLAN									
AON	0	12.0	1500	14.1	0	12.9	0	12.9	21,079
Equil	270	12.0	1230	12.0	0	12.9	0	12.9	17,987
Beckman's Formulation									
User	268	12.0	1232	12.0	0	12.9	0	12.9	18,000
System	642	12.1	858	10.7	0	12.9	0	12.9	16,923
Author's Formulation									
User	268	12.0	1232	12.0	0	12.9	0	12.9	18,000
System	642	12.1	858	10.7	0	12.9	0	12.9	16,923

The convenience of having both types of assignments within the same model formulation allows comparison of results quite easily. Any organization which is considering an IVHS System, in particular an Advanced Traveler Information System (ATIS), must consider both types of assignments- User versus System. By comparing User Equilibrium with System Optimization, a central authority, such as an ATIS authority, may see what kind of results could occur if it attempted to route users so as to
optimize the overall system costs. Will the total cost savings be beneficial to the community, if users are routed according to System Optimal solution? Will the benefits be great enough to inconvenience some of the users by assigning them to a longer route? If only a portion of the highway users purchase ATIS, are they going to be penalized by increased travel costs under a System Optimal assignment? These are very pertinent questions which must be answered prior to the development of ATIS for a corridor.

The GAMS Model of Beckman's Formulation solved this problem quite efficiently. The key to this model working so well was the differentiability of the impedance equation, the BPR Curve. Because it was assumed that all of the links were highway links which operated under this standard congestion equation, the minimum value was simple to calculate. As a result of its form, the derivative of this function was calculated to find the minimum. The curve which GAMS was able to optimize was a smooth curve, so the solution to the sample was arrived at by the software very quickly. Larger networks were likewise solved very quickly due to the nature of the objective function.

Beckman's Formulation Model does have its drawbacks, however. If the impedance equation for the links is not differentiable, then this formulation can not be used directly. This would be the case if the paths included a commuter train line; in this case, the impedance is constant. In order to include these links in Beckman's Formulation, the travel time must be put into a form that is differentiable, so that it is no longer constant.

The Author's Model does not rely on any of the constraints or impedances being differentiable. The travel cost equation can be easily modified. If there is a mix of highway links and train links, the coefficient c in the BPR Equation can be set for "0.15" for the highway links, and " 0 " for the train links. Then, the true path cost can be calculated and used to find User Equilibrium. Instead of relying on the derivative of the
impedance equation, the model relies on the GAMS operator "SMin". Moreover, the Author's Formulation is unique because it models Wardrop's First Principle precisely. Each user seeks to minimize his/her individual travel cost. If a lower cost of travel is available by utilizing a different path, the user will switch to this path. The nature of the "Smin" function induces "pathswitching" until the unit path costs on all utilized paths are equal.

The function "SMin" does have a negative point. This function is not a "smooth" curve; it is discontinuous at certain points. The GAMS software does minimize using this function, but the program must go through additional iterations to solve the problem. For the 5 link example problem, GAMS solved the Author's Model for determing User Equilibrium in 2 iterations as compared to 11 iterations for Beckman's Formulation. Therefore, using the PC based software to solve a large problem could be very time consuming.

Data entry into the two models was very simple and straightforward. The GAMS software's database characteristics were very helpful. The biggest drawback to using both the Beckman Model Formulation and the Author's Model was the manual enumeration of the paths. For a large network with multiple O-D pairs, the task of naming many different paths, which can include many links, can become very tedious. MinUTP and TRANPLAN both have "pathbuilding" programs within the software package so that the paths are generated automatically. This type of capability would be invaluable to the users of GAMS models.

Both of the GAMS models that have been described-- Beckman's Formulation and the Author's Model-- provide an interesting outlook on the trip assignment procedure. There are several areas of improvement, however, which must be addressed. Manual enumeration of the paths by the user is a very large drawback to using the models. Future research could include developing a "pathbuilding" program to be used in
conjunction with the GAMS software, similar to those used by many UTMS software packages. The GAMS programs are very flexible, and could be incorporated into such a program. In addition, future research could include development of a user friendly program so that a user can work interactively to build the GAMS model database, run the path building program and run the model.

APPENDIX

THE GAMS MODEL OUTPUT BASED ON BECKMAN'S FORMULATION

```
_GAMS 2.05/S PC AT/XT
92/06/22 15:00:41
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION
    l SETS
    2 I ORIGINS /A/
    3 J DESTINATIONS /B/
    4 LINKS /1*5/
    5 P PATHS /P1*P4/;
    6
    7 TABLE VOLUME(I,J,*) DEMAND BETWEEN ORIGINS AND
DESTINATIONS
     TRIPS
    9 A.B 1500;
    10
    11 PARAMETER CAP(L) CAPACITY OF LINKS
    12 /1 1500
    13 21500
    14 31200
    15 41200
    16 5 1200/;
    1 7
    18 PARAMETER SPEED(L) FREE FLOW TRAVEL SPEED ON THE LINKS
    19 /l 50
    20 250
    21 335
    22435
    23 5 35/;
    24
    25 PARAMETER DISTANCE(L) LENGTH OF EACH LINK IN MILES
    26 /1 5
    27 25
    28 3 3
    29 43
    30 5 1/;
    31
    32 PARAMETER COEFF(L) VALUE OF COEFFICIENT TO BE USED IN BPR
EQUATION
33 /1 0.15
34 20.15
35 30.15
36 40.15
37 5 0.15/;
38
39 TABLE ODPATH(I,J,P) ORIGIN-DESTINATION PATH MATRIX
40 P1 P2 P3 P4
```

41 A.B 111 ;
42
43
44
45 TABLE LINKPATH(L,P) LINK-PATH MATRIX
46 P1 P2 P3 P4
471111
$\begin{array}{lll}48 & 2 & 1\end{array}$
493111
50411
515 l l;
52
53 VARIABLES
$54 \mathrm{~F}(\mathrm{~L}) \quad$ FLOW ON A LINK
$55 \mathrm{H}(\mathrm{P}) \quad$ FLOW ON A PATH
GENERAL ALGEBRAIC MODELING SYSTEM COMPILATION

56 Z OBJECTIVE FUNCTION
57 PCOST(P)
58 MCOST
59 UCOST
60 POSITIVE VARIABLES F,H,PCOST,MCOST;
61
62 EQUATIONS
63 OBJUSER OBJECTIVE FUNCT. UNDER USER EQUILIBRIUM, IN
HOURS PER PATH
64 OBJSYSTEM OBJECTIVE FUNCT. UNDER SYSTEM EQUILIBRIUM, IN USER-HOURS
65 DEMAND(I,J) TRAVEL DEMAND
66 LINKFLOW(L) FLOW ON EACH LINK
67 PATHCOST(P) COST ON EACH PATH
68 MINPATH
69 USERCOST;
70
71 DEMAND(I,J) .. SUM(P \$ODPATH(I,J,P), H(P)) =E=VOLUME(I,J,'TRIPS');
72
73 LINKFLOW(L) .. SUM(P \$LINKPATH(L,P), H(P)) =E=F(L);
74
75 OBJSYSTEM .. SUM(L, F(L)*(DISTANCE(L)/SPEED(L))* $1+$ COEFF(L)*POWER((F) L)
$/(\operatorname{CAP}(\mathrm{L})), 4)))=\mathrm{E}=\mathrm{Z}$;
76
77 OBJUSER .. SUM(L, F(L)*(DISTANCE(L)/SPEED(L))* $1+(\operatorname{COEFF}(\mathrm{L}) / 5)^{*}$ POWER(F(L),4)/POWER(CAP(L),4))) $=\mathrm{E}=\mathrm{Z}$;
78
79 MODEL TRANSYSTEM
80 /DEMAND,LINKFLOW,OBJSYSTEM/;
81
82 MODEL TRANUSER
83 /DEMAND,LINKFLOW,OBJUSER/;

