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ABSTRACT
Modal Control of Flexible Beam Using Smart Materials

by
Sujata Mallepalle

In this work, the dynamics and control aspects of a vibrating flexible heam us-
ing modal analysis are studied. To damp the vibrations of the system, the vibrations
of each mode has to be controlled, which can be done if we know the individual mode
shape, and the resonance frequency. These quantities can be derived mathematically
or measured experimentally with a spectrum analyzer. Individual modal velocities
can be computed by integration of the product of beam velocity and the mode shape,
over the interval of beam length. The integration is carried out using numerical meth-
ods. The necessary discrete ordinates are obtained by measuring the system velocity
at several points on the beam. This mode velocity estimation method constitutes
the mode separation scheme which is the principle feature of this thesis. Controlling
of the system vibrations can be achieved by controlling individual mode vibrations.
The control action for each mode are decoupled from others, because of the frequency
separation. So the resulting the controller is modular, consisting of N, (¥, = number
of outputs to be regulated) structurally identical modules. The combined mode sepa-
ration scheme and modular controller are the desired modal controllers that stabilize,

and regulate the beam dynamics.



MODAL CONTROL OF FLEXIBLE
BEAM USING SMART MATERIALS

by
Sujata Mallepalle

A Thesis
Submitted to the Faculty of
New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of
Master of Science

Department of Electrical and Computer Engineering

January, 1993






APPROVAL PAGE

Modal Control of Flexible
Beam Using Smart Materials

Sujata Mallepalle

Dr. Timothy N. /(}‘hang, Thesis Advisor

Assistant Protessor of Electrical and Computer Engineering, NJIT

[

Dr. Nirwan Ansart, Committee Member

Assistant Professor of Electrical and Computer Engineering, NJIT

~

= o4
Dr. Durga Misra, Committee Member

Assistant Professor of Electrical and Computer Engineering, NJIT



BIOGRAPHICAL SKETCH

Author: Sujata Mallepalle
Degree: Master of Science in Electrical and Computer Engineering

Date: January, 1993

Undergraduate and Graduate Educations:

o Master of Science in Electrical and Computer Engineering,
New Jersey Institute of Technology. Newark, N.J, 1993

e Master of Arts in Mathematics,
Trenton State College, Trenton. NJ, 1991

o Bachelor of Science in Electronics aud Communication Engineering,
Venkateswara University, Tirupati, India, 1984

Major: Electrical and Computer Engineering

i



ACKNOWLEDGMENT

[ am indebted to Dr. Timothy N. Chang. my thesis advisor for his invaluable
support and guidance throughout the research and development of this thesis. [ thank
him for his patience and tor all of s suggestions to refine and improve this research
work as well as manuscript. My sincere appreciation to Dr. Nirwan Ansari and Dr.
Durga Misra who agree to work on the thesis committee. given the very short notice.
My siucere thanks to Dr. Chang and N.J.LT. for providing the necessary financial
siupport for my studies. [ would like to thank all teachers at NJIT. especially the

ECE faculty and fellow students for their support and encouragement. Finally. to

Qian Wang . I express my deep appreciation for her expert typing of the manuscript.



TABLE OF CONTENTS

Chapter Page
LINTRODUCTION . . .. o e 1
2 MATHEMATICAL MODEL OF FLEXIBLE BEAM DYNAMICS . . . . .. 2

2.1 Mathematical Model of a Flexible Beam . . . . . ... ... ... .... 2

3 NUMERICAL METHODS FOR ESTIMATION OF VELOCITY FROM MODAL

ANALYSIS . . . 9

4 CONTROL AND REGULATION OF FLEXIBLE BEAM . . ... .. .. 32
4.1 Controller Synthesis . . . . . . . . .. ... 33
4.2 Simulation Results . . . . . . ... . Lo 36
4.2.1 Simulation of open loop dynamics . . . . . ... ... 36

4.2.2 Simulation of closed loop dynamics with: V,, =4. N, =4, N, =6. 36
4.2.3 Simulation of closed loop dynamics with: N, =4. NV, =2. N, =4 39

4.2.4 Simulation of closed loop dynamics with: iV, = 4. V, =2. N, =3 40

4.3 DiScussions . . . . . . ... e 30
5 SENSORS . . . . 66
5.1 Low-frequency Equivalent Circuit . . . . . . . . ... .. ... ... ... 66
5.2 Application to the Beam Experiment . . . . .. ... .00 70

6 CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH . .. 77
APPENDIX . . . . . .o 78

REFERENCES . . . . . o . e 96



LIST OF FIGURES

Figure Page
2.1 Free Body Diagram of the Flexible Beam . . . . . . . ... ... ... .. 3
2.2 Internal Structure of Flexible Beam Dynamics . . . . . .. .. ... ... 7

3.1 Maximum Singular Values vs Number of Sensors for V,, = 4, N, = 2,4,
Using Euler’'s Approximation. . . . . . .. .. ... ... ... .... 19

3.2 Maximum Singular Values vs Number of Sensors for NV,, = 8, N, =
2.4,6,8. Using Euler’s Approximation . . . . ... ... ... ... .. 20

3.3 Maximum Singular Values vs Number of Sensors for N, = 20, NV, =
2,4,6,20. Using Euler’s Approximation . .. ... ... ... ... . 21

3.4 Maximum Singular Values vs Number of Sensors for NV,, = 4, N, = 2,4,
Using Simpson’s Approximation . . . . . . .. .. ... ... ... .. 22

3.5 Miaximum Singular Values vs Number of Sensors for NV, = 8, N, =
2,4,6.8. Using Simpson's Approximation . . ... ... ... .... 23

3.6 Maximum Singular Values vs Number of Sensors for N, = 20, N, =
2,4.6.20. Using Simpson’'s Approximation . . . . . .. .. ... ... 24

3.7 Velocities of First 4 Modes and Their Estimated Values for v, = 4.
N, = 3. Using Euler’s Approximation . . . . . ... .. .. ... .... 25

3.8 Velocities of First 4 Modes and Their Estimated Values for N,, = 4.
N, = 6, Using Euler’s Approximation . . . .. ... .. .. ...... 26

3.9 Velocities of First 4 Modes and Their Estimated Values for N,, = 8,
N, = 10. Using Euler’s Approximation . . . . ... .. ... ... .. 27

3.10 velocities of First 4 Modes and Their Estimated Values for N, = 20,
N, = 22. Using Euler’s Approximation . . ... ... ... ...... 28

3.11 Velocities of First 4 Modes and Their Estimated Values for N, = 4,
N, =10. Using Simpson’s Approximation . . . . .. .. ... ... .. 29

3.12 Velocities of First 4 Modes and Their Estimated Values for V, = 8.
IV, = 18, Using Simpson's Approximation . . . . . . . . . . . . . . .. 30

Vi



3.13

4.1

4.10

4.11

4.12

4.14

4.15

4.16

4.17

4.18

Velocities of First 4 Modes and Their Estimated Values for N,, = 20,
N, =42, Using Simpson’s Approximation . . . . . . . . .. ... ...

Flexible Beam Control System Using Modular Controller [2] and Mode
Separation . . . . ...

Control Module [2] . . . . .. ... . ...
Velocity of the First Mode (Open Loop) . . . ... ... ... .. .. ..
Velocity of the Second Mode (Open Loop) . . . .. ... ... ... ...
Velocity of the Third Mode (Open Loop) . . . . . . . ... .. ... ...
Velocity of the Fourth Mode (Open Loop) . . ... ... ... ... ...
Velocity of the First Mode for V,, =4, Ny =6. N, =4 . . .. ... ...
Amplitude of Velocity of the First Mode for N, =4, N; =6, N, =4

Velocity of the Second Mode for V,, =4, Ny =6. N, =4 . . . .. .. ..
Amplitude of Velocity of the Second Mode for .\,, =4, Ny =6, N, =4 .
Velocity of the Third Mode for V,, =4, N, =6. N, =4. . .. .. .. ..
Amplitude of Velocity of the Third Mode for N, =4, Ny =6, N, =4 . .
Velocity of the Fourth Mode for N, =4, Ny =6. N, =4 . .. ... ...

Amplitude of Velocity of the Fourth Mode for .V, =4, N; =6, V, =4

Velocity of the First Mode and It’s Estimation for V,, =4, N, =4, N, =2 .

Velocity of the Second Mode and It's Estimation for N,, = 4, NV, = 4,
N, = 2 e e e

Amplitude of Velocity of the First Mode for N, =4, Ny =4, N, =2

Amplitude of Velocity of the Second Mode for V,, =4, N, =4, N, =2 .
Velocity of the Third Mode N,, =4, Ny =4, N, =2 . . . ... ... ..
Velocity of the Fourth Mode NV, =4, N, =4, N, =2 . . . ... ... ..

