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ABSTRACT 

Multilevel Embeddings 

for 

Massively - Parallel Hypercubes 

by 

Devenkumar P. Shah 

Hierarchically structured arrays of processors have widely been used in the low and inter-

mediate phases of image processing and computer vision. Since the pyramid structure eff-

iciently supports local and global operations extensively required by these phases, it has 

been widely used for relevant algorithms. Multilevel systems keep all the advantages of 

the pyramid structure while providing a general hierarchical structure that is easier to be 

used for the development of several algorithms and may also provide higher performance. 

Although the cost of pyramid machines may be tremendously high, they have lim-

ited applications. In contrast, the hypercube network is widely used in the field of parallel 

processing because of its small diameter and its rich interconnection structure. Several 

algorithms have been developed that embed pyramids into the hypercube. This thesis 

extends and also implements three pyramid embedding algorithms in order to embed mul-

tilevel structures into the hypercube. These embedding algorithms are evaluated for the 

Connection Machine system CM-2 that comprises a 10-dimensional hypercube. The 

results for multilevel structures are compared with those for the pyramid; three image pr-

ocessing algorithms are used for this purpose. The results prove that the embedding of 

multilevel structures, other than the pyramid, yields better performance in most of the 

cases. 

This thesis also studies the implementation of stochastic pyramids on the hyper-

cube. The structure of stochastic pyramids adapt to the contents of the image. Therefore 

artifacts present in the regular pyramid due to its rigid structure are alleviated. Connection 

Machine results are produced for the problem of connected component extraction using 

stochastic pyramids. 
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CHAPTER 1 

INTRODUCTION 

1.1 Parallel Techniques for Image Processing 

Image processing and computer vision algorithms employ techniques from several other 

areas, such as signal processing, graph theory, advanced mathematics, and artificial intelli-

gence. These algorithms require tremendous computational power. The cost of performing 

these algorithms sequentially can be very high. 

Parallel processing is widely used to providing the necessary computational power 

because the inherent parallelism in most of the image processing algorithms can be 

exploited in order to process the image data in real time. The data domain of image pro-

cessing algorithms can often be partitioned into blocks that can be operated upon in paral-

lel. Time spent in data exchanges between related computations should be minimized 

through the communication facilities of the target parallel architecture. 

1.2 Multilevel Structures 

The pyramid is a special case of a multilevel structure. A multilevel system is composed 

of successive layers of mesh-connected two-dimensional arrays where the size of the 

arrays decreases with the increase in the level number (assume that the base is level 0). 

The reductions between pairs of neighboring layers are 2m  x 2m, where m is a natural 

number. Each node at any level, except for nodes in the base, is directly connected to 2m  x 

2m  children located at the immediately lower level. Multilevel structures are not necessar-

ily single rooted [1]. The pyramids are special case of multilevel structures with a single 

root and m equal to 1. 

Like the pyramid, multilevel structures also efficiently implement local and global 
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operations. This makes them equally capable for the low and intermediate phases of image 

processing and computer vision. Two reasons make multilevel structures very attractive 

[1]. The development of algorithms is very often easier for multilevel structures other than 

the pyramid. In addition, higher performance is often obtained by embedding a general 

multilevel structure into the hupercube [12]. 

1.3 Motivations and Objectives 

The hypercube topology has a small diameter and a rich interconnection structure that pro-

vides efficient communication and a high degree of fault tolerance. It can very efficiently 

emulate a wide variety of other frequently used topologies such as the mesh, the binary 

tree and the pyramid. As a consequence, hypercube machines have become commercially 

available (e.g., Intel iSPC, nCUBE, Connection Machine system CM-2 ). 

Although multilevel structures are appropriate for the low and the intermediate 

phases of computer vision, this topology may not be a good choice for the implementation 

of parallel computers because of its high cost and limited functionality (i.e. special pur-

pose topology). In contrast, the hypercube is considered to be a "general purpose" topol-

ogy. Therefore, it becomes imperative to develop techniques for mapping multilevel 

structures onto the hypercube. All the algorithms developed so far that map the pyramid 

structure onto the hypercube can be easily extended to map the multilevel structures. It is 

important to show that higher performance can often be obtained by mapping multilevel 

structures, other than the pyramid, onto the hypercube. 

The major objective of this research is to expand three important pyramid mapping 

algorithms to make them appropriate for general multilevel structures. The evaluation of 

the performance for specific image processing application algorithms designed for multi-

level architechtures, such as finding the perimeter of objects, segmentation of images, and 

convolution, can show that the pyramid is not necessarily the most efficient source archi-

tecture when compared to general multilevel structures. We present results for a Connec-

tion Machine system CM-2 with 16,384 processors that comprises a 10-dimensional 
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hypercube . 

A major limitation of pyramids is the rigidity of their structure that gives rise to 

artifacts when used for tasks such as analysis of line drawings, object-background dis-

crimination or compact object extraction. An approach to compensating for the artifacts of 

the pyramid structure is to adapt this structure to the contents of the input image. Stochas-

tic pyramids are built with this in mind using a local stochastic decimation process that 

builds the multiple resolution representations [5]. Also, evolution of the local connections 

within the hierarchy driven by the image data and the stochastic process might serve as a 

model for early visual perception. This thesis also studies implementation of these sto-

chastic pyramids on the hypercube. The connected component analysis of binary labeled 

images is done by developing stochastic pyramids on the Connection Machine. 

1.4 Thesis Outline 

This thesis is organized as follows. Chapter 2 describes the hypercube topology, tech-

niques for embedding various topologies into the hypercube and the important features of 

the Connection Machine system CM-2. Chapter 3 presents algorithms for mapping multi-

level structures onto the hypercube and introduces measures used for performance analy-

sis. Chapter 4 presents our results and also includes a comparative analysis of the mapping 

algorithms for the Connection Machine. Chapter 5 discusses the implementation of sto-

chastic pyramids on the Connection Machine. Finally Chapter 6 presents our conclusions. 



CHAPTER 2 

THE HYPERCUBE 

The hypercube interconnection topology is general enough to be useful on a rich variety of 

problems, yet practical enough that a real concurrent processor system can be built with 

the topology. Most of the other topologies like the rings, linear arrays, tori, binary trees, 

and pyramids can easily be mapped onto the hypercube. So, applications designed for the 

latter topologies can easily be run by simulating the respective topology on the hypercube. 

In the hypercube network, the number of communication channels per node is in logarith-

mic order of the number of processors and so remains within practical limits. The maxi-

mum distance between nodes (i.e., the diameter) also varies logarithmically with the 

number of nodes. Thus, the hypercube provides a good balance between the number of 

channels per node and the maximum distance between nodes. 

Hypercube computers are loosely coupled parallel processing systems based on 

the binary d-cube network. The Connection Machine system, used to derive results in this 

thesis, has been one of the most popular hypercube systems and is manufactured by 

Thinking Machines Corporation. It operates in the SIMD (Single-Instruction Stream Mul-

tiple- Data Stream) mode of computation. 

2.1 Topology 

The d-dimensional (binary) hypercube (Hd) or d-cube has 2d  nodes, each of which is con-

nected to one other node in each dimension. Thus, the required number of channels per 

node is d. Each node has a unique d-bit binary address. The ith  bit of the address represents 

the coordinate of the node in the ith  dimension. All neighboring nodes connected by a 

communication channel differ by a single bit in their addresses. The number of bits that 

differ between the addresses of two nodes gives the distance between the two nodes. The 

hypercube can be partitioned into smaller dimensional hypercubes and the d-dimensional 
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hypercube can be constructed recursively from lower dimensional subcubes. For example 

two (d-1)-dimensional hypercubes can be combined to form a d-dimensional hypercube 

by joining the corresponding vertices of two subcubes by 2d-1  links. 