85 SOLVE TRANSYSTEM USING NLP MINIMIZING Z;
86 SOLVE TRANUSER USING DNLP MINIMIZING Z;
GENERAL ALGEBRAIC MODELING SYSTEM
SYMBOL LISTING
SYMBOL TYPE REFERENCES

DISTANCE PARAM DECLARED 25 DEFINED 26 REF 75 77

F	VAR	DECLARED		4 IMPL-ASN	85	86	
		REF 60	73	2*75 2*77			
H	VAR	DECLARED		5 IMPL-ASN	85	86	
		REF 60	71	73			
I	SET	DECLARED	2	DEFINED	2	REF	7
		$3965 \quad 2$	2*71	CONTROL	71		
IN^{N}	$\begin{aligned} & \text { EQU } \\ & \text { SET } \end{aligned}$	DECLARED		63 REF	64		
		DECLARED	3	DEFINED	3	REF	7
		3965 2	2*71	CONTROL	71		
L	SET	DECLARED		DEFINED	4	REF	11
		1825	32	$45 \quad 54$	66		
		2*73 6*75	6*77	7 CONTROL	73	75	

LINKFLOW EQU DECLARED 66 DEFINED 73 IMPL-ASN 85
LINKPATH PARAM DECLARED 45 DEFINED 45 REF 73
MCOST VAR DECLARED 58 REF 60
MINPATH EQU DECLARED 68
OBJSYSTEM EQU DECLARED 64 DEFINED 75 IMPL-ASN 85 REF 80
OBJUSER EQU DECLARED 63 DEFINED 77 IMPL-ASN 86 REF 83
ODPATH PARAM DECLARED 39 DEFINED 39 REF 71
P SET DECLARED 5 DEFINED 5 REF 39 $\begin{array}{llllll}45 & 55 & 57 & 67 & 2 * 71 & 2 * 73\end{array}$
CONTROL 7173
PATHCOST EQU DECLARED 67
PCOST VAR DECLARED 57 REF 60
POWER FUNCT REF 75 2*77
SPEED PARAM DECLARED 18 DEFINED 19 REF 75 77
TRANSYSTEM MODEL DECLARED 79 DEFINED 80 REF 85
TRANUSER MODEL DECLARED 82 DEFINED 83 REF 86
UCOST VAR DECLARED 59
USERCOST EQU DECLARED 69
VOLUME PARAM DECLARED 7 DEFINED 7 REF 71
Z VAR DECLARED 56 IMPL-ASN 8586
$\begin{array}{lllll}\text { REF } & 75 & 77 & 85 & 86\end{array}$

SETS
I ORIGINS
J DESTINATIONS
L LINKS
P PATHS
PARAMETERS
CAP CAPACITY OF LINKS
COEFF VALUE OF COEFFICIENT TO BE USED IN BPR EQUATION
DISTANCE LENGTH OF EACH LINK IN MILES
LINKPATH LINK-PATH MATRIX
ODPATH ORIGIN-DESTINATION PATH MATRIX
SPEED FREE FLOW TRAVEL SPEED ON THE LINKS
VOLUME DEMAND BETWEEN ORIGINS AND DESTINATIONS
VARIABLES
F FLOW ON A LINK
H FLOW ON A PATH
MCOST MINIMUM PATH COST FOR O-D
PCOST PATHCOST
UCOST USERCOST
Z OBJECTIVE FUNCTION
EQUATIONS
DEMAND TRAVEL DEMAND
LINKFLOW FLOW ON EACH LINK
MINPATH FINDS MINIMUM PATH
OBJSYSTEM OBJECTIVE FUNCT. UNDER SYSTEM EQUILIBRIUM
OBJUSER OBJECTIVE FUNCT. UNDER USER EQUILIBRIUM
PATHCOST COST ON EACH PATH
USERCOST COST FOR EACH USER

MODELS
TRANSYSTEM
TRANUSER
COMPILATION TIME $=0.059$ MINUTES
GENERAL ALGEBRAIC MODELING SYSTEM EQUATION LISTING SOLVE TRANSYSTEM USING NLP FROM LINE 85
---- DEMAND =E=
$\operatorname{DEMAND}(\mathrm{A}, \mathrm{B}) . . \mathrm{H}(\mathrm{P} 1)+\mathrm{H}(\mathrm{P} 2)+\mathrm{H}(\mathrm{P} 3)+\mathrm{H}(\mathrm{P} 4)=\mathrm{E}=1500$; (LHS $=0$ ***)
---- LINKFLOW =E= FLOW ON EACH LINK
LINKFLOW(1).. $-\mathrm{F}(1)+\mathrm{H}(\mathrm{P} 1)+\mathrm{H}(\mathrm{P} 3)=\mathrm{E}=0$; (LHS $=0)$
LINKFLOW (2).. $-\mathrm{F}(2)+\mathrm{H}(\mathrm{P} 1)+\mathrm{H}(\mathrm{P} 4)=\mathrm{E}=0$; (LHS $=0)$
LINKFLOW (3).. $-\mathrm{F}(3)+\mathrm{H}(\mathrm{P} 2)+\mathrm{H}(\mathrm{P} 4)=\mathrm{E}=0$; $(\mathrm{LHS}=0)$
REMANNING 2 ENTRIES SKIPPED
.-.- OBJSYSTEM $=E=$ OBJECTIVE FUNCT. UNDER SYSTEM EQUILIBRIUM
OBJSYSTEM.. $(0.1) * \mathrm{~F}(1)+(0.1) * \mathrm{~F}(2)+(0.0857) * \mathrm{~F}(3)+(0.0857) * \mathrm{~F}(4)+$ (0.0286)*F(5)-Z $=\mathrm{E}=0$; $(\mathrm{LHS}=0)$

GENERAL ALGEBRAIC MODELING SYSTEM COLUMN LISTING SOLVE TRANSYSTEM USING NLP FROM LINE 85
---. F FLOW ON A LINK
$\mathrm{F}(1)(\mathrm{LO}, \mathrm{L}, \mathrm{UP}=0,0,+\mathrm{INF})$
-1 LINKFLOW(1)
(0.1) OBJSYSTEM
$F(2)(. L O, L, . U P=0,0,+I N F)$
-1 LINKFLOW(2)
(0.1) OBJSYSTEM
$\mathrm{F}(3)(\mathrm{LO}, \mathrm{L}, \mathrm{UP}=0,0,+\mathrm{INF})$
-1 LINKFLOW(3)
(0.0857) OBJSYSTEM

REMAINING 2 ENTRIES SKIPPED
---- H FLOW ON A PATH
$\mathrm{H}(\mathrm{Pl})$
(.LO, $\mathrm{L}, \mathrm{UP}=0,0,+\mathrm{INF}$)

