

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

JPEG Hardware Design and a Comparative Study of JPEG
and MPEG Image Compression Algorithms

by

Aravind Soundararajan

The complete PC-based hardware design along with the initialization and control

software of the JPEG algorithm is presented in this thesis. The hardware could run in

real-time to compress, decompress and display still frame images. LSI Logic JPEG

chipset was used in the design. This is a dedicated chipset for the JPEG compression

algorithm.

A simulation software was used for studying the performance of MPEG video

compression algorithm. Various video test sequences were compressed through the codec

simulation software and the resulting rate-distortion performance was calculated. These

are compared with the performance of JPEG based image sequence compressor.

It is found that the MPEG-based video codec significantly outperforms the JPEG-

based codec for the test sequences considered at low to medium bit rates.

HARDWARE DESIGN FOR JPEG

AND A COMPARATIVE STUDY OF JPEG AND MPEG

IMAGE COMPRESSION ALGORITHMS

by

Aravind Soundararajan

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirement for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

October 1993

APPROVAL PAGE

Hardware Design for JPEG and a Comparative Study
of JPEG and MPEG Algorithms

Aravind Soundararajan

Dr.Ali N. Akansu, Thesis Advisor (date)
Associate Professor of Electrical Engineering, NJIT

Dr.Yeheskel Bar-Ness, Committee Member (date)
Distinguished Professor of Electrical Engineering, NJIT

Dr.David Cooper, Committee Member (date)
GEC Marconi Electronic Systems Corporation, Totowa, NJ

BIOGRAPHICAL SKETCH

Author: Aravind Soundararajan

Degree: Master of Science in Electrical Engineering.

Date: October 1993

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1993

• Bachelor of Science in Electronics and Communication Engineering.
Regional Engineering College, Trichy, India, 1990

Major: Electrical Engineering.

Presentations and Publications:

Soundararajan Aravind, " Image Processing in Intra Venous Cerebral Angiography."
IEEE Symposium , PSNA College of Engineering, Dindigul, India , January 1990

iv

This thesis is dedicated to my parents and my brother

v

ACKNOWLEDGEMENT

I would like to thank my advisor Dr. Ali N. Akansu, for his invaluable

advice, guidance and support in making this thesis a very rewarding and

successful one. I also appreciate his constant questioning and recommendations

which made this work and my educational goals more meaningful. I have learned

a great deal from him not only academically but also in other general aspects of

life.

I am highly grateful to Andria Wong and Fure Ching Jeng from Bellcore,

Morristown for their cooperation in providing the MPEG simulation software and

during the various stages of the project.

I also thank the committee members - Dr. Bar-Ness and Dr. Cooper who

spared some of their valuable time to go through my report and give suggestions.

I am grateful to Ronald Buell , David Cooper and Mark D'amato for the

help and facilities they rendered while at GEC in addition to their cooperation

without which this project could never have become a reality.

Thanks and regards to my parents for their moral support and love and

also to my labmates Adil, Mehmet, Ferhat and Nadir who made the period of this

work a pleasant one.

vi

TABLE OF CONTENTS
Chapter Page

1 INTRODUCTION 1

2 JPEG STANDARD 4

2.1 Color Systems 4

2.2 The Baseline System 4

2.3 DCT 7

2.3.1 Models for DCT based systems .. 8

2.3.2 Level shift 10

2.4 Variable Length Coding (Huffman Coding) 10

3 JPEG HARDWARE 12

3.1 Terms and Concepts 12

3.2 Typical System Application 20

3.3 Color and Raster-Block Converter 22

3.3.1 RGB Interface 22

3.3.2 Conversion Logic 24

3.3.3 Strip Memory Interface 24

3.3.4 YCbCr Interface 25

3.3.5 Internal Registers 25

3.3.6 Control Signals 25

3.4 Configuration and Control 26

3.4.1 Address Register 26

3.4.2 Gamma Correction Table 27

3.4.3 Configuration Registers. 30

3.4.4 Window Control Registers 32

3.5 Reset Operation 34

3.6 Initialization Sequence 34

vii

Chapter Page

3.7 L64735 DCT Processor 35

3.7.1 Signed Forward DCT 35

3.7.2 Signed Inverse DCT 37

3.7.3 Unsigned Inverse and Forward DCT 37

3.7.4 Signal Descriptions 37

3.8 Configuration and Control 40

3.9 L64735 Operation modes 40

3.10 JPEG Coder (L64745) 42

3.10.1 Signal Description 42

3.10.2 Code Interface Signals 45

3.10.3 Control Signals. 46

3.11 Configuration and Control . 47

3.11.1 Group ID Word 47

3.12 Hardware Description 55

3.12.1 Operation 55

4 MPEG STANDARD 56

4.1 MPEG Overview 56

4.2 Basic Concepts . 58

4.3 Simplified Decoder Model 62

4.4 Preprocessing 63

4.5 Conversion from CCIR601 video 65

4.6 Motion Compensation and Estimation . 67

4.7 Motion Estimation 70

4.8 Coding of Motion Vectors . 72

5 RESULTS AND CONCLUSIONS 75

5.1 Hardware Implementation 75

viii

Chapter Page

5.2 Simulations 75

5.3 Conclusions and Future Directions 75

6 APPENDIX 81

7 REFERENCES 112

ix

LIST OF FIGURES
Figure Page

2.1 JPEG Block Diagram. 5

2.2.1 Baseline DCT Based JPEG System .. 6

2.3.1 Models for DCT Based Systems. 9

3.1 JPEG Chipset in Encoder Application. 14

3.1.1 Active Image Area 14

3.1.2 Typical Image Correction Function 15

3.1.3 Block Procesing by L64765 18

3.1.4 Data Interleaving. 19

3.1.5 Block Input Ordering 19

3.2.1 Typical System Application. 21

3.3.1 L64765 Logic Symbol 23

3.4.1 Address Register Write 28

3.4.2 Gamma Table Read and Write. 29

3.4.3 Control Register 31

3.5.1 Reset Operation ... 36

3.7.1 Signed Forward DCT Configuration. 36

3.7.2 Signed Inverse DCT Configuration 38

3.7.3 Unsigned Forward DCT Configuration 38

3.7.4 Unsigned Inverse DCT Configuration 38

3.9.1 Forward DCT Configuration. 44

3.9.2 Forward DCT Output Waveforms. 44

3.9.3 Inverse DCT Waveforms .. 44

3.11.1 Read Initialization Sequence 48

3.11.2 Write Initialization Sequence. 48

3.11.3 Configuration Group Format 49

Figure Page

3.12.1a Hardware Description 52

3.12.1b Hardware Description. 53

3.12.1c Hardware Description 54

4.1 Overview of MPEG Coding. 57

4.2.1 Macro Block Structure. 59

4.2.2 Block Structure. 59

4.2.3 Typical Sequence of Pictures in Bitstream Order. 61

4.3.1 Simplified Decoder Implementation .. 61

4.4.1 Typical Sequences of Pictures in Display Order 64

4.4.2 Typical Sequence of Pictures in Bitstream Order. 64

4.4.3 Coding and Decoding Process ... 66

4.5.1 Source Input Format with Significant Pel Area Shaded Dark 66

4.6.1 Group of Pictures in Display Order 68

5.1 JPEG Simulations .. 76

5.2 MPEG Simulations 77

xi

LIST OF TABLES
Table Page

3.4.1 Configuration Addresses 31

3.4.2 Data Formats 33

3.8.1 Configuration Inputs 41

3.10.1 FIFOST[1:0] Status in Encoder Configuration. 43

4.8.1 Code for Forward_f or Backward_f equal to 1,2,3 .. 71

4.8.3 Modulus for Motion Vectors . 74

5.1 JPEG Simulations 78

5.2 MPEG Simulations . 79

xi

Chapter 1

INTRODUCTION

Mankind is continuously trying to transfer information at a rapid rate . The need to transfer

data rapidly often necessitates that information be sent over a channel at a rate that exceeds

the channel capacity. Some distortion inevitably results in such situations. In order to keep

this distortion to a minimum level, we must first order the data generated by the source in

accordance with it's importance at the receiver, and then either compress or discard the less

significant information prior to transmission. The schemes devised to extract the significant

information from the output of source and to reduce redundancy are called source coding

algorithms.

With the recent advances in modern communications, signal processing and VLSI

technologies the transmission and storage of real time video has become a reality. Typical

Color Television or video-conferencing images have a spatial resolution of approximately

512 X 512 pixels per frame with 24 bits/pixel resolution and requires 30 frames/second to

avoid any jerky motion of the picture. This is equivalent to the data rate of about 180 X 106

bits per second. Thus the channel capacity of 106 bits/second to 108 bits/second may be

needed depending on the application.The transmission and storage of such a large amount of

data requires data compression algorithms.

The primary application of data compression is in the transmission and storage of

information.Image transmission applications span the broadcast television, remote sensing

via satellites, teleconferencing, computer communications, facsimile transmission and others.

The compression techniques of these applications should consider the size and complexity

of the required hardware.

Video Compression methods exploit on source redundancies and the characteristics of

Human Visual System (HVS). The correlation in still images and in spacio-temporal

correlations in video signals are reduced. The reduction in correlation in spatial domain is

1

2

called intra-frame compression, while compression in temporal domain is called inter-frame

compression. Generally, the methods that achieve high compression ratios (10:1 to 50:1 for

images and 50:1 to 200:1 for video) are lossy such that the reconstructed data are not

identical to the original.

Lossless methods do exist, but their compression ratios are far lower, perhaps no better

than 3:1. Such techniques are used only in sensitive applications such as medical images. For

example , artifacts introduced by a lossy algorithm into an X-ray radiograph may suggest an

incorrect interpretation and alter the diagnosis of a medical condition. Conversely, for

commercial, industrial and consumer applications, lossy algorithms are preferred because

they save on memory and communication bandwidth.

These lossy algorithms also generally exploit aspects of the human visual system. For

example, the eye is much more receptive to fine details in the luminance (or brightness)

signal than in the chrominance (or color) signals. Consequently, the luminance signal is

usually sampled at a higher spatial resolution. In broadcast quality television , the digital

resolution of the sampled luminance signal is 720 X 480 pixels, while for the color signals it

maybe only 360 X 240 pixels. Second, the encoded (or compressed) representation of the

luminance signal is assigned more bits (a higher dynamic range) than the chrominance

signals.

