Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

> Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT Modal Control of Flexible Beam Using Smart Materials
 by
 Sujata Mallepalle

In this work, the dynamics and control aspects of a vibrating flexible beam using modal analysis are studied. To damp the vibrations of the system, the vibrations of each mode has to be controlled, which can be done if we know the individual mode shape, and the resonance frequency. These quantities can be derived mathematically or measured experimentally with a spectrum analyzer. Individual modal velocities can be computed by integration of the product of beam velocity and the mode shape, over the interval of beam length. The integration is carried out using numerical methods. The necessary discrete ordinates are obtained by measuring the system velocity at several points on the beam. This mode velocity estimation method constitutes the mode separation scheme which is the principle feature of this thesis. Controlling of the system vibrations can be achieved by controlling individual mode vibrations. The control action for each mode are decoupled from others, because of the frequency separation. So the resulting the controller is modular, consisting of $N_{0}\left(N_{0}=\right.$ number of outputs to be regulated) structurally identical modules. The combined mode separation scheme and modular controller are the desired modal controllers that stabilize, and regulate the beam dynamics.

MODAL CONTROL OF FLEXIBLE BEAM USING SMART MATERIALS

by
Sujata Mallepalle

A Thesis
Submitted to the Faculty of New Jersey Institute of Technology in Partial Fulfillment of the Requirements for the Degree of Master of Science
Department of Electrical and Computer Engineering

January, 1993

APPROVAL PAGE

Modal Control of Flexible Beam Using Smart Materials

Sujata Mallepalle

Dr. Timothy N. Chang, Thesis Advisor
Assistant Professor of Electrical and Computer Engineering, NJIT

[^0]
BIOGRAPHICAL SKETCH

Author: Sujata Mallepalle
Degree: Master of Science in Electrical and Computer Engineering
Date: Jamary, 1993

Undergraduate and Graduate Educations:

- Master of Science in Electrical and Computer Engineering, New .lersey Institute of Terchology, Newark, N.J, 199:3
- Master of Arts in Mathematics, Trenton State College, Trenton. N.J, 1991
- Bachelor of Science in Electronics and C'ommunication Engineering, Venkateswara University, Tirupati, India, 1984

Major: Electiral and Computer Engineering

ACKNOWLEDGMENT

I am indebted to Dr. Timothy V. Chang, my thesis advisor for his invaluable support and guidance throughout the research and development of this thesis. I thank him for his patience and for all of his suggestions to refine and improve this research work as well as manuscript. My sincere appreciation to Dr. Nirwan Ansari and Dr. [)urga Misra who agree to work on the thesis committee given the very short notice. My sincere thanks to Dr. (hang and N.J.I.T. for providing the necessary financial support for my studies. I would like to thank all teachers at N.JIT, especially the E(E faculty and fellow students for their support and encouragement. Finally, to Qian Wang, I express my deep appreciation for her expert typing of the mannscript.

TABLE OF CONTENTS

Chapter Page
1 INTRODUCTION 1
2 MATHEMATICAL MODEL OF FLEXIBLE BEAM DYNAMICS 2
2.1 Mathematical Model of a Flexible Beam 2
3 NUMERICAL METHODS FOR ESTIMATION OF VELOCITY FROM MODAL ANALYSIS 9
4 CONTROL AND REGLLATION OF FLEXIBLE BEAM 32
4.1 Controller Synthesis 33
4.2 Simulation Results 36
4.2.1 Simulation of open loop dynamics 36
4.2.2 Simulation of closed loop dynamics with: $N_{m}=4 . V_{o}=4, N_{s}=6$. 36
4.2.3 Simulation of closed loop dynamics with: $N_{m}=4 . N_{o}=2, N_{s}=4$ 39
4.2.4 Simulation of closed loop dynamics with: $N_{m}=4 . V_{0}=2 . N_{s}=3$ 40
4.3 Discussions 50
5 SENSORS 66
5.1 Low-frequency Equivalent Circuit 66
5.2 Application to the Beam Experiment 70
6 CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH 77
APPENDIX 78
REFERENCES 96

LIST OF FIGURES

2.1 Free Body Diagram of the Flexible Beam 3
2.2 Internal Structure of Flexible Beam Dynamics 7
3.1 Maximum Singular Values vs Number of Sensors for $N_{m}=4, N_{o}=2,4$, Using Euler's Approximation 19
3.2 Maximum Singular Values vs Number of Sensors for $N_{m}=8, N_{0}=$ 2,4,6,8, Using Euler's Approximation 20
3.3 Maximum Singular Values vs Number of Sensors for $N_{m}=20, N_{o}=$ 2,4,6,20. Using Euler's Approximation 21
3.4 Maximum Singular Values vs Number of Sensors for $N_{m}=4, N_{o}=2,4$, Using Simpson`s Approximation 22 3.5 Vaximum Singular Values vs Number of Sensors for \(N_{m}=8, N_{o}=\) 2, 4,6.8. U'sing Simpson's Approximation 23 3.6 Waximum Singular Values vs Number of Sensors for \(N_{m}=20, N_{0}=\) 2, 4.6.20. Using Simpson's Approximation 24 3.7 Velocities of First + Modes and Their Estimated Values for \(N_{m}=4\). \(N_{s}=3\). Using Euler's Approximation 25 3.8 Velocities of First 4 Modes and Their Estimated Values for \(N_{m}=4\), \(N_{s}=6\). Using Euler's Approximation 26 3.9 Velocities of First 4 Modes and Their Estimated Values for \(N_{m}=8\), \(N_{s}=10\). Using Euler's Approximation 27 3.10 velocities of First 4 Modes and Their Estimated Values for \(N_{m}=20\), \(N_{s}=22\). U'sing Euler`s Approximation 28
3.11 Velocities of First 4 Modes and Their Estimated Values for $N_{m}=4$, $N_{s}=10$. Using Simpson's Approximation $? 9$
3.12 Velocities of First 4 Modes and Their Estimated Values for $N_{m}=8$. $N_{s}=18$, Lsing Simpson`s Approximation 30
3.13 Velocities of First 4 Modes and Their Estimated Values for $N_{m}=20$, $N_{s}=42$, Using Simpson's Approximation 31
4.1 Flexible Beam Control System Using Modular Controller [2] and Mode Separation 34
4.2 Control Module [2] 35
4.3 Velocity of the First Mode (Open Loop) 41
4.4 Velocity of the Second Mode (Open Loop) 42
4.5 Velocity of the Third Mode (Open Loop) 43
4.6 Velocity of the Fourth Mode (Open Loop) 44
4.7 Velocity of the First Mode for $N_{m}=4, N_{s}=6 . V_{0}=4$ 45
4.8 Amplitude of Velocity of the First Mode for $N_{m}=4, N_{s}=6, N_{o}=4$ 46
4.9 Velocity of the Second Mode for $N_{m}=4, N_{s}=6 . V_{o}=4$ 47
4.10 Amplitude of Velocity of the Second Mode for $\lambda_{m}=4, N_{s}=6, N_{o}=4$ 48
4.11 Velocity of the Third Mode for $N_{m}=4, N_{s}=6 . V_{0}=4$ 49
4.12 Amplitude of Velocity of the Third Mode for $\Lambda_{m}=4, N_{s}=6, N_{0}=4$ 51
4.13 Velocity of the Fourth Mode for $N_{m}=4, N_{s}=6 . N_{0}=4$ 52
4.14 Amplitude of Velocity of the Fourth Mode for $V_{m}=4, N_{s}=6, N_{0}=4$ 53
4.1.5 Velocity of the First Mode and It's Estimation for $N_{m}=4, N_{s}=4, N_{o}=2$ 54
4.16 Velocity of the Second Mode and It's Estimation for $N_{m}=4, N_{s}=4$, $N_{0}=2$ 55
4.17 Amplitude of Velocity of the First Mode for $N_{m}=4, N_{s}=4, N_{o}=2$ 56
4.18 Amplitude of Velocity of the Second Mode for $N_{m}=4, N_{s}=4, N_{o}=2$ 57
4.19 Velocity of the Third Mode $N_{m}=4, N_{s}=4, N_{o}=2$ 58
4. 20 Velocity of the Fourth Mode $N_{m}=4, N_{s}=4, N_{o}=2$ 59
4.21 Amplitude of Velocity of the First Mode for $N_{m}=4, N_{s}=3, N_{o}=2$ 60
4.22 Amplitude of Velocity of the Second Mode for $N_{\pi}=4, N_{s}=3, N_{o}=2$. 61
4.23 Velocity of the First Mode and It's Estimation for $N_{m}=4, N_{s}=3, N_{o}=2$ 62
4.24 Velocity of the Second Mode and It's Estimation for $N_{m}=4, N_{s}=3$, $N_{o}=2$ 63
4.25 Velocity of the Third Mode $N_{m}=4, N_{s}=3, N_{0}=2$ 64
4.26 Velocity of the Fourth Mode $N_{m}=4, N_{s}=3, N_{\circ}=2$ 65
5.1 Parallel Plate Structure of Piezoelectric Transducer 67
5.2 Low Frequency Equivalent Circuit of Piezoelectric Transducer 68
5.3 Frequency Response of Piezoelectric Transducer 69
5.4 Serial Implementation for Measuring ith Mode Velocity 71
5.5 Parallel Implementation for Measuring ith Mode Velocity 73
5.6 Piezoelectric Wafer Containing Multiple Number of Sensors 74
5.7 Voltage Amplifier: a) unity gain; b) with gain 75
5.8 Charge Amplifier 76

LIST OF TABLES

Table Page
2.1 Natural Frequencies of the Flexible Beam 6
3.1 Mode Shape Values at 4 Sensors Placed at Equidistant on the Beam 13
3.2 Maximum Singular Values of (M-I) Matrix of a System Containing 4 Modes, Using Euler's Estimation 15
3.3 Maximum Singular Values of (M-I) Matrix of a System Containing 8 Modes. Using Euler's Estimation 15
3.4 Maximum Singular Values of (M-I) Matrix of a System Containing 20 Modes. Using Euler's Estimation 16
3.5 Maximum Singular Values of (M-I) Matrix of a System Containing 4 ไModes, Using Simpson’s Estimation. 16
3.6 Maximum Singular Values of (M-I) Matrix of a System Containing 8 Modes. Using Simpson's Estimation 17
3.7 Maximum Singular Values of (M-I) Matrix of a System Containing 20 Modes. Using Simpson's Estimation 11
t. 1 Mode Saape Values at 6 Sensors Placed at Equidistant on the Beam 37

CHAPTER 1

INTRODUCTION

Flexible systems are characterized by the presence of many modes. By means of parallel decomposition, it is evident that the modes of vibration, each having its own frequency, behave essentially as second order systems. This allows us to express the motion of the system in terms of the modal vibrations, each proceeding at its own frequency, completely independent of the other, the amplitudes and phases being determined by the initial and excitation conditions. The total motion of the system is given by superposition of the modal harmonic vibrations. In Chapter 1 , the $d y$ namics of a flexible structure undergoing transversal motion is modelled. From the mathematical model, natural frequencies and mode shapes are calculated.

To damp the system vibrations, individual mode vibrations have to be damped. In this work, damping of the individual mode velocities is implemented by feeding back the individual mode velocities with proper gain. For this we need have individwal mode velocities, which can be estimated by numerical methods by placing several number of sensors on the beam. In Chapter 2 , how to estimate the modal velocities using numerical methods is discussed. And a method to estimate the minimum number of sensors we need to use for good estimation of modal velocities is given. Finally, these results are simulated using ALSIM software, for open loop dynamics, closed loop dynamics with good estimation of modal velocities, and closed loop dynamics without good estimation of modal velocities.

In Chapter 4, how to implement the estimation of modal velocities using smart materials is discussed. Finally, in Chapter 5, conclusions are stated and directions for further development are given.

CHAPTER 2 MATHEMATICAL MODEL OF FLEXIBLE BEAM DYNAMICS

The equation of motion of long thin members undergoing transverse vibrations can be described by (2.1), which mpon solution, generates an infinite natural modes of vibration. Figure(2.1) shows the freebody diagram of a beam undergoing transverse motion.

In this work, the Bernoulli-Euler assumptions of elementary beam theory are employed, namely:

1. There is an axis of the beam which undergoes no extension or contraction, which is a neutral-axis.
2. Cross sections perpendicular to the neutral axis in the undeformed beam remain plane and remain perpendicular to the deformed nentral axis, that is transverse shear deformation is neglected.
3. The material is linearly elastic and the beam is homogeneous at any cross section.

2.1 Mathematical Model of a Flexible Beam

The equation of motion for transverse vibrations of a beam, neglecting shear deffection and rotary inertia is given by

$$
\begin{equation*}
E I y^{\prime \prime \prime \prime}=-\rho \ddot{y} \tag{2.1}
\end{equation*}
$$

where E is the Young's Modulus
I is the moment of Inertia
ρ is linear density
y is displacement
y is differentiation with respect to x

Figure 2.1 Free Body Diagram of the Flexible Beam
\dot{y} is differentiation with respect to t

The left end $(x=0)$ of the beam is hinged to the motor. The concentrated mass m is attached at the right end $(x=l)$.

