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ABSTRACT 

Real Time Control 
of 

A Dual Resonator System 

by 
Penghuai Shen 

An experimental multi-resonator system has been developed to study modelling 

and robust control of such systems in a real-time environment. The plant to be 

controlled consists of a pair of interconnected resonators whose resonant frequency 

and plant structure are known. The control objectives are to provide closed loop 

stability and asymptotic regulation of the frequency, gain and phase of each of the 

resonators. Furthermore, it is desired to use a minimal controller configuration so as 

to reduce implementational complexity. 

The theoretical results follow directly the paper " Decentralized Robust Control 

of Interconnected Resonators" written by my advisor Dr. Timothy N. Chang. The 

main theoretical results have been applied in this experiment and verified by the 

experimental results. 

The controller identification approach has been employed, and feedforward 

and robust feedback control are implemented in this work. Various experimental 

conditions such as: single loop amplitude control, 2-loop amplitude control, phase 

control, and 2-loop amplitude & phase control have been tested. The data obtained 

are in good agreement with the theoretical predication and simulation results. The 

stated objectives have all been met. 

Data. analysis was carried out by porting the experimental data. into PC 

MATLAB environment whereas simulations were done by means of the ALSIM 

software. 
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CHAPTER 1 

INTRODUCTION  

Studies of the control of flexible materials are receiving much attention recently. 

Research and development of the control of such completely integrated structures 

with embedded actuators, sensors, signal processing, and control systems are of prime 

interest. 

The behavior of flexible structures, such as a circular disk resonator, is essen-

tially governed by their mode shapes, i.e. their amplitude and phase at one of the 

flexible modes. The control objective for flexible structure is aimed at stabilizing 

and/or regulating the device's mechanical behavior. 

The plant to be controlled in this work is a dual resonators made with the 

"smart" material, PZT, a piezoceramic with artificial piezoelectricity 

Piezoelectricity is a property of certain classes of crystalline materials. When 

mechanical pressure is applied to one of these materials, the crystalline structure 

produces a voltage proportional to the pressure. Conversely, when an electric field is 

applied to one of these materials, the crystalline structure changes shape, producing 

dimensional changes in the material. 

This property enables the piezoceramic to be used as both actuator and sensor 

with a homogeneous structure, and therefore the term "smart material". In general, 

when we control a resonator, we need to use sensor to measure its variables such 

as amplitude and phase angle over a range of frequency. Similarly, we need to use 

actuator to execute the control command. But by making use of PZT material, the 

problem becomes quite simple, and the system setup becomes more compact: all the 

sensors and actuators are embedded in a device. 

In our experiment, the resonator device is a. small piece of PZT disk with 1 

inch diameter and 0.05 inch thickness. All the actuators and sensors are located on 

1  
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the same disk. When we apply a voltage signal to the device, a radial deformation 

of the disk will be produced, meanwhile, due to such mechanical deformation, an 

electrical charge is also generated. A pickoff signal, indicative of the mechanical 

motion is interfaced to an A/D converter while the drive signal is generated by a. 

D/A converter. In a wide range of industrial problems, the objective is to control 

the device's behavior at resonance - when the transfer gain achieves a maximum. 

For this particular experiment, each resonator is plated with a central circular 

electrode surrounded by six equal drive sectors on one side while the other side of the 

PZT disk is to be used as a ground. The central circular part serves as the sensor, 

while the six equal sectors, connected by wire, function as the actuator. With two 

such resonators, the open loop system consists of two inputs and two outputs. The 

mechanical interface medium is a square flat plate made with aluminum, on which 

the two resonators are epoxyed. Figure 1.1 shows the configuration of the resonator 

system. 

Since a PZT device is essentially a charge generator, the electrical charge 

generated by the resonators is first converted by a charge amplifier into a voltage 

signal. Analog filtering then is used to remove environmental noise sources. Finally 

a. voltage amplifier is used to scale the pickoff signal to match the input range of the 

A/D converter. 

The A/D and D/A converter used here is the Sonitech SAIB (Stereo Audio 

Interface Box) which has a dual channel, 16-bit A/D, D/A capability with a 

maximum conversion rate of 48 KHz per channel. 

The SAIB resides externally to the host machine and connects serially to the 

SPIRIT-30 Digital Signal Processor (DSP) board. The incoming signal can be looped 

back to the output while the host or the DSP is processing or streaming the data 

(See APPENDIX B for details). 
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Figure 1.1 Configuration of A Two Resonators Device 

The controller is implemented in the Sonitech SPIRIT-30 System. The heart 

of the SPIRIT-30 is the Texas Instrument's TMS320C30 Digital Signal Processor 

(DSP) with a 60 us instruction cycle time, 2Kx32 words of internal RAM, single 

cycle floating- point multiply/accumulate and an on chip DMA controller. The host 

system is an IBM compatible 386-PC. 

The functional block diagram of the system is shown in Figure 1.2 

The organization of this thesis is as follows: In Chapter 2, the theoretical results 

concerning the control of multiple, interconnected resonators under plant parameter 

uncertainty are presented along with an synthesis algorithm. Modelling of the two 

resonators is also provided in this chapter. Chapter 3, the experimental results for the 

four conditions are presented, they are: 1) single loop amplitude control, 2) 2-loop 

amplitude control, 3) phase control, and 4) 2-loop amplitude and phase control. The 

on-line tuning method is employed in this experiment to derive the optimal gain(s) for 
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Figure 1.2 Functional Block Diagram of the System 
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each case, it is not necessary to know the mathematical model of the plant. Chapter 

4 is the simulation results of the closed loop system for several control configurations 

using the same gain(s) as those used in the experiment. Finally, in Chapter 5, the 

conclusions and future work are discussed.  



CHAPTER 2 

DEVELOPMENT 

2.1 Theoretical Results 

Many physical generators and sensors operate in their resonant mode to maintain 

high efficiency and/or accuracy. For examples, devices such as electric generators, 

vibrating beam accelerometers, laser devices, and acoustic sensors all base their 

operation on sustained oscillations where the frequency, amplitude and phase 

of the resonators are critical. The traditional way of regulating the resonators 

typically assumes the knowledge of a plant model and a centralized control structure. 

Such assumptions are either unfeasible or not cost effective on a commercial mass 

production basis where individual devices may exhibit significant deviation in their 

parametric values (such as damping and coupling). Furthermore, the resultant 

controller may also be too complex/expensive to implement. 

Therefore, besides providing robust closed loop stability and asymptotic 

regulation, the resonator control system should also be easy to apply and inexpensive 

to implement. The decentralized robust controller, when combined with the 

controller identification approach, would be one such candidate. The imposition 

a decentralized control structure minimizes the controller hardware whereas the 

controller identification approach removes the requirement of a plant model. The 

controller gains are derived from performing a limited number of steady-state exper-

iments on the plant. In the event that a good plant model is available, the parameter 

optimization method can be used to further shape the transient of the closed loop 

response. 

A definition of the Hilbert transform is given in the next section, to be followed 

by a description of the plant structure. 

6 
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Hilbert Transform  

The Hilbert transform of a continuous time signal x(t) is.given by: 

and the inverse transform is given by: 

where the integrals are understood to be Cauchy's principal values. 

Denote x(t) = H[x(t)] and x(t) = H-1[x(t)]. 

The frequency domain relationship between x(t) and x(t) is given by: 

X(ω)= — jsgn(ω)X(ω) (2.3) 

where X(ω) and X(ω ) are, respectively, the Fourier transform of x(t) and x(t). 

2.1.1 Plant Structure  

The plant consists of r interconnected resonators and is assumed to be represented 

by an open-loop stable, proper transfer matrix P(s). Furthermore, P(s) is assumed 

to be narrow-band with center frequency ωc  and bandwidth 2ωB. 

The plant output y(t) E Rr is therefore also narrow-band given by: 

y(1) = [y1(t),...,yr(t)]' 

y,(t) = Ai(t)sin(wct 01(t)) 

The reference signal yref(t) ∈  ℜr  is defined as : 



(2.7) 

(2.8) 

as the aggregated reference vector and Denote 

(2.11) 
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A block diagram showing the plant structure is given in Figure 2.1. 