Also, the eye is less sensitive to energy with high spatial frequency than with the low

spatial frequency. Indeed, if an image on a 13 inch personal computer monitor were formed

by an alternating spatial signal of black and white, the human viewer would see a uniform

gray instead of the alternating checkerboard pattern. This deficiency is exploited by coding

the high frequency coefficients with fewer bits and the low ones with more bits.

All these techniques add up to powerful lossy compression algorithms. In many subjective

tests, reconstructed images that were encoded at 20:1 compression ratio are hard to

distinguish from the original. Video data, even after compression at ratios of 10 : 1, can be

decompressed with close to the analog tape quality.

There are various standard Image compression schemes. These are :

1) CCITT H.261 : The H.261 standard of the International Consultative Committee for

Telephones and Telegraphs (CCITT) specifies a method of communication for visual images

and makes use of motion compensation and adaptive Discrete Cosine Transform(ADCT).

2) JPEG : The Joint Photographic Experts Group (JPEG) formed in 1986, has proposed an

international standard for the compression of continuous tone (gray scale or color) images.

The transform used is the Discrete Cosine Transform along with Huffman variable length

codes.

3) MPEG : Moving Pictures Expert Group (MPEG) proposed an international standard for

motion pictures which made use of motion estimation and compensation techniques leading

to greater reduction in the redundancy than the JPEG. This also makes use of the DCT.

The following chapters are organized as follows. Chapter 2 explains the JPEG algorithm,

Discrete Cosine Transform and Huffman coding techniques. Chapter 3 explains the

Hardware designed for the JPEG algorithm. Chapter 4 deals with the MPEG algorithm.

Chapter 5 explains the simulations performed and the results of the simulations . This also

gives the conclusions and the future directions for research.

The objective of this thesis is to design the hardware for the real time compression and

decompression of image sequences and to compare the performance of JPEG and MPEG

based codecs on the same test sequence. Based on the simulations done it has been

outrightly proved that MPEG based systems perform much better than the JPEG based ones

for the same bits/pel and same test sequence. The tables of the Signal to Noise ratios for the

two cases are shown in Chapter 5.

3

Chapter 2

JPEG STANDARD

JPEG stands for the Joint Photographic Experts Group Committee which is a research

team formed under the auspices of the International Standards Organization (ISO).The

proposed standard is a still picture coding algorithm . The scope of the algorithm is

broad- it comprises a baseline lossy approach and an extended lossless approach, as well

as independent functions using different coding techniques than the baseline scheme. The

hardware developed in this work falls under the lossy baseline approach. The JPEG

algorithm is depicted in Fig 2.1.

2.1 Color Systems

The JPEG algorithm falls under the heading of transform-based image coding. A color

image can be represented in different color formats. Those which are widely used today

include R-G-B (the three primary colors red , green and blue) in the computer industry;

Y-U-V (Y for luminance, U and V for the color difference signals Y-R and Y-B

respectively) in the television industry; and the C-M-Y-K (cyan, magenta, yellow and

black) in the printing industry. Within each color system, the constituent parts are called

components. Thus, there are three color components in the R-G-B system and four in the

C-M-Y-K system.

2.2 The Baseline System

A "baseline system" as shown in Fig 2.2.1 is defined as one which guarantees that a

reasonable level of function will be present in all decoders which use the DCT

algorithms. This baseline system uses a constrained version of the sequential DCT

algorithms. The baseline system must be present in all systems which use the DCT

compression algorithms.

4

Fig 2.1 JPEG Block Diagram

5

Fig 2.2.1 Baseline DCT Based JPEG System

6

7

The baseline DCT system capabilities can be extended in a number of ways.These so

called "extended systems" can use progressive modes of compression, higher precision,

and an alternative coding techniques. They have a fewer constraints than the baseline

system in several other important parts of the system.

A separate lossless coding algorithm is defined which uses a DPCM (Differential

Pulse Code Modulation) algorithm. In this case the subsequent sample values are

predicted based on the previous sample values. The baseline DCT system is not required

in a lossless decoding system.

The compression achieved with these algorithms depends on the characteristics of the

test images. For the color images of natural scenes which have been used for testing and

development of the algorithms, recognizable images are obtained at about 0.15 bits per

pixel and acceptable quality images are obtained at about 0.25 bits per pixel. At 0.75 bits

per pixel, the image quality is very good, and at about 1.5 bits per pixel the images

obtained are essentially indistinguishable from the original source. Lossless compression

ratio is about 2:1 for these test images. All of these experiments are based on tests of

4:2:2 CCIR601 format Y,Cb,Cr color images with 16 bits per pixel.

Chapter 5 gives the results of the simulations performed with CCIR601 test images on

the JPEG board and the MPEG simulation software.

2.3 DCT

The term image transform usually refers to a class of unitary matrices used for

representing images. One-dimensional signal can be represented by an orthogonal series

of basis functions, an image can also be expanded in terms of a discrete set of basis

arrays called basis images. These basis images can be generated by unitary matrices [2].

To make the transform coding practical, a given image is divided into NM/pq blocks,

each of size p x q, the main storage requirements for implementing the transform are

reduced by a factor of MN/pq. The computational load is reduced by a factor of

8

log2MN/log2pq for fast transform requiring a Nlog2 operations to transform an N X 1

vector. For 256 X 256 images divided into 8 X 8 blocks, these factors are 1024 and 2.66

respectively [4]. Although the operation count is not greatly reduced, the complexity of

the hardware for implementing small size transform is reduced significantly. However,

smaller block sizes yield lower compression.

The N X N forward 2D DCT is given by [2] :

The inverse N X N DCT is given by :

where bd(x,y) = 2-D sample value

BD(u,v) = 2-D DCT Coefficient

u horizontal frequency index

v vertical frequency index

x horizontal position index

y vertical position index

The coefficient array of DCT, BD(u,v), is ordered with the DC component in the upper

left corner , increasing horizontal "frequencies" to the right and increasing vertical

frequencies going down the array.

Fig 2.3.1 Models for DCT Based Systems

9

10

2.3.1 Models for DCT Based Systems

The DCT based systems can be divided into three parts, as shown in fig 2.3.1. In the

encoder 8 X 8 blocks of 2D input array samples are transformed using the forward DCT

(FDCT). The DCT coefficients are quantized based on their variances and visual weights.

The quantizer output is mapped to a set of symbols.

In the decoder the symbols are decoded by the entropy decoder and quantized DCT

coefficients values are obtained. The inverse DCT (IDCT) then transforms the 8 X 8

DCT array back into an 8 X 8 array of signal values.

The distortion between I and I' in fig 2.3.1, is governed entirely by the FDCT,

quantization, dequantization and IDCT procedures, with the assumption of an error free

transmission.

2.3.2 Level Shift

The source image input data have an unsigned representation. When coding unsigned

data with P bits of precision, the input data is level shifted by subtracting 2(P-1) before

processing with the forward DCT. For 8 bit precision, 128 is subtracted and for 12 bit

precision 2048 is subtracted. After processing with the IDCT, the same level shift must

be added to the output values to obtain the unsigned representation. Overflow and

underflow of the IDCT output due to the hardware limitations must be appropriately

clamped.

2.4 Variable-Length Coding (Huffman Coding)

JPEG encoder uses variable length coding or Huffman coding. The code words are

chosen to maximize the compression for the image data type to be processed. The most

commonly occurring events are assigned with the shortest code words. Each symbol

supplied by the model is coded using a particular code word chosen from the table.

11

The tables used by the Huffman coding technique are constructed from information

and they are included in the signalling parameters. It is, therefore, possible to create

Huffman tables which are appropriate for a class images, or even specifically optimized

for each individual image.

In the baseline system up to two tables may be used for DC coefficient coding and up

to two tables can be used for AC coefficient coding. In the extended system, up to four

DC tables and four AC tables may be used.

Tables may be inherited from previous images and from previous stages. Thus, a set

of tables may be used for a sequence of images.

12

Chapter 3

JPEG HARDWARE IMPLEMENTATION

We have used the LSI Logic chipset for the hardware implementation of JPEG algorithm

. The JPEG chipset consists of three components :

. Color and Raster to Block Converter (L64765)

. DCT Processor (L64735)

. JPEG Coder (L64745)

These three chips implement a complete high speed still-image or video rate

compression and decompression system. Figure 3.1 shows the JPEG chipset in a typical

image encoder application. In decoder the data flow direction is reversed.

In encoding applications , the L64765 Color and Raster to Block converter

converts the RGB values to luminance (Y) and chrominance (Cb,Cr) components and

arranges the raster image frame into 8 X 8 blocks. The L64735 DCT Processor performs

a discrete cosine transform on the 8 X 8 blocks to produce DCT coefficients. The L64745

JPEG Coder chip quantizes and encodes the DCT coefficients into a compressed data

stream. The high speed and pipelining capabilities of the JPEG chipset support full

motion video applications. All the three components of the JPEG chipset can be used in

either directions for encoding and decoding applications.

3.1 Terms and Concepts

Some important terms and concepts used in the design are enunciated here.

Minimum Coded Unit (MCU)

The JPEG-9 standard specifies the minimum coded unit (MCU) [5]. An MCU is the

smallest portion of a source image that is coded and processed in a JPEG coder. The

MCU in the L64765 Color and Raster to Block Converter is 8 pixels high by 16 pixels

13

wide in the fixed 2:1:1 format. Each MCU contains two data blocks of the luminance

(intensity) and one data block each of the chrominance (Cb,Cr) color components.

Active Image area

In many applications, only a portion of the source image , the active image area is

processed. The L64765 Color and Raster to Block Converter defines the active image

area in terms of the four parameters : height , width, height delay, and the width delay.

Figure 3.1.1 shows the definition of these parameters relative to the complete image. The

height and width delays are measured in pixels. The height and width are measured in

MCUs. The shaded portion of the frame is said to be blanked. Blanked portions are

ignored by the L64765 and are not sent to the L64735 DCT Processor.