1 DEMAND(A,B)
1 LINKFLOW(1)
1 LINKFLOW(2)
H(P2)
(.LO, $\mathrm{L}, \mathrm{UP}=0,0,+\mathrm{INF}$)

1 DEMAND(A,B)
1 LINKFLOW(3)
1 LINKFLOW(4)
H(P3)
($\mathrm{LO}, \mathrm{L}, . \mathrm{UP}=0,0,+\mathrm{NF}$)
DEMAND (A,B)
LINKFLOW(1)
LINKFLOW(4)
LINKFLOW(5)
REMAINING ENTRY SKIPPED
---Z OBJECTIVE FUNCTION
$\left.\left.-1 \quad \begin{array}{c}\text { (LO, } \\ \text { OBJSYSTEM }\end{array}\right)=-\mathrm{UNF}, 0,+\mathrm{INF}\right)$
-1 OBJSYSTEM
GENERAL ALGEBRAIC MODELING SYSTEM MODEL STATISTICS SOLVE TRANSYSTEM USING NLP FROM LINE 85

MODEL STATISTICS
BLOCKS OF EQUATIONS 3 SINGLE EQUATIONS
BLOCKS OF VARIABLES 3 SINGLE VARIABLES 10
NON ZERO ELEMENTS 25 NON LINEAR N-Z 5
DERIVATIVE POOL 9 CONSTANT POOL 10
CODE LENGTH 161
GENERATION TIME $=0.054$ MINUTES

EXECUTION TIME $=0.109$ MINUTES

GENERAL ALGEBRAIC MODELING SYSTEM SOLUTION REPORT SOLVE TRANSYSTEM USING NLP FROM LINE 85

SOLVE SUMMARY
MODEL TRANSYSTEM OBJECTIVE Z
TYPE NLP DIRECTION MINIMIZE
SOLVER MINOS5 FROMLINE 85

RESOURCE USAGE, LIMIT 0.0691000 .000
ITERATION COUNT, LIMIT 41000
EVALUATION ERRORS 0 0

```
MINOS 5.2 (Mar 1988)
```

$=$ = = =
B. A. Murtagh, University of New South Wales and
P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright Systems Optimization Laboratory, Stanford University.

WORK SPACE NEEDED (ESTIMATE) -- 654 WORDS.
WORK SPACE AVAILABLE -- 8100 WORDS.
EXIT -- OPTIMAL SOLUTION FOUND
MAJOR ITNS, LIMIT 1 50
FUNOBJ, FUNCON CALLS 160
SUPERBASICS
INTERPRETER USAGE
.00
NORM RG/NORM PI 5.301E-10

---- EQU DEMAND

LOWER LEVEL UPPER MARGINAL
A.B $1500.000 \quad 1500.000 \quad 1500.000 \quad 0.205$
---- EQU LINKFLOW FLOW ON EACH LINK
LOWER LEVEL UPPER MARGINAL
1 . . . 0.0 .103
2 . . . -0.103
3 . . . -0.103
4 . . . -0.103

GENERAL ALGEBRAIC MODELING SYSTEM SOLUTION REPORT SOLVE TRANSYSTEM USING NLP FROM LINE 85

LOWER LEVEL UPPER MARGINAL
---- EQU OBJSYSTEM . . . -1.000
OBJSYSTEM OBJECTIVE FUNCT. UNDER SYSTEM EQUILIBRIUM

---- VAR F FLOW ON A LINK

LOWER LEVEL UPPER MARGINAL

1	\cdot	641.986	+ INF
2	\cdot	641.986	+ INF
3	\cdot	858.014	+ INF
4	\cdot	858.014	+NNF
5	\cdot	$\cdot \mathrm{INF}$	

--.- VAR H FLOW ON A PATH
LOWER LEVEL UPPER MARGINAL

Z OBJECTIVE FUNCTION
**** REPORT SUMMARY: 0 NONOPT
0 INFEASIBLE
0 UNBOUNDED
0 ERRORS
GENERAL ALGEBRAIC MODELING SYSTEM EQUATION LISTING SOLVE TRANUSER USING DNLP FROM LINE 86
-.-- DEMAND $=\mathrm{E}=$
$\operatorname{DEMAND}(\mathrm{A}, \mathrm{B}) . . \mathrm{H}(\mathrm{P} 1)+\mathrm{H}(\mathrm{P} 2)+\mathrm{H}(\mathrm{P} 3)+\mathrm{H}(\mathrm{P} 4)=\mathrm{E}=1500 ;(\mathrm{LHS}=1500)$
---- LINKFLOW $=E=$ FLOW ON EACH LINK
$\operatorname{LINKFLOW}(1) . .-\mathrm{F}(1)+\mathrm{H}(\mathrm{Pl})+\mathrm{H}(\mathrm{P} 3)=\mathrm{E}=0 ;(\mathrm{LHS}=0)$
LINKFLOW (2).. $-\mathrm{F}(2)+\mathrm{H}(\mathrm{Pl})+\mathrm{H}(\mathrm{P} 4)=\mathrm{E}=0 ;(\mathrm{LHS}=0)$

LINKFLOW(3).. $-\mathrm{F}(3)+\mathrm{H}(\mathrm{P} 2)+\mathrm{H}(\mathrm{P} 4)=\mathrm{E}=0 ;(\mathrm{LHS}=0)$
REMAINING 2 ENTRIES SKIPPED
.-.- OBJUSER =E= OBJECTIVE FUNCT. UNDER USER EQUILIBRIUM
OBJUSER.. $(0.1005) * \mathrm{~F}(1)+(0.1005) * \mathrm{~F}(2)+(0.0891) * \mathrm{~F}(3)+$
$(0.0891) * \mathrm{~F}(4)+(0.0286) * \mathrm{~F}(5)-\mathrm{Z}=\mathrm{E}=0$; (LHS $=-5.1303^{* * *}$)
GENERAL ALGEBRAIC MODELING SYSTEM COLUMN LISTING SOLVE TRANUSER USING DNLP FROM LINE 86

---- F FLOW ON A LINK

F(1)

$$
(. \mathrm{LO}, \mathrm{~L}, \mathrm{UP}=0,641.9861,+\mathrm{INF})
$$

-1 LINKFLOW(1)
(0.1005) OBJUSER
$F(2)$
$(. L O, . L, . U P=0,641.9861,+I N F)$
-1 LINKFLOW(2)
(0.1005) OBJUSER

F(3)
(.LO, $. L, . U P=0,858.0139,+$ INF $)$
-1 LINKFLOW(3)
(0.0891) OBJUSER

REMAINING 2 ENTRIES SKIPPED
---- H FLOW ON A PATH
$\mathrm{H}(\mathrm{Pl})$
(.LO, .L, .UP = 0, 641.9861, + INF)

1 DEMAND(A,B)
1 LINKFLOW(1)
1 LINKFLOW(2)
H(P2)
(.LO, $. \mathrm{L}, \mathrm{UP}=0,858.0139,+\mathrm{INF}$)

DEMAND (A,B)
LINKFLOW(3)
LINKFLOW(4)
H(P3)
(LO, LL, UP = 0, 0, +INF)
DEMAND (A,B)
LINKFLOW(1)
LINKFLOW(4)
LINKFLOW(5)
REMAINING ENTRY SKIPPED
---- Z OBJECTIVE FUNCTION
Z

$$
\begin{aligned}
& \text { (.LO, L, }, \mathrm{UP}=-\mathrm{INF}, 281.8982,+I N F) \\
& \text { OBJUSER }
\end{aligned}
$$

