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ABSTRACT 

Recursive Soft Morphological Filters 

by 
Padmaja Puttagunta 

Mathematical morphology which is based on set-theoretic concept, extracts object 

features by choosing a suitable structuring shape as a probe. Morphological filters are set 

operations that transform an image into a quantitative description of its geometrical 

structure: Appropriately used, they can eliminate noises or irrelevancies while preserv-

ing the details of the original image. The applications of morphological filters in image 

processing and analysis are numerous, which include shape recognition, industrial parts 

inspection, nonlinear filtering, and biomedical image processing. 

Soft morphological filters are used for smoothing signals with the advantage of 

being less sensitive to additive noises and to small variations in the shape of the objects 

to be filtered as compared to standard morphological filters. These filters, along with 

many other transformations, such as Fourier transform, averaging, median, and ranked 

order filters, are considered as parallel or non-recursive transformations. In the field of 

signal and image processing, however, apart from these parallel transformations, a class 

of recursive transformations such as sequential block labeling, predictive coding, adap-

tive dithering, and sequential distance transforms, are widely used. In chapter two, we 

introduce recursive soft morphological filters which provide better smoothing capabili-

ties and consume less computational time to reach the root signal. The properties of 

recursive soft morphological filters, the cascade combination of these filters, and idem-

potent recursive soft morphological filters are presented. These properties allow prob-

lems in the implementation of cascaded recursive soft morphological filters to be reduced 

to the equivalent problems of a single recursive standard morphological filter. 



Ever since Zadeh introduced the concept of fuzzy set theory in 1965, it has found 

many applications in a variety of fields. The significance of the the fuzzy logic is pri-

marily because it is based on a very intuitive, although somewhat subtle, idea capable of 

generating many intellectually appealing results that provide new insights to old, often-

debated questions. The fuzzy logic has been developed in order to capture the uncertain-

ties associated with human cognitive processes such as in thinking, reasoning, percep-

tion, etc. 

In Chapter one, we survey the role of fuzzy sets, namely for object extraction and 

pattern recognition, and assess the strength and limitations. Our survey covers the vari-

ous algorithms presented, applications, and mathematical foundations. 

It is possible to generalize and develop fuzzy approaches for many well-known 

imaging pperations, such as skeleton extraction, enhancement etc., all of which can be 

used effectively in processing an image pattern. Previous research has accomplished 

major tasks by utilizing the concepts of fuzzy set theory. In Chapter three, we present an 

algorithm for skeleton extraction which also ensures connectivity in the resulting skele-

ton. This algorithm uses the center of gravity measure effectively. In chapter f our, we 

present an innovative algorithm for polygonal curve fitting by efficiently using the adja-

cency feature of fuzzy sets. In Chapter five, the future research to perform Image 

Enhancement by minimizing the degree of adjacency is outlined. 
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CHAPTER 1 

INTRODUCTION 

1.1 Recursive Soft Morphological Filters 

Mathematical morphology which is based on set-theoretic concept, extracts object 

features by choosing a suitable structuring shape as a probe [4,10,11,14]. Morphological 

filters are set operations that transform an image into a quantitative description of its 

geometrical structure. Appropriately used, they can eliminate noises or irrelevancies 

while preserving the details of the original image. The applications of morphological 

filters in image processing and analysis are numerous, which include shape recognition, 

industrial parts inspection, nonlinear filtering, and biomedical image processing. 

Mathematical morphology which is based on set-theoretic concept, extracts object 

features by choosing a suitable structuring shape as a probe [4,10,11,14]. Morphological 

filters are set operations that transform an image into a quantitative description of its 

geometrical structure. Appropriately used, they can eliminate noises or irrelevancies 

while preserving the details of the original image. The applications of morphological 

filters in image processing and analysis are numerous, which include shape recognition 

[1,13], industrial parts inspection [12,16], nonlinear filtering [3,8,9], and biomedical 

image processing [10,15]. 

The structuring element in morphological filters can be regarded as a template 

which is translated to each pixel location in an image. These filters can be implemented 

in parallel due to the fact that each pixel's value in the transformed image is only a 

1 
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function of its neighboring pixels in the given image [5]. Also, the sequence in which the 

pixels are processed is completely irrelevant. Thus, these parallel image operations can 

be applied to each pixel simultaneously if a suitable parallel architecture is available. 

Parallel image transformations are also referred to as non-recursive transformations. 

In contrast to non-recursive transformations, a class of recursive transformations are 

also widely used in signal and image processing, for example, sequential block labeling, 

predictive coding, and adaptive dithering [5,10]. The main distinction between these two 

classes of transformations is that in the recursive transformations, the pixel's value of the 

transformed image depends upon the pixel's values of both the input image and the 

transformed image itself. Due to this reason, some partial order has to be imposed on the 

underlying image domain, so that the transformed image can be computed recursively 

according to this imposed partial order. 

Koskinen et al. [6,7] introduced soft morphological filters which possess the desir-

able property of being less sensitive to additive noises and to small variations in the 

shape of the objects to be filtered. The structuring element in soft morphological filters is 

divided into two parts: one being the "hard center" and the other being the "soft boun-

dary." Soft morphological filters can also be viewed as a special class of the weighted 

order statistic filters [2,8], where only two weights are given to the two parts of the struc-

turing element. A greater weight of the assigned order index is given to the hard center 

and a weight of one is given to the remaining elements which lie outside the hard center 

and within the boundary. In chapter two, we introduce recursive soft morphological 

filters and their properties. A novel idea of reducing the cascaded recursive soft morpho-

logical filters to a single recursive standard morphological filter is presented. A new class 

of idempotent recursive soft morphological filters and their properties are also presented. 
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1.2 Object Extraction and Pattern Classification Using Fuzzy Sets 

1.2.1 Introduction To Fuzzy Theory 

Ever since Zadeh introduced the concept of fuzzy set theory in 1965, it has found many 

applications in a variety of fields. The significance of the the fuzzy logic is primarily 

because it is based on a very intuitive, although somewhat subtle, idea capable of gen-

erating many intellectually appealing results that provide new insights to old, often-

debated questions. The fuzzy logic has been developed in order to capture the uncertain-

ties associated with human cognitive processes such as in thinking, reasoning, percep-

tion, etc. A conventional set is defined as a collection of elements which have some 

common properties. The sets are known as crisp sets and are defined by a characteristic 

function as 

3 

where A is any finite set. However, the object classes generally encountered in the real 

world are not so "precisely" or "crisply" defined. In most cases, several ambiguities 

arise in the determination of whether a particular element belongs to a set or not. A good 

example mentioned by Zadeh is a class of animals. This class clearly includes dogs, cats, 

tigers, etc. and excludes rocks, plants, houses, etc. However, an ambiguity arises in the 

context of objects such as bacteria and starfish with respect to the class of animals. 

Unlike a crisp set in which each object is assigned a value of 0 or 1, each object in a 

fuzzy set is given a certain "degree of membership" which denotes the degree of 



4 

belongingness of the object to the set. The notion of the plausibility of set membership 

leads to the generalization of the degree of membership in a set, and from this generaliza-

tion comes a varient of the crisp set theory, called the fuzzy set theory. Therefore, a 

fuzzy set.can be considered as a class of objects with a continuum of membership grades. 

