

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

Translation of Images on the Hypercube Using Leaf Codes

by

Bhavesh Patel

Image processing is used for manipulation of pictorial images. Image analysis

applications are typically characterized by the need to process large quantities of

image data. Some of the important transformations or operations which are car-

ried out by image processing systems are translation, scaling, superposition and

rotation. Algorithms have been developed to carry out these transformations on

image regions represented by quadtrees. Gargantini introduced an algorithm to

translate an image region represented by a linear quadtree or leafcodes. A linear

quadtree is a space efficient data structure used for storing digital images. Ziavras

et.al. have proposed a modification of Gargantini's algorithm which makes it much

more efficient. Ziavras's algorithm translates as many leaves as possible without

splitting them. This thesis carries out a comparative analysis that involves these

two algorithms. The comparison is based on results obtained from simulation of

these algorithms for a hypercube parallel computing system. Simulation results are

obtained for a single pixel and multiple pixels per processing element (PE) of a

hypercube parallel computing system. In the case where multiple pixels are stored

in each PE, a binary image of size 2P x 2P is subdivided into quadrants of equal

size and then stored in an n-dimensional hypercube. It is shown that Ziavras's

algorithm performs much better than Gargantini's algorithm when p is larger than

n. Gargantini's algorithm may perform better when a single pixel is assigned to

each PE.

TRANSLATION OF IMAGES ON THE HYPERCUBE
USING LEAF CODES

by
Bhavesh Patel

A Thesis

Submitted to the Faculty

of New Jersey Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

Department of Electrical and Computer Engineering

January, 1993

APPROVAL PAGE

Translation of Images on the Hypercube Using Leaf Codes

Bhavesh Patel

Dr. Sotirms Ziavras, Thesis Adviser
Assistant Professor of Electrical and Computer Engineering,
New Jersey Institute of Technology

`'Dr. John Carpinelli; Committee Member
Assistant Professor of Electrical and Computer Engineering,
New Jersey Institute of Technology

Dr. Dennis Ka?elas;n rit ee Member
Assistant Professor of Computer and Information Science,
New Jersey Institute of Technology

This thesis is dedicated to

my parents

v

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my advisor Prof.

Sotirios Ziavras for his guidance and friendship and for always motivating me to

reach higher standards. I would like to thank him also for leading me to areas I

had never known before.

Special thanks are due to Professor Herman Estrin for providing help in tech-

nical documentation for thesis writing.

I also thank Professor John Carpinelli and Professor Dennis Karvelas for serv-

ing as members of the committee.

Finally, I would like to thank Deven Shah for his support and valuable sug-

gestions.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 1

2 PARALLEL IMAGE PROCESSING 8

3 TRANSLATION OF IMAGE REGIONS REPRESENTED BY LEAF
CODES ON HYPERCUBE MACHINES 14

4 RESULTS AND DISCUSSIONS 27

5 CONCLUSIONS 33

APPENDIX 35

WORKS CITED 39

vii

LIST OF FIGURES

Figure Page

1 Image representation 2

2 Quadtree representation 2

3 Image quadrant with resolution 2 3

4 Mesh of size 4 x 4 11

5 Pyramid(P2) 12

6 Two dimensional mesh view of a hypercube of dimension 4 facing 12

7 Hypercube of dimension 4 formed from two 3 — dimensional hypercube 14

8 Image of size 8 x 8 24

9 Same Image after condensation 25

10 Same Image after translation by (2,2) 26

11 A graph for s f = 8 32

12 A graph for s f = 2 36

13 A graph for s f= 4 37

14 A graph for s f = 16 38

viii

LIST OF TABLES

Table Page

4.1 Execution Time for Single Pixel Mapping 27

4.2 Execution Time for the Gargantini and Ziavras Algorithms 28

4.3 Execution Time for sf = 2 30

4.4 Execution Time for sf = 4 30

4.5 Execution Time for sf = 8 31

4.6 Execution Time for sf = 16 31

ix

CHAPTER 1

INTRODUCTION

Region representation is an important issue in image processing and computer graph-

ics; consequently a number of representations are currently in use. Pixel-based re-

gions derived from binary pictures are often represented in terms of square blocks or

quadrants centered on a (2' x 2n) -array (n > 1) called the raster. These blocks are

generated by recursive subdivision of an initial quadrant into four (29 x 29)-squares,

g=n-1, n-2,... ,0: in a binary picture, blocks that participate in the representation of

a given object are colored black, and those which do not participate are colored white.

Such a recursive process is known as the regular decomposition by quadrants and its

related data structure as the quadtree.

1.1 Representation of Images by Leaf codes

A quadtree is a form of picture encoding which is compact and easily handled . A

quadtree encoded image exploits two-dimensional coherence by recursively decom-

posing the image into square areas in a particular way and thereby reducing storage

space requirements. The code is notionally a tree structure with the root corre-

sponding to the whole image. Unless the image is homogeneous, it is subdivided

into four quadrants, each represented in the tree by a node joined by a branch to

the root. These nodes are leaves when the quadrants they represent are themselves

homogeneous; otherwise, they carry further branches to nodes representing succes-

sively smaller subdivisions. The subdivision, and hence the tree growth stops when

all the nodes are leaves.

Quadtrees may be implemented as pointer structures or as linear structures.