GENERAL ALGEBRAIC MODELING SYSTEM MODEL STATISTICS SOLVE TRANUSER USING DNLP FROM LINE 86

MODEL STATISTICS

GENERAL ALGEBRAIC MODELING SYSTEM SOLUTION REPORT SOLVE TRANUSER USING DNLP FROM LINE 86

```
            SOLVE SUMMARY
    MODEL TRANUSER
    OBJECTIVE Z
    TYPE DNLP DIRECTION MINIMIZE
    SOLVER MINOS5 FROMLINE 86
**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 2 LOCALLY OPTIMAL
**** OBJECTIVE VALUE 271.8410
RESOURCE USAGE, LIMIT
    0 . 0 6 9
    1000.000
ITERATION COUNT, LIMIT
    2 1000
EVALUATION ERRORS
    0
    MIN O S 5.2 (Mar 1988)
    =====
```

B. A. Murtagh, University of New South Wales and P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright Systems Optimization Laboratory, Stanford University.

```
WORK SPACE NEEDED (ESTIMATE) -- }660\mathrm{ WORDS.
WORK SPACE AVAILABLE -- 8100 WORDS.
```

EXIT -- OPTIMAL SOLUTION FOUND
MAJOR ITNS, LIMIT 150
FUNOBJ, FUNCON CALLS 100
SUPERBASICS
INTERPRETER USAGE . 00
NORM RG / NORM PI 2.403E-08
---- EQU DEMAND

LOWER LEVEL UPPER MARGINAL
A.B $1500.000 \quad 1500.000 \quad 1500.000 \quad 0.200$
---- EQU LINKFLOW FLOW ON EACH LINK
LOWER LEVEL UPPER MARGINAL

1	\cdot	\cdot	\cdot	-0.100
2	\cdot	\cdot	\cdot	-0.100
3	\cdot	\cdot	\cdot	-0.100
4	\cdot	\cdot	\cdot	-0.100
5	\cdot	\cdot	\cdot	-0.029

GENERAL ALGEBRAIC MODELINGSYSTEM

```
SOLUTION REPORT SOLVE TRANUSER USING DNLP FROM LINE }8
    LOWER LEVEL UPPER MARGINAL
---- EQU OBJUSER . . . -1.000
    OBJUSER OBJECTIVE FUNCT. UNDER USER EQUILIBRIUM
---- VAR F FLOW ON A LINK
    LOWER LEVEL UPPER MARGINAL
1 . 267.644 +INF
2 . 267.644 +INF
3 . 1232.356 +INF
4 . 1232.356 +NNF
5 . +INF
---- VAR H FLOW ON A PATH
    LOWER LEVEL UPPER MARGINAL
Pl . 267.644 +INF
P2 . 1232.356 +INF EPS
P3 . . +INF 0.029
P4 . . +INF 0.029
    LOWER LEVEL UPPER MARGINAL
---- VAR Z -NNF 271.841 +NNF
    Z OBJECTIVE FUNCTION
**** REPORT SUMMARY: 0 NONOPT
            O INFEASIBLE
    0 UNBOUNDED
    0 ERRORS
```

**** FILE SUMMARY
INPUT C:\GAMS205\GAMSDATALBECKMAN.GMS OUTPUT C:\GAMS205\GAMSDATALBECKMAN.LST

EXECUTION TIME $=0.068$ MINUTES

THE GAMS MODEL OUTPUT BASED ON THE AUTHOR'S FORMULATION

GAMS 2.05/S PC AT/XT
92/06/22 15:02:41
GENERAL ALGEBRAIC MODELING SYSTEM COMPILATION

1 SETS
2 I ORIGINS /A/
3 J DESTINATIONS /B/
4 L LINKS $/ 1 * 5 /$
5 P PATHS $/ \mathrm{Pl}{ }^{*}{ }^{*} 4 /$;
6
7 TABLE VOLUME(I,J,*) DEMAND BETWEEN ORIGINS AND DESTINATIONS
8 TRIPS
9 A.B 1500 ;
10
11 PARAMETER CAP(L) CAPACITY OF LINKS
12/11500
$13 \quad 21500$
1431200
1541200
$1651200 / ;$
17
18 PARAMETER SPEED(L) FREE FLOW TRAVEL SPEED ON THE LINKS
$19 / 150$
$20 \quad 250$
21335
22435
23 535/;
24
25 PARAMETER DISTANCE(L) LENGTH OF EACH LINK
$26 / 15$
2725
2833
2943
$3051 / ;$
31
32 PARAMETER COEFF(L) VALUE OF COEFFICIENT TO BE USED IN BPR EQUATION
$33 / 10.15$
3420.15
$35 \quad 30.15$
3640.15

37 50.15/;
38
39
40
41
42
43 TABLE LINKPATH(L,P) LINK-PATH MATRIX
44 Pl P2 P3 P4

```
45 l 1 1
46 2 1 l
47 3
48 4 1 1
49 5 1 1;
50
51 POSITIVE VARIABLES
52 F(L) FLOW ON A LINK
53 H(P) FLOW ON A PATH
54 PCOST(P) UNIT TRAVEL COST OF EACH PATH
55 MCOST(I,J) MINIMUM VALUE OF UNIT TRAVEL COST;
GENERAL ALGEBRAIC MODELING SYSTEM COMPILATION
```


56

57 VARIABLES
58 SO OBJECTIVE FUNCTION UNDER SYSTEM OPTIMIZATION 59 UE OBJECTIVE FUNCTION UNDER USER EQUILIBRIUM;
60
61 EQUATIONS
62 OBJUSER OBJECTIVE FUNCT. UNDER USER EQUILIBRIUM, IN
HOURS PER PATH
63 OBJSYSTEM OBJECTIVE FUNCT. UNDER SYSTEM EQUILIBRIUM, IN USER-HOURS
64 DEMAND(I,J) TRAVEL DEMAND FORM ORIGINS TO DESTINATIONS
65 LINKFLOW(L) FLOW ON EACH LINK
66 PATHCOST(P) UNIT COST ON EACH PATH
67 MINPATH(I,J) FIND MINIMUM UNIT COST AMONG THE PATHS;
68
69 DEMAND(I,J) .. SUM(P \$ODPATH(I,J,P), H(P)) $=\mathrm{E}=$ VOLUME(I,J,'TRIPS');
70
71 LINKFLOW(L) .. SUM(P \$LINKPATH(L,P), H(P)) =E=F(L);
72
73 PATHCOST(P) .. SUM(L \$LINKPATH(L,P), (DISTANCE(L)/SPEED(L))* $1+$ $\operatorname{COEFF}(\mathrm{L}) * \operatorname{POWER}((\mathrm{~F}(\mathrm{~L}) / \operatorname{CAP}(\mathrm{L})), 4)))=\mathrm{E}=\operatorname{PCOST}(\mathrm{P})$;
74
75 MINPATH(I,J) .. SMIN(P \$ODPATH(I,J,P), $\operatorname{PCOST}(\mathrm{P}))=\mathrm{E}=\operatorname{MCOST}(\mathrm{I}, \mathrm{J})$;
76
77 OBJSYSTEM .. SUM(L, F(L)*(DISTANCE(L)/SPEED(L))* $1+$ $\operatorname{COEFF}(\mathrm{L}) * \operatorname{POWER}((\mathrm{~F}(\mathrm{~L}) / \operatorname{CAP}(\mathrm{L})), 4)))=\mathrm{E}=\mathrm{SO}$;
78
79 OBJUSER .. SUM((I,J,P),H(P)*(PCOST(P) - $\operatorname{MCOST}(\mathrm{I}, \mathrm{J})))=\mathrm{E}=\mathrm{UE}$;
80
81 MODEL SYSTEMOPT
82 /DEMAND,LINKFLOW,PATHCOST,OBJSYSTEM/;
83
84 MODEL USEREQUIL
85 /DEMAND,LINKFLOW,PATHCOST,MINPATH,OBJUSER/;
86
87 SOLVE SYSTEMOPT USING NLP MINIMIZING SO;
88 SOLVE USEREQUIL USING DNLP MINIMIZING UE;

