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ABSTRACT 

JPEG Hardware Design and a Comparative Study of JPEG 
and MPEG Image Compression Algorithms 

by 

Aravind Soundararajan  

The complete PC-based hardware design along with the initialization and control 

software of the JPEG algorithm is presented in this thesis. The hardware could run in 

real-time to compress, decompress and display still frame images. LSI Logic JPEG 

chipset was used in the design. This is a dedicated chipset for the JPEG compression 

algorithm. 

A simulation software was used for studying the performance of MPEG video 

compression algorithm. Various video test sequences were compressed through the codec 

simulation software and the resulting rate-distortion performance was calculated. These 

are compared with the performance of JPEG based image sequence compressor. 

It is found that the MPEG-based video codec significantly outperforms the JPEG-

based codec for the test sequences considered at low to medium bit rates. 
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Chapter 1 

INTRODUCTION  

Mankind is continuously trying to transfer information at a rapid rate . The need to transfer 

data rapidly often necessitates that information be sent over a channel at a rate that exceeds 

the channel capacity. Some distortion inevitably results in such situations. In order to keep 

this distortion to a minimum level, we must first order the data generated by the source in 

accordance with it's importance at the receiver, and then either compress or discard the less 

significant information prior to transmission. The schemes devised to extract the significant 

information from the output of source and to reduce redundancy are called source coding 

algorithms. 

With the recent advances in modern communications, signal processing and VLSI 

technologies the transmission and storage of real time video has become a reality. Typical 

Color Television or video-conferencing images have a spatial resolution of approximately 

512 X 512 pixels per frame with 24 bits/pixel resolution and requires 30 frames/second to 

avoid any jerky motion of the picture. This is equivalent to the data rate of about 180 X 106  

bits per second. Thus the channel capacity of 106  bits/second to 108  bits/second may be 

needed depending on the application.The transmission and storage of such a large amount of 

data requires data compression algorithms. 

The primary application of data compression is in the transmission and storage of 

information.Image transmission applications span the broadcast television, remote sensing 

via satellites, teleconferencing, computer communications, facsimile transmission and others. 

The compression techniques of these applications should consider the size and complexity 

of the required hardware. 

Video Compression methods exploit on source redundancies and the characteristics of 

Human Visual System (HVS). The correlation in still images and in spacio-temporal 

correlations in video signals are reduced. The reduction in correlation in spatial domain is 
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2  

called intra-frame compression, while compression in temporal domain is called inter-frame 

compression. Generally, the methods that achieve high compression ratios (10:1 to 50:1 for 

images and 50:1 to 200:1 for video) are lossy such that the reconstructed data are not 

identical to the original. 

Lossless methods do exist, but their compression ratios are far lower, perhaps no better 

than 3:1. Such techniques are used only in sensitive applications such as medical images. For 

example , artifacts introduced by a lossy algorithm into an X-ray radiograph may suggest an 

incorrect interpretation and alter the diagnosis of a medical condition. Conversely, for 

commercial, industrial and consumer applications, lossy algorithms are preferred because 

they save on memory and communication bandwidth. 

These lossy algorithms also generally exploit aspects of the human visual system. For 

example, the eye is much more receptive to fine details in the luminance (or brightness) 

signal than in the chrominance (or color) signals. Consequently, the luminance signal is 

usually sampled at a higher spatial resolution. In broadcast quality television , the digital 

resolution of the sampled luminance signal is 720 X 480 pixels, while for the color signals it 

maybe only 360 X 240 pixels. Second, the encoded (or compressed) representation of the 

luminance signal is assigned more bits (a higher dynamic range) than the chrominance 

signals. 

Also, the eye is less sensitive to energy with high spatial frequency than with the low 

spatial frequency. Indeed, if an image on a 13 inch personal computer monitor were formed 

by an alternating spatial signal of black and white, the human viewer would see a uniform 

gray instead of the alternating checkerboard pattern. This deficiency is exploited by coding 

the high frequency coefficients with fewer bits and the low ones with more bits. 

All these techniques add up to powerful lossy compression algorithms. In many subjective 

tests, reconstructed images that were encoded at 20:1 compression ratio are hard to 

distinguish from the original. Video data, even after compression at ratios of 10 : 1, can be 

decompressed with close to the analog tape quality. 



There are various standard Image compression schemes. These are : 

1) CCITT H.261  : The H.261 standard of the International Consultative Committee for 

Telephones and Telegraphs (CCITT) specifies a method of communication for visual images 

and makes use of motion compensation and adaptive Discrete Cosine Transform(ADCT). 

2) JPEG  : The Joint Photographic Experts Group (JPEG) formed in 1986, has proposed an 

international standard for the compression of continuous tone (gray scale or color) images. 

The transform used is the Discrete Cosine Transform along with Huffman variable length 

codes. 

3) MPEG : Moving Pictures Expert Group ( MPEG) proposed an international standard for 

motion pictures which made use of motion estimation and compensation techniques leading 

to greater reduction in the redundancy than the JPEG. This also makes use of the DCT. 

The following chapters are organized as follows. Chapter 2 explains the JPEG algorithm, 

Discrete Cosine Transform and Huffman coding techniques. Chapter 3 explains the 

Hardware designed for the JPEG algorithm. Chapter 4 deals with the MPEG algorithm. 

Chapter 5 explains the simulations performed and the results of the simulations . This also 

gives the conclusions and the future directions for research. 

The objective of this thesis is to design the hardware for the real time compression and 

decompression of image sequences and to compare the performance of JPEG and MPEG 

based codecs on the same test sequence. Based on the simulations done it has been 

outrightly proved that MPEG based systems perform much better than the JPEG based ones 

for the same bits/pel and same test sequence. The tables of the Signal to Noise ratios for the 

two cases are shown in Chapter 5. 
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Chapter 2 

JPEG STANDARD 

JPEG stands for the Joint Photographic Experts Group Committee which is a research 

team formed under the auspices of the International Standards Organization (ISO).The 

proposed standard is a still picture coding algorithm . The scope of the algorithm is 

broad- it comprises a baseline lossy approach and an extended lossless approach, as well 

as independent functions using different coding techniques than the baseline scheme. The 

hardware developed in this work falls under the lossy baseline approach. The JPEG 

algorithm is depicted in Fig 2.1. 

2.1 Color Systems 

The JPEG algorithm falls under the heading of transform-based image coding. A color 

image can be represented in different color formats. Those which are widely used today 

include R-G-B (the three primary colors red , green and blue) in the computer industry; 

Y-U-V ( Y for luminance, U and V for the color difference signals Y-R and Y-B 

respectively ) in the television industry; and the C-M-Y-K (cyan, magenta, yellow and 

black) in the printing industry. Within each color system, the constituent parts are called 

components. Thus, there are three color components in the R-G-B system and four in the 

C-M-Y-K system. 

2.2 The Baseline System 

A "baseline system" as shown in Fig 2.2.1 is defined as one which guarantees that a 

reasonable level of function will be present in all decoders which use the DCT 

algorithms. This baseline system uses a constrained version of the sequential DCT 

algorithms. The baseline system must be present in all systems which use the DCT 

compression algorithms. 

4 



Fig 2.1 JPEG Block Diagram 
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Fig 2.2.1 Baseline DCT Based JPEG System 
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The baseline DCT system capabilities can be extended in a number of ways.These so 

called "extended systems" can use progressive modes of compression, higher precision, 

and an alternative coding techniques. They have a fewer constraints than the baseline 

system in several other important parts of the system. 

A separate lossless coding algorithm is defined which uses a DPCM (Differential 

Pulse Code Modulation) algorithm. In this case the subsequent sample values are 

predicted based on the previous sample values. The baseline DCT system is not required 

in a lossless decoding system. 

The compression achieved with these algorithms depends on the characteristics of the 

test images. For the color images of natural scenes which have been used for testing and 

development of the algorithms, recognizable images are obtained at about 0.15 bits per 

pixel and acceptable quality images are obtained at about 0.25 bits per pixel. At 0.75 bits 

per pixel, the image quality is very good, and at about 1.5 bits per pixel the images 

obtained are essentially indistinguishable from the original source. Lossless compression 

ratio is about 2:1 for these test images. All of these experiments are based on tests of 

4:2:2 CCIR601 format Y,Cb,Cr color images with 16 bits per pixel. 

Chapter 5 gives the results of the simulations performed with CCIR601 test images on 

the JPEG board and the MPEG simulation software. 

2.3 DCT  

The term image transform usually refers to a class of unitary matrices used for 

representing images. One-dimensional signal can be represented by an orthogonal series 

of basis functions, an image can also be expanded in terms of a discrete set of basis 

arrays called basis images. These basis images can be generated by unitary matrices [2]. 

To make the transform coding practical, a given image is divided into NM/pq blocks, 

each of size p x q, the main storage requirements for implementing the transform are 

reduced by a factor of MN/pq. The computational load is reduced by a factor of 
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log2MN/log2pq for fast transform requiring a Nlog2  operations to transform an N X 1 

vector. For 256 X 256 images divided into 8 X 8 blocks, these factors are 1024 and 2.66 

respectively [4]. Although the operation count is not greatly reduced, the complexity of 

the hardware for implementing small size transform is reduced significantly. However, 

smaller block sizes yield lower compression. 