Let the output of the amplitude/phase detectors ND be defined as: 

z(t) = [A1(t), Mt), , Ar(t), θr(t)]' (2.9) 

e(t) as the error vector. Then, 

e(t) = z(t) — zref (2.10) 

The control objective is y(t) → yref (t), or equivalently, 

The feedback control system C : e(t) δv(t) should have the following 

properties: 

1. Maintains closed loop stability 

2. Provides asymptotic tracking, i.e. ( 2.11). 

3. Possesses robustness against plant parameter variations, i.e. Property 2 above 

holds under small plant perturbations provided that the perturbed closed loop 

system remains stable. 

The overall control signal v(t) E v = 2r is lowpass and consists of a 

feedforward component v0 and the feedback component δv(t): 
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Figure 2.1  Block Diagram of the r-resonator System 
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(2.13) 

(2.14) 

be the pre-envelop of u(t). Let 

(2.15) 

is known as the complex envelop of u(t). The quantity 

(2.16) 
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v(t) = v0 + δv(t ) (2.12) 

Application of v0  serves two purposes: 1) it speeds up the plant response and 

2) it brings the closed loop response to a neighborhood of the desired set points. 

The amplitude/phase modulator NM  : v(t)  → ub(t) generates the lowpass plant 

The plant input u(t) is synthesized as: 

2.1.2 Low Frequency Equivalent Model  

In this section, the low frequency equivalence of u(t), y(t), and the plant impulse 

response are derived via the Hilbert transform. 

Then it is observed that, 

u(t) is a lowpass signal with bandwidth ωB  and it can be expressed as : 
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where uc(t

)

, us(t

) 

 ∈  Rr are the low frequency quadrature components of u(t ). 

From ( 2.15), u( t )  may be expressed as: 

u(t )  = uc(t)  cos ωct — us(t ) sin ωct (2.17) 

The plant impulse response matrix H(t) = L-1  P(s) = {hi j (t)} , i , j = 1, 2, ... , r 

can also be decomposed into its low frequency quadrature pair 

H(t) = 2Hc(t )  cos ωct — 2Hs(t)  sin ωct (2.18) 

The factor of 2 is introduced for notational convenience. It is obvious that 

Hc(t )  and Hs(t )  are stable iff H( t )  is stable. 

The plant output y( t )  can be expressed as: 

y(t) = H(t) * u(t) 

= Re[H(t) * u(t)] 

where H(t) = 11(t) + jH(t), 11(t) = H[H(t)] and " * " denotes convolution. 

Following the same development for u( t ), 

On letting 
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and observing that y(t) = Re[ y (t)e3"1, it follows that 

y(t) = yc (t) cos ωct — (t) sin ωct (2.19) 

where 

yc (t) = Hc (t) * (t) — I" (t) * u' (t) 

ys (t) = s (t) * uc(t) + I c(t) * us (t) 

The baseband equivalent model of the resonators is now obtained as: 

y b(s) = G(s)ub(s) (2.20) 

where 

Again, G(s) is stable if P(s) is stable. It should be noted that G(s) may also 

include the dynamics of the amplitude/phase detectors (typically lowpass filters). 

Figure 2.2 shows the equivalent model of the r-resonator problem. 
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Figure 2.2 Low frequency Equivalent Model of the Plant 

2.1.3 Modulators and Detectors 

The modulators perform gain/phase modulation and frequency translation. To 

implement the latter, a. pair of multipliers and two quadrature signals cos ωct and 

sin ωct  are required for each resonator. These two signals can be derived from a 

number of sources such as: 

1. The master resonator 

2. An internal reference oscillator 

3. The filtered output signals 

The exact source depends upon the nature of the application. For example, 

in situation where ωc is expected to vary with environmental factors (temperature, 

pressure, acceleration, etc.), 1. or 3. should be used. If, on the other hand, ωc  is 
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to be held constant , then 2. should be used. All resonator control systems should 

receive the same quadrature signals to avoid phase uncertainties. 

The amplitude/phase demodulators also perform two tasks: 

1. Convert y(t) into its baseband equivalent yb(t) 

2. Transform yb(t) into the amplitude/phase vector z(t) according to ( 2.9) and: 

Tasks 1 and 2 may be carried out simultaneously by the demodulator but they 

are separated for the purpose of analysis. In actual implementation, the amplitude 

and phase signals Mt) and θi(t) can be obtained by a number of standard methods, 

e.g. an envelop detector for Ai(t) and a phase discriminator for Mt). In each case, 

the detectors can be modelled by a. cascade combination of a nonlinear element and 

a linear filter. Since the nonlinear elements are algebraic in nature, it is possible 

to lump the remaining dynamics into the low frequency equivalent plant model and 

treat the demodulators as ideal, given by ( 2.25). 

2.1.4 Control Systems Synthesis 

The traditional way of synthesizing a control system typically assumes the following 

conditions: 

1. Centralized control structure 

2. Known plant model 

In actual application, especially in commercial mass production of resonators 

systems, such requirements are either unfeasible or not cost effective due to the 

variability of each physical units. 
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In this case, a preferred alternative is the so-called "controller identification" 

approach. It entails three steps: 

1. Determine the necessary controller type and structure for the particular appli-

cation. 

2. Perform a limited number of steady-state experiments on the plant. 

3. Derive the necessary controller gains based on the experimental data. 

It is not necessary to know the plant model or even the model order. All that 

is required here is a limited number of steady-state data to determine the control 

system. The following two sections describe control structure and gain determination 

base on this approach. 

2.1.5 Controller Type and Structure  

The control signal v(t) consists of a constant feedforward term v0  and a dynamic 

feedback term v(t). The feedforward vector is computed from the experimental 

data as follows: 
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where | • |  and L  represent the magnitude and phase angle respectively. From 

( 2.27), it is clear that the plant P(s) must not have a transmission zero at s = j ωc.  

Synthesis of δv(t) can be carried out by first linearizing the modulators NM  

and the detectors ND: 

From ( 2.13), NM  can be linearized around v0  as: 

δub(t) = Bδv(t) (2.29) 

where 

Similarly, from ( 2.25) the detectors ND  is linearized around v0  as: 

δz(t) = Cδyb  (t) (2.32) 

where 

The baseband incremental model of the plant is now obtained as: 

Gc(s) = CG(s)B (2.35) 

A block diagram for the feedback control system is shown in Figure 2.3. 

Lemma 1 below follows directly from the frequency translation of the passband 

spectrum of the plant: 
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Figure 2.3 Low Frequency Incremental Model of the Plant 

Lemma 1 If the nominal P(s) has no transmission zeros at ±jωc, then Gc(s) has 

no transmission zero at the origin 

The above Lemma assures the steady-state invertibility of the dc gain of the 

incremental plant. Denote 

T = - Gc(0) (2.36) 

From Lemma 1 the above inverse exists if P(jωc ) 0. 

In order to achieve asymptotic stability and tracking, the controller C must 

supply the closed loop transmission zeros at the origin for the error transfer matrix. 

The minimal controller type is given by: 



(2.38) 

(2.39) 
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is the feedback gain matrix that may take on one of the 

following control structures: 

1. Centralized -- K has v2  non-zero parameters. 

2. Partially decentralized — K has 2v non-zero parameters, i.e. 

3. Decentralized — K has only v non-zero parameters. 

The use of decentralized structure can significantly reduce the number of inter-

connections and thence the computation/hardware cost. For example, the centralized 

controller of a six-resonator plant (v = 12) requires 144 interconnections whereas a. 

decentralized controller only needs 12 interconnections. 

2.1.6 Controller Gain Determination  

The controller gain A can be determined as follows: 

1. Centralized Gain: 

2. Partially Decentralized Gain: 

Partition T into 2 x 2 submatrices as: 
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provided the inverses exist. It is also possible to assign an individual tuning 

gain to each local control agent. In this case, the number of tuning gains equals 

to r. 

3. Fully Decentralized Gain: 

Let |T(i)| denote the i-th leading principal minor of T. Assume that |T(i)| 

0, i = 1, 2, ... , r , define I (i) as: 

1(1) = 

1(i) = (i — 1)|-1, i = 2,3, ... ,r (2.43) 

where is t be i-th diagonal element of I. Again, each local control agent can 

he assigned a. separate tuning gain, resulting in v adjustments. 
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Lemma 2 is now obtained from Theorem 1 of [4] and Lemma 1 above. 