Gamma Correction

To compensate the non-linear response of recording and display equipment, it is usually

necessary to apply a gamma correction to the image data. Gamma correction is a non-

linear gain function . The L64765 applies the Gamma correction using a look up gamma

correction table implemented in the internal RAM. Figure 3.1.2 shows a typical Gamma

correction function.

Color Conversion

The RGB-to-YCbCr and the vice versa color conversions are defined in the CCIR 601

recommendations. The first set of equations shows the RGB-to-YCbCr color conversion

as a set of linear equations. The second set of equations transforms YCbCr-to-RGB color

components. RGB and Y values are within the interval of 16 to 235 (inclusive); Cb and

Cr values are in the range of 16 to 240 (inclusive). Any computation result that exceeds

these values will be clipped to the boundary to eliminate any overflow or underflow

occurrences.

RGB-to-YCbCr conversion [2] :

Y = (77/256)R + (150/256)G + (29/256)B

Cb= (131/256)R + (110/256)G - (21/256)B + 128

Fig 3.1 JPEG Chipset in Encoder Application

Fig 3.1.1 Active Image Area

14

Fig 3.1.2 Typical Gamma Correction Function

1
5

16

Cr= (-44/256)R - (87/256)G + (131/256)B + 128

YCBCr-to-RGB conversion [2] :

R = Y + 1.370(Cr-128)

G = Y - 0.698(Cr-128) - 0.336(Cb-128)

B = Y + 1.730(Cb-128)

Raster to Block Conversion

In the encoding direction , the input data to the L64765 Color and Raster-Block converter

is in raster form consisting of horizontal scan lines of upto 8192 pixels. The L64765

converts the full image raster data into data blocks of eight pixels by eight pixels in raster

order, the format used by the downstream devices, the L64735 DCT Processor and the

L64745 JPEG Coder. Figure 3.1.3 shows how the first block on the display screen is

processed by the L64765.

In the encoding direction, the L64765 stores the eight complete scan lines in an

external strip memory. When the memory is filled, the L64765 begins reading data out of

the strip memory into the YCbCr buffer in 8 X 8 blocks. As each data value is read , a

new value is read , a new value is written into the strip memory at the same address. This

read-then-write operation reduces the amount of strip memory needed.

In the decoding direction, the L64765 reads in 8 X 8 blocks until a complete set

of eight scan lines is contained in the strip memory into the image area data reformatter

in raster order.

Data Interleaving

The data coming out of L64745 is initerleaved with all the components of a MCU

grouped together. Fig 3.1.4 and 3.1.5 show how the L64765 processes and outputs

interleaved data . The L64745 outputs four blocks of data per MCU : two blocks of

luminance data, followed by one block of Cb chrominance data followed by one block of

Cr chrominance data.

17

The number of blocks of each component in the input data stream is determined by the

L64745 internal parameters N0 through N3, which are set at the initialization. The

L64745 processes N0 blocks of component 0, followed by N1 blocks of component 1 ,

and so on. In applications using a complete JPEG chipset, No is set equal to 2, N1 and N2

are set equal to 1, and N3 is set to 0. Figure 3.1.6 shows the Block input ordering.

Quantization

Quantization categorizes data into the limited number of discrete values. Quantization is

a lossy process, meaning that information is lost in the quantization process . This loss is

called quantization noise.

The forward and inverse quantization functions performed by the L64745 JPEG coder

are given below. The data used in the quantization is stored within the L64745 in four

quantization tables. The symbols used are defined in the following the equations [5].

Forward Quantization:

Q(x(i),i) = round (x(i)/q(i))

Inverse Quantization :

x'(i) = Q (x(i),i)*q(i)

where :

x(i) : DCT coefficient created by the L64735 DCT Processor

x'(i) : DCT coefficient generated by the L64745. Since the quantization

is a lossy process, x'(i) is not necessarily equal to x(i).

Q(x(i),i): Quantized DCT coefficient. Q(x(i),i) is the output of the quantizer

and the input to the coding modules when the L64745 is in the

DCT encoding configuration. Q(x(i),i) is the output of the

decoding modules and input to the inverse quantizer when the

L64745 is in DCT decoding configuration.

q(i): Quantization stepsize from the quantization table for the

component being quantized.

Fig 3.1.3 Block Processing by L64765

1
8

Fig 3.1.4 Data Interleaving

Fig 3.1.5 Block Input Ordering

1
9

20

round(x): Rounding function. Round(x) rounds to the nearest integer. When

x is half way between the 2 integers , round(x) rounds up for the

positive and down for negative values of x.

is Index of the DCT or receieved DCT coefficient. i is in the range

from 0 to 63 inclusive.

3.2 Typical System Application

Fig 3.2.1 gives the three components of the JPEG chipset in a typical video real-time

image processing application. This system design supports bidirectional data flow for

both encoding and decoding . The text following the figure describes the function of the

devices in the example.

In encoding applications, the A/D converter converts analog input RGB data into

24-bit digital RGB data as the input to the L64765.

The L64765 Color and Raster to Block converter converts RGB values to

luminance (Y) and chrominance(Cb,Cr) components and converts the raster image into

8 X 8 blocks in the compression direction. In the decompression direction, it converts

luminance and chrominance components into RGB and translates the 8 X 8 blocks into

full-screen raster signal.

The strip memory buffers eight scan lines of the raster-ordered image to assist in

the raster-to-block conversion in the L64765.

The L64735 DCT Processor performs a 2D discrete cosine transform on the 8 X 8

blocks to produce DCT coefficients.

The L64745 JPEG Coder quantizes and encodes the DCT coefficients into a

compressed data stream.

The Compressed Memory stores the compressed DCT coefficients. In real-time

video applications, 512 Kbytes of storage can store an average of 16 compressed images

of sizes 512 X 480 X 24 at a compression of 24 to 1.

Fig 3.2.1 Typical System Application

2
1

22

The Master Controller provides the control signals and performs the handshaking

both between the host and the L64745, and also between the host and the Compressed

memory and the system bus.

The Timing Generator generates the horizontal and vertical synchronization

signals.

In the decoding case, the data flow is reversed, and the D/A Converter converts

the digital RGB image data from the L64765 into the analog RGB data.

3.3 Color and Raster-Block Converter (L64765)

Fig 3.3.1 gives the block diagram of L64765 , showing all the major functional blocks.

The block diagram is divided into functional subgroupings as shown by the dashed lines.

Each functional grouping is explained in a subsection following the figure.

3.3.1 RGB Interface

The bidirectional data bus PIX[23..0] transfers raster-ordered image to and from the Pixel

reformatter. Pix[23..0] are configured as either inputs or outputs depending on the

direction of the conversion. The RGB interface can handle the nine data formats

described under "Data formats" later in this chapter.

HSYNC and VSYNC are horizontal and vertical synchronization signals which

define line frequency and the refresh frequency. BUSY signal provides a mechanism for

the L64765 to delay the transfer of data over the PIX bus with respect to the internal

processing rate of the specified data format.

3.3.2 Conversion Logic

The Gamma Correction Tables store a user defined function that transforms each pixel

component.

Fig 3.3.1 L64765 Logic Symbol

23

24

The L64745 has three such tables, and each table has 256 eight bit entries. These

tables can be read or written as described later in "Configuration and Control". The

Color Converter uses a digital matrix to perform the color conversion specified in CCIR

601 Recommendation, Mod F [2]. The color conversion matrix may be by-passed in

either direction to allow systems with images already in YCbCr space to use the raster to

block conversion feature. The data after color conversion must be in the correct range, a

Range Limiter clamps the data to the appropriate boundary value.

The Resampling Filters implement one of the two built in transfer functions,

depending on the direction of the conversion. The filters operate only on the chrominance

components Cb and Cr. In the encoding direction, downsampled image data is

downsampled (decimated). In the decoding direction, downsampled image data is

reconstructed (interpolated).

In the encoding direction, the Multiplexer combines the Chrominance

components in the data stream sent to the memory strip interface. In the decoding

direction, the Demultiplexer extracts Cr and Cb data into separate data streams for

conversion to RGB by the color converter.

3.3.3 Strip Memory Interface

An external strip memory stores the raster data to facilitate raster-block-conversion.

Since a 16 bit YCbCr pixel must be read and written every 74 nanoseconds at 13.5 MHz,

the 16- bit strip memory data bus cycle time is 37 nano seconds. Static RAMS with an

access time of 25 nanoseconds are typically used in the strip memory.

When the L64765 begins processing a raster-ordered image, the Strip Memory

Control places the starting address 0x0000 on ADDR[15:0] and signals a write operation

via MEM_RW. The L64765 then writes eight scan lines into the strip memory on

DATA[15:0], incrementing the address with each write. Once the strip memory is full,

25

the strip memory control reads the old strip out in block order while writing the new strip

into memory in Raster order. This operation is done on a pixel basis, reading a pixel out

before writing a new pixel into the strip memory . The Data Register buffers read and

write data .

The 16-bit address can access upto 64K pixels . This memory addressing range is

more than enough to support eight 17-inch scan lines at 300 dpi (40,800 pixels).

However, the system configuration need only include the amount of memory that will

actually be used. The L64765 requires the minimum amount of memory as defined in the

equation below, where M is the memory size in 16-bit words and width is the width of

the active window in MCUs.

M = 128 X width

For example , an image 512 pixels wide requires a strip memory of 4K (4096) 16 bit

words.

3.3.4 YCbCr Interface

The bidirectional data bus YCbCr[7:0] transfers converted data to and from the YCbCr

Buffer. During raster-block operation, the 8-bit wide bus passes pixel data organized in 8

X 8 blocks to and from the L64735 DCT processor. An optional Y-only format is

supported by forcing the Cr and Cb components to be black (0x80). This allows the

YCbCr interface to operate at the same rate regardless of the format.

Three signals specify the state of the YCbCr interface. BS indicates the start of a

block of 64 data samples. LBS indicates the end of last block of 64 data samples. The

L64765 asserts the FRQ signal to stop the flow of data out of the YCbCr bus during

encoding operations, or into the YCbCr bus during encoding operations, or into the

YCbCr bus during decoding operations.