The N X N forward 2D DCT is given by [2] : 

The inverse N X N DCT is given by : 

where bd(x,y) = 2-D sample value 

BD(u,v) = 2-D DCT Coefficient 

u horizontal frequency index 

v vertical frequency index 

x horizontal position index 

y vertical position index 

The coefficient array of DCT, BD(u,v), is ordered with the DC component in the upper 

left corner , increasing horizontal "frequencies" to the right and increasing vertical 

frequencies going down the array. 



Fig 2.3.1 Models for DCT Based Systems 
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2.3.1 Models for DCT Based Systems 

The DCT based systems can be divided into three parts, as shown in fig 2.3.1. In the 

encoder 8 X 8 blocks of 2D input array samples are transformed using the forward DCT 

(FDCT). The DCT coefficients are quantized based on their variances and visual weights. 

The quantizer output is mapped to a set of symbols. 

In the decoder the symbols are decoded by the entropy decoder and quantized DCT 

coefficients values are obtained. The inverse DCT (IDCT) then transforms the 8 X 8 

DCT array back into an 8 X 8 array of signal values. 

The distortion between I and I' in fig 2.3.1, is governed entirely by the FDCT, 

quantization, dequantization and IDCT procedures, with the assumption of an error free 

transmission. 

2.3.2 Level Shift 

The source image input data have an unsigned representation. When coding unsigned 

data with P bits of precision, the input data is level shifted by subtracting 2(P-1) before 

processing with the forward DCT. For 8 bit precision, 128 is subtracted and for 12 bit 

precision 2048 is subtracted. After processing with the IDCT, the same level shift must 

be added to the output values to obtain the unsigned representation. Overflow and 

underflow of the IDCT output due to the hardware limitations must be appropriately 

clamped. 

2.4 Variable-Length Coding ( Huffman Coding ) 

JPEG encoder uses variable length coding or Huffman coding. The code words are 

chosen to maximize the compression for the image data type to be processed. The most 

commonly occurring events are assigned with the shortest code words. Each symbol 

supplied by the model is coded using a particular code word chosen from the table. 
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The tables used by the Huffman coding technique are constructed from information 

and they are included in the signalling parameters. It is, therefore, possible to create 

Huffman tables which are appropriate for a class images, or even specifically optimized 

for each individual image. 

In the baseline system up to two tables may be used for DC coefficient coding and up 

to two tables can be used for AC coefficient coding. In the extended system, up to four 

DC tables and four AC tables may be used. 

Tables may be inherited from previous images and from previous stages. Thus, a set 

of tables may be used for a sequence of images. 



12  

Chapter 3 

JPEG HARDWARE IMPLEMENTATION  

We have used the LSI Logic chipset for the hardware implementation of JPEG algorithm 

. The JPEG chipset consists of three components : 

. Color and Raster to Block Converter (L64765) 

. DCT Processor (L64735) 

. JPEG Coder (L64745) 

These three chips implement a complete high speed still-image or video rate 

compression and decompression system. Figure 3.1 shows the JPEG chipset in a typical 

image encoder application. In decoder the data flow direction is reversed. 

In encoding applications , the L64765 Color and Raster to Block converter 

converts the RGB values to luminance (Y) and chrominance (Cb,Cr) components and 

arranges the raster image frame into 8 X 8 blocks. The L64735 DCT Processor performs 

a discrete cosine transform on the 8 X 8 blocks to produce DCT coefficients. The L64745 

JPEG Coder chip quantizes and encodes the DCT coefficients into a compressed data 

stream. The high speed and pipelining capabilities of the JPEG chipset support full 

motion video applications. All the three components of the JPEG chipset can be used in 

either directions for encoding and decoding applications. 

3.1 Terms and Concepts  

Some important terms and concepts used in the design are enunciated here. 

Minimum Coded Unit (MCU)  

The JPEG-9 standard specifies the minimum coded unit (MCU) [5]. An MCU is the 

smallest portion of a source image that is coded and processed in a JPEG coder. The 

MCU in the L64765 Color and Raster to Block Converter is 8 pixels high by 16 pixels 
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wide in the fixed 2:1:1 format. Each MCU contains two data blocks of the luminance 

(intensity) and one data block each of the chrominance (Cb,Cr) color components. 

Active Image area 

In many applications, only a portion of the source image , the active image area is 

processed. The L64765 Color and Raster to Block Converter defines the active image 

area in terms of the four parameters : height , width, height delay, and the width delay. 

Figure 3.1.1 shows the definition of these parameters relative to the complete image. The 

height and width delays are measured in pixels. The height and width are measured in 

MCUs. The shaded portion of the frame is said to be blanked. Blanked portions are 

ignored by the L64765 and are not sent to the L64735 DCT Processor. 

Gamma Correction 

To compensate the non-linear response of recording and display equipment, it is usually 

necessary to apply a gamma correction to the image data. Gamma correction is a non-

linear gain function . The L64765 applies the Gamma correction using a look up gamma 

correction table implemented in the internal RAM. Figure 3.1.2 shows a typical Gamma 

correction function. 

Color Conversion 

The RGB-to-YCbCr and the vice versa color conversions are defined in the CCIR 601 

recommendations. The first set of equations shows the RGB-to-YCbCr color conversion 

as a set of linear equations. The second set of equations transforms YCbCr-to-RGB color 

components. RGB and Y values are within the interval of 16 to 235 (inclusive); Cb and 

Cr values are in the range of 16 to 240 (inclusive). Any computation result that exceeds 

these values will be clipped to the boundary to eliminate any overflow or underflow 

occurrences. 

RGB-to-YCbCr conversion [2] : 

Y = (77/256)R + (150/256)G + (29/256)B 

Cb= (131/256)R + (110/256)G - (21/256)B + 128 



Fig 3.1 JPEG Chipset in Encoder Application 

Fig 3.1.1 Active Image Area 
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Fig 3.1.2 Typical Gamma Correction Function 
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Cr= (-44/256)R - (87/256)G + (131/256)B + 128 

YCBCr-to-RGB conversion [2] : 

R = Y + 1.370(Cr-128) 

G = Y - 0.698(Cr-128) - 0.336(Cb-128) 

B = Y + 1.730(Cb-128) 

Raster to Block Conversion 

In the encoding direction , the input data to the L64765 Color and Raster-Block converter 

is in raster form consisting of horizontal scan lines of upto 8192 pixels. The L64765 

converts the full image raster data into data blocks of eight pixels by eight pixels in raster 

order, the format used by the downstream devices, the L64735 DCT Processor and the 

L64745 JPEG Coder. Figure 3.1.3 shows how the first block on the display screen is 

processed by the L64765. 

In the encoding direction, the L64765 stores the eight complete scan lines in an 

external strip memory. When the memory is filled, the L64765 begins reading data out of 

the strip memory into the YCbCr buffer in 8 X 8 blocks. As each data value is read , a 

new value is read , a new value is written into the strip memory at the same address. This 

read-then-write operation reduces the amount of strip memory needed. 

In the decoding direction, the L64765 reads in 8 X 8 blocks until a complete set 

of eight scan lines is contained in the strip memory into the image area data reformatter 

in raster order. 

Data Interleaving 

The data coming out of L64745 is initerleaved with all the components of a MCU 

grouped together. Fig 3.1.4 and 3.1.5 show how the L64765 processes and outputs 

interleaved data . The L64745 outputs four blocks of data per MCU : two blocks of 

luminance data, followed by one block of Cb chrominance data followed by one block of 

Cr chrominance data. 
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The number of blocks of each component in the input data stream is determined by the 

L64745 internal parameters N0  through N3, which are set at the initialization. The 

L64745 processes N0  blocks of component 0, followed by N1  blocks of component 1 , 

and so on. In applications using a complete JPEG chipset, No  is set equal to 2, N1  and N2  

are set equal to 1, and N3  is set to 0. Figure 3.1.6 shows the Block input ordering. 

Quantization  

Quantization categorizes data into the limited number of discrete values. Quantization is 

a lossy process, meaning that information is lost in the quantization process . This loss is 

called quantization noise. 

The forward and inverse quantization functions performed by the L64745 JPEG coder 

are given below. The data used in the quantization is stored within the L64745 in four 

quantization tables. The symbols used are defined in the following the equations [5]. 

Forward Quantization: 

Q(x(i),i) = round ( x(i)/q(i)) 

Inverse Quantization  : 

x'(i) = Q (x(i),i)*q(i) 

where : 

x(i) : DCT coefficient created by the L64735 DCT Processor 

x'(i) : DCT coefficient generated by the L64745. Since the quantization 

is a lossy process, x'(i) is not necessarily equal to x(i). 

Q(x(i),i): Quantized DCT coefficient. Q(x(i),i) is the output of the quantizer 

and the input to the coding modules when the L64745 is in the 

DCT encoding configuration. Q(x(i),i) is the output of the 

decoding modules and input to the inverse quantizer when the 

L64745 is in DCT decoding configuration. 

q(i): Quantization stepsize from the quantization table for the 

component being quantized. 



Fig 3.1.3 Block Processing by L64765 

1
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Fig 3.1.4 Data Interleaving 

Fig 3.1.5 Block Input Ordering 

1
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round(x): Rounding function. Round(x) rounds to the nearest integer. When 

x is half way between the 2 integers , round(x) rounds up for the 

positive and down for negative values of x. 

is Index of the DCT or receieved DCT coefficient. i is in the range 

from 0 to 63 inclusive. 