The membership function assigns to each object a degree of membership value ranging 

from 0 to 1. The closer the membership value is to 1, the more the object belongs to the 

set, and vice versa. 

Over the years, fuzzy set theory has received more and more attention from 

researchers in a wide range of scientific areas, especially in the past few years. System-

Oriented problems such as Decision-Making, Fuzzy Control, Learning Systems, Pattern 

Classification, Fuzzy Diagnosis, Identification of structures etc., utilize the fuzzy 

approach. The applications also concern the following fields: Artificial Intelligence and 

robotics, Image processing, speech recognition, biological and medical sciences, appl ied 

operations research, economics and geography, sociology, psychology, linguistics, semi-

otics, and some more restricted topics. 

In this chapter, we survey the role of fuzzy sets, namely for object extraction and 

pattern recognition, and assess the strength and limitations. Our survey covers the vari-

ous algorithms presented in this field, applications, and mathematical foundations. 



1.2.2 Role Of Fuzzy Geometry In Image Analysis 

Image processing inherently bears some fuzziness in nature. This is due to the fact that 

the regions in the image are not always crisply defined. The approach to the analysis or 

interpretation of an image requires traditionally to segment the image into meaningful 

regions, extract the features of each region, and finally construct the relationships among 

the regions. However, due to the fuzzy behavior of the images, it is convenient to regard 

the regions of the image as fuzzy subsets of the image. Rozenfeld generalized the stan-

dard geometrical properties to the properties of fuzzy image geometry, such as topologi-

cal connectedness, adjacency, surroundedness, area, perimeter, etc. based on which many 

significant algorithms utilizing the concepts of fuzzy geometry in the field of image 

analysis have been developed. 

Definitions of Fuzzy sets 

A fuzzy set of a grey-scale image S is a mapping p. from S into the values ranging [0, 1]. 

For any pixel p E S, µ (p) is called the degree of membership of p. 

The mapping function 1.t is any function which follows the properties of symmetry 

and ambiguity around the cross-over point. From the definition above, one may assume 

that the fuzzy set is identical to the probability function. However, there are significant 

differences between these two. For example, the summation of all the values of the pro-

bability function should be equal to 1, which is not the case in fuzzy sets. The summa-

tion of all the values of the degree of membership in a fuzzy set need not be equal to 1. 

Several definitions in fuzzy sets are given below. 

5 
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(a) Empty set: A fuzzy set µ is said to be empty, denoted by A = 0, iff µ(x) = 0, oppA 

x E S. 

(b) Equality: Two fuzzy sets µ and v are said to be equal, denoted by µ = v, iff 

µ(x) = v(x) , oppA x E S. 

(c) Support The support of a fuzzy set µ is an ordinary subset of S, i.e., Supp (µ) = { 

X E Sipt(X) > 0 }. 

(d) Cross-over points: The elements x E S such that µ(x) = 1/2 are called cross-over 

points of p, . 

(e) Normalized fuzzy set: 1.t is said to be normalized iff oppE x E S, µ(x) = 1. 

(f) Height of µ : The height of a fuzzy set µ is defined as hgt(µ) = sup { µ(x) }, i.e., the 

height of µ is defined to be the least upper bound of µ(x). It is therefore obvious that for a 

normalized fuzzy set µ, hgt(µ) = 1. 

(g) Cardinality of a fuzzy set: When X is a finite set, the cardinality IA I of a fuzzy set A is 

defined as IA I=Zµ (x) IA I is also called the power of A. 

(h) Convexity of a fuzzy set: There are several alternative definitions to the convexity pro-

perty of fuzzy sets. Listed below are three of major ones. 

Definition 1. A fuzzy set µ is said to be convex if for every p, q belonging to S, and 

all t: on the line segment pq, we have µ (r) >= min[ µ (p), µ (q) ]. This implies 

that µ is fuzzily convex, if it is convex in the ordinary sense. 
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Definition 2. A fuzzy set 11 of X is convex iff the sets T defined by Ta  = { 

x E S hi (x) >= a } are convex for all in the interval (0,1]. The sets Ta  are called 

the "level sets" of 11 . 

Definition 3. A direct definition of convexity is the following: il is convex if 

µ [ X xi + (1— X )x2 ] -?.. min [ p. (xi ), 11 (x2 )1 

for every xi, x2  belonging to S and in [0,1]. 

(i) Cross-Section: The cross-section of p. by a line 1 is defined as the restriction of II to 

1. 

(j) Star-shapedness: p, is star-shaped from p if its cross-sections by lines through p are 

all convex. 

Set Theoretic Operations 

(a) Union: The union of two fuzzy sets A and B with their respective membership func-

tions fA(x) and fB(x) is a fuzzy set C, denoted as C =A u B, whose membership func-

tion is 

fc(x) = max [ fA(x), fB(x) l, oppA x E X 

The union of two fuzzy sets A and B can be interpreted as the smallest fuzzy set contain-

ing both A and B. Let D be any fuzzy set containing both A and B. Since fp f A  and 

fp ..?.fB, we have fp ?.. max [ fA, fB  ] =fc. 

(b) Intersection: The intersection of two fuzzy sets A and B with their respective 

membership functions fA  and fB  is a fuzzy set C, denoted as C =A n B, whose 
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membership function is fc(x) = min [ fA(x), fB(x) ], x e X. The intersection of two fuzzy 

sets can also be interpreted as the largest fuzzy set which is contained in both. 

Corollary: A and B are disjoint if their intersection C is empty, i.e., fc(x) = 0. 

(c) Complement: The complement of a fuzzy set 12 is denoted by rt and is defined as 

• (x) = 1— 1.t (x), oppA x E S. 

(d) Containment: A fuzzy set 1.t is said to be contained in another fuzzy set v iff 

• (x) 5 v (x) , oppA X e S. 

Properties: 

(a) Commutativity: A u B =B t..)A;A nB =B n A. 

(b) Associativity: (A v B) v C= A v (B v C); (A n B )nC=A n (B n C) . 

Note: the above two properties follow immediately for union and intersection because 

their corresponding operators of Max and Min are associative and commutative. 

(c) Idempotency: A k.) A= A; A n A= A. 

(d) Distributivity: A t..) (B n C) = (A L.) B)n(A v C); A n (B L.) C) = (A n B) L) (A n C). 

(e) A n 0 = 0; A X=X. 

(f) Identity: The identity element with respect to union k.) is 0 and with respect to inter-

section is X. 



(g) Absorption: A u (A n B) = A ; A n (A u B) = A. 

(h) De Morgans laws: (A l..) B) = A n B; (A n B) = A u B. 

(i) Involution: A = A. 

(j) Equivglence formula: (A u B)n(A u B) = (A n B) u (A n B). 

(k) Symmetrical difference formula: (A n B) u (A nB) = (A u B) (A k.) B). 

Alternative Operators 

(a) Probabilistic operators: 

1. Intersection: For every x e X, g A mdot B (x) = pt A(x)mdot µ B(X). 

2. Union: For every x E X, I.IA +B(X) = 11A(X) + IIB (X) — µA(X) mdot µB(x). 

9 



1.2.3 Old Definitions And New Versions 

Pal et.al  [18], have modified some of the old definitions and formulated a set of new 

definitions. Based on these definitions, a number of algorithms for object extraction 

have been presented. The new definitions are as follows: 

The height and width of a fuzzy set Ix as given by Rozenfeld have been modified by 

the authors above, yielding the definitions for the length and the breadth of a fuzzy set. 