In a hypercube computer, processing elements (PEs) are placed at each vertex of 

the hypercube and the edges of the hypercube represent communication links between the 

PEs. Each PE has its own local memory. In SIMD mode, this memory contains only data 

whereas in MIMD (Multiple-Instruction Stream Multiple-Data Stream) mode, it contains 

data as well as instructions. 

2.2 Mappings for Hypercube Systems 

Most of the popular parallel processing architectures such as rings, linear arrays, meshes, 

tori, binary trees and pyramids can easily be mapped onto the hypercube. Such mappings 

are important because algorithms developed for other special purpose topologies can eas-

ily be run on hypercube systems by mapping such topologies onto the hypercube. 

2.2.1 Mapping Rings onto the Hypercube 

Consider a ring with 2d  PEs. It can be mapped onto the d-dimensional hypercube by map-

ping adjacent nodes of the ring onto adjacent nodes of the hypercube. Since in the hyper-

cube network, any two adjacent nodes have their binary addresses differing by only one 

bit, this means that the d-bit hypercube node addresses must be listed in sequence in such 

a way that any two successive addresses differ by a single bit. A binary sequence with this 

property is the binary Reflected Gray Code (RGC). 

The mapping of the 3-dimensional hypercube into the 8-node ring is shown in Fig-

ure 2.1. 



Figure 2.1 : Mapping the H3 Hypercube into the 

8-node Ring. 
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2.2.2 Mapping the Mesh onto the Hypercube 

Consider an n-dimensional mesh that has size mi in dimension i, where mi is a power of 2 

such that pi = log2 mi. This mesh can be mapped onto the d-dimensional hypercube where 

d = P1  + p2  + p3  + + pn. The algorithm to map the mesh onto the hypercube is a direct 

extension of the previously presented algorithm for the ring. The nodes in each dimension 

are numbered sequentially using the RGC. A node of the mesh is mapped onto the node of 

the hypercube whose address is obtained by concatenating the RGCs of the particular 

node for all dimensions. 

Figure 2.2 shows the mapping of the 5-dimensional hypercube into the 8 x 4 mesh 

and the 4 x 4 x 2 mesh. 

2.3 A Case Study: The Connection Machine System CM-2 

The Connection Machine model CM-2 is a distributed memory, SIMD, Concurrent-Read 

Exclusive-Write (CREW) parallel computer [10]. The system includes front-end comput-

ers that provide development and execution environments for the system software, a paral-

lel processing unit of up to 64K processors that execute data parallel operations, and a 

high performance data parallel I/O system. The system software is based upon the envi-

ronment of the front-end computer. 

2.3.1 Front-end Interface 

The front-end computer is the gateway to the Connection Machine system. It provides 

software development tools, software debugging tools, and a program execution environ-

ment familiar to the user. The front-end should contain specialized hardware, called a 

Front-End Bus Interface (FEBI), which allows communication with the Connection 

Machine processors. At the present, FEBI is available for most DEC Vax 8000 series 

minicomputers, Sun workstations, and Symbolics 3600 series Lisp machines. 



Figure 2.2 : Mapping the H5 Hypercube into the 8 x 4 and the 
4 x 4 x Meshes. 
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The data set, for the most part, is stored in the Connection Machine memory. In 

this way, the entire dataset can be operated upon in parallel through commands sent to the 

Connection Machine processors by the front-end. The part of the program code for any 

application that pertains to the interfaces between the program, the user, and the operating 

system is handled by the front-end. For program steps that involve parallel data, the front-

end interacts with the Connection Machine parallel processing unit using an integrated 

command set, where commands are broadcast for execution by all processors all at once. 

Thus, the front-end performs three primary functions in the Connection Machine system. 

• It provides an application development and debugging environment. 

• It runs applications and transmits the instructions and associated data to the Con-

nection Machine parallel processing unit. 

• It provides maintenance and operation utilities for controlling the Connection 

Machine and diagnosing problems. 

2.3.2 System Organization 

The central element in the system is the CM-2 parallel processing unit, which contains: 

• thousands of data processors; 

• an interprocess communication network; 

• one or more sequencers; 

• an interface to one or more front ends; 

• and zero or more I/O controllers and/or framebuffers. 

The parallel processing unit may contain 64 K, 32 K, or 16 K data processors. 

Each data processor has 64 K bits of bit-addressable local memory, an arithmetic-logic 

unit with variable length operands, and an optional parallel floating point accelerator. 

There are two forms of communications available within the unit. The more general mech-

anism is known as router, which allows any processor to communicate with any other pro-

cessor in the system. The other, a more structured, somewhat faster communication 



10 

mechanism is the NEWS grid. It allows processors to pass data according to a regular rect-

angular pattern. These grids are programmable to have variable numbers of dimensions. 

Possible grid configurations for 64 K processors include 256 x 256, 8 x 8192, 64 x 32 x32, 

16x 16X 16 x16,and 8x8x4x 8x 8x 4. 

The set of instructions that the front-end may issue to the parallel processing unit is 

called Paris. Paris instructions from the front-end are processed by a sequencer in the par-

allel processing unit. The task of the sequencer is to break down each Paris instruction into 

a sequence of low level data processor and memory operations. The sequencer broadcasts 

these low-level operations to the data processors, which execute them at a rate of several 

millions per second. There is a sequencer for each 8 K of processors in the system. 

The CM-2 system used for this thesis has 16 K processors and two sequencers that 

can be ganged together. 

2.3.3 Software Support 

Since the development environment is provided by the front-end and the editors, the file-

system used for the software development and maintenance remain that of the front-end. 

The Connection Machine system software is designed to utilize the existing programming 

languages with minimal extensions required to support data parallel constructs. The pro-

gram code for this thesis was developed using the C* language, which is a data parallel 

extension of the C language. The target language of the high level compilers is Paris, the 

assembly language of CM-2. 

2.3.4 The Router 

The router allows any processor of the parallel processing unit to communicate with any 

other processor; with all processors acting at the same time, the local memories of data 

processors are treated as a single large shared memory. Each CM-2 processor chip con- 



11 

tains one router node which serves the 16 processors on the chip. The router nodes on all 

processor chips are wired together to form the complete hypercube router network. With 

16 K processors in the system, the router network is a 10-cube connecting, 1,024 proces-

sor chips, that is there are 16 processors per router node. 

Each message travels from one router node to another until it reaches the chip con-

taining the destination processor. The algorithm used by the router can be divided into 

stages called petit cycles. The delivery of all the messages for a Paris operation might 

require only one petit cycle if only a few processors are active, but if every processor is 

active, then typically many petit cycles are required. If the message can not be delivered to 

the destination processor in a single petit cycle, it is buffered in whichever intermediate 

chip it has reached at the end of the petit cycle. For this work, each application code used 

all 64 K processors (i.e. 16, PEs per router) and 1 K processors (i.e., 1 PE per router) by 

selectively disabling some of the processors. The latter case represents a perfect 10-

dimensional hypercube. 



CHAPTER 3 

MAPPING MULTILEVEL STRUCTURES 

ONTO THE HYPERCUBE 

The robust interconnection structure of the hypercube can efficiently emulate multilevel 

structures. Several algorithms have been published for the emulation of pyramids on 

hypercubes. Stout has proposed an algorithm to map pyramids onto the hypercube [2]. 

Patel and Ziavras have proposed an algorithm to map pyramid and multilevel structures 

onto the hypercube [3]. Ho and Johnsson have proposed an algorithm to map hyper-pyra-

mids onto the hypercube [4]. This thesis extends pyramid mapping algorithms for multi-

level structures and implements all these algorithms on the Connection Machine for the 

purpose of performance comparison. 