3.2 Typical System Application  

Fig 3.2.1 gives the three components of the JPEG chipset in a typical video real-time 

image processing application. This system design supports bidirectional data flow for 

both encoding and decoding . The text following the figure describes the function of the 

devices in the example. 

In encoding applications, the A/D converter converts analog input RGB data into 

24-bit digital RGB data as the input to the L64765. 

The L64765 Color and Raster to Block converter converts RGB values to 

luminance (Y) and chrominance(Cb,Cr) components and converts the raster image into 

8 X 8 blocks in the compression direction. In the decompression direction, it converts 

luminance and chrominance components into RGB and translates the 8 X 8 blocks into 

full-screen raster signal. 

The strip memory buffers eight scan lines of the raster-ordered image to assist in 

the raster-to-block conversion in the L64765. 

The L64735 DCT Processor performs a 2D discrete cosine transform on the 8 X 8 

blocks to produce DCT coefficients. 

The L64745 JPEG Coder quantizes and encodes the DCT coefficients into a 

compressed data stream. 

The Compressed Memory stores the compressed DCT coefficients. In real-time 

video applications, 512 Kbytes of storage can store an average of 16 compressed images 

of sizes 512 X 480 X 24 at a compression of 24 to 1. 



Fig 3.2.1 Typical System Application 
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The Master Controller provides the control signals and performs the handshaking 

both between the host and the L64745, and also between the host and the Compressed 

memory and the system bus. 

The Timing Generator generates the horizontal and vertical synchronization 

signals. 

In the decoding case, the data flow is reversed, and the D/A Converter converts 

the digital RGB image data from the L64765 into the analog RGB data. 

3.3 Color and Raster-Block Converter (L64765)  

Fig 3.3.1 gives the block diagram of L64765 , showing all the major functional blocks. 

The block diagram is divided into functional subgroupings as shown by the dashed lines. 

Each functional grouping is explained in a subsection following the figure. 

3.3.1 RGB Interface  

The bidirectional data bus PIX[23..0] transfers raster-ordered image to and from the Pixel 

reformatter. Pix[23..0] are configured as either inputs or outputs depending on the 

direction of the conversion. The RGB interface can handle the nine data formats 

described under "Data formats" later in this chapter. 

HSYNC and VSYNC are horizontal and vertical synchronization signals which 

define line frequency and the refresh frequency. BUSY signal provides a mechanism for 

the L64765 to delay the transfer of data over the PIX bus with respect to the internal 

processing rate of the specified data format. 

3.3.2 Conversion Logic  

The Gamma Correction Tables store a user defined function that transforms each pixel 

component. 



Fig 3.3.1 L64765 Logic Symbol 
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The L64745 has three such tables, and each table has 256 eight bit entries. These 

tables can be read or written as described later in "Configuration and Control". The 

Color Converter uses a digital matrix to perform the color conversion specified in CCIR 

601 Recommendation, Mod F [2]. The color conversion matrix may be by-passed in 

either direction to allow systems with images already in YCbCr space to use the raster to 

block conversion feature. The data after color conversion must be in the correct range, a 

Range Limiter clamps the data to the appropriate boundary value. 

The Resampling Filters implement one of the two built in transfer functions, 

depending on the direction of the conversion. The filters operate only on the chrominance 

components Cb and Cr. In the encoding direction, downsampled image data is 

downsampled (decimated). In the decoding direction, downsampled image data is 

reconstructed (interpolated). 

In the encoding direction, the Multiplexer combines the Chrominance 

components in the data stream sent to the memory strip interface. In the decoding 

direction, the Demultiplexer extracts Cr and Cb data into separate data streams for 

conversion to RGB by the color converter. 

3.3.3 Strip Memory Interface  

An external strip memory stores the raster data to facilitate raster-block-conversion. 

Since a 16 bit YCbCr pixel must be read and written every 74 nanoseconds at 13.5 MHz, 

the 16- bit strip memory data bus cycle time is 37 nano seconds. Static RAMS with an 

access time of 25 nanoseconds are typically used in the strip memory. 

When the L64765 begins processing a raster-ordered image, the Strip Memory 

Control places the starting address 0x0000 on ADDR[15:0] and signals a write operation 

via MEM_RW. The L64765 then writes eight scan lines into the strip memory on 

DATA[15:0], incrementing the address with each write. Once the strip memory is full, 
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the strip memory control reads the old strip out in block order while writing the new strip 

into memory in Raster order. This operation is done on a pixel basis, reading a pixel out 

before writing a new pixel into the strip memory . The Data Register buffers read and 

write data . 

The 16-bit address can access upto 64K pixels . This memory addressing range is 

more than enough to support eight 17-inch scan lines at 300 dpi (40,800 pixels). 

However, the system configuration need only include the amount of memory that will 

actually be used. The L64765 requires the minimum amount of memory as defined in the 

equation below, where M is the memory size in 16-bit words and width is the width of 

the active window in MCUs. 

M = 128 X width 

For example , an image 512 pixels wide requires a strip memory of 4K (4096) 16 bit 

words. 

3.3.4 YCbCr Interface 

The bidirectional data bus YCbCr[7:0] transfers converted data to and from the YCbCr 

Buffer. During raster-block operation, the 8-bit wide bus passes pixel data organized in 8 

X 8 blocks to and from the L64735 DCT processor. An optional Y-only format is 

supported by forcing the Cr and Cb components to be black (0x80). This allows the 

YCbCr interface to operate at the same rate regardless of the format. 

Three signals specify the state of the YCbCr interface. BS indicates the start of a 

block of 64 data samples. LBS indicates the end of last block of 64 data samples. The 

L64765 asserts the FRQ signal to stop the flow of data out of the YCbCr bus during 

encoding operations, or into the YCbCr bus during encoding operations, or into the 

YCbCr bus during decoding operations. 
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3.3.5 Internal Registers 

The address registers point to one of the registers in the Configuration Register File or to 

an address in the Gamma Correction Tables. The Configuration Register File includes 

five registers : Width, Height, WDelay, HDelay, and Control. 

3.3.6 Control Signals 

The Internal Register Control Logic accepts three inputs : READ* and WRITE* control 

the direction of the access to the internal register addressed by R[1:0] and the contents of 

the address registers. The output enable signal OE*, controls the output buffers for 

signals PIX[23:0], HSYNC, VSYNC, DATA[15:0],YCbCr[7:0],LBS and BS. ( The 

bidirectional buffers are not shown in the block diagram). CLK is the clock for all 

internal registers and memory elements. The clock frequency is 27 MHz. 

3.4 Configuration and Control 

This section describes the configuration and initialization of the L64765. It also shows 

functional waveforms for the read and write waveforms for the read and write operations. 

3.4.1 Address Register 

The initialization of address register is done in the following way : 

Address Register Write: 

- Set R[ 1 :0] to 00. 

- Assert Write* LOW for at least the minimum pulse width. When WRITE* is 

asserted , the L64765 holds the PIX[23:16] while WRITE* is asserted. 

Place the new value on PIX[23:16] while WRITE* is asserted. 

- The new value is stored in the address register on the rising edge of WRITE*. 

Address Register Read : 

Set R[1:0] to 00. 
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- Assert READ* LOW for at least the minimum pulse width. The L64765 places 

the Address Register value on PIX[23:16] after the falling edge and holds it past 

the rising edge of READ*. 

Fig 3.4.1 gives the address read and write waveforms. 

3.4.2 Gamma Correction Tables  

The L64765 has three separate gamma correction tables, one each for the Red, Green , 

and Blue digital inputs. These are 256 entries for red, green, and blue. The Address 

register points to a gamma correction table location when R[1:0] is set to 01. The data 

written to a gamma address must be written in order: Red, Green, then Blue. Once the 

Blue value has been written, the address Register automatically increments by one. 

Gamma Table Write : 

To write the gamma correction tables: 

- Set the Address Register to the starting address of the write as described earlier in 

the "Address Register". 

- Set R[1:0] tool. 

Assert Write* for at least the minimum pulse width. 

Place the Red value on PIX[23:16] while WRITE* is asserted. 

The value is written into the Red gamma table on the rising edge of the WRITE*. 

- Write the Green value in the same way as Red. 

- Write the Blue value in the same way as Red. 

- Once the Blue value is written , the address register automatically 

increments by one. 

Repeat the steps 3, 4, 5 to write successive values into the gamma table. 

For reading the written value the same procedure is followed, but instead of WRITE* 

signal READ* is used and instead of placing the values on the PIX bus , the chip places 



Fig 3.4.1 Address Register Read 
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Fig 3.4.2 Gamma Table Read and Write 
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the values itself on the PIX bus at the rising edge of READ*. Figure 3.4.2 shows the 

write and read operations for Gamma Tables. 

3.4.3 Configuration Registers  

L64765 contains five internal configuration registers. The eight-bit Control Registers set 

the data format of the input RGB data on the PIX bus and controls the other aspects of 

operation. 