26

3.3.5 Internal Registers

The address registers point to one of the registers in the Configuration Register File or to

an address in the Gamma Correction Tables. The Configuration Register File includes

five registers : Width, Height, WDelay, HDelay, and Control.

3.3.6 Control Signals

The Internal Register Control Logic accepts three inputs : READ* and WRITE* control

the direction of the access to the internal register addressed by R[1:0] and the contents of

the address registers. The output enable signal OE*, controls the output buffers for

signals PIX[23:0], HSYNC, VSYNC, DATA[15:0],YCbCr[7:0],LBS and BS. (The

bidirectional buffers are not shown in the block diagram). CLK is the clock for all

internal registers and memory elements. The clock frequency is 27 MHz.

3.4 Configuration and Control

This section describes the configuration and initialization of the L64765. It also shows

functional waveforms for the read and write waveforms for the read and write operations.

3.4.1 Address Register

The initialization of address register is done in the following way :

Address Register Write:

- Set R[1 :0] to 00.

- Assert Write* LOW for at least the minimum pulse width. When WRITE* is

asserted , the L64765 holds the PIX[23:16] while WRITE* is asserted.

Place the new value on PIX[23:16] while WRITE* is asserted.

- The new value is stored in the address register on the rising edge of WRITE*.

Address Register Read :

Set R[1:0] to 00.

27

- Assert READ* LOW for at least the minimum pulse width. The L64765 places

the Address Register value on PIX[23:16] after the falling edge and holds it past

the rising edge of READ*.

Fig 3.4.1 gives the address read and write waveforms.

3.4.2 Gamma Correction Tables

The L64765 has three separate gamma correction tables, one each for the Red, Green ,

and Blue digital inputs. These are 256 entries for red, green, and blue. The Address

register points to a gamma correction table location when R[1:0] is set to 01. The data

written to a gamma address must be written in order: Red, Green, then Blue. Once the

Blue value has been written, the address Register automatically increments by one.

Gamma Table Write :

To write the gamma correction tables:

- Set the Address Register to the starting address of the write as described earlier in

the "Address Register".

- Set R[1:0] tool.

Assert Write* for at least the minimum pulse width.

Place the Red value on PIX[23:16] while WRITE* is asserted.

The value is written into the Red gamma table on the rising edge of the WRITE*.

- Write the Green value in the same way as Red.

- Write the Blue value in the same way as Red.

- Once the Blue value is written , the address register automatically

increments by one.

Repeat the steps 3, 4, 5 to write successive values into the gamma table.

For reading the written value the same procedure is followed, but instead of WRITE*

signal READ* is used and instead of placing the values on the PIX bus , the chip places

Fig 3.4.1 Address Register Read

2
8

Fig 3.4.2 Gamma Table Read and Write

29

30

the values itself on the PIX bus at the rising edge of READ*. Figure 3.4.2 shows the

write and read operations for Gamma Tables.

3.4.3 Configuration Registers

L64765 contains five internal configuration registers. The eight-bit Control Registers set

the data format of the input RGB data on the PIX bus and controls the other aspects of

operation.

The Configuration registers are addressed in the same manner as the gamma

correction tables. For all registers except the Control register, two write operations are

required to write the full contents of the register. The least significant byte is written first

to the address shown in Table 3.4.1 and the most significant byte is written to the next

higher address. Only the four least significant bits of the Address Register are used to

address the configuration registers.

The registers are written and read in the same manner as for gamma correction

tables, with R[1:0] set to 10.

Control Register

The Control Register is accessed by setting the bit 3 of Address Register to 1 and R[1:0]

to 10. Figure 3.4.3 shows the content of the Control Register.

1) Go Control (GO)

Go enables the L64765 to begin processing the data at the next rising edge of VSYNC.

After GO is set , it can only be cleared by resetting the L64765. The L64765 is reset by a

write operation with R[1:0] set to 11.

2) Output Enable Control (OEN)

OEN and control input OE* work together to enable and disable the state of all

bidirectional signals. When either OEN is set to HIGH or OE* is deasserted (HIGH), the

Table 3.4.1 Configuration Addresses

Fig 3.4.3 Control Register

31

32

bidirectional signals are held in the high impedance state. For these signals to be enabled,

OEN must be set to zero and OE* set to zero.

3) Code Operation Control (ENC)

ENC controls the direction of data flow, encoding or decoding. When ENC is set to one,

the L64765 data flow is in the encoding direction : PIX[23:0] are the inputs and

YCbCr[7:0] are the outputs.

4) Raster -Block Conversion Bypass Control

RBC controls the raster-block conversion. When RBC is reset to zero, input data is

assumed to be raster-ordered for the encoding direction, and block ordered for the

decoding direction. The L64765 performs the appropriate conversion (raster-to-block or

block-to-raster). When RBC is set to one, the conversion is by-passed; inputs are passed

to outputs with no change in the data order.

5) Format Control

FMT is a four bit field that controls how the L64765 interprets the PIX and YCbCr buses.

Table 3.4.2 shows the meaning of the FMT field.

3.4.4 Window Control Registers

The Window control registers contain the values of the four parameters WIDTH,

HEIGHT, WDELAY and HDELAY. These parameters are to locate the active window

size as shown in fig 3.1.1 . Each Window control register is 16 bits wide , though not all

of the bits are used in each register. The bits that are not used return to zero when read.

Table 3.4.1 shows the format of each register. The fields are defined below :

1)WIDTH : Image Width(9bits)

The width of the active image area in MCUs (each MCU is 16 pets wide). WIDTH is in

the range from 1 to 511 inclusive.

Table 3.4.2 Data Formats

1. Cb and Cr are set to black (0x80) in these formats

33

34

2)HEIGHT : Image Height (10 bits)

The height of the active image area in MCUs (each MCU is 8 pixels high). HEIGHT is in

the range of 2 to 2023 inclusive.

3)WDELAY : Width delay (13 bits)

The delay in pixels from the start of the scan line to the first active pixel. The rising edge

of HSYNC indicates the start of the scan line. WDELAY is in the range of 0 to 8191

inclusive.

4)HDELAY : Height delay (13 bits)

The delay in scan lines from the start of the frame to the first active scan line . The rising

edge of VSYNC indicates the start of the frame. HDELAY is in the range of 0 to 8191

inclusive.

3.5 Reset Operation

A write operation to the Reset Register performs a reset operation on the L64765 and the

value written is ignored. A reset operation clears the Go bit in the Control register but

does not otherwise affect the state of L64765 . The contents of the gamma correction

tables and the configuration registers are unchanged by a reset operation. A reset

operation also sets the FRQ output to LOW, thus allowing the system clock to reach the

L64735 and L64745. Figure 3.5.1 shows the waveforms for the reset operation.

3.6 Initialization Sequence

When the L64765 is powered on, the contents of the internal registers are undefined .

Before the device is put into operation, this initialization sequence should be performed:

1) Reset the L64765 as described under "Reset". Resetting clears the Go bit.

2) Set the values of WIDTH, HEIGHT, WDELAY, and HDELAY as described under

"Window Control Registers".

35

3) Set the values of the operating parameters in the Control Register but do not set the Go

bit yet.

4) Load the values into the Gamma Correction Tables as described earlier.

5) Reset the L64765 again.

6) Reset the L64735 DCT Processor and the L64745 Coder.

7) Set the Go bit. The L64765 is now ready for operation.

3.7 L64735 DCT Processor

The L64735 DCT Processor had four basic functional configurations:

• Signed forward DCT

• Signed inverse DCT

• Unsigned forward DCT

• Unsigned inverse DCT

During initialization, the L64735 is programmed for one of these four functional

configurations. Input signals UNSIGNED, FORWARD, ORDERZZ, and BYPASS

control the functional configuration and operation of the L64735.

Each of the basic functional configurations is illustrated with a block diagram and

described briefly in this section.

3.7.1 Signed Forward DCT

For this configuration, Forward is HIGH and UNSIGNED is held LOW. Figure 3.7.1

shows the signed forward DCT configuration.

The L64735 receives nine-bit pixel data from the L64765 Color and Raster-Block

Converter on PIX[8:0]. The L64765 organizes the pixel data in 8X8 blocks . Input signal

PBS indicates the start of a pixel block. The DCT Transform computes the 12-bit DCT

Fig 3.5.1 Reset Operation

Fig 3.7.1 Signed Forward DCT Configuration

36

37

coefficients for the block.The Block Buffer assembles the DCT coefficients in either

raster or zig zag order , depending on the state of the input signal ORDERZZ. The 8 X 8

block appears on the DCTCOEFF[1 1:0] with a delay of 168 cycles. DBS indicates the

start of a block of DCT coefficients.

3.7.2 Signed Inverse DCT

Fig 3.7.2 shows the signed inverse DCT configuration. For this, FORWARD is held

LOW and UNSIGNED is held LOW. The LBS signal produced by the L64745 is

propagated to PBID and drives the L64765 LBS input. The internal organization is

similar to the Signed Forward DCT, with DCT and DBID flowing in the opposite

direction. The IDCT Transform reconstructs the pixel data from the DCT coefficients.

3.7.3 Unsigned Forward and Inverse DCT

Figures 3.7.3 and 3.7.4 shows the unsigned forward and inverse DCT configurations

respectively.

Differences from signed data configurations are:

. PIX data is eight-bits wide (PIX 0 is not used).

. DCTCOEFF data is 11 bits wide (DCTCOEFF:0 is not used)

. PIX data is level shifted by the ADDER (shown as the circle with the plus sign).

3.7.4 Signal Descriptions

The external Interface to the L64735 is shown in the figure

Pixel Interface Signals:

PIX[8:0] (Pixel data bus)

Pix[8:0] comprise the pixel data bus . When the L64735 is operating in the forward

direction, PIX[8:0] are inputs for the 8 X 8 blocks of image data sent by

the L64765 . When the L64735 is operating in the inverse direction, PIX[8:0] are the

Fig 3.7.2 Signed Inverse DCT Configuration

Fig 3.7.3 Unsigned Forward DCT Configuration

Fig 3.7.4 Unsigned inverse DCT Configuration

38

39

outputs for the blocks of reconstructed data sent to the L64765. When the L64735 is

configured for the unsigned data PIX:0 is not used.