3.1 Problem Definition and Performance Measures 

A multilevel structure is embedded into the hypercube topology by mapping the vertices 

of the former to the vertices of the latter in a one-to-one or many-to-one fashion. 

Let the function h: G ----> G' represent the mapping of the vertices of the source 

graph G to the vertices of G' in one-to-one fashion. Three performance measures namely 

expansion, dilation and congestion [11] which are defined in the following three subsec-

tions can be used for a first level comparative analysis of the mapping algorithms. 

3.1.1 Expansion 

The expansion of h is the ratio (I V(G' )1/1V(G)1), where V(G) and V(G') are the vertex sets 

of G and G' respectively, and IV(G)I and IV(G')I are the numbers of vertices in those sets. 

This measure gives the relative cost of the target system with respect to the source system, 

12 
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assuming that the cost of a system that implements a particular graph is proportional to the 

total number of nodes in the graph. Ideally, the value of this measure should be one. The 

closer the value of this measure to one, the smaller is the portion of unused resources in 

G' . 

3.1.2 Dilation 

When two neighboring nodes from G are mapped onto two distinct nodes in G', the dila-

tion of the edge connecting the two nodes in G is the length of the corresponding path in 

G'. The maximum dilation is the maximum length of any such path in G'. The dilation 

measures the relative communication overhead on the target architecture. The smaller the 

value of the dilation, the smaller is the communication overhead. 

Multilevel structures can not be mapped onto the hypercube with maximum dila-

tion one. The reason is that a cycle in a multilevel structure consisting of a parent and two 

of its children contains an odd number of nodes, whereas in a hypercube all cycles contain 

an even number of nodes [2]. 

3.1.3 Congestion 

The congestion is the number of edges in G that are mapped onto the same edge in G'. The 

maximum number of edges in G with the same image in G' is the maximum value of the 

congestion for the chosen mapping h. The smaller the value of the congestion, the less 

amount of time that messages will have to wait in queues at intermediate PEs for commu-

nication channels to become available. 
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3.2 Stout Algorithm (Algorithm I) 

3.2.1 Algorithm for Pyramid Mapping 

This algorithm embeds the pyramid with base of size 2n  x 2n  (Pa) into the Hen  hypercube 

[21. The number of nodes in the hypercube is eaual to the number of nodes in the base of 

the pyramid. Since a pyramid with a base of size 2n  x 2n  contains a total of 

noaes, me expansion is less man one. For one-to-one mapping of base (say level 0) nodes 

onto PEs of the hypercube, the n-bit RGC is used to encode separately the rows and col-

umns in the base. The binary addresses of the respective PEs in the hypercube are found 

by concatenating the bits of the encoded row and column numbers. This process produces 

a perfect mapping for the base of the pyramid; i.e., all three measures associated with the 

cost of the base mapping are optimal (i. e., they are equal to one). 

Every node at the immediately higher level of the pyramid (i.e., level 1) has four 

children at the leaf level (i.e., level 0). The PE, from each square of four PEs, that has the 

least significant bit of the respective row and column numbers equal to 0 is chosen to rep-

resent a parent at level number 1. In general, PEs having the lower k bits of their encoded 

row and column numbers equal to 0 are chosen to simulate nodes from level k of the pyra-

mid. Figure 3.1 shows the mapping of the H6 hypercube into the P3  pyramid. Thus, one of 

the children will use two communication links for data exchanges with its parent, and the 

maximum dilation of the mapping is two. The two significant advantages of this mapping 

are the smallest possible resultant dilation and the small expansion (i.e., less than one). 

Since some hypercube PEs emulate nodes from several levels of the pyramid, this 

mapping algorithm does not allow the simultaneous emulation of multiple pyramid levels. 

So, it cannot support concurrent multilevel processing (e. g., pipelining). 

3.2.2 Extension for Mapping Multilevel Structures 

The following rule is applied for extending the mapping for the multilevel structure with 



Figure 3.1: Mapping the H6 Hypercube into the P3 Pyramid using Algorithm I. 
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Figure 3.2 : Mapping the H6 Hypercube into M3 Multilevel Structure with 

Reductions of 4 x 4 and 2 x 2 using Algorithm I. 
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the base of size 2n  X 2n  (Me). Level j of the multilevel structure is mapped to level k of the 

pyramid, where k is obtained by the following equation. 

and 2mi is the reduction between level i-/ and i . 

The resulting version of the algorithm results in maximum dilation 2mi for the pair 

of levels i-/ and i. Therefore, the maximum dilation of this extended mapping algorithm is 

max{2mi}, for i = 1,2,3,.... The extended algorithm does not support the efficient imple-

mentation of algorithms that apply concurrent multilevel processing. Figure 3.2 shows an 

example. 

3.3 Patel and Ziavras Algorithm (Algorithm II) 

3.3.1 Algorithm for Pyramid Mapping 

Similarly to Algorithm I, this algorithm maps the Pn  pyramid onto the H2n hypercube [3]. 

Although the expansion is less than one, in contrast to the previous algorithm, it allows 

any subset of levels, excluding the base, to be active simultaneously. The emulation of the 

base excludes the simultaneous emulation of any other level in the pyramid because the 

total number of base nodes is the same as the total number of PEs in the hypercube. 

The algorithm operates as follows. Similarly to Algorithm I, the RGC is used to 

independently encode rows and columns in the base. A perfect mapping is then produced 

for the base by concatenating the bits of the encoded row and column numbers in order to 

find the address of target PEs in the hypercube. The mapping of level 1 nodes is also simi-

lar to the mapping produced by the previous algorithm. The PEs chosen to emulate parents 

of leaf nodes have the least significant bit of their encoded row and column equal to 0. For 

each set of four PEs at level 1 with common parent, the PE chosen to serve as the parent is 

neighbor to one of the PEs representing the children and all PEs at level 2 form mirror 

images in squares outlined by their children. This procedure is repeated until the apex of 
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the pyramid is reached. 

For example, Figure 3.3 shows the one-to-one assignment of leaf nodes from the 

P3 pyramid to the H6 hypercube. There are sixteen groups (squares) of 2 x 2 PEs in the 

base with common parent. The parent at level 1 for the children in such a square is emu-

lated by the PEs marked with 1 in the square. The PEs marked with 1 are again grouped 

into quadruples with common parent. Parents at the next higher level are emulated by the 

PEs marked with 3. Thus PEs marked with 0, 1, 2, and 3 emulate nodes from levels 0, 1, 2 

and 3 of the P3 pyramid, respectively. Any subset of pyramid levels that does not include 

the base can be emulated simultaneously. 

The dilation of the mapping for an edge connecting a parent at level 1 and one of 

its children is two. However, the maximum dilation for higher levels is equal to three. To 

conclude, this mapping algorithm yields maximum dilation three. 

3.3.2 Extension for Mapping Multilevel Structures 

The mapping for the base is identical to that for pyramid mapping. For mapping level j 

nodes, a subset of the PEs that emulate level j nodes of the pyramid are used. The chosen 

PEs should be as far apart as possible in the 2n  x 2n  base array. The maximum dilation is 

equal to 2max{mi} + 1, where all possible values of i are considered. 

Figure 3.4 shows the mapping of the H6 into a case of M3 where the reductions are 

4 x 4 and 2 x 2 between levels 0 to 1, and 1 to 2, respectively. The algorithm still allows 

any subset of levels, excluding the base, to be active simultaneously. 