Lemma 2  Assume that P(s) is open loop stable and has no transmission zero at 

±jωc, then 

1. T-1  exists 

2. There exists a permutation matrix R1  such that T = —[R1Gc(0)R1-1]-1  

possesses non-zero leading principal minors. 

The above results indicate that, by choosing a proper I/O pairing, the inverses 

in (2.42) and (2.44) all exist so that the controller gains are well-defined. 

Lemma 3 (5) Assume that P(s) is open loop stable and the controller gains are 

stable.  

the closed system is locally, asymptotically 

It should be noted that Lemma 3 implicitly assumes that P(s) has no trans-

mission zero at t jwc. From Lemma 1 and the structure of controller ( 2.37), robust 

asymptotic tracking occurs for the closed loop system. 

2.1.7 Synthesis Algorithm  

The following algorithm provides a systematic way of synthesizing the resonator 

control system: 

1. Determine the gain matrix P(jωc) by standard frequency response methods. 

2. Verify that det P(jωc ) ≠  0. 

3. Calculate the feedforward control vector v0 using ( 2.28). 

1. Determine Gc(0) by either using equations ( 2.23), ( 2.31), and ( 2.34) or by 

experimentally calculating the DC gain matrix from δv(t) to e(t) directly. 
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5. Determine a suitable I/O pairing (i.e. the permutation matrix RI  ) and a control 

configuration (i.e. centralized, partially decentralized , or fully decentralized). 

6. Calculate the controller gains using ( 2.40), ( 2.42), or ( 2.44). 

7. Tune the system by adjusting e on-line so that desirable transient character-

istics are obtained. Use a. separate tuning gain for each local control agent if 

necessary. Such tuning gain(s) always exists if the conditions of Lemma 3 are 

satisfied. 
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2.2 Modelling & Controller Structure 

Modelling of the plant is studied in this section along with the determination of the 

controller type and structure. 

2.2.1 Open Loop Experiment 

The open loop experiment consists of three steps: 1) wide band frequency sweep 

test, 2) linearity check, and 3) local modelling. 

To conduct the wide band frequency sweep, a sinusoidal signal of 5-v amplitude 

is applied to the 2 inputs of the plant. Magnitude response, from 1 kHz to 12.5 

kHz, is derived for the following combination: 1) transfer characteristics of the first 

resonator (labelled as R) (p11), 2) cross coupling characteristics from the second 

resonator (labelled as B) to resonator R, ( p12 )• 3) cross coupling characteristics from 

resonator R to resonator B( p21). and 1) transfer characteristics of resonator B(p22 ). 

Figure 2.4 Spectrum of Frequency Response of the Resonator Device 
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It is observed that within the 1 kHz to 12.5 kHz range, there exist 5 dominant 

resonant peaks at 2.465 kHz, 5.375 kHz,•8.36 kHz, 10.25 kHz and 11.985 kHz. 

The transfer characteristics of the devices are quite close, reflecting the fact 

that the resonator structure is highly symmetrical. The resonance at 8.36 kHz is 

found to be most consistent ( less sensitive to mounting, temperature, etc.) and is 

therefore selected for the next test procedure: linearity check. 

For linearity check, three excitation voltage level at 1-v, 5-v, and 10-v are in 

turn applied to the plant. The frequency range starts from 7 kHz and ends at 9 kHz 

with 18 quantization intervals. 

The corresponding test results for p11, p12 , p21, and p22  are plotted in Figures 

A.1, A.2, A.3 and A.4 (refer to APPENDIX A ). 

From the experimental data, it is concluded that the nonlinearity in each device 

is within 10 %, a. figure that can he tolerated by robust controllers. 

Since the consistency and linearity of the plant around 8.36 kHz are acceptable, 

local moddelling of the resonator around this frequency can be carried out. 

2.2.2 Modelling 

The dynamics of the resonators around the resonance at f=8.36 kHz can be repre

sented by the following 2x2 transfer matrix: 

The parameters Aij, Bij, and Qij , i,j = 1,2 , are obtained as follows: 



24 

First Qij : bandwidth of pij around 8.36 kHz derived by this center frequency. 

Second at ω  = ωc: 

where: θij  is the corresponding phase angle at 8.36 kHz. 

For a drive level of 5-v, the corresponding Qij, θij, Kij 's are shown in Table 

2.1, 2.2, and 2.3. 

Thus, A ij and Bij are calculated using (2.52) (2.53) as: 

A11 = —8.3568 x 107 B11 = 280.5265 (2.54) 

A12  = 8.3549 x 107 B12  = 280.4634 (2.55) 

A21  = 6.0856 x 107 B21  = 204.2843 (2.56) 

A22  = —7.7877 x 107 B22  = 261.42 (2.57) 
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Table 2.1 Q value of the Resonator 

- Q value 
Q11  32.5149 
Q12  29.27 
Q21  35.72 
Q22  39.0783 

Table 2.2: Open Loop Gain of the Resonator Device, around Resonant 
Frequency = 8.361:Hz 

- K value 
K11  1.0 
K12  0.9 
K21  0.8 
K22  1.12 

Table 2.3 Phase Angle , θij, at Resonance 

- θ  
θ11  —80° 
θ12  80° 

θ21  80° 
θ22  -80° 

Thus, the transfer function for the resonators are: 

The transfer matrix at the resonant frequency is then: 
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The state space model of the plant can be written as: 
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Or 

Frequency responses of the local theoretical model are plotted in Figures A.5, 

A.6, A.7 and A.8 for p11, p12, p21, and p22, respectively (see APPENDIX for  

details). 

It is observed that the theoretical curves and the experimental curves are in 

agreement to within 1 dB. 
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2.2.3 Controller Structure 

A digital controller is used in the control of the resonators. Most of the signal 

processing such as amplitude & phase modulation and demodulation, reference sine 

wave generation, lowpass filtering, and control are implemented in software. 

Figure 2.5 Block Diagram of A Digital Controller 

The plant output is received by the controller through the A/D convertors. 

The amplitude & phase angle of the plant output signals are then detected by the 

amplitude k•. phase detectors by means of square law demodulation . A lowpass 

filter is used to filter the high frequency components generated during demodulation 

to obtain the baseband amplitude information which is later subtracted from the 

amplitude de reference to form the error. This error signal is then fed to a. integrator 

that in turn produces the necessary corrective action to achieve asymptotic tracking 

& regulation. This control signal is sent via. the D/A converter to the plant input. 

The block diagram of a. digital controller is shown in Figure 2.5. 

The following sections provide a. description of the various software signal 

processing components: 
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2.2.3.1 Reference Sine wave Generation The reference sine wave is synthesized 

with the frequency fc = 8.36 kHz and equivalent amplitude = 1 volt. 

The sine wave generated by software is obtained by discretizing the continuous 

time transfer function: 

Bilinear transformation is applied to H(s) whereby the continuous variables s 

is replaced by the expression that involves the discrete variable z: 

to translate the H(s) to 11(z). 

To balance the software overhead and controller delay, a sampling frequency of 

27.1 kHz is chosen. This results in the sampling period Ts  being : 

A second-order direct-form H Infinite Impulse Response lattice structure is used 

for the implementation. The difference equations for this structure are : 

d(n) = x(n) and(n — 1) + a12 d(n — 2) (2.89) 

s(n) = β10d(n) + β11d(n-1) + β12d(n - 2) (2.90) 

where, the coefficients obtained using MATLAB routine are tabulated below: 

a11 = —0.0867 
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and s(n) is the sine wave output. 

2.2.3.2 Amplitude & Phase Detector The input signal is assumed to have the 

form : 

v = A sin(ω t + 0) 

The square law demodulation is first applied to the signal v, i.e.: 

or 

which includes the baseband amplitude component 

and the high frequency component 

After filtering the signal using a lowpass filter, the baseband component is obtained. 