Although a pointer structure may simplify any operation on the tree and speedup

access to its leaves, in general the memory requirements are unacceptable. Gar-

gantini introduced inquadtree called the leafcode which is an ordered sequence of

1

Figure 1 Image representation

2

SE

Figure 2 Quadtree representation

encoded black leaves [1,2]. The linear quadtree is a pointerless data structure which

saves more than one-third of memory space used by regular quadtrees. The linear

quadtree differs from the regular quadtree as follows:

• Only the leaves that contain information are stored.

• A unique encoding is used for each leaf which incorporates adjacency properties in

the four principal directions.

• A region is represented as an ordered sequence of codes.

Each pixel is represented by a quaternary code, each digit of which corresponds to a

subdivision of the previous quadrant according to the following scheme:

3

for northwest (NW),

for northeast (NE),

for southwest (SW),

for southeast (SE).

For instance, for n = 3 a block which belongs to the SE-quadrant in the first

subdivision, to the SW-quadrant in the second subdivision, and to the NW-quadrant

in the third subdivision is represented by 320. The left-to-right order of the three-

digits reflects the larger-to-smaller subdivision order. Thus, each black pixel is en-

coded with digits 0, 1, 2, and 3 in base 4. Consider the image region shown in figure ,

which consists of Np = 20 black pixels and 3—digit quaternary codes (N = 3). The

quaternary codes after condensation are: OXX, 20X, 100,and 102. Figure shows a

image region mapped to quadrant with resolution 2.

0 -4

1 --+

2 --4

3 -4

v

OX IX

g 3X

co 01 ID 11

02 03 12 13

lo 21 30 31

22 /3 32 33

1 level 0 levell level/

Figure 3 Image quadrant with resolution 2

4

We shall consider a (2" x 2n)-image for the purpose of discussing the encoding

used for the black pixels in an image region. Let M and N represent the row and

column numbers for the black pixel under consideration, respectively. The encoding

procedure consists of mapping the position (M,N) of the black pixel into its corre-

sponding weighted quartenary code (0), which represents successive partitioning of

the quadrants. Let the binary representation of M and N be

M = Xn-i • • • XIX()

N = Yn—i • • • YiYo

The corresponding quaternary code representation is

0 = zn_i . • • zizo

with

zi = + 2ci i — 1. (1)

Equation 1 suggests a faster way to encode pixels into its quaternary code and vice-

versa. The quaternary code is obtained by expressing M and N in its binary form,

by multiplying independently every binary digit in M by 2 (to the base four) and

later by adding the resultant product to binary representation of N to the base four.

The above operation for computing the quaternary code has the advantage of having

no carry propogation during addition operation. For example, for M = 3 = (0011)2

and N = 8 = (1000)2 , 0 is given by

O = (N 2M4)4 = (1000 + 0022)4 = 1022.

This method of encoding produces quaternary codes for which zi < 3.

Various papers have been written on geometrical transformations of pictures

that are encoded as pointer-structured quadtrees [4,5,6,7]. Since we are interested

in space-efficient implementations of quadtrees, we concentrate on linear structures

and look for efficient algorithms that perform geometrical operations on pictures

represented by linear quadtrees. In the next section we briefly describe algorithms

proposed by Gargantini and Ziavras for translation of linear quadtrees.

5

1.2 Gargantini Algorithm

The algorithm proposed by Gargantini operates as follows: To translate a pixel 0

(0 is the quaternary code of the black pixel) by i rows, we first express its row and

column binary representations by the following mapping rule:

—> (0 or 2); 1 (1 or 3).

Decoding is an inverse operation; given 0, N is found as follows:

0 —4 0; 1 —+ 1
2-4 0; 3 1

for all 0-digits. For example, if 0 = 3211, N = 10112 = 11, Equation 1 gives

2M = (0 - N)4

from which we can find M. In the above example,

2M = (3211 — 1011)4 = 22004 = 11002 = 10

Next, we add the binary number i to the binary number M, multiply the obtained

sum by 2 (to the base four), and sum this resultant product to N (to the base four).

The translated pixel 0', i.e. for i = 3 = 00112, is given by

= (N + (2 * (M + 02)4)4

Translation by j columns can be achieved in a similar way. The above procedure can

be extended to compute translated quaternary code Q',using bith vertical and hori-

zontal translations. In the Gargantini algorithm the time taken to translate a pixel

is proportional to n. For the translation of regions, each individual pixel is first

translated and then sorting and condensation of the resultant pixel codes is carried

out [1]using heapsort to sort the quaternary codes requires 0(Np log2 Np) or 0(nNp)

time. Condensation takes 0(Np) time, so the total time is 0(nNp).

1.3 Ziavras Algorithm

In the Gargantini algorithm we carry out pixel-by-pixel translation of the image. Zi-

avras et. al. have proposed a modification of the Gargantini algorithm to enhance

6

its performance in terms of computing speed. The performance outweigh's the Gar-

gantini algorithm when both the translation coordinates have even length. This

algorithm translates blocks of multiple pixels simultaneously. Assume that a region

represented by a linear quadtree is translated by

rows = x x 2',

cols = y x 26

pixels in the vertical and horizontal direction respectively, with a and b having the

largest possible value. Let

T = min(a, b) (2)

then only blocks (i.e. quadrants) of sidelength greater than 2T need to be decom-

posed. Therefore, this algorithm translates as many leaves as possible without split-

ting them. Sorting and condensation are then applied to the resultant code [1]. Let

N, be the number of quaternary codes which are translated and Ni be the number of

input leaf codes in the region represented by linear quadtree. The results show im-

provement in performance when the difference Ni — N, gets larger [3]. The expected

degree of improvement over the Gargantini algorithm is 0(nNs) for a uniprocessor.