The appropriate boundary conditions are:

$$
\begin{align*}
y(0, t) & =0 \tag{2.2}\\
y^{\prime \prime}(0, t) & =0 \\
y^{\prime \prime}(l, t) & =0 \\
E I y^{\prime \prime \prime}(l, t) & =m \ddot{y}(l, t)
\end{align*}
$$

The solution to (2.1) is given by the method of separation of variables:

$$
\begin{equation*}
y(x, t)=\sum_{i=1}^{\infty} X_{i}(x) \Phi_{i}(t) \tag{2.3}
\end{equation*}
$$

then

$$
\begin{align*}
X_{i}^{\prime \prime \prime} & =-k_{i} X_{i} \tag{2.4}\\
\ddot{\Phi}_{i} & =-\omega_{i}^{2} \Phi_{i} \tag{2.5}
\end{align*}
$$

where

$$
\begin{gathered}
k_{i}=\frac{u_{2}}{l} \\
\omega_{i}^{2}=\frac{E I}{\rho} k_{i}^{4}
\end{gathered}
$$

μ_{i} is mode shape frequency.
The solution to (2.4) can be given as

$$
\begin{equation*}
X(x)=A_{i} \cos \left(k_{i}, x\right)+B_{i} \sin \left(k_{i}, x\right)+C_{i} \cos h\left(k_{i}, x\right)+D_{i} \sin h\left(k_{i} x\right) \tag{2,6}
\end{equation*}
$$

Applying boundary conditions (2.2) leads to

$$
\begin{aligned}
& A_{i}=0 \\
& C_{i}=0
\end{aligned}
$$

and $X\left(x_{i}\right)=B_{i} \sin \left(k_{i} x\right)+D_{i} \cdot \sinh \left(k_{i} x\right)$.
with

$$
B_{i}=D_{i} \frac{\sinh \left(k_{i} l\right)}{\sin \left(k_{i} l\right)}
$$

The resulting frequency equation is

$$
\begin{equation*}
-2 \AA \mu_{i} \sin \mu_{i} \cdot \sinh \mu_{i}=\sin \mu_{i} \cosh \mu_{i}-\sinh \mu_{i} \cos \mu_{i} \tag{2.7}
\end{equation*}
$$

where K is the ratio of end mass to bean mass.
Combining (2.6) and (2.7) yields

$$
\begin{equation*}
X_{i}(. x)=B_{i}\left[\frac{\sin \left(\mu_{i} x / l\right)}{\sin \left(\mu_{i}\right)}+\frac{\sinh \left(\mu_{i} x / l\right)}{\sinh \left(\mu_{i}\right)}\right] \tag{2.8}
\end{equation*}
$$

The orthogonality condition of the mode shapes $X_{i}(x)$ are expressed as:

$$
\int_{0}^{l} r(x) X_{i}(x) X_{j}(x) d x= \begin{cases}0 & i \neq j \tag{2.9}\\ 1 & i=j\end{cases}
$$

with the generalized weighting function $r(x)$ given by

$$
\begin{equation*}
r(x)=1+K l \delta(x-l) \tag{2.10}
\end{equation*}
$$

where $\delta(x-l)$ is the unit impulse function.
Verification of the orthogonality of mode shapes:

$$
\begin{align*}
& \int_{0}^{l} r(x) X_{i}(x) X_{j}(x) d x=0 ; \quad i \neq j \\
& \int_{0}^{l}[1+K l \delta(x-l)] X_{i}(x) X_{j}(x) d x \\
& =\int_{0}^{l} X_{i}(x) X_{j}(x) d x+K^{l} l \int_{0}^{l} \delta(x-l) X_{i}(x) X_{j}(x) d x \tag{2.11}\\
& \quad \int_{0}^{i} \delta(x-l) X_{i}(x) X_{j}(x) d x=-4 B_{i} B_{j} \tag{2.12}
\end{align*}
$$

Now siuce

$$
\begin{gather*}
\int_{0}^{l} X_{i}(x) X_{j}(x) d x \\
=\int_{0}^{l} B_{i} B_{j}\left[\frac{\sin \left(\mu_{i} x / l\right)}{\sin \left(\mu_{i}\right)}+\frac{\sinh \left(\mu_{i} x / l\right)}{\sinh \left(\mu_{i}\right)}\right]\left[\frac{\sin \left(\mu_{j} x / l\right)}{\sin \left(\mu_{j}\right)}+\frac{\sinh \left(\mu_{,} x / l\right)}{\sinh \left(\mu_{j}\right)}\right] d x 2 \\
\int_{0}^{l} \frac{\sin \left(\mu_{i} x / l\right)}{\sin \left(\mu_{i}\right)} \frac{\sin \left(\mu_{j} x / l\right)}{\sin \left(\mu_{j}\right)} d x=\frac{1}{2 \sin \left(\mu_{i}\right) \sin \left(\mu_{j}\right)}\left[\frac{\sin \left(\mu_{i} \mu_{j}\right)}{\mu_{i}-\mu_{j}}-\frac{\sin \left(\mu_{i}+\mu_{j}\right)}{\mu_{i}+\mu_{j}}\right] \tag{2.14}\\
\int_{0}^{l} \frac{\sinh \left(\mu_{i} \cdot x / l\right)}{\sinh \left(\mu_{i}\right)} \frac{\sin \left(\mu_{j} x / l\right)}{\sin \left(\mu_{j}\right)} d x=\frac{\mu_{j}^{2}}{\mu_{i}^{2}+\mu_{j}^{2}}\left[\frac{-1}{\mu_{j}^{2}} \cot \left(\mu_{j}\right)+\frac{\mu_{i} l}{\mu_{j}^{2}} \operatorname{coth}\left(\mu_{i}\right)\right] \tag{2.15}\\
\int_{0}^{l} \frac{\sinh \left(\mu_{j} x / l\right)}{\sinh \left(\mu_{j}\right)} \frac{\sin \left(\mu_{i} x / l\right)}{\sin \left(\mu_{i}\right)} d x=\frac{\mu_{i}^{2}}{\mu_{i}^{2}+\mu_{j}^{2}}\left[\frac{-1}{\mu_{i}^{2}} \cot \left(\mu_{i}\right)+\frac{\mu_{i} l}{\mu_{j}^{2}} \operatorname{coth}\left(\mu_{i}\right)\right] \tag{2.16}
\end{gather*}
$$

substituting (2.13), (2.15), (2.16),(2.17), (2.18) together with the relation (2.8) in (2.13) will prove the orthogonality condition (2.9).

Table 2.1 Natural Frequencies of the Flexible Beam

i	μ_{i}	ω_{i}	B_{i}
1	3.1711	0.3128	0.00035
2	6.2983	1.2341	0.0021
3	9.4349	2.7694	0.0006
4	12.5740	4.9188	0.0041
5	15.7141	7.6822	0.0010
6	18.8546	11.0597	0.0061
7	21.9955	15.0514	0.00111
8	25.1366	19.6542	0.0040
9	28.2777	24.8770	0.0031
10	31.4190	30.7110	0.0020
11	34.5603	37.1590	0.0052
12	37.7017	44.2212	0.0001
13	40.84 .31	51.8975	0.0049
14	43.9845	60.1878	0.0022
15	47.1259	69.0921	0.0029
16	50.2674	78.6108	0.0042
17	53.4089	88.7435	0.0009
18	56.5504	99.4902	0.0062
19	59.6919	110.8511	0.0012
20	62.8334	122.8260	0.0039

Therefore,

$$
\begin{equation*}
B_{i}=\left[l\left(K+1+0.5\left(\cot \mu_{i}^{2}-\operatorname{coth} \mu_{i}^{2}\right)\right)\right]^{-\frac{1}{2}} \tag{2.18}
\end{equation*}
$$

The natural frequencies are calculated from the frequency equation and are tabulated in Table (2.1).

Assuming concentrated moment is applied at $x=x_{0}$, the resulting equation of motion can be obtained by virtual work, refer [1] as :

$$
\begin{equation*}
\ddot{\Phi}_{i}+\omega_{i}^{2} \Phi_{i}=\frac{M(t)}{\rho} X_{i}^{\prime}\left(x_{o}\right) \tag{2.19}
\end{equation*}
$$

Equation (2.19) represents the dynamics of an undamped system.
By considering damping effects, the dynamic equation of motion becomes

$$
\begin{equation*}
\ddot{\Phi}_{i}+2 \xi_{i} \omega_{i} \dot{\Phi}_{i}+\omega_{i}^{2} \Phi_{i}^{2}=\frac{M(t)}{q} X_{i}^{\prime}\left(x_{o}\right) \tag{2.20}
\end{equation*}
$$

Figure 2.2 Internal Structure of Flexible Beam Dynamics
The transfer function between $y(x, t)$ and $u(t)=M(t)$ is given by

$$
\begin{equation*}
T(s)=\frac{Y(x, s)}{u(s)}=\sum_{i=1} \frac{H_{i}(x)}{s^{2}+2 \xi_{i} \omega_{i} s+\omega_{i}^{2}} \tag{2.21}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{i}(x)=\frac{X_{i}(x) X_{i}^{\prime}\left(x_{0}\right)}{q} \quad x \in(0, l] \tag{2.22}
\end{equation*}
$$

The internal structure of the beam dynamics is shown in Figure(2.2).
Assuming a fourth order model, the finite dimensional model of the flexible beam is given by:

$$
\begin{equation*}
T(s)=\frac{H_{1}(x)}{s^{2}+2 \xi_{1} \omega_{1} s+\omega_{1}^{2}}+\frac{H_{2}(x)}{s^{2}+2 \xi_{2} \omega_{2} s+\omega_{2}^{2}} \tag{2.23}
\end{equation*}
$$

Now, the transfer function model is converted to a state-space model of the following form:

$$
\begin{align*}
& \dot{q}=A q+B u \tag{2.24}\\
& y=C_{q}
\end{align*}
$$

where q, u, y are the state vector, input, and output respectively.
The A, B, (' matrices are given by

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-\omega_{1}^{2} & -\xi_{1} \omega_{1} & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -\omega_{2}^{2} & -\xi_{2} \omega_{2}
\end{array}\right] \\
& B=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right] \\
& C
\end{aligned}
$$

Since, (2.19) is a minimal realization, (2.18) is clearly controllable. Further details may be found in [1].

CHAPTER 3

NUMERICAL METHODS FOR ESTIMATION OF VELOCITY FROM MODAL ANALYSIS

For an elastic continum such as a flexible beam. undergoing a transversal motion. total vibration of the system is a sum of the individual mode vibrations. Therefore to control the vibrations of the system, individual mode vibration has to be controlled. This objective can be achieved, if we feedback individual mode velocities, with proper control gain. For this, we need to have the mode velocites. Since the mode thapes representing the system are orthogonal, we can get the individual mode velocity by integrating the product of system velocity and the mode shape function over the interval of beam length. That is since

$$
\begin{gathered}
\int_{0}^{1} r(x) X_{i}(x) X_{j}(x) d x=\delta_{i j} \\
\delta_{i j}= \begin{cases}1 & i=j \\
0 & i \neq j\end{cases}
\end{gathered}
$$

Thus, the mode velocity is obtained as

$$
\begin{equation*}
\dot{\Phi}_{i}=\int_{0}^{l} r(x) \dot{y}(x, t) X_{i}(x) d x \tag{3.1}
\end{equation*}
$$

where $\dot{\Phi}_{i}$ is velocity of the i th mode,
\dot{y} is velocity of the system at a distance x on the beam
X_{i} is mode shape.
$r(x)$ is the weighting function given by

$$
\begin{equation*}
r(x)=1+K^{\prime} l \delta(x-l) \tag{3.2}
\end{equation*}
$$

where K is the ratio of end mass to end mass
l is the length of the beam
$\delta(x-l)$ is the impulse function

By substituting equation (3.2) in equation (3.1), we will get.

$$
\begin{equation*}
\dot{\Phi}_{i}=\int_{0}^{1} \dot{y}(x, l) X_{i}(x) d x+2 K l \dot{y}(l . t) \tag{3.3}
\end{equation*}
$$

The integral given be (3.3) is evaluaterl, using standard mumerical methods.
Tlat manerical methods used in this work, to estimate $\int_{0}^{1} \dot{y}(x, t) X_{2}(x)$ d x are 1) Eulers Rule and 2) Simpson's Rule.

These iwo methods are now describeri below.

1. Euler`s Estimation:

$$
\left.\int_{0}^{1} i(\cdot r, t) X, i\right) i x=\sum_{k=i}^{\sum_{0}} \dot{i}(h \cdot h) X,(k \cdot h) h_{i}
$$

where V_{s} is the umber of amphing points, in other words the mumer of semsome h is the sampling interval given by l / V_{s}.
2. Simpson`s Estimation:

$$
\begin{align*}
& \int_{0}^{l} i(x . t) X_{i}(x) d x=\frac{h}{3}\left(\dot{y}(0, t) X_{i}(0)+\sum_{n=1.3,5} i \dot{y}(n h . t) X_{i}(n h)\right. \\
& \left.+\sum_{n=2.4,15} 2 \dot{y}(n h . t) X_{i}(n h)+\dot{y}\left(X_{s} h . t\right) X_{i}\left(V_{s} h\right)\right) \tag{3.5}
\end{align*}
$$

where N_{s} is the number of sampling points. in other words. mumber of sensors, an even integer
h is the sampling interval given by l / N_{s}.