3.4 Ho and Johnsson Algorithm (Algorithm III) 

3.4.1 Algorithm for Mapping Hyper-Pyramids 

A P (k , d) hyper-pyramid is a level structure of k boolean cubes where the cube at level i 

is of dimension id, and (assuming that the apex is level 0) a node at level i - 1 connects to 

every node in a d-dimensional Boolean subcube at level i, except for the leaf level k. 



Figure 3.3 : Mapping the 116  Hypercube into the P3 Pyramid using Algorithm II. 
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Figure 3.4 : Mapping the H6 Hypercube into the M3 Multilevel Structure with 

Reductions of 4 x 4 and 2 x 2 using Algorithm II. 
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Hyper-pyramids contain pyramids as proper subgraphs [4]. 

This algorithm embeds the 13(k , d) hyper-pyramid into the H2d+1 hypercube with 

maximum dilation d. Since a pyramid is a subgraph of a hyper-pyramid with d = 2, this 

mapping algorithm can also be used for mapping the Pn  pyramid (i.e., P (n , 2)) hyper-pyr-

amid) onto the H2n+1  hypercube with dilation 2. 

The algorithm operates as follows. It first assigns unique addresses (i , j) to the 

nodes of the hyper-pyramid, so that i is the level number and j is a number from 0 to 2id -

1 (the number of nodes at level i is equal to 21d); the binary representation of j contains id 

bits. The parent of node ct(i , j) is 0:(i+1 f i j[d,id-1]),  where i > 0, and [d,id-11 i represents the -,  

(d(i - 1) - 1)-bit number which is obtained by preserving the upper bits of j with subscripts 

d through id - 1. Its children are a(i+1, j • -- X [0,d-1]),  where "•" represents concatenation 

and X[0,d-1] represents d "don't care" bits. 

Let tk  be the mapping function for the two-rooted hyper-pyramid with k+1 levels 

and for the Hkd+1 hypercube. When compared to the conventional hyper-pyramid, the 

two-rooted hyper-pyramid has an additional root node and additional edges that connect 

directly the additional root to all nodes at level 1. Let 0C(0 , E) and a(0', E) represent the 

two roots. The mapping function is defined in a recursive fashion. The roots for k = 0 are 

mapped onto the adjacent nodes (1)0(0t (0, E)) = 0 and 4(a (0', 0) = 1. 

The mapping function (1:1k+i is then defined in terms of Ilk as follows. ok  is first 

applied to the 2d  distinct Hkd÷i subcubes of 1-1((+1)(14.1 which are distinguished by the d 

most significant bits of their addresses. If the superscript for node addresses distinguishes 

among these subcubes, then the recursive definition of the mapping function is as follows: 

4+1 (ot (0 , e )) = (i)k(a (0 , e)) 

4)k+i(a (0'  , 6)) = 4k( a2(1-1(0 1 e)) 

Ok+i(oc (1 , 1)) = Ok(oc ( o', E)) if 1 = 0 or 1 = 2d-1 
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Figure 3.5 The Recursive Generation of Hypercube Node Addresses for the Mapping 

of the Hyper-pyramid onto the Hypercube. 
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otherwise, 

0:1)k+1(cfc (1 , 1)) = srl)k(al  (0 , C)) 

(I)k+1(a (i,1 a j)) = Ok(al j)), for i > 1. 

This mapping algorithm yields dilation d [4]. For the case of d = 2, which also cor-

responds to pyramid mapping, the dilation is 2. 

Figure 3.5 shows the mapping of P(2 , 2) in a recursive fashion. The faint lines in 

the figure represent parent-child links and the weight of an edge gives its dilation. The 

next section discusses how the algorithm can be extended for the mapping of multilevel 

structures. 

3.4.2 Extension for Mapping Multilevel Structures 

The following rule is applied for extending the mapping for the multilevel structure with 

the base of size 2" X 2" (Me). Level j of the multilevel structure is mapped to level k of the 

pyramid, where k is obtained by the following equation. 

and 2'1 is the reduction between level i-/ and i . 

The resulting version of the algorithm results in maximum dilation 2rni for the pair 

of levels i-/ and i. Therefore, the maximum dilation for this extended mapping algorithm 

is equal to 2max{mi}, where all possible values of i are considered. 



CHAPTER 5 

COMPARATIVE ANALYSIS: 

CONNECTION MACHINE RESULTS 

4.1 Features of the Connection Machine System CM-2 

Affecting the Performance 

Results for the Connection Machine system CM-2 with 16K PEs (or 8K PEs in some of 

the cases) are presented in this chapter. A 10-dimensional (9-dimensional) hypercube is 

the backbone (router) of the communications network. Each vertex of this hypercube con-

tains a router node (communications processor) to which 16 PEs are attached. 

The results on the system CM-2 are not always indicative of the performance for 

the pure hypercube for two reasons. Firstly, since there are 16 PEs per router node, the 

router nodes become bottlenecks for communication intensive operations. This may cause 

message routing to take many petit cycles. In the absence of this congestion one petit cycle 

is enough to process all of the bits of the destination address and a message, even if the 

message has to travel all of the dimensions in the hypercube. This makes the actual perfor-

mance of the programs poorer. To alleviate this problem, results are provided for at most 

one active PE for each router node. Secondly, the communications hardware of the CM-2 

is capable of combining multiple messages to the same destination by applying some 

arithmetic or logical combining (i.e., reduction) operation. The destination PE then 

receives the result. This reduction "on the fly" reduces the amount of traffic going to dis-

tant PEs, whenever in the algorithms many-to-one communications operations are fol-

lowed by the application of combining (reduction) operations on the received data (e.g., 

sending data to the parent, and then finding the sum of the data received from the children 

at the parent level in the pyramid). In the presentation of the results below, the influence of 

both these issues on the performance is discussed. 

For each algorithm, results were obtained for two cases. In the first case, all sixteen 

24 
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PEs attached to any single router node may be used, with up to 16K PEs being initially 

"active". Therefore, the base for the multilevel structures assumed by Algorithms I and II 

has size 27x 27  while the base assumed by Algorithm III has size 26  x 26. For the purpose 

of getting results for the pure hypercube network, only one PE per router node may be 

used in the second case, with up to 1K PEs being initially "active". Therefore, the base 

assumed by Algorithms I and II is now 25x 25  while the base assumed by Algorithm III is 

24x 24. For the purpose of comparison, results for multilevel structures with bases 26x 26  

or 24x 24, and 16 PEs or 1 PE per router node, respectively, are presented for Algorithms I 

and II also. Average times calculated over several runs are listed. While all possible multi-

level structures are considered, results are presented each time for the four most efficient 

structures. 

4.2 First Application Algorithm: 

Perimeter of Objects 

Each application algorithm assumes the assignment of a single pixel to each node in the 

base of the multilevel structure. For the sake of simplicity, this algorithm assumes the 

existence of a single object in the image. Assuming that the boundary pixels are known, a 

bottom-up process is applied to count the total number of boundary pixels. More specifi-

cally, nodes in the base that contain a boundary pixel send 1 to their parent, while nodes 

that do not contain a boundary pixel send 0 to their parent at level 1. To reduce the overall 

communication overhead, the latter addition is performed on the fly before values reach 

their destination. This process is repeated with higher levels until the apex is reached. The 

addition of values received by the apex produces the perimeter of the object. 

Table I shows results for the algorithm that finds the perimeter of an object when 

all 16K PEs can be used. Timing results in the tables are expressed in msec. The time it 

takes to find the addresses of parents or children is not included in the results, these 

addresses are generated and stored in the local memories of the PEs during initialization. 