Amplitude of Velocity of the First Mode for NV, =4, Ny, =3, .V, =2

Vil

46

48

56

57

58

59

60



4.22 Amplitude of Velocity of the Second Mode for N, =4, N, =3, N, =2 . 61
4.23 Velocity of the First Mode and It’s Estimation for N,, =4, N, =3, N, =2 62

4.24 Velocity of the Second Mode and It’s Estimation for NV,, = 4, N, = 3,

No=2 . e 63
4.25 Velocity of the Third Mode N, =4, Ny =3, N, =2 . . . ... ... .. 64
4.26 Velocity of the Fourth Mode NV, =4, N, =3, N, =2 . . ... ... ... 65
5.1 Parallel Plate Structure of Piezoelectric Transducer . . . . . . . .. ... 67
5.2 Low Frequency Equivalent Circuit of Piezoelectric Transducer . . . . . . 68
5.3 Frequency Response of Piezoelectric Transducer . . . . . . .. . .. . .. 69
5.4 Serial Implementation for Measuring ith Mode Velocity . . . . . . .. .. 71
5.5 Parallel Implementation for Measuring ith Mode Velocity . . . . . . . .. 73
5.6  Piezoelectric Wafer Containing Multiple Number of Sensors . . . . . . . 74
5.7 Voltage Amplifier: a) unity gain; b) withgain . . . . . . ... ... ... 75
5.8 Charge Amplhifier . . . . . . .. o 6

viil



LIST OF TABLES

Table Page
2.1 Natural Frequencies of the Flexible Beam . . .. ... ... ... . ... 6
3.1 Mode Shape Values at 4 Sensors Placed at Equidistant on the Beam. . . 13
3.2 Maximum Singular Values of (M-I) Matrix of a System Containing ¢
Modes, Using Euler’s Estimation. . . . . .. . ... ... ... ... . 15
3.3 Maximum Singular Values of (M-I) Matrix of a System Containing 8
Modes. Using Euler’s Estimation . . . . ... ... ... ... . ... 15
3.4 Maximum Singular Values of (M-I) Matrix of a System Containing 20
Modes. Using Euler’s Estimation . . . ... ... ... .. ... ... 16
3.5 Maximum Singular Values of (M-I} Matrix of a System Containing 4
"Modes, Using Simpson’s Estimation. . . ... ... .. ... .. .. 16
3.6 Maximum Singular Values of (M-I) Matrix of a System Containing 3
Modes. Using Simpson's Estimation . . . ... ... ... .. ..., 17
3.7 Maximum Singular Values of (M-I} Matrix of a System Containing 20
Modes. Using Simpson's Estimation . . . .. ... .. .. ... ... in
t.1 Mode Shape Values at 6 Sensors Placea at Equidistant on the Beam. . . 37



CHAPTER 1

INTRODUCTION

Flexible systems are characterized by the presence of many modes. By means of
parallel decomposition, it is evident that the modes of vibration, each having its own
frequency, behave essentially as second order systems. This allows us to express the
motion of the system in terms of the modal vibrations, each proceeding at its own
frequency, completely independent of the other, the amplitudes and phases being de-
termiuned by the initial and excitation conditions. The total motion of the system
is given by superposition of the modal harmonic vibrations. In Chapter 1, the dy-
namics of a flexible structure undergoing transversal motion is modelled. From the
mathematical model, natural frequencies and mode shapes are calculated.

To damp the system vibrations, individual mode vibrations have to be damped.
In this work, damping of the individual mode velocities 1s implemented by feeding
back the individual mode velocities with proper gain. For this we need have individ-
nal mode velocities, which can be estimated by numerical methods by placing several
number of sensors on the beam. In Chapter 2, how to estimate the modal velocities
using numerical methods is discussed. And a method to estimate the minimum num-
ber of sensors we need to use for good estimation of modal velocities is given. Finally,
these results are simulated using ALSIM software, for open loop dynamics, closed
loop dynamics with good estimation of modal velocities, and closed loop dynamics
without good estimation of modal velocities.

In Chapter 4, how to implement the estimation of modal velocities using smart
materials is discussed. Finally, in Chapter 5, conclusions are stated and directions

for further development are given.



CHAPTER 2

MATHEMATICAL MODEL OF FLEXIBLE BEAM
DYNAMICS

The equation of motion of long thin members undergoing transverse vibrations can
be described by (2.1). which upon solution, generates an infinite natural modes of
vibration. Figure(2.1) shows the freebody diagram of a beam undergoing transverse
motion.

[n this work, the Bernoulli-Euler assumptions of elementary beam theory are

employed, namely:

L. There is an axis of the beam which undergoes no extension or contraction. which

s a neutral-axis.

8%

Cross sections perpendicular to the neutral axis in the undeformed beam remain
plane and remain perpendicular to the deformed neutral axis, that is transverse

shear deformation is neglected.

3. The material is linearly elastic and the beam is homogeneous at any cross sec-

tion.

2.1 Mathematical Model of a Flexible Beam
The equation of motion for transverse vibrations of a beam, neglecting shear deflection
and rotary inertia is given by

ETy" = —pj (2.1)

where F is the Young’s Modulus
[ 1s the moment of Inertia
p is linear density
y is displacement

y» is differentiation with respect to x
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Figure 2.1 Free Body Diagram of the Flexible Beam
y is differentiation with respect to t
The left end (z = 0) of the beam is hinged to the motor. The concentrated

mass m is attached at the right end (z = I).

The appropriate boundary conditions are:

y(O,t) = 0 (22)
y"(0,¢) = 0
y'(l,t) = 0

ETy"(t) = my(l,t)

The solution to (2.1) is given by the method of separation of variables:

y(z,t) = Xi(z) &:(t) (2.3)
i=1
then
X:m = —]i,',‘ X,' (2.4)

(.I;i = —wf (I)i (25)



where

A__llz
.!_!

.2_2161_4

w? =
o
#: 1s mode shape frequency.

The solution to (2.4) can be given as
X)) = Aeos(hir) + Bison(khio) + Cicosh(kx) + Disinh{kpr) (2.6
Applving boundary conditions (2.2) leads to

A, =0

and X(x;) = Bysin(kyr) + Disinh(k;x).

with
sinnh (k!
B, = p, 22k
sen( k)
The resulting frequency equation is
— 2N pistnpg sinhpy = sinp; coshp; — sinh; cosp, (2.7)
where K is the ratio of end mass to bean mass.
C'ombining (2.6) and (2.7) vields
sin(p; /1 stnh{u; /! ,
Xi(2) = 5 (u /1) ‘ (pix /1) (2.8)
stn( ;) sinh(u,)

The orthogonality condition of the mode shapes X,(x) are expressed as:

/[ r(z) Xi(e) X (x)de = { (1) LF (2.9)

u t = j
with the generalized weightiug function »(z) given by

r(e)y =1+ KI1é(x —1) (2.10)



where 6(2 — [) is the unit impnulse function.

Verification of the orthogonality of mode shapes:

t
/ rla) Xy(e) X () de =0 1 # )
0

/‘l[l + K1§(x = 10))X (x) X;(r)de

_/x’

Now siuce

/ X)X, (2) de
40

-t

_ /1 B.5, {qun,‘(mtc/l) .
0

Ve + K z/ e — 1) Xo(w) X () dor (2.11)
Sla =N X)X () dr = 4B, B, (2129
Y]
sinh(pe /) | sin(pye/l)  sinh{p,e/l) 1£2.13)
df2. 1
sen( ) stnh(p;) sin{iy) stnh(p;)
_ stn( i + ,U,J')-’ (2.14)

/‘1 sin{pge /1y sin(p,a /1) / 1 {Sin(/t,ﬂj)
duv = -
0

son( ;) sun(gey) 2sin(pg)sin(ie,) | e — iy

ot (p;) +

/‘ sinh(pee /) sin(p;z/l) ; pu —~1
de = —
o sunh(p;) stn(fe;) pipd | e

/l sinh{p x/l) sin(uxe/l) / ? [—1
dr =
0

sinh() sl @ s

stnh(p;a/l)
sinh(pe;)

/[ sinh(px /)
O

sinh(p;)

dx

L
= o oot = o]} -

2ps = py
substituting (2.13),(2.15).(2.

(2.13) will prove the orthogonality condition (2.9).

(ui) + ——coth(

i+ gy J

&;gcofh(ﬂ,)} (2.15)
w?

J

)J (2.16)

7

) [cot(u:) — cot(p,)]  (2.17)

16).(2.17),{2.13) together with the relation (2.8) in



Table 2.1 Natural Frequencies of the Flexible Beam

i fou wi B;

l 30711 0.3128 0.0035
2 6.29%3 1.2341 0.0021
3 9.4349 2.7694 0.0006
4 | 12.5740 4.9188 0.0041
5 1 15.7141 T.6822 0.0010
6 | 18.8546 | 11.0597 0.0061
T 21,9955 1 15.0514 { 0.00111
S 1251366 | 19.6542 3.0040
9 ) 282777 | 248770 0.0031
101 31,4190 | 30.7110 0.0020

11| 34.5603 | 37.1590 | 0.0052
12 ] 37.7017 | 44.2212 0.0001
13| 40.8431 1 51.8975 0.0049
14 | 43.9845 | 060.1878 0.0022
15 | 47.1259 | 69.0921 0.0029
16 | 50.2674 | 78.6108 0.0042
17 ] 53.4039 | 88.7435 | 0.0009
18 | 56.5504 | 99.4902 | 0.0062
19 159.6919 | 110.8511 | 0.0012
20 | 62.8334 | 122.8260 | 0.0039

Therefore,
Bi=[l(K +1+0.5(cotp® — cothu?))]"z (2.18)
The natural frequencies are calculated from the frequency equation and are
tabulated in Table (2.1).
Assuming concentrated moment is applied at z = z,, the resulting equation of

motion can be obtained by virtual work, refer [1] as :

. Vi(t
b+ wto, = M0 xr0y (2.19)
p

Equation (2.19) represents the dynamics of an undamped system.
By considering damping effects, the dynamic equation of motion becomes
M(1)

fbi+2{1wi<bi+wf®f:TX;(xa) (2.:

N
[
(e
~—



L)) Y(z.s)
Gy (s Hy(z)
SENCIRY) Hy, (2)

Figure 2.2 Internal Structure of Flexible Beam Dynamics

The transfer function between y(z,t) and u(t) = M(t) is given by

_ Y(z.s) _ Hi(z) B
T(s)= u(s) - ; $2 + 26;w; 5 + w? (2.21)

where
Hiz) = iﬂ;j‘(ﬂ z €(0,1] (2.22)

The internal structure of the beam dynamics is shown in Figure(2.2).