Let the estimated morle velocities be $\Psi_{i}(t)$.
Using Euler`s Estimation:

$$
\begin{equation*}
\dot{\Psi}_{i}(t)=\sum_{k}^{M_{i}} \dot{y}_{i}(k h) X_{i}(k h)+2 K_{i} l \dot{y}(l, t) \tag{5}
\end{equation*}
$$

where $i=1,2, \cdots, v_{0}$
It is to be noted that λ_{0} is the number of modes to be controlled and $\dot{y}(l, t)$ is the velocity of the beam end.

「sing Simpson's Estimation

$$
\begin{align*}
& \dot{\Psi}_{i}(t)=\frac{h}{3}\left(\dot{y}(0, t) X_{i}(0)+\sum_{n=1,3,5}+\dot{y}(n h, t) X_{i}(n h)\right. \\
& \left.+\sum_{n=2,4,6} 2 \dot{y}(n h, t) X_{i}(n h)+\dot{y}\left(V_{s} h, t\right) X_{i}\left(X_{s} h\right)\right)+2 K^{\prime} l \dot{y}(l . t) \tag{3.7}
\end{align*}
$$

In either cases, the derivation of $\dot{\Psi}_{i}(f)$ requires the knowlecige of $\dot{y}(x . t)$ and $X_{i}(r)$, for $i=1,2, \cdots, \lambda_{0}$, at locations $r=h h, k=1,2 . \cdots, \lambda_{s}$.

The system velority $\dot{y}(x, t)$ can be readily determined using λ_{s} rate sensors plased on the beam. Whereas the mode shapes $X_{i}(x)$ are generally determined mathematically. In the case of a Hexible bean, the mode shapes are given by (2.9).

To reduce implementational complexity it is desired that ls. the wnmber of rate sensors, be kept low.

An estimate of the lower bound of ν_{s} is now rarried ont.
Since $\dot{\Phi}_{i}=\int_{0}^{l} \dot{y}(x, t) X_{2}(x) d x+2 K^{\prime} l \dot{y}(l, t)$
and $\dot{\Psi}_{i}=\operatorname{Num}^{\prime} I n t_{x} \sum_{k}\left[\dot{\Phi}_{k}(t) X_{k}(x) X_{i}(x)\right]+2 K^{\prime} l \dot{y}(l, t)$
where $N_{u m i n t}$ denotes the mumerical integration of $\sum_{k}\left[\Phi_{k}(t) X_{k}(r) X_{i}(x)\right]$ with respect to x.

$$
\begin{equation*}
\dot{\Psi}_{i}=\operatorname{VumInt}{ }_{x} \sum_{k}\left[X_{k}(x) X_{i}(x)\right] \dot{\Phi}_{k}(t)+2 K l \dot{y}(l, t) \tag{3.8}
\end{equation*}
$$

Denote $m_{i j}=\operatorname{VumInt} t_{x}\left\{X_{i}(x) X_{j}(x)\right]$, then

$$
\dot{\Psi}_{i}(t)=\left[\begin{array}{lllll}
m_{i 1} & m_{i 2} & m_{i 3} & \cdots & m_{i N_{m}}
\end{array}\right]\left[\begin{array}{c}
\dot{\Phi_{1}(t)} \\
\dot{\Phi}_{2}(t) \\
\dot{\Phi}_{3}(t) \\
\vdots \\
\dot{\Phi_{N_{n}}(t)}
\end{array}\right]+\underline{2} k l \dot{y}(l, t)
$$

let

$$
\begin{aligned}
& \dot{\Psi}(t)=\left[\begin{array}{lllll}
\dot{\Psi}_{1}(t) & \dot{\Psi}_{2}(t) & \dot{\Psi}_{3}(t) & \cdots & \Psi_{N_{o}}(t)
\end{array}\right] \\
& \dot{\Phi}(t)=\left[\begin{array}{lllll}
\dot{\Phi}_{1}(t) & \dot{\Phi}_{2}(t) & \dot{\Phi}_{3}(t) & \cdots & \dot{\Phi}_{N_{m 2}}(t)
\end{array}\right] \\
& \epsilon(t)=\left[\begin{array}{llll}
\dot{\Psi}_{1}(t)-\dot{\Phi}_{1}(t) & \dot{\Psi}_{2}(t)-\dot{\Phi}_{2}(t) & \cdots & \Psi_{N_{o}}(t)-\dot{\Phi}_{N_{o}}(t)
\end{array}\right]
\end{aligned}
$$

then

$$
\begin{gather*}
\epsilon(t)=M \dot{\Phi}(t)-l \Phi(t)=(M-I) \Phi(t) \\
M=\left[m_{2}\right] \in R^{V_{1} \times M_{n}} \\
I=\left[\rho_{2}-4 \Pi!\in R^{\lambda_{0} \times N_{n}}\right. \tag{39}
\end{gather*}
$$

The estimation error bound can now be determined by computing the speciral norm of $M-I$ as follows:
where $\sigma_{s}=$ maximum singular value of $(M-I)$
Computation of $\sigma_{s}(. M-I)$ entaits the following steps:

1. Determine $\lambda_{m}, V_{o}, V_{s}$
2. (alculate M matrix according to equation (3.9)
3. Form the matrix $M-I$
4. Apply standard siugular value decomposition techniques to obtain the maximum singular value.

For example, the I matrix and the M matrix for 4 modes. 4 sensors for controlling 2 modes are calculated using Euler's approximation and are given below.
(iiven $N_{m}=4, N_{0}=2, \Lambda_{s}=4 . l=1333$.
rising the frequencies given in Table (2.1), the values of mode shapes are calculated using the fommla (2.9) and are given in Table (3.1).

For Euler's estimation, the values of $m_{i j}$ are calculated using Equation 3.9 as follows:

$$
\begin{gathered}
M_{w}=\left[\begin{array}{cccc}
1.0049 & .0056 & .0075 & .01033 \\
.0056 & 1.0045 & .0051 & .0067
\end{array}\right] \\
\delta_{i j}=\left[\begin{array}{cccc}
1.0 & 0 & 0 & 0 \\
0 & 1.0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Table 3.1 Mode Shape Values at 4 Sensors Placed at Equidistant on the Beam

x	$X_{1}(x)$	$X_{2(x)}$	$X_{3(x)}$	$X_{4}(x)$
33.5	$-.0 \times(5)$.222	-.0464	-.0002
66.5	-.1214	-.0008	.1226	.0005
97.5	-.0828	-.1221	-.0828	-.0007
133.0	.0072	.0037	.0025	.0019

maximum singular value of $(. M-I)=.0184$.
By increasing V_{s}, we can make.W matrix approach I matrix. Therefore, the maximum singular value of $(M-I)$ will approach zero, as M approaches I matrix

For the purpose of comparison. the maximum singular values of ($I /-I$) for different mumber of sensors are calculated using Euler's and Simpson's approximation and summarized in the tables (3.2 thri 2.7). These values are plotted and are shown In Figures (3.1 thri 2.6).

For example in a system containing 4 modes. suppose we want to control

- 2 modes

1. For Euler's approximation From Table(3.1) and Figure(3.1), we can see a steep decline in maximum singular value at 4 sensors, so we need 4 sensors for good estimation.
2. For Simpson's approximation From Table (3.4) and Figure(3.4), it can be shown we need 6 sensors for good estimation.

- 4 modes

1. For Euler's approximation From Table(3.1) and Figure(3.1), we can see a steep decline in maximum singular value at 6 sensors, so we need 6 sensors for good estimation.
2. For Simpson's approximation From Table (3.4) and Figure(3.4), it can be shown that we need 8 sensors for good estimation.

By comparing. Tables (3.2) and (3.5), (3.3) and (3.6), (3.4) and (3.7) we can see Eulers approximation gives fewer number of sensors for a given mumber of modes. This is because of the nature of the mode shapes.

But, if the umber of sensors is high, Simpson's rule gives good approximation compare to Euler's approxmation. For example, for a system contaning x morles. with 14 sensors, the maximum singular value

1. using Euler's approximation is .00:30 from Table (3.3)
2. using Simpson`s approximation is . $6177 \times e^{-3}$ from Table (3.6).

From the tabulated data we can form an empirical formula for calculating uumher of sensors as follows.

1. For Euler's estimation

$$
N_{s}=1.28 * N_{m}-.7 *\left(N_{m}-N_{o}\right)
$$

2. for Simpson`s estimation

$$
V_{s}=2.3 * V_{m}-\left(N_{m i}-V_{0}\right)
$$

where N_{s} is number of sensors
N_{m} is number of modes present in the system
N_{0} is number of modes we want to control

Mode velocities $\dot{\Phi}$ and estimated mode velocities $\dot{\Psi}$ are plotted for different number of modes and sensors using Enler's approximation and Simpson's approximation and are shown in figures (3.7) thru (3.12). From these figures, we can see the estimation is good when the maximum is singular value of $(M-I)$ matrix is should be around 0.01 or less.

Table 3.2 Maximum Singular Values of (M-I) Matrix of a System Contaning 1 Modes. 'sing Enler's Estimation.

	Maximum Singular Value	
\vee_{s}	$.10=2$	$10=4$
2	.998	1.0
4	.0184	.9977
6	.0107	.0105
3	.0044	0059
10	.0029	.0038

Table 3.3 Maximum Singular Values of (M-I) Matrix of a System Containing \& Modes, I'sing Euler's Estimation

	Maximum Singular Value			
N_{s}	$N_{0}=2$	$V_{0}=4$	$V_{0}=6$	$V_{0}=8$
4	.9999	1.0	1.0	1.0
6	.0199	.9984	1.0	1.0
8	.0098	.0112	.0129	.9984
10	.006	.0069	.0078	.0092
12	.0041	.0048	.0054	.0063
14	.0030	.0035	.0039	.0046
16	.0023	.0027	.0030	.0035
18	.0019	.0021	.0024	.0028

Table 3.4 Maximum Singular Values of (M-I) Matrix of a Sistem Contaniug en Modes. Ving Euler's Estimation

	Maximum Singular Value			
V_{s}	$\lambda_{0}=2$	$._{1,}=4$	$._{n}=6$	$\bar{V}=20$
\checkmark	1.414	$1.41+2$	1.414-1	$\underline{2.0001}$
$11)$	(.i)	1.0	1.0	1.0001
12	.10294	. 9986	1.0	1.0
14	. 01.32	. 17143	11149	1.0
16	. 00992	. 00999	. 0103	1.1
18	. 00699	. 0075	. 0077	1.0
20	. 0054	. 0055	. 00661	. 99999
22	. 10044	. 0048	. 0049	. 01966
24	. 0033	. 0040	. 00041	. 01054
26	. 00331	. 00334	. 00035	0046
2	. 00227	. 0029	. 00.3	. 00339
30	. 0023	. 0025	. 0026	. 0033
32	. 0020	. 0022	. 0023	. 00330
36	. 0016	. 0017	. 0018	. 0024
$41)$. 0015	. 0014	. 0015	. 0019
42	. 0012	. 0013	. 0013	. 0016
44	0011	.0012	. 0012	. 0016

Table 3.5 Maximum Singular Vahes of (M-I) Matrix of a Sustem Containing 4 Morles, Using Simpson's Estimation.

	Maximum Singular Value	
N_{s}	$N_{0}=2$	$N_{0}=4$
2	1.3508	1.6460
4	.3381	.9977
6	.3344	.3366
8	$.7156 \mathrm{e}-3$.3339
10	$.2143 \mathrm{e}-3$	$.5087 \mathrm{e}-3$

 Modes, I'sing Simpon's Estimation

	Maximum Singular Valup			
V_{3}		$V_{i}=4$	$\cdots=6$	$\mathrm{V}_{0}=8$
t	1.36970	1.3744	1.6620	!.!fifi
¢	Til4	1.1026	1.10 .54	1.1870
\%	. $33: 38$. 3352	. 33366	. 9984
10	. $3: 331$	3343	3352	33351)
12	(1i1).	3336	. 3341	3.347
14		79860-3	. 33.35	. 3.34
16	3-6, -3	34010. 3	5.548 ec 3	333:
ix	2014r-3	\%6.30-3	$2732+3$	H6165e-3

Table 3.7 Maximum Singular Vahes of (M-1) Matrix of a System ('matame - 0) Monles. Using Simpson's Estimation

	Naximum Singular Value			
1.	$\lambda_{0}=2$	$V_{0}=4$	$V_{0}=6$	$V_{0}=20$
-	1.4907	1.9136	1.0136	2.9988
10	1.11576	1.11156	1.374	1.6666%
12	. 1714	1.10:37	1.3737	1.66667
14	4714	4714	. 414	1.1872
16	. 4114	. 4714	. 4114	1.187:
18	. 4714	4714	4714	1.187 .2
20	. 33334	. 33335	3337	. 99999
$\underline{2} 2$. $3: 316$. $3: 334$	3330	. 3346
24	.10)30	3333	333:34	3345
26	. 0016	. 1018	33:34	3:342
24	. 10110	. 01011	0012	33340
30	. 679343	. 73763	77688 c - 3	. 3338
32	47984-3	.stile-3	. 3 3910-3	. 3331
36	$27110-3$	$29220-3$. $301.1 \mathrm{l}-3$	3335
40	187.3e- 3	$201.50-3$. $2076 \mathrm{ce-3}$. 3334
42	. $16780-3$	1804e-3	. 186001	3010
44	. $1.566 \mathrm{ec}-3$.1683e-3	. $17.37 \mathrm{e}-3$.195, $\mathrm{e}-3$

For example, using Euler's approximation, the maximum singular value for a ssistem containing 4 modes, for $N_{s}=4, N_{0}=4$ is $0.9977, N_{s}=6, N_{0}=4$ is 0.0105 . Prom Figures (3.7) and (3.8), we can see the error in the estimation of third and fouth modes is minimized when N_{s} is increased from 4 to 6.