The Configuration registers are addressed in the same manner as the gamma 

correction tables. For all registers except the Control register, two write operations are 

required to write the full contents of the register. The least significant byte is written first 

to the address shown in Table 3.4.1 and the most significant byte is written to the next 

higher address. Only the four least significant bits of the Address Register are used to 

address the configuration registers. 

The registers are written and read in the same manner as for gamma correction 

tables, with R[1:0] set to 10. 

Control Register  

The Control Register is accessed by setting the bit 3 of Address Register to 1 and R[1:0] 

to 10. Figure 3.4.3 shows the content of the Control Register. 

1) Go Control (GO)  

Go enables the L64765 to begin processing the data at the next rising edge of VSYNC. 

After GO is set , it can only be cleared by resetting the L64765. The L64765 is reset by a 

write operation with R[1:0] set to 11. 

2) Output Enable Control (OEN)  

OEN and control input OE* work together to enable and disable the state of all 

bidirectional signals. When either OEN is set to HIGH or OE* is deasserted (HIGH), the 



Table 3.4.1 Configuration Addresses 

Fig 3.4.3 Control Register 
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bidirectional signals are held in the high impedance state. For these signals to be enabled, 

OEN must be set to zero and OE* set to zero. 

3) Code Operation Control (ENC)  

ENC controls the direction of data flow, encoding or decoding. When ENC is set to one, 

the L64765 data flow is in the encoding direction : PIX[23:0] are the inputs and 

YCbCr[7:0] are the outputs. 

4) Raster -Block Conversion Bypass Control  

RBC controls the raster-block conversion. When RBC is reset to zero, input data is 

assumed to be raster-ordered for the encoding direction, and block ordered for the 

decoding direction. The L64765 performs the appropriate conversion (raster-to-block or 

block-to-raster). When RBC is set to one, the conversion is by-passed; inputs are passed 

to outputs with no change in the data order. 

5) Format Control  

FMT is a four bit field that controls how the L64765 interprets the PIX and YCbCr buses. 

Table 3.4.2 shows the meaning of the FMT field. 

3.4.4 Window Control Registers  

The Window control registers contain the values of the four parameters WIDTH, 

HEIGHT, WDELAY and HDELAY. These parameters are to locate the active window 

size as shown in fig 3.1.1 . Each Window control register is 16 bits wide , though not all 

of the bits are used in each register. The bits that are not used return to zero when read. 

Table 3.4.1 shows the format of each register. The fields are defined below : 

1)WIDTH : Image Width( 9bits)  

The width of the active image area in MCUs (each MCU is 16 pets wide). WIDTH is in 

the range from 1 to 511 inclusive. 



Table 3.4.2 Data Formats 

1. Cb and Cr are set to black (0x80) in these formats 
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2)HEIGHT : Image Height (10 bits)  

The height of the active image area in MCUs (each MCU is 8 pixels high). HEIGHT is in 

the range of 2 to 2023 inclusive. 

3)WDELAY : Width delay (13 bits)  

The delay in pixels from the start of the scan line to the first active pixel. The rising edge 

of HSYNC indicates the start of the scan line. WDELAY is in the range of 0 to 8191 

inclusive. 

4)HDELAY : Height delay (13 bits)  

The delay in scan lines from the start of the frame to the first active scan line . The rising 

edge of VSYNC indicates the start of the frame. HDELAY is in the range of 0 to 8191 

inclusive. 

3.5 Reset Operation  

A write operation to the Reset Register performs a reset operation on the L64765 and the 

value written is ignored. A reset operation clears the Go bit in the Control register but 

does not otherwise affect the state of L64765 . The contents of the gamma correction 

tables and the configuration registers are unchanged by a reset operation. A reset 

operation also sets the FRQ output to LOW, thus allowing the system clock to reach the 

L64735 and L64745. Figure 3.5.1 shows the waveforms for the reset operation. 

3.6 Initialization Sequence  

When the L64765 is powered on, the contents of the internal registers are undefined . 

Before the device is put into operation, this initialization sequence should be performed: 

1) Reset the L64765 as described under "Reset". Resetting clears the Go bit. 

2) Set the values of WIDTH, HEIGHT, WDELAY, and HDELAY as described under 

"Window Control Registers". 
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3) Set the values of the operating parameters in the Control Register but do not set the Go 

bit yet. 

4) Load the values into the Gamma Correction Tables as described earlier. 

5) Reset the L64765 again. 

6) Reset the L64735 DCT Processor and the L64745 Coder. 

7) Set the Go bit. The L64765 is now ready for operation. 

3.7 L64735 DCT Processor  

The L64735 DCT Processor had four basic functional configurations: 

• Signed forward DCT 

• Signed inverse DCT 

• Unsigned forward DCT 

• Unsigned inverse DCT 

During initialization, the L64735 is programmed for one of these four functional 

configurations. Input signals UNSIGNED, FORWARD, ORDERZZ, and BYPASS 

control the functional configuration and operation of the L64735. 

Each of the basic functional configurations is illustrated with a block diagram and 

described briefly in this section. 

3.7.1 Signed Forward DCT  

For this configuration, Forward is HIGH and UNSIGNED is held LOW. Figure 3.7.1 

shows the signed forward DCT configuration. 

The L64735 receives nine-bit pixel data from the L64765 Color and Raster-Block 

Converter on PIX[8:0]. The L64765 organizes the pixel data in 8X8 blocks . Input signal 

PBS indicates the start of a pixel block. The DCT Transform computes the 12-bit DCT 



Fig 3.5.1 Reset Operation 

Fig 3.7.1 Signed Forward DCT Configuration 
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coefficients for the block.The Block Buffer assembles the DCT coefficients in either 

raster or zig zag order , depending on the state of the input signal ORDERZZ. The 8 X 8 

block appears on the DCTCOEFF[ 1 1:0] with a delay of 168 cycles. DBS indicates the 

start of a block of DCT coefficients. 

3.7.2 Signed Inverse DCT  

Fig 3.7.2 shows the signed inverse DCT configuration. For this, FORWARD is held 

LOW and UNSIGNED is held LOW. The LBS signal produced by the L64745 is 

propagated to PBID and drives the L64765 LBS input. The internal organization is 

similar to the Signed Forward DCT, with DCT and DBID flowing in the opposite 

direction. The IDCT Transform reconstructs the pixel data from the DCT coefficients. 

3.7.3 Unsigned Forward and Inverse DCT  

Figures 3.7.3 and 3.7.4 shows the unsigned forward and inverse DCT configurations 

respectively. 

Differences from signed data configurations are: 

. PIX data is eight-bits wide (PIX 0 is not used). 

. DCTCOEFF data is 11 bits wide (DCTCOEFF:0 is not used) 

. PIX data is level shifted by the ADDER ( shown as the circle with the plus sign). 

3.7.4 Signal Descriptions  

The external Interface to the L64735 is shown in the figure 

Pixel Interface Signals:  

PIX[8:0] (Pixel data bus) 

Pix[8:0] comprise the pixel data bus . When the L64735 is operating in the forward 

direction, PIX[8:0] are inputs for the 8 X 8 blocks of image data sent by 

the L64765 . When the L64735 is operating in the inverse direction, PIX[8:0] are the 



Fig 3.7.2 Signed Inverse DCT Configuration 

Fig 3.7.3 Unsigned Forward DCT Configuration 

Fig 3.7.4 Unsigned inverse DCT Configuration 
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outputs for the blocks of reconstructed data sent to the L64765. When the L64735 is 

configured for the unsigned data PIX:0 is not used. 

PBS (Pixel Block Start) 

PBS is asserted HIGH coincident with the first data sample in each block of the pixel 

data on PIX[8:0]. PBS is an input for forward DCT operation and output for inverse DCT 

operation. 

PBID (Pixel Block ID) 

PBID is connected to DBID through a 168-cycle delay. PBID is only sampled when PBS 

or DBS is asserted HIGH or an integer multiple of 64 cycles after PBS or DBS was last 

asserted. PBID is an input for forward operation and an output for inverse operation. 

DCT Interface Signals : These signals comprise of the interface to the L64745 JPEG 

Coder. 

DCTCOEFF[11:0] (DCT Coefficient Bus) 

DCTCOEFF[11:0] are outputs in the forward direction, and inputs for the compressed 

data in the inverse direction. When the L64735 is configured for Unsigned data, 

DCTCOEFF.0 is not used. 

DBS ( Data Block Start) 

DBS is asserted HIGH coincident with the first sample data in each block of pixel data on 

the DCTCOEFF bus. DBS is an output for the forward operation and an input for inverse 

operation. 

DBID ( DCTCOEFF Block ID) 

DBID is connected to the PBID through a 168-cycle delay. PBID is only sampled when 

the DBS is asserted HIGH or an integer multiple of 64 cycles after DBS was last asserted. 

DBID is an input for the forward operation and an input for the inverse operation. 
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3.8 Configuration and Control  

Four input signals, BYPASS, FORWARD, ORDERZZ, and UNSIGNED control the 

function of the L64735 and the format of the DCTCOEFF and PD( buses. Table 3.8.1 

summarizes the configuration and control signals. To prevent data loss configuration 

inputs must not be changed until at least 168 clock cycles after the last input value has 

been received by L64735. 