Assuming a fourth order model, the finite dimensional model of the flexible

beam is given by:

H](_B) H‘)((L‘)

sT4 26w s w0 st 428wy s + wi

T(s) = (2.23)



Now, the transfer function model is converted to a state-space model of the

following form:

I

Aq+ Bu (2.

(8
i
N
~—

q
y = Cq

where ¢. u. y are the state vector. input, and outpnt respectively.

The A, B, (! matrices are given by

0 1 0 0
2
) _ —L/Jl —El Wi 0 0 ) o
A= 0 0 0 1 (2.25)
0 0 —ws =&y
[0
1
B = 0
L1

¢ = [H](.’L‘) 0 Hy(x) (J]

Since, (2.19) is a minimal realization, (2.18) is clearly controllable. Further

detalls may be found in [1].



CHAPTER 3

NUMERICAL METHODS FOR ESTIMATION OF
VELOCITY FROM MODAL ANALYSIS

For an elastic continum such as a flexible beam. undergoing a trausversal motion.
total vibration of the svstem is a sum of the mdividual mode vibratious. Therefore.
to control the vibrations of the system. individnal mode vibration has to be controlled.
This objective can be achieved. if we feedback mdividual mode velocities. with proper
control gain. For this. we need to have the mode velocities. Stnce thie mode shapes
representing the svstem are orthogonal, we can get the individual mode velocity by
integrating the product of system velocity and the mode shape function over the

mterval of beam length. That 1s. since

/ () Xo(e) X (2) da = 6,
0

Thus. the mode velocity is obtained as
. ! ,
b, = / r()g (e ) Xi() da (3.1)
Jo

where ®; is velocity of the v th mode,
y is velocity of the system at a distance x on the beam
X, 1s mode shape.

() is the weighting function given by
r(x) =1+ KI1é(x—1) (3.2)

where A 1s the ratio of end mass to end mass
[ is the length of the beam

6(x — 1) is the impulse function

9



By substituting equation (3.2) in equation (3,11 we will get

. rl
P, :/ Gl ) Xe(w)do -+ 2 K gl BEY
0
The integral given by (3.3) is evaluated, nsing standard numerical methods.
[Che unmerical methods nsed in this work. to estimate [y y(w. 1) Xo(w)do are 1)
Ender’s Rude and 2) Sunpson’s Ride.

[hese iwo methods are now described below.

. Euler’s Estimation:
l \. )
/ Sl ) Xebdr = ST ki) Nkl (5.4
0 k=1

where V. s the minmber of samphng points, in other words. the nmmber of seusors

his the sampling iuterval given by [/.V.

2. Simpson's Estimation:

! /
/ gle )y Ny(r)de = —2 (g(0.1).X (D) + Z Tglnh.t)y Xi(nh)
0 ' n=1.3.5
+ Z 2u(nhoty Xoinh) + y( Ny bty Xo (N ) (3.5)

n=2:40

where .V, is the number of sampling poiuts. i othier words. number of sensors. an
even integer

i is the sampling interval given by [/,

Let the estimated mode velocities be \111(:‘,).

Using Enler’'s Estimation:
' V.
Vi(t) = Z gilkh) No(kh)y +2 K Lyl 1) (3.6)
k

where ¢ = 1,2, -+ -, .V,

[t 1s to be noted that .V, is the number of modes to be controlled and yil. £) s

the velocity of the beam end.



Using Stmpson’s Estimation

Vi) =

/
%(,z)((l.t)Xi(())+ Z dy(nh. t) X(nh)

n=1,3.5

-+ Z 29nh. By X;(nh) + y(Nghot) Xo(Neh)) + 2 KLyl h) (3.7)

n=2.46

In either cases. the derivation of \i/i(/) requires the knowledge of glo f) and
Noumfori=1.2. - N, at locations v = kh. b =1.2. - N,

The svstem velocity yle.#) can be readily determined nsing .\, rate sensors
placed on the beam. whereas the mode shapes X, («) are generally determined math-
ematicallv. In the case of a Hexible beain, the mode shapes are given by (2.9).

To reduce implementational complexity. it is desired that N;. the wmber o
rate sensors, be kept low.

An estimate of the lower bound of N, 1s now carried out.

Since ®; = flyle, t) X(e)de 42K [g(L,1)

and U; = NumInt, 3 [P(t) Xe(e) Xi(e)] + 2 K Ly(l,t)

where Numint, denotes the numerical integration of 3, [®y(¢) Nl Xo(a)]

with respect to @.
W, = Numlnt, Z (X () Xi(2)) (Pk(f) + 2N Lg(l.t) (3.8)
k

Denote m,; = Num/lnt, [Xi(r) X;(x)], then

\Pi(t) = { Mgy Miz Mgz 0 G, ] éz(t) + 2K 1yl t)

let,

[U—'

U(t) = [ Wi(t) a(t) Us(t) - W)
b(t) = [ Bu(t) Bolt) Bolt) - (D) ]

e(t)y = [ Wi(t) = &y(t) Walt) = Baft) - W, (1) — Dy, (1) ]



then

'\I = {,/I,J E l{‘\v’rx'\.m
[ = :‘}\7/ - l !\ ]! E Hl\(’x‘\"n \‘;‘i

The estimation error bound can now be determined by computing the speciral
novm ot W — [ as {ollows:

el [V = 1]y

h"u,p(b#”@ = SUP = ||(D||

= ﬂb(\[ — [!

where 7, = maxnnnm singular value ot (M — )

Computation of o (M — ) entails the following steps:
I. Determine ., V,. N,
2. Caleulate M matrix according to equation (3.9)
3. Form the matrix W — [

Lo Apply standard singular value decomposition techniques to obtain the maxi-

mum singular value.

For example, the / matrix and the M matrix for 4 modes. 4 sensors for control-
ling 2 modes are calculated using Euler’s approximation and are given below.

Given NV, =4, N, =2, N, =4, [ = 133.

Using the frequencies given in Table (2.1). the values of mode shapes are calcu-
lated using the formula (2.9) and are given in Table (3.1).

For Euler’s estimation, the vahies of my; are calculated nsing Equation 3.9 as
follows:

My, =

1.0049 .0056  .0075 .0103
0056 1.0045 .0051 0067

s 100 00
ST 0 1000



Table 3.1 Mode Shape Values at 4 Sensors Placed at Equidistant on the Beam

Il x Nyig) Aot Xyl | XNair) 11

335 1 OR6T ¢ 129%  C0R64 | 0007
GG.5 - 1214 | -.0008 | 1226 L0005

[ 975 | -0828 [ -.1221 [-.082% | -.0007
[ 133.0 | .0072 | .0037 [ .0025 | .0019

maximim singular valne of (M — [) = .0184.

By increasing Ny, we can make M matrix approach [ matrix. Therefore. the
maxinuum singnlar value of (M — 71 will approach zero. as W approaches [ marrix.

For the purpose of comparison. the maximum singular values of (M — [ for
different number of sensors are calonlated nsing Euler’s and Simpsou’s approximatiou
and summarized in the tables (3.2 thru 2.7). These values are plotted and are shown

In Figures (3.1 thriu 2.6).

For example. in a svstem containing 4 modes. suppose we want to contro
e 2 modes

. For Enler’s approximation From Table(3.1} and Fignure(3.1). we can see a
steep decline in maximum singular value at 4 seusors, so we need 4 sensors
for good estimation.

2. For Simpson’s approximation From Table (3.4) and Figure(3.4). it can be

shown we need 6 sensors for good estimatiou.

e { modes

I. For Euler’s approximation From Table(3.1) and Figure(3.1). we can see a
steep decline in maximum singular value at 6 sensors, so we need 6 sensors
for good estimation.

2. For Simpson’s approximation From Table (3.4) and Figure(3.4). it can be

shown that we need 8 sensors for good estimation.



By comparing. Tables (3.2) and (3.5), (3.3) and (3.6). (3.4) and (3.7} we can see
Fuler's approximation gives fewer number of sensors for a given number of modes.
This is because of the nature of the mode shapes.

But, if the number of sensors is high, Simpson’s rule gives good approximation

compare to Eualer’s approximation. For example, tor a system containing 3 modes,
with 14 sensors. the maximum singnlar valine
I. using Euler's approximation is .0030 from Table (3.3)

2. using Simpson's approximation is 6177 x ¢™? from Table (3.6).
g 1 pbp '

From the tabulated data we can form an empirical formula for calculating num-

her of sensors as follows.
1. for Euler’s estimation

Ny =128% N, — 7% (N, — N,)

2. for Simpson’s estimation

where N, 1s number of sensors
NV,, is number of modes present in the system

N, 1s number of modes we want to control

Mode velocities @ and estimated mode velocities U are plotted for different
mumber of modes and sensors using Euler’s approximation and Simpson’s approxi-
mation and are shown in figures (3.7) thru (3.12). From these figures, we can see the

estimation is good when the maximum is singular value of (M — I) matrix is should

be around 0.01 or less.



Table 3.2 Maximum Singular Values of {M-1) Matrix of a Svstem Containing |
Modes: Using Enler’s Estimation.