For Euler's approximation:

1) Figure(3.7) shows the velocities of first four modes and their estimated values for a system containing 4 modes and 3 sensors.
2) Figure(3.8) shows the velocities of first four modes and their estimated values for a system containing 4 modes and 6 sensors.
3) Figure(3.9) shows the velocities of first four modes and their sstimated values for a system containing 8 modes and 10 sensors.
4) figure(3.10) shows the velocities of firs four modes and their estimated values lor a system contaning 20 modes and 22 sensors. For Simpson s approximation:
5) Figure(3.11) shows the velocities of first four modes and their estimated values for a ststem containing 4 modes and 10 sensors.
6) Figure(3.12) shows the velocities of first four modes and their estimated values for a system containing 8 modes and 18 sensors.
7) Figure(3.13) shows the velocities of first four modes and their estimated values for a system containing 20 modes and 42 scusors.
Ln all cases. excellent agrement beween $\dot{\Phi}$ and $\dot{\Psi}$ is observed.

Figure 3.7 Velocities of First 4 Modes and Their Estimated Values for $N_{m}=4$, $N_{s}=3$, Using Euler's Approximation

Figure 3.8 Velocities of First 4 Modes and Their Estimated Values for $N_{m}=4$, $N_{s}=6$, Using Euler's Approximation

Figure 3.9 Velocities of First 4 Modes and 'Iheir Estimated Values for $N, n=8$,
$N_{s}=10$, Using Euler's Approximation

Figure 3.11 Velocities of First 4 Modes and Their Estimated Values for $N_{m}=4$, $N_{s}=10$, Using Simpson's Approximation

Figure 3.12 Velocities of First 4 Modes and Their Estimated Values for $N_{m}=8$, $N_{s}=18$, Using Simpson's Approximation

Figure 3.13 Velocities of First 4 Modes and Their Estimated Values for $N_{m}=20$,
$N_{s}=42$, Using Simpson's Approximation

CHAPTER 4

CONTROL AND REGULATION OF FLEXIBLE BEAM

In chapter 1, the dynamics of a flexible beam undergoing transversal motion has been modelled. The equation of motion is given by (2.1). It has been shown that the flexible beam dynamics are equivalent to N_{m} second order modules comected in parallel. Although these second order modules are reachable by the same control input (e.g. the torque generated by a $d c$ motor), they may be decoupled in the frequency domain on observing that each second order substructure occupies a unique passband with center frequency ω_{i} given by Table(2.1). The control system described in [2] exploits this property to provide stabilization and regulation of each second order substructure based on applying N_{0} structurally identical control module to the flexible structure. A critical requirement in [2] is that the individual mode velocities ($\dot{\Phi}_{i}$) be available, by means of bandpass filtering of the beam velocity.

In this thesis, the mode separation method described in Chapter 2 is used in lien of the bandpass filtering operation to generate the mode velocity estimates $\dot{\Psi}_{i}$. The quantitative effects of using $\dot{\Psi}_{i}$ rather than $\dot{\Phi}_{i}$ are now explored by means of numerical simulation.

The following control objectives are now described:

1. Stabilization: Velocity of each mode $\dot{\Phi}_{i}(t)$ goes to zero as t tends to infinity, for $i=1,2, \cdots N_{o}$
2. Regulation: Let $\operatorname{amp}\left(\dot{\Phi}_{i}(t)\right)$, be the amplitude of $\left(\dot{\Phi}_{i}(t)\right)$ and $e_{i}(t)=\operatorname{amp}\left(\dot{\Phi}_{i}(t)\right)-$ $\dot{\Phi}_{i}^{\text {ref }}$ be the regulation error. For regulation purposes, it is desired that

$$
\begin{equation*}
\lim _{i \rightarrow \infty} e_{i}(t)=0 \quad \text { for } i=1,2, \cdots N_{0} \tag{4.1}
\end{equation*}
$$

Stabilization is a special case of regulation by setting $\dot{\Phi}_{i}^{\text {ref }}=0$.

4.1 Controller Synthesis

In order to increase the dampung of the fiexible beam. each velocity component ϕ_{2} has to be estimated: and then fed back to the system using proper gain. A scheme for estmating the mode velucities has been desrribed in Chapter".

Assuming there is no or little damping present in the system. our aim is to stabilize the required modes, using the mode velocity. We are introducing damping into the system, by feeding back the velocity component, and therefore, the structure corresponding to each morle can be described as

$$
\begin{equation*}
\ddot{\Phi}_{i}+\omega_{i}^{2} \Phi_{i}=-K \dot{\Phi}_{i} \tag{4.2}
\end{equation*}
$$

where the $-K \dot{\Phi_{i}}$ terms are to be synthesized by active feedback control. The overall control system to control a flexible beam with V_{m} modes. V_{0} outputs and V_{s} sensors are shown in Figure(4.1)

A block diagram showing the closed loop control of a single mode is shown in Figure(4.2). A similar control module is implemented for each mode we want to control. [2]

Each Control module consists of 6 components.

1. Demodulator: For converting $\dot{\Phi}_{i}(t)$ to $\left|\dot{\Phi}_{i}(t)\right|$.
2. Lowpass Filter: For a given natural frequency ω_{i}, a second order Butterworth filter is used to remove the ripple. The transfer function of the Lowpass filter is given by

$$
H_{i}(s)=\frac{\left(\omega_{i}^{c}\right)^{2}}{s^{2}+2 \omega_{i}^{c} s+\left(\omega_{i}^{c}\right)^{2}}
$$

where ω_{i}^{c}, the cutoff frequency, is generally set to one tenth of the value of ω_{i}.
3. Multiplier: The function of the multiplier is to translate the controller output back to the passband.

Figure 4.1 Flexible Beam Control System Using Modular Controller [2] and Mode Separation

Figure 4.2 Control Module [2]
4. Gain Adjust : Since the module output is multiplicative to the rate signal. loop gain is scaled by the reference signal, $\dot{\Phi}_{i}^{\text {ref }}$ and must be adjusted. This is carried out by inserting the scaling factor

$$
\begin{equation*}
\frac{1}{\dot{\Phi}_{i}^{r e f}+0.01} \tag{4.3}
\end{equation*}
$$

in the loop. The 0.01 factor is included to prevent singularities as $\dot{\Phi}_{i}^{\text {ref }}$ goes to zero.
5. PI Controller : Stabilization and regulation of $\dot{\Phi}_{i}(t)$ is carried out by a PI controller having the form

$$
\begin{equation*}
K_{p}+\frac{K_{l}}{s} \tag{4.4}
\end{equation*}
$$

where K_{p} is the proportional gain and K_{I} is the integral gain.
6. Tuning gain ε_{i} : The magnitude of this gain element is determined by on-line tuning to obtain satisfactory transient response.

4.2 Simulation Results

Simulation is carried ont for the fullowing cases using Enler's approximation for the mode separation scheme.

4.2.1 Simulation of open loop dynamics

The wate space model for the plant containing 4 modes is given by

$$
\begin{align*}
& \dot{x_{1}}=x_{2} \\
& \dot{x}_{2}=-w_{1}^{2} x_{1} \\
& \dot{x}_{3}=r_{4} \\
& \dot{x_{4}}=-w_{2}^{2} x_{3} \\
& \dot{x_{5}}=x_{6} \\
& \dot{x}_{7}=-w_{3}^{2} x_{5} \\
& \dot{x_{7}}=x_{8} \\
& \dot{x_{8}}=-w_{4}^{2} x_{7} \tag{4.5}
\end{align*}
$$

The frequency values are given in Table(2.1). Figure(4.3) to Figure(4.6) show the 4 modal relocities. We can see they are not stabilized as there is no control.

4.2.2 Simulation of closed loop dynamics with: $\lambda_{m}=4$, $V_{0}=4, N_{s}=6$.

From Table (3.3), we can see that for the given system to get a correct estimation. we need 6 sensors, because at this value the maximum singular value is dropped from .9977 to . 0101 .

From Figure (3.8) we can see the estimated modal velocities are the same as the modal velocities. Therefore, the system can be stabilized when the estimated modal velocities are fed back with proper gain. Table (4.1) contains the values of the t modes at 6 sensors.

Table 4.1 Mode Shape Valnes at is Sensors Flaced at Equidistant on the Beam

x	$X_{1}(x)$	$X_{2}(x)$	$X_{3}(. r)$	$X_{4}(. r)$
2.66	-.0614	.1062	-.0864	-.0002
44.33	-.1059	.1058	.1226	.0005
66.5	-.1214	-.0008	-.0872	-.0007
88.6	-.1033	-.1065	.00255	.0019
110.83	-.05653	-.1046	-.0872	-.0007
133	.0072	.0037	.0025	.0019

The state space model of the plant:

$$
\begin{align*}
& \dot{x_{1}}=x_{2} \\
& \dot{r}_{2}=-\omega_{1}^{2} x_{1}+u_{1} \\
& \dot{r}_{3}=x_{4} \tag{4.6}\\
& x_{4}=-\left(\omega_{1}\right)^{2} x_{3}-2 \omega_{1}^{c} x_{4}+\left(\omega_{1}\right)^{2}\left|x_{6}\right| \\
& e_{1}=x_{3} \text {-refer } \\
& \dot{i} ; \epsilon_{1} \\
& \dot{x}_{B}=x_{7} \\
& x_{7}=-\omega_{2}^{2} x_{6}+u_{1} \\
& \dot{x_{8}}=x_{9} \\
& \dot{x_{9}}=-\left(\omega_{i}^{c}\right)^{2} x_{8}-2 \omega_{2}^{c} x_{9}+\left(\omega_{2}^{c}\right)^{2}\left|\cdot x_{-}\right| \\
& e_{2}=x_{8}-\text { refer } \\
& x_{10}=\epsilon_{2} \\
& x_{11}=x_{12} \\
& \dot{x}_{12}=-\omega_{3}^{2} x_{11}+u_{1} \\
& \dot{x_{13}}=x_{14} \\
& x_{14}=-\left(\omega_{3}^{c}\right)^{2} x_{13}-2 \omega_{3}^{c} x_{14}+\left(\omega_{3}^{c}\right)^{2}\left|x_{12}\right| \\
& e_{3}=x_{13}-\text { refer }
\end{align*}
$$

$$
\begin{aligned}
& x_{15}=\epsilon_{3} \\
& \dot{V}_{10}=r_{17} \\
& r_{i}=-\omega_{4}^{2} \cdot x!+\mu 1 \\
& r_{1 s}=x_{19} \\
& x_{19}=-\left(\omega_{4}^{\prime}\right)^{2} x_{18}-2 \omega_{1} x_{19}+\left(\omega_{4}^{\prime \prime}\right)^{2}\left|x_{15}\right| \\
& \epsilon_{4}=r_{18}-r(f+r \\
& r_{20}=e_{4} \\
& \dot{y}_{1}=-.0614 x_{2}+1062 x-.1226 x_{12}+.1061 x_{1}- \\
& y_{2}=-.1059 x_{2}+.1058 x_{7}+.0004 x_{12}-.1063 x_{17} \\
& \dot{y}_{3}=-.1214 x_{2}-.0008 x_{7}+.1226 x_{12}+.0005 x_{17} \\
& \dot{y}_{4}=-.103: 3 x_{2}-.1065 x_{7}-.0008 x_{12}+.1059 x_{17} \\
& \dot{y}_{5}=-.0563 x_{2}-.1046 x_{7}-.1223 x_{12}-.1064 x \\
& \dot{y}_{6}=+.0072 x_{2}+.0037 x_{3}+.0025 x_{12}+.0019 x_{1} \\
& \operatorname{cal}\left(x_{2}\right)=22.17\left(-.0614 \dot{y}_{1}-.1059 \dot{y}_{2}-.1214 \dot{y}_{3}\right. \\
& \left.-.1033 \dot{y}_{4}-.056: 3 \dot{y}_{5}+.0072 \dot{y}_{6}\right) \\
& \dot{\Psi}_{1}=\operatorname{cal}\left(x_{2}\right)+5.18133 .0072 \dot{y}_{6} \\
& \operatorname{cal}\left(x_{7}\right)=2.2 .17\left(.1062 \dot{y}_{1}+.1058 \dot{y}_{2}-.0008 \dot{y}_{3}\right. \\
& \left.-.1065 \dot{y}_{4}-.1046 \dot{y}_{5}+.0037 \dot{y}_{6}\right) \\
& \dot{\Psi}_{2}=c a l\left(x_{7}\right)+5.18133 .0037 \dot{y}_{6} \\
& \operatorname{cal}\left(x_{12}\right)=22.17\left(-.1226 \dot{y}_{1}+.0004 \dot{y}_{2}+.1226 \dot{y}_{3}\right. \\
& \left.-.0008 \dot{y}_{4}-.1223 \dot{y}_{5}+.0025 \dot{y}_{6}\right) \\
& \dot{\Psi}_{3}=c a l\left(x_{12}\right)+5.181: 3: 3.0025 \dot{y}_{13} \\
& \operatorname{cal}\left(x_{17}\right)=2 \ddot{2} 1 T\left(.1061 \dot{y}_{1}-.1063 \dot{y}_{2}+.000 .5 \dot{y}_{3}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+1059 \dot{y}_{4}-i 06+\dot{y}_{5}+0019 i_{5}\right) \\
\dot{\Psi}_{4}= & \operatorname{coll}\left(r_{1}-1+5\right)+133.0019 \mu_{1} \\
u_{1}= & \operatorname{refscalt}\left(k_{1} \dot{\Psi}_{1} t_{1}+k_{2} \dot{\Psi}_{2} t_{2}\right. \\
& \left.+k_{3} \dot{\Psi}_{3}+3+k_{4} \dot{\Psi}_{4} e_{4}\right)
\end{aligned}
$$

The states r_{1} thrin x_{5} represent the first mode and the its lownans filter. similaty x_{6} thrin x_{10} represent the serond mode and its lowpass filter, and x_{11} than x_{1}; represenit the third mode and the filter, and x_{15} thru x_{20} represent the fourth mode and in filter.