`Reductions' represents the reductions in one dimension between pairs of neighboring lev- 
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els in the multilevel structures; the first reduction is for the pair of levels 0 and 1, the sec-

ond reduction is for pair of levels 1 and 2 and so on. 'Base' represents the amount of time 

it takes to transmit data from level 0 to level 1. This process takes relatively significant 

time because almost all router nodes are involved in the data transfers with all the 16 PEs 

attached to them. Also, all data transfers in the implementation involve integer values; this 

was chosen for uniformity reasons because several algorithms in computer vision have a 

lot of similarities with the perimeter counting algorithm (e.g., they employ bottom-up pro-

cesses) but they deal with integer variables. 'Top' represents the amount of time it takes 

the level located immediately below the highest level to send data to the topmost level and 

for the highest level to process the received data. 'Total' represents the amount of time 

taken by the algorithm. Tablel shows that although the three mapping algorithms are char-

acterized by almost identical performance, Algorithms I and II very often achieve better 

performance. The reason for the relatively poor performance of algorithm III is that chil-

dren have to go to higher cubes to find the parent. Also, the first two algorithms use only 

half of the hypercube used by the third algorithm, so communication operations are more 

local. The "on the fly" combining capabilities of the CM-2 are taken advantage of for mul-

tilevel structures with large reductions between the levels. 

Table 2 shows results for the case where just one PE per router node may be active. 

Therefore, a pure hypercube network is used in this case. The relative performances are 

similar to the previous case. However, since there is only one PE per router node, the com-

munication between any two PEs means communication between two distinct router 

nodes. With 16 PEs per router node the communication between two PEs may be within 

the same chip (i.e., a routing operation is not required) because of locality of communica-

tions in the immediate neighborhood in the pyramid algorithm. Therefore, the program for 

16 PEs per router node may perform better than in the case of 1 PE per router node. For 

example, Algorithms I and II perform worse in the case of the pyramid with base 32 x 32 

(Table 3) when compared with pyramid results for base 64 x 64 (Table 1). 

Also, the thesis shows that the conventional pyramid performs worse than the 
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majority of multilevel structures. This is basically because of a smaller number of data 

transfers and the added advantage of "on the fly" application of reduction operations 

because of larger reductions between levels (i.e., more data transfers with the same desti-

nation). For this image processing algorithm, speed-ups as large as 4-fold are achieved 

with the incorporation of multilevel structures as compared to pyramids. Also, multilevel 

structures with reductions of 22  x 22, 23  x 23  or 24  x 24  perform better than those with 

extreme reductions. This is because with extremely large reductions many router nodes 

may have to transmit data to the same router node causing large communication overheads 

due to congestion at intermediate and destination nodes. 

Pipelining can easily be applied to this application algorithm because all of the 

operations carried out at different levels, or a subset of operations for the base and the 

apex, are identical. This is permitted by the SIMD mode of computation provided by the 

CM-2. Since pipelining requires activating multiple levels simultaneously, only Algo-

rithms II and III can be applied. In this thesis, multiple images with single object are con-

sidered for pipelining. Tables 3 and 4 show steady state results for pipelining with the 

same image processing algorithm. 

`Throughput-1' is the amount of time it takes to produce a single output in the 

steady state. It is the inverse of the pipelined algorithm's throughput (i.e., the number of 

outputs per unit time). 'Time' represents the time required to find the perimeter of the sin-

gle object. The Throughput-1  for Algorithm II is high because it does not permit simulta-

neous multilevel processing including the base and so the step of transmissions from base 

to level 1 cannot be pipelined. When compared to the pyramid, multilevel structures can 

yield an upto 8.5-fold speedup for this algorithm. 

4.3 Second Application Algorithm: 

Convolution 

Two-dimensional convolution is the second image processing algorithm implemented on 
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the Connection Machine. The convolution algorithm convolves a k x k window of weight-

ing coefficients with the 2" x 2n  image matrix. Let X = {xi,j} and W=Iwid be the image 

matrix and the window, respectively. The goal is to compute Y={yr,s}, where 

with o __ r, s 2n  — k. This algorithm is very frequently applied in image processing. 

The algorithm is described here for the pyramid topology. Its extension for multi-

level structures is straightforward. Assigning a single pixel per processor in the base of the 

pyramid, the smallest integer I is found for which 21 k. Then, the base of the pyramid 

is partitioned into square blocks of size 2Y x 21. Each such partition contains the leaves of 

a subpyramid whose apex is at level I. The weighting coefficients are loaded into the 

upper left corner of each partition. On the Connection Machine these coefficients are 

loaded with k2  broadcasting operations where appropriate sets of PEs are selected each 

time. This part is not included in the total execution time of the algorithm. The rest of the 

PEs in each partition receive zero as the weighting coefficient. The PEs then multiply the 

weighting coefficient with their pixel value and send the result to their parent. Parents at 

level 1 add the values they receive from their children and send the result to their parent. 

This process continues until the apex of each subpyramid is reached. Each apex at level I 

adds the values it receices from its children and sends the result, through the necessary 

intermediate PEs at lower levels, to the leaf PE in the upper leftmost corner of its partition. 

Each window in the base that contains the weighting coefficients is shifted to the right 

once, multiplications are performed as above, the results are shifted to left once, and the 

values are sent to parents at level 1. The bottom-up and the top-down processes described 

previously are applied with the results stored in the PE with offset (0 , 1) in each partition. 

To conclude, the convolution algorithm involves lateral shifts and multiplications in the 

base, bottom-up addition of values, and finally top-down transmission of final results. 

These steps are repeated 221 times, which is equal to the total number of PEs in each par- 
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tition. 

Results are presented in Table 5 for the pyramid and for the multilevel structure 

that yields the highest performance, assuming windows with k = 2s , where s = 1, 2, 3, 4 

and 5. These results indicate that Algorithm I yields the highest performance for the 

majority of the cases. This is because this implementation of convolution requires that 

only one level be active at a time, and reduced times for data transfers between parent and 

children result from several assignments with Algorithm I of parents and children to the 

same PE; the smaller dilation is also an important factor. In addition, Algorithm II has 

very often the largest execution time due to its larger dilation (i.e., 3) when compared to 

the dilation of Algorithms I and III (i.e., 2). When compared to the conventional pyramid, 

multilevel structures can achieve an up to 1.5-fold speedup for this algorithm. 

Table 6 presents results for the convolution problem when pipelining is imple-

mented. Only communication operations have been pipelined here due the CM-2's SIMD 

mode of computation. The bottom-up and top-down phases are implemented in two sepa-

rate pipeline phases. The processing proceeds in two phases. In the first phase, the algo-

rithm finds all required products between weighting coefficients and pixel values. The 

second phase of the algorithm implements pipelining with bottom-up and and top-down 

communication operations. Pipelining cannot be implemented with Algorithm II when the 

window size is smaller than 5 x 5 because the base can not be emulated simultaneously 

with other levels, leaving at most only one stage from level 1 to the apex of the subpyra-

mid. Therefore, Table 5 does not present results for these cases. The results indicate that 

the implementation of pipelining with the convolution algorithm can significantly reduce 

the total execution time. Speedups of up to about 48% were achieved with this implemen-

tation. The implementation of pipelining reduces execution time for bottom-up and top- 

down processing significantly much more, but the implementation involves storing the 

values at the end points of the pipeline consuming considerable portions of the total exe- 

cution time. When compared to the conventional pyramid, multilevel structures can 

achieve speedups of up to a 1.26-fold. This relatively low speedup is because the pyramid 
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has more levels and, therefore larger number of stages for the pipeline, which improves 

the performance of pipelining. Algorithms II and III yield similar performance on the 

average because the set of operations performed at the base are most often different from 

the set of operations performed at other levels. 