The same procedure is applied to phase detection: 

Suppose the two input, signals are A sin ω t and B sin(ωl + 0), multiplication of these 

two signals yields: 
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which involves the baseband phase component 

and the high frequency components 

Again, the baseband phase information can be extracted by means of lowpass filtering 

2.2.3.3 Lowpass Filter Three second-order digital Butterworth filters of identical 

structure are used for the two amplitude and the phase demodulation outputs. The 

cutoff frequency is set to 1256.6 rad/s under the sampling frequency ω3  = 172332 

rad/s . The transfer function of the second order digital Butterworth lowpass filter 

is given by 

The difference equations for this transfer function: 

where, the coefficients are generated by MATLAB as: 

and: 

yp1 tip are the filter input and output of the first resonator amplitude detector. 
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yp2 & y12 are the filter input and output of the second resonator. amplitude detector. 

&

 y13  are the filter input and output for the phase detector. 

dpi  is the filter state. 

2.2.3.4 Integrator Controller & Feedforward Controller The control signal 

consists of a constant feedforward term and a dynamic feedback term. The integrator 

severs as a dynamic feedback controller which has the form: 

It performs the task to stabilize and regulate the output to the desired value, where: 

K1  is the integral gain. 

To realize the integral function in software, the rectangular form 

η(n + 1) = η(n) + e(n) (2.101) 

= (2.102) 

is applied. 

Where e(n ) is the error formed by subtracting the reference from the output of the 

demodulator, ie: 

and the η(n) is the integrator state, ub (n) is the output of the integrator. 

The feedforward controller in this structure is just a constant value computed by 

the procedures given by previous section (2.26),(2.27) and (2.28). Since the transfer 

matrix at the resonant frequency s= jωc is given by: 

or: 
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Then the inverse of the P(j52527.3848), obtained by using MATLAB routine, is: 

Assuming that the reference vector is: 

Then, the feedforward control vector v0 is calculated as: 

Thus 



CHAPTER 3 

EXPERIMENTAL RESULTS 

3.1 Experimental Results 

The experimental setup shown in Figure 3.1 consists of the following components: 

two circular disk resonators, an aluminum base plate between the resonators, an 

interface circuit ( including charge amplifier, filter and voltage amplifier), two A/D, 

D/A convertors (sonitech SAIB) and a DSP system. The host computer is an IBM 

compatible 386 PC. 

The dual resonator system has two inputs and two outputs. The plant and 

controller outputs can be uploaded from the DSP to PC and then ported to the 

Matlab enviroment for display and analysis. The control command can be modified 

interactively and then downloaded into the DSP for execution. All the sequences are 

software controllable. 

3.2 Main Results 

In this work, the controller identification approach [1] has been used in the control 

of resonator's amplitude and relative phase. Feedforward and robust feedback 

control have been implemented[1]. Various experimental conditions such as: single 

loop amplitude control, 2-loop amplitude control, phase angle control, and 2-

loop amplitude & phase control have been tested. Finally, a comparison between 

results obtained with and without feedforward control is made. A decentralized 

control structure is chosen for this control configuration to minimize the controller 

complexity, so that there are no coupling gains between the control agents C1 & C2. 

Refer to Figure 3.2 for a block diagram of the decentralized control structure. 
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Figure 3.1 Block Diagram of Experimental Setup 
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Figure 3.2 Block Diagram of the Decentralized Control Structure 

Several experimental conditions have been chosen: 1) single loop amplitude 

control, 2) 2-loop amplitude control, 3) phase control, and 4) 2-loop amplitude and 

phase control. The respective experimental results are described in the following 

sections. 

3.2.1 Single Loop Amplitude Control 

In this case, only one of the two resonators's amplitude is controlled. The objectives 

are 1) regulation of the resonator's output amplitude to a desired level and 2) fast 

speed of response. 

The configuration of single loop amplitude control system is shown in Figure 

3.3. 

The demodulator is applied to get the amplitude of the plant output signal 

y1 (or 112). The amplitude of the output signal is then compared with the system 

reference variable to form the error. The integrator is employed to eliminate the error. 

Finally, the modulator converts the baseband controller signal to the passband . 
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Figure 3.3 Block Diagram of Single Loop Amplitude Control 

The amplitude command trajectories are shown in Figures 3.4- 3.5, the first 

order as in the first trajectory. The trajectories are automatically synthesized by the 

software. 

The on-line tuning method is applied here: the integral gain K1  is progressively 

increased until an optimal value is obtained. The initial value of K1 was chosen to 

be 0.0025. 

The dosed loop responses are shown in Figures C.1, C.2 (refer to APPENDIX 

C). From figures, it is observed that the gain 0.0025 results in the settling time about 

0.'T second with no overshoot. 

The gain is further increased to 0.025. Figures C.3 & C.4 (see APPENDIX 

C) show that the settling time is now about 0.08 second and the overshoot is about 

2.5%. Here, we define that the the response time is the time that the output signal 

is within ± 2 % of the reference level. 
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Figure 3.4 First Command Trajectory For Single Loop Amplitude Control 

Figure 3.5 Second Command Trajectory For Single Loop Amplitude Control 
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Table 3.1 Experimental Results for Single Loop Amplitude Control 

Increasing the gain to 0.05 results in instability. Therefore, it is concluded that 

K1=0.025 is the "optimal" value for this particular control configuration. 

The experimental results are summarized in Table 3.1 

3.2.2 Two Loop Amplitude Control 

In the 2-loop amplitude control problem, both resonators are under closed loop 

control, with the same performance objectives being imposed. It is to be noted 

that a decentralized control structure has been imposed: there are no coupling gain 

between the two control agents. Furthermore, since the resonator structure is nearly 

identical, the control gains for the two control agents can be chosen to be the same 

to facilitate on-line tuning of the system. 

A block diagram of the two loop amplitude control is shown in Figure 3.6. The 

same controller structure as the single loop amplitude controller has been used here 

again. 
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Figure 3.6 Block Diagram of Two Loop Amplitude Control 



The command trajectory for the channel 1 varies from 0 to 1, 1 to then 1 

while that of the channel 2 varies from 0 to 1, from 1 to and finally to 
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Table 3.2 Experimental Results for Two Loop Amplitude Control 

from I to 

The experimental results for 2-loop amplitude control are summerized in Table 

3.2 and plotted in in Figures C.5 - C.18 (refer to APPENDIX C). Again, the tuning 

gains K1=0.0025, 0.025, and 0.05 have been applied. 

Figures C.5 C.10 show the results with gain K1  set to 0.0025. 

Although results with K1=0.0025 lead to asymptotic tracking and fast response, 

the results with KI = 0.025 behave nearly ideally for tracking the command trajec-

tories: the settling time is only 0.07s, the overshoot is very small (about 2 %) ( see 

Figures C.11 - C.16 in APPENDIX C). 
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Further increasing the gain to 0.05 results in a marginally stable system ( see 

Figures C.17 - C.18). Thus, for the purpose of this experiment, the gain K1=0.025 

is chosen as the "optimal" value. 

3.2.3 Phase Control 

There are several configurations in phase control. First, the phase angle between two 

measured outputs can be regulated. Second, the phase angle between an output and 

a. reference signal can be regulated. Third, the phase angle between the input and 

the output can be regulated. All these are based on the same control methodology. 

For the present experimental setup, the phase angle between two plant outputs is 

regulated. To simplify software coding requirment, the cosine of the phase angle 

(cos θ)  is regulated instead of the phase angle (θ)  itself. Conversion between the two 

can be readily accomodated. The test range of the actual phase angle varies from 0 

degree to 30 degrees. 

Phase compensator is based on a phase shifter with the following equation of 

operation: 

In accordance with the formula 

When θ  is small ( within ± 15°), the approximation 

can be made, resulting in 
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Table 3.3  Experiment Results for Phase Control 

where: 

a = A (3.6) 

b = Aθ (3.7) 

Therefore, by fixing a and varying b, the desired phase change can be effected. 

Again, this is based on the assumption the 0 is small. 

The command trajectories are chosen as follows: first, the phase command is 

switched from 00  to 10°, and held at the 10°, and then switched from 100  to 20°, held 

at 20° 5 second , finally, switched from 20° to 30°. The other trajectory is from 30° 

to 10° in a reversed order. Two sets of tuning gains KP=0.0025, and KP=0.025 are 

tested. The experimental results are shown in Figures C.19 - C.22, respectively. For 

the case the control gain KP  =0.0025, the system settling time is about 0.35 second. 