PBS (Pixel Block Start)

PBS is asserted HIGH coincident with the first data sample in each block of the pixel

data on PIX[8:0]. PBS is an input for forward DCT operation and output for inverse DCT

operation.

PBID (Pixel Block ID)

PBID is connected to DBID through a 168-cycle delay. PBID is only sampled when PBS

or DBS is asserted HIGH or an integer multiple of 64 cycles after PBS or DBS was last

asserted. PBID is an input for forward operation and an output for inverse operation.

DCT Interface Signals : These signals comprise of the interface to the L64745 JPEG

Coder.

DCTCOEFF[11:0] (DCT Coefficient Bus)

DCTCOEFF[11:0] are outputs in the forward direction, and inputs for the compressed

data in the inverse direction. When the L64735 is configured for Unsigned data,

DCTCOEFF.0 is not used.

DBS (Data Block Start)

DBS is asserted HIGH coincident with the first sample data in each block of pixel data on

the DCTCOEFF bus. DBS is an output for the forward operation and an input for inverse

operation.

DBID (DCTCOEFF Block ID)

DBID is connected to the PBID through a 168-cycle delay. PBID is only sampled when

the DBS is asserted HIGH or an integer multiple of 64 cycles after DBS was last asserted.

DBID is an input for the forward operation and an input for the inverse operation.

40

3.8 Configuration and Control

Four input signals, BYPASS, FORWARD, ORDERZZ, and UNSIGNED control the

function of the L64735 and the format of the DCTCOEFF and PD(buses. Table 3.8.1

summarizes the configuration and control signals. To prevent data loss configuration

inputs must not be changed until at least 168 clock cycles after the last input value has

been received by L64735.

3.9 L64745 Operation Modes

This section discusses and illustrates the following functions of L64735:

• Forward DCT Operation

• Inverse DCT Operation

• By-pass Operation

3.9.1 Forward DCT Operation

Fig 3.9.1 shows the input and output waveforms for the forward DCT Operation. The

figure assumes the block ordering of data, ORDERZZ, is held HIGH for zig zag ordering.

The ordered pair notation for the PIX and DCTCOEFF buses give the location of the data

word in the 8 X 8 block in (x,y) coordinates. Output data words appear contiguously

synchronized with the system clock after a delay of 168 clock cycles.

3.9.2 Inverse DCT Operation

Fig 3.9.2 shows the input and output waveforms for inverse DCT Operation. The figure

assumes block ordering of the input , ORDERZZ, is held HIGH for zig-zag ordering.

Output data words again appear contiguously synchronized with the system clock after a

delay of 168 clock cycles.

Table 3.8.1 Configuration Inputs

4
1

42

3.9.3 Bypass Operation

Fig 3.9.3 shows the waveforms for data transfer in the forward direction with BY-PASS

asserted HIGH. During Bypass operation, PBS and DBS are not used and their state is

undefined

3.10 JPEG Coder (L64745)

This section describes the functioning of the L64745 which is the actual encoder and

decoder chip.

3.10.1 Signal Description

The external Interface to the L64745 consists of the signals shown in the Fig 3.10.1 .

Each of the signal is explained below.

DCTCOEFF[10:0]

DCTCOEFF[10:0] carries the DCT coefficients. It is an I/O bus. When the L64745 is

configured as an encoder, DCTCOEFF[10:0] are inputs from DCT Processor. When

L64745 is operating as a decoder these form the outputs for the reconstructed DCT

coefficients.

BS (Block Start)

BS is asserted HIGH coincident with the first data sample in each block of the DCT

coefficients on DCTCOEFF[20:0]. BS is an input for encoder operation and an output for

decoder operation.

LBS (Last Block Strobe)

LBS is asserted HIGH following the last data sample of the last block in the image on

DCTCOEFF[10:0]. LBS is an input for encoder configurations and an output for decoder

configurations.

Table 3.10.1 FIFOST[1:0] Status in Encoder Configuration

FIFOST[1:0] State Condition Description

00 Ready FL > FIFOTH Data can be read from the FIFO

01 Not Ready 0 < FL <= FIFOTH FIFO has data but is below threshold

10 Empty FL =0 FIFO is empty

11 Overflow FL > 32 FIFO Overflowed ; data has been lost

4
3

Fig 3.9.1 Forward DCT Input Waveforms

Fig 3.9.2 Forward DCT Output Waveforms

Fig 3.9.3 Inverse DCT Input Waveforms 44

45

3.10.2 Code Interface Signals

CODEDDAT[31:0] (Coded Data I/O Bus)

CODEDDAT[31:0] comprises of the coded data coming out of the JPEG Coder or

coming to it in the case of decoder configuration. When the L64745 is configured as a

32-bit encoder, CODEDDAT[31:0] are outputs for the coded data. When the L64745 is

configured as a 32 bit decoder, CODEDDAT[31:0] are inputs for the data to be decoded.

When the L64745 is set for 16-bit operation, only CODEDDAT[15:0] are used.

LCODE (Last Code I/O)

When LCODE is HIGH, CODEDDAT[31:0] carry the last 32-bit code word in the block.

The signal in HIGH16 determines whether the data on CODEDDAT[15:0] is the more or

less significant half word. LCODE is an output in encoder configuration and an input for

decoder configuration.

LCIF (Last Code in FIFO)

When LCIF is HIGH, the last 32-bit code word of the image is written into the FIFO

output buffer. LCIF is high only for the cycle which the last code enters the FIFO buffer.

LCIF is an output for the encoder configuration and an input for the decoder

configuration.

FIFOST[1:0] (FIFO Status Indicator)

FIFOST[1:0] indicate the status of the internal FIFO. The meaning of FIFOST[1:0]

differs depending on the configuration of the L64745 as shown in Table 3.10.1. The

Ready/Not ready threshold is user programmable during device initialization.

NEXT (Next Data word)

When NEXT is asserted HIGH during encoding operations, the FIFO outputs the next

data word. When NEXT is asserted HIGH during decoding operations , the FIFO accepts

the next input data word. This functions the same way during initialization read or write

process.

46

3.10.3 Control Signals

These input signals control the initialization and certain operational aspects of the

L64745.

HIGH16 (Half word Location)

HIGH16 is only meaningful when the L64745 is set for 16-bit operation. When this is

asserted the CODEDDAT[15:0] is the more significant 16-bit half word of the 32-bit

coded data word. When HIGH16 is deasserted , CODEDDAT[15:0] is the less significant

16-bit half word. For 32 bit operation HIGH16 must be deasserted LOW.

INIT (Initialization)

When INIT is asserted (HIGH), the L64745 operating parameters can be read and written

as described in "Device Initialization". When the INIT is deasserted (LOW), the L64745

functions as configured by bits STAT,LL, and ENC bits in the Configuration Group.

RW (Read/Write Select)

RW is used only during device initialization. When RW is HIGH, the device parameters,

code tables, and quantization tables can be read on the CODEDDAT bus. When the RW

is low, the parameters and tables can be written from the CODEDDAT bus.

Reset (Device Reset)

RESET resets the L64745. Resetting the L64745 prepares it to process new image frame..

To reset, RESET must be asserted (HIGH) for at least 2 clock cycles and deasserted for

at least four clock cycles after device initialization. Resetting the L64745 clears the FIFO

buffer but does not affect the contents of the quantization or code tables.

CLK (System Clock)

CLK is the system clock that controls the internal state of the L64745. All input signals

to the L64745 are sampled at the rising edge of CLK.

47

OEN (Output Enable)

When OEN is HIGH, DCTCOEFF[10:0], CODEDDAT[31:01, LBS, LCODE, and BS are

enabled. When OEN is LOW, these signals are put in HIGH impedance state and the

internal memory elements are put in a low power state.

3.11 Configuration and Control

Internal data is written to and read from the L64745 during the initialization sequence via

the CODEDDAT bus. The internal data includes the functional configuration, operational

parameters, quantization tables, and code tables.

Input signals INIT and RW control the start and type of initialization

sequence(read or write). The initialization sequence begins when INIT is HIGH. RW is

HIGH for read and LOW for write sequences.

The internal data is organized into nine groups shown in Table 3.11.1. During an

initialization any group can be accessed at random. During a read sequence , the groups

are accessed beginning with group 0. The input signal NEXT controls the transfer of data

on the CODEDDAT bus. Typical Read, Write sequence is shown in fig 3.11.1.

3.11.1 Group ID Word

The group ID word consists of the word length identifier 8 bit and the group identifier

GROUPID as shown in fig 3.11.2.

8-bit sets the word length for the code table data(groups 5-8). If 8 bit is set to one , code

table data in this write sequence is written as 8-bit words on CODEDDAT[7:0]. Words

longer than 8 bits are loaded in 8-bit bytes with the MSB first.

GROUPID is a four bit word whose value identifies the group as shown in Table 3.11.1.

The table also shows the number of words in each group.

Fig 3.11.1 Read initialization Sequence

Fig 3.11.2 Write initialization Sequence

48

Fig 3.11.4 Configuration Group Format

49

50

Configuration Group

The Configuration Group must be written as the first step in the initialization sequence.

This group consists of six 8-bit control words. The data must be written in the order of

word 1 through word 6 as shown in Fig 3.11.2.

1) STAT (Statistics Configuration Selector)

When STAT is set to one, the L64745 is in statistics mode else it is in one of the

configurations set by ENC and LL.

2) ENC (Coder Configuration Selector)

When ENC is set to 1, the L64745 functions as an encoder. When ENC is set to 0, the

L64745 functions as a decoder.

3) LL (Lossless Configuration Selector)

When LL is set to 1, the L64745 functions as a lossless encoder. When ENC is set to 0,

the L64745 performs DCT-based coding.

4) NOPR (Internal Predictor Control)

When NOPR is set to 1, the internal predictor is disabled else it is used.