The variables \dot{y}_{1} thru \dot{y}_{6} represent the ontput from the sensors. u_{4} is the input formed from the estimated the estimated mode velocities. $\dot{\psi}_{1}$ thrm $\dot{\Psi}_{3}$ represent the estimated mode velorities. h_{1} thrn k_{4} terms are controller gains for modes $i=$ $1.2 \cdots V_{0}$.

From Figures (4.7) thru (4.14), we can see that all the modes are stabilized. The gains used for this run tugether with the gain adjust are

1. $k_{1}=-50$.
2. $k_{2}=-40$.
3. $k_{3}=-30$.
4. $k_{4}=-20$.

4.2.3 Simulation of closed loop dynamics with: $V_{m}=4$, $\mathrm{V}_{o}=2, N_{s}=4$

State spare model is the same as (4.17), except the difference in the ontput values, and the control. The mole shape values at 4 sensors are given in Table (3,1). The output of the sensors and the control term can be calculated as:

$$
\dot{y}_{1}=-.0867 x_{2}+.1225 x_{7}-.0864 x_{12}-.0002 x_{14}
$$

$$
\begin{aligned}
\dot{y}_{2}= & -.1214 x_{2}-.0008 x_{7}+.1226 x_{12}+.0005 r_{14} \\
\dot{y}_{3}= & -.0828 x_{2}-.1221 x_{7}-.0872 x_{12}-.0007 x_{14} \\
\dot{y}_{4}= & .0072 x_{2}+.0037 x_{7}+.0025 x_{12}+.0019 x_{14} \\
\operatorname{cal}\left(x_{2}\right)= & 33.25\left(-.0867 \dot{y}_{1}-.1214 \dot{y}_{2}-.0828 y_{3}+0072 \dot{y}_{4}\right) \\
\dot{\Psi}_{1}= & \operatorname{cal}\left(x_{2}\right)+5.18133 .0072 \dot{y}_{4} \\
\operatorname{cal}\left(x_{7}\right)= & 33.25\left(.1225 \dot{y}_{1}-.0008 \dot{y}_{2}-.1221 \dot{y}_{3}+.0037 \dot{y}_{4}\right) \\
\dot{\Psi}_{2}= & \operatorname{cal}\left(x_{7}\right)+.518133 .0037 \dot{y}_{4} \\
& u_{1}=\operatorname{refscale}\left(\dot{\Psi}_{1} k_{1} \epsilon_{1}+\dot{\Psi}_{2} k_{2} \epsilon_{2}\right)
\end{aligned}
$$

From Table(3.2), we can see that for the given system to get a correct estimation, we need 4 sensors, because at this value the maximum singuler value is dropped from .998 to . 0184.

From Figure(4.15) thru (4.22), we can see the first two modes and their estmations are good and therefore we are able to control those two modes.

The gains used for this rom together with the gain adjust are

1. $k_{1}=-90$.
2. $k_{2}=-50$.

4.2.4 Simulation of closed loop dynamics with: $V_{m}=4$, $N_{o}=2, N_{s}=3$

The plant state space model is the same as (3.7). The output from the sensors and the input can be calculated as:

$$
\begin{aligned}
\dot{y}_{1} & =-.1059 x_{2}+.1058 x_{7}+.0004 x_{12}-.1063 x_{14} \\
\dot{y}_{2} & =-.1033 x_{2}-.1065 x_{7}-.0008 x_{12}+.1059 x_{14} \\
\dot{y}_{3} & =.0072 x_{2}+.0037 x_{7}+.0025 x_{12}+.0019 x_{14} \\
\operatorname{cal}\left(x_{2}\right) & =33.25\left(-.1059 \dot{y}_{1}-.1033 \dot{y}_{2}+.0072 \dot{y}_{3}\right)
\end{aligned}
$$

Figure 4.3 Velocity of the First Mode (Open Loop)

Figure 4.7 Velocity of the First Mode for $N_{m}=4, N_{s}=6, N_{0}=4$

Figure 4.8 Amplitude of Velocity of the First Mode for $N_{m}=4, N_{s}=6, N_{0}=4$

Figure 4.10 Amptiturbe of Velarity of the Sitcond Mule for $N_{1}=4, N_{s}=6, N .=4$

Figure 4.11 Velocity of the Third Mode for $N_{m}=4, N_{s}=6, N_{o}=1$

$$
\begin{aligned}
\dot{\Psi}_{1}= & \operatorname{cal}\left(x_{2}\right)+5.18133 .0072 \dot{y}_{3} \\
\operatorname{cal}\left(x_{7}\right)= & 33.25\left(1058 \dot{y}_{1}-.1065 \dot{y}_{2}+.0037 \dot{y}_{3}\right) \\
\dot{\Psi}_{2}= & \operatorname{cal}\left(x_{7}\right)+5.18133 .0037 \dot{y}_{3} \\
& u_{1}=\text { refscale }\left(\dot{\Psi}_{1} k_{1} e_{1}+\dot{\Psi}_{2} k_{2} \epsilon_{2}\right)
\end{aligned}
$$

The maximum singular for this system is calculated as 9937 . From chapter 2. we know that the for good estimation we need, at least 4 sensors. utherwise estimated velocities do not agree with the mode velocities. From Figure(4.23) thru (4.26), we can see that the estimation is wrong, and the system can not be stabilized.

The gains used for this run together with the gain adjust are

1. $k_{1}=-4.7$.
2. $k_{2}=-1$.

4.3 Discussions

From simulation results, we can see, when the maximum singular value is less, we will get correct estimation of mode velocities, and by feeding back the correct estimated value, we can stabilize the system from sections (4.2.2. and 3.2.3).

From section 3.2.4, we can see when the maximum singular value is around 1, we will not correct estimation of mode velocities, thereby unable to stabilize the system.

The theoretical results obtained in chapter 2 are verified through simulation.

Figure 4.12 Amplitude of Velocity of the Third Mode for $N_{m}=4, N_{s}=6, N_{\nu}=4$

Figure 4.13 Velurity of the Fimith Mule for $N_{m}=4, N_{s}=6, N_{c}=4$

Figure 4.15 Velocity of the First Mode and It's Estimation for $N_{m}=4, N_{s}=4$,

Figure 4.17 Amplitude of Velority of the First Mode for $N_{m}=4, N_{s}=4, N_{\Delta}=2$

Figure 4.18 Amplitude of Velocity of the Serond Mode for $N_{m}=4, N_{s}=4, N_{c}=2$

Figure 4.20 Velocity of the Fourth Mode $N_{m}=4, N_{s}=4, N_{0}=2$

Figure 4.22 Amplitude of Velocity of the Second Morke for $N_{m}=4, N_{s}=3, N_{0}=2$

CHAPTER 5

SENSORS

Certain solid-state materials are electricaily responsive to merhanical furce. These materials are often used in the transduction of mechanical phemomena to electrical phenomena. These materials can be divided into two main categories:

1. Self generating type - applied force generates electrical charge:
2. Passive circuit type - applied force canses a change in the electrical chatacteristics of the material.

Piezoelectric materials are of the self-generating type. The piezoelectric effect arises beranse when an asymmetric crysta! lattice is distorted, an intermal charge reonentation takes place, and this canses a relative displacement of positive and negative charges to opposite onter surfaces of the crystal.

The piezoelectric charge constant relates stress to charge density and piezoelectric force constant relates strain to electric field. Piezoelectric sensors are basically dielectries with a high but finite leakage resistance. This insulating property allows the sensor to be modeled as a parallel-plate caparitor. The internal parallel plate strncture of the sensor with lossy medium, characterized by conductivity σ, permitivity z is shown in Figure(5.1).

5.1 Low-frequency Equivalent Circuit

The total induced charge produced on the sensor is directly proportional to the applied force:

$$
\begin{equation*}
q=p F=k_{1} F \tag{5.1}
\end{equation*}
$$

where p is the piezoelectric constant, in coulombs per newton.
Within elastic limits, a force applied to a sensor surface deflects it according to

$$
\begin{equation*}
F=k_{2}, L \tag{5.2}
\end{equation*}
$$

Figure 5.1 Parallel Plate Structure of Piezoelectric Transducer
where x is displacement.
By substituting equation (5.2) into equation (5.1)

$$
\begin{equation*}
q=k_{1} k_{2} x=K x \tag{5.3}
\end{equation*}
$$

The charge generator can be converted to a current generator by differentiation and we can model an equivalent circuit as shown in Figure(5.2)

$$
\begin{equation*}
i_{t}=\frac{d q}{d t}=\frac{K d x}{d t} \tag{5.4}
\end{equation*}
$$

where $\frac{d x}{d t}$ is the pick off velocity, we are interested.
The capacitance between two parallel plates of length l, width w, separated by a distance d is

$$
\begin{equation*}
C=\frac{\varepsilon l w}{d} \tag{5.5}
\end{equation*}
$$

where ε is the permitivity constant of the medium.

Figure 5.2 Low Frequency Equivalent Circuit of Piezoelectric Transducer Similarly, resistance is given by

$$
\begin{equation*}
R=\frac{d}{\sigma w l} \tag{5.6}
\end{equation*}
$$

where σ is conductivity of the medium.
In frequency domain, the input admittance Y of the structure is given by

$$
\begin{align*}
Y & =\frac{I}{V}=j \omega C+\frac{1}{R} \tag{5.7}\\
V & =I \frac{R}{1+j \omega R C} \tag{5.8}\\
& =I \frac{R-j \omega R C}{1+(\omega R C)^{2}}
\end{align*}
$$

At low frequencies, $\omega R C \lll 1$, reducing (5.8) to

$$
\begin{equation*}
V=I R \tag{5.9}
\end{equation*}
$$

Figure(5.3) shows frequency response of a piezoelectric transducer.

Figure 5.3 Frequency Response of Piezoelectric Transducer

5.2 Application to the Beam Experiment

Each sensor is placed on the beam where we want to measure the velocity. Suppose we want to control the first mode. The value of the ith mode shaper can be calculated from equation (2.9), at that particular point on the beam where the semsor is placed. and incorporated in the sensor as an scale factor as described below.

Using Euler`s estimation from equation 3.4, we have

$$
\int_{0}^{l} \dot{y}_{i}(x, t) X_{i}(x) d x=\sum_{k=1}^{N_{s}} \dot{y}(k \cdot h) X_{i}(k \cdot h) h
$$

Now the voltage from that particular sensor is proportional to the term $\dot{y}(k h, t)$, where $x=k h$ is the pick off point, the sensor is placed on the beam. Now our aim is to incorporate the value of $X_{i}(k h)$ as a gain on the sensor. We can do this by changing the values of R in equation 5.9 .

Depending on the ontput signal, either voltage or current we are interested to measure, $X_{i}(x)$ can be made either directly proportional to R, or inversely proportional to R.

Suppose ve are interested in measuring voltage signal, from (5.9) and (5.4), we have

$$
\begin{equation*}
V=K \frac{d x}{d t} R \tag{5.10}
\end{equation*}
$$

By comparing (5.10) and (3.4)

$$
\begin{equation*}
X_{i}(x) \propto R \tag{5.11}
\end{equation*}
$$

Substituting the value of R from (5.6), we have

$$
\begin{equation*}
X_{i}(x) \propto \frac{d}{\sigma w l} \tag{5.12}
\end{equation*}
$$

Now, if we connect all the sensors in series, as shown in Figure(5.4), the resulting voltage will give the velocity of the ith mode.