GENERAL ALGEBRAIC MODELING SYSTEM SYMBOL LISTING

SYMBOL TYPE REFERENCES

LINKFLOW $\underset{88}{\mathrm{EQU}} \underset{\mathrm{REF}}{\mathrm{DECLARED}} 8265 \mathrm{DEFINED} 71$ IMPL-ASN 87
LINKPATH PARAM DECLARED 43 DEFINED 43 REF 71 73
MCOST VAR DECLARED 55 IMPL-ASN 88 REF 75
MINPATH EQU DECLARED 67 DEFINED 75 IMPL-ASN 88 OBJSYSTEM EQU DECLARED 63 DEFINED 77 IMPL-ASN 87 REF 82
OBJUSER EQU DECLARED 62 DEFINED 79 MMPL-ASN 88 REF 85
ODPATH PARAM DECLARED 39 DEFINED 39 REF 69 75

PATHCOST EQU DECLARED 66 DEFINED 73 IMPL-ASN 87 88 REF 8285
PCOST VAR DECLARED 54 IMPL-ASN 8788 $\begin{array}{llll}\text { REF } & 73 & 75 & 79\end{array}$
POWER FUNCT REF 7377
SO VAR DECLARED 58 IMPL-ASN 87 REF 77 87

```
SPEED PARAM DECLARED 18 DEFINED 19 REF 73
    77
SYSTEMOPT MODEL DECLARED 81 DEFINED 82 REF 87
UE VAR DECLARED 59 IMPL-ASN 88 REF 79
    8
GENERAL ALGEBRAIC MODELING SYSTEM
SYMBOL LISTING
```

SYMBOL TYPE REFERENCES

USEREQUIL	MODEL DECLARED	84 DEFINED	85	REF	88
VOLUME	PARAM DECLARED	7 DEFINED	7	REF	69

SETS
I ORIGINS
J DESTINATIONS
L LINKS
P PATHS
PARAMETERS
CAP CAPACITY OF LINKS
COEFF VALUE OF COEFFICIENT TO BE USED IN BPR EQUATION DISTANCE LENGTH OF EACH LINK
LINKPATH LINK-PATH MATRIX
ODPATH ORIGN-DESTINATION PATH MATRIX
SPEED FREE FLOW TRAVEL SPEED ON THE LINKS
VOLUME DEMAND BETWEEN ORIGINS AND DESTINATIONS
VARIABLES

```
F FLOW ON A LINK
H FLOW ON A PATH
MCOST MINIMUM VALUE OF UNIT TRAVEL COST
PCOST UNIT TRAVEL COST OF EACH PATH
SO OBJECTIVE FUNCTION UNDER SYSTEM OPTIMIZATION
UE OBJECTIVE FUNCTION UNDER USER EQUILIBRIUM
```

EQUATIONS
DEMAND TRAVEL DEMAND FORM ORIGINS TO DESTINATIONS IN HOURS PER PATH LINKFLOW FLOW ON EACH LINK
MINPATH FIND MINIMUM UNIT COST AMONG THE PATHS
OBJSYSTEM OBJECTIVE FUNCT. UNDER SYSTEM EQUILIBRIUM OBJUSER OBJECTIVE FUNCT. UNDER USER EQUILIBRIUM PATHCOST UNIT COST ON EACH PATH

MODELS
SYSTEMOPT

USEREQUIL
COMPILATION TIME $=0.064$ MINUTES
GENERAL ALGEBRAIC MODELING SYSTEM EQUATION LISTING SOLVE SYSTEMOPT USING NLP FROM LINE 87
---- DEMAND =E= TRAVEL DEMAND FORM ORIGINS TO DESTINATIONS DEMAND (A,B).. $\mathrm{H}(\mathrm{P} 1)+\mathrm{H}(\mathrm{P} 2)+\mathrm{H}(\mathrm{P} 3)+\mathrm{H}(\mathrm{P} 4)=\mathrm{E}=1500$; (LHS $=0{ }^{* * *}$)
---- LINKFLOW =E= FLOW ON EACH LINK
LINKFLOW (1).. $-\mathrm{F}(1)+\mathrm{H}(\mathrm{P} 1)+\mathrm{H}(\mathrm{P} 3)=\mathrm{E}=0 ;(\mathrm{LHS}=0)$
LINKFLOW (2).. $-\mathrm{F}(2)+\mathrm{H}(\mathrm{P} 1)+\mathrm{H}(\mathrm{P} 4)=\mathrm{E}=0$; $(\mathrm{LHS}=0)$
LINKFLOW (3).. $-\mathrm{F}(3)+\mathrm{H}(\mathrm{P} 2)+\mathrm{H}(\mathrm{P} 4)=\mathrm{E}=0$; $(\mathrm{LHS}=0)$
REMAINING 2 ENTRIES SKIPPED
---- PATHCOST $=\mathrm{E}=$ UNIT COST ON EACH PATH
PATHCOST(P1).. (0)*F(1) $+(0)^{*} \mathrm{~F}(2)-\mathrm{PCOST}(\mathrm{P} 1)=\mathrm{E}=-0.2$; (LHS $=0{ }^{* * *}$)
PATHCOST(P2).. $(0)^{*} \mathrm{~F}(3)+(0)^{*} \mathrm{~F}(4)-\mathrm{PCOST}(\mathrm{P} 2)=\mathrm{E}=-0.1714$; (LHS $=0$ ***)
PATHCOST $(\mathrm{P} 3) . .(0) * \mathrm{~F}(1)+(0) * \mathrm{~F}(4)+(0) * \mathrm{~F}(5)-\mathrm{PCOST}(\mathrm{P} 3)=\mathrm{E}=-0.2143 ;(\mathrm{LHS}=$ $0^{* * *}$)
REMAINING ENTRY SKIPPED
--- OBJSYSTEM =E= OBJECTIVE FUNCT. UNDER SYSTEM EQUILIBRIUM
OBJSYSTEM.. (0.1)*F(1) + (0.1)*F(2) + (0.0857)*F(3) $+(0.0857) * \mathrm{~F}(4)+$
$(0.0286) * \mathrm{~F}(5)-\mathrm{SO}=\mathrm{E}=0$; $(\mathrm{LHS}=0)$
GENERAL ALGEBRAIC MODELING SYSTEM
COLUMN LISTING SOLVE SYSTEMOPT USING NLP FROM LINE 87
---- F FLOW ON A LINK
F(1)
($\mathrm{LO}, \mathrm{L}, . \mathrm{UP}=0,0,+\mathrm{INF}$)
-1 LINKFLOW(1)
(0) PATHCOST(P1)
(0) PATHCOST(P3)
(0.1) OBJSYSTEM