Whereas the height was defined as the summation of the maximum of the membership 

values along each column, the new definition defines the length to be the maximum of 

the summation along each column. That is, the height and length are given by 

height :h (11)=maxp.(x,y)dy 

length:1 (1.)naxii(x,y)dy 

The width is defined as the summation of the maximum membership values along 

each row, and the corresponding new definition of breadth computes it to be the max-

imum of the summation of the membership values along each row. In other words, 

the width and breadth are defined as 

width :w 0.0=maxpt(x,y)dx 

breadth :b (µ)nazi.t(x,y)dx 

Remarks: According to the definitions stated above, the new definitions do not provide 

significant improvement over the old definitions. Also, when applied to any image pro-

cessing algorithm, they do not exhibit any outstanding improvement over the previous 

definitions. 

10 
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However, the definition of the index of area coverage (IOAC) which is an indicator 

of the fraction of the maximum area actually covered by the object, and which is some-

what similar to the compactness measure(since both these functions are used to deter-

mine the same goal) is used efficiently in object extraction algorithms. Based on this 

property, the authors have also formulated an algorithm for object extraction which 

incorporates the idea of optimizing the IOAC. The definition of IOAC is 

IOAC: Ioac(µ)=a(µ) I 1(µ)b(µ) 

The authors have also modified the definition of "adjacency" and "degree of adja-

cency" have also been modified. The new definitions fit very well with the geometric 

notion of adjacency. The adjacency measure is therefore directly proportional to the 

length of the common border between the two fuzzy sets and is inversely proportional to 

two factors: the distance between the regions, and the difference of the grey levels. Two 

peicewise constant fuzzy regions µ. and t are said to be more adjac ent to each other if the 

difference in the membership values of 1.1 and t is less. 

The degree of adjacency as given by Rozenfeld is a measure of the physical adja-

cency between the two regions, but does not take into account the membership values. 

The new definition, however overcomes this drawback and defines a function for the 

degree of adjacency which combines the new adjacency definition with the old definition 

of the degree of adjacency. In other words, it considers both the physical distance as well 

as the difference between the grey levels of the two fuzzy regions. These new functions 

defined take into account account the local information. 

An object extraction algorithm has been presented which uses the foundation of 

optimum degree of adjacency. This is due to the definition of the degree of adjacency 

that the greater the difference in grey levels between pixels, the greater distance between 

them, and hence the lower degree of adjacency. Therefore, a lower value of adjacency 
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implies that the segments formed are more separable considering both their grey levels 

and the physical distance. 

This algorithm works as follows. The algorithm starts with selecting a threshold 's' 

from the grey level range of the picture. Next, we calculate the degree of adjacency. A 

coouccurance matrix is used to compute the degree of adjacency. This matrix is a two 

dimensional array of size L x L (where L is the number of gray levels in the picture), and 

the value of each location (i,j) gives the number of times gray level j follows grey level i. 

The meaning of j is a neighbor of grey level i, where 'neighbor' can be considered as 

either 8 neighbor or 4 neighbor. The degree of adjacency is computed for different 

values of the threshold 's'. The value of optimal segmented version of the image. 

This algorithm which optimizes the degree of adjacency between two regions with 

respect to the grey levels, takes into account the spatial information. Although this algo-

rithm can be applied to any kind of image, computation of the co-occurance matrix can 

be time consuming. 

The author formulates similar functions to extract the object by optimizing the 

compacMess/IOAC. The method involves using the standard `S` function to extract a 

bright image. Later, the cross over point is iteratively changed, and in each such itera-

tion, the COMP/IOAC is computed. The 12(x) plane having the optimum COMP/IOAC 

is treated as the optimum fuzzy segmented version. This algorithm is based on local 

information and also takes the shape of the object into account. 

Skeleton Extraction By Using IOAC/COMPACTNESS: 

The fuzzy geometric concept of IOAC/Compactness is used in an algorithm which 

extracts the skeleton of an image. 

The fuzzy version of the image is fed as input to the algorithm. New membership 

values are then assigned to the pixels denoting the degree of belongingness of the pixel to 
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the skeleton of the object. These membership values are assigned depending upon two 

factors, namely, the maximum intensity, and the property of occupying vertically and 

horizontally middle positions from the edges. Finally, the skeleton is chosen from one of 

the a-cuts of the new fuzzy plane, i.e., that fuzzy plane which yields a 

minimum value of the IOAC/comp value. For any other value of a, comp(µ) would be 

greater. 

This paper has made an attempt to implement the concept of fuzzy geometry in 

image processing/analysis problems. Many new geometric functions such as minor and 

major axis, center of gravity and density, length etc., have been introduced. While no 

algorithm has been developed as yet which incorporates many of these new features, 

however, the scope of these functions in the field of image processing/analysis has to be 

further investigated since this promises to be a fruitful field. 
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1.2.4 Breast Cancer Detection Based On Fuzzy Entropy Thresholding 

Similar to the numerous types of cancers in the human body, such as lung cancer, kidney 

cancer etc., breast cancer, which effects almost a ninth of the female population in the 

United States of America, can be treated effectively with the existing methods of treat-

ment, if detected at an early stage. Therefore, detecting the cancer tubules( one type of 

breast cancer lesions) at an early stage is of primary importance. Xueqin Li et.al, at the 

Utah State University have done significant research in this area and have developed a 

computer-aided diagnose system for processing a digitized microscopic slide image to 

compute tubule estimation. The algorithm is based on maximizing the fuzzy entropy to 

thereby select the threshold of the image. T he entropy of an image is used as a parame-

ter for measuring the degree of ambiguity of an image. 

Definition of Entropy 

Entropy of a system (Shannon's Definition): The entropy of a system is a measure of 

uncertainty about its actual structure. 

Shannon's definition of entropy of an 'n' state system is 

i=n 
H = —Epi log (pi) 

where pi is the probability of occurence of event i and the summation of the total proba-

bility for all n states is 1. 

Entropy of an image: The entropy of an image, based on the above definition, is given 

by 
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i=L-1 
H = — pi log (pi); pi =Ni IN 

Aposteriori Entropy of the Image: Aposteriori entropy of the image is defined as 

HL  (S) = —Ps log (Ps )—(1—Ps )log (1—Ps ) 

where S is the threshold. 

Criteria for Detection of Tubules: 

The process of detecting tubules in the microscopic slide image is a difficult task pri-

marily due to the rich variations of grey level intensities, and also due to the presence of 

noise and the very rich image textures consisting of glands and fatty tissues which 

increase the background variations of tubule areas. To solve this difficulty, the 

computer-aided diagnose system incorporates the diagnosis strategy of the physicians in 

the early stage, namely, tubules are detected in a medical image due to thre e reasons: 

a) brightness-tubules are brighter than the surrounding tissues and the background; 

b) homogeneous region-most tubule areas have uniform density; 

c) dark boundary-tubules are surrounded by dark edges. 

The algorithm works as follows. First, the standard "S" function is used to com-

pute a bright image plane with a particular band width. Next, the amount of entropy is 

computed for a selected value of the grey level of the image within the bandwidth. The 

entropy value is then computed iteratively by varying the selected grey level. Finally, 

the image plane with the maximum entropy value is regarded as the fuzzy segmented 

version of the image. 



