Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT
Torque and Current Response Due to Singularity
Changes of Induction Machine Slip
by
Jessie G. Orpilla

Recognizing that the prime purpose of the 3 phase induction motor is to deliver torque will mimimm line curent. This thesis studies the torque as well as the current response produced by the singularity changes in the induction machine slip. It is desirable that the torgue to be maximized for a given value of line current at the corresponding load stip.

This thesis analyes the torque and current response, when a slip at no-load is changed to a unit-step. $Q u(t)$, a unit-impulse. $Q \delta(t)$, a pulse characterized by $Q\left[u(t)-u\left(t-l^{\prime}\right)\right]$ a mit-ramp. Qt, and a sinusoidal, Qsint, slip. The responses are analyzed againts the time. All of the computations are based on the approximate equivalent circuit of the induction motor, with the stator resistance. R_{s}. and the stator reactive redchace. $j \lambda_{s}$. being neglected. It is done to simplify the complexity of the computations and the computer programming, and it is a real and practical assumption.

The Laplace Transformation method is used in solving the differential equations for torque and for the current. A computer program using FORTRAN language is simulated based on the final equation for both torque and current. The program calculates and graphs the computed results againts the time.

In addition. this thesis work analyzed the motor performance if it is running at high slip. as in the case of a low-drive induction motor. and when it is operating at negative slip. as an incluction generator.

It is seen that the torque and current response of the motor and the induction generator are almost identical in nature. They follow the pattern of their slip changes, with the exception when the final slip is sinusoidal. The only difference is
that the induction generator will absorb power. which is, in effect, supplying power. that is mostly of leading power-factor or almost unity power-factor.

The torque to current ratio, being one of the most important data in the performance of induction motor, is also computed and plotted againts the time based on the previous calculations. Moreover, the torque response is also compared with respect to its maximum or breakdown torque.

It is seen that the most positively effective and practical among the slip functions is the unit-step. Because the response is constant at any period of time and the torque response will never exceed the breakdown torque as long as the slip does not exceed the slip at maximum torque. In the case of a smusoidal and a unitranp funtion, the maximum or breakdown torge is reached at a certain time. t . due to their time-dependent functions. While the unit-impulse and the rectangular pulse are also practical functions since they are time-independent fuctions. But the responses reached their maximum when operating as a low-drive motor. with high machine slip.

TORQUE AND CURRENT RESPONSE DUE TO SINGULARITY CHANGES OF INDUCTION MACHINE SLIP

by
Jessie G. Orpilla

A Thesis
Submitted to the Faculty of
New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of
Master of Science

Department of Electrical and Computer Engineering
J anuary, 1993

APPROVAL PAGE

Torque and Current Response Due to Singularity Changes of Induction Machine Slip

Jessie G. Orpilla

Dr. Khalil Denno. Thesis Adviser
Distinguished Professor of Electrical and Computer Engineering, N.JIT

Dr. Kennetl Sohn. Committee Member
Associate ('hairperson and Professor of Electrical and Computer
Engineering. N.JTT

Dr. Shyam Pander; Committee Member
Adjunct Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: Jessie (i. Orpilla

Degree: Master of Science in Electrical Engineering

Date: January, 1993

Undergraduate and Graduate Education:

- Master of Science in Electrical Engineering

New Jersey Lustitute of Technology, Newark. N.J. 1993

- Bachelor of Science in Electrical Engineering Adamson I niversity: Manila. Philippines. 1988

Major: Electrical Engineering

Major: Electrical Engineering

This thesis is dedicated to my parents, Rufino and Lydia, and to my brothers. Oscar, Rufino Jr., Pepito, and Wilson and most especially to my wife. Marlyn.

ACKNOWLEDGEMENT

The author wishes to express his gratitude to his supervisor. Dr. Khalil Demo. for his guidance. friendship. and moral support throughout this research. Special thanks is also given to Dr. Kenneth Sohn and Dr. Shyam Pandey for serving as members of the committee.

The author is also grateful to his uncle and aunt. Mr. and Dr. Carlito (ionzales. for supporting his studies and stay here in the I.S.A. Without them. his studies is impossible. The anthor is also thankful to Mr. Padilla. for extending his help in drawing some of the figures in this thesis.

And finally. a thank you to the Lord for making all these things possible.

TABLE OF CONTENTS

Chapter Page
1 INTRODUCTION 1
2 COMPUTATIONAL BASES 9
3 UNIT-STEP. $\mathrm{u}(\mathrm{t})$ 14
t UNIT-IMPULSE. $Q \delta(t)$ 29
j RECTANGULAR PULSE 42
6 INIT-RAMP. Qt 5.5
i SINUSOIDAL. sin 1 68
APPENDI(ES 82
REFEREN(ES 10.5

LIST OF FIGURES

Figure Page
1.1 Per Phase Equiralent Circuit of Three Phase Incluction Motor. 4
1.2 Per Phase Approximate Equivalent Circuit of Three Phase Incluction Motor. 5
1.3 Circle Diagram 7
3.1 Torgue Respouse if the Final Slip is $0.03 \mathrm{u}(\mathrm{t})$ 20
3.2 Torque Response if the Final Slip is $-0.031(\mathrm{t})$ 21
3.3 Torque Response if the Final Slip is $0.3 u(1)$ $2 \cdot 2$
3.4 Current Response il the Final Slip is $0.03 \mathrm{u}(\mathrm{t})$ 33
3.5 Current Response if the Final Slip is -0.03u(t) -1
3.6 Current Response if the Final Slip is $0.3 \mathrm{u}(\mathrm{t})$ 25
3.7 Torque to Current Ratio if the Final Slip is $0.03 \mathrm{u}(\mathrm{t}$) 26
3.8 Torque to Current Ratio if the Final Slip is $-0.03 \mathrm{u}(\mathrm{t})$ $\cdot 27$
3.9 Torque to Current Ratio if the Final Slip is $0.3 u(t)$ 28
4.1 Torque Response if the Final Slip is $0.03 \delta(T)$ $3: 3$
4.2 Torque Response if the Final Slip is $-0.03 \delta(t)$ 34
4.3 Torque Response if the Final Slip is $0.3 \delta(t)$ 3.5
4.4 (urrent Response if the Final Slip is $0.038(t)$ 36
4.5 Current Response if the Final Slip is $-0.03 \delta(t)$ 37
4.6 Current Response if the Final Slip is $0.3 \delta(t)$ 38
4.7 Torque/Current Ratio if the Final Slip is $0.03 \delta(t)$ 39
4.8 Torque/Current Ratio if the Final Slip is $-0.03 \delta(t)$ 40
4.9 Torque/Current Ratio if the Final Slip is $0.3 \delta(t)$ 41
5.1 Torque Response if the Final Slip is $0.03[\mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-\mathrm{T})]$ 46
5. 2 Torque Response if the Final Slip is $-0.03[\mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-\mathrm{T})]$ $4 i$
$\therefore .3$ Torque Response if the Final Slip is $0.3[u(1)-u(t-T)]$ 48
5. 4 C'urrent Response if the Final Slip is $0.03[u(1)-u(t-T)]$ 49
5.5 ('urrent Response if the Final Slip is $-0.03[u(t)-u(t-T)]$ 50
5. 6 Current Response if the Final Slip is $0.3[u(1)-u(1-T)]$ 51
5.7 Torque/Current Ratio if the Final Slip is $0.03[u(t)-u(1-T)]$ 32
5.8 Torque/Current Ratio if the Final Slip is $-0.03[u(t)-u(1-T)]$ 5) 3
5.9 Torque/Current Ratio if the Final Slip is $0.3[u(t)-u(t-T)]$ 54
6.1 Torque Response if the Final Slip is 0.03 t 59
6.2 Torque Response if the Final Slip is -0.03 t 60
6.3 Torque Response if the Final Slip is $0.3 t$ 61
6.4 Current Response if the Final Slip is 0.03 t 62
6.5 Current Response if the Final Slip is -0.03 t 63
6.6 Current Response if the Final Slip is 0.3 t 64
6.i Torque/Curreut Ratio if the Final Slip is 0.03 t 65
6.8 Torque/Current Ratio if the Final Slip is -0.03t 66
6.9 Torque/Current Ratio if the Final Slip is $0.3 t$ 67
T. 1 Torque Response if the Final Slip is 0.03 sint 73
7.2 Torque Response if the Final Slip is -0.0 .3 sint i4
7. 3 Torque Response if the Final $S l i p$ is $0.3 \sin t$ 75
7. 4 Current Response if the Final Slip is 0.03 sint 76
7.5 Current Response if the Final Slip is $-0.03 \sin t$ 71
7.6 (urrent Response if the Final Slip is 0.3 sint 78
7.7 Torque/Current Ratio if the Final Slip is 0.03 sint 79
7.8 Torque/Current Ratio if the Final Slip is -0.03 sint 80
7.9 Torque/Current Ratio if the Final Slip is $0.3 \sin t$ 81

CHAPTER 1 INTRODUCTION

1.1 General Introduction

The induction motorn] was invented ly, Xikola Tesla in 1888. It resembles like an clectric transformer whose magnetic circuit is separated by an air-gap into two relatively morable parts. It has the primary winding which is held stationary and is called the stator winding and the secondary winding which is rotating and is called the rotor winding. The rotor circuit has no comection to the supply circuit and its fied is only induced bye the currents thru the stator. the principle of induction. That's why it is called the induction motor. It is either single-phase or polyphase machines.

1.2 General Types

There are two general types of 3 phase induction motor. One is the squirel cage rotor 1 yp e in which the rotor is self-contained and resembles a bird cage. The rotor conductors are permanently short-circuited by the end-rings. It las an adjustable. nearly constant and variable speed. In general. it has a medium starting torque. It is widely used in pump. compressor. blower. prime mover of dc generators. etc. The other type is the wound rotor type. The rotor has insulated coils of wire and resembles like a dc armature. The rotor conductors are comected to a slip rings and shorted thru the brushes. It has a variable speed and high starting torque. It is used in hoist. crane, elevator. escalator. pump. converor. etc.

The polyphase induction machine is the lowest-cost and most widely used motor in the industrial world. There are also a fractional-horsepower motors which are single-phase. They are used for electric fans.refrigerators.washing-machines, and other appliances. The adrantages of the induction motor over the other types are its
simplicitr: reliability: low-cost. good officiencr. good orer-load capacitr: amb mimmal service requirement.

1.3 The Rating System

The nameplate ratings of the motor are the bases of its performance capabilities. It gives the orerall performance of the motor itself. It refines the starting. cominuos starting and orerload torque: the temperature endurance: low starting current: and other factors. The purpose of motor rating, therefore is to define accurately its performance in a way that is adrantageons to the costumer.

The rating[2] of the induction motor gives the following: the supply rolage the number of phases. the frequency of the power supply. the horsepower rating. speed and the temperature rise. The horsepower rating together with the rated speed gives the torque the motor can deliver. The rating also states the trpe of service whether continuos. intermittent. or varying duty.

1.4 General Purpose Motor

To maintain service reliability and flexibility of application, the American Standards require that a general purpose [3] polyphase motor shall have maximum or breakdown torque of not less than 2 times as its nameplate rating. The purpose of choosing 200 percent for the breakdown torque are the following: First. it is desired that it will continue delivering nomal output during temporary low-roltage. Secondly: it is required for general purpose motor that it will operate continuously without injury at an output equal to 115 percent of its rating. And finally. a factor of 1.25 is giren to provide for occasional overloads and unforseen contingencies in the operation of motor.

It is desireathe for gemeral-purpose motor to be stated at full roltage. With the rohage lecing reduced at stating. the torque in reducerl as the spuate of the voltage. Ame loak reguiring high torgue will mot be stated. Winh a high anrent during sarting[1] causes a reduced roltage. So it is a must to hold this current as low as pussible. a problem usially encounter by the designer.

1.6 Temperature Limitation

Temperatme[g] is also one of the factors to be controlled in the operation of any monor. Excessive temperature tends 10 deterionte the performance (apability and life of electric motor. So it is a must for a design engineer to have an imsulation with greater emdurance aud good mechanical properties. Temperature rise is also proportional to the losses. Overloads are destructive to the motor but occasional orerloads of moderate ralue can be tolerated without great effect in its life.

1.7 The Equivalent Circuit

The performance of a polyphase induction motor can be analyzed by the phasor or circle diagram. But for the purpose of repetitive calculation. it is not advisable to use these methods. Since the introduction of computers gives us a conveniont and more efficient way of calculating the performance of a motor. the equiralent cicuin $[6.7 .8]$ provides us a sound basis for calculation. It is shown in Fig. 1.1. It is almost smilar to a transformer circuit except for the replacement of the transformer load by $R_{r}(1-s) / s$. Because of the large number of ampereturns reguired to force the flus across the motor air-gap. the magnetizing reactance. λ_{m}. is larger for the induction motor compare to the transformer. The primary roltage E_{1} is equal to the line voltage divided by $\sqrt{3}$ for a l^{\prime}-comected winding. A voltage drop occurs in the primary due to resistance. R_{s}. and leakage reactance. X_{s}.

At speed below synchronism. it produces a current I_{r} which creates a secondary resistance drop $I_{r} R_{r} / s$ and a rotor leakage reactance drop $j I_{r} X_{r}$. The secondary
resistance drop multiplied by the rotor current defines the power delivered to the motor shaft. commonly called as the output mechanical power. It is to be multiplior be the mmber of phases to get the total ontput. To obtain the net power. a friction and windage must be subtracted from the total output.

Figure 1.1 The Per Phase Equivalent Circuit of Three Phase Induction Motor

1.8 Approximate Equivalent Circuit

Nost induction motors operate at low values of slip. it usually ranges from 2 to 5 percent at full load. With this proof. it shows that the value of $R_{r}(1-s) / s$ is larger than either to R_{s} or R_{r}. Additionally. the stator reactance \mathcal{X}_{s} and rotor reactance λ_{r}. which are seldom two times the value of R_{s} and \dot{X}_{r}. are very small compared to $R_{r}(1-s) / s$. With these conditions. it is possible to modify the circuit of Fig. 1.1 b, moring the shunt path directly across the supply voltage as shown in Fig. 1.I. the approximate equiralent circuit of induction motor[9.10].

This method will cause to raise the roltage in the shunt circuit. This means a higher flux and a higher copper loss will be developed in the machine. Additionally: the copper loss in the stator will be reduced because at no-load, there will be no
stator copper loss because their is no current flowing through it. The addition of core loss will then be neutralize by the reduction of stator loss. By this reason the approximate equivalent is commonly used in the analysis of an induction motor.

This is the basis of all computations that will be presented in the remaining chapters of this thesis.

Figure 1.2 The Per Phase Approximate Equivalent Circuit of Three Phase Induction Motor

1.9 The Circle Diagram

One of the graphical methods used in the analysis of induction motor characteristics is the circle diagram[11.12]. It was introduced by Dr. A. S. Mc.Allister. It is based on the approximate equivalent circuit of an induction motor. As stated before the approximate equivalent circuit neglects the effect of the exciting current causing a roltage drop at no-load because it's been neutralized by the increase of core loss. The method used in this section assumed that it has a constant resistance throughout its speed range.

Referring to Fig. 1.2. with constan roltage applied to the circuit

$$
\begin{equation*}
I_{s}=\frac{1}{\sqrt{\left(R_{s}+R_{r} / s\right)^{2}+\left(X_{r}+X_{s}\right)^{2}}} \tag{1.1}
\end{equation*}
$$

This current is ont of phase with the voltage by an angle $\theta_{\text {, }}$ where

$$
\begin{equation*}
\theta_{r}=\frac{X_{r}+X_{s}}{\sqrt{\left(R_{s}+R_{r} / s\right)^{2}+\left(X_{r}+X_{s}\right)^{2}}} \tag{1.2}
\end{equation*}
$$

Combining Egns. 1.1 and 1.2 . it gives

$$
\begin{equation*}
I_{r}=\frac{1}{X_{r}+X_{s}} \cdot \sin \theta_{r} \tag{1.3}
\end{equation*}
$$

Equ. 1.3 is obvious to be a polar equation of a circle having a diameter of $\mathrm{V} /\left(\mathrm{X}_{r}+\mathrm{X}_{s}\right)$. This is the starting point of the analysis of this method. This method makes use of the circle diagram in finding the characteristics of an induction motor such as the following: the no-load current. rotor-blocked current. stator and rotor current. power input to stator. stator and rotor copper losses. power transferred across the air-gap. useful output. power factor. torque. slip. efficiencr. maximum power factor at which the motor can operate. etc.

The data necded to construct the circle are the magnitude of the no-load current. $O B$, the rotor blocked current. OH , and their phase angles with reference to the line roltage. OA. A circle is then drawn to pass B and H . Each line on the diagram is a measure of current in amperes. To find the power in watts. it has to be multiplied by the number of phases and by the phase voltage. Line KH signifies the total motor input with blocked rotor. while KI represents the primary $I^{2} R$ loss. Line HI is the power input at standstill. To find the synchronous speed. HI should be divided by the synchronous speed.