1.4 Motivations and Objectives

The high computational requirement for transformations of images have resulted in

the increased need for parallel computation. Several parallel architectures have been

proposed to carry out the low-level and intermediate-level image processing tasks.

Of these, the hypercube is of great interest as it is communication efficient. Several

authors have proposed algorithms to carry out image transformations on parallel ar-

chitectures. These algorithms have different behaviours and time complexities. For

example Lee et al.developed parallel algorithms for image translation, rotation, and

scaling [8]. Their algorithms are for a mesh connected multicomputer. Rosenfeld-

pyramid algorithms for shrinking and expanding [9]. A common feature of most

7

algorithms is to assume that the number of processors exactly matches the number

of pixels. In real life, this may not be true. The common case will be one in which

the number of processors is less than the number of pixels.

Our objective is to carry out a comparative analysis of the algorithms pro-

posed by Gargantini and Ziavras et al., for image translation. The motivation for

this work was not to develop new algorithm but to evaluate the relative performance

of these algorithms by simulating them for hypercube parallel computing systems.

The analysis is presented for single pixel mapped per PE, as well as for multiple

pixels mapped per PE.

CHAPTER 2

PARALLEL IMAGE PROCESSING

Image processing tasks are typically characterized by the need to process a large

amount of data. The image computing tasks are generally time consuming in na-

ture. A uniprocessor system might spend several minutes or hours dividing an image

into a set of regions or classifying each pixel of the image. On the other hand, in mul-

tiprocessor systems each pixel can be processed in parallel, thereby, scaling down the

processing time to a millisecond or less. This sort of parallelism is often considered

to be massive and has been refered to as image parallelism.

2.1 Parallel Implementation of
Image Processing Algorithms

Parallel image processing exploits the two fundamental modes of parallelism in im-

age processing tasks: image parallelism and function parallelism. Image parallelism

means that the same operation is repeated on each pixel or subregion throughout

the image frame so that the image may be partitioned into subframes, which can

be processed simultaneously by multiple PEs. On the other hand, function paral-

lelism means that an image processing task (function) consists of several levels of

processing. Here we divide an image processing function into subfunctions and use

the pipelining approach. This method is useful when a sequence of images must be

processed.

2.1.1 Problem Requirements

Given a problem for an image of size N=(nx n) pixels, which can be solved in an

optimal sequential time of T(N) units, the problem will require 52(T(N)Ip) time on

a parallel organization with p < N processors. A parallel algorithm for a given prob-

lem is said to be processor-time optimal if the product of the number of processors

8

9

and the parallel execution time is equal to the sequential complexity of the problem.

In parallel and distributed processing, efficiency of exploiting image parallelism is de-

termined by communication overhead. A substantial amount of time is usually spent

in routing messages among the processors. Therefore, efficient techniques should be

developed for partitioning the image and moving data among the processors. Careful

analysis of the problems is needed to derive such techniques.

Based on their communication requirements, image problems can be classified

into two categories: local, and global

Local computation: The computation performed on a certain pixel p is a function

of the pixels in a relatively small neighborhood of p. Examples include operations

such as smoothing, deblurring, edge detection, texture analysis, and labeling of con-

nected components.

Global computation: The computation performed on a certain pixel p is a func-

tion of other pixels at a relatively large distance from p. However, these pixels lie

in predetermined (data-independent) locations within the image. Examples include

image transforms such as the Fourier transform and the Walsh-Hadamard transform.

Another feature used to characterize image computation is image representa-

tion. Images naturally divide into subregions representing objects, shades and lines.

Such regions can be represented by smaller amounts of data using border represen-

tation, run-length codes and quadtrees. An image represented in such a compressed

form can be handled by a reduced number of processors.

2.2 Parallel Architectures for Image Computation

Image processing algorithms, from low-level to high-level, exhibit varying characteris-

tics and demand different architectural features. While the low-level image processing

tasks exhibit fine-grain parallelism at the pixel level, the high-level image processing

tasks are associated with coarse-grain parallelism at the object or the segment levels.

10

The former tasks are traditionally known as SIMD algorithms; the latter ones fall

into the MIMD category. Efficient concurrent processing relies upon the suitable de-

sign of data structures, decomposition of the problem for the allocation to processors,

and choice of interconnection patterns. The advent of VLSI technology has enabled

us to build parallel SIMD machines as well as MIMD machines to perform specific

image-computing applications. Normally, MIMD machines fall into two categories:

shared memory and distributed memory machines. Within these categories, multi-

processor systems are distinguished according to the interconnection pattern (tree,

cube, mesh). In the following subsections we shall discuss a few parallel architec-

tures and describe their advantages and shortcomings with respect to solving image

processing problems.

2.2.1 Mesh Connected Computer

Mesh-connected computers (MCCs) have long been proposed for image processing.