16 

The method suggested in this paper has been proved experimentally to work well 

with noisy and vague images. However, it involves thresholding the image twice, firstly 

to separate the object from the background, and secondly to separate tubule regions from 

glands and fatty tissue areas within the extracted object. The threshold values are chosen 

from the experience of medical doctors. Thus, fuzzy theory plays an important role in the 

field of medical sciences also. 
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1.2.5 The Role Of Fuzzy Sets In Image Description And Primitive Extraction 

The theory of fuzzy sets has been applied extensively to the understanding of an image. 

Image understanding differs significantly from Image processing. In fact, the field of 

pattern recognition can be considered as a two fold task, namely, image processing and 

image understanding. Image processing takes as input an image and also produces as 

output an improved version of the input image. The process between taking the input 

and producing the output typically involves operations such as enhancement, re storation, 

smoothing, sharpening and other noise detection techniques in order to extract the objects 

in the picture. In contrast, the process of image understanding involves inputing an image 

but producing as output an interpretation and description of the image, rather than an 

image itself. Pal et al. [18], have done a significant amount of research in applying the 

theory of fuzzy sets to the understanding of an image. 

The application of fuzzy sets for image understanding 

The model presented in the paper assumes an edge-detected image to be the input. It 

then produces as output the automatic interpretation and description of the image. The 

major steps involved in the process consist of: 

1. Encoding the image contours to represent them by octal-coded strings 

2. Smoothing of chains to remove spurious wiggles in the contours 

3. Segmentation and assignment of degree of arcness to each segmented smoothed 

chain. 

Fuzzy membership functions are used both in the process of assigning the octal 

codes and in obtaining the arcness of the image. Initially, each line segment of the image 
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is assigned four memberships corresponding to four different fuzzy sets, namely a verti-

cal fuzzy set, horizontal fuzzy set, oblique fuzzy set, and an 'arc' fuzzy set. The vertical 

fuzzy set depicts the degree of belongingness of the line segment to being a vertical line. 

Similar definitions follow for the other fuzzy sets. An octal co de is generated for each 

line segment depending upon the maximum of the vertical, horizontal, and oblique 

membership values. This code is then fed to smoothers which remove any spurious wig-

gles in the contour. 

Although the method involves employing the fuzzy set theory in assigning the octal 

codes, the main drawback of this method sprouts from the application of smoothers 

which tend to vary the original contours of the image in the process of removing spurious 

wiggles. 



1.3 Conclusions 

In this chapter, several properties of fuzzy sets and their applications in the field of image 

processing and pattern recognition have been presented. Fuzzy set theory is helpful in 

weakening crisp decisions (as is done in the case of conventional techniques). Rozenfeld 

[19], had explained various concepts of fuzzy geometry in a grey image, many of which 

are generalizations of crisp properties of, and relationships between, regions in an image. 

These extensions include the topological concepts of connectedness, adjacency and sur-

roundness, star-shapedness and convexity, area, perimeter, compactness, height, width, 

extent, diameter, etc. 

Many new geometric functions such as minor and major axis, center of gravity and 

density, length etc., have been introduced. While no algorithm has been developed as yet 

which incorporates many of these new features, however, the scope of these functions in 

the field of image processing/analysis has to be further investigated since this promises to 

be a fruitful field. 
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CHAPTER 2 

RECURSIVE SOFT MORPHOLOGICAL FILTERS 

2.1 Definitions of Soft Morphological Filters 

The underlying strategy in morphological transformations is to expose the characteristics 

of an object by probing its microstructure with various forms which are known as struc-

turing elements. The analysis is geometrical in nature and it approaches to image pro-

cessing from the vantage point of human perception. This unique feature, however, is 

accompanied by some drawbacks such as being highly sensitive to additive noises and to 

defects in the image. The structure of the soft morphological filters was designed in such 

a manner that the filter is more tolerant to the defects in shape and to additive noises 

[6,7]. 

Let A and B be two finite convex sets in the N-dimensional Euclidean space E N. 

The constraint on the two sets is A g B, and B is divided into two subsets: the hard 

center set (A) and the soft boundary set (B \ A), where "\" denotes the set difference. 

Also let k be a positive integer, such that 1 k 5 min { Card (B)12, Card (B\A) }, where 

Card (B) denotes the cardinality of the set B. The translation of a set A by a vector 

z E EN  is defined by 

Az .{a+ziae A} 

A collection set of pixels where repetition is applied is called a multiset. The repeti-

tion k times of f (a) is represented by { k .c). f (a)) = {f (a), f (a), • • • , f (a)) (k times). 

The formal definitions of soft morphological transformations are given as follows, where 
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the input image f is gray scale and the structuring element B is binary (in other words, A 

is also binary since A c B). That is no gray value is assigned to the structuring element, 

or the structuring element is flat on the top. 

Definition 1: The soft morphological dilation of f by [B, A, k] is 

(f e [B, A, k])(x)= kth largest of multiset (1) 

1 k .0. f(a)1a€AA u {f(b)lbE(B—Mx i• 

Definition 2: The soft morphological erosion of f by [B, A, k] is 

(f e [B, A, k])(x)=kth smallest of multiset (2) 

{ k .o. f (a)laeitx}u if (b)lbe(B—A)x }. 

Definition 3: The soft morphological opening of f by [B, A, k] is 

f 0 [B, A, k] = (f 0 [B, A, k]) e [B, A, k]. (3) 

Soft morphological opening is defined as a soft morphological erosion followed by a soft 

morphological dilation. Soft morphological closing in the opposite sequence of dilation 

and erosion is called the morphological dual to opening. 

Definition 4: The soft morphological closing of f by [B, A, k] is 

f o [B, A, k] = (f e [B, A, k]) e [B, A, k]. (4) 
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Note that when k = 1, the soft morphological operations correspond to the standard mor-

phological operations. 

Since soft morphological filters adopt order statistics [2] and mathematical mor-

phology [4,10,11], they can be viewed as weighted order statistic filters which apply set 

union operation and more weights are given to the pixels in the hard center than to the 

pixels in the soft boundary. Since general recursive structures usually provide better 

smoothing capabilities and take less computational time even though at the expense of 

increased detailed distortion [5,10], the recursive soft morphological filters with the 

advantage of preserving the fine details of shape are worthy of investigation. In the next 

section, the definitions and the basic properties of recursive soft morphological filters are 

presented. 
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2.2 Definitions And Properties Of Recursive Soft Morphological Filters 

Recursive filters are the filters which use previously filtered outputs as their inputs. Let 

xi and yi denote the input and output values at location i, respectively, where i = 

{0, 1, • • • , N-1}. Let the domain of the structuring element be 

<—L, • • • , —1, 0, 1, • • • , R >, where L is the left margin and R is the right margin. 

Hence, the structuring element has the size of L+R+1. Start up and end effects are 

accounted for by appending L samples to the beginning and R samples to the end of the 

signal sequence. The L appended samples are given the value of the first signal sample; 

similarly, the R appended samples receive the value of the last sample of the signal. 

Definition 5: The recursive counterpart of a nonrecursive filter 111  given by 

(xi-L, • • • , xi_i , xi, xi+i, • • • , xi+R) (5) 

is defined as 

Yi = '1` (yi_L, • • • , xi, xi+i, • • • xi+R) (6) 

by assuming that the values of yi_L, • • • , yi-1 are already given. 