Figure 1.3 The Circle Diagram

Given any load. say at point G. $O G$ is then the primary current. $B G$ is the secondary current and $G C$ represent the motor input. GE represents the motor output. FE is the secondary $I^{2} R$ loss. DE the primary $I^{2} R$ loss and CD the no-load copper loss. To find the maximum power-factor, a line is drawn from O tangent to the circle at point L. Similiarly, the maximum output and the maximum torque points M and R are located by tangent lines parallel to BH and BI. The diameter
of a circle is ergual to the voltage divided by the stanstill reactance. or eguivalent 10 the block-rotor current with the resistances of both windings being neglected. The maximum torgue in symethonous watts. is equal to a little less than the product of the radits of the circle. the voltage. O.A. and the number of phases.

The circle diagram gives a convinient way of checking the overall performance of a motor with a minimum test data.

1.10 Thesis Overview

This thesis makes use of the approximate equivalent circuit in the analysis of the perfomance of induction motor. Becanse it provides an easiness in formulating a computer program that can make a repetitive calculations. Circle diagram is not adrisable to use because one has to draw a different diagram for a different motor rating.

This thesis studied the torque and the current response of an induction motor produced by singularity changes of machine slip. Special athention is also given for an induction generator. when the motor is driven slightly above synchonous speed by supplying power to the shaft. The slip in this case is negative. The ratio of the torque to the rotor current. being one of the important data in the electric machine operation. is also treated in this thesis. It is alwars desired that the torque is masimized at a minimum line current.

CHAPTER 2
 COMPUTATIONAL BASES

2.1 Introduction

This chapter deals with the bases of computations that will be used throughout this thesis. The step-hestep solutions of both current and torque response will be shown here. As stated in the previons chapter. all of the romputations are based on the approximate equiralent circuit of induction motor shown in Fig. 1.2. Q is now used to stand for the slip so that it will not be mistaken in s of $F(s)$ commonty used in Laplace Transfomation. The stator resistance. R_{s}. and the stator reactance. j. \mathcal{S}_{s} are loth neglected. This is a practical assumption because

$$
\left|\frac{j X_{m} R_{c}}{R_{c}+j X_{m}}\right| \geq 10 \sqrt{R_{s}^{2}+X_{s}^{2}}
$$

Since the only parameter present in the circuit is of the rotor side. R will now be used to stand for the rotor resistance and If for the rotor inductive reactance.

2.2 Torque Calculation

Looking lack in Fig. 1.2. the approximate equivalent circuit of a 3 phase incluction motor. The total resistance. R_{f}, excluding the magnetizing branch. and the total inductive reactance. X_{t}. are giren by

$$
\begin{gather*}
R_{t}=R+R \frac{(1-Q)}{Q} \tag{2.1}\\
R_{t}=\frac{R}{Q} \tag{2.2}\\
\lambda_{t}=\lambda \tag{2.3}
\end{gather*}
$$

Also the rotor current. I. is equal to

$$
\begin{equation*}
I=\frac{\mathrm{V}}{\sqrt{(R / Q)^{2}+\mathrm{X}^{2}}} \tag{2.1}
\end{equation*}
$$

in ampere per phase. The torgue[13]. T. is equal to

$$
T=I^{2} \frac{R}{Q}
$$

$$
\begin{gather*}
T=\frac{1^{2}}{X^{2}+(R / Q)^{2}} \times \frac{R}{Q} \tag{2}\\
T=\frac{1^{2} Q R}{R^{2}+Q^{2} X^{2}} \tag{7}
\end{gather*}
$$

in suchonous watts per phase.

2.3 Differentiation

The equation of torque. Eqn. 2.7. is differentiated with respect to the slip. Q .

$$
\begin{align*}
& \frac{\partial T}{\partial Q}=\frac{1^{2}\left[\left(R^{2}+Q^{2} X^{2}\right) R-Q R\left(2 Q X^{2}\right)\right]}{\left[R^{2}+Q^{2} X^{2}\right]^{2}} \tag{2.8}\\
& \frac{\partial T}{\partial Q}=1^{2}\left[\frac{R}{\left(R^{2}+Q^{2} X^{2}\right)}-\frac{2 Q^{2} R X^{2}}{\left(R^{2}+Q^{2} X^{2}\right)^{2}}\right] \tag{2.9}
\end{align*}
$$

To find $\partial T / a t . \partial T / i Q$ is multiplied by $\partial Q / a t$

$$
\begin{equation*}
\frac{\partial T}{\partial t}=\frac{\partial T}{\partial Q} \times \frac{\partial Q}{\partial t} \tag{2.10}
\end{equation*}
$$

Aeditionally: $\partial y / \partial t=y^{\prime}$. as alwars been used in differential equation. hence the differential equation for solving torque becomes

$$
\begin{equation*}
T^{\prime}=I^{2}\left[\frac{R Q^{\prime}}{\left(R^{2}+Q^{2} X^{2}\right)}-\frac{2 Q^{2} R X^{2} Q^{\prime}}{\left(R^{2}+Q^{2} X^{2}\right)^{2}}\right] \tag{2.11}
\end{equation*}
$$

2.4 Approximate Torque Equation

Equ. : 2.:2 is very hard or eren unsolvable using Laplace Transformation. It is further simplified by the method of Long Division. Separating Eqn. 2.12 into two parts. by letting

$$
\begin{equation*}
A=\frac{R Q^{\prime}}{R^{2}+Q^{2} \mathrm{I}^{2}} \tag{2.12}
\end{equation*}
$$

$$
B=\frac{2 R R^{2} Q^{2} Q^{\prime}}{1 R^{2}-Q^{2} I^{2} ;}
$$

Aher Long Division using up to the fhed tom. iney becone

$$
\begin{gather*}
A \approx \frac{Q^{\prime}}{R^{\prime}}-\frac{Q^{\prime} Q^{2} A^{2}}{R^{3}} \div \frac{Q^{\prime} Q^{4} \cdot D^{-4}}{R^{3}} \\
B \approx \frac{\because Q^{\prime} Q^{2} I^{\prime 2}}{R^{2}}-\frac{4 Q^{\prime} Q^{+} X^{4}}{R^{5}}-\frac{6 Q^{\prime} Q^{\prime \prime} X^{-1 /}}{R^{-}}
\end{gather*}
$$

Subtitute Eqn. $2.1 \div$ and Eqn. 2.15 to Eqn. 2.11 . the approximate $\begin{aligned} & \text { orque differential }\end{aligned}$ equation

$$
\begin{align*}
& T^{\prime} \approx r^{\cdots} \cdot \frac{Q^{\prime}}{R}-\frac{Q^{\prime} Q^{2} I^{-2}}{R^{3}}-\frac{Q^{\prime} Q^{4} \cdot R^{-4}}{R^{2}}-\frac{2 Q^{\prime} Q^{2} R^{-2}}{R^{3}}- \\
& \frac{4 Q^{\prime} Q^{4} J^{-4}}{R^{-}}-\frac{6 Q^{\prime} Q^{\prime \prime} \lambda^{-1}}{R^{-}} \\
& T^{\prime} \approx I^{2} \cdot \frac{Q^{\prime}}{R}-\frac{3 X^{-2} Q^{\prime} Q^{2}}{R^{3}}+\frac{.3 X^{4} Q^{\prime} Q^{4}}{R^{5}}-\frac{6 X^{-6} Q^{\prime} Q^{6}}{R^{-}} .
\end{align*}
$$

Eqn. 2. 18 is the fual equation for torque in suchronons watts per phase. This differential equation is now solvable using the Laplace Transfomation which will be presented in the next chapier.

2.5 Current Calculation

The method used in torque calculation is the same method that will be used in this section. Again. looking back in Fig. 1.2. the rotor current. I. is equal to

$$
I=\frac{1}{\sqrt{R^{2}-\left(R / Q!^{2}\right.}}
$$

Differentiate this with respect to slip. O.

$$
\frac{\partial I}{\partial Q}=\frac{1 R^{2}}{Q^{3}\left(X^{2}+(R / Q)^{2}\right)^{3 / 2}}
$$

To find $\partial I / \partial t$. Eqn. $2-19$ is multiphed by $\partial Q / \partial t$. Simplify by leting $\partial / / i f t$ equal to I^{\prime} and $\partial Q / \partial t$ equal to Q^{\prime}. It becomes

$$
\begin{equation*}
I^{\prime}=\frac{V R^{2} Q^{\prime}}{\| I^{2} Q^{2}+\left.R^{2}\right|^{3 / 2}} \tag{2.20}
\end{equation*}
$$

But then their is no way Laplace Transform can be applied to solve the differential equation above because of the complexity of the denominator. It is simplified using one of the well known formula in the number series. which is equal to

$$
\begin{equation*}
\left(a \div b!^{n}=a^{n}+n a^{n-1} b+\frac{n(n-1)}{2!} a^{n-2} b^{2}+\frac{n(n-1)(n-2)}{3!} a^{n-3} b^{3} \div \ldots\right. \tag{2.21}
\end{equation*}
$$

provided that $b \ll a$.
Csing Equ. 2.21 to simplify the denominator of Eqn. 2.20 . and by letting $a=R^{2}$ and $b=A^{-2} Q^{2}$. These are assumed because $X^{2} Q^{2}$ is much less than R^{2} since slip is a rery small value. The denominator of Eqn. 2.21 becomes

$$
\begin{equation*}
\left(R^{2}+\mathcal{X}^{-2} Q^{2}\right)^{3 / 2} \approx R^{3}+\frac{3}{2} R X^{-2} Q^{2} \tag{2.22}
\end{equation*}
$$

The term berond the second is neglected in Eqn. 2.23. This is done to simplify the current calculation. The current differential equation becomes

$$
\begin{equation*}
I^{\prime} \approx I\left[\frac{R^{2}}{R^{3}+3 / 2 R I^{2} Q 2}\right] \tag{2.23}
\end{equation*}
$$

Again. by the Method of Long Division. this becomes

$$
\begin{equation*}
I^{\prime} \approx \mathrm{V}\left[\frac{Q^{\prime}}{R}-\frac{3 X^{-2} Q^{2} Q^{\prime}}{2 R^{3}}\right] \tag{2.24}
\end{equation*}
$$

in amperes. The term berond the third is neglected after division. This current is also based in per phase calculation.

2.6 Numerical Calculation

Eqn. 2.5 gives the formula for solving the torque in synchronous watts. To solve for the total torque[14] in a 3 phase system

$$
\begin{equation*}
T=3|I|^{2} \frac{R}{Q} \tag{2.25}
\end{equation*}
$$

It is a common practice to use lb -ft or Λ-m as a unit of measurement for torque. It is converted by

$$
\begin{equation*}
T=3|I|^{2} \frac{R}{Q} \times \frac{33.000}{146 \times 2 \pi I_{s}} \tag{2.26}
\end{equation*}
$$

$$
T=\frac{7.101}{\Lambda_{s}} \times \frac{3|/|^{2} R}{Q}
$$

 So the torgue in \widehat{x}-m for a three phase sestem is equal 10

$$
T=\frac{\overline{0} .14 \times 1.3 .5(i \times 3}{I_{s}} \times \frac{1 T^{2} R}{?}
$$

where the rotor current. I. is equal to

$$
\begin{equation*}
H=\frac{1}{\sqrt{(R / Q)^{2}+I^{2}}} \tag{2.29}
\end{equation*}
$$

in ampere. per phase.

2.7 Maximum Torque

To find the maximum or breakdown torque. $T_{\text {man }}$. the motor can developed

$$
\begin{equation*}
\Gamma_{\text {max. }}=\frac{7.04 \times 1.3 .56}{\lambda_{s}} \times \frac{3|I|^{2} R}{Q_{\text {mex }}} \tag{2.30}
\end{equation*}
$$

in X-n for a thee phase sestem. $Q_{\text {mar }}$ is the slip of induction motor at maximum torque. It can be solved les equating $\partial T / \partial Q=0$. and solve for the slip. Q. From Eqn. -2. $\overline{1}$

$$
\begin{equation*}
T=\frac{I^{2} Q R}{R^{2}+Q^{2} \cdot 1^{2}} \tag{2.31}
\end{equation*}
$$

Solving for $\partial T / \partial Q=0$

$$
\begin{gather*}
\frac{\partial T}{\partial Q}=0=\frac{T^{2}\left[\left(R^{2}+Q^{2} \mathrm{X}^{2}\right) R-2 Q^{2} R \mathrm{X}^{-2}\right]}{\left(R^{2}+Q^{2} \mathrm{X}^{2}\right)} \tag{2.32}\\
0=R^{3}+Q^{2} R \mathrm{X}^{2}-2 Q^{2} R \mathrm{X}^{2} \tag{2.33}\\
R^{3}=Q^{2} R \mathrm{X}^{-2} \tag{2.34}\\
Q_{\max }=\frac{R}{\mathrm{X}^{5}} \tag{2.3.5}
\end{gather*}
$$

This is the slip for maximum torque in this case. with the stator resistance and the stator inductive reactance being neglected.

CHAPTER 3
 UNIT-STEP, $u(t)$

3.1 Introduction

This hapter analyzed the torque-time and current-time response of a 3 phase induction motor. When a very small value of slip at no-load is sudemly changed to a mit-ster) value. Qu(t). All of the computations are based on the previous chapter. The Table of the Laplace Transforms is presented in Appendix A of this thesis. This chapter also analyzed the torque to current ratio of an induction machine.

3.2 Applying Laplace Transformation

Going back 10 the differential equation for calculating torque presented in Eqn.2.15.

$$
\begin{equation*}
T^{\prime \prime} \approx 1^{-2}\left[\frac{Q^{\prime}}{R^{\prime}}-\frac{3 X^{-2} Q^{2} Q^{\prime}}{R^{3}}+\frac{5 X^{4} Q^{4} Q^{\prime}}{R^{5}}-\frac{6 X^{-6} Q^{16} Q^{\prime}}{R^{\prime}}\right] \tag{3.1}
\end{equation*}
$$

with the following boundary conditions

$$
\begin{array}{ll}
\text { at } t=u^{-} & Q=Q_{0} \\
\text { at } t=0^{+} & Q=Q_{u(t)}
\end{array}
$$

Q is the initial value of slip at no-load. Laplace Transiorm can be applied in Equ.
3.1. term-by-term. By using the derivative property of Laplace Transform.

$$
\begin{equation*}
\mathcal{L}\left[\frac{d^{\prime \prime} f(f)}{d t^{n}}\right]=s^{n} F(s)-s^{s^{i-1}} f(0)-s^{i-2} \frac{d f(0)}{d t} \ldots-\frac{d^{n-1} f(0)}{d t^{n-1}} \tag{3:2}
\end{equation*}
$$

The final slip is $Q u(t)$ and the transform of a unit-step. u(f). is $1 / \mathrm{s}$. So

$$
\begin{gather*}
\mathcal{L}[Q]=\mathcal{L}[Q u(t)]=Q(s)=Q / s \tag{3.3}\\
\mathcal{L}\left[Q^{\prime}\right]=s Q(s)-Q_{0} \tag{3.4}\\
\mathcal{L}\left[Q^{\prime}\right]=Q-Q_{0} \tag{3.5}
\end{gather*}
$$

$$
\begin{gather*}
\mathcal{L}\left[T^{\prime}\right]=s T(n)-T \tag{3.6}\\
Q^{2}=Q^{2}(u) \tag{T}\\
\mathcal{L}\left[Q^{2}\right]=\frac{Q^{2}}{} \tag{3.x}
\end{gather*}
$$

To find the transform of [$\left.e^{2} Q^{\prime}\right]$. a poednct of 1 wo functions. a Laplace lransform is given in the Appendix A. which sates

$$
\begin{equation*}
\mathcal{L}\left[f_{1}(l) f_{2}(l)\right]=\sum_{k=1}^{\eta} \frac{f_{1}\left(s_{k}\right)}{B_{1}^{\prime}\left(s_{k}\right)} F_{2}\left(s-\omega_{k}\right) \tag{3.9}
\end{equation*}
$$

porided that $F_{1}(s)$ is a mational function. $F_{1}(s)$ is equal 10 . A_{1} / β_{1} and has only q first-order poles. Gif are he poles of $F_{1}(s)$. In this case. it is assumed that $f_{1}(1)=\left(Q^{\prime}\right.$ becanse its transfom is a rational function. Q^{\prime} is assmmed to be fo(1).

$$
\begin{align*}
& \mathcal{L}\left[Q^{2} Q^{\prime}\right]=\frac{Q^{2}}{1}\left[Q-Q_{0}\right] \tag{3.10}\\
& \mathcal{L}\left[Q^{\prime} Q^{\prime}\right]=Q^{2}\left[Q-Q_{0}\right] \tag{3.11}
\end{align*}
$$

To solve for the mansform of $\mathcal{L}\left[Q^{4} Q^{\prime}\right]$. it is assmmed that $f_{1}(1)=\left(Q^{4}\right.$ and $f_{2}(t)=$ Q^{\prime}

$$
\begin{gather*}
Q^{4}=Q^{4} u(1) \tag{2}\\
\mathcal{L}\left[Q^{4}\right]=\frac{Q^{4}}{6} \tag{3.13}\\
\mathcal{L}\left[Q^{4} Q^{\prime}\right]=Q^{4}\left(Q-Q_{0}\right) \tag{3.1t}
\end{gather*}
$$

Similarly:

$$
\begin{equation*}
\mathcal{L}\left[Q^{r i} Q_{i}^{\prime}\right]=Q^{i}\left[Q-Q_{0}\right] \tag{3.15}
\end{equation*}
$$

Substitute Equs. $3.10,3.12$, and $3.1: 3$ to Equ. 3.1.

$$
\begin{align*}
& s \Gamma(s)-T_{0} \approx 1^{2}\left(\frac{1}{R}\left[Q-Q_{0}\right]-\frac{3 \lambda^{-2}}{R^{3}} Q^{2}\left[Q-Q_{0}\right]+\frac{5 D^{-4} Q^{4}}{R^{5}}\left[Q-Q_{0}\right]\right. \\
&\left.-\frac{6 \lambda^{-16} Q^{6}}{R^{-}}\left[Q-Q_{0}\right]\right) \tag{3.16}\\
& \Gamma(s)=I^{-2}\left(\left[Q-Q_{0}\right] \frac{1}{R s}-\frac{3 X^{-2} Q^{2}}{R^{3} s}+\frac{5 X^{4} Q^{4}}{R^{5} s}-\frac{6 X^{-6} Q^{6}}{R^{-} s}\right)+\frac{T_{0}}{s} \tag{3.17}
\end{align*}
$$

Take the inserse Laphace Transform. gives.

$$
\begin{equation*}
T(l)=1^{\cdots} u(l)\left([Q-Q]\left[\frac{1}{R}-\frac{3 X^{-2} Q^{2}}{R^{3}}+\frac{\pi J^{-4} Q^{4}}{R^{-}}-\frac{\left\{X ^ { - 6 } \left(Q^{6}\right.\right.}{R^{-}}\right]\right)+T u() \tag{3.18}
\end{equation*}
$$

in sumphomems watis per phase.