5) 32BIT (CODEDDAT Bus Width Selector)

When this is set to one , the full 32 bits of the coded data bus,CODEDDAT[31:0] are

used else only the lower 16 bits are used. When the L64745 is set to STAT mode (STAT

set to one), the lower 13 bits of the bus, CODEDDAT[12:0], are used.

6) WIDTH (Input data Width)

WIDTH is a 3-bit field whose value sets the width of the input data word in lossless

coding configuration. Bit 2 is the most significant bit. The number of bits in the input

data word is WIDTH + 4. The possible value ranges from 4 to 10 bits. WIDTH set 111 is

undefined and should not be used.

51

7) C3-CO (Code Table Selectors)

C3-CO select the code table to be used for each of the four components 3-0. When Cn is

set to 1, code table 1 is used for the nth component. When Cn is set to 0 , code table 0 is

used.

8) Q3-Q0 (Quantization Table Selectors)

Q3 through Q0 are 2 bit fields that select the quantization table to be used for each of the

four components 3-0. Each Qn selects one of the four quantization tables.

9) N3-N0 (Composite Sampling Ratio Selectors)

N3-NO are 4 bit fields that select the composite sampling ratio to be used for each of the

four components 3-0. A value of 0 indicates that the component is not used.

10) FIFOTH (FIFO threshold)

FIFOTH is a five-bit field whose value is the threshold for the Ready and Not Ready

state in the FIFO status report, FIFOST[1:0]. The value of FIFOTH is in the range from 0

to 31.

11) 0 (Zero value)

Bits marked with 0 in fig 4.14 must be written zero, and should be ignored when read.

3.12 Hardware description

Figure 3.12.1a,b&c give the hardware description of the compression board. The

components used in the test board are as follows:

1) 74LS666 : This is a 8-bit latch with readback facility. The data in the buffer could be

readback with OERB* signal.

2) 22V10 : This is a 10 input/output PAL.

3) 7C185A : This is a strip memory. This is a 8192 X 8 static Ram.

4) 74LS245 : These are octal Bus transceivers, designed for asynchronous

communication between data buses.

5) CY4241 : This is a 64K FIFO.

52

Fig 3.12.1a Hardware Description

53

Fig 3.12.1b Hardware Description

54

Fig 3.12.1c Hardware Description

55

3.12.1 Operation

The operation of the circuit is explained here. The address and the data to the L64765 R

to B Converter is written through U21. This controls the initialization of the chip along

with the control registers U7 and U20. The PAL U8 supplies the necessary control

signals. U2 and U3 form the strip memory which enables the Raster to Block, or vice

versa conversion.

U9 supplies the initialization data to the Coder chip U13. The coded data from the

Coder chip is stored in the FIFOs until decompression.

The R to B converter gets the RGB or YUV data and does the necessary

conversion ie,0 raster to block or vice versa. DCT processor performs the DCT on these

blocks of data and passes them to the Coder chip which performs Huffman coding on the

DCT values obtained.

56

Chapter 4

MPEG STANDARD

4.1 MPEG Overview

MPEG stands for Moving Pictures Experts Group Committee. This International

Standard specifies the "Coding of Moving Pictures and Associated Audio for Digital

Storage Media at upto 1.5 Mbps" [1]. The standard is ISO 11172 for which the acronym

is MPEG.

The MPEG standard was developed in response to industry needs for an efficient

way of storing and retrieving video information on digital storage media (DSM). An

inexpensive medium was CD-Rom which could deliver data rates upto 1.2Mbps, and the

MPEG standard was accordingly aimed at approximately at this data rate. The committee

was instructed to develop a standard for data rates upto 1.5Mbps, and it was finally

decided that the MPEG decoders should be able to handle all data rates upto 1.856 Mbps.

This odd looking number was obtained by taking a telecommunications channel

bandwidth of 1984 kbps and subtracting 128kbps as an allowance for audio. The standard

allows much higher data rates to be specified, but it is expected that not all decoders will

be able to handle such higher data rates.

Two other relevant international standards were being developed prior to the

MPEG studies : H.261 by CCITT aimed at video-conferencing applications, and ISO

10918 by the ISO JPEG committee aimed at coding still pictures. Elements of both of

these standards were incorporated into the MPEG standard, but subsequent development

work by the committee resulted in coding elements found in neither.

ISO11172 specifies the bitstream in such a way that it is fairly straight forward to

design a conforming decoder. Decoders may differ considerably in architectural and

implementation details , but they have very few choices during the decoding process : the

methods and the results of the decoding process are closely specified by the ISO 11172.

Fig 4.1 Overview of MPEG Coding

57

58

Decoders do have some freedom in methods of post processing and display, but the

results of such post processing cannot be used in subsequent decoding steps.

The situation is quite different for encoders. The encoders can make many

choices as they encode a picture: what quantization level to use , what block type to use,

what coding pattern to use, and so on.

4.2 Basic Concepts

The MPEG standard defines a format for compressed digital video [1]. Although the

MPEG standard is quite flexible, the basic algorithms have been tuned to work well at

data rates of about 1 to 1.5 Mbps, at spatial resolutions of about 350 pels horizontally by

250 pels vertically, and picture rates of about 24 to 30 frames per second. The use of the

word "picture" as opposed to "frame" is deliberate. MPEG codes progressively scans the

images and do not recognize the concept of interlace. Television frames are interlaced,

each frame is scanned twice with the scanning line offset by half a line in vertical

direction. Each scan produces a field containing half the scan lines of a full frame. Each

progressively scanned picture contains all the scan lines. Interlaced source video must be

converted to a non-interlaced format before coding. After decoding , the decoder may

optionally convert to an interlaced format before displaying the video.

The format of the coded video allows forward play and pause. Typical coding

methods allow random access and fast forward. Decoders can be built which permit

reverse play.

Compression of the digitized video comes from the use of several techniques :

subsampling of the chroma information to match the human visual system (Human

vision is not very much perceptible to chroma information as luma information),

differential coding to exploit spatial redundancy, motion compensation (MC) to exploit

temporal redundancy, discrete cosine transform (DCT) to match typical image statistics,

uantization, variable length coding (VLC), and use of interpolated pictures.

Fig 4.2.1 Macro Block Structure

Fig 4.2.2 Block Structure (8 X 8 pixels)

59

60

The coding scheme is arranged in layers corresponding to a hierarchical structure.

A picture corresponds to a single frame of motion video, or to a movie frame. Pictures

are collected into groups-of-pictures (GOP) for random access purposes, and a set of

groups of pictures forms a sequence which is the top coding layer. Pictures are divided

into slices to give some immunity to data corruption. Slices are divided into macro blocks

which are the units used for motion compensation and for changing the quantizer scale.

Macroblocks consist of an array of 16 X 16 pels (a pel is sometimes called a pixel). Pels

are further divided into luma and chroma components. Each luma pel corresponds to one

picture pel, but since chroma information is subsampled with the 2:1 ratio both

horizontally and vertically, each chroma pel corresponds to 4 picture pels.

For convenience of coding, macro blocks are divided into six blocks of

component pels : four blocks of luma, one block of Cb chroma, and one block of Cr

chroma. This is shown in Fig 4.2.1.

Blocks are the basic coding units, and the DCT is applied at this block level. Each

block contains 64 component pels arranged in an 8 X 8 array as shown in Fig 4.2.2.

There are four picture types : I pictures, or intra pictures, which are coded without

any reference to any other pictures; P pictures, or predicted pictures, which are coded

using motion compensation from some previous and a future I or P picture, and B

pictures, or DC pictures, in which only the low frequency component (DC block average)

is coded and which are intended only for a fast forward search mode.

A typical coding scheme contains a mix of I,P, and B pictures. A typical scheme

may have an I picture about every 12 to 15 pictures, to give a reasonably fast random

access, and two B pictures inserted between each pair of I or P pictures. A typical

sequence of pictures, in display order, might be as shown in Fig 4.2.3.

The bitstream order, ie the order in which the pictures are transmitted , stored and

retrieved, is not the display order, but rather the order which the decoder requires them to

decode the bitstream. The bitstream order is shown in Fig 4.2.4.

Fig 4.2.3 Typical Sequence of Pictures in Bitstream Order

Fig 4.3.1 Simplified Decoder Implementation

61

62

4.3 Simplified Decoder Model

A simplified block diagram of a possible decoder implementation is shown in Fig 4.3.1.

The input bitstream is accumulated in the Input Buffer until needed. The Variable

Length Code (VLC) Decoder decodes the header of the first picture, picture 0, and

determines that it is an I picture. The VLC Decoder produces indexes corresponding to

the quantized DCT coefficients using the appropriate quantization step size, which is

transmitted periodically . The coefficients are then transformed into pel values by the

Inverse DCT transformer and stored in the Previous Picture Store and the display buffer.

The picture may be displayed at the appropriate time.

The VLC Decoder decodes the head of the next picture, picture 3, and determines

that it is a P picture. For each block and the Inverse Quantizer produces the actual DCT

coefficients using the appropriate quantization step size.

The coefficients are then transformed into pel and added to the predicted block

produced by applying the motion vectors to the stored previous picture. The resultant

block is stored in the Future Picture Store and the Display Buffer. The picture cannot be

displayed until B pictures 1 and 2 have been received, decoded, and displayed.

The VLC Decoder decodes the header of the next picture, picture 1 , and

determines that it is a B picture. For each block, the VLC decoder produces motion

vectors giving the displacement from the stored previous or next pictures or both, and

indexes corresponding to the quantized DCT coefficients of the difference block. These

indices are then assembled for each block and the Inverse Quantizer produces the actual

DCT coefficients using the appropriate quantization step size. The coefficients are then

transformed into pel values and added to the predicted block produced by applying the

motion vectors to the stored pictures. The resultant block is then stored pictures. The

resultant block is then stored in the Display Buffer. It may be displayed at the appropriate

time.

63

The VLC Decoder decodes the header of the next picture , picture 2, and

determines that it is a B picture. It is decoded using the same method as for picture 1.

After decoding picture 2, picture 0, which is in the Previous Picture Store, is no longer

needed and discarded.