F (2)
(.LO, $. \mathrm{L}, . \mathrm{UP}=0,0,+\mathrm{INF}$)
-1 LINKFLOW(2)
(0) PATHCOST(P1)
(0) PATHCOST(P4)
(0.1) OBJSYSTEM

F(3)
(.LO, $. \mathrm{L}, . \mathrm{UP}=0,0,+\mathrm{INF}$)
-1 LINKFLOW(3)
(0) PATHCOST(P2)
(0) PATHCOST(P4)
(0.0857) OBJSYSTEM

REMAINING 2 ENTRIES SKIPPED
---- H FLOW ON A PATH
H(P1)

$$
(\mathrm{LO}, \mathrm{~L}, \mathrm{UP}=0,0,+\mathrm{NF})
$$

1 DEMAND (A,B)
1 LINKFLOW(1)
1 LINKFLOW(2)
H(P2)
$(. L O, L, U P=0,0,+N F)$
1 DEMAND (A,B)
1 LINKFLOW(3)
1 LINKFLOW(4)
H(P3)
($\mathrm{LO}, \mathrm{L}, \mathrm{UP}=0,0,+\mathrm{INF}$)
1 DEMAND(A,B)
1 LINKFLOW(1)
1 LINKFLOW(4)
1 LINKFLOW(5)
REMAINING ENTRY SKIPPED
GENERAL ALGEBRAIC MODELING SYSTEM COLUMN LISTING SOLVE SYSTEMOPT USING NLP FROM LINE 87
---- PCOST UNIT TRAVEL COST OF EACH PATH
PCOST(P1)
(.LO, $\mathrm{L}, \mathrm{UP}=0,0,+\mathrm{NF}$)

- 1 PATHCOST(P1)
$\operatorname{PCOST}(\mathrm{P} 2)$
(LO, $L, . U P=0,0,+I N F)$
-1 PATHCOST(P2)
PCOST(P3)
(.LO, $. L, . U P=0,0,+I N F)$
-1 PATHCOST(P3)
REMAINING ENTRY SKIPPED
---- SO OBJECTIVE FUNCTION UNDER SYSTEM OPTIMIZATION
SO
(.LO, L, UP $=-$ INF, $0,+$ INF $)$
-1 OBJSYSTEM
GENERAL ALGEBRAIC MODELING SYSTEM
MODEL STATISTICS SOLVE SYSTEMOPT USING NLP FROM LINE 87
MODEL STATISTICS
BLOCKS OF EQUATIONS 4 SINGLE EQUATIONS 11
BLOCKS OF VARIABLES 4 SINGLE VARIABLES 14
NON ZERO ELEMENTS 39 NON LINEAR N-Z 15
DERIVATIVE POOL 9 CONSTANT POOL 10
CODE LENGTH 371
GENERATION TIME $=0.066$ MINUTES

EXECUTION TIME $=0.121$ MINUTES

GENERAL ALGEBRAIC MODELING SYSTEM SOLUTION REPORT SOLVE SYSTEMOPT USING NLP FROM LINE 87

> SOLVE SUMMARY

MODEL SYSTEMOPT OBJECTIVE SO
TYPE NLP DIRECTION MINIMIZE SOLVER MINOS5 FROM LINE 87

**** SOLVER STATUS	1 NORMAL COMPLETION	
**** MODEL STATUS	2 LOCALLY OPTIMAL	
**** OBJECTIVE VALUE	281.8982	
RESOURCE USAGE, LIMIT	0.121	
RESOL 1000.000		
ITERATION COUNT, LIMIT	6	1000
EVALUATION ERRORS	0	0

MIN O S 5.2 (Mar 1988)
= = = = =
B. A. Murtagh, University of New South Wales and P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright Systems Optimization Laboratory, Stanford University.

WORK SPACE NEEDED (ESTIMATE) -- 1004 WORDS.
WORK SPACE AVAILABLE -- 8100 WORDS.
EXIT -- OPTIMAL SOLUTION FOUND
MAJOR ITNS, LIMIT 1150
FUNOBJ, FUNCON CALLS 2734
SUPERBASICS
.02
NORM RG / NORM PI 7.527E-08
---- EQU DEMAND TRAVEL DEMAND FORM ORIGINS TO DESTINATIONS
LOWER LEVEL UPPER MARGINAL
A.B $1500.000 \quad 1500.000 \quad 1500.000 \quad 0.205$
---- EQU LINKFLOW FLOW ON EACH LINK LOWER LEVEL UPPER MARGINAL

1	\cdot	\cdot	\cdot	-0.103
2	\cdot	\cdot	\cdot	-0.103
3	\cdot	\cdot	\cdot	-0.103
4	\cdot	\cdot	\cdot	-0.103
5	\cdot	\cdot	\cdot	-0.029

[^1]
---- EQU PATHCOST UNIT COST ON EACH PATH

LOWER LEVEL UPPER MARGINAL

P1	-0.200	-0.200	-0.200	EPS
P2	-0.171	-0.171	-0.171	EPS
P3	-0.214	-0.214	-0.214	EPS
P4	-0.214	-0.214	-0.214	EPS

LOWER LEVEL UPPER MARGINAL
---- EQU OBJSYSTEM . . . 1.000
OBJSYSTEM OBJECTIVE FUNCT. UNDER SYSTEM EQUILIBRIUM
---- VAR F FLOW ON A LINK
LOWER LEVEL UPPER MARGINAL

1. $641.986+\mathrm{INF}$
$2.641 .986+$ INF
3 . $858.014+$ INF
4 . $858.014+$ INF
5 . . +INF
---- VAR H FLOW ON A PATH
LOWER LEVEL UPPER MARGINAL

P1	\cdot	641.986	+INF	
P2	\cdot	858.014	+INF	EPS
P3	\cdot	\cdot	+ INF	0.029
P4	\cdot	.	+NF	0.029

---- VAR PCOST UNIT TRAVEL COST OF EACH PATH
LOWER LEVEL UPPER MARGINAL

P1	.	0.201	+INF	.
P2	\cdot	0.178	+INF	.
P3	\cdot	0.218	+INF	.
P4	.	0.218	+INF	.