3.3 Current Calculation

Using the same technigne as in tec. 3.2 in solving the differential equation for current calculation. Eqn. 2.2t states

$$
\begin{equation*}
I^{\prime} \approx 1\left[\frac{Q^{\prime}}{R}-\frac{3 X^{-2} Q^{2} Q^{\prime}}{2 R^{3}}\right] \tag{3.19}
\end{equation*}
$$

subjected to the following boundary conditions

$$
\begin{array}{ll}
\text { at } t=0^{-} & Q=Q_{0} \\
\text { at } t=0^{+} & Q=Q u(t)_{u}
\end{array}
$$

Lsing the derivative property of Laplace Transform.

$$
\begin{equation*}
\mathcal{L}\left[I^{\prime}\right]=. I(x)-I_{0} \tag{3.20}
\end{equation*}
$$

Sulstitute Equs. 3.5. 3.11 and 3.20 to Eqn. 3.19.

$$
\begin{align*}
& s I(s)-I_{0}=1\left[Q-Q_{0}\right]\left(\frac{1}{R}-\frac{3 X^{-2} Q^{2}}{2 R^{3}}\right) \tag{3.21}\\
& I(s) \approx I[Q-Q]\left(\frac{1}{R s}-\frac{3 X^{2} Q^{2}}{2 R^{3} s}\right)+\frac{I_{0}}{s} \tag{3.23}
\end{align*}
$$

Take the inverse Laplace Transform.

$$
\begin{equation*}
I(t) \approx 1\left[Q-Q_{0}\right] u(t)\left(\frac{1}{R}-\frac{3 \cdot \mathrm{X}^{2} Q^{2}}{2 R^{3}}\right)+I_{0} u(t) \tag{3.2:3}
\end{equation*}
$$

in ampere per phase.

3.4 Nameplate Rating

. Wh of the case studies that will he presented in this thesis ate based on one eperitio induction monor with the following parameners:

- 3 hp. 40 rolts line-to-line. 3 phase. l'ecomected. fol haz. 4 pole. 1.50 rpm induction motor
- Power Factor=0.858 lagging
- Efficiency=0.81
- Full Load Slip=0.0.3
- Syuchronous Speed $=1 \times 00 \mathrm{mpm}$
- Sitator Resistance=-2.69 ohms
- Rotor Resistance $=-.14$ ohms
- Stator Inductire Reactance $=4.36$ ohms
- Rotor Inductive Reactance $=4.5$ ohms
- Magnetizing Resistance $=3.66$ ohms
- Magnetizing Reactance $=103$ ohms

To solve for the full-load curent. Eqn. 2.4 is used using the motor ratings given above

$$
\begin{gather*}
I=\frac{1}{\sqrt{(R / Q)^{2}+1^{2}}} \tag{3.24}\\
I=\frac{440 / \sqrt{3}}{\sqrt{(2.1+/ 0.0 .3)^{2}+(4.5)^{2}}}=3.5 . \tag{3.25}
\end{gather*}
$$

amperes.
From Eqn. 2. 31 the full load torque is equal to

$$
\begin{equation*}
T_{F L}=\frac{7.04 \times 1.356 \times 3}{\lambda_{s}} \times \frac{|I|^{2} R}{Q} \tag{3.26}
\end{equation*}
$$

$$
\begin{gather*}
T_{F L}=\frac{7.04 \times 1.35(6 \times 3 \times}{V_{5}} \times \frac{(3.35)^{2}(2.14)}{0.03} \tag{3.27}\\
T_{F L}=11.333 \tag{3.2}
\end{gather*}
$$

in Vewtom-meter.
To solve for the maximum torgue. the slip for maximum 1 oryue. $Q_{\text {mar }}$. is given bequ. 2.35

$$
\begin{gather*}
Q_{m n}=\frac{R}{1} \tag{3.29}\\
Q_{2 m m}=\frac{2.14}{4.5}=0.176 \tag{3.30}
\end{gather*}
$$

The rotor current at maximum torgue is equal to

$$
\begin{gather*}
I_{n+5}=\frac{440 / \sqrt{3}}{\sqrt{(2.14 / 0.476)^{2}+4.5}} \tag{3.31}\\
I=39.94
\end{gather*}
$$

amperes. $T_{m, x}$ then becomes

$$
\begin{gather*}
T_{m a x}=\frac{\overline{\bar{i}} .04 \times 1.35(6 \times 3}{1800} \times \frac{(39.94)^{2}(2.11)}{0.47 .5} \tag{3.3:3}\\
T_{m u x}=114.34 \tag{3.3+1}
\end{gather*}
$$

in $\lambda_{\text {- }}$.

3.5 Case Studies

A computer program for solving torque has been developed using FORTRA. ${ }^{\text {A }}$ language [15.16]. It is based in the final equation for torque calculation giveu by Eqn. 3.18. The program is shown in Appendix B of this thesis. The inputs needed in the program are the following: the per phase voltage in volts. the frequency of the supp)!: system in hertz. the number of poles of the motor. the number of phases. the rotor resistance in ohms. the rotor inductive reactance in ohms. the final slip. the initial slip. the initial torque in N^{-m}. and the time in seconds. respectively.

A computer program has also beren developed for soking the rotor current. It is based in Eqn. 3.23 and is shown in Appendix (. The inputs meeded in this peogran are the following: the per phase supple rolage the rotor resistance. the rotor inductive reactance. the tinal slip. the intial slip. the intial curem in amperes. and the time respectively. The case studies shown in this section are based in the
 Which is 3 peremt of the full-load forgue. and the initial current is 0.3 Amp. The cases being studied are the following: when the slip at no-load is sudrlenty changed $100.0: 3 u(f)$. When it is ruming as induction generator with negative slip. and when it is ruming al a very high slip as in the case of a low-drive motor.

Fig. 3.1 shows the torque-time response when the initial slip of 0.001. is suddenly: changed to a unit-step. 0.0.3u(f). The response is also a mit-step) with magnitude of 13.75 N-m. It is very close to the full-load torgue computed in Sec. $2-4$, which is equal to $14.34 \mathcal{N}_{\text {-m }}$. In the case of induction generator. with initial slip of -0.001 and a final slip of -0.03 u(t). the response is almost equal to the motor response except that it is negative. It is shown in Fig. 3.2. In the case of a low-drive motor with a final slip. (1).3u(t). the response is also a mit-step with magnitude of approximately 2.5 times the full-load. It does not reach the maximum forgue due to the fact that the slip is constant at any time. t, and it is way below the slip at maximum toryue. Qmax. It is shown in Fig. 3.3. The unit for torque is N-m. since the conversion factors are already set in the computer program based in Equ. 2.30 .

Figs. 3. 4 to 3.6 show the current reuponses for the three cases stated before. For the first case the response is $3 . i 2 u(t)$. it is rery close to the full-load current computed in Sec. 2.4. which is equal to 3.55 Amp. This is because the slip is maintained at a constant level equivalent to the full-load. In the case of an induction generator. the current response is equal to $-3.12 u(t)$. For a low drive motor. shown in Fig. 3.6. the current response is approximately 3 times the full-load current.

Figs. 3.7 to 3.5 show the computed ratio of torque over the current. The torgue

10 cumem ratio of a low-drive motor is the lowest. This in die to the greater incrase of the curent than the torque with the same change of machine slip.

Figure 3.1 Torque Response If The Final Slip Is $0.0: 3(f)$

Figure 3.2 Torque Response If The Final Slip Is $-0.03 u(t)$

Figure 3.3 Torque Response If The Final Slip Is $0.3 u(t)$

Figure 3.4 (urrent Response If The Final Slip Is $0.03 u(t)$

Figure 3.5 Current Response If The Final Slip Is $-0.03 u(t)$

Figure 3.6 Current Response If The Final Slip Is $0.3 u(t)$

Figure 3.7 Torque to Current Ratio If The Final Slip Is $0.03 u(t)$

Figure 3.8 Torque to Current Ratio If The Final Slip Is $-0.03 u(t)$

Figure 3.9 Torque to Current Ratio If The Final Slip Is $0.3 u(t)$

CHAPTER 4
 UNIT-IMPULSE, (Or(t)[20]

1.1 Introduction

This chapter deals with the 1 orque-time and current-time response of induction motor. When a slip at no-load is changed to a mit-impulse. Qdil). Computations are all hased in Chapter \because. This chapter also gives attention with the response of a low-drive induction motor which operates with a high stip. and when it is operating at negative slip as in the case of induction generator

4.2 Applying Laplace Transform

Recall the differential equation for torque given in Eqn. 2. 17

$$
\begin{equation*}
T^{\prime} \approx 1^{-2}\left[\frac{Q^{\prime}}{R}-\frac{3 X^{-2}}{R^{3}} Q^{\prime} Q^{2}+\frac{5 X^{4}}{R^{5}} Q^{\prime} Q^{4}-\frac{\sigma_{0} X^{-6}}{R^{2}} Q^{\prime} Q^{6}\right] \tag{1.1}
\end{equation*}
$$

subjected with the following boundary conditions

$$
\begin{array}{ll}
\text { at } t=0^{-} & Q=Q \\
\text { at } t=0^{+} & Q=Q \delta(1)
\end{array}
$$

To solve this equation. Laplace Transformation is again used. Refer to the Tables of Laplace Transform in Appendix: A. the derivative property gives

$$
\begin{equation*}
\frac{d^{\prime \prime} f(t)}{d f^{\prime \prime}}=s^{n} F(s)-s^{n-1} f(0)-s^{n-2} \frac{d f(0)}{d t} \ldots-\frac{d^{\prime \prime}-1}{d(0)} \frac{d t^{\prime \prime-1}}{} \tag{4.2}
\end{equation*}
$$

Solve the Laplace Transform of Eqn. 4.1 term-br-term gives

$$
\begin{align*}
& \mathcal{L}\left(T^{\prime}\right)=s T(s)-T_{0} \tag{4.3}\\
& \mathcal{L}[Q \delta(t)]=Q(s)=Q \tag{4.4}\\
& \mathcal{L}\left[Q^{\prime}\right]=s Q(s)-Q_{0} \tag{4.5}
\end{align*}
$$

$$
\begin{gather*}
\mathcal{L}\left[Q^{\prime}\right]=Q-Q_{W} \\
\mathcal{L}\left[Q^{2}\right]=\mathcal{L}\left[Q^{2} \dot{(} \mid 1\right]=Q^{2} \tag{1.7}
\end{gather*}
$$

To find $\mathcal{L}\left[Q^{2} Q^{\prime}\right]$ a product of two functions. a formula in givem in Appendix a

$$
\mathcal{L}\left[f_{1}(t) f_{2}(t)\right]=\sum_{k=1}^{2} \frac{f_{1} s\left(f_{i}\right)}{B_{1}^{\prime} \cdot\left(h_{j}\right)} F_{2}\left(x-s_{k}\right)
$$

It is assumed that $F_{1}(s)=Q^{2}$ and $F_{2}(s)=s Q-Q_{0}$. But Equ. tis cannot be applied directly to solve for $\mathcal{L}\left[Q^{\prime 2} Q^{\prime}\right]$ because neither $F_{1}(s)$ nor $F_{2}(s)$ is a rational function. To satisfy the requirement. $F_{1}(x)$ is multiplied by $\% / s$.

$$
\begin{gather*}
\mathcal{L}\left[Q^{2}\right]=\frac{s Q^{2}}{s} \tag{4.9}\\
\mathcal{L}\left[Q^{2} Q^{\prime}\right]=\frac{s Q^{2}}{1}\left(s Q-Q_{0}\right) \tag{4.10}\\
\mathcal{L}\left[Q^{2} Q^{\prime}\right]=s^{2} Q^{3}-s Q^{2} Q_{0} \tag{4.11}
\end{gather*}
$$

Smilarly:

$$
\begin{gather*}
\mathcal{L}\left[Q^{4}\right]=\frac{s Q^{4}}{4} \tag{1.1.2}\\
\mathcal{L}\left[Q^{4} Q^{\prime}\right]=s^{2} Q^{5}-s Q^{4} Q_{0} \tag{4.13}\\
\mathcal{L}\left[Q^{6}\right]=\frac{Q^{6}}{s} \tag{4.11}\\
\mathcal{L}\left[Q^{6} Q^{\prime}\right]=s^{2} Q^{-}-s Q^{6} Q_{0} \tag{4.15}
\end{gather*}
$$

Substitute these in Eqn. 4.1

$$
\begin{align*}
s T(s)-T_{0} \approx & \frac{1^{2}}{R}\left(s Q-Q_{0}\right)-\frac{3 I^{-2} X^{-2}}{R^{3}}\left(s^{2} Q^{3}-s Q^{2} Q_{0}\right)+ \\
& \frac{5^{2} X^{4}}{R^{5}}\left(s^{2} Q^{5}-s Q^{4} Q_{0}\right)-\frac{6 I^{2} X^{6}}{R^{-}}\left(s^{2} Q^{-}-s Q^{6} Q_{0}\right) \tag{1.16}
\end{align*}
$$

Simplify and get

$$
\begin{align*}
T(s) \approx & \frac{l^{2}}{R}\left(Q-\frac{Q^{0}}{s}-\frac{3 I^{-2} X^{-2}}{R^{3}}\left[s Q^{3}-Q^{2} Q_{0}\right]+\frac{51^{-2} X^{4}}{R^{5}}\left[s Q^{5}-Q^{4} Q_{0}\right]\right. \\
& -\frac{6 I^{-2} X^{-6}}{R^{-}}\left[s Q^{-}-Q^{6} Q_{0}\right]+\frac{T_{0}}{s} \tag{4.17}
\end{align*}
$$

Finting the inverse laphace Transorm.

$$
\begin{align*}
& T(1) \approx u(t)\left[T-\frac{1^{2} Q}{R}\right]+\frac{1^{2} Q d(1)}{R}+\frac{3 I^{2} Q Q}{R^{2}}-\frac{x^{4} Q^{3} Q}{R^{4}}+ \tag{1.19}
\end{align*}
$$

in symelromous watts.