3.9 L64745 Operation Modes  

This section discusses and illustrates the following functions of L64735: 

• Forward DCT Operation 

• Inverse DCT Operation 

• By-pass Operation 

3.9.1 Forward DCT Operation  

Fig 3.9.1 shows the input and output waveforms for the forward DCT Operation. The 

figure assumes the block ordering of data, ORDERZZ, is held HIGH for zig zag ordering. 

The ordered pair notation for the PIX and DCTCOEFF buses give the location of the data 

word in the 8 X 8 block in (x,y) coordinates. Output data words appear contiguously 

synchronized with the system clock after a delay of 168 clock cycles. 

3.9.2 Inverse DCT Operation  

Fig 3.9.2 shows the input and output waveforms for inverse DCT Operation. The figure 

assumes block ordering of the input , ORDERZZ, is held HIGH for zig-zag ordering. 

Output data words again appear contiguously synchronized with the system clock after a 

delay of 168 clock cycles. 



Table 3.8.1 Configuration Inputs 
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3.9.3 Bypass Operation  

Fig 3.9.3 shows the waveforms for data transfer in the forward direction with BY-PASS 

asserted HIGH. During Bypass operation, PBS and DBS are not used and their state is 

undefined 

3.10 JPEG Coder (L64745)  

This section describes the functioning of the L64745 which is the actual encoder and 

decoder chip. 

3.10.1 Signal Description  

The external Interface to the L64745 consists of the signals shown in the Fig 3.10.1 . 

Each of the signal is explained below. 

DCTCOEFF[10:0]  

DCTCOEFF[10:0] carries the DCT coefficients. It is an I/O bus. When the L64745 is 

configured as an encoder, DCTCOEFF[10:0] are inputs from DCT Processor. When 

L64745 is operating as a decoder these form the outputs for the reconstructed DCT 

coefficients. 

BS (Block Start)  

BS is asserted HIGH coincident with the first data sample in each block of the DCT 

coefficients on DCTCOEFF[20:0]. BS is an input for encoder operation and an output for 

decoder operation. 

LBS (Last Block Strobe)  

LBS is asserted HIGH following the last data sample of the last block in the image on 

DCTCOEFF[10:0]. LBS is an input for encoder configurations and an output for decoder 

configurations. 



Table 3.10.1 FIFOST[1:0] Status in Encoder Configuration 

FIFOST[1:0] State Condition Description 

00 Ready FL > FIFOTH Data can be read from the FIFO 

01 Not Ready 0 < FL <= FIFOTH FIFO has data but is below threshold 

10 Empty FL =0 FIFO is empty 

11 Overflow FL > 32 FIFO Overflowed ; data has been lost 

4
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Fig 3.9.1 Forward DCT Input Waveforms 

Fig 3.9.2 Forward DCT Output Waveforms 

Fig 3.9.3 Inverse DCT Input Waveforms 44  
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3.10.2 Code Interface Signals  

CODEDDAT[31:0] (Coded Data I/O Bus)  

CODEDDAT[31:0] comprises of the coded data coming out of the JPEG Coder or 

coming to it in the case of decoder configuration. When the L64745 is configured as a 

32-bit encoder, CODEDDAT[31:0] are outputs for the coded data. When the L64745 is 

configured as a 32 bit decoder, CODEDDAT[31:0] are inputs for the data to be decoded. 

When the L64745 is set for 16-bit operation, only CODEDDAT[15:0] are used. 

LCODE (Last Code I/O)  

When LCODE is HIGH, CODEDDAT[31:0] carry the last 32-bit code word in the block. 

The signal in HIGH16 determines whether the data on CODEDDAT[15:0] is the more or 

less significant half word. LCODE is an output in encoder configuration and an input for 

decoder configuration. 

LCIF (Last Code in FIFO)  

When LCIF is HIGH, the last 32-bit code word of the image is written into the FIFO 

output buffer. LCIF is high only for the cycle which the last code enters the FIFO buffer. 

LCIF is an output for the encoder configuration and an input for the decoder 

configuration. 

FIFOST[1:0] (FIFO Status Indicator)  

FIFOST[1:0] indicate the status of the internal FIFO. The meaning of FIFOST[1:0] 

differs depending on the configuration of the L64745 as shown in Table 3.10.1. The 

Ready/Not ready threshold is user programmable during device initialization. 

NEXT (Next Data word)  

When NEXT is asserted HIGH during encoding operations, the FIFO outputs the next 

data word. When NEXT is asserted HIGH during decoding operations , the FIFO accepts 

the next input data word. This functions the same way during initialization read or write 

process. 
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3.10.3 Control Signals  

These input signals control the initialization and certain operational aspects of the 

L64745. 

HIGH16 (Half word Location)  

HIGH16 is only meaningful when the L64745 is set for 16-bit operation. When this is 

asserted the CODEDDAT[ 15:0] is the more significant 16-bit half word of the 32-bit 

coded data word. When HIGH16 is deasserted , CODEDDAT[15:0] is the less significant 

16-bit half word. For 32 bit operation HIGH16 must be deasserted LOW. 

INIT (Initialization)  

When INIT is asserted (HIGH), the L64745 operating parameters can be read and written 

as described in "Device Initialization". When the INIT is deasserted (LOW), the L64745 

functions as configured by bits STAT,LL, and ENC bits in the Configuration Group. 

RW (Read/Write Select)  

RW is used only during device initialization. When RW is HIGH, the device parameters, 

code tables, and quantization tables can be read on the CODEDDAT bus. When the RW 

is low, the parameters and tables can be written from the CODEDDAT bus. 

Reset (Device Reset)  

RESET resets the L64745. Resetting the L64745 prepares it to process new image frame.. 

To reset, RESET must be asserted (HIGH) for at least 2 clock cycles and deasserted for 

at least four clock cycles after device initialization. Resetting the L64745 clears the FIFO 

buffer but does not affect the contents of the quantization or code tables. 

CLK (System Clock)  

CLK is the system clock that controls the internal state of the L64745. All input signals 

to the L64745 are sampled at the rising edge of CLK. 
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OEN (Output Enable) 

When OEN is HIGH, DCTCOEFF[10:0], CODEDDAT[31:01, LBS, LCODE, and BS are 

enabled. When OEN is LOW, these signals are put in HIGH impedance state and the 

internal memory elements are put in a low power state. 

3.11 Configuration and Control 

Internal data is written to and read from the L64745 during the initialization sequence via 

the CODEDDAT bus. The internal data includes the functional configuration, operational 

parameters, quantization tables, and code tables. 

Input signals INIT and RW control the start and type of initialization 

sequence(read or write). The initialization sequence begins when INIT is HIGH. RW is 

HIGH for read and LOW for write sequences. 

The internal data is organized into nine groups shown in Table 3.11.1. During an 

initialization any group can be accessed at random. During a read sequence , the groups 

are accessed beginning with group 0. The input signal NEXT controls the transfer of data 

on the CODEDDAT bus. Typical Read, Write sequence is shown in fig 3.11.1. 

3.11.1 Group ID Word 

The group ID word consists of the word length identifier 8 bit and the group identifier 

GROUPID as shown in fig 3.11.2. 

8-bit sets the word length for the code table data( groups 5-8). If 8 bit is set to one , code 

table data in this write sequence is written as 8-bit words on CODEDDAT[7:0]. Words 

longer than 8 bits are loaded in 8-bit bytes with the MSB first. 

GROUPID is a four bit word whose value identifies the group as shown in Table 3.11.1. 

The table also shows the number of words in each group. 



Fig 3.11.1 Read initialization Sequence 

Fig 3.11.2 Write initialization Sequence 

48  



Fig 3.11.4 Configuration Group Format 
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Configuration Group 

The Configuration Group must be written as the first step in the initialization sequence. 

This group consists of six 8-bit control words. The data must be written in the order of 

word 1 through word 6 as shown in Fig 3.11.2. 

1) STAT (Statistics Configuration Selector) 

When STAT is set to one, the L64745 is in statistics mode else it is in one of the 

configurations set by ENC and LL. 

2) ENC (Coder Configuration Selector) 

When ENC is set to 1, the L64745 functions as an encoder. When ENC is set to 0, the 

L64745 functions as a decoder. 

3) LL (Lossless Configuration Selector) 

When LL is set to 1, the L64745 functions as a lossless encoder. When ENC is set to 0, 

the L64745 performs DCT-based coding. 

4) NOPR (Internal Predictor Control) 

When NOPR is set to 1, the internal predictor is disabled else it is used. 

5) 32BIT (CODEDDAT Bus Width Selector) 

When this is set to one , the full 32 bits of the coded data bus,CODEDDAT[31:0] are 

used else only the lower 16 bits are used. When the L64745 is set to STAT mode (STAT 

set to one), the lower 13 bits of the bus, CODEDDAT[12:0], are used. 

6) WIDTH (Input data Width ) 

WIDTH is a 3-bit field whose value sets the width of the input data word in lossless 

coding configuration. Bit 2 is the most significant bit. The number of bits in the input 

data word is WIDTH + 4. The possible value ranges from 4 to 10 bits. WIDTH set 111 is 

undefined and should not be used. 
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7) C3-CO (Code Table Selectors)  

C3-CO select the code table to be used for each of the four components 3-0. When Cn is 

set to 1, code table 1 is used for the nth component. When Cn is set to 0 , code table 0 is 

used. 