LOWER LEVEL UPPER MARGINAL
---- VAR SO -INF 281.898 +INF .
SO OBJECTIVE FUNCTION UNDER SYSTEM OPTIMIZATION
GENERAL ALGEBRAIC MODELING SYSTEM SOLUTION REPORT SOLVE SYSTEMOPT USING NLP FROM LINE 87
**** REPORT SUMMARY: 0 NONOPT
0 INFEASIBLE
0 UNBOUNDED
0 ERRORS
GENERAL ALGEBRAIC MODELING SYSTEM EQUATION LISTING SOLVE USEREQUIL USING DNLP FROM LINE 88
---- DEMAND $=\mathrm{E}=$ TRAVEL DEMAND FORM ORIGINS TO DESTINATIONS
$\operatorname{DEMAND}(\mathrm{A}, \mathrm{B}) . . \mathrm{H}(\mathrm{P} 1)+\mathrm{H}(\mathrm{P} 2)+\mathrm{H}(\mathrm{P} 3)+\mathrm{H}(\mathrm{P} 4)=\mathrm{E}=1500 ;(\mathrm{LHS}=1500)$
---- LINKFLOW =E= FLOW ON EACH LINK
$\operatorname{LINKFLOW}(1) . .-\mathrm{F}(1)+\mathrm{H}(\mathrm{P} 1)+\mathrm{H}(\mathrm{P} 3)=\mathrm{E}=0$; (LHS $=0)$
LINKFLOW (2).. $-\mathrm{F}(2)+\mathrm{H}(\mathrm{Pl})+\mathrm{H}(\mathrm{P} 4)=\mathrm{E}=0$; $(\mathrm{LHS}=0)$
LINKFLOW (3).. $-\mathrm{F}(3)+\mathrm{H}(\mathrm{P} 2)+\mathrm{H}(\mathrm{P} 4)=\mathrm{E}=0$; $(\mathrm{LHS}=0)$
REMAINING 2 ENTRIES SKIPPED
---- PATHCOST =E= UNIT COST ON EACH PATH
$\operatorname{PATHCOST}(\mathrm{P} 1) . .(3.1359122 \mathrm{E}-6)^{*} \mathrm{~F}(1)+(3.1359122 \mathrm{E}-6)^{*} \mathrm{~F}(2)-\mathrm{PCOST}(\mathrm{P} 1)=\mathrm{E}=-$ $0.2 ;($ LHS $=-0.2)$

PATHCOST(P2).. (1.5666134E-5)*F(3) $+(1.5666134 \mathrm{E}-5)^{*} \mathrm{~F}(4)-\mathrm{PCOST}(\mathrm{P} 2)=\mathrm{E}=-$ 0.1714 ; $($ LHS $=-0.1714)$

PATHCOST(P3).. (3.1359122E-6)*F(1) + (1.5666134E-5)*F(4) + (0)*F(5) -
$\operatorname{PCOST}(\mathrm{P} 3)=\mathrm{E}=-0.2143 ;(\mathrm{LHS}=-0.2143)$
REMAINING ENTRY SKIPPED
--- MINPATH $=\mathrm{E}=$ FIND MINIMUM UNIT COST AMONG THE PATHS
$\operatorname{MINPATH}(\mathrm{A}, \mathrm{B}) . .(0) * \operatorname{PCOST}(\mathrm{P} 1)+(1) * \operatorname{PCOST}(\mathrm{P} 2)+(0) * \operatorname{PCOST}(\mathrm{P} 3)+$ $(0) * \operatorname{PCOST}(\mathrm{P} 4)-\mathrm{MCOST}(\mathrm{A}, \mathrm{B})=\mathrm{E}=0 ;\left(\mathrm{LHS}=0.1781^{* * *}\right)$
---- OBJUSER =E= OBJECTIVE FUNCT. UNDER USER EQUILIBRIUM OBJUSER. $(0.201) * \mathrm{H}(\mathrm{P} 1)+(0.1781) * \mathrm{H}(\mathrm{P} 2)+(0.2181) * \mathrm{H}(\mathrm{P} 3)+(0.2181) * \mathrm{H}(\mathrm{P} 4)+$ $(641.9865) * \mathrm{PCOST}(\mathrm{P} 1)+(858.0135) * \operatorname{PCOST}(\mathrm{P} 2)+(0) * \mathrm{PCOST}(\mathrm{P} 3)+$ $(0) * \operatorname{PCOST}(\mathrm{P} 4)-(1500)^{*} \operatorname{MCOST}(\mathrm{~A}, \mathrm{~B})-\mathrm{UE}=\mathrm{E}=0 ;\left(\mathrm{LHS}=281.8982^{* * *}\right)$

GENERAL ALGEBRAIC MODELING SYSTEM EQUATION LISTING SOLVE USEREQUIL USING DNLP FROM LINE 88

OBJUSER $=\mathrm{E}=$ OBJECTIVE FUNCT. UNDER USER EQUILIBRIUM
GENERAL ALGEBRAIC MODELING SYSTEM COLUMN LISTING SOLVE USEREQUIL USING DNLP FROM LINE 88

F--- F \quad FLOW ON A LINK
F(1)

$$
(. \mathrm{LO}, . \mathrm{L}, \mathrm{UP}=0,641.9865,+\mathrm{INF})
$$

-1 LINKFLOW(1)
(3.1359122E-6) PATHCOST(P1)
(3.1359122E-6) PATHCOST(P3)
$F(2)$
$(. \mathrm{LO}, \mathrm{L}, . \mathrm{UP}=0,641.9865,+\mathrm{INF})$
-1 LINKFLOW(2)
(3.1359122E-6) PATHCOST(P1)
(3.1359122E-6) PATHCOST(P4)

F(3)
1 ($\mathrm{LO}, \mathrm{L}, \mathrm{UP}=0,858.0135,+\mathrm{INF}$)
-1 LINKFLOW(3)
(1.5666134E-5) PATHCOST(P2)
(1.5666134E-5) PATHCOST(P4)

REMAINING 2 ENTRIES SKIPPED
---- H FLOW ON A PATH
H(P1)
(.LO, $. L, . U P=0,641.9865,+\mathrm{NF})$

1 DEMAND(A,B)
1 LINKFLOW (1)
1 LINKFLOW (2)
(0.201) OBJUSER
$\mathrm{H}(\mathrm{P} 2)$
$(. \operatorname{LO}, \mathrm{L}, . \mathrm{UP}=0,858.0135,+\mathrm{INF})$
1 DEMAND (A,B)
1 LINKFLOW(3)
1 LINKFLOW(4)
(0.1781) OBJUSER
$\mathrm{H}(\mathrm{P} 3)$
($\mathrm{LO}, \mathrm{L}, \mathrm{UP}=0,0,+\mathrm{INF}$)
1 DEMAND(A,B)
1 LINKFLOW(1)
1 LINKFLOW(4)
1 LINKFLOW(5)
(0.2181) OBJUSER

REMAINING ENTRY SKIPPED
GENERAL ALGEBRAIC MODELING SYSTEM COLUMN LISTING SOLVE USEREQUIL USING DNLP FROM LINE 88
---- PCOST UNIT TRAVEL COST OF EACH PATH
$\operatorname{PCOST}\left(\mathrm{P}_{1}\right)$
(.LO, .L, UP $=0,0.201,+I N F)$
$-1 \quad \operatorname{PATHCOST}(\mathrm{Pl})$
(0) $\operatorname{MINPATH}(A, B)$
(641.9865) OBJUSER

PCOST(P2)

(LO, $\mathrm{L}, \mathrm{UP}=0,0.1781,+\mathrm{INF}$)

- $1 \quad$ PATHCOST(P2)
(1) $\operatorname{MINPATH}(A, B)$
(858.0135) OBJUSER

PCOST(P3)