4.3 Current Calculation

(ioing lack to Eqn. 2.2. 4

$$
\begin{equation*}
I \approx I\left[\frac{Q^{\prime}}{R}-\frac{3 \lambda^{2} Q^{2} Q^{\prime}}{2 R^{3}}\right] \tag{1.1!}
\end{equation*}
$$

with the following lomolary conditions
at $t=0^{-}$
$Q=Q$.
at $t=u^{+}$
$Q=Q \delta(t)$

Tsing the same metliod as in Sec. 4.2

$$
\begin{equation*}
\mathcal{L}\left[I^{\prime}\right]=s I(s)-I_{0} \tag{4.20}
\end{equation*}
$$

From Sec. 1.2

$$
\begin{gather*}
\mathcal{L}\left[Q^{\prime}\right]=s Q(x)-Q \tag{4.21}\\
\mathcal{L}\left[Q^{2}\right]=\frac{Q^{2}}{s} \tag{1.2.2}\\
\mathcal{L}\left[Q^{\prime} Q^{\prime}\right]=s^{2} Q^{3}-s Q^{2} Q \tag{1.23}
\end{gather*}
$$

Substitute these in Eqn. 4.20

$$
\begin{align*}
& s I(s)-I_{0} \approx \frac{1}{R}\left(s Q-Q_{0}\right)-\frac{3 I X^{2}}{2 R^{3}}\left(s^{2} Q^{3}-s Q^{2} Q_{0}\right) \tag{4.24}\\
& I(s) \approx \frac{1}{R}\left(Q-Q_{0}\right)-\frac{3 I^{3} X^{2}}{2 R^{3}}\left(s Q^{3}-Q^{2} Q_{0}\right)+\frac{I_{0}}{s} \tag{1.25}
\end{align*}
$$

Taking the inverse Laplace Tiansform

$$
\begin{equation*}
I(I)=\left[I_{0}-\frac{I Q_{0}}{R}\right] u(t)+\frac{I Q}{R}\left[1+\frac{3 X^{-2} Q Q_{0}}{2 R^{3}}\right] \delta(t)-\frac{3 I^{-2} X^{-2} Q^{3}}{2 R^{3}} \delta^{\prime}(t) \tag{4.26}
\end{equation*}
$$

It is secu here and also for the torgue equation of Egn. t.Is that we response for botly of them are composed of 3 different terms: a mit-step, a mit-imphase and a domblet.

4.4 Case Studies

The case studies that will be presented in this section are the same as those in Sec. 3.4. These are the following: when the slip is changed from no-toad to $0.03 \mathrm{~B}(1)$. When it is rmming as inctuction generator. and when it is running at high slip as in the case of a low-drive induction motor.

A computer program for torgue calculation and for current calculation are presented in Appendix D and E. respectively. The inputs needed in the computer program for torque are the following: the per phase supply roltage the frequency of the system. the mumber of poles of the motor. the number. of phases. the rotor resistance. the final slip. the initial slip. and the initial torque. All the units are the same as in Sec. 3.4.

Fig. 4.1 shows the response when the final slip is $0.038(t)$ and the initial stip is 0.001 while Fig. 4.2 shows the $\begin{gathered}\text { sorque response for an inctuction generator with }\end{gathered}$ final slip os $-0.003 \delta(t)$. Their responses are almost identical except that the have opposite sign. The magnitude of the mit-impulse response is almost equal to the full-load torque. For a low-drive induction motor. the magnitude of the unit-impulse response goes berond the maximm torque.

The responses for the current are shown in Figs. 4.4 to 4.6. The current responses are almost identical in shape with the torque responses. with the unit-impulse response very close to the full-load. In the case of a low-drive induction motor. the magnitude of the unit-impulse response is almost 10 times the full-load current this is very dangerous to the motor if mantained at a longer time. The magnitude of the unit-impulse is the most practical response among the 3 functions present. it is because both the current and the torque response follows the pattern of the slip
changes.
The torepue to curent ratio for the 3 cases are given in Figs. t. 10 t. 9 . The ratio for the impulse is the same for the 3 cases. with a magnitude of t.04. For the double response. it decreases with the low-drive motor. It is due to the greater increase of the current in proportion to its torque. The torque to current ratio decreases with an increase of machime slip.

Figure 4.1 Torque Response If The Final Slip Is $0.038(t)$

Figure 4.2 Torque Response If The Final Slip Is $-0.03 \delta(t)$

Figure 4.3 Torque Response If The Final Slip Is $0.3 \delta(t)$

Figure 4.4 Current Response If The Final Slip Is $0.03 \delta(t)$

Figure 4.5 Current Response If The Final Slip Is $-0.03 \delta(t)$

Figure 4.6 Current Response If The Final Slip Is $0.3 \delta(t)$

Figure 4.7 Torque/Current Ratio If The Final Slip Is $0.03 \delta(t)$

Figure 4.8 Torque/Current Ratio If The Final Slip Is $-0.03 \delta(t)$

Figure 4.9 Torque/Current Ratio If The Final Slip Is $0.3 \delta(t)$

CHAPTER 5
 RECTANGULAR PULSE[20]

5.1 Introduction

One of the well-known wareform in the field of electrical engineering is the rectangular pulse. This chapter analyaed the response. both the torgue and the murem. When the slip. Q. of a 3 phase induction motor at no-load is suddenly changed to a pulse characterized by $Q[u(t)-u(t-T)]$. A case study is presented at the end of the chapter. In acldition. the case of inchuction generator with negative slip and the case of a low drive induction motor are also given consideration.

3.2 Terque Calculation

Again. recall the differential equation for solving torque in Eqn. 2.17.

$$
\begin{equation*}
T^{\prime} \approx l^{\cdot 2}\left[\frac{Q^{\prime}}{R}-\frac{3 X^{-2}}{R^{3}} Q^{\prime} Q^{2}+\frac{5 X^{-4}}{R^{-5}} Q^{\prime} Q^{4}-\frac{6 X^{-1}}{R^{-}} Q^{\prime} Q^{16}\right] \tag{5.1}
\end{equation*}
$$

subjected to the following boundary conditions

$$
\begin{array}{ll}
\text { at } t=0^{-} & Q=Q \\
\text { at } t=0^{+} & Q=Q[u(t)-u(t-T)]
\end{array}
$$

To solve Eqn. 5.1. the following Laplace Transform are needed

$$
\begin{gather*}
\mathcal{L}[u(t-T)] \leftrightarrow \epsilon^{-T s} \tag{5.2}\\
\mathcal{L}[u(t-\vartheta T)] \leftrightarrow \frac{\epsilon^{-2 T s}}{s} \tag{5.3}
\end{gather*}
$$

By applying the derivative property of Laplace Transform

$$
\begin{align*}
& \mathcal{L}\left[T^{\prime}\right]=s T(s)-T_{0} \tag{5.4}\\
& \mathcal{L}\left[Q^{\prime}\right]=s Q(s)-Q_{0} \tag{5.5}
\end{align*}
$$

$$
\begin{gather*}
\mathcal{L}[Q]=Q(n)=\mathcal{L}[Q u(1)-Q u(1-T)] \tag{1}\\
\mathcal{L}[Q]=Q\left[\frac{1}{4}-\frac{,-T s}{n}\right]
\end{gather*}
$$

Substitute Equ. i. $10 \mathrm{Eqn}$. . 5.5

$$
\begin{equation*}
\mathcal{L}\left[Q^{\prime}\right]=Q\left(1-\epsilon^{-T s}\right)-Q \tag{5.A}
\end{equation*}
$$

Now

$$
\begin{gather*}
Q^{2}(t)=Q^{2}[u(t)-u(t-T)] \tag{5.9}\\
\mathcal{L}\left[Q^{2}\right]=\frac{Q^{2}}{\Delta}\left(1-t^{-T s}\right) \tag{5.10}
\end{gather*}
$$

to find $\mathcal{L}\left[Q^{2} Q^{\prime}\right]$. the transform of the product of two transform is used given in Egn. 3.9. It is set that $F_{1}(x)=\mathcal{L}\left[Q^{2}\right]$ and $F_{2}(x)=\mathcal{L}\left[Q^{\prime}\right]$.

$$
\begin{align*}
& \mathcal{L}\left[Q^{2} Q^{\prime}\right]=\frac{Q^{2}\left(1-t^{-T s}\right)}{1}\left[Q\left(1-\epsilon^{-T s}-Q_{0}\right]\right. \tag{5.11}\\
& \mathcal{L}\left[Q^{2} Q^{\prime}\right]=Q^{3}\left(1-\epsilon^{-T s}\right)^{2}-Q^{2} Q_{0}\left(1-\epsilon^{-T s}\right) \tag{5.12}
\end{align*}
$$

Similarly.

$$
\begin{gather*}
Q^{4}(t)=Q^{4}[u(t)-u(t-T)] \tag{5.13}\\
\mathcal{L}\left[Q^{4}\right]=\frac{Q^{4}}{s}\left(1-t^{-T s}\right) \tag{5.14}\\
\mathcal{L}\left[Q^{4} Q^{\prime}\right]=Q^{-3}\left(1-\epsilon^{-T s}\right)^{2}-Q^{4} Q_{0}\left(1-\epsilon^{-T s}\right) \tag{5.15}\\
Q^{6}(t)=Q^{6}[u(t)-u(t-T)] \tag{5.16}\\
\mathcal{L}\left[Q^{6} Q^{\prime}\right]=Q^{-}\left(1-\epsilon^{-T s}\right)^{2}-Q^{6} Q_{0}\left(1-\epsilon^{-T s}\right) \tag{5.17}
\end{gather*}
$$

Substitute these transforms In Eqn. S.l.

$$
\begin{align*}
\therefore \Gamma(s)-T_{0} \approx & \frac{\Gamma^{2}}{R}\left[Q\left(1-\epsilon^{-T s}\right)-Q_{0}\right]-\frac{1^{2} X^{2}}{R^{3}}\left[Q^{3}\left(1-\epsilon^{-T s}\right)^{2}\right. \\
& \left.-Q^{2} Q_{0}\left(1-\epsilon^{-T s}\right)\right]+\frac{5 X^{2}+1^{2}}{R^{5}}\left[Q^{5}\left(1-\epsilon^{-T s}\right)^{2}-Q^{4} Q_{0}\left(1-\epsilon^{-T s}\right)\right] \\
& -\frac{61^{2} X^{6}}{R^{7}}\left[Q^{-}\left(1-\epsilon^{-T s}\right)^{2}-Q^{6} Q_{0}\left(1-\epsilon^{-T s}\right)\right] \tag{5.18}
\end{align*}
$$

$$
\begin{aligned}
& T(s) \approx \frac{1^{2}}{R}\left[\frac{Q}{s}-\frac{t^{-T s}}{\sigma}-\frac{Q}{\sigma}\right]-\frac{31^{2} V^{2}}{R^{3}}\left[Q\left(\frac{1}{6}+\frac{2+-T s}{\sigma}+\frac{c^{-27}}{\sigma}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& Q^{+} Q_{0}\left(\frac{1}{s}-\frac{c^{-T s}}{r}\right)-\frac{61^{2} X^{-6}}{R^{-}}\left\{Q^{-}\left(\frac{1}{s}-\frac{2 t-T s}{s}+\frac{c^{-2 T_{s}}}{s}\right)-\right. \\
& \left.Q^{i s} Q_{0}\left(\frac{1}{s}-\epsilon^{-T s}\right)\right]+\frac{T}{s} \tag{.5.19}
\end{align*}
$$

Taking the inverse Laplace Transform and simplify

$$
\begin{align*}
& T(1) \approx \frac{1^{2}}{R}\left(\left[Q-Q_{0}-\frac{3 X^{-2} Q^{3}}{R^{2}}+\frac{X^{2} Q^{2} Q_{0}}{R^{2}}+\frac{5 X^{4} Q^{5}}{R^{4}}-\frac{X^{-4} Q^{4} Q_{0}}{R^{4}}-\frac{6 . X^{-6} Q^{7}}{R^{6}}\right.\right. \\
& \left.\left.+\frac{6 X^{-6} Q^{6} Q_{0}}{R^{(6}}\right]+T_{0}\right)\left(u^{(i)}\right)+\frac{1^{2}}{R}\left[-Q+\frac{6 X^{-2} Q^{3}}{R^{2}}-\frac{X^{-2} Q^{2} Q_{0}}{R^{2}}-\frac{10 X^{-4} Q^{5}}{R^{4}}+\right. \\
& \left.\frac{5 X^{-4} Q^{4} Q_{0}}{R^{4}}+\frac{12 X^{-6} Q^{-}}{R^{6}}-\frac{6 X^{-6} Q^{6} Q^{6}}{R^{6}}\right) u(t-T)+\frac{1^{-2} X^{-2} Q^{3}}{R^{3}}[-3+ \\
& \left.\frac{5 X^{-2} Q^{2}}{R^{2}}-\frac{6 X^{-1} Q^{4}}{R^{-}}\right] u(t-2 T) \tag{5.20}
\end{align*}
$$

in suchronous watts per phase.

5.3 Current Calculation

Luoking back in the current differential equation of Eqn. 2.24

$$
I^{\prime} \approx 1\left[\frac{Q^{\prime}}{R}-\frac{3 X^{2} Q^{2} Q^{\prime}}{2 R^{3}}\right]
$$

with the following boundary conditions

$$
\begin{array}{ll}
\text { at } t=0^{-} & Q=Q_{0} \\
\text { at } t=0^{+} & Q=Q[u(t)-u(t-T)]
\end{array}
$$

Solve this using Laplace Transform by substituting the tansforms derived in Egns. 5s and 5.12 to Eqn. 5.21. It gires.

$$
\begin{align*}
s I(s)-I_{0} \approx & \frac{V}{R}\left[Q\left(1-\epsilon^{-T s}\right)-Q_{0}\right]-\frac{3 X^{2}}{2 R^{3}}\left[Q^{3}\left(1-\epsilon^{-T s}\right)^{2}\right. \\
& \left.-Q^{2} Q_{0}\left(1-\epsilon^{-T s}\right)\right]
\end{align*}
$$

$$
\begin{aligned}
& Q^{2} Q \cdot\left(\frac{1}{6}-\frac{\mathrm{c}^{-T s}}{6}+\frac{1}{4}\right. \\
& \text { (.5.2: }
\end{aligned}
$$

Taking the inverse Laplace Transfom and simplify

$$
\begin{align*}
& I 1) \approx\left(\frac{1}{R}[Q-Q:]-\frac{3 J^{2} T}{2 R^{3}}\left[Q^{3}-Q^{2} Q_{0}\right]+I_{0} 1111+\frac{1 O}{R}\left[-1-\frac{3 I^{2} O^{2}}{R^{2}}-\right.\right. \\
& \frac{3 X^{-2} Q Q}{2 R^{2}} \left\lvert\, u(1-T)-\frac{31 X^{2} Q^{3}}{2 R^{3}}(1-2 T)\right. \tag{5:2}
\end{align*}
$$

in ampere per phase.

5.4 Case Studies

A computer program has been developed based in Eqn. 5.20 for torque and Eqn. $\overline{5} 24$ for current calculation. They are shown in Appendix F and G. respectively The inputs needed in the computer program are the same as in the previous chapter. except for the addition of parameter A. This is the time when the ship. Q Q (nt $)-u(t-$ $T)]$ goes to zero. A is used for both the current and the forque computer program.

Fig. 5. 1 shows the torque response when the final slip is $0.0: 3[u(t)-n(t-\Gamma)]$. At time. $t=0^{+} . u_{1}$) to time. $t=A^{-}$. which is 1 second in this case. the torque is rery close to its full-load torgue. It is because the sudden increase in ship is its full-load slip. It goes to a rery small ralue at $t=A^{+}$and berond because the slip at this time suddent! drops to zero. The same thing happens in the case of induction generator. with the exception that. its response has an opposite sign as the induction motor. In the case of a low-chrive induction motor. 1. he peak of the torque response occurs at fime. $t=A^{+}$up to time. $t=2$ sec. It even goes up to almost the maximum torque oren the slip at this time duration is very very small.

The same pattern occurs in current response as shown by Figs. 5.7 to. 5.9 . In the case of a low drive induction motor. it also reaches its peak value at the same time duration as the torque response. The peak value of the rotor current is almost 2 times the computed current at maximum torque given by Eqn. 3.32. This is because the
rament incrases more rapidtr han the torene at the same increase of the machine sijp. It is further satisfied by the graphs illustrating the dorque to ament matio againts the time shown in Figs. 5. 10 to 5.12.

Figure 5.1 Torque Response If The Final Slip Is $0.03[u(t)-u(t-T)]$

Figure5.2 Torque Response If The Final Slip Is $-0.03[u(t)-u(t-T)]$

Figure 5.3 Torque Response If The Final Slip Is $0.3[u(t)-u(t-T)]$

Figure 5.4 Current Response If The Final Slip Is $0.03[u(t)-u(t-T)]$

Figure 5.5 Current Response If The Final Slip Is $-0.03[u(t)-u(t-T)]$

Figure 5.6 Current Response If The Final Slip Is $0.3[u(t)-u(t-T)]$

Figure 5.7 Torque/Current Ratio If The Final Slip Is $0.03[u(t)-u(t-T)]$

Figure 5.8 Torque/Current Ratio If The Final Slip Is $-0.03[u(t)-u(t-T)]$

Figure 5.9 Torque/Current Ratio If The Final Slip Is $0.3[u(t)-u(t-T)]$

CHAPTER 6 UNIT-RAMP, Qt[20]

6.1 Introduction

This chapter deats with the current-time and torgue-time response of a three phase induction motor. When the dip at no-load. Q_{a}. is suddenly changed io a mit-ramp. Qt. Again. the computations are based in the per phase approximate equivalont circuit shown in Fig. I. \because. Enlike in the previous chapter. the slip. Q. in this section is dependent on time. t. So it is expected that the maximum torque will be reached at a certain time.