Suppose, if we want to measure current signal, from (5.9) and (5.4), we have

$$
\begin{equation*}
I_{s}=K \frac{d x}{d t}=I \frac{R}{R_{s}+R} \tag{5.13}
\end{equation*}
$$

Figure 5.4 Serial Implementation for Measuring ith Mode Velocity

Since $R_{s} \ggg R$

$$
\begin{equation*}
X_{i}(x) \propto R \tag{5.14}
\end{equation*}
$$

Now, if we connect all the sensors in parallel, as shown in Figure(5.5), the resulting current will give the velocity of the ith mode.

Therefore, changing the effective surface area (i.e. wor l) of the piezoelertric wafer can provide the necessary gain (mode shape at $k h, k=1,2, \cdots, \lambda_{s}$ for integration.

Suppose. we want to control multiple number modes. Instead of using one sensor for each mode, we can take advantage of smart materials and reduce the number of sensors by a factor, equal to the number of modes, to be controlled. Using smart materials, we can implant multiple number of sensors in a single chip. On each sensor the value of mode we want to control will be placed by fetching different surface areas. And all the sensors that belong to a particular mode are connected in either series or parallel depending on the signal we want to measure. Figure (5.6) shows a piezoelectric wafer, containing multiple number of sensors.

Signal Conditioning:
There are two methods for conditioning the signals from piezoelectric transducer.

1. Voltage amplification

2. Charge amplification

Voltage Amplification:
In voltage amplification, the amplifier must have a high input impedance, because the addiction of cable capacitance reduces the voltage signal seen by the amplifier. This can be avoided, by making use of a voltage follower circuit with high input impedance, which converts the signal from the high-impedance transducer to a

Figure 5.5 Parallel Implementation for Measuring ith Mode Velocity

Figure 5.6 Piezoelectric Wafer Containing Multiple Number of Sensors
voltage output at low impedance. The voltage follower (unity gain), voltage amplifier with gain equal to $\left(R_{2}+R_{1}\right) / R_{1}$ is shown in Figure(5.7). Sensor signal conditioning devices such as the TLC'2272/4 opamp features a $10^{12} \Omega$ input impedance could be used in this application.

Charge Amplification:
This method makes use of the fact that the low frequency response of the transducer-amplifier system is independent of transducer and cable capacitance. As shown in Figure(5.8), the input of the high-impedance amplifier is a virtual ground. Therefore, all of the charge generated then flows to the feedback capacitor, and the output voltage is the negative of the voltage on the capacitor. A large feedback resistor must be added across the capacitor, to avoid the output voltage drift. caused by opamp bias currents.

Figure 5.7 Voltage Amplifier: a) unity gain; b) with gain

Figure 5.8 Charge Amplifier

CHAPTER 6
 CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

Three objertives have been attained in this work: modelling of flexible beam dyam1rs. estimation of modal velocities nsmon numerical methods, and stabilization of a flexible beam. The approarlo used in this work consists of 3 stages:

1. Detemine the model structure and plant parameters, surh as the natural frequeucies, and mode shapes.
2. Estimating modal velurities by using mumerical methods.
3. Stabilize and regulate beam dyamios by feeding back the estmated montal velocities, with proper gain.

Stage 1 is carried out, by applying classical beam theory. In stage 2 . Euler's and Simpson's methods are used for estimating modal relocities, and a method for finding the mumber of sensors needed for good estimation is described. In stage 3 . stabilization regulation of beam dynamics is carried ont, by employing the scheme described in stage 2, and simulations have been carried ont, using the ALSIM software. [a conclusion, the simulation results, established the scheme described in stage 2 .

As for future development, the above scheme can be implemented using a smart material beam, sensors and a properly set up hardware. For example, a TMS:30(2.5 DSP card can be used for signal processing and interfacing. The number of sensurs required can be further reduced. by coming up with a more efficient integration technique.

APPENDIX

1. BEAM PROPERTIES

Dimension
Liner density
Yoma's Modulus
Area Moment of Inertia
Eud mass to Beam Mass Ratio
$\therefore 133^{\prime \prime} \times 3^{\prime \prime} \times 3 / 16^{\prime \prime}$
$: p=0.158 \mathrm{bb} / \mathrm{in}$.
$\therefore \quad E=2.9 \times 10^{-} \mathrm{lb} / \mathrm{in}^{2}$.
$: \quad I=6 h^{3} / 12=1.65 x 10^{-3} \mathrm{in}^{4}$.
$K=5.18$.

2. MATLAB ROUTINES

2.1 To calculate Maximum Singular Values Of (M-I) matrix Euler

Approximation.

$1=133 ; \quad \%$ length of the beam
$K=5.18 ; \quad \%$ ratio of end mass to beam mass
$m=20 ; \quad \%$ number of modes
$\mathrm{n}=34 ; \quad \%$ number of sensors
$h=1 / n ; \quad \%$ spacing between sensors
$i=1: 1: 20 ; \%$ index for number of modes
$j=1: 1: n ; \%$ index for number of sensors
$I=\operatorname{eye}(m, m)$
$I 2=[\operatorname{eye}(2,2) z \operatorname{eros}(2, m-2)]$
$I 4=[\operatorname{eye}(4,4) \operatorname{zeros}(4, m-4)]$
I6 $=[\operatorname{eye}(6,6) \operatorname{zeros}(6, m-6)]$
\%MU(i) term
$U(i)=\left[\begin{array}{llllllllllll}3.1711 & 6.2983 & 9.4349 & 12.574 & 15.7141 & 18.8546 & 21.9955 & 25.1366\end{array}\right]$
$28.277731 .41934 .5603 \quad 37.701740 .843143 .984547 .125950 .2674 \ldots$
53.408956 .550459 .691962 .8334];
\% points at where the sensors are placed on the beam
for $j=1: 1: n$
$x(j)=h * j$;
end;
$\%$
\% the following loop calulates the constant terms that are needed for
$\%$ calulating mode shapes, velocities
for $i=1: 1: m$
\% square of cotangent term for calculating $B(i)$
$\operatorname{ctsqr}(i)=(\cos (U(i)) * \cos (U(i))) /(\sin (U(i)) * \sin (U(i)))$;
$\%$ square of hyperbolic cotangent term for calculating $B(i)$
$\operatorname{cthsqr}(i)=(\cosh (U(i)) * \cosh (U(i))) /(\sinh (U(i)) * \sinh (U(i))) ;$
\% $B(i)$ term from your project for calculating mode shapes
$B(i)=1 /(\operatorname{sqrt}(l *(K+1+.5 *(\operatorname{ctsqr}(i)-\operatorname{cthsqr}(i))))) ; \%$
end;
$\%$
\% the following loops calulate modes at differnt points on the beam
$\%$ the j loop is for different sensors (points on beam)

```
% the i loop is for different modes
for j = 1:1:n
    for i = 1:1:m
% sine term for calculating mode shapes
    sn(i,j)=(sin((U(i)*x(j))/l))/(\operatorname{sin}(\textrm{U}(\textrm{i})));
% heperbolic sine term for calculating mode shapes
    snh(i,j) = (sinh((U(i)*x(j))/l))/( (sinh(U(i)));
% calculation of mode shapes at different points on the beam
    X(i,j) = B(i)*(sn(i,j) +\operatorname{snh}(i,j));
    end;
    end;
for i = 1:1:m
for k = 1:1:m
Mode(i,k) = 0;
for j = 1:1:n
    Mode(i,k) = X(i,j)*X(k,j)*h + Mode(i,k);
end;
Mode(i,k) = Mode(i,k) + 4*K*l*B(i)*B(k);
end;
end;
for i = 1:1:m
for k = 1:1:m
M = Mode(1:m,1:m)
M2 = Mode(1:2,1:m)
M4 = Mode(1:4,1:m)
M6 = Mode(1:6,1:m)
end;
end;
SgM = (M - I)
SgM2 = (M2-I2)
SgM4 = (M4 - I4)
SgM6 = (M6 - I6)
Sgv12034 = svd(SgM) % singular values, for Nm = 20, Ns = 34, No =20.
Sgv120342 = svd(SgM2) % singular values, for Nm = 20, Ns = 34, No =2.
Sgvl20344 = svd(SgM4) % singular values, for Nm = 20, Ns = 34, No =4.
Sgvl20346 = svd(SgM6) % singular values, for Nm = 20, Ns = 34, No =6
```

2.2 To calculate Velocity of Each Mode and it's Estimation, Using Euler's

Approximation.

```
s = 0; % damping
Qo = .1; % initial displacement
dervQo = .1; % intial velocity
l = 133;
K = 5.18;
```

```
m = 20;
n = 22;
i = 1:1:20;
j = 1:1:n;
h = 1/n;
for j = 1:1:n
x(j)=j*h;
end;
%MU(i) rerm
U(i)=[lllllllllllllllll
            28.2777 31.419 34.5603 37.7017 40.8431 43.9845 47.1259 50.2674.
        53.4089 56.5504 59.691962.8334];
W(i)=[..3128 1.2341 2.7694 4.9188 7.6822 11.0597 15.0514 19.6572 ..
            24.877 30.711 37.159 44.2212 51.8975 60.1878 69.0921 78.6108 ..
            88.7435 99.4902 110.8511 122.826 ];
for i = 1:1:m
        ctsqr(i)=(\operatorname{cos}(U(i))*\operatorname{cos}(U(i)))/(\operatorname{sin}(U(i))*\operatorname{sin}(U(i)));
```



```
        B(i) = 1/(sqrt(l*(K+1+.5*(ctsqr(i)-cthsqr(i)))));
        Wd(i) = W(i)*sqrt(1-(s*s));
        a(i) = (dervQo + (s*W(i)*QO))/Wd(i);
        A(i) = sqrt((QO*QO) + (a(i)*a(i)));
        alph(i) = atan((dervQO +(s*W(i)*QO))/(Wd(i)*QO));
        end;
for i = 1:1:m
    for j = 1:1:n
    sn(i,j) = (sin((U(i)*x(j))/l))/(sin(U(i)));
    snh(i,j) = (sinh((U(i)*x(j))/l))/(sinh(U(i)));
    X(i,j) = B(i)*(sn(i,j)+\operatorname{snh}(i,j));
    end;
    end;
%
t = 1:1:100; % index for time
T(1) = 0; % intializing time
% the following for loop decides at which instants(time) the derivative
% term (velocity) has to be calculated
    for t = 2:1:100
    T(t) = T(t-1)+.1; % time is incremented by . 1
    end;
    %
    % the following loops calculate different modes at difeerent points
    % on the beam at differnt instants of time
    % t loop for differnt instants of time
    % j loop for different sensors (points) on the beam
    % i loop for differnt modes
        for t = 1:1:100
        for i = 1:m
    %constant term for calculating velocity, PHIdot from your project
```

```
q(i,t)=((-A(i))*\operatorname{exp}((-s)*W(i)*T(t)));
%calculation of velocity,PHIdot form your project
dervQ(i,t)=q(i,t)*((s*W(i)*\operatorname{cos}(Wd(i)*T(t)-alph(i)))+(Wd(i)*sin(Wd(i)
*T(t)-alph(i))));
end;
end;
for t = 1:1:100
for j = 1:1:\Omega
dervY(j,t) = 0;
%calculation ofvelocity of beam. Ydot from your project
for i = 1:1:m
    dervY(j,t) = (X(i,j)*\operatorname{dervQ(i,t)) + dervY(j,t);}
    end;
    end;
    end;
%the following loops calculate the Estimating term of velocity
%which is SIGHdot from your notes
    for t = 1:1:100
    for i = 1:1:m
        dervchi(i,t) = 0;
        for j = 1:n
    dervchi(i,t)=(dervY(j,t)*X(i,j)*h)+\operatorname{dervchi}(i,t);
        end;
dervchi(i,t) = K*l*dervY(n,t)*X(i,n) + dervchi(i,t);
            end;
end
```