T St 2
- Maximum Singular Value |
N H

N, PN =2 N, =1
D 998 1.0
4 0184 | 9977
6 | 0077 0105
20044 0059
10 1 .0029 0038

Table 3.3 Maximum Singular Values of (M-I) Matrix of a Systemn Containing 8

Modes, Using Enler’s Estimation

Maximum Singular Value |

N, | N, =2 N, =4 V,=6] V, =3
4 19999 1.0 1.0 1.0

6 0199 9984 1.0 1.0

8 L0098 0112 0129 9984
10 006 0069 0078 0092
12 0041 0048 0054 0063
14 .0030 L0035 0039 0046
16 | .0023 0027 .0030 0035
18 0019 .0021 .0024 0028




Table 3.4 Maximum Singular Values of (M-I} Matrix of a System Containing 20

Modes. Using Euler’s Estimation

I Maximnm Singular Valne r
TMfA;:JLV:4!N;:GLm:2gJ

SOULATE2 gk D42 o 2oonl )
0T 1o 10 | 10 LonoT_|
T2 f o224 9986 1 10 I
IERIREEEE D o]

16 [ 0092 1 0099 i 0103 14JA4;

I8 [ 0069 | 0075 | 0077 0

20 | 0054 | 0059 | 0061 19999

22 | 0044 [ 0048 | 0049 0066

24 1 .0037 T .0040 | L0041 L0054

26 ] 0031 @ 0034 | 0035 0046

o8 | 0027 | 0029 | 003 | 0039 |

30 1 .0023 | L0025 | .0026 0034 |

32,0020 | L0022 | L0023 L0030

36 1 .0016 | .0017 | 0018 0024

40 [ L0015 | 0014 | 0015 0019

12| 0012 | L0013 | 0013 0016
|44 | 0011 | 0012 [ L0012 0016

Table 3.5 Maximum Singular Values of (M-1) Matrix of a System Containing 4
Modes. Using Simpson’s Estimation.

| Maximum Singular Value

Ny | N, =2 i N, =4
2 1.3508 1.6460
4| 3381 9977
) 3344 3366
R | .7156e-3 3339
10 | .2143e-3 H087e-3 i




Table 3.6 Maxinnun Singular Values of
A\I(l(l(“ﬁ.

Table 3.7 Maximum Singnlar Values of (M-1) Matrix of a System Contaimnm:
Modes.

Using Simpson’'s Estimation

(M-1) Matnx of

SLL Maximnm H'ilngnlzu‘ Valie ﬂ
TN, V=2 V=4 \,=6" N\, =x
| ‘L B Jﬁ . \' o ‘J‘
AR ;m(] [ 3744 1.6620 1 1LO667
B EE! 1.1026 1.1054 | 1.1870
S 3338 3352 3366 9934
} L0 33534 3343 3352 3360
12 e 3336 3341 3347
i 11| bliie3 | 19RGed [ 3335 B
U6 | 323603 | 4800e-3 T 55483 | 335
[N 0 2004e-3 L 220363 | 278204 d6Dbe-3 )

Using Simpson’s Estimation

g Maximum Singular Valne h
NN =2 Ny=d4 | No=6 N, =20
TXTT 14907 [ 10136 T 10136 1 20988
T 1106 | L1056 13744 1 666K
12 ] 4714 037 113737 | 16667
4| 4714 AT14 AT1d 1IRT2
16 | 4714 4714 4714 [IRT2
1S | A4TI4 4714 4714 I8T2
20 3334 | 3335 3337 9999
22 3316 3334 3320 33406
24 L0030 | 3333 23334 3345
|26 ] .ovie e 3334 3342
I 2s D010 0011 Nno12 13310
B0 [L0T93e3 1 THTbe-3 | TTORe S | 3338
32 [ 47783 | 517le3 | o390e3 | 3337 |
1367] 2710e3 [ 29220-3 [ .3019-3 3337 |
| a0 18T3e 3] 2005-3 | 2070e-3 | 333
32 | 16783 | 1804e-3 | 1SG0e- 1 | 301U ]
43 ] [566e-3 | 1683e-3 [ 17371} | .1952e-3 |

L Sustermn Contatngnge s

o 20



For example, using Fuler’s approximation, the maxionnm singular value {or a

I8

syvstem containing 4 modes, for Ny =4, N, =415 0.9977, N, =6, N, =415 0.0105.

Irom Figuves (3.7) and (3.8), we can sce the error in the estimation ol third

and fourth modes is minimized when N, 1s increased {rom 4 1o 6.

For Luler’s approximation:

Figure(3.7) shows the velocities of first four modes and their
values for a system containing 4 modes and 3 sensors.
Figure(3.8) shows the velocities of first four modes and their
values for a svstem containing 4 modes and 6 sensors.
Fignre(3.9) shows the velocities of first [our modes and their
values for a system containing 8 modes and 10 sensors.
Iligure(3.10) shows the velocities of fivst four modes and their
values [or a system containmg 20 modes and 22 sensors.

['or Simpson’s approximation:

Figure(3.11) shows the velocities of first four modes and their
values for a syvstem containing 4 modes and [0 sensors,
Figure(3.12) shows the velocities of first four modes and their
values for a system containing 8 modes and 18 sensors.
Fignre(3.13) shows the velocities of first four modes and their
values for a system containing 20 modes and 42 sensors.

L all cases. excellent agreement between @ and ¥ is observed.

estimated

estimated

estimated

estimated

cstimated

estimated

estimated
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CHAPTER 4

CONTROL AND REGULATION OF FLEXIBLE BEAM

In chapter 1, the dynamics of a flexible beam undergoing transversal motion has been
modelled. The equation of motion is given by (2.1). It has been shown that the flexible
heam dynamics are equivalent to V,, second order modules counected in parallel.
Although these second order modules are reachable by the same control nput (e.g.
the torque generated by a de motor), they may be decoupled in the frequency domain
on observing that each second order substructure occupies a unique passband with
center frequency w; given by Table(2.1). The control system described in [2] exploits
this property to provide stabilization and regulation of each second order substructure
based on applying NV, structurally identical control module to the flexible structure.
A critical requirement in [2] is that the individual mode velocities (®;) be available,
by means of bandpass filtering of the beam velocity.

In this thesis. the mode separation method described in Chapter 2 1s used in
lien of the bandpass filtering operation to generate the mode velocity estimates U,.
The quantitative effects of using U, rather than ®; are now explored by means of

numerical simulation.

The following control objectives are now described:

1. Stabilization: Velocity of each mode ®;(t) goes to zero as t tends to infinity, for

1= 1,2,' . '[Vo

2. Regulation: Let amp(®,(¢)), be the amplitude of (®;(¢)) and e;(t) = amp(®;(t))—

07/ be the regulation error. For regulation purposes, it is desired that

tlim ei(t)=0 fori=1,2,---N, (4.1)

Stabilization is a special case of regulation by setting ®7%/ = 0.

32
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4.1 Controller Synthesis
lu order to merease the damping of rhe flexible beam. each velocity component &,
has to be estimated: and rhen fed back to the svstem using proper zain. A scheme
for estimating the mode velocities has been described in Chapter 2.
Assnuming rthere 1s no or little damping present in the svstem. onr aim s to
stabilize the required modes, using the mode velocity. We are introducing damping
mto the system, by feeding back the velocity component, and therefore, the structure

corresponding to each mode can he described as
G+, =K, (1.2}

where the — A ®; terms are to be syuthesized by active feedback control. The
overall control system to control a flexible beam with .V, modes. .V, outputs and 2V
sensors are shown in Figure(4.1)

A Dblock diagram showing the closed loop control of a single mode is shown
mm Figure(4.2). A similar control module is implemeunted for each mode we want to
control. [2]

Lach Control module consists of 6 components.

. Demodulator : For converting (DZ(T) to ]fbl(z‘)[

2. Lowpass Filter : For a given natural frequency w;, a second order Butterworth
filter is used to remove the ripple. The transfer function of the Lowpass filter

1s given by

where wf | the cutoff frequency, is generally set to one tenth of the value of w; .

3. Mudtiplier : The function of the multiplier is to translate the controller output

hack to the passband.
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Figure 4.1 Flexible Beam Control System Using Modular Controller [2] and Mode
Separation
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Figure 4.2 Control Module [2]

4. Gain Adjust : Since the module output is multiplicative to the rate signal. loop

Ut

gain is scaled by the reference signal, 7/ and must be adjusted. This is carried

out by inserting the scaling factor

1

_ - 43
67 +0.01 (4.3)

in the loop. The 0.01 factor is included to prevent singularities as ®7°/ goes to

Zero.

. PI Coutroller : Stabilization and regulation of ®;(t) is carried out by a PI

controller having the form

[/
K, + 4 (4.4)
S

where [, is the proportional gain and K7 is the integral gain.

. Tuning gain ¢; : The magnitude of this gain element is determined by on-line

tuning to obtain satisfactory transient response.
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4.2 Simulation Results
Simulation is carvied out for the following cases using Euler’s approximation for the

mode separation scheme.

4.2.1 Simulation of open loop dynamics

The state space model for the plant containing -1 modes is given by

= I
)
Ly = ey
<l7.:3 = Iy
2
Ly = =—i; Iy
rs - g
— 2
¢ _— _“/3 ‘I—‘)
ty = Iy
. 2 ; -
Iy = —wj 7 (4.5)

The frequency values are given in Table(2.1). Figure(4.3) to Figure(4.6) show

the 4 modal velocities. We can see they are uot stabilized as there 1s no coutrol.

4.2.2 Simulation of closed loop dynamics with: 2\, = 4,
N, =4, N, =6.

[rom Table (3.3), we can see that for the given system to get a correct estimation.
we need 6 sensors, because at this value the maximum singular vahie is dropped from
9977 to .0101.