6.2 Torque Calculation

From Eqn. 2.17. the torgue differential equation.

$$
\begin{equation*}
T^{\prime} \approx 1^{2}\left[\frac{Q^{\prime}}{R}-\frac{3 X^{-2}}{R^{3}} Q^{\prime} Q^{2}+\frac{5 X^{4}}{R^{5}} Q^{\prime} Q^{4}-\frac{6 X^{-16}}{R^{-1}} Q^{\prime} Q^{6}\right] \tag{6.1}
\end{equation*}
$$

with the following boundary conditions

$$
\begin{array}{ll}
\text { at } t=0^{-} & Q=Q \\
\text { at } t=0^{+} & Q=Q t
\end{array}
$$

This is solved. once again. using Laplace Transform method. By referring to Appendix A. take the transform of Eqn. 6.1 term-br-term. Applying the derirative properts:

$$
\begin{equation*}
\mathcal{L}\left[T^{\prime}\right]=s T(s)-T_{0} \tag{6.2}
\end{equation*}
$$

In addition. this transform is also needed in this section

$$
\begin{gather*}
\mathcal{L}\left[\frac{t^{n-1}}{(n-1)!}\right] \leftrightarrow \frac{1}{s^{n}} \tag{6.3}\\
\mathcal{L}[Q(t)]=\mathcal{L}[Q t]=Q(s)=\frac{Q}{s^{2}} \tag{6.4}
\end{gather*}
$$

$$
\begin{equation*}
\mathcal{L}\left[Q_{2}\right]=Q(Q)-Q \tag{6.5}
\end{equation*}
$$

Therefore.

$$
\begin{gather*}
\mathcal{L}\left[Q^{\prime}\right]=\frac{Q}{=}-Q \\
Q^{2}=(Q f)^{2}=Q^{2} f^{2} \tag{i}\\
\mathcal{L}\left[Q^{2}\right]=\frac{2 Q^{2}}{Q^{3}}
\end{gather*}
$$

To solve $\mathcal{L}\left[Q^{2} Q^{\prime}\right]$. Eqn. 3.9 is used. the Laplace Transfom of the product of wo functions. It is assumed that $F_{1}(s)=\mathcal{L}\left[Q^{2}\right]$ and $F_{2}(s)=\mathcal{L}\left[Q^{\prime}\right]$. Hence

$$
\begin{equation*}
\mathcal{L}\left[Q^{2} Q^{\prime}\right]=\frac{2 Q^{3}}{3 s^{3}}-\frac{2 Q^{2} Q_{0}}{3 s^{2}} \tag{6.9}
\end{equation*}
$$

To solve for $\mathcal{L}\left[Q^{4} Q^{\prime}\right]$.

$$
\begin{gather*}
Q^{4}=Q^{4} f^{4} \tag{6.10}\\
\mathcal{L}\left[Q^{4}\right]=\frac{2+Q^{4}}{s^{5}} \tag{6.11}
\end{gather*}
$$

It is assumed $F_{1}(s)=L\left[Q^{4}\right]$ and $\mathcal{L}\left[Q^{\prime}\right]$. Hence.

$$
\begin{equation*}
\mathcal{L}\left[Q^{4} Q^{\prime}\right]=\frac{24 Q^{5}}{55^{5}}-\frac{24 Q^{4} Q_{0}}{5,4^{4}} \tag{6.12}
\end{equation*}
$$

Similartr:

$$
\begin{align*}
Q^{6} & =Q^{6} f^{6} \tag{6.13}\\
\mathcal{L}\left[Q^{6}\right] & =\frac{7 \cdot(0) Q^{6}}{s^{7}} \tag{6.14}
\end{align*}
$$

Substitute these equations to Egn. 6.1

$$
\begin{align*}
& s T(s)-T_{0} \approx \frac{1^{2}}{R}\left[\frac{Q}{s}-Q_{0}\right]-\frac{1^{-2}}{R^{3}}\left[\frac{2 Q^{3}}{3 s^{3}}-\frac{2 Q^{2} Q_{0}}{3 s^{2}}\right]+\frac{3 X^{4} 1^{-2}}{R^{5}}\left[\frac{24 Q^{5}}{s^{5}}\right. \\
& \left.-\frac{24 Q^{4} Q^{3}}{5 s^{4}}\right]-\frac{6 I^{2} X^{-6}}{R^{-}}\left[\frac{720 Q^{-}}{7 s^{7}}-\frac{720 Q^{6} Q_{0}}{7 s^{6}}\right. \tag{0.15}\\
& T(s) \approx \frac{1^{-2}}{R}\left[\frac{Q}{s^{2}}-\frac{Q_{0}}{s}\right]-\frac{1^{-2}}{R^{3}}\left[\frac{2 Q^{3}}{3 s^{4}}-\frac{2 Q^{2} Q_{0}}{3 s^{3}}\right]+ \\
& \frac{5 X^{-4} T^{-2}}{R^{5}}\left[\frac{24 Q^{5}}{55^{6}}-\frac{24 Q^{4} Q_{0}}{55^{5}}-\frac{61^{-2} X^{-6}}{R^{-}}\left[\frac{720 Q^{7}}{7 s^{8}}-\frac{720 Q^{6} Q^{2}}{7 s^{-}}\right]+T_{0}\right. \tag{6.16}
\end{align*}
$$

Take the imerse Laplace Transform and simplify.

$$
\begin{aligned}
& \Gamma(1) \approx "(1)\left[T_{0}-\frac{Q_{0} 1^{2}}{h}\right]+\frac{1^{\ddot{2} Q t}}{R}+\frac{1^{2} Q^{2} Q Q^{3} f^{2}}{3 h^{3}}-\frac{2 I^{2} Q^{3} X^{3}}{9 h^{3}}- \\
& \frac{1^{2} Q^{4} Q_{1} X^{-4} /^{4}}{R^{5}}+\frac{1^{-2} Q^{5} \cdot V^{-4} /^{5}}{5 R^{5}}+\frac{61^{-2} Q^{16} Q_{0} X^{6 / 6} /^{6}}{7 R^{-}}-\frac{61^{-2} Q^{-} V^{-6} 7^{-}}{19 R^{-}}(6.17)
\end{aligned}
$$

in sucheronons watts. This is the final equation for torque where the computer program is hased moon.

6.3 Current Calculation

Recall the curcont differential equation of Eqn. 2.2. 4.

$$
\begin{equation*}
I^{\prime}=1 \cdot\left[\frac{Q^{\prime}}{R}-\frac{3 X^{2} Q^{2} Q^{\prime}}{2 R^{33}}\right] \tag{6.18}
\end{equation*}
$$

suljected to the following loundary conditions

$$
\begin{array}{ll}
\text { at } t=0^{-} & Q=Q \\
\text { at } t=0^{+} & Q=Q
\end{array}
$$

From Sec. 6.2. it is derived that

$$
\begin{gather*}
\mathcal{L}\left[Q^{\prime}\right]=\frac{Q}{s}-Q \tag{6.19}\\
\mathcal{L}\left[Q^{2} Q^{\prime}\right]=\frac{2 Q^{3}}{3 s^{3}}-\frac{2 Q^{2} Q_{0}}{3 s^{2}} \tag{6.20}
\end{gather*}
$$

Bry uning the derivative property of Laplace Transform

$$
\begin{equation*}
\mathcal{L}\left[I^{\prime}\right]=s I(s)-I \tag{6.21}
\end{equation*}
$$

Substitute these in Eqn. 6.18

$$
\begin{align*}
& s(s)-I_{0} \approx \frac{1}{R}\left[\frac{Q}{s}-Q_{0}\right]-\frac{3 V X^{2}}{2 R^{3}}\left[\frac{2 Q^{3}}{3 s^{3}}-\frac{2 Q^{2} Q_{0}}{3 s^{2}}\right] \tag{6.2.2}\\
& I(s) \approx \frac{1}{R^{2}}\left[\frac{Q}{s^{2}}-\frac{Q}{s}\right]-\frac{3 I X^{2}}{2 R^{3}}\left[\frac{2 Q^{3}}{3 s^{4}}-\frac{2 Q^{2} Q_{0}}{3 s^{3}}\right]+\frac{I_{u}}{s} \tag{6.2.3}
\end{align*}
$$

Take the inserse Laplace Transiom and simplify
in ampere per phate.

6.4 Case Studies

A computer program for solving the torque and for the current are shown in Appendix Hand I. respectively: Their inputs are the same as in Chapters 3 and t. Again. his thesis analyzed the same motor ratings as before. The torque is again conserted to \therefore-m uning the conversion factor shown in Eqn. 2.28.

Figs. 6.1 to 6.3 show the torque responses for the three cases stated as in previous chapters. except that the final slip right now is a mint-ramp. Fig. 6-1. shows an induction motor whith a final slip of $0.03 t$ and an incluction generator winh final slip. -0.033. They have an identical pattern but of opposite sign. This is becanse the induction generator is supplying electrical power. The forque increases with tine. 1 . They reached their maximm torque at time approximately between \& ito 9 seconds. In the case of a low-drive induction motor. it reacheed its maximum at approximately 0.9 second. The motor should not be operated beyond that time. After $t=1.6$ seconcl. a rapid drop in the torque is shown. that goes infinitely. This characterized a breakdown of the machine.

Figs. 6.4 to 6.6 show the graphs of the current responses. They have the same pattern as the torque responses. While Figs. 6.7 to 6.9 show the torque to current ratio for the cases stated above. For a motor with a final slip. 0.03t. the increase of the ratio is steady until 4.5 second and then decreases contimosh with a very small proportion. It means that the current is now increasing more rapidly than the torque. In the case of induction generator. with negative slip. a continuos decrease of the ratio is shown. While the low-drive induction motor experienced a decrease in the ratio of torque over time only after 0.8 sec . This is because of a high slip that
is depenclent with the time. Then it goes negatively after time. $t=\underline{2} . t$ ser. with a very rapid rate. This is due to the breakdown of the machime.

Figure 6.1 Torque Response If The Final Slip Is $0.013 t$

Figure 6.2 Torque Response If The Final Slip Is $-0.03 t$

Figure 6.3 Torque Response if the Final Slip is 0.3 t

Figure 6.4 Current Response If The Final Slip Is $0.03 t$

Figure 6.5 Current Response if The Final Slip Is $-0.03 t$

Figure 6.6 Current Response If The Final Slip Is $0.3 t$

Figure 6.7 Torque/Current Ratio If The Final Slip. Is $0.03 t$

Figure 6.8 Torque/Current Ratio If The Final Slip Is $-0.03 t$

Figure 6.9 Torque/Current Ratio If The Final Slip Is $0.3 t$

CHAPTER 7
 SINUSOIDAL, $\sin \mathrm{t}[20]$

7.1 Introduction

This chapter deals with the current-time and torque-time responses of a three phase induction motor. when the slip at no-load is changed to a simusoidal slip. Quint. This pattem of machine slip is also a time dependent function. Like the previous chapters. computations are based in Chapter of this thesis.

7.2 Torque Calculation

From Eg . 2.17 , the differential equation for solving the torque response of induction motor.

$$
\begin{equation*}
T^{\prime} \approx 1^{\cdots}\left[\frac{Q^{\prime}}{R}-\frac{3 \mathrm{X}^{-2}}{R^{3}} Q^{\prime} Q^{2}+\frac{5 \mathrm{~N}^{-4}}{R^{5}} Q^{\prime} Q^{4}-\frac{6 \mathrm{X}^{-6}}{R^{-}} Q^{\prime} Q^{6}\right] \tag{7.1}
\end{equation*}
$$

sulbjected to the following boundary conditions.

$$
\begin{array}{ll}
\text { at } t=0^{-} & Q=Q_{0} \\
\text { at } t=0^{+} & Q=Q_{\sin t}
\end{array}
$$

This differential equation is again solved by the Laplace Transformation method. By using the derivative property of the Laplace Transform.

$$
\begin{equation*}
\mathcal{L}\left[T^{\prime}\right]=s T(s)-T_{0} \tag{7.2}
\end{equation*}
$$

The Laplace Transform of a sine function is given by

$$
\begin{equation*}
\mathcal{L}[\sin a t] \leftrightarrow \frac{a}{s^{2}+a^{2}} \tag{7.3}
\end{equation*}
$$

To find $\mathcal{L}[s \operatorname{sint}]$ is easy using Eqn. 3.3, but a problem is encountered of finding the transform of a higher function of sint. which is not usually given in many Laplace

Transform Tables. To solve this. a well-known trigonometric series for sine finction is used.

$$
\begin{equation*}
\sin x=x-\frac{r^{3}}{3!}+\frac{r^{-}}{5!}-\frac{r^{-}}{7!}+\ldots \tag{7.1}
\end{equation*}
$$

To simplify the computation. it considers only up to the second term of Eqn. 3.t. Heuce.

$$
\begin{gather*}
Q(t)=Q \cdot s i n t=Q\left(t-\frac{t^{3}}{3!}\right) \tag{7.5}\\
\mathcal{L}[Q \sin t]=Q(s)=Q\left(\frac{1}{s^{2}}-\frac{1}{s^{4}}\right) \tag{7.6}
\end{gather*}
$$

Lsing the derivative property of Laplace Transform.

$$
\begin{gather*}
\mathcal{L}\left[Q^{\prime}\right]=s Q(s)-Q \tag{7.7}\\
\mathcal{L}\left[Q^{\prime}\right]=\frac{Q\left(s^{2}-1\right)}{s^{3}}-Q_{0} \tag{7.8}\\
Q^{2}(t)=(Q \sin t)^{2}=Q^{2}\left(t^{2}-\frac{t^{4}}{3}+\frac{t^{6}}{36}\right) \tag{7.9}\\
\mathcal{L}\left[Q^{2}\right]=Q^{2}\left(\frac{2}{s^{3}}-\frac{8}{s^{3}}+\frac{20}{s^{5}}\right) \tag{7.10}
\end{gather*}
$$

To find $\mathcal{L}\left[Q^{\prime} Q^{2}\right]$. Eqn. 3.9 is used, the transform of the product of two functions. It is assumed that $F_{1}(s)=\mathcal{L}\left[Q^{\prime}\right]$ and $F_{2}(s)=\mathcal{L}\left[Q^{2}\right]$.

$$
\begin{align*}
\mathcal{L}\left[Q^{\prime} Q^{2}\right]= & {\left[\frac{Q\left(s^{2}-1\right)-Q s^{3}}{3 s^{2}}\right]\left[\frac{s^{4}-s s^{2}+20}{s^{2}}\right] } \tag{1.11}\\
\mathcal{L}\left[Q^{\prime} Q^{2}\right]= & \frac{2 Q^{3}}{3 s^{3}}-\frac{10 Q^{3}}{3 s^{5}}+\frac{28 Q^{3}}{3 s^{4}}-\frac{20 Q^{3}}{3 s^{9}}-\frac{2 Q^{2} Q}{3 s^{2}} \\
& +\frac{8 Q^{2} Q^{3}}{3 s^{4}}-\frac{20 Q^{2} Q}{3 s^{6}} \tag{1}
\end{align*}
$$

To find $\mathcal{L}\left[Q^{\prime} Q^{4}\right]$.

$$
\begin{gather*}
Q^{4}(t)=t^{4}-\frac{2 t^{6}}{3}+\frac{t^{8}}{6}-\frac{t^{10}}{34}+\frac{t^{12}}{1 \cdot 2965} \tag{7.13}\\
\mathcal{L}\left[Q^{4}\right]=\frac{24}{s^{5}}-\frac{480}{s^{2}}+\frac{6.720}{s^{9}}-\frac{67 \cdot 200}{s^{11}}+\frac{369 \cdot 600}{s^{13}} \tag{7.14}
\end{gather*}
$$

Again. Eqn. 3.9 is used to find $\mathcal{L}\left[Q^{\prime} Q^{4}\right]$. It is assumed $F_{1}(1)=\mathcal{L}\left[Q^{\prime}\right]$ and $F_{2}(s)=$ $\mathcal{L}\left[Q^{4}\right]$.

$$
\begin{equation*}
\mathcal{L}\left[Q^{\prime} Q^{4}\right]=\frac{Q\left(s^{2}-1\right) Q_{v} s^{3}}{3 s^{2}}\left[\frac{24 s^{8}-480 s^{6}+6.720 s^{4}-67.200 s^{2}+369.600}{s^{13}}\right] \tag{7.15}
\end{equation*}
$$

Similarts:

$$
\begin{align*}
& Q^{6}(t)=t^{6}-t^{8}+\frac{1.51^{10}}{36}-\frac{.51^{12}}{.3 t}+\frac{1.51^{44}}{1.296}-\frac{.3 t^{16}}{1.944}+\frac{t^{18}}{46.6 .96} \tag{7.17}\\
& \mathcal{L}\left[Q^{19}\right]=\frac{720}{5}-\frac{40.320}{s^{3}}+\frac{1.512 \cdot 000}{s^{11}}-\frac{4 \cdot 1.35 \cdot 2 \cdot 000}{5^{13}}+\frac{1.009 \cdot 008 \cdot 0000}{5^{15}} \\
& -\frac{32.288 .25(5.000}{8^{17}}+\frac{137.225 .088 .000}{8^{19}} \tag{7.18}
\end{align*}
$$