Images can be naturally mapped onto an MCC so that neighboring pixels are mapped

onto neighboring (or the same) processing elements. The mesh connected computer

(MCC) is a Single Instruction stream Multiple Data stream (SIMD) computer. It

consists of n2 processing elements arranged in an x n lattice. The mesh computer

has been used mainly for low-level local image processing. However, for global or dis-

tant computation, meshes do not perform well because communication across large

distances is expensive and inefficient. To exploit efficiently the mesh computer the

data size should match the processor size, which may be a severe limitation. Figure

shows a MCC.

2.2.2 Pyramid Computer

The pyramid computer was initially proposed for performing high speed low-level

and intermediate level image processing. The pyramid computer is a combination of

11

Figure 4 Mesh of size 4 x 4

the tree and mesh structures. A pyramid of the size n has nh/2 x n1/2 mesh-connected

computer at its base and log4(n) levels of mesh-connected computers above. A pro-

cessing element at level k is connected to 4 siblings at level k, 4 children at level

k — 1, and a parent at level k +1 (see Fig 5). The levels are numbered so that the

base is level 0 and the apex is level log4(n). The pyramid computer architecture pro-

vides straightforward implementation of the divide-and-conquer strategy. However,

pyramid processors are more difficult to build than meshes because of the complex

arrangement of the communication links and requires almost twice the number of

processing elements for the same image resolution. Also, the architecture is inflexible

because of rigid interconnections. Therefore, a failure normally results in the failure

of the entire system, or the performance degrades tremendously.

2.2.3 Hypercube Machine

Hypercube computers have gained popularity in a variety of scientific applications.

The Caltech Cosmic Cube project [10] demonstrated many of the practical advan-

tages of implementing a hypercube network. Having realized the potential of hy-

percube machines, the image-processing community is using them for a variety of

low-level and high-level image processing applications. A hypercube of dimension d

facing 12

00 01 11 10

0000 0001 0011 0010 00

01 0100 0101 0111 0110

11 1100 1101 1111 1110

10 1000 1001 1011 1010

Figure 6 Two dimensional mesh view of a hypercube of
dimension 4

12

mamma asuman)

Figure 5 Pyramid(P2)

(d > 0), has 2d nodes with unique d-bit binary string used as labels, where there

is a link connecting two nodes if and only if their labels differ by a single bit. Sev-

eral commercially available machines have been built that use hypercube topology.

Both SIMD and MIMD types of machines have been built. Examples include, the

Connection Machine [11], which is a bit-serial SIMD machine, and the NCUBE [12],

which is a MIMD machine.

Hypercubes can efficiently carry out mesh calculations. Also, the hypercube

machine supports efficient long distance communication that is absent in meshes or

pyramids. Of most parallel architectures hypercubes have proved to be the most

effective machines for research and development of scientific as well as vision ap-

plications. Several image computations require the processors of the hypercube to

be arranged as a two-dimensional mesh. This can be done by assigning indices to

the mesh nodes according to reflected gray-code numbering [13]. More specifically,

the reflected gray code is used to encode the rows and columns of the mesh. The

corresponding hypercube address is obtained by concatenating the encoded row and

column numbers as shown in figure 6. The i-binary refected gray code Sk is defined

recursively as follows

1 = 0,1; Sk = OSk-1,1[Sr-lb

13

PROCESSING ELEMENTS

Figure 7 hypercube of dimension 4 formed
from two 3 - dimensional hypercube

where [sr 1] is the reverse of the k — 1-bit code Sk_1. Therefore, S2 = 00, 01, 11, 10

and S3 = 000, 001, 011, 010, 100, 101, 111, 110. This guarantees that pixels sharing

an edge, or adjacent mesh entries, are in adjacent PEs. This also guarantees that a

hypercube of size N can simulate any mesh algorithm for an image of size N.

To summarize, the salient features of a hypercube are:

1. Any d-cube can be tiered in d possible ways into two (d — 1) — subcubes.

2. There are d! x 2d ways of numbering the 2d nodes of the d — cube.

3. The maximum distance between any two nodes in the d - cube is equal to d, which

is called the diameter of the hypercube.

4. For two processors in the d - cube to communicate, data has to travel at least a

distance which is equal to the number of is in the XOR result between the addresses

of these PEs. This is same as the Hamming distance H(X,Y) between the two binary

addresses.

CHAPTER 3

TRANSLATION OF IMAGE REGIONS
REPRESENTED BY LEAF CODES ON

HYPERCUBE MACHINES

An image can be represented using various data structures. A linear quadtree is one

of them. In this thesis, we are interested in the translation of regions represented by

linear quadtree on hypercube parallel computing system. Some parallel algorithms

for computing geometric properties of digital images can be found in [14,15]. Before

we present the implementation of the algorithms and their execution times, let us

first discuss the data structures that will be employed by both algorithms. We define

a structure node comprising of following important elements:

gcode: represents binary address of the PE.

pixel:[] is an array which is used to store the pixel value of the image region mapped

to this PE.

quat:[] is an array which is used to store the quaternary code of each pixel i.e. black

or white.