8) Q3-Q0 (Quantization Table Selectors)  

Q3 through Q0 are 2 bit fields that select the quantization table to be used for each of the 

four components 3-0. Each Qn selects one of the four quantization tables. 

9) N3-N0 (Composite Sampling Ratio Selectors)  

N3-NO are 4 bit fields that select the composite sampling ratio to be used for each of the 

four components 3-0. A value of 0 indicates that the component is not used. 

10) FIFOTH (FIFO threshold)  

FIFOTH is a five-bit field whose value is the threshold for the Ready and Not Ready 

state in the FIFO status report, FIFOST[1:0]. The value of FIFOTH is in the range from 0 

to 31. 

11) 0 (Zero value)  

Bits marked with 0 in fig 4.14 must be written zero, and should be ignored when read. 

3.12 Hardware description  

Figure 3.12.1a,b&c give the hardware description of the compression board. The 

components used in the test board are as follows: 

1) 74LS666 : This is a 8-bit latch with readback facility. The data in the buffer could be 

readback with OERB* signal. 

2) 22V10 : This is a 10 input/output PAL. 

3) 7C185A : This is a strip memory. This is a 8192 X 8 static Ram. 

4) 74LS245 : These are octal Bus transceivers, designed for asynchronous 

communication between data buses. 

5) CY4241 : This is a 64K FIFO. 
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Fig 3.12.1a Hardware Description  
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Fig 3.12.1b Hardware Description  
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Fig 3.12.1c Hardware Description  
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3.12.1 Operation  

The operation of the circuit is explained here. The address and the data to the L64765 R 

to B Converter is written through U21. This controls the initialization of the chip along 

with the control registers U7 and U20. The PAL U8 supplies the necessary control 

signals. U2 and U3 form the strip memory which enables the Raster to Block, or vice 

versa conversion. 

U9 supplies the initialization data to the Coder chip U13. The coded data from the 

Coder chip is stored in the FIFOs until decompression. 

The R to B converter gets the RGB or YUV data and does the necessary 

conversion ie,0 raster to block or vice versa. DCT processor performs the DCT on these 

blocks of data and passes them to the Coder chip which performs Huffman coding on the 

DCT values obtained. 
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Chapter 4 

MPEG STANDARD 

4.1 MPEG Overview  

MPEG stands for Moving Pictures Experts Group Committee. This International 

Standard specifies the "Coding of Moving Pictures and Associated Audio for Digital 

Storage Media at upto 1.5 Mbps" [1]. The standard is ISO 11172 for which the acronym 

is MPEG. 

The MPEG standard was developed in response to industry needs for an efficient 

way of storing and retrieving video information on digital storage media (DSM). An 

inexpensive medium was CD-Rom which could deliver data rates upto 1.2Mbps, and the 

MPEG standard was accordingly aimed at approximately at this data rate. The committee 

was instructed to develop a standard for data rates upto 1.5Mbps, and it was finally 

decided that the MPEG decoders should be able to handle all data rates upto 1.856 Mbps. 

This odd looking number was obtained by taking a telecommunications channel 

bandwidth of 1984 kbps and subtracting 128kbps as an allowance for audio. The standard 

allows much higher data rates to be specified, but it is expected that not all decoders will 

be able to handle such higher data rates. 

Two other relevant international standards were being developed prior to the 

MPEG studies : H.261 by CCITT aimed at video-conferencing applications, and ISO 

10918 by the ISO JPEG committee aimed at coding still pictures. Elements of both of 

these standards were incorporated into the MPEG standard, but subsequent development 

work by the committee resulted in coding elements found in neither. 

ISO11172 specifies the bitstream in such a way that it is fairly straight forward to 

design a conforming decoder. Decoders may differ considerably in architectural and 

implementation details , but they have very few choices during the decoding process : the 

methods and the results of the decoding process are closely specified by the ISO 11172. 



Fig 4.1 Overview of MPEG Coding 
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Decoders do have some freedom in methods of post processing and display, but the 

results of such post processing cannot be used in subsequent decoding steps. 

The situation is quite different for encoders. The encoders can make many 

choices as they encode a picture: what quantization level to use , what block type to use, 

what coding pattern to use, and so on. 

4.2 Basic Concepts  

The MPEG standard defines a format for compressed digital video [1]. Although the 

MPEG standard is quite flexible, the basic algorithms have been tuned to work well at 

data rates of about 1 to 1.5 Mbps, at spatial resolutions of about 350 pels horizontally by 

250 pels vertically, and picture rates of about 24 to 30 frames per second. The use of the 

word "picture" as opposed to "frame" is deliberate. MPEG codes progressively scans the 

images and do not recognize the concept of interlace. Television frames are interlaced, 

each frame is scanned twice with the scanning line offset by half a line in vertical 

direction. Each scan produces a field containing half the scan lines of a full frame. Each 

progressively scanned picture contains all the scan lines. Interlaced source video must be 

converted to a non-interlaced format before coding. After decoding , the decoder may 

optionally convert to an interlaced format before displaying the video. 

The format of the coded video allows forward play and pause. Typical coding 

methods allow random access and fast forward. Decoders can be built which permit 

reverse play. 

Compression of the digitized video comes from the use of several techniques : 

subsampling of the chroma information to match the human visual system ( Human 

vision is not very much perceptible to chroma information as luma information), 

differential coding to exploit spatial redundancy, motion compensation (MC) to exploit 

temporal redundancy, discrete cosine transform (DCT) to match typical image statistics, 

uantization, variable length coding (VLC), and use of interpolated pictures. 



Fig 4.2.1 Macro Block Structure 

Fig 4.2.2 Block Structure ( 8 X 8 pixels) 
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The coding scheme is arranged in layers corresponding to a hierarchical structure. 

A picture corresponds to a single frame of motion video, or to a movie frame. Pictures 

are collected into groups-of-pictures (GOP) for random access purposes, and a set of 

groups of pictures forms a sequence which is the top coding layer. Pictures are divided 

into slices to give some immunity to data corruption. Slices are divided into macro blocks 

which are the units used for motion compensation and for changing the quantizer scale. 

Macroblocks consist of an array of 16 X 16 pels ( a pel is sometimes called a pixel). Pels 

are further divided into luma and chroma components. Each luma pel corresponds to one 

picture pel, but since chroma information is subsampled with the 2:1 ratio both 

horizontally and vertically, each chroma pel corresponds to 4 picture pels. 

For convenience of coding, macro blocks are divided into six blocks of 

component pels : four blocks of luma, one block of Cb chroma, and one block of Cr 

chroma. This is shown in Fig 4.2.1. 

Blocks are the basic coding units, and the DCT is applied at this block level. Each 

block contains 64 component pels arranged in an 8 X 8 array as shown in Fig 4.2.2. 

There are four picture types : I pictures, or intra pictures, which are coded without 

any reference to any other pictures; P pictures, or predicted pictures, which are coded 

using motion compensation from some previous and a future I or P picture, and B 

pictures, or DC pictures, in which only the low frequency component (DC block average) 

is coded and which are intended only for a fast forward search mode. 

A typical coding scheme contains a mix of I,P, and B pictures. A typical scheme 

may have an I picture about every 12 to 15 pictures, to give a reasonably fast random 

access, and two B pictures inserted between each pair of I or P pictures. A typical 

sequence of pictures, in display order, might be as shown in Fig 4.2.3. 

The bitstream order, ie the order in which the pictures are transmitted , stored and 

retrieved, is not the display order, but rather the order which the decoder requires them to 

decode the bitstream. The bitstream order is shown in Fig 4.2.4. 



Fig 4.2.3 Typical Sequence of Pictures in Bitstream Order 

Fig 4.3.1 Simplified Decoder Implementation 
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4.3 Simplified Decoder Model 

A simplified block diagram of a possible decoder implementation is shown in Fig 4.3.1. 

The input bitstream is accumulated in the Input Buffer until needed. The Variable 

Length Code (VLC) Decoder decodes the header of the first picture, picture 0, and 

determines that it is an I picture. The VLC Decoder produces indexes corresponding to 

the quantized DCT coefficients using the appropriate quantization step size, which is 

transmitted periodically . The coefficients are then transformed into pel values by the 

Inverse DCT transformer and stored in the Previous Picture Store and the display buffer. 

The picture may be displayed at the appropriate time. 

The VLC Decoder decodes the head of the next picture, picture 3, and determines 

that it is a P picture. For each block and the Inverse Quantizer produces the actual DCT 

coefficients using the appropriate quantization step size. 

The coefficients are then transformed into pel and added to the predicted block 

produced by applying the motion vectors to the stored previous picture. The resultant 

block is stored in the Future Picture Store and the Display Buffer. The picture cannot be 

displayed until B pictures 1 and 2 have been received, decoded, and displayed. 

The VLC Decoder decodes the header of the next picture, picture 1 , and 

determines that it is a B picture. For each block, the VLC decoder produces motion 

vectors giving the displacement from the stored previous or next pictures or both, and 

indexes corresponding to the quantized DCT coefficients of the difference block. These 

indices are then assembled for each block and the Inverse Quantizer produces the actual 

DCT coefficients using the appropriate quantization step size. The coefficients are then 

transformed into pel values and added to the predicted block produced by applying the 

motion vectors to the stored pictures. The resultant block is then stored pictures. The 

resultant block is then stored in the Display Buffer. It may be displayed at the appropriate 

time. 
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The VLC Decoder decodes the header of the next picture , picture 2, and 

determines that it is a B picture. It is decoded using the same method as for picture 1. 