The ordering relationship that exists between standard morphological operations 

and soft morphological operations is 

fe B 5fe [B,A,Ic] 5P134 B. (7) 

However, in the case of recursive soft morphological filters, no underlying ordering 

relationship can be given with respect to standard morphological filters. They can be 
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greater than or smaller than the corresponding standard morphological filters depending 

upon the input signals. 

Example 1: Let B = < —2-1012 >, A = < —101> , and k = 2. Let the input signal f = { 

472968547 }. We have 

f9B={799999887}, 

f [B,A,k] 779998877 ), 

al. [B,A,k]= { 779999999 }, 

where " 0, " denotes the recursive soft morphological dilation. 

From the above example, it is evident that recursive soft morphological filters are 

neither completely greater than or smaller than standard morphological filters. However, 

the ordering relationship that exists between soft morphological filters and their recursive 

counterpart is 

f er  [B,A,k] S f e [B,A,k] S f [B,A,k] S f [B,A,k]. (8) 

Definition 6: A filter 'I' is said to be idempotent ifT(41(f )) = IF(f ) for any input signal f. 

Definition 7: A filtertlfis said to be extensive ifT(f (x)) f (x) for every x. Otherwise, 

if WV (x)) 5 f (x), the filter is said to be anti-extensive. 

Definition 8: A filterWis said to be increasing if for any two input signals f and g, such 



25 

that f (x) 5 g (x) for every x, the resultant outputs satisfy the relationship 

til(f (x)) (g (x)). 

We prove that recursive soft morphological filters are increasing by first proving 

that if a soft morphological filter is increasing, then its recursive counterpart is also 

increasing. 

Theorem 1: If a soft morphological filter is increasing, then the recursive soft morpholog-

ical filter is also increasing. 

Proof: Let two input signals be f (x) = {x0, x 1 , • • • , xN--1 } and g (x') = 

(x0', x1', • • • , xN _1') and have the ordering relation of f (x) g (x') for every x and x'. 

We need to prove that for every yi and 

Yi • • 9 Xi, Xi+1, • • • , Xi+R) 

tRyi_L,', • • • , xi', • • • , xi+R')=Yi' 

That is yi 5 y for every i. We prove the theorem by induction. Since the recursive and 

non-recursive filters of yo and yo' only depend upon the values of the input pixels 

{x0, • • • , xR } and {x0', • • • , xR'}, respectively, which have the ordering of 

(x)) tP(g (x')), the initial condition of i = 0 is satisfied Assume that the condition is 

true for i = L-1. That is the output values at locations {0, • • • , L-1} satisfy the condi-

tion. Now for i = L, we have 

YL, =Ivo, • • • , xL+1, • • • , xL+R) 

.. 111070'9 • • • 9 YL-1% XL', XL4-1% • • • 9 XL+R')=YL: 
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simply because the output values at locations {0, • • • , L-1} and the input values at 

locations {L, • • • , L+R} both satisfy the condition. This implies that the recursive coun-

terpart of also has the increasing property. ❑ 

Based on the above theorem, in order to prove that recursive soft morphological 

operations are increasing, it is sufficient to prove that the non-recursive operations are 

increasing. 

Theorem 2: Soft morphological dilation and erosion are increasing. 

Proof: Let f and g be two input signals such that f (x) g (x) for every x. According to 

the definition of soft morphological dilation, we have 

f [B,A,k] =kth largest of [{ k f (a)laelix} u tf (b)lbe(B—A)x }) 

th largest of [{ k g(a)laeAx } v {g(b)lbe(B—A),}) =g [B,A,k]. 

Thus for every x, 

(f ED [B, A, k])(x) 5_ (g [B, A, k])(x)• 

The proof for soft morphological erosion can be similarly derived. ❑ 

Theorem 3: Soft morphological closing and opening are increasing. 

Proof.• Let f and g be two input signals such that f (x) S g (x) for every x. Let D and E 

denote soft morphological dilation and erosion, respectively. According to the increasing 

property of dilation, we have D [f (x)] SD [g (x)]. Taking the soft morphological erosion 

of the dilated results yields E [D [f(x)]] 5 E [D [g (x)]] for every x, according to the 
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increasing 

property of soft morphological erosion. This result implies that soft morphological clos-

ing is increasing. By changing the above ordering of soft morphological dilation and 

erosion, we obtain the result that the soft morphological opening is also increasing. 0 

Preposition 1: From Theorems 1-3, we can state that recursive soft morphological dila-

tion, erosion, opening and closing are all increasing. 

Example 2: Let two input signals f = { 7 2 8 3 4 9 6 1 } and g = { 8 5 9 7 5 9 6 2 }.Con-

sider a structuring element [B,A,k], such that B = < —2 —10 >, A = < —1 0 >, and k = 2. 

Applying the recursive soft morphological dilation on f and g yields 

f E14. [B,A, 2] = { 7 7 8 8 8 9 9 9 } 

g (14. [B,A,2]= { 8 8 99 9999 } 

Theorem 4: Recursive soft morphological dilation is extensive, and recursive soft mor-

phological erosion is anti-extensive. 

Proof: Abcording to the definition of soft morphological dilation, the values of the mul-

tiset k o f (a)lae Aix } u {f (b)lb E(B —A)x } are sorted in the descendent order and the 

kth largest is selected. If f (x) is the maximum value in the set B, it is selected as the out-

put after the repetition k times. If f (x) is not the maximum value in B, the selected kth 

largest value must be greater than or equal to f (x) after f (x) is repeated k times. This 

implies that for every x, soft morphological dilation is extensive. We can similarly 



derive that the recursive soft morphological erosion is anti-extensive. ❑ 

Example 3:Let f = 34247695 },B=<-2-1012>,A=<-101>,andk=2. 

Applying the recursive soft morphological dilation on f yields 

f a [B,A,2] = { 44477999 }. 

Applying the recursive soft morphological erosion on f yields 

f 6,. [B,A,2] = ( 32222222 ). 

Theorem 5: Recursive soft morphological opening and closing are neither extensive nor 

anti-extensive. 

Proof:• Let f be any input signal. Also let D[f (x)] and E[f (x)] denote the dilated and 

eroded values at any point x belonging to f, respectively. If we perform a recursive soft 

morphological erosion first on f, we have E[f (x)] 5 f(x) for every x belonging to f. Per-

forming a recursive soft morphological dilation on these values, i.e., an opening which is 

denoted by 0, yields 0 [f (x)] E [f (x)] for every x belonging to f. This implies that the 

final output 0 [f (x)] may be greater than, equal to, or less than the initial input value 

f(x). The proof can be similarly derived for the recursive soft morphological closing. ❑ 

Example 4: Given f = ( 2 3 4 1 0 2 3 ). Let B = < —2-1012 >, A = < —101 >, and 

k =2. After performing a recursive soft morphological erosion, we have the result to be 

{ 2 2 1 0 0 0 0 }. Applying a recursive soft morphological dilation on this result 

yields { 2 2 2 2 2 2 2 }, which is neither completely greater than nor less than the 

input signal f. 
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From the definition of recursive soft morphological dilation and the properties of 

scalar multiplication, the result obtained by multiplying the dilated value of the input sig-

nal by a positive constant is equal to the result obtained by initially performing a recur-

sive soft morphological dilation and then multiplying it by a positive number. We give 

the property without proof. 