It is also assumed that $F_{1}(s)=\mathcal{L}\left[Q^{\prime}\right]$ and $F_{2}(s)=\mathcal{L}\left[Q^{2}\right]$.

$$
\begin{align*}
& \mathcal{L}\left[Q^{\prime} Q^{6}\right]=\frac{Q\left(s^{2}-1\right)-Q s^{3}}{3 s^{2}}\left[\frac{s^{12}-56 s^{10}+2.100 s^{8}-61.600 s^{6}+1.1\left(11.400 s^{4}\right.}{s^{19}}\right. \\
& \left.-\frac{44.844 .800 s^{2}+190.590 .400}{.5^{19}}\right] \tag{7.19}\\
& \mathcal{L}\left[Q^{\prime} Q^{6}\right]=\frac{Q^{-}}{35^{7}}-\frac{19 Q^{7}}{s^{9}}+\frac{718 \cdot 67 Q^{7}}{s^{11}}-\frac{21.233 .333 Q^{7}}{s^{13}}+\frac{187.6666 .67 Q^{-}}{s^{15}}- \\
& \frac{15 .+15 \cdot 400 Q^{-}}{5^{17}}+\frac{78.478 \cdot 400 Q^{-}}{5^{19}}-\frac{63.530 \cdot 133333 Q^{7}}{8^{21}}-\frac{Q^{6} Q}{3 s^{6}}+ \\
& \frac{16.67 Q^{6} Q}{r^{6}}-\frac{700 Q^{16} Q}{s^{10}}+\frac{20.533 .33 Q^{6} Q}{s^{12}}-\frac{467.133 .333 Q^{6} Q}{s^{14}} \\
& +\frac{14 \cdot 448.266 .67 Q^{6} Q}{5^{16}}-\frac{63 \cdot-330 \cdot 133.33 Q_{0}}{5^{18}} \tag{7.20}
\end{align*}
$$

Substitute these transforms to Eqn. T-1 and simplify:

$$
\begin{align*}
& T(n) \approx \frac{\Gamma^{-2}}{R}\left[\frac{Q}{s^{2}}-\frac{Q}{s^{4}}-\frac{Q}{5}\right]-\frac{3 \Gamma^{2} \mathrm{X}^{-2}}{R^{3}}\left[\frac{2 Q^{3}}{3 s^{4}}-\frac{10 Q^{3}}{3 s^{15}}+\frac{28 Q^{3}}{3 s^{8}}-\frac{20 Q^{2}}{3 s^{10}}-\frac{2 Q^{2} Q_{0}}{3 s^{3}}\right. \\
& \left.+\frac{8 Q^{2} Q_{0}}{3 s^{5}}-\frac{20 Q^{2} Q}{3 s^{5}}\right]+\frac{51^{2} X^{4}}{R^{5}}\left[\frac{Q^{5}}{s^{5}}-\frac{21 Q^{5}}{s^{8}}+\frac{300 Q^{5}}{s^{10}}-\frac{3.08(1) Q^{5}}{s^{12}}+\right. \\
& \frac{18.200 Q^{5}}{s^{14}}-\frac{15.400 Q^{5}}{s^{16}}-\frac{Q^{4} Q_{0}}{s^{5}}+\frac{20 Q^{4} Q}{s^{7}}-\frac{280 Q^{4} Q_{0}}{s^{9}}+\frac{2.800 Q^{4} Q_{0}}{s^{11}} \\
& \left.-\frac{15 \cdot 400 Q^{4} Q_{0}}{s^{13}}\right]-\frac{6 I^{-2} X^{-1}}{R^{7}}\left[\frac{Q^{7}}{3 s^{8}}-\frac{19 Q^{7}}{s^{10}}+\frac{71 R \cdot 67 Q^{7}}{s^{12}}-\frac{21.233 .33 Q^{7}}{s^{14}}\right. \\
& +\frac{487 \cdot 666.67 Q^{-}}{s^{16}}-\frac{15 \cdot 415 \cdot 400 Q^{7}}{s^{18}}+\frac{78 \cdot 478 \cdot 400 Q^{7}}{s^{20}}-\frac{63.530 \cdot 1333.33 Q^{7}}{s^{22}} \\
& -\frac{Q^{16} Q_{0}}{3 s^{7}}+\frac{18.67 Q^{6} Q_{0}}{s^{9}}-\frac{700 Q^{6} Q_{0}}{s^{11}}+\frac{20.533 .33 Q^{61} Q_{0}}{s^{13}}-\frac{467.133 .33 Q^{16} Q_{0}}{s^{15}} \\
& \left.+\frac{14.948 .266 .67 Q^{6} Q_{0}}{s^{17}}-\frac{63.530 \cdot 133.33 Q_{0}}{s^{19}}\right]+T_{0} \tag{7.21}
\end{align*}
$$

Take the inverse Laplace Transform and simplify:

$$
\begin{align*}
& T \approx\left[T-\frac{1-Q}{R}\right] u(1)+1=\left[\frac{Q t}{R}+\frac{0.33 A^{2} Q^{2} Q R^{2}}{l^{2}}-\frac{Q t^{2}}{R^{2}}\left[0.17+\frac{0.33 I^{2}}{R^{2}}\right]\right. \\
& -\frac{I^{-2} Q^{2} Q t^{4}}{R^{2}}\left[0.11+\frac{0.211^{2} Q^{2}}{R^{2}}\right]+\frac{R^{2} Q^{3} f^{5}}{R^{3}}\left[0.013+\frac{0.04 \cdot^{2} Q^{2}}{R^{2}}\right]+ \\
& \frac{X^{-2} Q^{2} Q t^{6}}{R^{3}}\left[9.3 \times 10^{-3}+\frac{0.14 X^{-2} Q^{2}}{R^{2}}+\frac{2.8 \times 10^{-3} X^{-4} Q^{4}}{R^{4}}\right]-\frac{X^{-3} Q^{3} t^{-}}{R^{3}} \\
& {\left[1.9 \times 10^{-3}+\frac{0.02 \mathrm{X}^{-2} Q^{2}}{R^{2}}+\frac{4 \times 10^{-4} \mathrm{X}^{-4} Q^{4}}{R^{4}}\right]-\frac{X^{-1} Q^{-1} Q 1^{8}}{R^{5}}[0.0 .3+} \\
& \frac{2.8 \times 10^{-3} \mathrm{~A}^{2} Q^{2}}{R^{2}}+\frac{X^{2} Q^{3}+^{9}}{R^{3}}\left[1.81 \times 10^{-5}+\frac{4.1 \times 10^{-3} \mathrm{I}^{2} Q^{2}}{R^{2}}+\right. \\
& \left.\frac{3 \times 10^{-4} \mathrm{X}^{4}}{R^{4}}\right]+\frac{X^{4} Q^{4} Q_{0}, t^{10}}{R^{5}}\left[3.9 \times 10^{-3}+\frac{1.2 \times 10^{-3} \mathrm{X}^{-2} Q^{2}}{R^{2}}\right]-\frac{X^{4} Q^{5} f^{11}}{R^{5}} \\
& {\left[4 \times 10^{-4}+\frac{1 \times 10^{-4} X^{-2} Q^{2}}{R^{2}}\right]-\frac{X^{4} Q^{4} Q_{0} 1^{12}}{R^{5}}\left[2 \times 10^{-4}+\frac{3 \times 10^{-4} \lambda^{-2} Q^{2}}{R^{2}}\right]} \\
& +\frac{X^{4} Q^{5} f^{13}}{R^{5}}\left[1.46 \times 10^{-5}+\frac{2.04 \times 10^{-5} \cdot X^{2} Q^{2}}{R^{2}}\right]+\frac{322 \times 10^{-5} X^{-16} Q^{6} Q_{0} f^{14}}{R^{-}} \\
& -\frac{X^{4} Q^{5} f^{15}}{R^{5}}\left[5.89 \times 10^{-8}+\frac{2.24 \times 10^{-6} X^{-2} Q^{2}}{R^{2}}\right]-\frac{4.29 \times 10^{-6} X^{-6} Q^{6} Q_{0} t^{16}}{R^{2}} \\
& +\frac{2.6 \times 10^{-} \lambda^{-16} Q^{-} f^{1-}}{R^{-}}+\frac{5.95 \times 10^{-8} X^{6} Q^{6} Q_{0} 1^{18}}{R^{-}}-\frac{3.87 \times 10^{-9} X^{-16} Q^{-} f^{19}}{R^{-}} \\
& +\frac{\overline{1} 46 \times 10^{-12} X^{-6} Q^{-} t^{21}}{R^{-}} \tag{7.20}
\end{align*}
$$

in suchronous watts per phase.

7.3 Current Calculation

Recall the current differential equation of Eqn. 2.24

$$
\begin{equation*}
I^{\prime} \approx I\left[\frac{Q^{\prime}}{R}-\frac{3 X^{-2} Q^{2} Q^{\prime}}{2 R^{3}}\right] \tag{7.2.3}
\end{equation*}
$$

subjected to the following boundary conditions

$$
\begin{array}{ll}
\text { at } t=0^{-} & Q=Q \\
\text { at } t=0^{+} & Q=Q \sin t
\end{array}
$$

Solve the current differential equation by substituting the transforms of Eqns. i.8 and i. 11.

$$
s I(s)-I_{0} \approx \frac{V}{R}\left(\left[\frac{Q s^{2}-Q-Q Q^{3}}{s^{3}}\right]-\frac{3 X^{-2}}{2 R^{2}}\left[\frac{2 Q^{3}}{3 s^{4}}-\frac{10 Q^{3}}{3 s^{6}}+\frac{28 Q^{3}}{3 s^{8}}\right.\right.
$$

$$
\begin{equation*}
\left.\left.-\frac{20 Q^{3}}{3 n^{10}}-\frac{20^{2} 0}{3 n^{2}}+\frac{Q^{2} Q}{30^{2}}-\frac{20 Q^{2} O}{3 n^{2}}\right]\right) \tag{7.21}
\end{equation*}
$$

Take the inverse Laplace Transform and simplify.

$$
\begin{aligned}
& I \approx\left[I-\frac{1 Q}{R}\right] n(1)+1\left(\frac{Q t}{R}+\frac{0.195 X^{2} Q Q^{2} Q t^{2}}{R^{3}}-\frac{Q t^{3}}{R}\left[0.167+\frac{0.19 I^{2} V^{2} Q^{2}}{R^{2}}\right]\right.
\end{aligned}
$$

$$
\begin{align*}
& +\frac{2.76 \times 10^{-5} A^{2} Q^{3} 1^{9}}{R^{3}} \tag{1.25}
\end{align*}
$$

in ampere per phase.

7.4 Case Studies

A computer program for torque calculation and for current calculation based on the final equation. Eqns. 7.22 and 7.25 respectively. are shom in Appendix J and K. The calculated torque is conserted once again to N-m. The inputs needed are the same as in the previous chapters.

Figs. $\overline{7} .1$ to $\bar{i} .3$ show the torque response for the three cases stated before. The first 1 wo cases has almost the same pattern but of opposite signs. Ther reached their maximum torque at approximately 3.9 sec. In the case of a low- drive induction motor. With final slip. 0.3sint. it reached its maximum torque at approximately between 1.6 to 1.8 sec . This kind of slip is time-dependent function.

Figs. i.4 to $\overline{6} .6$ show the current responses for these three cases. The shape of the graph is almost identical to the torque responses. The graphs for the torque to current ratio are shown in Figs. 7.7 to 7.9. The ratio for the third case, the low-drive induction motor. has the lowest. It is because the current increases more rapidly than the torgue at the same level of machine slip.

Figure 7.1 Torque Response If The Final Slip Is $0.03 \sin t$

Figure 7.2 Torque Response If The Final Slip Is $-0.03 \sin t$

Figure 7.3 Torque Response If The Final Slip Is $0.3 \sin t$

Figure 7.4 Current Response If The Final Slip Is $0.03 \sin t$

Figure 7.5 Current Response If The Final Slip Is -0.03 sint

Figure 7.6 Current Response If The Final Slip Is 0.3 sint

Figure 7.7 Torque/Current Ratio If The Final Slip Is $0.03 \operatorname{sint}$

Figure 7.8 Torque/Current Ratio If The Final Slip Is -0.03 sint

Figure 7.9 Torque/Current Ratio If The Final Slip Is $0.3 \operatorname{sint}$

Appendix A

Laplace Transform Pairs $[17,18,19]$

$F(s)$	$f(t)$
s^{n}	$\delta^{n}(t)$
s.	$\delta^{\prime}(t)$
1	$\delta(t)$
1	$u(t)$
$\frac{1}{s^{2}}$	t
$\frac{n!}{s^{n+1}}$	t^{n}
$\frac{1}{s^{n}}$	$\frac{t^{n-1}}{(n-1)!}$
$\frac{1}{s+a}$	$e^{-a t}$
$e^{-T s}$	$u(t-T)$
$\frac{e^{-2 T s}}{s}$	$u(t-2 T)$
$\frac{a}{s^{2}+a^{2}}$	$\sin (a t)$
$\frac{s}{s^{2}+a^{2}}$	$\cos (a t)$
$\frac{a}{s^{2}-a^{2}}$	$\sinh (a t)$
$\frac{s}{s^{2}-a^{2}}$	$\cosh (a t)$
$\frac{1}{(s-a)^{2}}$	$t e^{a t}$
$\frac{n!}{(s-a)^{n+1}}$	$t^{n} e^{a t}$
$\frac{a^{2}}{s\left(s^{2}+a^{2}\right)}$	$1-\cos (a t)$
$\frac{1}{(s-a)^{2}}$	$t e^{a t}$

$$
\begin{array}{lc}
\frac{a^{3}}{s^{2}\left(s^{2}+a^{2}\right)^{2}} & a t-\sin (a t) \\
s \mathcal{L}(f)-f(0) & f^{\prime} \\
s^{n} \mathcal{L}(f)-s^{n-1} f(0) & f^{(n)} \\
-s^{n-2} f^{\prime}(0)-\ldots-f^{(n-1)}(0) & \\
(-1)^{n} F^{(n)}(s) & t^{n} f(t) \\
\sum_{k=1}^{q} \frac{A_{1}\left(s_{k}\right)}{B_{1}^{\prime}\left(s_{k}\right)} F_{2}\left(s-s_{k}\right) & f_{1}(t) f_{2}(t)
\end{array}
$$

provided that $F_{1}(s)$ is a rational function. $F_{1}(s)$ is equal to A_{1} / B_{1} and has only q first-order poles. s_{k} are the poles of $F_{1}(s)$.

Appendix B

Appendix B

This ia a program to calculate the torque responae of an induation motor when amall value of Elip at no load
is ohanged to higher value of unit utep type, qu(t).
Variable Declaration
TOR-current in (Ampere)
vs- per phaye voltage in (volte)
Q- alip of the motor
X- rotor inductive reactance of the motor in (Ohms)
X- rotor inductive reactance of the motor
R- rotor resistance of the motor in (Ohme)
to-initial value of current in (Ampere)
T- the frequency of the system in (Hz.)
p - the number of poles of the motor
PH- the number of phases
*********************\#\#\#*
PARAMETER ($\mathrm{N}-20$)
REAL TOR, VS, $Q, 00, X, R, T O, F, P, S R P M, P H, T(N)$
INTEGER I, GRAPHS (70), BL, STAR, DOT

DAIA DOT/"."/

WRITE $(6,1)$ VS
Format (10X, "The per phase voltage is", $2 \mathrm{X}, \mathrm{r} 5.1,1 \mathrm{X}$,

+ "rolte.")
FORMAT(10X, "The frequency of the eystem 1an, 1X, r4.1, 1X,
+ "herts.")
FORMAT (1OX, "The number of poles is", 1x, r4.1,".")
MRITE $(6,4) \mathrm{PH}$
Format (10x, "The number of phaseas inn, 1x, T4.1,".")
NRITE $(6,5) R$
FORMAT (10X,"The rotor resistance in", $6.2,2 \mathrm{X}$, "ohmen.")