Let us use the notation snode for the source node, imnode for the intermediate node,

and dnode for the destination node. During the translation of a pixel, if an imnode

receives data from more than one snode which go to the same next imnode, then the

data is stored in the structure buffer. Each node will have a FIFO output buffer to

store the data. The buffer is necessary because each PE can transmit only to one

PE in a unit time. The structure buffer has the following important elements:

adr:[] is an array to store addresses of the destination node.

foq: pointer to front of the buffer.

eoq: pointer to end of the buffer.

If the image size is i x i and the processor size is p x p, then sf = i/p is called the

scaling factor. A block of size sf x sf is mapped to each PE. In the case where

14

15

multiple pixels are mapped per PE, the translation coordinates for the hypercube

are scaled down as shown below:

scaledrow =
sp

scaledcol = —
col

sp

where scaled row and scaled col are the quotients of the above operation.

3.1 Algorithm I (Gargantini)

In algorithm I, we carry out pixel-by-pixel translation of the image region. The

algorithm I is as follows:

Begin

{translation coordinates: mrows, locls}

{time parameters:timetran, rtimetran, Total_time,

where, timetran: gives time to translate pixel information,

rtimetran: gives time to translate for remainder of row and column

divisions, "Total_time" gives total_time for translation of region}

{scaling factor: mc}

var tmrows, ticols, mrowsrem, lcolsrem;

tmrows = mrows/mc;

ticols = lcols/mc;

mrowsrem = mrows % mc; { % is modulus operator}

lcolsrem = lcols % mc;

{Begin the mapping of the image on hypercube}

Map_image();

{Begin translation of pixel information}

timetran = 0;

timetran = timetran -►- cdt(tmrows,ticols);

row
(3)

(4)

16

{Begin translation for remainder part translation coordinates}

if((mrowsrem != 0) 11 (lcolsrem != 0))

{

rtimetran = rcdt(mrowsrem,lcolsrem);

}

Total_time = timetran + rtimetran;

End

where cdt() is a function which carries out parallel routing of pixel information from

the source nodes to the destination nodes. The function cdt() is as follows:
Begin

{sr[]: stores binary address of the source nodes}

{dest[]: stores binary address of the destination nodes}

{hamdist[]: stores hamming distance value for each source node- destination node pair}

{stage: gives the number of stages for communication phase to complete}

{maxcount: starting count of PEs involved in the translation of pixel information}

var maxcount, ist, temp, maxdist, time_counter;

{Compute hamming distance for each source-destination pair}

maxdist = 0;

for(i = 0; i < maxcount; i++)

{

temp = sr[i] aest[i];

hamdist[i] = 0;

hamdist[i] = ham_dist(temp);

{hamdist(): function to compute hamming distance for each node}

if(hamdist[i] > maxdist){

maxdist = hamdist[i];

}

} stage = maxdist — 1;

17

for(ist = 0; ist <= stage; ist++)

{

{Sort the buffer queue for each PE so that pixel

going farthest is at the front of the queue}

Sort_buffer_queue0;

{Communication involving parallel routing of data begins}

Parallel_routing();

}

return time_counter;

End

In the routine cdt(), each source node may have to send the pixel information to

same "imnode" , in such situation, the pixel going to the farthest node is kept at the

front of the buffer. The routine cdt() also returns the value of the time needed to

carry out routing of data.

3.2 Algorithm II (Ziavras)

In algorithm II, we condense the pixel information as much as T (Equation 2), and

then carry out translation of pixel information. Algoirthm II is as follows:

Begin

{translation coordinates: mrows, locls}

{time parameters:timetran, rtimetran,Total_time,icondtime,

econdtime,edectime,idectime,

where, timetran gives time to translate pixel information,

rtimetran: gives time to translate for remainder of row and column

divisions, Total_time gives total_time for translation of region

icondtime gives time for internal condensation,

econdtime gives time for external condensation,

edectime gives time for external decomposition,

idectime gives time for internal decomposition}

{scaling factor: mc}

{processor_level: signifies level on which the parent node is one

with 'number of least significant zeros' equal to 'processor level'}

var tmrows, ticols, mrowsrem, lcolsrem;

{Scale down the translation coordinates for multiple

pixel mapping}

tmrows = mrows/mc;

ticols = lcols/mc;

mrowsrem = mrows % mc; { % is modulus operator}

lcolsrem = lcols % mc;

{Map the image on hypercube}

Map_image();

{Compute v = MIN{p,t}, where 'v' is the condensation value

used for internal and external condensation}

v = 0;

p = -1;

t = -1;

while((mrows == 0) 11 (lcols == 0))

{

if(mrows == 0)

{

do{

t = t + 1;

}while((lcols) % power(2,(t+1))) == 0);

18

{power(x,y) computes xv}

v = t;

}

if(lcols == 0)

{

do {

p = p + 1;_

}while((mrows) % power(2,(p+1))) == 0);

v = p;

}

}

{Compute the sidelength of the pixel quadrant}

sidelength = 0;

tmc = mc;

do {

sidelength++;

}while((tmc = tmc/2) != 1);

{Begin internal condnesation}

if(v) {

icondtime = int_cindensation(v);

}

processor_level = 0;

if(v > sidelength){

do {

processorievell++;

}while((processor_level + sidelength) != v);

econdtime = ext_condensation(processor_level, sidelength);

19

20

}

{Begin translation of condensed as well as non-condensed

pixel information within the image frame}

if((tmrows != 0) && (ticols != 0)){

timetran = cdt(tmrows, ticols);

}

{Begin external decomposition of pixel information}

if(v){

edectime = ext_decomposition(sidelength);

{Begin internal decomposition of pixel information}

idectime = int_decomposition(sidelength);

}

{Begin translation for remainder part translation coordinates}

if((mrowsrem != 0) 11 (lcolsrem != 0))

{

rtimetran = rcdt(mrowsrem,lcolsrem);

}

Total_time = icondtime + econdtime + timetran

+ rtimetran + idectime +edectime;

End

We show below an example which gives the PEs spanned by pixel information during

parallel routing of data. The image array size is 32 x 32 and the processor array size

is 8 x 8.