Property 1: Recursive soft morphological filters are scaling-invariant. 

Example,5. Consider f = { 2 3 4 0 1 2 3 }. Let B = < —2 —1 0 1 2 >, A = < —1 0 1 >, and k 

= 2. The output after applying a recursive soft morphological erosion is { 2 2 0 0 0 0 

0 }. Multiplying this by 2 gives { 4 4 0 0 0 0 0 }. Now multiplying f by the scale 2, 

we have { 4 6 8 0 2 4 6 }. Applying a recursive soft morphological erosion on this, 

we have { 4 4 0 0 0 0 0 }. 



23 Idempotent Recursive Soft Morphological Filters 

An idempotent filter in Definition 6 maps an arbitrary input signal into an associated set 

of root sequences. Each of these root signals is invariant to additional filter passes and is 

the result of the repeated filter passes on one or more of the input signals. The standard 

morphological opening and closing have the property of being idempotent. In contrast, 

recursive soft morphological opening and closing are not idempotent in the general case. 

However, when the filter is designed in a specific way, recursive soft morphological 

opening and closing are also idempotent. In this section, we will describe idempotent 

recursive soft morphological filters in one dimension along with a few examples. 

If B = < —n, —n+1, • • • , —1, 0 ,l, • • • , n-1, n > and 

A = < —n.+1, • • • , —1, 0 ,1, • • • , n —1 >, where n 1, then we denote the structuring 

element [B,A,k] by [n, n-1, k]. 

Property 2: Recursive soft morphological dilation and erosion are idempotent for the 

structuring element: B of length three, A the central point, and k = 2. That is the structur-

ing element [1,0,2]. 

Example 6: Given f = { 2 3 4 0 1 2 3 }. Let B = < —1 0 —1 >, A = < 0 >, and k = 2. 

Applying a recursive soft morphological dilation on f by [B,A,k] gives { 2 3 4 1 1 2 3 

}. Repeatedly applying the dilation yields the same result. Applying a recursive soft 

morphological erosion on f by [B,A,k] gives { 2 3 3 0 1 2 3 }. Repeatedly applying 

the erosion yields the same result. 
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According to the above property of the dilation and erosion, we can easily derive 

the following property for opening and closing. 

Property 3: Both recursive soft morphological opening and closing are idempotent for 

the structuring element: B of any length and A of no point to the right hand side of the 

center. 

Example 7:Let B = < —2 —1 012 >,A = < —ICI>, and k=2.Givenf=173926358 

}. Performing a recursive dilation yields { 77999999 }. Followed by a recursive ero-

sion yields the closing result { 7 7 7 7 7 7 7 7 ). Performing the closing operation again 

gives the same result. 

Property 4: Recursive soft morphological closing and opening by [n, n-1, k] are idem-

potent, where k = 1 or 2. 

Example 8: Let B = < —3-2-10123 >, A = < —2-1012 > and k = 2. Given 

f = { 69482815 }. Applying a recursive erosion by [3,2,2] gives { 44221111 ). 

Followed by a recursive dilation yields the opening result { 44444444 }. Performing 

the opening operation repeatedly yields the same result. 

Property 5: If the maximum positive impulse (for recursive soft morphological dilation) 

or minimum positive impulse (for recursive soft morphological erosion) of the input sig-

nal lies within the hard center window of the filter during the scanning of the first pixel 

of the input signal, then the filter is idempotent. 
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Example 9:LetB=< -2-1012>,A=<-101>andk=2.Givenf={ 3987256 

3 ). Applying a recursive dilation by [2,1,2] gives { 99999999 ). Repeatedly apply-

ing the filter yields the same result. 

Example 10: Let f= { 43969735 } and [B,A,k] be the same as the previous example. 

Applying a recursive erosion gives ( 33333333 }. Repeatedly applying the filter 

yields the same result. 

Corollary 1: If the kth largest (smallest) value selected during the scanning of the first 

pixel of the input signal for a recursive soft morphological dilation (erosion) happens to 

be the maximum (minimum) positive impulse in the input signal, then the filter is idem-

potent. 

Example 11:LetB = <-3-2-101.23 >,A = < —101> and k =2. Given f= 14511 

9768 ). Applying a recursive soft erosion yields { 11111111 ). Repeatedly apply-

ing the filter yields the same result. 



2.4 Cascaded Recursive Soft Morphological Filters 

Cascaded weighted median filters were introduced by Yli-Harja et al. [17] in which 

several interesting properties of weighted cascaded filters were discussed. We now 

present some properties of cascaded recursive soft morphological filters. By cascade 

connection of filters F and G, we mean that the original input signal f is filtered by the 

filter F to produce an intermediate signal g. Then g is filtered by the filter G to produce 

the output signal h. Cascaded filters F and G can also be presented as a single filter H 

which produces the output h directly from the input f. We now discuss the properties of 

cascaded recursive soft morphological filters. 

Property 6: The cascaded recursive soft morphological filters are not commutative. 

The above property describes that the result of applying cascaded recursive soft 

morphological operations are dependent upon the ordering of the cascaded operators. 

Property 7: The cascaded recursive soft morphological filters are associative. 

The above property describes that the result of applying cascaded recursive soft 

morphological operations is independent of the grouping of the cascaded operators as 

long as the ordering relationship remains the same. 

Observation 1: For any input signal being applied to different cascaded recursive soft 

morphological filters, irrespective of the intermediate results produced, the final outputs 

may be the same. 
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Example 12: Let two filters of [B 1, Ai, k], [B2, A 2, k] be the first cascade combination 

and another two filters of [B 3, A 3, k], [B 4, A 4, k] be the second cascade combination, 

wherek=2,A1  =<-10 >,B1=<-2-10>,A 2 = <-101>,B2 =<-2-1012>, 

A3  = < 0 >, B3 = < -1 0 1 >, A 4  = < -1 0 1 >, and B4  = < -2 -1012 >. Let f= { 92 

13799 }. Applying the recursive soft morphological erosions on f by the first cascade 

combination yields the intermediate result { 9211111 } and the final result { 21111 

11 }. Applying the recursive soft morphological erosions on f by the second cascade 

combination yields the intermediate result { 9213799} and the final result { 21111 

11}. 

Property 8: A cascade combination of recursive soft morphological filters can be 

equivalently represented as a single recursive standard morphological filter. 

Proof: The output of recursive soft morphological filters depends upon two factors, 

namely, the order index k and the length of the hard center. Although the technique to 

combine any two cascaded filters F and G into a single filter H is the same, no direct for-

mula can be given to produce the combined filter H for different cascade combinations. 

Due to the many variations present, we can only present the essential idea in constructing 

the combined filter and illustrate it on some examples. 

We will prove the cascade combination by considering two filters [B 1, A 1, k] and 

[B2, A 2, k] of length five and having a hard center of length three, where k ?. 2. Let 

B 1  = B 2  = < -2-1012 > and A1 = A 2  = < -10 1 >. Denote the input signal f to be 

{x0, X1, -• • • , XN-1}, the output of the first filter to be {yo, Yi, • • • , YN-1 }, and the out-

put of the second filter to be {zo, z 1, • • • , zN_1 }. Since k 2, we have yo = kth largest 

of multiset {k o xo, k o x 1 }, where the multiset need not consider x2. It means that yo 

depends upon (xo, x1). Again, yi = kth largest of multiset {k o Yo, k o x 1, k o x2}. It 
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means that y1  depends upon (yo, xi, x2). Proceeding in this way, we obtain yi to bey; = 

kth largest of multiset {k o yi_i, k xi, k o xi+1 }. It means that yi depends upon (yi_i, 

x1, xi+i). 