The VLC Decoder decodes the header of the next picture, picture 6, and

determines that it is a P picture. The picture in the Future Picture Store is copied into the

Previous Picture Store, and then decoding proceeds as for picture 3. Picture 6 should not

be displayed until pictures 4 and 5 have been received and displayed.

The VLC decoder decodes the header of the next picture, picture 4, and

determines that it is a B picture. It is decoded using the same method as for picture 1.

The VLC decoder decodes the header of the next picture, picture 5, and

determines that it is a B picture. It is decoded using the same method as for picture 1.

The VLC Decoder decodes the header of the next picture, picture 9, and

determines that it is a P picture. It then proceeds as for picture 6.

The VLC decoder decodes the header of the next picture, picture 8, and

determines that it is a B picture. It is decoded using the same method as for picture 1.

The VLC decoder decodes the header of the next picture, picture 12, and

determines that it is a I picture. It is decoded using the same method as for picture 0, and

the process is repeated.

4.4 Preprocessing

The overall process of preprocessing is shown in fig 4.4.1. The source material may exist

in many forms, e.g. files in CCIR 601 format. In general, it must be processed before

being encoded. This section discusses some aspects of preprocessing.

For a given data rate and source material, there is an optimum picture rate and

spatial resolution at which to code if the best perceived quality is desired. If the

Fig 4.4.1 Typical Sequence of Pictures in Display Order

Fig 4.4.2 Typical Sequence of Pictures in Bitstream Order

64

65

resolution is too high, then too many bits will be expended on the overhead associated

with each block leaving too few to code the values of each pel accurately. If the

resolution is too high, then too many bits will be expanded on the overhead associated

with each block leaving too few to code the values of each pel accurately. If the

resolution is too high, then too many bits will be expanded on the overhead associated

with each block leaving too few to code the values of each pel accurately. If the

resolution is too low, the pel values will be rendered accurately, but high frequency

coding artifacts (e.g. noise and blockiness) and the perceived resolution and sharpness of

the image. This tradeoff is further complicated by the unknowns of the final viewing

conditions, eg screen brightness and the distance of the viewer from the screen.

At the data rates of 1 to 1.5 Mbps, a reasonable choice for the picture rate is 20 to

30 pps, for the horizontal resolution is between 250 and 400 pels, and for the vertical

resolution is between 200 and 300 pels.

4.5 Conversion from CCIR601 Video to SIF

A popular source resolution is that specified by the CCIR601 . This international standard

for digital TV consists of component coded video Y,Cb,Cr. Y is the luma or luminance

signal and gives gray scale video. Cb and Cr are two independent color signals. There are

two options in the number of lines, picture rate, and the pixel aspect ratio. One option has

525 lines per frame at 60Hz and another has 625 lines per frame at 50Hz field rate. The

luma pels are sampled at resolutions of 720 X 480 and 720 X 576, respectively.

These field rates and resolutions are too large for effective coding at data rates

between 1 and 1.5 Mbps. One way of converting the source video rate is to use only the

odd or even fields. This reduces the picture rate to 25 or 30 Hz. If the other fields is

simply discarded, spatial aliasing will be introduced, and this may produce visible and

objectionable artifacts. More sophisticated methods of rate conversion require significant

computational power, but can perceptibly reduce aliasing effects.

Fig 4.4.3 Coding and Decoding Process

Fig 4.5.1 Source Input Format
with

Significant Pei area shaded dark

66

67

CCIR60 format is normally converted to SIF format. In this format the MPEG coder

divides the luma component into macro blocks each containing a square of 16 X 16 pels.

Unfortunately, the horizontal resolution, 360 is not divisible by 16. A better match is

obtained by discarding the leftmost 4 pels and the rightmost 4 pels from each line. The

remaining picture is called the significant pel area, and is defined as the dark shaded area

in fig 4.5.1.

The conversion process is shown in table 4.5.1.

A small advantage of stripping pels from both edges is that any horizontal blanking is

effectively removed from the coded picture. This may increase the coding efficiency

slightly. Another slight advantage of coding at an integral multiple of 16 pels is that the

overhead per pel is minimized.

4.6 Motion Compensation and Estimation

P and B pictures use motion compensation to exploit temporal redundancy in the video

sequence. Decoders construct a predicted block of pels from pels in a previously

transmitted picture. Motion within a picture (e.g. panning) usually implies that the pels in

the previous picture will be in a different position from the pels in the current block, and

the displacement is given by motion vectors encoded in the bit stream . The predicted

block is usually a good estimate of the current block, and it is usually more efficient to

transmit the motion vector plus the difference between the predicted block and the

current block, than to transmit the description of the current block by itself.

Consider the following typical group of pictures shown in fig 4.6.1. The I picture ,

picture 2, is decoded without requiring any motion vectors. The first P picture, number 5

is decoded using motion vectors from picture 2. This motion compensation is called

forward motion of a macroblock, i.e. the motion of a 16 X 16 block of luma pels and the

associated chroma component. Most macroblocks in a P picture usually use motion

compensation. The vectors may be explicitly transmitted, or none may be transmitted.

Fig 4.6.1 Group of Pictures in Display Order

Table 4.8.1 Range of motion vectors

68

69

The transmitted vectors usually have a precision of half a pel. The maximum

range of the vector is set by the forward_f parameter in the picture header. Sometimes, if

the motion is unusually large, the range may be doubled and the accuracy reduced to

integer pels, by the full_pel_forward_vector bit in the picture header.

A positive value of the horizontal or vertical component of the motion vector

signifies that the prediction is formed from the pixels in the referenced picture which are

spatially to the right or below the pixels predicted.

Not all the macroblocks in P picture use motion compensation. Some macro

blocks , as defined by the transmitted macroblock type, may be intra, and these are

reconstructed without motion compensation.

P picture number 8 uses forward motion compensation from picture 5. P picture

always use forward motion compensation from the last transmitted I or P picture.

The B pictures may use motion compensation from the previous I or P picture, or

from the next (in display order) I or P picture. This is equivalent to saying that they may

use motion compensation from the last two transmitted I or P pictures.

Prediction is called forward if reference is made to a picture in the past, and called

backward if reference is made to a picture in the future. For example, B picture 3 in fig

4.6.2 uses forward motion compensation from I picture 2, and backward motion

compensation from P picture 5. B pictures may use both forward and backward motion

compensation and average the result. This usage is called the interpolative motion

compensation.

All three types of motion compensation are useful, and are typically used in

coding B pictures. Interpolation prediction has the advantage of averaging any noise

present, and is frequently used if matching information is present in both previous and

future pictures. Forward or backward motion compensation may be more useful near the

edges of pictures, since the motion vectors cannot reference any pels that are outside the

edge of the picture, or where a foreground object is passing in front of a fixed or slow

70

moving background. The technique of coding with P or B pictures increases the coding

efficiency. B pictures can have greater errors of reconstruction than I or P pictures to

conserve coding bits, but since they are not used as the basis of motion compensation for

future pictures, these errors do not accumulate.

4.7 Motion Estimation

Motion compensation in a decoder is straight forward, but motion estimation in encoder,

presents a formidable computational challenge.

Various methods are available in the encoder. The more computationally

intensive methods tend to give better results, so there is a tradeoff to be made in the

encoder :computational power , and hence the cost, vs the video quality.

Using some search strategy the encoder attempts to match the pels in a

macroblock with those in a previous or future picture. The vector corresponding to the

best match is reported after the search is completed.

4.7.1 Block Matching Criterion

For matching, only the luma component is taken into consideration. Sufficient prediction

is obtained by matching only the luma component. The chroma vectors are only half the

amplitude of the luma vectors since the chroma bitmap resolution is one half that of the

luma.

In seeking a match , the encoder must decide whether to use the decoded past and

future pictures as the reference, or use the original past and future pictures. Note that the

decoder has no choice, it must use the decoded pictures since it does not have access to

the originals. Use of the decoded pictures by the encoder gives the smallest error in the

motion-compensated picture, whereas use of the original pictures gives the smallest error

in the motion vectors. The choice depends on whether the artifacts of increased noise,

Table 4.8.2 Code for Forward_f or Backward_f equal to 1,2,3

71

72

or greater spurious motion are judged to be more objectional. There is usually little or no

difference in quality between the two methods, however the MPEG committee chose to

use the original pictures for the simulation results.

The mean square error of the difference between the motion compensated block

and the current block is one of the matching criterion. The other one being the mean

absolute difference between the motion-compensated block and the current block. This

method has been used for the simulation model since it is easier to compute using

software simulations.

4.8 Coding Of Motion Vectors

The motion vector of a macro block tends to be well correlated with the previous

macroblock. For example, in a pan all the vectors would be roughly the same. Motion

vectors are coded using a DPCM technique to make use of this correlation.

In P pictures the motion vectors used for DPCM, the prediction vector, is set to

zero at the start of each slice and at each intra coded macro block. Note that macro

blocks which are coded as predictive but which have no motion vector , also set the

prediction vector to zero i.e. when there is no motion associated.

In B pictures there are two prediction vectors, forward and backward. Each vector

is coded relative to the predicted vector of the same type . Both the prediction vectors are

set to zero at the start of each slice and at each intra-coded macro block. Note that

predictive macro blocks which have only forward vector do not affect the value of the

predicted backward vector. Similarly, predictive macro blocks which have only a

backward vector do not affect the value of the predicted forward vector.

The range of the vectors is set by two parameters- the full pel forward vector and

full pel backward vector flags in the picture header. These two parameters determine

whether the vectors are defined in half pel or integer pel units.

73

A second parameter, forward_f or backward_f, defines the number of bits

appended to the VLC codes in Table 4.8.1.

Advantage is taken of the fact that the range of displacement vector values is

constrained. Each VLC word will represent a pair of difference values. Only one of the

pair will yield a macro block vector falling within the permitted range. The range of the

vector is limited to the values shown in Table 4.8.2. The values obtained by decoding the

differential values must be kept within this range by adding or subtracting a modulus

which depends on the f value given in Table 4.8.3.

Table 4.8.3 Modulus for Motion Vectors

forward_f or

backward_f
MODULUS

1 32

2 64

3 96

4 128

5 160

6 192

74

CHAPTER 5

RESULTS AND CONCLUSIONS

5.1 Hardware Implementation

The hardware designed for this project comprises of two boards- the interface to the

PC and the actual Compression board. The PC interface latches on the address and

the data from the address and the data bus of the PC. These are used by the

Compression board to generate the control signals.