Further increasing gain from 0.0025 to 0.025 reduces the settling from 0.35 second 

to 0.05 second with less than 2.5 % overshoot. Since the gain KP  = 0.05 leads to 

instability, the "optimal" gain for this phase control configuration will be 0.025. 

The experimental results for phase control are summarized in Table 3.3. 
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3.2.4 Two-Loop Amplitude & Phase Control 

In a 2-loop amplitude & phase control problem, the control objective is to control 

the resonators' output amplitude and their phase angle. Again, the requirments of 

asymptotic regulation and fast speed of response are imposed. All the goals are 

achieved in the experiment. Controller structure remains the same as the one used 

in previous section, so the experiment can be carried out in almost the same way as 

before. The block diagram of 2-loop amplitude & phase control is shown in Figure 

3.7. 

In this experiment, the amplitude is controlled at 1 Volt for both outputs, and 

the phase angle regulated is limited between 0 degree and 15 degree; the cos(θ) is 

still used as phase signal instead of using θ. 

The experimental results are summarized in Table 3.4. 

Figures C.23 & C.29 show the amplitude output after the square law demod-

ulator, but before filtering, and Figures C.24 & C.30 show their baseband components 

after filtering. Figures C.25 - C.28 present the phase angle to be controlled between 

the two outputs with gains K1=0.0025, and KP= -0.0025 and KI  =0 .025 , KP = 

-0.025; where K1  and KP represent the controller gain for amplitude and phase , 

respectively. 

As evident from the figures, when the gain pair are set to be KI  =0.0025 & 

KP = -0.0025, it takes about 3 to 5 second for the system to reach steady state, 

and there is no overshoot or undershoot. So the control gains are raised to 0.025 

and -0.025 to get fast system response. In this case, it takes about 1 second for 

the system to reach steady state. If the gain pair are further increased to 0.05 and 

-0.05, the system becomes unstable. So the gain pair 0.025, -0.025 is chosen as the 

"optimal" gain for this test. 

Several other cases are tested just for further verification ( Figures C.29 - C.32). 

Figures C.31 and C.32 are the results with gain 0.025 and -0.025 but more complex 
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Figure 3.7 Block Diagram of 2-Loop Amplitude & Phase Control 
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Table 3.4 Experimental Results for 2-Loop Amplitude & Phase Control 

command trajectories. It can be seen from these figures that the same performances 

as above are obtained . 

The experiment results are summarized in the Table 4.4. 

3.2.5 Comparison Between With and Without Feedforward Control 

The implementation of feedforward control mainly provides two advantages: 1) 

speed up system response and 2) improve system performance such as reducing the 

overshoot, etc. The constant feedforward term is computed based on (2.26), (2.27) 

and (2.28). Figure 3.8 shows the system with feedforward control while the Figure 

3.9 is the system response without feedforward control. Figure 3.8 presents a much 

fast. response ( about 2 times faster ) than the one without feedforward. 



47 

Figure 3.8 System Response with Feedforward Control 

Figure 3.9 System Response without Feedforward Control 



CHAPTER 4 

SIMULATION RESULTS 

In order to verify the experimental results of the controlled resonator system, 

numerical simulations have also been carried out using the ALSIM software. The 

plant model described in equation (2.58), (2.59), (2.60) and (2.61), together with 

the controller equations are simulated for various command trajectories and control 

gains. Since the number of experimental cases is large, only yhe major ones are 

presented here to be compared with the corresponding experimental results. The 

following cases are simulated: 1) single loop amplitude control with gain K1  = 

0.0025, and KI  = 0.025, 2) 2-loop amplitude control with gain K1  = 0.0025, and K1  

= 0.025. 

4.1 Simulation for Single Loop Amplitude Control with gain K1  = 
0.0025 and K1  = 0.025 

The model for a single loop resonator can be written as: 

Since the two resonators have nearly identical characteristics, any one of the two can 

be selected for simulation. 

The first resonator is given by equation(2.58) as: 

The corresponding state-space model of the plant and the control is given as: 
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where: x1(t) and x2(t) are the plant states, x3(t) is the lowpass filter output which 

represents the amplitude information of the plant, e(t) is the error between the 

reference and the signal amplitude, x5(t) is the integrator output and u(t) is the 

controller output. The controller used here is the continuous time but nevertheless 

has the same essential structure as the discretized version used in the experiment. 

The plant output y(t) is first squared and, then the lowpass filter with cutoff 

frequency w f  = 1256.63 rad/s is applied the get the amplitude of the signal. 

Finally. the integrator is used to regulate the amplitude to the desired reference. 

The simulation results and the corresponding experimental results are presented 

in Figure D.1 through Figure D.8 (refer to APPENDIX D). Figures D.1, D.2 are 

the results with gain 0.0025 for the first command trajectories (refer to Figure 3.4) 

and Figures D.3, D.4 are the simulation results and experimental results with gain 

0.0025 for the second command trajectories ( refer to Figure 3.5). Figures D.5 - D.8 

are the results using gain 0.025. 

From these figures, it can be seen that both the simulation results and experi-

mental results show about 0.35 second settling time with no overshoot for the case of 

gain K./  = 0.0025. In the case of gain KI = 0.025, the settling time for both results 

are about 0.07 second with no overshoot. Therefore it is concluded that simulation 

results match the experimental results well in single loop amplitude control. 
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4.2 Simulation for Two Loop Amplitude Control with gain K1  = 
0.0025 and K1  = 0.025 

The math model for the two loop resonator system is given in equations(2.58), (2.59), 

(2.60), and (2.61). The corresponding state-space model of the closed loop system is 

given by: 
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where: x1 (1), 12(1) , x8(t) and x9(t) are the corresponding state variables of the p11 , 

P12, P21 and p22. x5(1) .v7(t) and u1(t) are, respectively, the demodulator output, 

the integrator output, and the controller output for the first control agent. Similarly, 

11 2(0 , .r1 4(1) and u2(t) are, respectively, the demodulator output, the integrator 

output, and the controller output for the second control agent. 

Again, the respective experimental results in Chapter 3 are reproduced here 

along with the simulation results for comparison. It is observed from Figures D.9-

D.16 all the cases with gain K1  = 0.0025 present a 0.35 second settling time and 

a small overshoot/undershoot. Comparing with the experimental results, the same 

settling time is observed except that there exist a slight discrepancy between the 

direction of overshoot. Similarly, Figures D.17 -D.20 show the close agreement 

between simulation results and experimental results in all case, the settling time 

is about 0.075 second. 

4.3 Discussion 

Through comparing the simulation results with experimental results, it is observed 

that the simulated closed loop performance is in good agreement with that observed 

experimentally. The slight discrepancies in overshoot/undershoot are mainly due to 

unmodelled dynamics and the intrinsic nonlinearity in the actual PZT devices. It is 

therefore concluded that the mathematical models obtained by experimental method 

in this work provide good description of the resonator dynamics. 



CHAPTER 5 

CONCLUSIONS 

In thesis, the problem of real-time control of a dual, interconnected resonator 

system is considered. The experimental apparatus consists of a pair of PZT disks, 

an aluminum base plate , and the necessary digital control hardware (A/D, D/A 

TMS320C30 Digital Signal Processor, and electronic circuits). The objective is to 

regulate the gain/phase characteristics of the two PZT disk at a resonant frequency 

of 8.36 kHz. 

A number of preliminary testings have been carried out to verify the linearity 

and wideband frequency response characteristics. Local modelling around the 8.36 

kHz resonance is then carried. The mathematical models are used for simulation 

purpose. 

Experimentally, a number of test configurations have been selected: single loop 

amplitude control, 2-loop amplitude control, phase control, and 2-loop amplitude 

& phase control. The controller structure and synthesis method are based on the 

theoretical results described in [1]. From the experimental results, it is found that a 

decentralized controller combined with the on-line tuning method yields satisfactory 

closed loop response with minimum controller complexity. 

Simulation results further confirm the validity of the approach as well as the 

structure of the experimental, real-time controller. 