4.4 Third Application Algorithm: 

Image Segmentation 

Image segmentation is the third algorithm that was implemented on the Connection 

Machine. The segmentation algorithm partitions the image into more or less homogeneous 

regions with the application of an iterative technique that uses an overlapped linked pyra-

mid structure [15]. 

Unlike conventional pyramids, the parent-child relationships are not fixed and may 

be redefined in each iteration. Each node, except for the nodes in the base, has a 4 x 4 sub-

array of candidate children at the immediately lower level (i.e., the standard pyramid 

structure is augmented by links that implement 50% ovelapping in each of the four direc-

tions). The node itself is a member of four such subarrays for the next higher level nodes. 

Each iteration links the node to one of four higher level candidate parents. The chosen par-

ent is the one with the closest property value. Therefore, at the end of every iteration each 

parent will have from 1 to 16 children. The child-parent links define segments in the 

image. This iterative algorithm terminates when no further changes occur in the segments 

stored in the base. Tree structures that partition the image into segments are produced. 

The implementation on the Connection Machine (CM-2) uses 8-bit gray level val-

ues for the pixels. The initialization of the property values at all levels is accomplished 

with a bottom-up processing phase. Each iteration consumes three processing phases. The 

first phase establishes child-parent links based on the smallest differences, as described in 

the previous paragraph. This phase can be carried out simultaneously for all of the levels. 

The second phase applies a bottom-up technique that calculates new property values for 

all the nodes based on the links that were established in the first phase. The third phase of 
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the algorithm applies a top-down technique for the assignment of the segment values to 

nodes in the base; following the available links, the property values of the root nodes in 

the existing trees serve as segment numbers and are copied into their leaves. Only the first 

phase of the algorithm can activate multiple levels simultaneously. However, this set of 

concurrent multilevel operations constitute only a small portion of all the operations car-

ried out by this algorithm. The other two phases can activate only one level at a time. So 

pipelining is not appropriate for this application algorithm. 

Images with a single object are considered. Tables 7 and 8 show results for this 

image segmentation algorithm. 'Iterations' and 'Total' represent the total number of itera-

tions and the total execution time, respectively. For reasons similar to those for the preced-

ing algorithms, Algorithm I yields highest performance for 16 PEs per router node. 

However, Algorithm III  performs slightly better than Algorithm I for 1 PE per router node 

because of the concurrent multilevel phase and the non-locality of data transfers with at 

most 1 PE per router node. Algorithm II achieves performance comparable to Algorithm I 

for 16 PEs per router node because of the same number of required petit cycles. Although 

the same algorithm also performs very well for 1 PE per router node, it yields increased 

execution times when compared to Algorithms I and III because of the non-locality of data 

transfers and increased dilation. The results also show that an up to ten-fold speedup can 

be achieved by incorporating a multilevel structure other than the conventional pyramid. 



Table 1 : Finding the Perimeter of an Object. 16 PEs per Router Node. 

Base: 128x 128 Base:64x64 

Alg. Reductions Base Top Total Reductions Base Top Total 

I 

128 
64,2 
4,32 
32,4 

pyramid 

1.49 
1.66 
1.74 
2.02 
1.75 

1.49 
0•24 
0.33 
0.24 
0.46 

1.52 
1.95 
2.13 
2.31 
5.12 

64 
16,4 
4,4,4 
32,2 

pyramid 

1.30 
1.20 
0.64 
1.29 
0.64 

1.30 
0.24 
0.27 
0.24 
0.45 

1.33 
1.49 
1.30 
1.58 
2.85 

II 

128 
64,2 
8,16 
32,4 

pyramid 

1.30 
1.44 
1.53 
1.62 
1.47 

1.30 
0.24 
0.24 
0.24 
0.27 

1.33 
1.73 
1.81 
1.90 
4.65 

64 
16,4 
4,4,4 
32,2 

pyramid 

1.20 
1.00 
0.54 
1.10 

0.54 

1.20 
0.24 
0.27 
0.25 

0.45 

1.23 
1.30 
1.30 
1.41 

2.73 

III 

64 
16,4 

4,4,4 
32,2 

pyramid 

1.11 
0.92 
0.92 
1.19 
1.01 

1.11 
0.53 
0.53 
0.42 
0.45 

1.11 
1.49 
1.58 
1.67 
3.55 
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Table 2 : Finding the Perimeter of an Object. 1 PE per Router Node. 

Base: 32x 32 Base: 16x 16 

Alg. Reductions Base Top Total Reductions Base Top Total 

I 

32 
16,2 
8,4 
4,8 

pyramid 

0.93 
0.93 
0.93 
1.02 
1.21 

0.93 
0.25 
0.27 
0.34 
0.45 

0.95 
1.23 
1.24 
1.42 
3.58 

16 
8,2 
4,4 
2,8 

pyramid 

0.83 
0.73 
0.73 
0.73 
0.74 

0.83 
0.26 
0.35 
0.63 
0.46 

0.85 
1.04 
1.13 
1.42 
2.24 

II 

32 
16,2 
8,4 
4,8 

pyramid 

0.93 
0.92 
0.92 
0.92 
0.92 

0.93 
0.25 
0.25 
0.53 
0.44 

0.95 
1.22 
1.22 
1.50 
3.38 

16 
8,2 
4,4 
2,8 

pyramid 

0.73 
0.73 
0.73 
0.73 
0.73 

0.73 
0.26 
0.44 
0.73 
0.44 

0.75 
1.04 
1.22 
1.50 
2.39 

III 

16 
8,2 
4,4 
2,8 

pyramid 

0.83 
0.64 
1.11 
1.01 
1.02 

0.83 
0.44 
0.52 
0.63 
0.45 

0.85 
1.13 
1.67 
1.69 
2.66 
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Table 3: Finding the Perimeter of Objects. Pipelining. 16 PEs per Router Node. 

Base: 128x 128 Base: 64 x 64 

Alg. Reductions Throughput"' Time Reductions Throughput"' Time 

II 

4,32 
8,16 
16,8 
64,2 

pyramid 

2.99 
3.65 
4.93 
4.95 
12.80 

3.47 
4.02 
5.31 
5.32 

29.03 

32,2 
2,32 

16,2,2 
16,4 

pyramid 

2.87 
2.13 
3.97 
2.68 
5.22 

3.32 
2.54 
4.61 
3.08 

12.82 

III 

32,2 
2,32 

16,2,2 
16,4 

pyramid 

2.49 
2.62 
2.75 
2.77 
3.34 

4.98 
5.24 
8.26 
5.54 
20.08 
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Table 4: Finding the Perimeter of Objects. Pipelining. 1 PE per Router Node. 