Basically the PAL 22V10 gets activated by passing proper addresses to it.

This generates the control signals for the 74LS666 which generates the control

signals for the Compression chips and also latches on the initializing data.

I have been able to initialize and readback the initializing parameters to the 3

LSI Logic chips. The chips supplied to us was Engineering prototypes and not the

actual In-production chips. When I tried to pass the actual RGB data to the Raster to

Block Converter, it was not accepting anything as the BUSY signal, which should be

low while accepting data was always high. An order has been made to LSI Logic for

supplying us with the In-Production chips and we are awaiting the shipment.

CCUBE PC based JPEG hardware was used for simulations and comparative

study of JPEG and MPEG algorithms. For the MPEG algorithm , the simulation

software supplied by Bellcore was used. CCUBE card is a PC add-on card and accept

TARGA sequences as inputs. The outputs are also in the TARGA format.

TARGA format is explained here :

1) TARGA Header (18 bits)

2) Blue value (5 bits)

3) Green value (5 bits)

4) Red value (5bits).

5) Padding (1 bit)

It is actually 16 bits/pixel with RGB getting each 5 bits with 1 bit being unused.

75

Fig 5.1 JPEG Simulations

76

Fig 5.2 MPEG Simulations

77

Table 5.1 JPEG Simulations

78

Table 5.2 MPEG Simulations

79

80

5.2 Simulations

Simulations were carried out with standard test sequence (table tennis) on the existing

CCUBE JPEG hardware and Optibase MPEG software. The resulting SNR for

various compression ratios were calculated. The output filesize was varied in the

JPEG hardware and hence the bits/pel was varied. The input files are in Targa format

which is explained in the next section. The output files are also created in Targa

format. The resulting SNR between the input and output Targa files were calculated

and tabulated. Table 5.1 gives the SNR for JPEG simulations for 0.2,0.3,0.4 bits/pel.

MPEG simulation software creates output SIF files. These were converted into Targa

files and the resulting SNR between the input and output Targa files were calculated.

Table 5.2 gives the results obtained for the MPEG simulation.

Fig 5.3 gives the plot for frame index vs SNR for JPEG and fig 5.4 gives the

plot for MPEG.

5.3 Conclusions and Future Directions

The results of the video codec simulation clearly indicate that for the same bit rate

and bits/pel MPEG gives a much higher SNR than JPEG. However for low bit rates

the performance of JPEG is commendable and much less complex than MPEG.

In the area of lossy compression the most obvious additional capability to add

to JPEG is adaptive quantization. For a given image quality it has been noted that

compression could be improved by as much as 30% by adaptive quantization.

Adaptive quantization is however not a cost free option, because the

determination of the quantization values that are used with a given DCT block can be

a computational burden, and provision for multiple quantization tables or scaling of

quantization table values in the encoder and decoder must be provided. The methods

adopted to select the actual quantization table to be used for a particular set of image

could be time consuming and the hardware could become more complex. Although

the JPEG committee's decision not to include adaptive quantization can be defended

81

on the basis of simplicity, there is no question that adaptive quantization would

significantly improve image quality at a given bit rate.

The most obvious way of introducing adaptive quantization would be to

encode a binary decision at the beginning of each MCU to tell the decoder when new

quantization tables (or modification of tables) are needed. The arithmetic coder could

code this as a single binary decision, perhaps conditioned on the preceding adaptive

quantization decision. For best coding efficiency , the Huffman coder would probably

need to run-length encode the sequence of adaptive quantization decisions.

Alternatively, a "table switch " code could be defined for selecting from a predefined

tables.

MPEG encoder is highly complex. As of now MPEG decoders are floating in

the market with few encoders. Work is yet to be done to simplify MPEG encoder.

The most difficult part in an encoder is the motion estimation. The search methods

adopted by the encoder i.e, the logarithmic search and pixel recursive search are time

consuming when it comes to hardware implementation. Work has to be done in this

area for simplifying the hardware for this purpose.

APPENDIX

The appendix contains a listing of the software used for initializing and controlling the

LSI Logic chips and the conversion between YCbCr and RGB color space coordinates.

82

83

/ * This program initializes the L64765 */

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#include<dos.h>
#include "init.h"
#define BASE 0x2a0
#define ctrlw 0x2002
#define dataw 0x2004
#define datarb 0x2005
#define ctrlrb 0x2003
#define initw 0x2008
#define rw 0x0000
#define cw 0x0006
#define gw 0x0002
#define bw 0x0004

#define HSYNC 0x08
#define VSYNC 0x02
#define CLK 0x04

unsigned dat[]={0x30,0x00,0x30,0x00,0x00,0x00,0x00,0x00}; /* Window parameters */

unsigned data[48];

int i;

write_control_jpeg(0xf07f); /* R[1:0] is made 00 for address */
write_control_jpeg(0xf07f);
write_control_jpeg(0xe05f);
write_data_jpeg(0x00);
write_control_jpeg(0xe070;
write_control_jpeg(0xf07f);
write_control_jpeg(0xf17f); /* R[1:0] is made 10 for config write */

for(i=0;i<8;i++)

84

85

86

/* This program initializes the L64745 */

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <dos.h>
#include "init.h"
#define ctrlw 0x2002
#define BASE 0x2a0
#define rw 0x0000

87

#define cw 0x0006
#define rdback45 0x2007
#define write45 0x2006
#define reset45 0x2000
int check = 1;
unsigned dat[]= (0x44,0x0f,0xe4,0x00,0x00,0x01);

88

89

90

91

92

/* This program resets the L64765 */

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <dos.h>
#include "init.h"
#define ctrlw 0x2002
#define BASE 0x2a0
#define rw 0x0000
#define cw 0x0006
#define rdback45 0x2007
#define write45 0x2006
#define reset45 0x2000

93

/* This resets the L64745 *I

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>

94

#include<dos.h>
#include "init.h"
#define BASE 0x2a0
#define ctrlw 0x2002
#define dataw 0x2004
#define datarb 0x2005
#define ctrlrb 0x2003
#define initw 0x2008
#define rw 0x0000
#define cw 0x0006
#define gw 0x0002
#define bw 0x0004

#define HSYNC 0x08
#define VSYNC 0x02
#define CLK 0x04

unsigned dat[]={0x30,0x00,0x30,0x00,0x00,0x00,0x00,0x00};
unsigned data[48];

95

96

#include <stdio.h>
#include<stdlib.h>
/* this program gets the Y U and V components
from the CCIR601 files */

/* This program converts SIF files to CCIR601 format */

#include <stdio.h>
#include<stdlib.h>
#include<string.h>

97

98

99

100

#include <stdio.h>
#include <stdlib.h>

#include "tgarhb.h"
TGAHeader th ={0,0,2,0,0,0,0,0,512,480,16,32};

101

102

103

104

105

106

112

REFERENCES

1. Dr Rashid Ansari, Fure Ching Jeng, Andria Wong. MPEG Simulation
Manual,1990.

2. William Pennebaker, Joan L. Michell. JPEG Still Image Data Compression
Standard , Van Nostrand Reinhold, NY, 1993.

3. LSI LOGIC: LSI Chipset manual for JPEG algorithm,1990.

4. F.Rocca and S. Zanoleth. Bandwidth reduction via movement compensation on
a model of a random video process, IEEE trans. Comm, vol COM-20, pp 960-

-965, Oct 1972.

5. JPEG Committee. JPEG Draft .1989.

6. A.K. Jain. Fundamentals of Digital Image Processing, Englewood Cliffs, NJ:
Prentice Hall,1989.

7. N.Ahmed, T.Natarajan, and K.R Rao. Discrete Cosine Transform. IEEE
Transactions, Computers, C-2390-3 (Jan 1974).

8. P.Elias and N.Abramson. Information theory and Coding. New York: McGraw
Hill Book Co, 1963.

9. M.Rabbani and P.W Jones. Digital Image Compression Techniques. Vol TT7.
pp 1-221, Bellingham, WA:SPIE.

10. R.B Arps, T.K Truong, D.J Lu, R.0 Pasco, and T.D Friedman. A multi purpose
VLSI chip for adaptive data compression techniques. IBM J.Res. Develop.
32(6):775-95 (Nov.1988).

11. J.G Cleary, I.H Witten, and R.M. Neal. Arithmetic Coding for Data
Compression. Communic of the ACM. 30(6):520-40 (Jun 1987).

12. A.LigtenBerg, R.H Wright, and J.H.O'Neill. A VLSI Ortogonal Transform for
Real time Image Compression. Visual Communication & Image Process. (Oct
1987).

13. B.D. Tseng and W.C Miller. On Computing the Discrete Cosine Transforms.
IEEE Trans. on Computers. C27(10):1966-8.

14. D.A Huffman. A method for the construction of Minimum- Redundancy Codes.
Proc. IRE. 40(9):1098-101 (Sept 1952).

15. D.S Thornton and K.L Anderson. A BNF for the JPEG Image Compression
Header Structure. Proceedings Electronic Imaging '90 East, pp96-99. Boston,
MA (Oct 29- Nov 1,1990).

16. G.G Langdon and J.J Rissanen . Compression of Black and White Images with
Arithmetic coding. IEEE trans. on Commun. 29(6):858-67 (Jun. 1981).

113

17. C.B Jones. An Efficient Coding System for Long Source Sequences. IEEE
Trans Info Theory. IT-27(3):280-91 (May 1991).

18. JJ Rissanen and G.G Langdon. Arithmetic Coding. IBM J. Res. Develop.
23(2):149-62 (Mar. 1979).

19. J.G Cleary, I.H Witten, and R.M. Neal. Arithmetic Coding for Data
Compression. Commu. of the ACM. 30(6):520-40 (Jun.1987).

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: JPEG Standard
	Chapter 3: JPEG Hardware Implementation
	Chapter 4: MPEG Standard
	Chapter 5: Results and Conclusions
	Appendix
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)

	List of Tables