According to the definition of cascaded filters, the intermediate output 

{yo, yi, ' ' ' , Yi, ' ' ' , YN-1} is used as the input further processed by the filter 

[B2, A 2, k]. Similarly, we obtain the final output zi  to be zi  = kth largest of multiset 

zi_1, yi, yi+i  }. It means that zi  depends upon (zi_1, xi, xi+1, xi+2). 

The above observation suggests that the result of the cascade combination of filters 

can be equivalently obtained by a single recursive standard morphological filter of 

< -10 1 2 > for this example. Other examples of reducing the cascaded filters into a sin-

gle recursive standard morphological filter can be similarly derived. 0 

Note: The number of computations required also reduces significantly when we use the 

combined filter obtained by the above result. For example, if we have two filters of size 

5 each having a hard center of length 3 and the order index k, then the number of compu-

tations required for an input signal of length N is equal to Nk (5k+3), whereas according 

to Table 1 in the case of the combined filter of size 4, we have only 3N. 

Example 13: Consider the input signal f = {2 4 6 5 8 3 2 3 5 8 3). Let the two recursive 

soft morphological filters with A1  = < 0 >, B 1  = < -1 0 1 >, A 2  = < -10 1 >, B2 = 

< -2 -1 0 1 2 >, and the order index k = 2. By applying a recursive soft morphological 

dilation by [B 1 , A 1 , 2] first, we obtain [2 4 6 6 8 3 3 3 5 8 3). Followed by applying the 

dilation by [B2, A2, 2] yields {4 6 6 8 8 8 8 8 8 8 8). Now according to Table 1, the 

combined recursive standard morphological filter is < -10 1 >. Applying this filter 

directly to the input signal f gives {4 6 6 8 8 8 8 8 8 8 8) which is exactly the same as the 



Table 1. Different Cascade Combination and Their Combined Filters 

(for 2 k S min { Card (B)I2, Card (BNA) }) 

B1 B2 A 1 A2 Combined Filter 

< —101 > < —101> <0> < —10 > < —10 > 

<-2-10> < —101> < —10 > <0> <-2-10> 

<-101> <-2-1012> <0> <-101> <-101> 

<-2-10> <-2-1012> <-10> <-101> <-101> 

<-101> <-2-1012> <-10> <-101> <-101> 

<-2-1012> <-2-1012> <-101> <-101> <-1012> 

output of the cascaded filters. 

The following property provides the reduction for the cascaded filters when k = 1. 

Property 9: If the cascade combination of two filters of any lengths, denoted by 

< —Li • • • —101 • • • R 1  > and < —L2  • • • —101 • • • R2 >, and the order index 

k =1, their combined recursive standard morphological filter will be 

< —101 • • • (Ri+R 2) >. 

Example 14: Let the two recursive soft morphological filters with A 1  = < 0 >, B i = 

< —2-1012 >, A 2  = < -10 1 >, B 2 = < —2-1012 >, and the order index k =1. 
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Consider the input signal f = { 5 2 3 6 9 3 6 1 7 }. Applying a recursive soft morphologi-

cal erosion on f by [B 1, A 1, 1] gives { 2 2 2 2 2 1 1 1 1 }. Now, followed by the erosion 

on the result by [B2, A 2, 1] yields { 2 2 2 1 1 1 1 1 1 }. According to Property 9, the 

combined recursive standard morphological filter is < —10 12 3 4 >. Performing a 

recursive standard morphological erosion on f by this combined filter gives the same 

final result. 



2.5 Conclusions 

In this chapter, several properties of recursive soft morphological filters have been 

presented. Recursive filters, in general, provide better smoothing capabilities at the 

expense of increased distortion. However, in the case of recursive soft morphological 

filters, due to the adaptability of soft morphological filters to noise-based images, the 

increased distortion aspect usually associated with recursive filters is overcome by recur-

sive soft morphological filters. Similar to the cascade combination of median filters, the 

cascade combination of recursive soft morphological filters can be combined into a sin-

gle recursive standard morphological filter with a smaller window size. This crucial pro-

perty reduces the number of computations significantly. A new class of idempotent 

recursive soft morphological filters has also been introduced. 
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CHAPTER 3 

SKELETON EXTRACTION BY USING THE CENTER OF 
GRAVITY 

3.1 Introduction 

Skeleton extraction was performed by Pal et.al. by using the compactness/IOAC meas-

ure. The process involved assigning new membership values to the fuzzy segmented ver-

sion of the image. The membership values were assigned depending upon three factors. 

These include the property of possesing the maximum intensity, occupying vertically and 

horizontally middle positions from the edges of the object. Finally, the optimum skele-

ton is extracted by minimizing the COMP/IOAC measures. However, this proces s 

involves many computations. Our proposed skeleton extraction method reduces the 

number of computations involved significantly and also eliminates the iterations. 

The proposed skeleton extraction method involves mainly the centre of gravity measure 

of fuzzy sets. The centre of gravity is defined as the position of the pixel for which the 

area over a given radius 'r' is a maximum. The direct implication of this definition is 

that the centre of gravity must belong to the core of the image. Therefore, we employ the 

centre of gravity measure effectively in our algorithm to extract the skeleton of the 

image. 
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3.2 Algorithm for Skeleton Extraction 

Geometrical properties play an important role in picture analysis and discription. One of 

those is the connectivity property. The proposed method for the skeleton extraction also 

ensures that connectivity is preserved in the output skeleton. Rozenfeld [19], had 

extented the topological concepts of connectedness and surroundness to fuzzy sets and 

and developed some of the basic properties of these generalized concepts. 

Connectivity is defined as: 

Two points P and Q in a fuzzy set are connected if there exists a path P = P 0, P 1, —, Pn 

= Qsuch that (Pi) >= min((P), (Q)), 1<=i<n. 

The algorithm for skeleton extraction is 

1. First, we compute the centre of gravity of the image by fixing a certain 

radius 'r'. If the centre of gravity computed is not unique, in other words, if two or more 

pixels possess the maximum energy, then we vary the radius r and compute the centre of 

gravity. 

2. Secondly, depending upon this value of the centre of gravity, we fix a cer-

tain tolerance limit. This is a user defined parameter. 

3. Third, we compute the area (energy) of each pixel by taking the same 

radius r. If the energy value lies within the tolerance limit, we assume that the pixel 

belong's to the core (skeleton) of the image. Store all the selected points in an array. 

4. Next, for each selected pixel, we determine the connectivity with respect to 

the other selected vertices. This is done in the following way: 

a) For each of the pixels, we determine whether any of its 

eight neighbours exist in the selected array. If exists, this pixel is determined to be 
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connected to the rest of the pixels. 

b) Else, we check the array for any pixel which has the same vertical align-

ment with the current pixel. If exists, we store all the points lying between the two pixels 

in a 'store' array. 

c) If there are no pixels in the initial selected array which have the same 

vertical alignment, we check for any pixel which has the same horizontal allignment with 

the current pixel in the initial selected array. If exists, we store all the points lying 

between the two pixels in the 'store' array 

d) Else, we discard the pixel. 