00000011110000000000000000000000

00000011110000000000000000000000

00000011110000000000000000000000

00001111111111110000000000000000

00001111111111110000000000000000

00001111111111110000000000000000

11111111111111111110000000000000

11111111111111111110000000000000

11111111111111110000000000000000

11111111111111110000000000000000---->IMAGE

00001111111111110000000000000000

00001111111111110000000000000000

00001111111111110000000000000000

00001111111111110000000000000000

00001111111111110000000000000000

00001111111111110000000000000000

00000011110000000000000000000000

00000011110000000000000000000000

00000011110000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

21

22

00000000000000000000000000000000

I II III IV V ---->STAGES

1 0 2 10 26

2 3 7 15 31

3 2 6 14 30

8 9 11 3 19

9 8 10 2 18

10 11 15 7 23

11 10 14 6 22

14 15 13 5 21 ---->PEs SPANNED

17 16 18 26 58

18 19 23 31 63

19 18 22 30 62

24 25 27 19 51

25 24 26 18 50

26 27 31 23 55

27 26 30 22 54

49 48 50 58 42

51 50 54 62 46

translation coordinates are:

rows = 9 cols = 9

In case of multiple pixel mapping we perform external as well as internal con-

densation in situations where it is possible. The condensed codes are then translated

23

by the scaled translation coordinates (see equation 3 and equation 4). Later, the

codes are decomposed externally as well as internally. The codes are then translated

pixel by pixel if there is non-zero remainder in equation 3 and equation 4. In internal

condensation, we check each subdivision to see if all the pixel values are one, i.e. we

check if the pixel count is four. If the pixel count is four, i.e. all pixels have the same

quaternary code representation except for the last digit, then, in that subdivision we

make the pixel value of quaternary codes in NE, SW, and SE equal to zero and that

in NW direction is made one. The last digit of NW-quaternary code is replaced by

the marker X. The same procedure is performed for all the subdivisions.

External condensation is carried out only if the block mapped to each PE is

completely condensed internally. The processor array is subdivided into quadrants

similar to that used for images. In each subdivision we check if the block count is

four, if true, the pixel value of the child PE's is made zero and that of parent PE

made one as given in [12] for all the subdivisions. Similarly, we do it for external

decomposition, in each subdivision, the parent node sends a pixel value of one to its

childrens and the procedure is repeated for each subdivision. The time needed to

carry out communication internal to PE, and external to PE is kept as a variable for

performance analysis. Figure 8, 9, and 10 illustrate condensation, and translation of

an image of size 8 x 8. We use the following notations for various time parameters:

Tic: Time for internal condensation.

T„: Time for external condensation.

Tid: Time for internal decomposition.

Ted: Time for external decomposition.

Trm: Time for translation of image by remainder part of translation coordinates.

Ttr: Time for translation by the scaled translation coordinates.

Ttotai: Summmation of all the above mentioned time parameters.

Thus, for Ziavras Algorithm, we have,

Ttotal = Tic + Tec + Tid 4- Ted + Ttr + Trm

24

Figure 8 Image of size 8 x 8

25

Figure 9 Same image after condensation

26

Figure 8 Same image after translation by (2,2)

CHAPTER 4

RESULTS AND DISCUSSIONS

This chapter carries out a comparative analysis of the algorithms discussed in the

previous chapter. The Gargantini algorithm shows better performance when there

is one-to-one mapping of the image onto the hypercube. Since there is neither con-

densation nor decomposition of pixel information, the performance of Gargantini

algorithm goes on improving as the value of T increases. The results of single-pixel

mapping are tabulated in Table 4.1. The notation used in the table for the various

parameters is as follows:

row: It specifies translation in the vertical direction.

col: It specifies translation in the horizontal direction.

Im-size: Image array size.

PE-size: Processor array size.

Nbp : Number of input black pixels.

Nt, : Number of translation codes.

Ttg : Translation time for the Gargantini algorithm.

Ttz : Translation time for the Ziavras algorithm.

Table 4.1 Execution times for single-pixel mapping

row col Im-size PE-size Nbp Ntc Ttg Ttz

2 4 16 16 16 4 8 20
16 16 32 32 256 1 8 56
8 16 64 64 436 34 8 44
2 4 128 128 3880 970 8 20

16 32 128 128 3880 106 8 56
64 32 256 256 17936 116 8 68

The Ziavras algorithm shows improved performance when multiple pixels are

mapped per PE. In this case, the image is partitioned into equal sized square blocks,

where the number of blocks equals the number of processing nodes. The blocks

themselves form a mesh, so they are embedded into hypercube nodes as was the case

27

28

for single pixel per PE mapping. Let us denote by sf the sidelength of the block

mapped to each PE. If the image array size is im and the processor array size is pr,

then, the sidelength sf is given by

i m
s f ---. —, pr

where im > pr (5)

We assume that each node can hold the entire block of pixels in its local memory.