2.3. To calculate Maximum Singular Values Of (M -I) matrix For Simpson's Approximation.

```
l = 133; % length of the beam
K = 5. 18; % ratio of end mass to beam mass
m = 20; % number of modes
n = 26; % number of sensors
h = 1/n; %spacing between sensors
i = 1:1:20; % index for number of modes
j = 1:1:n; % index for number of sensors
I = eye(m,m)
I2 = [ eye(2,2) zeros(2,m-2) ]
I4 = [ eye(4,4) zeros (4,m-4)]
I6 = [ eye(6,6) zeros(6,m-6) ]
%MU(i) term
```



```
    28.2777 31.419 34.5603 37.7017 40.8431 43.9845 47.1259 50.2674 ..
    53.4089 56.5504 59.6919 62.8334];
```

```
% points at where the sensors are placed on the beam
for j = 1:1:n
x(j) = h*j;
end;
%
% the following loop calulates the constant terms that are needed for
%calulating mode shapes, velocities
for i = 1:1:m
% square of cotangent term for calculating B(i)
    ctsqr(i) = (cos(U(i))*\operatorname{cos(U(i)))/(sin(U(i))*sin(U(i)));}
% square of hyperbolic cotangent term for calculating B(i)
    cthsqr(i) = (cosh(U(i))*\operatorname{cosh(U(i)))/(\operatorname{sinh}(U(i))*sinh(U(i)));}
% B(i) term from your project for calculating mode shapes
    B(i) = 1/(sqrt(l*(K+1+.5*(ctsqr(i)-cthsqr(i))))); %
    end;
%
% the following loops calulate modes at differnt points on the beam
% the j loop is for different sensors(points on beam)
% the i loop is for different modes
for j = 1:1:n
    for i = 1:1:m
% sine term for calculating mode shapes
    sn(i,j) = (sin((U(i)*x(j))/l))/(sin(U(i)));
% heperbolic sine term for calculating mode shapes
    snh(i,j) = (sinh((U(i)*x(j))/1))/(sinh(U(i)));
% calculation of mode shapes at different points on the beam
    X(i,j) = B(i)*(sn(i,j)+snh(i,j));
    end;
    end;
for i = 1:1:m
for k = 1:1:m
Mode(i,k) = 0;
for j = 1:1:n
            if ((rem(j,2) == 0) & (j == n))
                Mode(i,k) = X(i,j)*X(k,j) + Mode(i,k)
        elseif ((rem(j,2) == 0) & (j ~ = n))
            Mode(i,k) = 2*(X(i,j)*X(k,j)) + Mode(i,k)
        else
            Mode(i,k) = 4*(X(i,j)*X(k,j)) + Mode(i,k)
                end;
    end;
Mode(i,k) =(l/(3*n))*Mode(i,k) + 4*K*l*B(i)*B(k);
end;
end;
M = Mode(1:m,1:m)
M2 = Mode(1:2,1:m)
M4 = Mode(1:4,1:m)
M6 = Mode(1:6,1:m)
```

```
SgM = (M -I)
SgM2 = (M2-I2)
SgM4 = (M4 - I4)
SgM6 = (M6 - I6)
Sgv12026 = svd(SgM)
Sgvl20262 = svd(SgM2)
Sgv120264 = svd(SgM4)
Sgvl20266 = svd(SgM6)
```

2.4 To calculate Velocity of Each Mode and it's Estimation, Using Simpson's Approximation.

```
s = 0;
Qo = . 1;
dervQo = .1;
l = 133;
K = 5.18;
m = 4;
n = 6;
i = 1:1:20;
j = 1:1:n;
h = l/n;
for j = 1:1:n
x(j)=j*h;
end;
//MU(i) term
U(i)=[lllllllllllllllllll
    28.2777 31.419 34.5603 37.7017 40.8431 43.9845 47.1259 50.2674 ..
    53.4089 56.5504 59.6919 62.8334 ];
W(i) = [llllllllllll
                24.877 30.711 37.159 44.2212 51.8975 60.1878 69.0921 78.6108 ..
        88.7435 99.4902 110.8511 122.826 ];
for i = 1:1:m
    ctsqr(i) = (cos(U(i))*\operatorname{cos}(U(i)))/(\operatorname{sin}(U(i))*\operatorname{sin}(U(i)));
    cthsqr(i) = (cosh(U(i))*\operatorname{cosh(U(i)))/(sinh(U(i))*sinh(U(i)));}
    B(i) = 1/(sqrt(l*(K+1+.5*(ctsqr(i)-cthsqr(i)))));
    Wd(i) = W(i)*sqrt(1-(s*s));
    a(i) = (dervQo + (s*W(i)*Qo))/Wd(i);
    A(i) = sqrt((QO*QO) + (a(i)*a(i)));
    alph(i) = atan((dervQo +(s*W(i)*QO))/(Wd(i)*QO));
    end;
for i = 1:1:m
    for j = 1:1:n
    sn(i,j) = (sin((U(i)*x(j))/l))/(sin(U(i)));
    snh(i,j) = (sinh((U(i)*x(j))/l))/(sinh(U(i)));
```

```
    X(i,j) = B(i)*(sn(i,j)+\operatorname{snh}(i,j));
    end;
    end;
%
t = 1:1:100; % index for time
T(1) = 0; % intializing time
% the following for loop decides at which instants(time) the derivative
% term (velocity) has to be calculated
for t = 2:1:100
T(t) = T(t-1)+.1; % time is incremented by . 1
end;
%
% the following loops calculate different modes at difeerent points
% on the beam at differnt instants of time
% t loop for differnt instants of time
% j loop for different sensors (points) on the beam
% i loop for differnt modes
for t = 1:1:100
    for i = 1:m
%constant term for calculating velocity, PHIdot from your project
q(i,t)=((-A(i))*exp((-s)*W(i)*T(t)));
%calculation of velocity,PHIdot form your project
dervQ(i,t)=q(i,t)*((s*W(i)*\operatorname{cos(Wd(i)*T(t)-alph(i))) +(Wd(i)*sin(Wd(i)}
*T(t)-alph(i))));
end;
end;
for t = 1:1:100
for j = 1:1:n
dervY(j,t) = 0;
%calculation ofvelocity of beam, Ydot from your project
for i = 1:1:m
    dervY(j,t) = (X(i,j)*\operatorname{dervQ(i,t)) + dervY(j,t);}
    end;
    end;
    end;
%the following loops calculate the Estimating term of velocity
%/which is SIGHdot from your notes
    for t = 1:1:100
    for i = 1:1:m
        dervchi(i,t) = 0;
%summation of velocity(beam-Ydot) terms at differnt points on beam
    for j = 1:1:n
        if ((rem (j,2) == 0) & (j == n))
            dervchi(i,t) = dervY(j,t)*X(i,j) + dervchi(i,t)
        elseif ((rem(j,2) == 0) & (j ~ = n))
                        dervchi(i,t) = 2*(dervY(j,t)*X(i,j)) + dervchi(i,t)
                    else
                        dervchi(i,t) = 4*(dervY(j,t)*X(i,j)) + dervchi(i,t)
```

end;
end;
$\operatorname{dervchi}(i, t)=(1 /(n * 3)) * \operatorname{dervchi}(i, t)+(\operatorname{dervY}(n, t) * X(i, n) * K * l) ;$
end;
end

3. ALSIM FILES for SIMULATION

3.1 SIMULATION OF OPEN LOOP DYNAMICS for $V_{n}=t$.

3.1.1 Dynamic File

```
#include "\ALSIM\ALSIM.H"
#include "MATH.H"
#include "STDIO.H"
#define omega12 fpar[1]
#define omega22 fpar[2]
#define omega32 fpar[3]
#define omega42 fpar[4]
/*
** User state derivative function.
*/
derv(t, x, dxdt)
double t, *x, *dxdt;
{
dxdt[1] = x[2];
dxdt[2] = -omega12*x[1];
dxdt[3] = x[4];
dxdt[4] = -omega22*x[3];
dxdt[5] = x[6];
dxdt[6] = -omega32*x[5];
dxdt[7] = x[8];
dxdt[8] = -omega42*x[7];
}
```


3.1.2 Rundata File

```
0 ;initial time
100. ;final time
0.01 ;maximum stepsize
1.0e-6 ;minimum stepsize
0.001 ;fractional error criterion
```

```
200 ;multiple of maximum stepsize for print output
20 ;multiple of maximum stepsize for plot output
8 ; number of plant states
0 ; number of plant inputs
O ;number of plant outputs
0 ; number of controller states
0 ;size of user defined plot vector
0 ;size of user common area
0 ;size of gaussian random number vector
    ;vector multiplied by sqrt(hmax) to provide approx. uniform
    ;variance for variable stepsize
318 ;random number seed
272 ;random number seed
190 ;random number seed
O ; number of user defined integer input parameters
0,0 ;end integer input parameters
4 ; number of user defined floating point input parameters
1,.0978 ;omega12
2,1.523 ;omega22
3,7.6696 ;omega32
4,24.1946 ;omega42
0,0 ;end Eloating point input parameters
1,.02 ;
3,.02 ;
5,.02 ;
7..02 ;
0,0 ;end plant initial conditions
0,0 ;end controller initial conditions
```


3.2 SIMULATION OF CLOSED LOOP DYNAMICS for $\mathrm{Nm}=4$, No

$$
=4, \mathrm{Ns}=6
$$

3.2.1 Dynamic File

```
#include "\alSIM\ALSIM.H"
#include "MATH.H"
#include "STDIO.H"
#define omega12 fpar[1]
```

```
#define cutoff12 fpar[2]
#define cutoff1sq2 fpar[3]
#define refer fpar[4]
#define ppgain1 fpar[5]
#define intgain1 fpar[6]
#define omega22 fpar[7]
#define cutoff22 fpar[8]
#define cutoff2sq2 fpar[9]
#define ppgain2 fpar[10]
#define intgain2 fpar[11]
#define omega32 fpar[12]
#define cutoff32 fpar[13]
#define cutoff3sq2 fpar[14]
#define ppgain3 fpar[15]
#define intgain3 fpar[16]
#define omega42 fpar[17]
#define cutoff42 fpar[18]
#define cutoff4sq2 fpar[19]
#define ppgain4 fpar[20]
#define intgain4 fpar[21]
#define refscale fpar[22]
float est_x2,cal_x2,est_x7,cal_x7,est_x12;
float cal_x12,est_x17,cal_x17;
/*
** User state derivative function.
*/
derv(t, x, dxdt)
double t, *x, *dxdt;
{
dxdt[1] = x[2];
dxdt[2] = -omega12*x[1]+u[1];
plotout[1] = fabs(x[2]);
dxdt[3] = x[4];
dxdt[4] = -cutoff12*x[3] -cutoff1sq2*x[4] + cutoff12*plotout[1];
plotout[2] = x[3]-refer;
dxdt[5] = plotout[2];
dxdt[6] = x[7];
dxdt[7] = -omega22*x[6] + u[1];
plotout[3] = fabs(x[7]);
dxdt[8] = x[9];
dxdt[9] = -cutoff22*x[8] -cutoff2sq2*x[9] +cutoff22*plotout[3];
plotout[4] = x[8] - refer;
dxdt[10] = plotout[4];
dxdt[11] = x[12];
dxdt[12] = -omega32*x[11] + u[1];
plotout[5] = fabs(x[12]);
dxdt[13] = x[14];
```

```
dxdt[14] = -cutoff32*x[13] -cutoff3sq2*x[14] + cutoff32*plotout[5];
plotout[6] = x[13]-refer;
dxdt[15] = plotout[6];
dxdt[16] = x[17];
dxdt[17] = -omega42*x[16] + u[1];
plotout[7] = fabs(x[17]);
dxdt[18] = x[19];
dxdt[19] = -cutoff42*x[18] -cutoff4sq2*x[19] + cutoff42*plotout[7];
plotout[8] = x[18] - refer;
dxdt[20] = plorout[8];
y[1] = -.0614*x[2] +.1062*x[7] -. 1226*x[12] +.1061*x[17];
y[2] = -. 1059*x[2] +.1058*x[7] +.0004*x[12] -. 1063*x[17];
y[3] = -. 1214*x[2] -.0008*x[7] +.1226*x[12] +.0005*x[17];
y[4] = -. 1033*x[2] -. 1065*x[7] -.0008*x[12] +.1059*x[17];
y[5] = -.0563*x[2] -. 1046*x[7] -. 1223*x[12] -. 1064*x[17];
y[6] = +.0072*x[2] +.0037*x[7] +.0025*x[12] +.0019*x[17];
cal_x2 =22.17*(-.0614*y[1]-.1059*y[2]-.1214*y[3]-.1033*y[4]-.0563*y[5]
+.0072*y[6]);
est_x2 = cal_x2 + 5.18*133*.0072*y[6];
cal_x7 =22.17*(.1062*y[1]+.1058*y[2]-.0008*y[3]-.1065*y[4]-.1046*y[5]
+.0037*y[6]);
est_x7 = cal_x7 + 5.18*133*.0037*y[6];
cal_x12=22.17*(-.1226*y[1] +.0004*y[2] +.1226*y[3] -.0008*y[4]-. 1223*y[5]
+.0025*y[6]);
est_x12 = cal_x12 + 5.18*133*.0025*y[6];
cal_x17 =22.17*(.1061*y[1]-.1063*y[2]+.0005*y[3]+.1059*y[4]-.1064*y[5]
+.0019*y[6]);
est_x17 = cal_x17 + 5.18*133*.0019*y[t.
u[1] = refscale*(ppgain1*est_x2*plotout[2]+ppgain2*est_x7*plotout[4]
+ ppgain3*est_x12*plotout[6] + ppgain4*est_x17*plotout[8] );
}
```