After decoding picture 2, picture 0, which is in the Previous Picture Store, is no longer 

needed and discarded. 

The VLC Decoder decodes the header of the next picture, picture 6, and 

determines that it is a P picture. The picture in the Future Picture Store is copied into the 

Previous Picture Store, and then decoding proceeds as for picture 3. Picture 6 should not 

be displayed until pictures 4 and 5 have been received and displayed. 

The VLC decoder decodes the header of the next picture, picture 4, and 

determines that it is a B picture. It is decoded using the same method as for picture 1. 

The VLC decoder decodes the header of the next picture, picture 5, and 

determines that it is a B picture. It is decoded using the same method as for picture 1. 

The VLC Decoder decodes the header of the next picture, picture 9, and 

determines that it is a P picture. It then proceeds as for picture 6. 

The VLC decoder decodes the header of the next picture, picture 8, and 

determines that it is a B picture. It is decoded using the same method as for picture 1. 

The VLC decoder decodes the header of the next picture, picture 12, and 

determines that it is a I picture. It is decoded using the same method as for picture 0, and 

the process is repeated. 

4.4 Preprocessing 

The overall process of preprocessing is shown in fig 4.4.1. The source material may exist 

in many forms, e.g. files in CCIR 601 format. In general, it must be processed before 

being encoded. This section discusses some aspects of preprocessing. 

For a given data rate and source material, there is an optimum picture rate and 

spatial resolution at which to code if the best perceived quality is desired. If the 



Fig 4.4.1 Typical Sequence of Pictures in Display Order 

Fig 4.4.2 Typical Sequence of Pictures in Bitstream Order 
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resolution is too high, then too many bits will be expended on the overhead associated 

with each block leaving too few to code the values of each pel accurately. If the 

resolution is too high, then too many bits will be expanded on the overhead associated 

with each block leaving too few to code the values of each pel accurately. If the 

resolution is too high, then too many bits will be expanded on the overhead associated 

with each block leaving too few to code the values of each pel accurately. If the 

resolution is too low, the pel values will be rendered accurately, but high frequency 

coding artifacts (e.g. noise and blockiness) and the perceived resolution and sharpness of 

the image. This tradeoff is further complicated by the unknowns of the final viewing 

conditions, eg screen brightness and the distance of the viewer from the screen. 

At the data rates of 1 to 1.5 Mbps, a reasonable choice for the picture rate is 20 to 

30 pps, for the horizontal resolution is between 250 and 400 pels, and for the vertical 

resolution is between 200 and 300 pels. 

4.5 Conversion from CCIR601 Video to SIF 

A popular source resolution is that specified by the CCIR601 . This international standard 

for digital TV consists of component coded video Y,Cb,Cr. Y is the luma or luminance 

signal and gives gray scale video. Cb and Cr are two independent color signals. There are 

two options in the number of lines, picture rate, and the pixel aspect ratio. One option has 

525 lines per frame at 60Hz and another has 625 lines per frame at 50Hz field rate. The 

luma pels are sampled at resolutions of 720 X 480 and 720 X 576, respectively. 

These field rates and resolutions are too large for effective coding at data rates 

between 1 and 1.5 Mbps. One way of converting the source video rate is to use only the 

odd or even fields. This reduces the picture rate to 25 or 30 Hz. If the other fields is 

simply discarded, spatial aliasing will be introduced, and this may produce visible and 

objectionable artifacts. More sophisticated methods of rate conversion require significant 

computational power, but can perceptibly reduce aliasing effects. 



Fig 4.4.3 Coding and Decoding Process 

Fig 4.5.1 Source Input Format 
with 

Significant Pei area shaded dark 
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CCIR60 format is normally converted to SIF format. In this format the MPEG coder 

divides the luma component into macro blocks each containing a square of 16 X 16 pels. 

Unfortunately, the horizontal resolution, 360 is not divisible by 16. A better match is 

obtained by discarding the leftmost 4 pels and the rightmost 4 pels from each line. The 

remaining picture is called the significant pel area, and is defined as the dark shaded area 

in fig 4.5.1. 

The conversion process is shown in table 4.5.1. 

A small advantage of stripping pels from both edges is that any horizontal blanking is 

effectively removed from the coded picture. This may increase the coding efficiency 

slightly. Another slight advantage of coding at an integral multiple of 16 pels is that the 

overhead per pel is minimized. 

4.6 Motion Compensation and Estimation  

P and B pictures use motion compensation to exploit temporal redundancy in the video 

sequence. Decoders construct a predicted block of pels from pels in a previously 

transmitted picture. Motion within a picture (e.g. panning) usually implies that the pels in 

the previous picture will be in a different position from the pels in the current block, and 

the displacement is given by motion vectors encoded in the bit stream . The predicted 

block is usually a good estimate of the current block, and it is usually more efficient to 

transmit the motion vector plus the difference between the predicted block and the 

current block, than to transmit the description of the current block by itself. 

Consider the following typical group of pictures shown in fig 4.6.1. The I picture , 

picture 2, is decoded without requiring any motion vectors. The first P picture, number 5 

is decoded using motion vectors from picture 2. This motion compensation is called 

forward motion of a macroblock, i.e. the motion of a 16 X 16 block of luma pels and the 

associated chroma component. Most macroblocks in a P picture usually use motion 

compensation. The vectors may be explicitly transmitted, or none may be transmitted. 



Fig 4.6.1 Group of Pictures in Display Order 

Table 4.8.1 Range of motion vectors 
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The transmitted vectors usually have a precision of half a pel. The maximum 

range of the vector is set by the forward_f parameter in the picture header. Sometimes, if 

the motion is unusually large, the range may be doubled and the accuracy reduced to 

integer pels, by the full_pel_forward_vector bit in the picture header. 

A positive value of the horizontal or vertical component of the motion vector 

signifies that the prediction is formed from the pixels in the referenced picture which are 

spatially to the right or below the pixels predicted. 

Not all the macroblocks in P picture use motion compensation. Some macro 

blocks , as defined by the transmitted macroblock type, may be intra, and these are 

reconstructed without motion compensation. 

P picture number 8 uses forward motion compensation from picture 5. P picture 

always use forward motion compensation from the last transmitted I or P picture. 

The B pictures may use motion compensation from the previous I or P picture, or 

from the next (in display order) I or P picture. This is equivalent to saying that they may 

use motion compensation from the last two transmitted I or P pictures. 

Prediction is called forward if reference is made to a picture in the past, and called 

backward if reference is made to a picture in the future. For example, B picture 3 in fig 

4.6.2 uses forward motion compensation from I picture 2, and backward motion 

compensation from P picture 5. B pictures may use both forward and backward motion 

compensation and average the result. This usage is called the interpolative motion 

compensation. 

All three types of motion compensation are useful, and are typically used in 

coding B pictures. Interpolation prediction has the advantage of averaging any noise 

present, and is frequently used if matching information is present in both previous and 

future pictures. Forward or backward motion compensation may be more useful near the 

edges of pictures, since the motion vectors cannot reference any pels that are outside the 

edge of the picture, or where a foreground object is passing in front of a fixed or slow 
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moving background. The technique of coding with P or B pictures increases the coding 

efficiency. B pictures can have greater errors of reconstruction than I or P pictures to 

conserve coding bits, but since they are not used as the basis of motion compensation for 

future pictures, these errors do not accumulate. 

4.7 Motion Estimation 

Motion compensation in a decoder is straight forward, but motion estimation in encoder, 

presents a formidable computational challenge. 

Various methods are available in the encoder. The more computationally 

intensive methods tend to give better results, so there is a tradeoff to be made in the 

encoder :computational power , and hence the cost, vs the video quality. 

Using some search strategy the encoder attempts to match the pels in a 

macroblock with those in a previous or future picture. The vector corresponding to the 

best match is reported after the search is completed. 

4.7.1 Block Matching Criterion 

For matching, only the luma component is taken into consideration. Sufficient prediction 

is obtained by matching only the luma component. The chroma vectors are only half the 

amplitude of the luma vectors since the chroma bitmap resolution is one half that of the 

luma. 

In seeking a match , the encoder must decide whether to use the decoded past and 

future pictures as the reference, or use the original past and future pictures. Note that the 

decoder has no choice, it must use the decoded pictures since it does not have access to 

the originals. Use of the decoded pictures by the encoder gives the smallest error in the 

motion-compensated picture, whereas use of the original pictures gives the smallest error 

in the motion vectors. The choice depends on whether the artifacts of increased noise, 



Table 4.8.2 Code for Forward_f or Backward_f equal to 1,2,3 
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or greater spurious motion are judged to be more objectional. There is usually little or no 

difference in quality between the two methods, however the MPEG committee chose to 

use the original pictures for the simulation results. 

The mean square error of the difference between the motion compensated block 

and the current block is one of the matching criterion. The other one being the mean 

absolute difference between the motion-compensated block and the current block. This 

method has been used for the simulation model since it is easier to compute using 

software simulations. 