From Figure (3.8) we can see. the estimated modal velocities are the same as
the modal velocities. Therefore, the system can be stabilized when the estimated
modal velocities are fed back with proper gain. Table (4.1) contains the values of the

+ modes al 6 sensors.



Table 4.1 Mode Shape Values at 6 Sensors Placed at Equidistant on the Beam

X

Xy(r) | Xoio) [ Xaley i Ny

22.66

20614 11062 | -.0864 | -.0002

44.33

- 1059 | J10A% | L1226 | L0005

66.5

- 1214 1 -.0008 | -.0872 | -.0007

X8.0

-.1033 1-1065 ¢ .0025 1 0019

110.833

-.0363 | - 1046 | -.0872 | -.0007

133

0072 10037 | L0025 | .0019

The state space model of the plant:

€y, =
Lo =

L =

i1y =

Tig =

—wy o +

Ty

~ (Wi ey — 2wl g+ (W) e
Ly —refer

€1

£y

—wj‘ L + Uy

Iy

—(wh)? ry — 2 W5 wo + (w5)? s

ry —refer

I+ oy

Wory

‘_LU'
Ty
—(W§)? iy — 2 WS g+ (ws)? L]

Ly —refer

(4.6)



f/ 1 =
Yo = —.
Yz = —.

e = —.

ys =

e = .

cal(ay)

Wy

cal(xy)

W,

cal(zyy)

N 3

cal(zy7)

= €4
- LT

2
= Ty L1 T pha
= Ly
. Sy e 5 © AN 1
= —{(wy)" s — 2 =y Lo+ {w)) !-"’tTl

= gy —7refer

0614 1y + 1062 r- — 1226 &y + 1061 24+

1059 25 + 1058 7 + 0004 245 — 1063 15
1214 Xy — L0008 rr + . 1226 iy + .0005 L7

1033 2, — . 1065 2+ — 0008 245 + 1059 24+

—.0563 2, — 1046 v7; — 1223 £y, — . 1064 &

0072 Ly -+ 0037 Ly + L0025 Ly + 0019 Iayr

= 22,17 (—.0614 gy — 1059 g, — 1214 44
—.1033 gy — 0563 g5 + .0072 g¢)

= cal(ry) + 5.18 133 .0072 7

= 22.17 (L1062 gy 4+ 1058 g, — .0008 y;
—. 1065 g4 — . 1046 g5 + .0037 wg)

= cal(er) + 3518 133 .0037 g

= 22,17 (—.1226 3y + .0004 g, + .1226 g
—.0008 y4 — .1223 45 + .0025 )

= cal(ryy) + 518 133 .0025 y5

= 22,17 (L1061 y; — 1063 gy -+ .0005 5

Bh



+ 1039 34 — L10G s + 0019 i)
Uy = callr-) + 508 133 0019 y,
A = I'(ﬁf.*i(‘(l[ff (1\7] \.I/'1 fq + A:‘Z \b'_) €

kg Wy e+ ky Wy ey)

The states vy thrin zs represent the Airst mode and the its lowpass filter. simulariy o,
then oy represent the second mode and its lowpass filter. and oy thin s represent
the third mode and the flter. and 15 thru wey represent the fourth mode aud s
Hlter.

The variables y; thru ys represent the vutput from the sensors. wy 1s the pw
formed from the estimated the estimated mode velocities. W thru ‘P;; represent
the estimated mode velocities. &y thru by terms are controller caius {or modes © =
o2 N,

From Figures (4.7) thru (4.04), we can see that all the modes are stabilized.

The gains used for this run tugether with the gain adjust are

1. Ay = —50.
2. ky = —10.
3. by = —30.
4. ky = =20,

4.2.3 Simulation of closed loop dynamics with: .V, = 4,
N, =2, N, =14

State space model is the same as (4.17), except the difference in the ontput values,
and the control. The mode shape values at 4 sensors are given in Table (3.1). The

output of the sensors. and the control term can be calculated as:

1= —.0867 r,+ 1225 r7 — 0864 w1z — 0002 &,



Jo = —.1214 £y — 0008 2= + .1226 ryy + 0005
gz o= —.0828 ry — 122 re — 0872 ry — 0007 21y
Jao= 0072 15+ 0037 wr + 0025 24y + 0019 1y

calley) = 3325 (—.0867 yy — 1214 gy — 0828 yy + 0072 jy)
Uy = cal(ey) +5.18 133 .0072 jy

cal(vz) = 33.25 (L1225 jy — 0008 7y — 1221 gy + 0037 )
U, = cal(es) + 518 133 0037

1y = f]vgf's‘(I(LZF (\il1 kl e, + \Dz ,/Q €2)

From Table(3.2). we can see that for the given system to get a correct estimation. we
need  sensors, because at this value the maximum singuler value 1s dropped trom
D98 to 0184,

From Figure(4.15) thru (4.22), we can see the first two modes and their estma-
tions are good and therefore we are able to control those two modes.

The gams used for this run together with the gain adjust are

L&y —90.

2. ky = =50,
4.2.4 Simulation of closed loop dynamics with: V,, = 4,
N, =2, Ny=3
The plant state space model 1s the same as (3.7). The output from the sensors and

the input can be calculated as:

y1 = —.1059 x4+ .1058 27 4+ .0004 xqyy — 1063 x4
Jo = —.1033 &y — 1065 27 — 0008 2,5+ .1059 &1
yz = 0072 ry + 0037 27 4+ .0025 249 + .0019 2qy

cal(vy) = 33.235 (=.1059 y; — .1033 gy, + .0072 y3)



(doo uad(y) spoy st 917 Jo A0PA ¢ F aandyg

000’1 050 0050 0520 0000
0K . _ 667 9-
! | ave
- 1 000°0-
, {are
_ . Va9




000°1

(doorp nad(y) apoy puosag a1y jo K0PA B p adndi g

060

00470

060

000°0

701X

—r

> Gv—— em— e S

T

+

W

It

-

| S S N | I}

L

89b -
tEL -
866°1-
€91
824°1-
£6¢'1-
840°1-
(B0
(840~
(% 0-
A0
A0
50
(860
(80
840°1
£6C']
826°1
£l
866°1
tE¢
iy A



(doorp uadg)) PO PHYL, 243 JO Ayopap gy 2an3ig

000°1 06270 00470 0620 000°0

L]
D—x 1 1—_ -—'— P -1 —‘ﬂ ﬁd-a-vh 1 * P Al ¥ [ _‘— . i mmmm
! q‘_‘ﬂ___.“ 14 .".___ ‘._.. A .>.~_. _.. "__.““. !
Yhab g pagp et ed syt “.v_,_“.___...n__ IO I B
[ | __ ¥ __ L I W "y b eon f [ T __ 1 __ o ] { /1 i b1y _.. Wt gy [T
o WOyl “.“" Ny g ® "__._.___ Nooohon _"’._. R B TR I IO
O L L TR I I B LI I B L T L L It cah g Ly
! 1 Ny tiond 1 LT P ho )t 1"yt ey
' 0oy Yol oy vy N 1] oyl TR LM Vo
Y 1 [T I ! 1 T I R I BT o i (| "t om
Vi T I T L LA P M T I vy ! oy Ay by gy IR
thoa | p g I I T (O PO M AT T o i t 1ghou
i Yoty y Hgtp 11y ! raopgplt nfy oy tn
1] _____ pat g o 1 ] g (ORI PRI T Y qun ) § et
: 'l TR RIEK R ITI gy e
:....._...__._:__. _.__._.:___.. " g Nyt gty T LI st .
| NN phy atgty 1 h1y -
NN R R R NIRRT IR
i R RIRIN 'RINLEL HEEHE e
IR ERIE. EISIRIN RN Bt ot IR
i NI RIRIN] Lhyupdt 10y gt gty Vil
TRIININE oy ! Lh g, RIRIELE TR, LR
MECTI D PRIRAELE BRI hiat g ) AMASLELE] bt
1y gt HINIRIEL INTRLE BHUIEINE TRIRANIE Lo
[MLEE T (TR AT pagae gt RN BT APARLELE b
tigt hy TR T ETILE] AR E it el Lty
DYy ot Bhngpetp IHAFTIRTEL RERTE MU
tyy ! IS PETRLEY RN RTILN IR oyttt L, aat
NI N R N T T H I TN 1
SN O TN gt gty
AR B RANLIEE thian )y YRR MLE TR
I NI IR NI R U T MEIEM ety gy
¢t SHEAEM) tagtrrtinyg 1!
_____._ .__.______._. ___.__.:._____. N ______.__. rhin .__ ‘" bt Yy
11 _—_—_ [} —-————-— —_- 1 (N} —_— 1) ——-——— -_ -—-.- —- __—-
“:.._::.__“___“_"_“______:___"_:__.______.."__"__"_:.__..__“_““_“.._.__._"_“_..".“_"_. .
I___“_“““"_":__.__._.I:I...__:._._":“““_.._.:___““__:_I..___._“.__“:“_:.:_...:1 Dcocl
prerg )y ety by AL R F LRI REFTITRRE thy byt
R A DO RN R RS R Y T HIMEN Fababan ety oy NEXRIRY Pagd gttt
I R R R I H I T TR
R R R R I I I
._.._. I :.._.._..:. [l __._____ _..._ _.__.._ g b, tign? [ ] _.__.._..___.
NN i ithan HIMNMHIME RN EERLE TN
th g atttdnp by :__._._ P ietey THMEHIRTEI THEEH MIENIHRL
R U T A I N L R T N e R T R T R M MR TR gty gt
Dyt 10 il ot YR ERT R ch b piont ) 1l
" A T A e A L R Rt M LR H T R TI
TR N T O T N R T N R P A M A TR L R TR MR R
HIHHRTH R I A I R R A T R R TR IR R R TR
__._::.__.:.__ ML gt dthaitn t ! 1l 1w ML
’ A I (MM I : gt gl iy 1" L ' h
R R R R T R R 60,7
| TEIRIRIETE M it (T 1y 1 ' ! 1) g
(T | t g N e oy . 1 ity gty 1t ! nh } » et
Tl TR LTI RN { e e b gty g
R R T R L R R R A I T R L B L I R U IR I I TR H
THHETR ._____:..._:__:._:_:__:____...._:__..:.._.__.. 1 IR
M) { U ot Ty gy uh
1) a_ i __ M —_ 1] 1 ith o —— (AT (L} | { 14 -— " [ ] (M [ ] " f- [ 1 3 ! ! ! " 1
LA T I TR M T PR d gy ottt Ve a2ty et e gy Bl
SRS TIN T ! et it L I I I M T I L LT B I T RHRT]
(L L U | I TR ' T oy Wod i L HE TR W T B L LI LI W LRI ]
TR g Mol ey ey B L I O I I I L I T A TR I
! ot oGy 1 I EREEEEEREEE by ey Ln
VL | g Wy By t l Lt gw vyl ' ! ¢ "
(I wdnn g 0Dy Wy gt h U v { tad gy gt "
y v 1 1! v Uon ) ! ) BREEEENELEEEEY { 3 ]
Vot Yy "o w1 ! (O PR Uy " h Foaltogg Wy gy
N__. M c_u“__._“..__"_.__""_: ._.u._. -_.......dw__.m. v gy
\ ' AR EREEE R AR R R R AR N
v, ’ [ [] I y t ‘ ' [ ’ H [} [
1 U ] €1, 1t 1! [ 1! ) ! 1 | T 1 1 L mmm.m