The future work can be suggested : 1) control of more complex and more 

compact resonator structure such as the resonator configured as sandwich form; 2) 

control the system with more input and output, say in the pattern, there can be 

seven inputs and seven outputs and 3) further improve interface between the plant 

and the controller which includes the hardware and software. Finally, 4) expend 

amplitude L phase control to more flexible values to fit the requirements of realistic 

applications. 
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APPENDIX A 

FREQUENCY RESPONSE OF RESONATORS WITH CENTRAL 
FREQUENCY 8.36 kHZ, BY EXPERIMENTAL AND THEORETICAL 

METHOD 

A.1 Frequency Response of Resonators with Central Frequency 8.36 
kHz by Experimental Method 

In this section, the results of the frequency response of the resonators with central 

frequency equals 8.36 kHz obtained by experimental method are presented. 
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Figure A.1: Frequency Response of Resonator Device with Central Frequency fc  
=8.36 kHz p11  

Figure A.2: Frequency Response of Resonator Device with Central Frequency fc  
=8.36 kHz p12  
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Figure A.3: Frequency Response of Resonator Device with Central Frequency fc  
=8.36kHz p21  

Figure A.4: Frequency Response of Resonator Device with Central Frequency fc  
=8.36 kHz p22  
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A.2 Frequency Response of Resonators with Central Frequency 8.36 
kHz by Theoretical Method 

In this section, the results of the frequency response of the resonators for central 

frequency equals 8.36 kHz obtained by theoretical method, model matrix, are 

presented. 
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Figure A.5: Frequency Response of Resonator Device with Central Frequency fc  
=8.36 kHz p11, (theoretically) 
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Figure A.6: Frequency Response of Resonator Device with Central Frequency fc  

=8.36kHz P12 , (theoretically) 
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Figure A.7: Frequency Response of Resonator Device with Central Frequency fc  
=8.36 kHz P21, (theoretically) 



60 

Figure A.8: Frequency Response of Resonator Device with Central Frequency fc  
=8.36 kHz P22, (theoretically) 



APPENDIX B 

DESCRIPTION OF HARDWARE AND SOFTWARE 

B.1 Resonators 

Dimension of Disk : diameter = 1 in, thickness = 0.05in 

Material : LZT-2 

Dimension of Plate : 4 in ×  4 in ×  0.1 in 

Material : Aluminum 

B.2 HARDWARE DESCRIPTION 

B.2.1 SPIRIT-30 SYSTEM 

B.2.1.1 System Overview The SPIRIT-30 system offers 33.3 MFLOPS (million 

floating-point operations per second) and 16.7 MIPS (million instructions per 

second) of performance for PC AT/386 and 100 % compatible computers and is 

embraced by a. complete application development environment. The SPIRIT-30 

board, along with comprehensive development software (SPIRIT-EDSP) and DSP 

program library (DSPL) is well suited for embedded applications for image analysis, 

graphics. numerical computation, control systems, telecommunications and other 

high performance applications. 

The heart of the SPIRIT-30 system is the Texas Instrument's TMS320C30 Digital 

Signal Processor (DSP) with 60 ns instruction cycle time, 2Kx32 words of internal 

RAM, single cycle floating-point multiply/a.ccumulate and an on chip DMA 

controller. 

A spirit-30 functional block diagram is given in Figure B.1. 
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B.2.1.2 System Features The SPIRIT-30 system has the following features: 

• Texas Instrument's high performance floating-point Digital Signal Processing 

chip (TMS320C30) 

• Single slot. IBM AT/386 direct plug-in solution 

• All communication with the SPIRIT-30 are 16 bits 

• Up to 610 Kbytes of dual access RAM for 0 wait state 

• Capability to expend entire memory range, up to 64 Mbytes 

• Very versatile communication between the host PC and the SPIRIT-30 

• Two schemes of data transfer between the host and SPIRIT-30 , namely DMA 

and program transfer 

B.2.1.3 Processor The processor used for application acceleration is the TMS320C30 

Digital Signal Processor. This processor offers the following features: 

• 60-ns single-cycle instruction execution time 

• One x 32-bit -cycle dual access on chip ROM block 

• Two 1K x 32-bit single cycle dual-access on chip RAM block 

• 64 x 32-bit instruction cache 

• Up to 16M x 32-bit of addressable memory space 

• 10/32-bit floating point/integer multiply and ALU 

• :32 bits barrel shifer 

• on chip Direct. Memory Access (DMA) controller for concurrent I/O and CPU 

operation 
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• Parallel multiply and ALU instructions in single cycle 

• Zero overhead loops with single cycle branches 

• Two serial ports to support 8/16/32 bits transfers 

• Two 32 bits timers 

B.2.1.4 Communication between Host and the SPIRIT-30 There are 

several means of communication between the host and SPIRIT-30 

• Interrupt from the SPIRIT-30 to the host 

The SPIRIT-30 can interrupt the host via the TCLKO pin of the DSP. 

• Interrupt from the host to the SPIRIT-30 

The host can interrupt the SPIRIT-30 via the control register. One of the 

control register i connected to the INTO* line of the DSP. A library routine 

called pc _dsp _ int() can be used to perform this function. 

• Status Register read by the host of the SPIRIT-30 flags 

• Status read by the DSP of the INTO* line 

The DSP has a register in which all interrupts are latched irrespective of 

whether, they are enabled or not. Thus, a programmer can disable INTO*, but 

can still determine whether an interrupt happened from the host by polling the 

stat us of the INTO* bit in the interrupt flag (IF) register of the DSP. 

B.3 Stereo Audio Interface Box (SAIB) 

B.3.1 General Description 

The SAIB provides the user with high quality, low cost stereo A/D and D/A 

capability. The SAIB features are as following: 
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• Low cost dual-channel stereo audio interface 

• 16-bit resolution and 80 dB dynamic range 

• Programmable sampling rates and gain 

• Built-in input anti-aliasing filters and output low-pass smoothing filters 

• Versatile line, microphone, handset, headphone, and speaker connections 

• Standard ASM-S serial interface 

The SAIB resides externally to the host machine and connects serially to the SPIRIT-

:30 Digital Signal Processor (DSP) board. The incoming signal can be looped back 

to the output while the host or the DSP is processing or streaming the data. 

B.3.2 SAIB Modes of Operation 

The SAIB has two modes of operation, Data-Mode, and Control-Mode. Control-

Mode is used for software configuration of bit fields that remain static for the 

duration of an acquisition, such as the data formatted the conversion clock frequency. 

The SAIB operates in Data-Mode when performing conversions. In either mode of 

operation. two 32-bit words must he send to (and received from) the SAIB via the 

C30 serial port for each SAIB conversion cycle (The SAIB requires, and provides, 64 

bits per stereo sample). The function of the nits in serial data stream is different in 

each of t he two modes. 

Figure 13.2 is the SAIB Block Diagram. 

B.3.3 SAIB Hardware Specifications 

B.3.3.1 Analog Input and Output Channels : 2 channels A/D and 2 

channels D/A: AC Coupled; fc 4Hz 

Signal Coding : 16-bit linear, 8-bit it-law coding 

Sampling rates : Group 1: 8,9.6,16,27.42857,32,48 kHz (software selectable); 
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Figure B.2 SAIB Block Diagram 

Group 2; 5.5125,6.615,11.025,18.9,22.05,33.075,37.8,44.1 kHz 

(software selectable) 

1. Analog Input 

Dynamic range: Line 80 dB; All others 72 dB 

S/(N+D): Linear 74 dB; All others 66 dB 

Inter-channel isolation: Line 80 dB; Mic 60 dB 

Full scale input: Line 2.8 Vpp; Mic .29 Vpp 

Gain: Software programmable for line inputs .2 to 22.7 dB; Mic inputs 19.8 

to 42.7 dB 

Filtering: Passband 0 — .45 fs + .1 dB; Stopband > .55 fs >74 dB 

Inputs: Line level, Microphone ,etc. 
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2. Analog Output 

Dynamic range: 80 dB 

S/(N+D): Linear 74 dB; All others 60 dB 

Inter-channel isolation: Line 78 dB; Mic 40 dB 

Differential non-linearity: +/-.9 LSB 

Output Voltage: Line & headphone 2.8 Vpp; 

Attenuation: Software programmable from -.2 to -94.7 dB 

Rated output impedance: Line 10 kOhm 

Filtering: Passband 0 - .45 fs + .1 dB; Stopband > .55 fs >74 dB 

Outputs: Line level, Microphone ,etc. 