MRYTE $(6,8) \infty$
FORMAT (10x,"The initial slip ian, ix, r6.3,".")
NRITE $(6,9)$ TO
FORMAT(10x, "Ine initial torque is", r5.2,1X, "N-m.")
DO 10 I-1, 7
ISCALI (I) -K
CONTINUE
WRITE $(6,12)$ ISCA
Format (30 x , "Torque in $\mathrm{N}-\mathrm{m}=/ / 10 \mathrm{x}, 7 \mathrm{I} 10$)
WRITE $(6,21)$
MRITE (6,22)
DO 13 I-1, N
READ*, I(I)
SRPM-120*F/P
TOR1 $-V S * * 2 *(Q-Q O) *\left(1 / R-3 * X * 2 * Q^{* * 2 / R * * 3+5 * X * * 4 * Q * * 4 / R * * 5 ~}\right.$
+ $6 * x * * 6 * 0^{* * 6 / R * * 7)+ \text { ro }}$
TOR -7 04/8RPM*PH*1 356*TOR1
TORO-TOR $/ 100+34$

WRITE (6, 20) DOT
CONTINUE
stop

Appendix C

* This is a program to calculate the current responee of an induction motox when amall value of silp at no load
is changed to highor value of unit atep type, Qu(t)
variable Declaration
AMP- current in (Ampere)
Mrp- current in (Ampere)
VR- per phase voltage in (volte)
o- ilip of the motor
o- initial ilip of the motor
R- rotor inductive raactance of the motor in (Ohma)
R- rotor realitince of the motor in (Ohme)
Io- initial value of current in (Ampere)

PARAMETER ($\mathrm{N}=20$)
REAL AMP, VR, O, OO, X,R,IO,T(N)
INTEGER I, GRAPHS (70), BL, STAR, DOT

Daya dot /"."

WRITE $(6,1)$ VR
FORMAT(10X, "The per phaee voltage 1=", $2 \mathrm{X}, \mathrm{r5} .1,2 \mathrm{X}$,
+ "volta. ")
FORMAT(10X;"The rotor resistance in", r6.2,2X, "ohme.")
MRITE $(6,6) X$
ropmat (10x,"The rotor inductive renctence 1en, r6.2,"ohme.")
rophat (iox,"the tinal elip ian,1X, F6.3,nu(t).")
WRITE $(6,6) 00$
TORMAT (10x,"The initial alip ia", 2X, F6.3.".")
MRITE $(6,9) 10$
roramt (iox, "The initial current ian, F5.2,1X,"Amp.")

$00101-1,7$
$\mathrm{x}-100 * 1-400$

$\mathrm{X}-100 * \mathrm{I}-400$
I SCALE (I)
continue
MRITE (6,11)ISCALL
ropmat (30x, "Curcent in Ampere", //10x, 7110)
mRITE $(6,12)$
TRITI (6,13)
3 roparat ("Time"; 3x, "Current")
DO 14 I-1, N
AmplevR*($0-00 / / R-3 * x * 2 * Q * * 2 *(0-\infty) /(2 * R * * 3))$
AMP $=($ AMP $1+10)$

AMP
$\mathrm{M}-\mathrm{AMPS}$

GRAPHS (M) -STAR
GRITE (6, 15)T (I), AMP, GRAPKS
GRAPMS (M) -BL
WRITE $(6,20)$ DOT
continue
TORNAT (F3.1, 2X, F7.2, 2X, 70A1, T4, A1)
AT (T50,A1)

Appendix D

```
Thia iamprogram to calculate and graph the torque remponse
    is changed to a higher value of delta function.
    Variable Declaration
    vs-per phase voltage in (volts)
    Q-final ilip of the motor
    go- initial mlip
    X- total inductive ramctance of the motor in (ohms)
    R- rotor resistance of the motor in (ohme)
    SRPM- aynchronous apeod in (RPM)
    F- frequency of the syatem in (Hz)
    PH- the numbor of phases
        DTMENSION ISCALE(7)
        PARAMETER (N-20)
        REAL VS,Q, @O,X,R,TO,PH,T(N),SRPM,M, F, P
    INTEGER I,GRAPHS (70), BL, STAR,DOT
    OATA GRAPHS/70*m n/, BL/m n/,STAR/n*n/
    data not/"."/
    READ *,VS, F, P,PH,R,X,Q,OO,TO
    MRITE (6,1)VS
    FORMAI(10x,"The per phase voltage ien, 2x,F5.1,2X
    WRITE(6, 2)
    FORMAT(10X,"The frequency of the ayatem is",1X,I4.1,1X,
    + "hartz.")
    mRITE (6,3)P
    FORMat (10x,"The number of poles ien,1X,F4.1,".")
    NRITE (6,4)PB
    TORMAT(10X,"The number of phase in",1x,T4.1,"."
    MRITE (6,5)R
    NRITE (6,6)X
    FORMAT(10X,"The total inductive reactance i=",r6.2,1X,"ohma.")
    NRITE (6,7)O
    FORMAT (10X,"The final slip is",1X, r6.3,".")
    NRITE (6,8)00
    PORMAT(10X,"The initial mlip i=",1X,r6.3,".")
    TORMAT(iOX""The initial torque 1.", F5.2,1X,"N-m.")
    8RPM-1 20*F/P
    Compute the torque.
    TORI-7.04/8RPM* PH*1.356*(TO-VS**2*OO/R)
    SRPM*PH*1.356*VS**2*O/R*(1+3****2*Q*00/R**2-5*X**4
    l
    /R**2-6*X**4*Q**4/R**4)
    Write the output.
            MRITE (6,10) TOR
            FORMAT(10X,"The unit atep response (u(t)) 1s",r7.2,1x,"N-m,")
            MRITE (6,11)TOR2
            HORMAT(iOX,"The delta remponee im",r7.2,1X,"N-m.")
            FORMAT(10X,"The doublet reaponse is",1X,E9.2,1X,"N-m.")
            DO 15 1-1,7
            K-1000*I-4000
            ISCALE (I)-K
```

Appendix E

```
Ihi: is program to calculate and graph the current rempona
of an induction motor whon a mall value of alip at no load
la changed to a higher value of delta function
Variable Declaration
VR-por phase voltage in (volta)
AMP- current in (Ampere)
O- final slip of the motor
q- initial slip
X- rotor inductive reactance of the motor in (ohme)
R- rotor resiatance of the motor in (ohms)
o- initial current in (Amp.)
PH- the number of phases
    DIMENSION ISCALE (7)
    parameter (N-20)
    REAL VR,O,ON,X,R,1O,T(N)
    INTEGER I, GRAPHS(70), BL, STAR, DOT
    INTEGER I,GRARHS (70), BL; sTAR,DOT 
    DATA DOT/"."/
    READ *,VR,R,x,0,00,10
    OPEN(UNIT-6,FILE="mmil,det",BTATUS="OLD*)
    MRITIE (6,1) VR
    FORMAT(iox,"The per phame voltage is", 2X,F5.1,2X
    + "volts.")
    5 FORMAT(iox,"The rotor resistance in N,r6.2, 2X, "ohme.")
    6 FORMAT(10x,"The rotor induotive reactance in",r6.2,1x,"ohma.")
    MRITE(6,7)Q (HORMAT(10X,"The final alip ien,1X,r6.3,".")
```



```
    MRITE(6,8)00
    fORmat(10x,"The initial slip is",1x,r6.3,"."
    WRITE (6,9)IO
    FORMAT (10x,"The initial current ia",r5.2,1x,"Amp."
    MMP1-(IO-VR*ON/R)
    AMP2-(VR*Q/(R)* (1+3*X**2*Q*CO/(2*R**2)))
    ANP3-(-3*VR*X**2*Q**3/(2*R**3))
Mrite the output.
    WRITE (6,10) AMP1
    FORMAT(10x,"The unit atep response (u(t)) is",r7.2,1X,"Amp.")
    MRITE (6,11)AMPR2
    ORMAT (10x, "The
    FORMMAT (10X,"The delta responae 1e",F7.2,1X,"Amp.")
    TORMAT(10X,"The doublet responae is",F7.2,1X,"Amap.")
    DO 15 I-1,7
    K-100*I-400
    ISCNLE (I)-K
    CONTINU
    TORMAT(30x, "Current in Ampere",//7I10)
    MRITE (6,18)
    WRITE (6,19)
    rormat ("T1mo")
    Format(1X,"(s@c.)")
    DO 20 I-1,N
    AMPP-AMP1/10+26
    M=AMPS
    GRAPHS (M) -STAR
COTEE(6,23)DOT
CONTINUE
STORMAT (2X, F5.2,7X,70A1,T4
23 FORMAT (T40,A1)
END
    NRXIE(6,11) NMP2
    MRTE (6,17)18CA
```

Appendix F

```
Thin ia a program to calculate the torque of an induction
    value of slip at no load is
    Variable Declaration
    rorQuE- torque in (Nawton-moter)
    vs- per phase voltage in (Volta)
    -- milp of the motor
    go-1nitial alip of the motor
    R- rotor resistance of the motor in (ohme)
    - total equivalent inductive reactance of
    ror2- is the unit itep response of the motor
    TOR3- is the pulse response (u(t-T) of themotor
    p-the number of poles
    H-the number of phases
    sRPM, the synchronous apeed in (rpm)
    i- Is the tine when the rectangular pulse goen to xero in (sec.)
    DIMENSION ISCALE(7)
    PARAMETER (N-20)
    INTEGER N,GRAPHS (70) ,BL, STAR,DOT 
```



```
    DATA DOT/m."/
    READ*,VS,F,P,PH,R,X,Q,O,TO,N
    mRITE (6,2) vs
    FORMAT(10x,"The per phaee voltage 1=",1X,r5.1,1X,"volte.")
    MRITE(6,4)F
+ "herta.")
    TORMAT(10X,"The number of pole: 10",1X,r4.1,",")
    WRITE(6,8)PH
    rormar (10x, "The number of phane i=",1X,r4.1,".")
    MrItE (6,10)R
    TOPMAT(i0X,"The rotor reaiatance is",r6.2,1X,"olman.")
    RITI(6,12j)
    FORMAI(iOX,"Ihe total inductive reactance in", F6.2,1X,
    + morgat (10
    wRITE (6,14)0
    rormat (10x,"The finml slip is",1X, F6.3,"u(t-T).")
    MRITE(6,16)00
```



```
    NRITE(6,18)TO
    Trurami(i0x,"The initial torque iam,ix,F5.2,1x,"N-m.")
```



```
    E9.2,1X,"N-m.")
    TORMar(10x,"The pulse responee (u(t-T)) of the torque is",
+ 1x,E9.2,1x, NN-m.N)
    MX, E9.2,1X, "N-N.")
+ 1X,E9.2,1X, -N-m.")
Compute the Eynchronous apeed.
    TOR1-(VS**2/R*(Q-QO-3*X**2*Q**3/(R**2) +X**2*Q**2*OO/(R**2) + ( 
```



```
    + +6* x** 6*O** 6*OO/(R** 6))+TO)*7.04/(8RPM)*PR*1.356
    MOR2-(VS**2/R*(-Q+6*X**2*Q**3/(R**2)-X**2****2*CO/(R**2)-10*
+ X****Q**5/(R**4)+5*X**4*O**4*OO/(R**5)+12*******Q**7/(R**6)-
* 6*X** 6*Q** 6*00/(R** 6) )*7.04/(SRPM)*PH*1.356
TOR3-(VS**2*X*2*Q**3/(R**3)*(-3+5*X**2*Q**2/(R**2)-6*X***
+*Q**4)(R**7))\*7.04/(SRPM)*PH*1.356
```

WRITE $(6,23)$ TOR
NRITE $(6,24)$ IOR MRTTE (6,25) TOR3
DO 27 I-1, 7
K-1000*I-4000
ISCALE (I) -
MRTTE $(6,22)$ IBCR
WRITE $(6,22)$ IBCA
WRITE(6,29)

DO 38 I-1,N
READ* T (I)
IF(T(I).GE.2*A) THEN
MLSE IF (T (I).GE.A) THEN
GOTO 32 (I) GE, O) THEN
ELSE IF (T (I).GE.0) THEN
GOTO 30
GOTO
LSE IT (I (I). LT.O) THEN
GOTO 39
OROU
GOTO 35
TORQUE-TORI + TOR2
GOTO 35
TORQUE-TOR1 + TOR $2+$ TOR 3
TORQ-TORQUE $/ 100+34$
-TORQ
GRAPHS (M)-gTAR
MRITE (6,40) T(I) , TORQUE, GRAPHS
GRAPHS (M) - BL
TRITE $(6,45)$ DOT
COATINUE
STOP
FORMAT (1X, T3.1, 2X, $59.2,2 \mathrm{X}, 70 \mathrm{~A} 1, \mathrm{T4}, \mathrm{~A} 1$)
FORMAT (TSO, A1)
ORMDAT (T50, A1)
END

Appendix G

```
This is a program to calculate the current of an induction
    notor when amall value of alip at no loadia
    ohanged to a higher value of a pulee type, qu(t-T).
    Variable Declaration
    AMP- ourrent in (Ampere)
    MMP- ourrent in (Ampere) (Volte)
    VR- pir phase voltage
    po- initial slip of the motor
    R- rotor resiatance of the motor in (ohms)
    X- rotor inductive reactance of the motor in (Ohme)
    AMP1- is the unit atep response of the motor
    AMP2- in the pulse response (u(t-T) of the motor
    AMP3- is the pulse response (u(t-2T) of the motor
    ph-the number of phases
    A- is the time when t
    DIMENSION ISCALE(7)
    ARRMMETER (N-2O)
    INTEGER N,GRAPHS (70), BL, STAR,DOT
    REAL AMPS,VR,Q,@O,R,X, AMP1, AMP 2, AMP 3,IO, PH,T (N), 
```



```
    DATA DOT/".m/
    READ*,VR,R,X,Q,00,10,A
    OPEN(UNIT-6, rILE="marl.dat",STATUS="NIW")
    NRITE (6,2)VR
    FORMAT(10x,"The per phase voltage iz",1x,r5.1,1x,"volta.")
    MRITE(6,10)R
    TORMAT(10X,"The rotor remiatance la", T6.2,1X,"ohma.")
    (6,12)X
    FORMAT (10X,"The rotor inductive reactanoe i=",r6.2,1X,
    "ohme.")
    WRITE (6,14)
    FORMAT(10x,"The final slip in",1X, rg.3,"u(t-T).")
    MRITE(6,16)go
```



```
    FORIMAT (10x, T
    FORMMAT(10x,"The initial current 1"",1x,5S.2,1x, "N-m.")
    TORMAT (10x,"The unit etep reeponee (u(t)) of the durrent i=",1x
    + F6.2,1X,"Amp."")
    FORMAT (10x,"The pulse responee {u(t-T)) of the ourrent 1e",
+ 1X, F6.2,1X, - Mmp.")
    FORMAT(10x,"The pulse remponae (u(t-2T)) of the aurrent 1e"
+ 1X,F6.2,1X,"Amp,n)
    ANP1-(VR* (Q-QO)/R-3*X**2*VR* (O** 3-Q**2*OO)/(2*R**3))+10
    AMP2-(VR*Q* (-1-3*X** 2*Q**2/(R**2)-3*X**2*Q*QO/(2*R**2))/R
    AMP3=(3*VR*X**2*Q**3/(2*R**3))
    MRITE (6,23) AMP1
    WRITE (6,24) AMP2
    MRITE (6,25) AMP3
    DO 27 1-1,7
    ISCALE (I)-K
    continus
    MRITE (6,22) ISCALE
    MRITE (6,28)
    TORHAT("Time",5x,"Current")
    RITE(6,29) 1" 3x " (Nap, )
    Ormat("(soa.)",3X,"(Amp.)")
    READ*,T(I)N
    IF(T(I).GE.2*A) THEN
```

ELSI IF (T (I).GE.A) THEN
GOTO 32
CLSE $I T(I) . G E .0)$ THEN
ELSE IF(T) (I).GE.0) THEN
GOTO 30
LLSE If(T)(I). LT.0) THEN
COTO 39
endif
AMPS-AMP
GOTO 35
AMPS SMMP1 + AMP 2
coro 35
AMP S-AMP1 + AMP $2+$ NMP 3
AMPE-AMPS $/ 10+36$
M-AMPE
GRAPHS (M) -STAR
GRAPHS (M) -STAR
NRITE $(6,40) T(I)$, AMPS, GRAPHS
NRITE $(6,40)$ T (I) , AMPS , GRAPHS
MRITE $(6,45)$ DOT
CONTINUE
CONT
40 FORMAT (1X, T3.1, 2X, F7.2,2X,70A1, T4, A1
FORMAT (T50,A1)
END