000°1

(doorp uad(y) spoy 1IN0 31(1 Jo A1D0PA 9°F aandig

060 00670 040

00070

L

6£8°6-
640 8-
092°9-
ias
£89°C-
v68°0-
v68°0
£89°¢
'y
0909
6+0°8

£

N

-

S ——
—
T

"a

P
—
)

i o

.

(E8'%



000

Y =N ‘9= N ‘b = N 10] apOJA ISII] 91 JO KDoA L' w..:w_h

000°¢

000°C

000°

0000

AN

T

T

¥

'l
boe T
bl
GE1'I-
900°1-
916°0-
908°0-
269 °0-
884 °0-
87 0-
69 0-
09°0-
061°0-
W0°0-
/900
210
90
GGt 0
G050
b19°0
€040
£68°0



16

9 =N b= TN 0} opoy sty Wyl Jo £1ofeA jo opnyduy gt aanSig

000 000°¢ 000°¢ 000°1 0000

o B : 820~
W10
9% )
615
1h0
460
AN
BIE"]
15
WL
968"
5807

¢-0IX



F="N "0 ="°N ‘b =N 10} 9O puodag Ay o KID0A 6°P w._:w:

000° 000°¢ 000°¢ 0001 000°0
NEX T L B .m.mN .N|
: § 2097
I
- | 10k 0-

! 4920

_ — _ i



BN

v o= A Y ‘p = :.>\ 0] AP PHOIIY o1 10 3_..:,._v> jn ;13«:3:.(. o1rv W.:.-wf.w

000 ¥

701X

000 e 000°¢ 000°l 0600

T\f\l\l

T T 4 bibl\.\n\\!

L2070
it
684°1
2L
9Bt
bID
8y
069°G
89
8L¢
9008
€68



10

b="N‘9="°N ‘b= "N 10§ 3poy puy ], 21 JO A)OPA 1T v,_sw_r,.—

000°% 000°E 000°¢ 000°1 000°0
Nc ~x T T T w:m .Dn

| ¥00-
1 %10
: 1 50
! { 6570
ﬁ ] 0080
: ) ot
: A
! ']
‘ 989']
! 306
. — . T ST




Uy = cal(rs) +5.18 133 .0072 g3
cal(e=) = 33.25 (1058 yy — 1065 g, + 0037 i)
Wy, = calles) +3.18 133 0037 g,

w; = refscale (\111 ki er + Wy ky €y)

The maximum singular for this system 1s calculated as 9937, From chapter 2. we
know that the for good estimation we need, at least 4 sensors. otherwise estimated
velocities do not agree with the mode velocities. From Figire(4.23) thru (4.26), we
can see that the estimation is wrong, and the system can not be stabilized.

The gains used for this run together with the gain adjust are

2. /Cg = —1.

4.3 Discussions
From simulation results, we can see, when the maximum singular value is less, we will
get correct estimation of mode velocities, and by feeding back the correct estimated
value, we can stabilize the system from sections (4.2.2. and 3.2.3).
From section 3.2.4, we can see when the maximum singular value is around
I, we will not correct estimmation of mode velocities, thereby unable to stabilize the
system.

The theoretical results obtained in chapter 2 are verified through simulation.
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CHAPTER 5
SENSORS

Certain solid-state matenals ave electrically responsive 1o mechanical force. These
matertals are often used in the transduction of mechanical phenomena to electrical

phenomena. These materials can be divided mto two main categories:
L. Self generating type - applied force geuerates electrical charge:

2. Passive cireait tvpe - applied force causes a change 1 the electrical character-

istics of the material.

Piezoelectric materials are of the self-generating type. The piezoelectric effect arises
hecanse when an asvinmetric crvstal lattice 1s distorted. an internal charge reonen-
tation takes place, and this causes a relative displacement of positive and negative
charges to opposite outer surfaces of the crystal.

The piezoelectric charge coustant relates stress to charge density and piezoelec-
tric force constant relates strain to electric field. Piezoelectric sensors are basically
dielectries with a high but finite leakage resistance. This insulating property allows
the sensor to be modeled as a parallel-plate capacitor. The internal parallel plate
stricture of the sensor with lossy medium, characterized by conductivity o, permi-

tivity < is shown i Figure(5.1).

5.1 Low-frequency Equivalent Circuit

The total induced charge produced on the sensor is directly proportional to the applied
foree:
g=pF=~kF (5.1)
where p is the piezoelectric constant, in coulombs per newton.

Within elastic limits, a force applied to a sensor surface deflects it according to

F= oy L {:

it
o

66
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Figure 5.1 Parallel Plate Structure of Piezoelectric Transducer

where z is displacement.

By substituting equation (5.2) into equation (5.1)
g=kkyr=Kz (5.3)

The charge generator can be converted to a current generator by differentiation

and we can model an equivalent circuit as shown in Figure(5.2)

. dq Kdr
— — 5.4
5 dt dt (5-4)

where ‘;—f is the pick off velocity , we are interested.

The capacitance between two parallel plates of length /, width w, separated by

a distance d is
slw

d

C =

where ¢ is the permitivity constant of the medium.
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Figure 5.2 Low Frequency Equivalent Circuit of Piezoelectric Transducer
Similarly, resistance is given by
d
R=— (5.6)
cwl

where o is conductivity of the medium.

In frequency domain, the input admittance Y of the structure is given by

I 1
R
V = [———— 5.8
I + jwRC (5:8)
_ R—-juwRC
~ 14 (wRC)?

At low frequencies, wRC <<< 1, reducing (5.8) to
V=IR (5.9)

Figure(5.3) shows frequency response of a piezoelectric transducer.
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Figure 5.3 Frequency Response of Piezoelectric Transducer



5.2 Application to the Beam Experiment

Each sensor is placed on the beam where we want to measure the velocity. Suppose
we want to control the first mode. The value of the ith mode shape can be calculated
from equation (2.9). at that particular point on the beam where the sensor is placed.
and incorporated in the sensor as an scale factor as described below.

Using Euler’s estimation from equation 3.4, we have

N

!
/ Gile ) Xo(x)de = S glkR) X (kh) A
0

k=1
Now the voltage trom that particular sensor is proportional to the term y(Ah, 1),
where & = kA is the pick off point, the sensor is placed on the beam. Now our aim
is to incorporate the value of X;(kA) as a gain on the sensor. We can do this by
changing the values of R in equation 5.9.
Depending on the output signal, either voltage or current we are interested to
measure, X;(x) can be made either directly proportional to R, or inversely propor-

tional to K.

Suppose wve are interested in measuring voltage signal, from (3.9) and (5.4), we

have
Vo— K dz R 5.10)
N dt (>-10]
By comparing (5.10) and (3.4)
Xizr) x R (5.11)

Substituting the value of R from (5.6), we have

d

—
Tt
—_—
N

~—

Now, if we connect all the sensors in series, as shown in Figure(5.4). the resulting
voltage will give the velocity of the ith mode.
Suppose, if we want to measure current signal, from (5.9) and (5.4), we have

lszlx’E:] i
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Since Ry >>> R

Xi(z) x R (5.14)

Now, if we conuect all the sensors in parallel, as shown in Figure(5.5). the
resulting current will give the velocity of the 1ith mode.

Therefore, changing the etfective surface area (1.e. 1w or [) of the piezoelec-
tric wafer can provide the necessary gain (mode shape at kb, k = 1.2, - N for
integration.

Suppose. we want to control multiple number modes. Instead of using one sensor
for each mode, we can take advantage of smart materials and reduce the number of
sensors by a factor, equal to the number of modes, to be controlled. Using smart
materials, we can implant multiple number of sensors in a single chip. On each sensor
the value of mode we want to control will be placed by fetching different surface
areas. Aund all the sensors that belong to a particular mode are connected in either
series or parallel depending on the signal we want to measure. Figure (5.6) shows a
piezoelectric wafer, containing multiple number of sensors.