LED indicators: Red off-hook; Yellow handset sect; Green ring detect 

B.4 SOFTWARE DESCRIPTION 

B.4.1 SAIB Programming Steps  

The SAIB is a data-streaming device which interface to the Sonitech SPIRIT-30 

digital signal processor via one of its two TMS320C30 serial ports. All features of 

the SAIB are software controlled thru commands embedded in the data-stream. The 

SAIB has two 16 bits analog I/O channels, and therefore, produces (or expects) 32 

bit audio data words. In order to include the additional flexibility allowed by the 

software programmable controls, an additional 32 bits control word must be sent 

along with each audio data word. This combination of data and control forms a 

Word-Pair, one of which is required to be sent for each conversion cycle. What 

follows is a sequence of steps required to take the SAIB from a reset state, to an 

operating one. 

The SAIB is hardware-reset during power-up and begins operating in Data-Mode. 

Until the SPIRIT-30's serial-port is configured, and code has been downloaded, the 

SAIB cycles in-and-out of its reset state. A disabled serial-port, or a dis-connected 
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serial-port cable will appear to the SAIB as Data(DMD-Word) and Control(CMC-

Word) words with all bits set (1), and is interpreted by the SAIB as a Soft-RESET 

command. The following is the programming steps: 

1. Configure the TMS320C30 serial-port: 

The SAIB requires that the serial-port be configured for: 

• Fixed Continuous Mode With Frame Sync 

• 32 bit receive and transmit word length 

• FSR/FSX active-high polarity 

• DR/DX active-high polarity 

• CLKR/CLKX active-high polarity 

• CLKR/CLKX externally generated 

• FSX externally generated 

2. Transition SAIB to Control-Mode operation 

• Write a DMD-Word of 0x00000000 (Null data) to the serial-port data 

transmit register. 

• Write a DMC-Word of 0x3f3fc0f0 to the serial-port data transmit register. 

• At the end of the present DMC-Word transmission, the SAIB will enter 

Control-Mode. The SAIB expects the next word-pair to be a CMC0-

Word/CMC1-Word pair. 

• Set-up the Control-Mode control data 

• Repeatedly send the CMC0/CMC1-Word pair to the serial data-transmit 

register with the DCB bit clear(DCB = 0) 

• Read back and verify the control information from the SAIB until the 

DCB bit clears ( DCB = 0) 
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3. Transit ion SAIB to Data-Mode operation 

• Send the CMC0/CMC1-Word-pair to the serial-port data-transmit 

register with the DCB hit set (DCB=1). (This enables the CMC0/CMC1 

control information into the SAIB's internal control registers). 

• Send the CMC0/CMC1-Word-pair to the serial-port data-transmit 

register with the DCB bit set (DCB = 1) AND the D/C* bit set 

(D/C* = 1).( This latches the CMC0/CMC1 control information into the 

SAIB's internal control registers and transitions the SAIB into Data-Mode 

operation). 

• At the end of present CMC1-Word transmission, the SAIB will enter Data-

Mode. The SAIB expects the next word-pair to be a DMD-Word/DMC-

Word Pair. 

4. Calibrate the SAIB 

• The SAIB performs an internal offset-calibration cycle each time it exits 

from Control-Mode. 256 conversion cycles of Null Data required to 

perform the calibration. 

• Write a DMD-Word of 0x00000000 (Null Data) to the serial-port data 

transmit register. 

• Write a DMC-Word of 0x7F7FD0F0 to the serial-port data-transmit 

register. 

• Send the DMD/DMC-Word pair to the serial-port data-transmit register 

255 times. 

5. Begin SAIB Data-Mode operation 

After calibration, the SAIB begins normal Data-Mode operation. 

Because SAIB control information is contained in the serial data-stream, the 
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SAIB requires a properly sequenced DMD/DMC word-pair sent to it for each 

conversion cycle, regardless of whether A/D, D/A, or A/D and D/A conversions 

are desired. 

6. During the Data-Mode operation, execute the REAL-TIME CONTROL 

MODE 

After end the calibration, the program enter the real-time control mode. 

• Receive Data from serial-port, and transfer to the floating point number. 

• Modulator to get the amplitude and phase angle of the input signal. 

• Compare to the reference to form an error. 

• Integrator and feedforward controller. 

• Demodulator to form output. 

• Transfer data back to unsigned long integer and output. 

• Send data to the file for Matlab processing. 
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B.4.2 Program Flowchart and Program List 

In this sect ion, programming flowchart and programs are listed. Program 1, Host 

program, is the host computer, PC, program which control the DSP program and 

data transfer. Program 2 is the DSP program which performances the tasks included 

initialize SAIB and serial-port, loop back data information and execute real-time 

control. Program 3 is used for transfering data from DSP to Matlab for processing 

and analysing. Program 4 is the ALSIM program. 
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Figure B.3 Programming Flowchart-1 



Figure B.4  Programming Flowchart-2 
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Figure B.5 Programming Flowchart-3 
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Program 1 Controlh.c in Host PC 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <dos.h> 
#include <conio.h> 

#include <menus.h> 
#include <bit_defn.h> 
#include <display.h> 
#include <s30tools.h> 

#define BUFFER_SIZE 4096 /* *** */ 

unsigned long buffer0[BUFFER_SIZE]; /* Buffer 0 */ 
unsigned long buffer1[BUFFER_SIZE]; /* Buffer 1 */ 

unsigned int port_num = 0; /* Serial port number (0/1) */ 
unsigned int rx_cmcl = 0; 1* *** *1 

int dsp_exe_dl_status; 1* */ 

unsigned int base_address; /* */ 

int j,k,l,i; /* Miscellaneous integers */ 
int m = 0; /* First-iteration flag */ 
int n = 0; /* character counter */ 

/* File Operations Variables */ 

FILE *record1_file; /* File to accept record-data */ 
FILE *record2_file; /* File to source playback-data */ 
int write1_ret = 0; /* */ 

int write2_ret = 0; /* */ 

char ch = '0; /* */ 

char s[3]; /* */ 

int y11_ref = 0; /* Define Some Control Variables */ 
int y12_ref = 0; 
int kil = 0; 
int ki2 = 0; 

float k1 = 0.; 
float k2 = 0.; 
float y1_ref = 0.; 
float y2 ref = 0.; 
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/* Semaphores and Flags */ 

unsigned int start = 1; /* semaphore: Host starts dsp */ 
unsigned int stop = 1; /* semaphore: Host stops dsp */ 

unsigned int dmcflag = 1; /* flag: *** */ 
unsigned int buf0_full = 0; /* flag: buffer 0 full */ 
unsigned int buf1_full = 0; /* flag: buffer 1 full */ 
unsigned int init_complete = 0; /* flag: 1 => init. complete */ 

/* Register Copies */ 

unsigned long newdmc = 0; /* *** */ 
unsigned long dmc = 0; /* *** */ 
unsigned long cmc0 = 0; /* *** */ 

unsigned long cmc1 = 0;                            /* *** */ 

long unsigned buffer0_addr = 0; /* Buffer 0 */ 
long unsigned bufferl_addr = 0; /* Buffer 1 */ 

long unsigned port_num_addr = 0; /* Serial port number (0/1) */ 
long unsigned rx_cmcl_addr = 0; /* SAIB chip number */ 

long unsigned start_addr = 0; /* semaphore: Host says start */ 
long unsigned stop_addr = 0; /* semaphore: Hots says stop */ 

long unsigned init_complete_addr = 0; /* flag: initialization complete */ 
long unsigned buf0_full_addr = 0; /* flag: 1 => Buffer 0 full */ 
long unsigned buf1_full_addr = 0; /* flag: 1 => Buffer 1 full */ 
long unsigned dmcflag_addr = 0; /* flag: 1 => *** */ 

long unsigned dmc_addr = 0; /* DMC */ 
long unsigned newdmc_addr = 0; /* *** */ 

long unsigned cmc0_addr = 0; /* */ 

long unsigned cmc1_addr = 0; /* */ 

long unsigned kil_addr = 0; 
long unsigned ki2_addr = 0; 
long unsigned y11 ref addr = 0; 
long unsigned y12_ref_addr = 0; 
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Program 2 Control.c in DSP 
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Program 3 Read.c in PC - This program is used to transfer data 
from DSP to Matlab. 
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4. Simulation Program and Data File  
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Simulation Program Cont'  
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Simulation Program Cont'  
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Simulation Program Cont'  