Each PE has an output FIFO buffer which holds the message to be transmitted .

Message passing is implemented in parallel with each node allowed to transmit a

single message in a unit time.

In the Ziavras algorithm the pixel information is condensed internally within

the node as well as external to the node if possible. The condensed pixel information

which represents the leaf codes are then translated to the destination nodes. At

the destination, the condensed pixel information is decomposed both internally and

externally if possible. In Gargantini algorithm, there is pixel by pixel translation

of the image object. Table 4.2 shows the results for both algorithms when multiple

pixels are mapped per PE.

Table 4.2 Execution time for Algorithm I and II

row col Im-size PE-size Nbp Nt, Ttg Ttz
32 28 64 16 368 44 160 90
15 8 64 16 960 960 176 176
0 16 64 8 1024 256 256 142

12 26 64 8 1024 256 584 200
42 36 128 64 988 247 72 24
-22 -32 128 64 4597 1210 56 34

12 38 256 128 16384 4096 72 24

8 32 256 64 22500 378 128 58

8 16 256 64 22500 546 384 242

The results show that the performance of the Ziavras algorithm is better than Gar-

gantini's algorithm for all these cases. The larger the values of sf (s f > 2), and T,

the better the performance of the Ziavras algorithm when compared to the Gargan-

tini algorithm. The performance shows marked improvement when the number of

29

condensed translated codes get smaller. When one of the translation coordinates has

odd length (i.e. T = 0), both algorithms have the same performance. In one of the

cases (Im-size = 64 and PE-size = 8), there is an improvement in performance of the

Ziavras algorithm when the translation coordinates are changed. This is due to the

fact that the pixel information has to traverse larger internode distances.

Graph plots for various values of s f are shown in the appendix. Results for various

values of sf follow.

s f = 2: The table 4.3 shows the results for an image array of size 256 x 256 being

mapped onto a processor array of size 128 x 128. The black object for this case is

chosen to occupy the upper left quadrant of size 128 x 128. The number of pixels

mapped per PE are 4 for this example. From the graph we see that the execution

time for the Ziavras algorithm increases by increasing the value of T. This is be-

cause the black image region is highly regular in shape, i.e. it is a square. Due to

this the Ziavras algorithm is able to carry out condensation (internally as well as

externally) for higher levels where PE nodes are parents of nodes at levels below

it. This condensation involves communication overhead, due to which the execution

time for Ziavras algorithm is slightly higher compared to the Gargantini algorithm.

In the case of the Gargantini algorithm, we carry out pixel by pixel translation. The

execution time for the Gargantini algorithm is constant for this example, because

the execution time is dependent on the number of intermediate nodes it spans to

reach the destination node, which is the same for all values of T.

s f = 4: For the case when s f = 4 the number of pixels mapped per PE node are

16. We find from the table that the execution time of the Ziavras algorithm is better

compared to the Gargantini algorithm because more number of pixels are mapped

per PE. Due to this, the Gargantini algorithm which carries out pixel by pixel trans-

lation takes comparatively more time.

s f = 8: For the case when s f = 8 the black image region mapped onto the processor

30

array is of irregular shape with the number of input black pixels being 416. The

Ziavras algorithm shows significant improvement in its performance for values of T

shown in Table 4.5.

s f = 16 The number of pixels mapped per PE for s f = 16 is 256 and the number

of input black pixels is 1950. The execution time of the Ziavras algorithm totally

outweighs that of the Gargantini algorithm for all possible values of r.

Table 4.3 Execution time for
sf = 2

Im-size PE-size r Tt, Ttz
256 128 1 32 12
256 128 2 32 24
256 128 3 32 32
256 128 4 32 44
256 128 5 32 56
256 128 6 32 74

Table 4.4 Execution time for
sf = 4

Im-size PE-size r Ttg TiZ

256 64 1 128 80
256 64 2 128 96
256 64 3 128 50
256 64 4 128 62
256 64 5 128 74
256 64 6 128 86
256 64 7 128 98

Table 4.5 Execution time for
sf = 8
Im-size PE-size T Tt9 Ttz

64 8 0 352 70
64 8 1 368 72
64 8 2 384 95
64 8 3 512 174
64 8 4 512 174

Table 4.6 Execution time for
sf = 16
Im-size PE-size T Tt9 Ttz

128 8 1 1792 265
128 8 2 1792 300
128 8 3 1792 404
128 8 4 1792 666
128 8 5 1792 718

31

T

Figure 11 A graph for sf = 8

32

Image : 64 x 64, Hypercube: 26 PEs
550
500
450
400
350
300
250
200
150
100

50
0

time
T

1 2 3 5 4

CHAPTER 5

CONCLUSIONS

This thesis carries out a comparative analysis of algorithms that translate an image

on a hypercube parallel computing system. The analysis is carried out for two cases:

1. single-pixel mapping.

2. multiple-pixel mapping.