5. Finally, we plot all the pixels in the initial selected array, which have not 

been discarded, and the pixels in the store array. This gives a skeleton which is con-

nected. 

Example: Let the fuzzy version of the image be 

0.8 0.4 0.3 0.9 0.9 

0.6 0.7 0.2 0.6 0.4 

0.4 0.3 0.5 0.7 0.3 

0.6 0.8 0.6 0.5 0.4 

0.8 0.1 0.5 0.9 0.7 

We compute the area (energy) of each pixel. The area is computed by considering 

the four neighbours of each pixel. Boundary pixels are assumed to have a neighbour of 

membership value 0. The values of the areas of each pixel are 

1.8 2.2 1.8 2.7 2.2 

2.5 2.2 2.3 2.8 2.2 
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1.9 2.7 2.3 2.6 1.8 

2.6 2.4 2.9 3.1 1.7 

1.5 2.2 2.1 2.6 2.0 

The maximum area is 3.1. By setting a tolerance range of 2.5<x<3.1, we obtain the 

skeleton to be 

0 0 0 0 

0 0 0 0 

0 0 0 

0 0 

0 0 0 0 

Note: It is to be noted that by varying the lower limit of the tolerance range, one 

can obtain skeletons of varying degree. That is, as the lower limit of the tolerance range 

reduces, we obtain a thicker skeleton and vice versa. The upper limit, however, is fixed 

to the value of the centre of gravity. 



CHAPTER 4 

CONTOUR 1ING BY USING THE ADJACENCY 
MEASURE 

The Adjacency measure of two fuzzy regions gives us an idea of how adjacent (or close) 

the two regions. That is, the greater the degree of adjacency, the closer the regions are 

assumed to be, and vice-versa. Adjacency is dependent on two factors, namely, the 

length of the common border between the two sets, and the difference in the membership 

values. As can be seen, adjacency increases as the length of the common border 

increases and decreases as the difference in the membership values increases. That 

is, it is inversely proportional to the difference in the membership values and is directly 

proportional to the length of their common border. 

The algorithm proposed utilizes the adjacency measure to determine which pixels 

belong to the egde and which pixels to discard. 

Assumptions: The assumptions made for the algorithm are 

1. The input to the algorithm is an edge detected fuzzy image. 

2. Each pixel in the image is a peicewise constant fuzzy set. 

The main steps involved in the algorithm can be summarized as follows. 

Steps: 

a) Initial vertices are located by computing the center of gravity in the edge detected 

image. A certain tolerance limit is assumed and all pixels within the tolerance limit are 

taken to be the initial vertices. 

b) One of the vertices is considered as the "initial" vertex. The adjacency between 
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the initial vertex and one of its adjacent vertices is computed. Let this vertex be called 

the "end vertex". Let this be some value p. Mark the initial vertex as the "current" 

vertex. 

c) Consider the pixel closest to the current pixel. Compute the adjacency between 

the pixel and the initial vertex. Let this be q 1  . 

d) If the value of q 1  is greater than or equal to p, assign the pixel to the edge and 

draw a connection between the current pixel and the pixel under consideration. Mark 

this pixel as the 'current' pixel. 

e) Otherwise, if the value of q 1  is less than p, compute the adjacency between the 

pixel and the end vertex. Let this be q2  . If the value of q2  is greater than or equal to p, 

assign the pixel to the edge and draw a connection between the current pixel and the 

pixel under consideration. Mark this pixel as the 'current' pixel. Else, discard the pixel. 

f) Repeat steps (c) through (e) for every pixel lying in between the initial and the 

end vertex. 

g) Repeat step's (b) through (f) for every pair of vertices. 

Example:. An example which incorporates the above algorithm is presented. 

Consider an edge detected fuzzy image to be 

0 .5 0 .3 0 .7 0 0 

0 .6 .4 0 .6 0 .8 0 

0 .7 0 0 0 0 0 .3 

0 .4 0 0 0 0 .4 0 

0 .6 0 0 0 0 0 .7 

0 .6 0 0 0 0 .3 0 

0 .4 0 0 0 0 .6 0 

0 0 0 0 0 0 0 .5 
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0 0 0 0 0 0 6 0 

0 .9 .2 .6 .8 .7 0 0 

The initial vertices located by the vertex detection routine are 0.6, 0.8, 0.7, and 0.9 ( 

shown as bold face in the figure above ). The algorithm is started with o.6 as the initial 

vertex. 0.8 is taken to be the end vertex. The iterations for the above input for the edges 

of 0.6 to 0.8 and 0.8 to 0.7 are shown below. 

The final curve is obtained by connecting the verteces with all the points which have a 

status of "current". 

The advantages of this method are that it is simple to implement and involves no 

complicated mathematical formulae. The computations are kept at a very minimum by 

eleminating extra calculations. For example, q2  is computed only if q 1  is less than p. 

This approach also has the advantage of reducing the time taken to implement the algo-

rithm. 



Table 2. Iteration Sequence Of Algorithm 

P Points q 1 q2 Status 

10 / 12 0.5 10 / 11 Current 

0.4 10 / 12 Current 

0.3 10 / 13 10 / 15 Discard 

0.6 1 Current 

0.7 10 / 11 Current 

10 / 11 0.3 10 / 15 10 / 14 Discard 

0.4 10 / 14 10 / 13 Discard 

0.3 Discard 

0.7 10 / 11 Current 

0.5 10 / 13 10 / 12 Discard 

0.6 10 / 12 10 / 11 Current 
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CHAPTER 5 

FUTURE RESEARCH 

5.1 Image Enhancement By Minimizing the Degree of Adjacency 

Many of the definitions of fuzzy sets presented by Rozenfeld have been modified later by 

Pal et al. However, not all of these modified definitions provide any significant improve-

ment over the existing definitions. In contrast to this, the new definitions of adjacency 

and degree of adjacency provide a more meaningfull defmition which fits very well to 

the geometric meaning of adjacency. 

According to the new defmition, any two fuzzy sets 1.1 and ti are more adjacent if the 

difference in the membership values of 1.t and ti is less, and vice-versa. For example, if 

the two fuzzy sets have the values of 0.3 and 0.35 in the first case, and 0.8 and 0.85 in the 

second case, then they are expected to have the same adjacency because their difference 

in membership values is the same in both cases. However, according to Rozenfeld's 

definition, the value's of adjacency differ's significantly in both cases. Hence, we agree 

with the new definition of adjacency, since it fit's very well with the meaning of adja-

cency defined in the general sense. 

Both compactness and degree of adjacency measures take into account fuzziness in 

the spatial domain. Previous research has accomplished image enhancement by optimiz-

ing fuzzy compactness. However, the noticeable point regarding the degree of adjacency 

is that the higher the contrast between two regions and the greater the physical distance 

between them, the lower the degree of adjacency. This implies that the lower value of 

the degree of adjacency indicates that the segments formed are more v alid and separable 

considering both their grey level and physical distances. Therefore, the degree of 
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adjacency can be utilized for enhancing the contrast in an image. That is, the degree of 

adjacency can be minimized and that value can be taken to be the threshold value for 

image enhancement. 
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