4.8 Coding Of Motion Vectors  

The motion vector of a macro block tends to be well correlated with the previous 

macroblock. For example, in a pan all the vectors would be roughly the same. Motion 

vectors are coded using a DPCM technique to make use of this correlation. 

In P pictures the motion vectors used for DPCM, the prediction vector, is set to 

zero at the start of each slice and at each intra coded macro block. Note that macro 

blocks which are coded as predictive but which have no motion vector , also set the 

prediction vector to zero i.e. when there is no motion associated. 

In B pictures there are two prediction vectors, forward and backward. Each vector 

is coded relative to the predicted vector of the same type . Both the prediction vectors are 

set to zero at the start of each slice and at each intra-coded macro block. Note that 

predictive macro blocks which have only forward vector do not affect the value of the 

predicted backward vector. Similarly, predictive macro blocks which have only a 

backward vector do not affect the value of the predicted forward vector. 

The range of the vectors is set by two parameters- the full pel forward vector and 

full pel backward vector flags in the picture header. These two parameters determine 

whether the vectors are defined in half pel or integer pel units. 
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A second parameter, forward_f or backward_f, defines the number of bits 

appended to the VLC codes in Table 4.8.1. 

Advantage is taken of the fact that the range of displacement vector values is 

constrained. Each VLC word will represent a pair of difference values. Only one of the 

pair will yield a macro block vector falling within the permitted range. The range of the 

vector is limited to the values shown in Table 4.8.2. The values obtained by decoding the 

differential values must be kept within this range by adding or subtracting a modulus 

which depends on the f value given in Table 4.8.3.  



Table 4.8.3 Modulus for Motion Vectors 

forward_f or 

backward_f 
MODULUS 

1 32 

2 64 

3 96 

4 128 

5 160 

6 192 
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CHAPTER 5 

RESULTS AND CONCLUSIONS 

5.1 Hardware Implementation  

The hardware designed for this project comprises of two boards- the interface to the 

PC and the actual Compression board. The PC interface latches on the address and 

the data from the address and the data bus of the PC. These are used by the 

Compression board to generate the control signals. 

Basically the PAL 22V10 gets activated by passing proper addresses to it. 

This generates the control signals for the 74LS666 which generates the control 

signals for the Compression chips and also latches on the initializing data. 

I have been able to initialize and readback the initializing parameters to the 3 

LSI Logic chips. The chips supplied to us was Engineering prototypes and not the 

actual In-production chips. When I tried to pass the actual RGB data to the Raster to 

Block Converter, it was not accepting anything as the BUSY signal, which should be 

low while accepting data was always high. An order has been made to LSI Logic for 

supplying us with the In-Production chips and we are awaiting the shipment. 

CCUBE PC based JPEG hardware was used for simulations and comparative 

study of JPEG and MPEG algorithms. For the MPEG algorithm , the simulation 

software supplied by Bellcore was used. CCUBE card is a PC add-on card and accept 

TARGA sequences as inputs. The outputs are also in the TARGA format. 

TARGA format is explained here : 

1) TARGA Header (18 bits) 

2) Blue value (5 bits) 

3) Green value (5 bits) 

4) Red value (5bits). 

5) Padding (1 bit) 

It is actually 16 bits/pixel with RGB getting each 5 bits with 1 bit being unused. 
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Fig 5.1 JPEG Simulations 
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Fig 5.2 MPEG Simulations 
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Table 5.1 JPEG Simulations  
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Table 5.2 MPEG Simulations  
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5.2 Simulations  

Simulations were carried out with standard test sequence (table tennis) on the existing 

CCUBE JPEG hardware and Optibase MPEG software. The resulting SNR for 

various compression ratios were calculated. The output filesize was varied in the 

JPEG hardware and hence the bits/pel was varied. The input files are in Targa format 

which is explained in the next section. The output files are also created in Targa 

format. The resulting SNR between the input and output Targa files were calculated 

and tabulated. Table 5.1 gives the SNR for JPEG simulations for 0.2,0.3,0.4 bits/pel. 

MPEG simulation software creates output SIF files. These were converted into Targa 

files and the resulting SNR between the input and output Targa files were calculated. 

Table 5.2 gives the results obtained for the MPEG simulation. 

Fig 5.3 gives the plot for frame index vs SNR for JPEG and fig 5.4 gives the 

plot for MPEG. 

5.3 Conclusions and Future Directions  

The results of the video codec simulation clearly indicate that for the same bit rate 

and bits/pel MPEG gives a much higher SNR than JPEG. However for low bit rates 

the performance of JPEG is commendable and much less complex than MPEG. 

In the area of lossy compression the most obvious additional capability to add 

to JPEG is adaptive quantization. For a given image quality it has been noted that 

compression could be improved by as much as 30% by adaptive quantization. 

Adaptive quantization is however not a cost free option, because the 

determination of the quantization values that are used with a given DCT block can be 

a computational burden, and provision for multiple quantization tables or scaling of 

quantization table values in the encoder and decoder must be provided. The methods 

adopted to select the actual quantization table to be used for a particular set of image 

could be time consuming and the hardware could become more complex. Although 

the JPEG committee's decision not to include adaptive quantization can be defended 
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on the basis of simplicity, there is no question that adaptive quantization would 

significantly improve image quality at a given bit rate. 

The most obvious way of introducing adaptive quantization would be to 

encode a binary decision at the beginning of each MCU to tell the decoder when new 

quantization tables ( or modification of tables) are needed. The arithmetic coder could 

code this as a single binary decision, perhaps conditioned on the preceding adaptive 

quantization decision. For best coding efficiency , the Huffman coder would probably 

need to run-length encode the sequence of adaptive quantization decisions. 

Alternatively, a "table switch " code could be defined for selecting from a predefined 

tables. 

MPEG encoder is highly complex. As of now MPEG decoders are floating in 

the market with few encoders. Work is yet to be done to simplify MPEG encoder. 

The most difficult part in an encoder is the motion estimation. The search methods 

adopted by the encoder i.e, the logarithmic search and pixel recursive search are time 

consuming when it comes to hardware implementation. Work has to be done in this 

area for simplifying the hardware for this purpose. 



APPENDIX  

The appendix contains a listing of the software used for initializing and controlling the 

LSI Logic chips and the conversion between YCbCr and RGB color space coordinates. 
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/ * This program initializes the L64765 */ 

#include<stdio.h> 
#include<conio.h> 
#include<stdlib.h> 
#include<dos.h> 
#include "init.h" 
#define BASE 0x2a0 
#define ctrlw 0x2002 
#define dataw 0x2004 
#define datarb 0x2005 
#define ctrlrb 0x2003 
#define initw 0x2008 
#define rw 0x0000 
#define cw 0x0006 
#define gw 0x0002 
#define bw 0x0004 

#define HSYNC 0x08 
#define VSYNC 0x02 
#define CLK 0x04 

unsigned dat[]={0x30,0x00,0x30,0x00,0x00,0x00,0x00,0x00}; /* Window parameters */ 

unsigned data[48]; 



int i; 

write_control_jpeg(0xf07f); /* R[1:0] is made 00 for address */ 
write_control_jpeg(0xf07f); 
write_control_jpeg(0xe05f); 
write_data_jpeg(0x00); 
write_control_jpeg(0xe070; 
write_control_jpeg(0xf07f); 
write_control_jpeg(0xf17f); /* R[1:0] is made 10 for config write */ 

for(i=0;i<8;i++) 
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/* This program initializes the L64745 */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <conio.h> 
#include <dos.h> 
#include "init.h" 
#define ctrlw 0x2002 
#define BASE 0x2a0 
#define rw 0x0000 
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#define cw 0x0006 
#define rdback45 0x2007 
#define write45 0x2006 
#define reset45 0x2000 
int check = 1; 
unsigned dat[]= (0x44,0x0f,0xe4,0x00,0x00,0x01); 
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/* This program resets the L64765 */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <conio.h> 
#include <dos.h> 
#include "init.h" 
#define ctrlw 0x2002 
#define BASE 0x2a0 
#define rw 0x0000 
#define cw 0x0006 
#define rdback45 0x2007 
#define write45 0x2006 
#define reset45 0x2000 
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/* This resets the L64745 *I 

#include<stdio.h> 
#include<conio.h> 
#include<stdlib.h> 
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#include<dos.h> 
#include "init.h" 
#define BASE 0x2a0 
#define ctrlw 0x2002 
#define dataw 0x2004 
#define datarb 0x2005 
#define ctrlrb 0x2003 
#define initw 0x2008 
#define rw 0x0000 
#define cw 0x0006 
#define gw 0x0002 
#define bw 0x0004 

#define HSYNC 0x08 
#define VSYNC 0x02 
#define CLK 0x04 

unsigned dat[]={0x30,0x00,0x30,0x00,0x00,0x00,0x00,0x00}; 
unsigned data[48]; 
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#include <stdio.h> 
#include<stdlib.h> 
/* this program gets the Y U and V components 
from the CCIR601 files */ 

/* This program converts SIF files to CCIR601 format */ 

#include <stdio.h> 
#include<stdlib.h> 
#include<string.h> 
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#include <stdio.h> 
#include <stdlib.h> 

#include "tgarhb.h" 
TGAHeader th ={0,0,2,0,0,0,0,0,512,480,16,32}; 
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