Base: 128x 128 Base: 64 x 64 

Alg. Reductions Throughput-1  Time Reductions Throughput -I  Time 

II 

8,4 
4,8 
16,2 
2,16 

pyramid 

2.24 
2.85 
2.43 
3.27 
8.23 

2.66 
2.85 
2.85 
3.78 
13.74 

4,2,2 
2,2,4 
2,4,2 

pyramid 

2.79 
2.93 
2.93 
3.68 

3.66 
3.94 
3.94 
5.92 

III 

8,2 
2,8 

2,2,4 
2,4,2 

pyramid 

1.39 
1.68 
1.84 
1.84 
1.93 

2.79 
3.35 
5.53 
5.53 
7.74 
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Table 5: Convolution 

16 PEs/router node 1 PE/router node 

Alg. Window Reductions Base Total Reductions Base Total 

2 x 2 pyramid 2.11 22.52 pyramid 6.10 28.20 
4 x 4 4 

pyramid 
11.39 
11.43 

92.52 
107.20 

4 
pyramid 

25.86 
25.92 

113.79 
136.45 

I 
8 x 8 4,2 

pyramid 

63.83 

63.83 

463.95 
522.63 

8 
pyramid 

124.05 
124.05 

486.06 
651.11 

16 x 16 2,2,4 
pyramid 

378.25 
378.34 

2234.18 
2452.34 

32x 32 
4,2,4 

pyramid 
1947.29 
1948.87 

9113.64 
14682.16 

2 x 2 pyramid 1.96 34.17 pyramid 6.17 28.30 

4 x 4 
4 

pyramid 
11.39 
11.39 

135.79 
166.03 

4 
pyramid 

26.13 
26.05 

114.31 
241.07 

II 
 8 x 8 8 

pyramid 
63.59 
63.59 

573.57 
715.44 

8 
pyramid 

124.26 
124.02 

486.19 
650.66 

16x 16 4,2,2 
pyramid 

377.71 
377.63 

2862.62 
3285.52 

4,2,2 
pyramid 

596.22 
596.72 

2640.77 
3003.72 

32 x 32 4,4,1 
Pyramid 

1962.25 
1951.83 

9818.82 
14782.40 

4,4,2 
pyramid 

2582.63 
2583.97 

10862.83 
11840.71 

2 x 2 pyramid 2.17 26.88 pyramid 2.35 28.51 
4 x 4 4 

pyramid 
11.86 
11.86 

125.74 
136.27 

4 
pyramid 

12.92 
12.96 

132.56 
158.78 

III 
8 x 8 8 

pyramid 
66.06 
66.16 

453.70 
655.26 

8 
pyramid 

72.09 
72.31 

479.67 
752.60 

16x 16 2,4,2 
pyramid 

391.11 
391.11 

2623.78 
3230.60 

8 
pyramid 

364.76 
364.86 

2957.89 
3377.83 

32x 32 
2,4 4 , 

pyramid 
2009.76 
2016.86 

11292.03 
13878.42 
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Table 6: Convolution. Pipelining. 

16 PEs/router node 1 PE/router 

Alg. Window Reductions Total Reductions Total 

8 x 8 pyramid 463.93 pyramid 488.80 

II 
16 x 16 4,2,2 

pyramid 
1714.90 
1946.37 

4,2,2 
pyramid 

1885.07 
2050.13 

32 x 32 4,2,4 
pyramid 

6478.40 
8218.48 

4,2,4 
pyramid 

7740.57 
8388.96 

pyramid 117.12 pyramid 111.38 

8 x 8 2,4 
pyramid 

460.37 
460.73 

2,4 
pyramid 

432.31 
433.22 

III 16 x 16 2,4,2 
pyramid 

1976.33 
1941.60 

2,4,2 
pyramid 

1775.08 
1786.18 

32x 32 2,2,2,4 
pyramid 

8236.37 
8237.66 pyramid 
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Table 7: Image Segmentation. 16 PEs per Router Node. 

Base: 128 x 128 Base: 64 x 64 I 
Alg. Reductions Iterations Total Reductions Iterations Total 

I 

2,32,2 
64,2 

2,2,4,2,2,2 
2,2,2,8,2 
pyramid 

6 
7 
5 
6 

7 

306.16 
320.01 
385.72 
400.75 

599.15 

32,2 
2,16,2 
16,2,2 
2,2,8,2 

pyramid 

5 
5 
5 
5 

7 

195.88 
224.87 
228.83 
260.27 
501.16 

II 

2,32,2 
64,2 

2,2,4,2,2,2 
2,2,2,8,2 
pyramid 

6 
7 
5 
6 
7 

310.31 
322.22 
413.29 
422.76 
666.91 

32,2 
2,16,2 
16,2,2 
2,2,8,2 

pyramid 

5 
5 
5 
5 

7 

197.08 
226.59 
231.67 
267.33 
519.09 

III 

32,2 
2,16,2 
16,2,2 
2,2,8,2 
pyramid 

5 
5 
5 
5 

7 

201.48 
232.34 
237.71 
266.78 

512.91 
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Table 8: Image Segmentation. 1 PE per Router Node. 

Base : 32 x 32 Base : 16 x 16 

Alg. Reductions Iterations Total Reductions Iterations Total 

I 

16,2 
8,2,2 
4,4,2 
2,8,2 

pyramid 

2 
3 
3 
5 
7 

47.14 
115.76 
116.93 
186.93 
468.42 

8,2 
4,2,2 
2,4,2 

pyramid 

2 
5 
8 
3 

40.43 
170.82 
268.68 
141.38 

II 

16,2 
8,2,2 
4,4,2 
2,8,2 

pyramid 

2 
3 
3 
5 
7 

48.94 
121.38 
121.50 
195.29 
481.32 

8,2 
4,2,2 
2,4,2 

pyramid 

2 
5 
8 
3 151.64  

42.15 
178.05 
288.89 

III 

8,2 
4,2,2 
2,4,2 

pyramid 

2 
5 
8 
3 

36.19 
168.18 
266.85 
140.10 



CHAPTER 5 

ALTERNATE MULTILEVEL STUCTURES: 

STOCHASTIC PYRAMIDS 

The dependence of low resolution representations on the position of the sampling grid and 

the input image is important in image pyramid applications. The rigidity of the pyramid 

structure may give rise to artifacts when pyramids are used for tasks such as analysis of 

line-drawings, object-background discrimination, or compact object extraction. Stochastic 

pyramids adapt their structure to the content of the input image to compensate for these 

artifacts [5]. Stochastic pyramids are built using irregular tessellations that generate an 

adaptive multiresolution representation of the input image. The hierarchy of representa-

tions is built bottom-up and is molded to the structure of the input image. Stochastic pyra-

mids preserve the most of the properties of "classical" image pyramids. However in such a 

pyramid the metrical relations among cells are no longer carried implicitly by the sam-

pling structure. A cell at level 1 + 1 cannot know a priori where its neighbors on level / + 

or its children on level / are located relative to the original sampling grid [5]. 

5.1 Graph Representation of Irregular Sampling Hierarchies 

The cells on level 1 of the pyramid are taken as the vertices of an undirected graph G[1] . 

The edges of the graph describe the adjacency relations between cells on level I. G[i] = 

(V[/],E[/]), where V[1] is the set of vertices and E[i] is the set of edges. The pyramid is 

constructed by a sampling or decimation process. Each level is constructed from the level 

below it by selecting a subset of the vertices. Thus, a vertex at any level can be regarded as 

a vertex of G[0], the 8-connected sampling grid of the original image. When level / is dec-

imated to construct level 1+1, each nonsurviving vertex is associated with one of the sur-

viving vertices. So a vertex on any level is associated with a set of vertices, called its 
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"region" in the original image. These regions define a tessellation of the image. The cell 

C [1 + 1] e V [1 + 1] must represent a connected subset of cells {co[/],ci[/],...c„[M at 

level 1. Let co[T] = c[/+/]. When the graph is contracted to generate a new higher level, 

two constraints must be satisfied: 

where co and do are survivors on level 1. 

After defining the survivors on level /4./ (V[/+/]), the edges at the next level 

(E[1+1]) must be defined . The constraint for an edge between vertices c[/+/] E co[fl and 

d[11-1] do[i] in G[1+ 1] is 

5.2 Creation of Stochastic Pyramids 

The decimation process is dependent on the image data. We assume that every cell ci ( a 

vertex of G[/]) carries a value gi characterizing its region of the image. Let co on level / 

have r neighbors on level 1, i.e., let its degree as a vertex of G[l] be r. Every neighbor ci, i 

= 0, ...,r of co is examined, and it is decided whether it belongs to the same class as co or 

not. This decision can depend in any desired way on the values gi, for i=0,...,r. A binary 

number Xi, where i=0,...,r, is associated with each neighbor, where A = 1 if ci belongs to 

the same class as co, and Xi = 0 otherwise. 