APPENDIX C 

EXPERIMENTAL RESULTS - FIGURES 

The experimental results for four different cases with gains equal 0.0025 and 0.025 are 

presented here for references, The four cases are 1) single loop amplitude control, 2) 

2-loop amplitude control, 3) phase control and 4) 2-loop amplitude & phase control, 

respectively. 
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C.1 RESULTS FOR SINGLE LOOP AMPLITUDE CONTROL 

Four figures are presented here for two different command trajectories with control 

gains K1  = 0.0025, and 0.025.  
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Figure C.1  Single Loop Amplitude Control for First Trajectory,K1  =0.0025 

Figure C.2 Single Loop Amplitude Control for Second Trajectory, K1=0,0025 
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Figure C.3  Single Loop Amplitude Control for First Trajectory, K1=0.025 

Figure C.4  Single Loop Amplitude Control for Second Trajectory, K1=0.025 
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C.2 RESULTS FOR TWO LOOP AMPLITUDE CONTROL 

Following figures are the results of 2-loop amplitude control with control gain(s) KI  

equals 0.0025, 0.025, and 0.05 respectively, where figures with 

KI 

 = 0.025 are the 

"optimal" cases in this configuration, figures with gain(s) equals 0.05 are the unstable 

results. Two different command trajectories are used in this configuration. 
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Figure C.5  2-Loop Amplitude Control for First Trajectory (1) with KI  = 0.0025 

Figure C.6  2-Loop Amplitude Control for First Trajectory, Controller output 
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Figure C.7  2-Loop Amplitude Control for First Trajectory (2) with KI  = 0.0025 

Figure C.8  2-Loop Amplitude Control for First Trajectory, Controller output 
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Figure C.9: 2-Loop Amplitude Control for Second Trajectory (1) with KI  = 0.0025 

Figure C.10: 2-Loop Amplitude Control for Second Trajectory (2) with KI  = 
0.0025 
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Figure C.11  2-Loop Amplitude Control for First Trajectory (1) with KI = 0.025 

Figure C.12  2-Loop Amplitude Control for First Trajectory, Controller output 
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Figure C.13 2-Loop Amplitude Control for First Trajectory (2) with KI  = 0.025 

Figure C.14 2-Loop Amplitude Control for First Trajectory, Controller output 
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Figure C.15: 2-Loop Amplitude Control for Second Trajectory (1) with KI  = 0.025 

Figure C.16: 2-Loop Amplitude Control for Second Trajectory (2) with KI  = 0.025 
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Figure C.17: 2-Loop Amplitude Control, Plant Output for the First Trajectory, 
KI  = 0.05 

Figure C.18: 2-Loop Amplitude Control, Plant Output for the Second Trajectory 
K I  = 0.05 
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C.3 RESULTS FOR PHASE CONTROL 

Four figures are shown in this section with control gain equals 0.0025 and 0.025. Two 

command trajectories are used for this experiment. The figures with gain equals 0.025 

are the "optimal" cases for the phase control.  
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Figure C.19  Phase Control for First Trajectory with Gain K p  = 0.0025 

Figure C.20  Phase Control for Second Trajectory with Gain Kp  = 0.0025 
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Figure C.21  Phase Control for First Trajectory with Gain K p  = 0.025 

Figure C.22  Phase Control for Second Trajectory with Gain K p  = 0.025 
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C.4 RESULTS FOR TWO LOOP AMPLITUDE & PHASE 
CONTROL 

Results for 2-loop amplitude & phase control are presented in this section. The figures 

with gain pair equal 0.025 and -0.025 are the "optimal" cases for this configuration. 
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Figure C.23: 2-Loop Amplitude & Phase Control, Amplitude Output before 
Filtering 

Figure C.24: 2-Loop Amplitude & Phase Control, Amplitude Output after Filtering 
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Figure C.25: 2-loop Amplitude & Phase Control, Phase Angle Between Two 
Outputs,with KI =0.0025, KP=-0.0025 

Figure C.26: 2-Loop Amplitude & Phase Control, Phase Angle Between Two 
Outputs,with K I =0.0025, KP=-0.0025 
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Figure C.27: 2-Loop Amplitude & Phase Control, Phase Angle Between Two 
Outputs,with KI=0.025, KP=-0.025 

Figure C.28: 2-Loop Amplitude & Phase Control, Phase Angle Between Two 
Outputs,with KI  =0.025, KP=-0.025 
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Figure C.29: 2-Loop Amplitude & Phase Control, Amplitude Output before 
Filtering 

Figure C.30: 2-Loop Amplitude & Phase control, Amplitude Output after Filtering 
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Figure C.31: 2-Loop Amplitude & Phase Control. Phase Angle Between Two 
Outputs with KI =0.025 & KP =-0.025 

Figure C.32: 2-Loop Amplitude & Phase Control. Phase Angle Between Two 
Outputs with KI=0.025 & KP=-0.025 



APPENDIX D 

SIMULATION RESULTS AND CORRESPONDING 
EXPERIMENTAL RESULTS - FIGURES 

The simulation results for 1) single loop amplitude control, and 2) 2-loop amplitude 

control, with two different gain(s) and corresponding results obtained by experi-

mental mathod are presented in following sections. 
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D.1 RESULRTS FOR SINGLE LOOP AMPLITUDE CONTROL 

In this section, simulation results for single loop amplitude control with two different 

gains are shown along with the corresponding experimental results using same 

gain(s). 
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Figure D.1: Simulation for the Single Loop Amplitude Control with Cain KI  = 
0.0025 (case 1) 

Figure D.2: Experimental Result for the Single Loop Amplitude Control with Gain 
KI  = 0.0025 (case 1) 
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Figure D.3: Simulation for the Single Loop Amplitude Control with Gain KI  = 
0.0025 (case 2) 

Figure D.4: Experimental Result for the Single Loop Amplitude Control with Gain 
KI  = 0.0025 (case 2) 
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Figure D.5: Simulation for the Single Loop Amplitude Control with Gain KI  = 
0.025 (case 1) 

Figure D.6: Experimental Result for the Single Loop Amplitude Control with Gain 
KI  = 0.025 (case 1) 
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Figure D.7: Simulation for the Single Loop Amplitude Control with Gain KI  = 
0.025 (case 2) 

Figure D.8: Experimental Results for the Single Loop Amplitude Control with 
Gain K I  = 0.025 (case 2) 
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D.2 RESULTS FOR TWO LOOP AMPLITUDE CONTROL 

In this section, simulation results for two loop amplitude control with two different 

gains are shown along with the corresponding experimental results using same 

gain(s). 



Figure D.9: Simulation for the 2-Loop Amplitude Control with Gain KI  = 0.0025 
(case 1) 

Figure D.10: Experimental Result for the 2-Loop Amplitude Control with Gain 
KI  =  0.0025 (case 1) 
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Figure D.11: Simulation for the 2-Loop Amplitude Control with Gain KI  = 0.0025 
(case 2) 

Figure D.12: Experimental Result for the 2-Loop Amplitude Control with Gain 
KI = 0.0025 (case 2) 
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Figure D.13: Simulation for the 2-Loop Amplitude Control with Gain KI  = 0.0025 
(case 3) 

Figure D.14: Experimental Result for the 2-Loop Amplitude Control with Gain 

KI 

 = 0.0025 (case 3) 
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Figure D.15: Simulation for the 2-Loop Amplitude Control with Gain KI  = 0.0025 
(case 4) 

Figure D.16: Experimental Results for the 2-Loop Amplitude Control with Gain 
KI = 0.0025 (case 4) 



Figure D.17: Simulation for the 2-Loop Amplitude Control with Gain KI  = 0.025 
(case 1) 

Figure D.18: Experimental Results for the 2-Loop Amplitude Control with Gain 

KI 

 =  0.025 (case 1) 
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Figure D.19: Simulation for the 2-Loop Amplitude Control with Gain KI  = 0.025 
(case 2) 

Figure D.20: Experimental Results for the 2- Loop Amplitude Control with Gain 

KI 

 = 0.025 (case 2) 
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