The time for translation of a pixel depends on the maximum number of processor

nodes traversed by the pixel information. However, in the case of the Ziavras algo-

rithm the pixel information is condensed if the translation coordinates are even. The

execution time of the Ziavras algorithm may be more for single-pixel mapping as

not only does it have to perform translation, but also has to perform condensation

and decomposition. The time for condensation is also dependent upon the shape of

the translated region. If the image is square in shape, then there is a likelihood of

increase in time for condensation depending upon the value of the translation coor-

dinates, i.e., the translation coordinates are even and either one of the coordinates

is a multiple of two.

In the case of multiple-pixel mapping, the Ziavras algorithm performs better

than the Gargantini algorithm. The number of pixels mapped per PE are sf2 , where

s f is given by Equation 5 (page 28). Only a single pixel value can be transferred

over the communication link in a unit time, as a result, the Ziavras algorithm shows

better performance because there is internal as well as external condensation of pixel

information before translation. As a result, the number of translation codes are less

compared to the Gargantini algorithm in which the number of input black pixels

equals the number of translated codes. The execution time for the Ziavras algorithm

is far better for cases where more pixels are mapped per PE. Thus, if N3 is the

number of codes which are translated by the modified algorithm and Np is the total

number of black pixels in the region represented by the leaves of the input quadtree,

33

34

then the larger the value of the difference Np — N3, the better the performance of the

Ziavras algorithm compared to the Gargantini algorithm.

APPENDIX

35

time
T

80

70

60

50

40

30

20

10
1 2 3 4

T

Figure 12 A graph for s f = 2

- gargantini -•—
ziavras -e—

1 1

5

i

6

• • • •

I I I I

Image : 256 x 256, Hypercube: 27 PEs

36

gargantini -•—
ziavras -e--

I I 1 I

Image: 256 X 256, Hypercube: 26 PEs

37

2 3 4 5 6 7
7

Figure 13 A graph for sf = 4

Image : 128 x 128, Hypercube: 26 PEs

38

1800
1600 -
1400 -
1200 -

T
time 1000 -

800 -
600 -
400 -
200 - , 1

1 1 I i i

1 1.5 2 2.5 3 3.5 4 4.5 5
T

Figure 14 A graph for s f = 16

•

gargantini --•—
ziavras -e-

WORKS CITED

1. Gargantini, I. "An Effective Way to Represent Quadtrees." Commun. ACM,Vol
25,(1982): 905-910.

2. Gargantini, I. "Translation, Rotation, and Superposition of Linear Quadtrees."
Int J. Man Machine Studies, Vol 18, (1983): 253-263.

3. Samet. H. "The Quadtree and its Related Heirerchical Data Structures." Corn-
-put. Surv., Vol 16, (1984): 260-274.

4. Hunter, G. M., and K. Steiglitz. "Linear Transformation of Pictures Represented
by Quadtrees." Comput. Graphics Image Process., Vol 10, (1979): 289-296.

5. Van Leirop, M. L. P. "Geometrical Transformations on Pictures Represented by
Leaf Codes." Comput. Vision Graphics Image Process. Vol 33, (1986): 81-98.

6. Samet H., and M. Tamminen. "Computing Geometric Properties of Images
Represented by Linear Quadtrees." IEEE Trans. Pattern Anal. Mach.
Intell. PAMI-7, (1985): 229-240.

7. Ziavras, S.G., and N.A. Alexandridis. "Improved Algorithms for Translation of
Pictures Represented by Leaf Codes." Image and Vision Computing, Vol 6,
no 1, (1988): 13-20.

8. Lee S.Y., Yalamanchali, and J.K. Agarwal. "Parallel Image Normalization on a
Mesh Connected Array Processor." Pattern Recognition, Vol 20, no 1, (1987):
115-120.

9. Rosenfeld, A. "A Note on Shrinking and Expanding Operations on Pyramids."
Pattern Recognition Letters, Vol 6, (1987): 241-244.

10. Seitz, C. "The Cosmic Cube." Communication of ACM, Vol 28, no 1, (1985):
22-33.

11. Hillis, D. "The Connection Machine." Cambridge, MIT Press, 1985.

12. Ncube Corp, "Promotional Literature." Beaverton, OR, 1985.

13. Stout, Q. F. "Hypercube and Pyramids." In Cantoni. Vi, and Levialdi, S., (Eds)
Pyramidal Systems for Computer vision, Springer-Verlag, New York/Berlin,
(1986): 75-89.

14. Miller R., and S.F Stout. "Geometric Algorithms for Digital Pictures on Mesh-
Connected Computer." IEEE Trans. Pattern Anal. Mach. Intell. PAMI-7,

39

40

(1985): 216-228.

15. Stout Q.F. "Supporting Divide-and-Conquer Algorithms for Image Processing"
J. Parallel Distrib. Comput., 4, (1985): 95-115.

16. Ziavras S.G. "On the Problem of Expanding Hypercube-Based Systems." J.
Parallel Distrib. Comput., 16, (1992): 41-53.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Dedication
	Acknowledgment
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Parallel Image Processing
	Chapter 3: Translation of Image Regions Represented by Leaf Codes on Hypercube Machines
	Chapter 4: Results and Discussions
	Chapter: 5 Conclusions
	Appendix

	List of Figures
	List of Tables