Signal Conditiomng:

There are two methods for conditioning the signals from piezoelectric trans-
ducer.

I. Voltage amplification
2. Charge amplification

Voltage Amplification:

[n voltage amplification, the amplifier must have a high input impedance, be-
cause the addiction of cable capacitance reduces the voltage signal seen by the am-
plifier. This can be avoided, by making use of a voltage follower circuit with high

input impedance, which converts the signal from the high-impedance transducer to a
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Figure 5.5 Parallel lmplementation for Measuring ith Mode Velocity



Figure 5.6 Piezoelectric Wafer Containing Multiple Number of Sensors

voltage output at low impedance. The voltage follower (unity gain), voltage amplifier
with gain equal to (R, + Ry)/ Ry 1s shown in Figure(5.7). Sensor signal conditioning
devices such as the TLC2272/4 opamp features a 10'? Q input impedance conld be
used 1 this application.

Charge Amplification:

This method makes use of the fact that the low frequency response of the
transducer-amplifier system is independent of transducer and cable capacitance. As
shown in Figure(5.8), the input of the high-impedance amplifier is a virtual ground.
Therefore, all of the charge generated then flows to the feedback capacitor, and the
output voltage is the negative of the voltage on the capacitor. A large feedback
resistor must be added across the capacitor, to avoid the output voltage drift. caused

by opamp bias currents.
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Figure 5.7 Voltage Amplifier: a) unity gain; b) with gain
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Figure 5.8 Charge Amplifier




CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FUTURE
RESEARCH

Three objectives have been attained in this work: modelling of flexible beam dvnam-
res. estimation of modal velocities nsmg numerical methods, and stabihzation of a

flexible beam. The approach used in this work consists of 3 stages :

I Determine the model structure anid plant parameters, such as the natural fre-

quencies, and mode shapes.

Estimaring modal velocities by using unmerical methods.

3. stabilize and regulate heam dyvnamics by feeding back the estimated modal

velocities, with proper gain.

Stage [ is carrvied out, by applying classical beam theory. In stage 2. Euler’s
and Simpson’s methods are used for estimating modal velocities. and a method for
finding the number of sensors needed for good estimation is described. In stage 3.
stabilization regulation of beam dynamics is carried out. by employing the scheme
described in stage 2, and simulations lave been carried ont. using the ALSIM software.
[u conclusion, the simulation results, established the scheme described in stage 2.

As for future development, the above scheme can be implemented using a smart
material beam, sensors and a propecly set up hardware. For example, a TMS320C25
DSP card can be used for signal processing and interfacing. The number of sen-
sors required can be further reduced, by coming up with a more efficient integration

technique.
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APPENDIX
1. BEAM PROPERTIES
Dimension CoI337T x 37 x 3/167
Liner density : op=0.138 Ib/in.
Yonng's Modulus D E =29010710/ i
Area Moment of Inertia I =0RY12 = 165010770t
Eud mass to Beam Mass Ratio © A = 5.18.

2. MATLAB ROUTINES

2.1 To calculate Maximum Singular Values Of (M -I) matrix Euler

Approximation.
1 = 133; s length of the beam
K = 5.18; % ratio of end mass to beam mass
m = 20; i number of modes
n = 34; /, number of sensors
h = 1/n; h spacing between sensors
i =1:1:20; % index for number of modes
j = 1:1:n; % index for number of sensors
I = eye(m,m)
I2 = [ eye(2,2) zeros(2,m-2) ]

I4 = [ eye(4,4) zeros(4,m-4) ]
16 = [ eye(6,6) zeros(6,m-6) ]
YMU(1) term

U(i)=[ 3.1711 6.2983 9.4349 12.574 15.7141 18.8546 21.9955 25.1366 ..
28.2777 31.419 34.5603 37.7017 40.8431 43.9845 47.1259 50.2674 ..

53.4089 56.5504 59.6919 62.8334 ];
% points at where the sensors are placed on the beam
for j = 1:1:n
x(j) = h*j;
end;

the following loop calulates the constant terms that are needed for
calulating mode shapes, velocities

for i = 1:4i:m

/A

square of cotangent term for calculating B(i)

ctsqr(i) = (cos(U(i))*cos(U(i)))/(sin(U(i))*sin(U(i)));
square of hyperbolic cotangent term for calculating B(i)
cthsqr(i) = (cosh(U(i))*cosh(U(1)))/(sinh(U(i))*sinh(U(1)));
B(i) term from your project for calculating mode shapes

B(i) = 1/(sqrt{1lx(K+1+.5%(ctsqr(i)-cthsqr(i))))); %
end;

the following lcops calulate modes at differnt points on the beam
the j loop is for different sensors(points on beam)



% the 1 loop is for different modes
for j = 1:1:n
for i = {:1mm
/s sine term for calculating mode shapes
sn(i,j) = (sin((UD)*x(§)/1))/{sin(U(i)));
% heperbolic sine term for calculating mode shapes
snh(i,j) = (sinh((U(1)*x(j})/1))/(sinh(U(i)));
% calculation of mode shapes at different points on the beam
X(1,3) = B(D)*(sn(i,j)+snh(i,ji));

end;

end;
for i = 1:1:m
for k = 1:1:m
Mode(i,k) = 0;
for j = 1:1:n

Mode(i,k) = X(i,j)*X(k,j)*h + Mode(i,k);
end;
Mode(i,k) = Mode(i,k) + 4xK*1*B(1)*B(k);
end;
end;
for i = 1{:1:m

for k = 1:1:m

M = Mode(1:m,1:m)
M2 = Mode(1:2,1:m)
M4 = Mode(1:4,1:m)
M6 = Mode(1:6,1:m)
end;

end;

SgM = (M -1I)

SgM2 = (M2-12)
SgM4 = (M4 - I4)
SgM6 = (M6 - I6)

Sgv12034 = svd(SgM) % singular values, for Nm = 20, Ns = 34, No =20.
Sgv120342 = svd(SgM2) /) singular values, for Nm = 20, Ns = 34, No =2.
Sgv120344 = svd(SgM4) % singular values, for Nm = 20, Ns = 34, No =4.
Sgvl20346 = svd(SgM6) ¥ singular values, for Nm = 20, Ns = 34, No =6

2.2 To calculate Velocity of Each Mode and it’s Estimation, Using Euler’s

Approximation.
s = 0; % damping
Qo = .1, % initial displacement
dervQo = .1; % intial velocity
1 = 133;



R0

20;

22;
1:1:20;
1:l:n;

= 1/n;

for j = 1:1:n
x(j)=j*h;
end;

WMU(L) term

U(1)=( 3.1711 ©6.2983 9.4349 12.574 15.7141 18.8546 21.9955 25.1366 ..
28.2777 31.419 34.5603 37.7017 40.8431 43.9845 47.1259 50.2674 .
53.4089 56.5504 59.6919 62.8334 ];

W(i) = [ .3128 1.2341 2.7694 4.9188 7.6822 11.0597 15.0514 19.6572 ..
24.877 30.711 37.159 44,2212 51.8975 60.1878 69.0921 78.6108 ..
88.7435 99.4902 110.8511 122.826 J;

for 1 = {:1:m

ctsqr(i) = (cos(U(i))*cos(U(1)))/(sin(U(1))*sin(U(i)));
cthsqr(i) = (cosh(U(i))*cosh(U(i)))/(sinh(U(i))#*sinh(U(i)));
B(1) = 1/(sqrt(1l*(K+1+.5+(ctsqr(id-cthsqr(i)))));
Wd(i) = W(i)*sqrt(1-(s*s));
a(i) = (dervQo + (s*W(i)#*Qo))/Wd(i);
A(1) = sqrt((QoxQo) + (a(i)*a(i)));
alph(i) = atan({(dervQo +(s*W(i)*Qo))/(Wd(i)*Qo));
end;
for i = 1:1:m
for j = 1:1:n
sn(i,j) = (sin((U(1)*x(j))/1))/(sin(U(i)));
snh(i,j) = (sinh((U(2)*x(3))/1))/(sinh(U(i)));
%X(i,j) = B(1)*(sn(i,j)+snh(i,j));
end;

5o e 38
1

end;
A
t = 1:1:100; % index for time
T(1) = 0; % intializing time
% the following for loop decides at which instants(time) the derivative
% term (velocity) has to be calculated
for t = 2:1:100
T(t) = T(t-1)+.1; ' time is incremented by .1
end;
4
% the following loops calculate different modes at difeerent points
% on the beam at differnt instants of time
% t loop for differnt instants of time
% j loop for different sensors (points) on the beam
% 1 loop for differnt modes
for t = 1:1:100
for i = 1:mm

/constant term for calculating velocity, PHIdot from your project



q(i,t)=((-A01) ) *xexp((~s)*W(i)*T(t)));

“calculation of velocity,PHIdot form your project
dervQ(i,t)=q(i,t)*((s*W(i)*cos(WA(i)*T(r)-alph(i)))+(Wd(i)*sin(Wd (i)
*T(t)-alph(i))));

end;

end;

for t = 1:1:100
for j = 1:1:n

dervY(j,t) = 0;
“calculation ofvelocity of beam, Ydot from your project
for 1 = 1:1:m
dervY(j,t) = (X(i,j)*dervQ(i,t)) + derv¥(j,t);
end;
end;
end;
/the following loops calculate the Estimating term of velocity
Jwhich is SIGHdot from your notes
for t = 1:1:100
for i = 1:1:m
dervchi(i,t) = O;
for j = 1:n
dervchi(i,t)=(dervY(j,t)*X(i,j)*h)+dervchi(i,t);
end;
dervchi(i,t) = K#lxdervY(n,t)*X(i,n) + dervchi(i,t);
end;
end

2.3. To calculate Maximum Singular Values Of (M -1I) matrix For

Simpson’s Approximation.