($\mathrm{LO}, \mathrm{L}, \mathrm{UP}=0,0.2181,+\mathrm{INF}$)
-1 PATHCOST(P3)
(0) $\operatorname{MINPATH}(\mathrm{A}, \mathrm{B})$
(0) OBJUSER

REMAINING ENTRY SKIPPED

```
---- MCOST MINIMUM VALUE OF UNIT TRAVEL COST
\(\operatorname{MCOST}(\mathrm{A}, \mathrm{B})\)
            (.LO, \(\mathrm{L}, \mathrm{UP}=0,0,+\mathrm{INF}\) )
        \(-1 \operatorname{MINPATH}(A, B)\)
    (-1500) OBJUSER
```

---- UE OBJECTIVE FUNCTION UNDER USER EQUILIBRIUM
-1 OBJUSER

GENERAL ALGEBRAIC MODELING SYSTEM MODEL STATISTICS SOLVE USEREQUIL USING DNLP FROM LINE 88

MODEL STATISTICS

BLOCKS OF EQUATIONS 5 SINGLE EQUATIONS
 12

BLOCKS OF VARIABLES 5 SINGLE VARIABLES 15
NON ZERO ELEMENTS 48 NON LINEAR N-Z 23
DERIVATIVE POOL 13 CONSTANT POOL 11
CODE LENGTH 324

GENERATION TIME $=0.075$ MINUTES

EXECUTION TIME = 0.192 MINUTES

GENERAL ALGEBRAIC MODELING SYSTEM SOLUTION REPORT SOLVE USEREQUIL USING DNLP FROM LINE 88 SOLVE SUMMARY

MODEL USEREQUIL TYPE DNLP SOLVER MINOS5

OBJECTIVE UE
DIRECTION MINIMIZE FROMLINE 88

**** SOLVER STATUS		
**** MODEL STATUS **** OBJECTIVE VALUE		
RESOURCE USAGE, LIMIT	0.274	1000.000
ITERATION COUNT, LIMIT	11	1000
EVALUATION ERRORS	0	0

MINOS 5.2 (Mar 1988)
$====$
B. A. Murtagh, University of New South Wales and P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright Systems Optimization Laboratory, Stanford University.

WORK SPACE NEEDED (ESTIMATE) -- 1343 WORDS.
WORK SPACE AVAILABLE -- 8100 WORDS.
EXIT -- OPTIMAL SOLUTION FOUND
MAJOR ITNS, LIMIT 50
FUNOBJ, FUNCON CALLS 194194
SUPERBASICS 1
INTERPRETER USAGE
NORM RG / NORM PI 4.248E-05
---- EQU DEMAND TRAVEL DEMAND FORM ORIGINS TO DESTINATIONS LOWER LEVEL UPPER MARGINAL
A.B $1500.000 \quad 1500.000 \quad 1500.000$ EPS
---- EQU LINKFLOW FLOW ON EACH LINK
LOWER LEVEL UPPER MARGINAL

| 1 | \cdot | \cdot | \cdot |
| :---: | :---: | :---: | :---: |\quad EPS

GENERAL ALGEBRAIC MODELING SYSTEM

SOLUTION REPORT SOLVE USEREQUIL USING DNLP FROM LINE 88
---- EQU PATHCOST UNIT COST ON EACH PATH
LOWER LEVEL UPPER MARGINAL
$\begin{array}{lllll}\text { P1 } & -0.200 & -0.200 & -0.200 & -267.630\end{array}$
$\begin{array}{llllll}\text { P2 } & -0.171 & -0.171 & -0.171 & 267.630\end{array}$
$\begin{array}{lllll}\text { P3 } & -0.214 & -0.214 & -0.214 & \text { EPS }\end{array}$
$\begin{array}{lllll}\text { P4 } & -0.214 & -0.214 & -0.214 & \text { EPS }\end{array}$
---- EQU MINPATH FIND MINIMUM UNIT COST AMONG THE PATHS LOWER LEVEL UPPER MARGINAL
A.B 1500.000

LOWER LEVEL UPPER MARGINAL
---- EQU OBJUSER . . . -1.000
OBJUSER OBJECTIVE FUNCT. UNDER USER EQUILIBRIUM
---- VAR F FLOW ON A LINK
LOWER LEVEL UPPER MARGINAL

1. 267.630 +INF
2. $267.630+\mathrm{INF}$

3 . $1232.370+\mathrm{INF}$
4 . $1232.370+\mathrm{INF}$
5 . . +INF
---- VAR H FLOW ON A PATH
LOWER LEVEL UPPER MARGINAL

---- VAR PCOST UNIT TRAVEL COST OF EACH PATH
LOWER LEVEL UPPER MARGINAL

P1	$:$	0.200	+INF	-1500.000
P2	$:$	0.200	+ INF	1500.000
P3	$:$	0.229	+ INF	0.
P4	$:$	0.229	+INF	$:$

GENERAL ALGEBRAIC MODELING SYSTEM SOLUTION REPORT SOLVE USEREQUIL USING DNLP FROM LINE 88
---- VAR MCOST MINIMUM VALUE OF UNIT TRAVEL COST
LOWER LEVEL UPPER MARGINAL
A.B . $0.200+$ INF

LOWER LEVEL UPPER MARGINAL
---- VAR UE -INF . +INF .
UE OBJECTIVE FUNCTION UNDER USER EQUILIBRIUM
**** REPORT SUMMARY: 1 NONOPT (NOPT)
0 INFEASIBLE
0 UNBOUNDED
0 ERRORS
**** FILE SUMMARY
INPUT C:\GAMS205\GAMSDATA\5LINKS.GMS OUTPUT C:\GAMS205\GAMSDATA\5LINKS.LST

EXECUTION TIME $=0.071$ MINUTES

REFERENCES

Beckman, H.M., MacGuire, and Winsten. 1956. Studies in the Economies of Transportation, Yale University Press.

Brooke, A., D. Kendrick, and A. Meeraus. 1988. GAMS: A User's Guide.
Comsis. July 1992. MinUTP Technical User Manual, 92 B-Version.
Florian, M., R. Chapleau, S. Nguyen, C. Achim, L. James-Lefebvre, S. Garneau, J. Lefebvre, and C. Fisk. 1979. Validation and Application of EMME: An Equilibrium Based Two-Mode Urban Transportation Planning Method, Centre for Transportation Research Publication No. 103, University of Montreal.

LeBlanc, L.J., E.K. Morlok, and W.P. Pierskalla. 1975. "An Efficient Approach to Solving the Road Network Equilibrium Traffic Assignment Problem." Transportation Research, vol.9, pp. 309-318.

Meyer, M., and E. Miller. 1984. Urban Transportation Planning: A Decision-Oriented Approach.

The Urban Analysis Group. 1990. TRANPLAN: User Manual, Version 7.0.
U.S. Bureau of Public Roads and U.S. Department of Commerce. 1964. Traffic Assignment Manual.

Wardrop, J. G. 1952. "Some Theoretical Aspects of Road Traffic Research." Proceedings of the Institute of Civil Engineers, vol. 1, pp. 325-378.

[^0]: ${ }^{1}$ The Urban Analysis Group, TRANPLAN: User Manual, Version 7.0, 1990, pg. 4-1.

[^1]: GENERAL ALGEBRAIC MODELING SYSTEM