Appendix H

```
Thi: in a program to calculate the torque of an induction
    motor when a very mmall value of slip at no lomd
    1. changed to a ramp type, ot.
    Variable Declaration
    TORQUE- torque in (Nowton-meter)
    vs- the per phase voltage in (volte)
    Ip of the motor
    0- the initial slip of the motor
    x- the rotor redistance of the motor in (Ohma)
    X- the rotor inductive reactance of the motor in (Ohma)
    TO- the initial torque in (Newton-meter)
    T(I)-time in (Seconds)
    pH- the number of phases
    F- frequency of the syetem in (Hz)
        DIMENSION ISCALE (7)
        PARAMRTER (N-20)
        REAL TORQ,VS,Q,QO,X,R, TO, TORO1, TOR1, TOR2, TOR 3, TOR4,TORS,
    +TORG, TOR7, SRPM,P,F,PH,T(N)
    INTEGER I, GRAPHS (70), BL, STAR, DOT
    DATA GRAPHS/70** m/,BL/= =/,STAR/"**/
    DATA DOT/"."/
    READ*,VS,T,P,PH,R,X,Q,@O,TO
    OPEN(UNTT-6,FILEm"marl.dat",STATUS="NLW)
M MRITE(6,1)VS
"volta,")
TORMAT(1OX,"The frequency of the myetem is",2X,r4.1,1x,"herty.")
WRITE (6,3)P
FORMAT(10x,"The number of poles in", 2x,F4.1,".")
MRITE (6,4)PH
TOPARAT(10x,"The number of phame: of the motor im",1X,r4.1,".")
WRITE (6,5)R
ropamat(10x,"The rotor reaistance of the motor i"m,F6.2,2x,"ohma."
MRITE (6, 6)X
TORMAT(10x,"The total induative reactanoe of the motor ig",r6.2
WRITE (6, 7)Q
FORMat(10x,"The final =lip ia",1x,r6.3,"t.")
mRITE (6,8)00
ropmat(iOX,"rhe initial alip is",ix,r6.3,".")
WRITE (6, 9) TO
TOPMAT(10x,"The initial torque is",1X,r5.2,1X,"N-m.n)
K-1000*I-4000
ISCALR (I) -K
contINUE
WRITE(6,20) ISCALE
TOPMAT("1n, 30x,"Torqque in Nawton-meter",//100,7110)
MrIte(6,21)
TORAMAT ("Timen,5x,"Torque")
TORAMAT("(S@C.)",3X,"(N-m)")
DO 25 I-1,N
READ*,T(I)
SRPM-120*F/P
TORG1-7.04/SRPM* PH*1.356*(TO-VS**2*OO/R)
TOR1-V8**2*Q*T(I)/R
TOR2-VS** 2*X** 2* Q** 2* OO*T(I)**2/(R** ( )
```

TOR4-VS**2*X**4*Q*** CO*T(I)**4/(R**5
TORS-VS**2*X**4*Q**5*T(I)**S/(5*R**5)
TOR6 $-6 * V S * * 2 * X * 6 * Q * * 6 * O * T(I) * * /(7 * R * *)$
TOR7-6*Vs**2*X**6*0**7*T(I)**7/(49*R**7)
TORQUE-7.04/(SRPM)*PH*1.356*(TOR1 + TOR2-TOR3-TOR4
4+TOR6-TOR7) + TORO1
TORO-TORQUR/100+3
M-TORQ
GRAPHS (M)-star
NRITE (6,27) T (I), TORQUE, GRAPHS
GRAPHS (M) BL
25 CONTINUE
stop
27 ropmat(1X, T3.1, T10.2,2X, 70A1, T1, A1)
30 FORMAT (T50, Ai)

Appendix I

Thie is a program to calculate the current of an induction motor whan a very mall value of alip at no load
is changed to ramp type, ot.
Variable Declaration
VRP- the per phase voltige in (Volta)
Q- the slip of the motor
R-the rotor resistance of the motor in (Ohme)
x - the rotor inductive reactance of the motior in (Ohms)
Io- the initial current in (Ampera)
$T(x)$ - time in (seconds)
$* ~$
DIMENSION ISCALE
PARAMETER ($\mathrm{N}-20$)
REAL AMP, VR, Q, QO, X, R, YO, AMP1, AMP2 , AMP 3, AMP4, T (N)
INTEGER I, GRAPHS (70), BL, STAR, DOT
DATA GRAPHS/70*n n/, BL/ $/ n=1 /$ STAR/n*n/
DATA DOT/"."/
READ*, VR, R, X, $0, \infty 0$, 10
OREN (UNIT-6, FILE="marl.dat", 8TATUSm"OLD")
WRITE $(6,1)$ VR
1 Formatiox, "The par phase voltage is", $2 \mathrm{X}, \mathrm{r} 5.1,2 \mathrm{X}$
+"volte. ")
FORMAT(10X, "The rotor resietance of the motor in", F6.2,2x, "ohms.")
6RITE (6, 6) X,
6 FORMAT(10X, "The rotor inductive reactance of the motor is", r6.2,
+1X, "ohna."
WRITE $(6,7) Q$

WRITE (6, 8) 00

- Format (iox, "The initial alip ian, ix, F6.3,",")

9 FORMAI(10X, "The initial current i=",1X,r5.2,1X,"Amp.")
$\mathrm{DO} 15 \mathrm{I}=1,7$
$\mathrm{~K}=100 \times \mathrm{I}-400$
IsCALE (I)-K
CONTINUK
WRITE $(6,20)$ Iscaxis
ropant (" ", 30x, "Current in Ampere", //10X,7110)
$\left.\begin{array}{l}\text { WRITE } \\ \text { WRITE } \\ (6,21) \\ 22\end{array}\right)$
ropeat ("rime", 3x,"Current")
FORMAT (" (8ec.) ", 2X, " (Amp.)")
DO 25 Im , N
READ*II (I)

AMP4-VR*X*2*Q**3*T(I)**3/(6*R**3)
AMP- (AMP1 1+AMP 2 + AMP 3-AMP4)
AMPS-AMP $/ 10+36$
H-AMPS
GRAPHS (M)-STAR
WRITE $(6,27) T(I), ~ N R P, ~ G R A P H S ~$
MRITI (6, 27) T (I), MMP, GRAPHS writr $(6,30)$ DOt
25 CONTINU:
stop
27 TORMAT(1X, F3.1, 2X, F7.2,2X,70A1, T4, A1)
FORMAT (T50, A1)
END

Appendix J

* Thin ia program to calculate the torque of an induction motor when a mall value of silip at no load is changed to a higher value of a anueoidal type, oaint

Variable Declaration

TORQUE- torque in (Newton-mater)
Q- final slip of the motor
oo- initial alip of the motor
R- rotor resistance of the motor
x - total inductive reactance of the motor in (Ohame)
SRPM- the synchronous epeed in (rpas)

- the number of poles

DIMENSION ISCALE (7)
PARAMETER (N-20)
INTEGER N, GRAPHS (70), BL, STAR, DOT
REAL $T(N)$, TORQ, VS, 0,0 , R, X, TOR, TOR1, TOR2, TOR3, TOR4, TOR5, TOR6, TOR 7
REAL T(N), TORQ,

+ TORB, TORS, TOR10, TOR11, TOR12, TOR1 3, TOR14, TOR15, TOR16, TOR17, TOR18
+ TOR19, TOR2O, TOR21, $\mathrm{H}, \mathrm{SRPM}, \mathrm{F}, \mathrm{P}, \mathrm{PH}$

DATA DOT/"."/
READ*,VB, $\mathrm{T}, \mathrm{P}, \mathrm{PH}, \mathrm{R}, \mathrm{X}, \mathrm{Q}, \infty, \mathrm{TO}$
OPEN (UNIT-6,FILE""marl. dat", STATUS"*NEW)
MRITE (6,1)VS
FORMAT (10X,"The per phase voltage is", $1 \mathrm{X}, \mathrm{F} 5.1,1 \mathrm{X}$, "volta.")
ropmat (iOX,
"rhe frequency of the eyster 1s", 1X, F4.1,1X write $(6,3) P$
TORMAT(10x, "The number of poles of the motor is", $1 \times$, ri.1,".")

WRITE (6,5)R
HORMAI (10X, "The rotor resistance in", F6.2,1X, "otman."
WRITE $(6,6) \dot{x}$ ($10,2,1 x, 0$.
TORMAT (10X,"The total inductive reactance ien, r6.2,1X, "ohman.")
Mrite $(6,7) Q$
TORMAT (10x,"The final alip ien,ix, ro.3,"oin t.")

TORMAT(iox

K-1000*I-4000
IsCALE (I) -K
COATINUS
WRITE $(6,18)$ IsCALE
FORMAT (30X, "Torque in $N-\mathrm{m}^{n}, / / 10 \mathrm{X}, 7110$)
WRITE $(6,21)$
FORMAT ("Time", 5x, "Torque")

SRPM 120 *F/R
DO $25 \mathrm{I}-1$, N
READ*, T(I)
Calaulate the torque
TOR-TO-vs**2*D/R
TOR1~の*T(I)/R
TOR2-X**2* Q $^{* * 2 * 00 * T(I) * * 2 / R * * 3 ~}$

TOR4-X**2*Q**2*CO*T(I)**4)(R**3)*(0.33+0.21*X**2*Q**2
$+/(R * * 2))$
OR5-X**2*Q**3*T(I)**5/(R**3)*(0.08+0.04*X**2*Q**2/R**2)
TOR $6=x^{* * 2 * Q * * 2 * C O * I(I) * * 6 /(R * * 3) *(0.0279+0.14 * X * 2 * Q * * 2 / ~}$
$\left.\left(R^{* *} 2\right)+2.8 \mathrm{E}-3 * X^{* *} 4 * \mathrm{O}^{* * 4} /\left(\mathrm{R}^{* *} 4\right)\right)$
$\left.\left(\mathrm{R}^{*} * 2\right)+4 \mathrm{E}-4 * \mathrm{X} * * 4 * \mathrm{Q} * * /(\mathrm{R} * * 4)\right)(5.7 \mathrm{R}-3+0.02 * \mathrm{X} * * 2 * \mathrm{Q} * * 2)$

+ (R**2))
TOR9-X**2*Q**3*T(I)**9/(R**3)*(1.00E-4+4.1E-3*X*2*O**2/
$\left.+(R * * 2)+3 E-4 * X * * 4 * Q^{* * 4 /(R * * * 4)}\right)$
TORIO-X****Q**4*QO*T(I)**10/(R**5)*(3.9E-3+1.2E-3*X**2*
$+Q^{* * 2 /(R * * 2)) ~}$
解*5*T(I)**11/(R**5)*(4E-4+1E-4*X**2*Q**2
($\left(R^{* * 2)}\right)$
$+ \pm Q^{* * 2 /\left(R^{*} * 2\right)}$

(ROR1

TOR15-X****Q**5T(I)**15/(R**5)*(5.89E-8+2.24E-6*Q**2
TOR16-4.29E-6*X**6*Q**6*CO*T(I)**16/(R**7)
TOR17-2.6E-7*X**6*Q**7*T(I)**17/(R**7)
TOR18-5.95E-8*X**6*Q**6*QOT $T(I) * * 18 /(R * * 7)$
TOR19-3.87E-9*X**6*Q**7*T(I)**19/(R**7)
TOR21-7.46E-12*X**6*Q**7*T(I)**21/(R**7)
TORQUE- (((TOR1 + TOR2-TOR 3-TOR4 + TORS +TOR6-TOR7-TORA +TOR9 + TOR1O-
+TOR11-TOR1 $2+$ TOR1 $3+$ TOR14-TOR15-TOR1 $6+$ TOR1 7 +TOR18-TOR1 $9+$
+ +TOR21)*VS**2)*7.04/(SRPM)*PH*1.356) +TOR
TORQ-TORQUE/100+34
M-TORQ
GRAPHS (M) - STAR
WRITE $(6,27)$ I (I), TOROUE, GRAPHS
GRAPHE (M) - BL
WRITE (6, 28) DOT
CONTINUE
FORMAT (1X, F3.1, 2X, F10.2, 2X, 70A1, T4, R1)
FORMAT (T50,A1)
roo

Appendix K

Thia ia a program to calculate the current of an induction motor when a emell value of lip changed to a higher value of a einusoidal type, geint.

```
iable Dealaration
```

AMPS- ampere in (Ampere)
VR-per phase voltage in (Volte)
Q- final alip of the motor
Qo initial glip of the motor
R- rotor reaistance of the motor
X - rotor inductive reactance of the motor in (Ohme)
PH- the number of phane
DIMENSION ISCALE(7)
parameter ($\mathrm{N}=20$)
INTEGER N, GRAPHS (70), BL, STAR, DOT
INTEGER N, GRAPHS (70), BL, STAR, DOT
REAL $T(N)$, TORQ, VR, $Q, Q O, R, X, A M P 1, A M P 2, ~ A M P 3, ~ A M P 4, ~ A M P 5, ~ A M P ~ 6, ~ A M P 7, ~$
+ AMPE, AMP9, H , TO
DATA GRAPHS/70*" $n /$, BL/" $n /$, 8 TAR/"*" $/$
DATA DOT/".n/
OPEN (UNIT=6, YILEm"marl. dat", status="NEM")
NRITE $(6,1)$ VR
FORMAT (10x, "The per phase voltage ian, 1X, F5.1,1X, "volta.")
NRITE $(6,5) R$
FORMAT (10x, "The rotor realetance inn, F6.2,1X,"ohma.")
MRITE $(6,6) \times$
FORMAT (10X," The rotor inductive reactance in", r6.2,1X, "ohme.")

MRITE $(6,8) 00$
FORMAT(10X,"The initial silp is", 1x, F6.3,".")

Do $15 \mathrm{I}-1 ; 7$
ISCALE (I) - K
CONTINUE
WRITE $(6,10)$ IsCALE
FORMAT (30X, "Current in Ampere ",//10x,7110)
write $(6,20)$
MRITE $(6,21)$

CORMAT (" (8ea.)", 2X, "(Amp.)"
RUAD ${ }^{\text {T }}$ T(I)
Calaulate the aurrent.
AMP1-IO-VR* $00 / R$
AMP2-VR* $Q^{*} T(I) / R$
AMP $3-V R^{*} Q^{*} T(I) * * 3 / R *(-0.167-0.495 * X * * 2 * Q * * 2 / R * * 2)$
AMP4-0.165*VR*X**2*Q**2*OO*T(I)**4/R**

AMP7=2.9E-3*VR*X**2*Q**3*T(I)**7/R**3
AMP $B=0.495 * V R * X * * 2 * Q^{*} * 2 * Q O * T(I) * * 2 / R^{*} * 3$
AMP9-2.76E-5*VR*X**2*Q**3*T(I)**9/R**3

M-AMPS
M-AMPS
GRAPHS (M) -STAR
GRAPHS (M) -STAR \quad MRITE $(6,27) T(I)$, AMP, GRAPHS
GRAPHS (M) =BL
mRITE $(6,28)$ DOT

REFERENCES

1. Puchstein, A.F., T.C. Lloyd, and A.G. Conrad, "Alternating Current Machines," 3rd edition, John Wiley and Sons, Inc., pp. 242-243, 1954.
2. Alger, P.L.. "Induction Machines, Their Behaviour and Uses", 2nd. edition, Gordon and Breach Publishers, pp. 499-500, 1970.
3. Alger, P.L.. "Induction Machines, Their Behariour and Uses", 2nd. edition. Gordon and Breach Publishers, pp. 500. 1970.
4. Alger, P.L... "Induction Machines, Their Behaviour and Uses". 2nd. edition. Gordon and Breach Publishers, pp. 503. 1970.
5. Alger. P.L.. "Induction Machines, Their Behaviour and Uses", 2nd. edition. Gordon and Breach Publishers, pp. 503-508, 1970.
6. Alger, P.L., "Induction Machines, Their Behaviour and Uses". End. edition. Gordon and Breach Publishers, pp. 131-132, 1970.
7. Say, M.G., "Alternating Current Machines", 5th edition, John Wiley and Sons Inc., pp. 260-262, 1983.
8. Puchstein, A.F., T.C. Lloyd, and A.G. Conrad, "Alternating Current Machines", 3rd. edition, John Wiley and Sons hnc., 268-270, 1954.
9. Puchstein, A.F., T.C. Lloyd, and A.G. Conrad, "Altemating Current Machines", 3rd. edition John Wiley and Sons Inc., pp. 276-278, 1954.
10. Mueller. G.V., "Alternating Current Machines", 1st. edition, McGraw-Hill Book Co.. Inc., pp. 243-246, 1952.
11. Puchstein, A.F., T.C. Lloyd, and A.G. Conrad, "Alternating Current Machines", edition, John Wiley and Sons Inc.. pp. 291-299, 1954.
12. Alger, P.l., "Induction Machines, Their Behaviour and Uses", 2nd. edition. Gordon and Breach Publishers, pp. 11/-116, 1970.
13. Alger, P.L., "Induction Motor Performance Calculation", Trans. A.I.E.E.. Volume 49, pp. 1055-1066, 1930.
14. Puchstein, A.F., T.C. Lloyd, and A.G. Conrad, "Alternating Current Machines", edition, John and Wiley and Sons Inc., pp. 242-243, 1954.
15. Etter, D.M., "Structured FORTRAN 77 for Engineers and Scientists". 3rd. edition Benjamin-(ummings Pul). Co.. 1990.
16. Koffman, E.B., and F.L. Friedman, "Problem Solving and Programming in FORTRAN 7T, 4th. edition, Addison-Wesley Pub. Co., Inc., 1987.
17. Fodor, G., "Laplace Transforms in Engineering", Muszali Konyv-Kiado, pp. 691-738, 1962.
18. Swisher. C.M.. "Introduction to Linear Systems Analysis", Matrix Publisher Inc.. pp. 689-698, 1976.
19. O'Neil, P.V., "Advanced Engineering Mathematics", 2nd. edition, pp. 257-289, 1987.
20. Demno. K.. "Electrical Protective Devices". McGraw-Hill Book Co.. 1993.