3.2.2 Rundata File

```
0 ;initial time
400. ;final time
0.25 ;maximum stepsize
1.0e-6 ;minimum stepsize
0 . 0 0 1 ~ ; f r a c t i o n a l ~ e r r o r ~ c r i t e r i o n ~
200 ; multiple of maximum stepsize for print output
5 ; multiple of maximum stepsize for plot output
20 ; number of plant states
1 ; number of plant inputs
6 ;number of plant outputs
```

```
0 ; number of controller states
8 ;size of user defined plot vector
0 ;size of user common area
0 ;size of gaussian random number vector
    ;vector multiplied by sqrt(hmax) to provide approx. uniform
    ;variance for variable stepsize
318 ;random number seed
272 ;random number seed
190 ;random number seed
0 ; number of user defined integer input parameters
0,0 ;end integer input parameters
22 ; number of user defined floating point input parameters
1,.0978 ;omega12
2,.0009 ;cutoff12
3,.0442 ;cutoff1sq2
4,0 ;refer
5,-.5 ;ppgain1
6,0. ;intgain1
7,1.523 ;omega22
8,.0152 ;cutoff22
9,.1745 ;cutoff2sq2
10,-.4 ;ppgain2
11,0. ;intgain2
12,7.6696 ;omega32
13,.0767 ;cutoff32
14,.3916 ;cutoff3sq2
15,-.3 ;ppgain3
16,0. ;intgain3
17,24.1946 ;omega42
18,.2419 ;cutoff42
19,.6955 ;cutoff4sq2
20,-.2 ;ppgain4
21,0. ;intgain4
22,100 ;refscale=10 for Orefer, . }9\mathrm{ for 1 refer,.476 for 2refer
0,0 ; end floating point input parameters
1,.02;
6,.02 ;
11,.02 ;
16,.02 ;
0,0 ;end plant initial conditions
0,0 ;end controller initial conditions
```


3.3 SIMULATION OF CLOSED LOOP DYNAMICS for $\mathrm{Nm}=4$, No

$$
=2, \mathrm{~N}_{\mathrm{s}}=4
$$

3.3.1 Dynamic File

```
#include "\alSIM\ALSIM.H"
#include "MATH.H"
#include "STDIO.H"
#define omega12 fpar[1]
#define cutoff12 fpar[2]
#define cutoff1sq2 fpar[3]
#define refer fpar[4]
#define ppgaini fpar[5]
#define intgain1 fpar[6]
#define omega22 fpar[7]
#define cutoff22 fpar[8]
#define cutoff2sq2 fpar[9]
#define ppgain2 fpar[10]
#define intgain2 fpar[11]
#define omega32 fpar[12]
#define cutoff32 fpar[13]
#define cutoff3sq2 fpar[14]
#define omega42 fpar[15]
#define cutoff42 fpar[16]
#define cutoff4sq2 fpar[17]
#define refscale fpar[18]
/*
** User state derivative function.
*/
derv(t, x, dxdt)
double t, *x, *dxdt;
{
static float est_x2 = 0.,cal_x2 = 0.,est_x7 =0.,cal_x7 = 0.;
dxdt[1] = x[2];
dxdt[2] = -omega12*x[1]+u[1];
plotout[1] = fabs(x[2]);
dxdt[3] = x[4];
dxdt[4] = -cutoff12*x[3] -cutoff1sq2*x[4] + cutoff12*plotout[1];
plotout[2] = x[3]-refer;
dxdt[5] = plotout[2];
dxdt[6] = x[7];
dxdt[7] = -omega22*x[6] + u[1];
plotout[3] = fabs(x[7]);
dxdt[8] = x[9];
dxdt[9] = -cutoff22*x[8] -cutoff2sq2*x[9] +cutoff22*plotout[3];
plotout[4] = x[8] - refer;
```

```
dxdt[10] = plotout[4];
dxdt[11] = x[12];
dxdt[12] = -omega32*x[11] + u[1]:
dxdt[13] = x[14];
dxdt[14] = -omega42*x[13] + u[i];
y[1] = -.0867*x[2] +. 1225*x[7] -.0864*x[12] -.0002*x[14];
y[2] = -. 1214*x[2] -.0008*x[7] +. 1226*x[12] +.0005*x[14];
y[3] = -.0828*x[2] -. 1221*x[7] -.0872*x[12] -.0007*x[14];
y[4] = .0072*x[2] +.0037*x[7] +.0025*x[12] +.0019*x[14];
cal_x2 = 33.25*(-.0867*y[1] -.1214*y[2]-.0828*y[3] +.0072*y[4]);
est_x2 = cal_x2 + 5.18*133*.0072*y[4];
cal_x7 = 33.25*(.1225*y[1] -.0008*y[2]-.1221*y[3] +.0037*y[4]);
est_x7 = cal_x7 + 5.18*133*.0037*y[4];
u[1] = refscale*(est_x2*ppgain1*plotout[2] +est_x7*ppgain2*plotout[4]);
plotout[5] = est_x2;
plotout[6] = x[2] - est_x2;
plotout[7] = est_x7;
plotout[8] = x[7] - est_x7;
}
```


3.3.2 Rundata File

```
0 ;initial time
400. ;final time
0.01 ;maximum stepsize
1.0e-6 ;minimum stepsize
0.001 ;fractional error criterion
200 ;multiple of maximum stepsize for print output
20 ;multiple of maximum stepsize for plot output
14 ; number of plant states
1 ; number of plant inputs
4 ;number of plant outputs
0 ; number of controller states
8 ;size of user defined plot vector
0 ;size of user common area
0 ;size of gaussian random number vector
    ;vector multiplied by sqrt(hmax) to provide approx. uniform
    ;variance for variable stepsize
318 ;random number seed
272 ;random number seed
190 ;random number seed
0 ; number of user defined integer input parameters
0,0 ;end integer input parameters
```

```
18 ; number of user defined floating point input parameters
1,.0978 ;omega12
2,.0009 ;cutoff12
3,.0442 ;cutoff1sq2
4,0 ;refer
5.-.9 ;ppgain1
6.0 intgain1
7,1.523 ;omega22
8,.0152 ;cutoff22
9,.1745 ;cutoff2sq2
10,-.5 ;ppgain2
11,0 ;intgain2
12,7.6696 ;omega32
13,.0767 ;cutoff32
14,.3916 ;cutoff3sq2
15,24.1946 ;omega42
16,.2419 ;cutoff42
17,.6955 ;cutoff4sq2
18,100 ;refscale=10 for Orefer, . }9\mathrm{ for 1 refer
0,0 ;end floating point input parameters
1,.02 ;
6,.02 ;
11,.02;
13,.02 ;
0,0 ;end plant initial conditions
0,0 ; end controller initial conditions
```


3.4 SIMULATION OF CLOSED LOOP DYNAMICS for $\mathrm{N}_{\mathrm{m}}=4$, No

$$
=2, N s=3
$$

3.3.1 Dynamic File

```
#include "\ALSIM\ALSIM.H"
#include "MATH.H"
#include "STDIO.H"
#define omega12 fpar[1]
#define cutoff12 fpar[2]
#define cutoff1sq2 fpar[3]
#define refer fpar[4]
#define ppgain1 fpar[5]
#define intgain1 fpar[6]
#define omega22 fpar[7]
```

```
#define cutoff22 fpar[8]
#define cutoff2sq2 fpar[9]
#define ppgain2 fpar[10]
#define intgain2 fpar[11]
#define omega32 fpar[12]
#define cutoff32 fpar[13]
#define cutoff3sq2 fpar[14]
#define omega42 fpar[15]
#define cutoff42 fpar[16]
#define cutoff4sq2 fpar[17]
#define refscale fpar[18]
/*
** User state derivative function.
*/
derv(t, x, dxdt)
double t, *x, *dxdt;
{
static float est_x2 = 0.,cal_x2 = 0.,est_x7 =0., cal_x7 = 0.;
dxdt[1] = x[2];
dxdt[2] = -omega12*x[1] + u[1];
plotout[1] = fabs(x[2]);
dxdt[3] = x[4];
dxdt[4] = -cutoff12*x[3] -cutoff1sq2*x[4] + cutoff12*plotout[1];
plotout[2] = x[3]-refer;
dxdt[5] = plotout[2];
dxdt[6] = x[7];
dxdt[7] = -omega22*x[6] + u[1];
plotout[3] = fabs(x[7]);
dxdt[8] = x[9];
dxdt[9] = -cutoff22*x[8] -cutoff2sq2*x[9] +cutoff22*plotout[3];
plotout[4] = x[8] - refer;
dxdt[10] = plotout[4];
dxdt[11] = x[12];
dxdt[12] = -omega32*x[11] + u[1];
dxdt[13] = x[14];
dxdt[14] = -omega42*x[13] + u[1];
y[1] = -. 1059*x[2] +.1058*x[7] +.0004*x[12] -. 1063*x[14];
y[2] =-. 1033*x[2] -. 1065*x[7] -.0008*x[12] +. 1059*x[14];
y[3] =.0072*x[2] +.0037*x[7] +.0025*x[12] +.0019*x[14];
cal_x2 = 33.25*(-.1059*y[1] -. 1033*y[2] +.0072*y[3]);
est_x2 = cal_x2 + 5.18*133*.0072*y[3];
cal_x7 = 33.25*(.1058*y[1] -. 1065*y[2]+.0037*y[3]);
est_x7 = cal_x7 + 5.18*133*.0037*y[3];
u[1] = refscale*(est_x2*ppgain1*plotout[2] + est_x7*ppgain2*plotout[4]);
plotout[5] = est_x2;
plotout[6] = x[2] - est_x2;
plotout[7] = est_x7;
```

```
plotout[8] = x[7] - est_x7;
}
```


3.3.2 Rundata File

```
O ;initial time
6000. ;final time
0.1 ;maximum stepsize
1.0e-6 ;minimum stepsize
0.001 ;fractional error criterion
200 ;multiple of maximum stepsize for print output
200 ;multiple of maximum stepsize for plot output
14 ;number of plant states
1 ; number of plant inputs
3 ; number of plant outputs
0 ; number of controller states
8 ;size of user defined plot vector
0 ;size of user common area
0 ;size of gaussian random number vector
    ;vector multiplied by sqrt(hmax) to provide approx. uniform
    ;variance for variable stepsize
318 ;random number seed
272 ;random number seed
190 ;random number seed
0 ;number of user defined integer input parameters
0,0 ;end integer input parameters
```

18 ; number of user defined floating point input parameters
1,.0978 ;omega12
2,.0009 ;cutoff12
3,.0442 ; cutoff1sq2
4,0 ;refer
5,-. 047 ;ppgain1
6,0 ;intgain1
7,1.523 ; omega22
$8, .0152$; cutoff22
9,.1745 ;cutoff2sq2
10,-.01 ;ppgain2
11,0 ;intgain2
12,7.6696 ; omega32
$13, .0767$; cutoff 32
14,. 3916 ; cutoff 3 sq2

```
15,24.1946 ;omega42
16,.2419 ;cutoff42
17..6955 ;cutoff4sq2
18,100 ;refscale=10 for Orefer, . }9\mathrm{ for 1 refer
0,0 ;end floating point input parameters
1,.02 ;
6,.02 ;
11,.02 ;
13,.02 ;
0,0 ;end plant initial conditions
0,0 ;end controller initial conditions
```


REFERENCES

1. Kwong, R. H., and T. N Chang "Final Report of Development of Control System Hardware Demonstration for Third Generation Spacecrafts (phase III - Flexible Beam Structure Controller)." Department of Communications, Government of Canada.
2. Chang, T. N. "Nonlinear Tuning Regulator for the Control of Flexible Structures." To appear in the 1993 American Control Conference, San Francisco, CA, June, 1993.
3. Chang, T. N. "Decentralized Robust Control of Interconnected Resonators." Proceedings to the International Conference on Control Applications, Dayton, OH, September, 1992.
4. Davison E. J., and T. N. Chang. "Decentralized Controller Design Using Parameter Optimization Methods." Control-Theory and Advanced Technology, Vol. 2, No. 2 (1986): 131-154.
5. Yurkovich, S., F. E. Pacheco., and A. P. Tzes. "On-line Frequency Domain Information for Control of A Flexible-Link Robot with Varying Payload." IEEE Transcations on Automatic Control, Vol. 34, No. 12 (1989, December).
6. Omer, M. "Orientation and Stabilization of a Flexible Beam Attached to a Rigid Body: Planar Motion." IEEE Transcations on Automatic Control, Vol. 36, No. 8 (1991, August).
7. Tompkins, W. J., and J. G. Webster. Interfacing Sensors to the IBM PC. (1988): 282-290.
8. Newland, D. E. Mechanical Vibration Analysis and Computation. (1987): 122-176.
9. Strang, Gilbert. Linear Algebra and Its Applications. Academic Press (1980) 279-292.
10. Nannapaneni, N. R. Elements of Engineering Electromagnetics. Prentic Hall Inc. (1987): 235-243.
11. Katsuhiko, O. Modern Control Engineering. Prentice Hall Inc. (1990) 755-794.
12. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C, The Art of Scientific Computing. 111-196.
13. O'Neil, P. V. Advanced Engineering Mathematics. Wadworth Pubblishing Com pany (1991) 736-746, 1150-1153.
14. Lewis, F. L. Applied Optimal Control and Estimation. Prentic Hall (1992) 207-239
1.5. Roy. R. C. Jr. Structural Dynamics. An Introduction to Computer Methods. John Wiley \& Sons Inc. (1981) 210-211

[^0]: Dr. Durga Misra, Committee Member
 Assistant Professor of Electrical and Computer Engineering, NJIT