The decimation algorithm employs three variables for every cell: two binary state 

variables p and q, and a random variable uniformly distributed between [0,1] with out-

comes x. The survivors are chosen by an iterative local process. Let k = 0,1,...be iteration 

index. Initially all pi(0) = 0. A cell survives if at the end of the algorithm its pp(k) variable 

has the value 1. 

Every iteration has two steps. First cio(k) is updated based on the states pi(k-1) of 

neighboring cells in the same class. q0(k) basically denotes whether a candidate is eligible 
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to be a survivor in the current iteration. 

(10(k) = 1 if Xipi(k-1) = 0 d i = 0,...,r 

q0(k) = 0 otherwise. 

Then P0(k) is computed on the updated values of qi(k): 

P0(10 =1 if qo(k)xo(k) i p,. (Xi qi(k)xi(k)) > 0 

Po(k) = P0(k-1) otherwise. 

To become a survivor the outcome of the random variable x drawn by the cell must be 

local maximum among the outcomes drawn by the neighbors in the same class. 

The iterative process is repeated until every cell has at least one survivor in its 

neighborhood. 

5.3 Connected Component Analysis: 

Connection Machine Results 

In a labeled image the pixels are classified into a small number of classes distinguished by 

different labels. A connected component is a maximal set of connected pixels sharing the 

same label. In this thesis the analysis is restricted to binary images i.e., images have only 

two labels. In the connected component analysis, every connected component is reduced 

to a separate root and adjacency relations among the components are extracted. 

5.3.1 Algorithm 

The technique used in this algorithm obtains the description of connected components in a 

binary image in O(log(class_size)) steps. The neighbors are classified according to 

whether they belong to the same class. Let the binary label of ci be gi. For r neighbors of a 

cell c0, the class membership variables are defined as: 

=1 if gi = g0 

1i =0 if gi go. 
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Since the above definition of is symmetrical, it can be regarded as the weight of the 

edge (co , ci). The case X. = 0 is equivalent to removing the edge from E[l]. If E'[/] is the 

set of edges having A. = 1, and G'[/] = (V[/],E' { /}) then the connected components in the 

labeled image are represented by connected components in the graph G'[/], for all 1 0. 

The subgraphs of G' are decimated independently by following the process 

described in the previous section. Each subgraph is recursively contracted into one vertex, 

the root of the connected component. Figure 5.1 shows an example of appying the algo-

rithm for the creation of the different levels during the connected components extraction. 

5.3.2 Connection Machine Results 

The algorithm was implemented for six different images shown in Figure 5.2. Table 9 pre-

sents the results obtained from actual run on the connection machine. 'Total' represents 

the total time taken by the algorithm to be executed on CM-2. The time is in seconds. 

'Levels' represents the highest level number up to which the hierarchy has to be built to 

extract the connected components. At most 16 PEs per router node were used for this 

application. The time required to build stochastic pyramids is much greater than that for 

conventional pyramids. This is because the structure is quite irregular; the parent-children 

links can not be derived at static time as with conventional pyramids, but they have to be 

defined at run time. A large number of addresses have to be communicated between adja-

cent levels while determining links at the next level. Also the communication of values 

have to be done by "get" operations rather than "send" operations to avoid possible colli-

sion not permitted in CM-2 for the "send" operation. The "get" operation is implemented 

as two "sends", and so is more expensive in CM-2. Also, the dilation between neighbors 

generally increases as one goes up the hierarchy. It can be seen in the Table 9 that the time 

taken by the algorithm increases almost proportionaly to the number of levels. If the pro-

gram is run more than once for the same image, it may produce a different number of lev-

els and so different timing because of the stochastic process involved in the algorithm. 
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Figure 5.1: Connected Components Extraction (Levels 2-5) 



Figure 5.2 : Images with the Adjacency Graph of the Root Level Superimposed 
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The irregular connection graphs at different levels limit the SIMD capabilities of 

CM-2. The algorithm should produce much better results on an MIMD system. The deci-

mation process and the process of establishing links at the next level utilize the Concur-

rent-Read capability of CM-2 considerably. 



Table 9 : Results for Connected 
Components Analysis of Binary 
Labeled Images 

Image Levels Total 

I 9 36.74 
II 9 34.53 

III 10 41.76 

IV 11 37.96 

V 9 31.33 

VI 8 32.56 
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CHAPTER 6 

CONCLUSIONS 

The problem of mapping multilevel structures onto the hypercube has been addressed in 

this thesis. The conventional pyramid belongs to the class of multilevel structures. Three 

algorithms that map pyramids onto the hypercube were extended for multilevel structures. 

A comparative analysis of the three algorithms has been carried out. The comparative 

analysis incorporates both analytical techniques and actual runs on a Connection Machine 

CM-2 system composed of 16 K processors. Algorithms I and II have low cost; the num-

ber of PEs in the target hypercube is the same as the number of PEs in the base of the mul-

tilevel structure. In contrast, Algorithm III requires double the number of PEs required by 

the first two algorithms. The major drawback of Algorithm I is that it can emulate only one 

level of the multilevel structure at a time and so it does not permit concurrent multilevel 

processing. Algorithm II can emulate multiple levels, excluding base, simultaneously. 

Finally, Algorithm III can emulate all levels simultaneously. 

Connection Machine results for three computer vision algorithms were included 

for the comparison of the mapping algorithms. The chosen computer vision algorithms are 

good representatives of classes of algorithms that apply different types of multilevel pro-

cessing. For the perimeter counting application, the three algorithms produce almost simi-

lar performance. Algorithm I performs the best for the convolution algorithm; Algorithm 

II does not perform as well because of larger dilation for parent-child links used frequently 

by the application algorithm. For the segmentation application, Algorithm I performs the 

best for all of the multilevel configurations. Algorithm III performs equally well for pyra-

mids but performs worse for large reductions between levels. Algorithm II produces per-

formance comparable to Algorithm I. Thus, when the application algorithm activates one 

level at a time, Algorithm I is the best choice as it yields the best performance at lower 

cost. 
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The performance of Algorithm II and Algorithm III for pipeline processing has 

also been compared. Pipelining can not be applied to Algorithm I. Pipelined processing 

provides much better results for both of the algorithms. For pipelined perimeter counting, 

the throughput of Algorithm III is higher than that of Algorithm II as it permits simulta-

neous multilevel processing that includes the base, and also has smaller dilation. For con-

volution with pipelining, the performance of Algorithm III is slightly better than that of 

Algorithm II. The cost of Algorithm II is half of that required by Algorithm III. So, Algo-

rithm II is capable of yielding good performance at low cost for algorithms that apply con-

current multilevel processing. 

Also, it was shown that multilevel structures provide much better performance in 

most of the cases than conventional pyramids. Therefore, the choice of appropriate multi-

level structures for the implementation of algorithms on hypercube supercomputers 

becomes imperative. 

Stochastic pyramids, alternate multilevel structures studied in this thesis, mold 

their structure to the input image while they are being built bottom-up, and so provide an 

interesting solution to artifacts found in conventional pyramids due to their rigid structure. 

The creation of stochastic pyramids on the hypercube requires much more time than that 

for the conventional pyramid. The hierarchy is constructed in O(log(image-size)) steps. 

The irregular structure is to some extent in contrast to the SIMD structure of the CM-2. 
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