= 133; ¥ length of the beam

= 5.18; Y% ratio of end mass to beam mass
= 20; % number of modes

26; % number of sensors

= 1/n; Y/spacing between sensors

= 1:1:20; % index for number of modes

= 1:1:n; ¥% index feor number of sensors

H R 8 X
[t}

= eye(m,m)

eye(2,2) zeros(2,m-2) ]

14 = [ eye(4,4) zeros(4,m-4) ]

16 = [ eye(6,6) zeros(6,m-6) ]

JMU(L) term

U(i)=[ 3.1711 6.2983 9.4349 12.574 15.7141 18.8546 21.9955 25.1366
28.2777 31.419 34.5603 37.7017 40.8431 43.9845 47.1259 50.2674 ..
53.4089 56.5504 59.6919 62.8334 J;

(o]

[\
)

—/



L
(R

/i points at where the sensors are placed on the beam
for j = 1:1:n
x(j) = h*j;
end;
A
/i the following loop calulates the constant terms that are needed for
hcalulating mode shapes, velocities
for i = t:1:m
% square of cotangent term for calculating B(i)
ctsqr(i) = (cos(U(i))*cos(U(1)))/(sin(U(i))*sin(U(i)));
i square of hyperbolic cotangent term for calculating B(i)
cthsqr(i) = (cosh(U(i))*cosh(U(i)))/(sinh(U(i))*sinh(U(1)));
/ B(i) term from your project for calculating mode shapes
B(i) = 1/(sqru(1*(K+1+.5*(ctsqr(i)-cthsqr(i)))));
end;

4 the following loops calulate modes at differnt points on the beam
%4 the j loop 1s for different sensors(points on beam)
% the i loop is for different modes
for j = 1:1:n
for i = 1:1:m
% sine term for calculating mode shapes
sn(i,j) = (sin(WUE)*x(§))/1))/(sin(U(1)));
%, heperbolic sine term for calculating mode shapes
snh(i,j) = (sinh((U(1)*x(j))/1))/(sinh(U(1)));
%, calculation of mode shapes at different points on the beam
X(i,j) = B(1)*(sn(i,j)+snh(i,j));

end;

end;
for i = 1:1:m
for k = 1:1:m
Mode(i,k) = O;

for j = 1:1:n
if ((rem(j,2) == 0) & (j == n))
Mode(i,k) = X(i,j)*X(k,j) + Mode(i,k)
elseif ((rem(j,2) == 0) & (j "= n))
Mode(i,k) = 2*(X(i,j)*X(k,j)) + Mode(i,k)

else
Mode(i,k) = 4*(X(i,3j)*X(k,j)) + Mode(i,k)
end;
end;
Mode(i,k) =(1/(3%n))*Mode(i,k) + 4*K+*1*B(i)x*B(k);
end;
end;

M = Mode(1:m,1:m)

M2 = Mode(1:2,1:m)
M4 = Mode(1:4,1:m)
M6 = Mode(1:6,1:m)



<3

SgM = (M -I)

SgM2 = (M2-12)

SgMa = (M4 - I4)

SgM6 = (M6 - 16)
Sgv12026 = svd(SgM)
Sgv120262 = svd(SgM2)
Sgv120264 = svd(SgM4)
Sgv120266 = svd(SgMé)

2.4 To calculate Velocity of Each Mode and it’s Estimation, Using

Simpson’s Approximation.

IMU(L) term

U(i)=[ 3.1711 6.2983 9.4349 12.574 15.7141 18.8546 21.9955 25.1366 ..
28.2777 31.419 34.5603 37.7017 40.8431 43.9845 47.12538 50.2674 ..
53.4089 56.5504 59.6919 62.8334 ];

W(i) = [ .3128 1.2341 2.7694 4.9188 7.6822 11.0597 15.0514 19.6572 ..
24.877 30.711 37.159 44.2212 51.8975 60.1878 69.0921 78.6108 ..
88.7435 99.4902 110.8511 122.826 ];

for i =1:1:m

ctsqr(i) = (cos(U(i))*cos(U(i)))/(sin(U(i))*sin(U(i)));
cthsqr(i) = (cosh(U(i))*cosh(U(i)))/(sinh(U(i))*sinh(U(i)));
B(i) = 1/(sqrt(1*(K+1+.5%(ctsqr(i)-cthsqr(i)})));
Wd(i) = W(i)*sqrt(1-(s*s));
a(i) = (dervQo + (s*W(i)*Qo))/Wd(i);
A(1) = sqrt((QoxQo) + (a(id*a(i)));
alph(i) = atan((dervQo +(s*W(i)*Qo))/(Wd(i)*Qo));
end;
for i = 1:1:m

for j = 1:1:n

sn(i,j) = (sin((U)*x(j))/1))/(sin(U(i)));

snh(i,j) = (sinh({U)*x(j))/1))/(sinh(U(i)));



X(i,j) = B(1)*(sn(i,j)+snh(i,j));

end;

end;
Z
t = 1:1:100; % index for time
T(1) = 0; % intializing time
% the following for loop decides at which instants(time) the derivative
% term (velocity) has to be calculated
for t = 2:1:100
T(t) = T(t-1)+.1; % time is incremented by .1
end;
[/
% the following loops calculate different modes at difeerent points
% on the beam at differnt instants of time
% t loop for differnt instants of time
% j loop for different sensors (points) on the beam
% 1 loop for differnt modes

for t = 1:1:100

for i = 1:m

hconstant term for calculating velocity, PHIdot from your project
q(i,t)=((-A(1))*exp((-s)*W(i)*T(t)));
“icalculation of velocity,PHIdot form your project
dervQ(i,t)=q(i,t)*((s*W(i)*cos(WA(i)*T(t)-alph(i)))+(Wd(i)*sin(Wd(i)
*T(t)-alph(i))));

end;

end;

for t = 1:1:100
for j = 1:1:n

dervY(j,t) = 0;
“icalculation ofvelocity of beam, Ydot from your project
for i = 1:1:m

dervY(j,t) = (X(i,j)*dervQ(i,t)) + derv¥(j,t);

end;

end;

end;
“ithe following loops calculate the Estimating term of velocity
Jwhich is SIGHdot from your notes

for t = 1:1:100

for i 1:1:m

dervchi(i,t) = 0;
/isummation of velocity(beam-Ydot) terms at differnt points on beam

for j = 1:1:n

if ((rem(j,2) == 0) & (j == n))
dervchi(i,t) = dervY(j,t)*X(i,j) + dervchi(i,t)
elseif ((rem(j,2) == 0) & (j "= n))
dervchi(i,t) = 2%(dervY(j,t)*X(i,j)) + dervchi(i,t)
else
dervchi(i,t) = 4*(dervY(j,t)*X(i,j)) + dervchi(i,t)



end;
end;

dervchi(i,t) = (1/(n*3))*dervchi(i,t) + (dervY¥(n,t)*X(i,n)*K*1);
end;
end

3. ALSIM FILES for SIMULATION
3.1 SIMULATION OF OPEN LOOP DYNAMICS for V., = 1.

3.1.1 Dynamic File

#include "\ALSIM\ALSIM.H"
#include '"MATH.H"
#include "STDIO.H"

#define omegal? fpar(1]

#define omega22 fpar (2]

#define omega3?2 fpar{3]

#define omegad?2 fpar[4]

/*

** User state derivative function.
*/

derv(t, x, dxdt)

double t, *x, *dxdt;

{

dxdt (1] = x[2];

dxdt[2] = -omegal2x*x[1];
dxdt[3] = x[4];

dxdt[4] = -omega22*x[3];
dxdt (6] = x[6];

dxdt[6] = -omega32x*x[5];
dxdt 7] = x[8];

dxdt[8] = -omega42x*x[7];
}

3.1.2 Rundata File

0 ;initial time
100. ;final time
0.01 ;maximum stepsize

1.0e-6 ;minimum stepsize
0.001 ;fractional error criterion



Nb

200 smultiple of maximum stepsize for print output

20 ;multiple of maximum stepsize for plot output

8 ;number of plant states

0 ;number of plant inputs

e ;number of plant outputs

0 ;number of controller states

0 ;size of user defined plot vector

0 ;size of user common area

0 isize of gaussian random number vector
;vector multiplied by sqrt(hmax) to provide approx. uniform
;variance for variable stepsize

318 ;random number seed

272 ;random number seed

190 ;random number seed

0 ;number of user defined integer input parameters

0,0 ;end integer input parameters

4 snumber of user defined floating point input parameters

1,.0978 ;omegal?2

2,1.523 ;omega2?2

3,7.6696 ;omega32

4,24.1946 ;omegad?2

0,0 ;end floating point input parameters

1,.02 s

3,.02 ;

5,.02 ;

7,.02 ;

0,0 ;end plant initial conditions

0,0 ;end controller initial conditions

3.2 SIMULATION OF CLOSED LOOP DYNAMICS for Nm = 4, No
=4, Ns =6.

3.2.1 Dynamic File

#include "\ALSIM\ALSIM.H"
#include "MATH.H"
#include "STDIO.H"
#define omegal?2 fpar (1]



#define cutoffi2  fpar[2]
#define cutoffisq2 fpar[3]
#define refer fpar[4]
#define ppgaint fpar[5]
#define intgainl  fpar(6]
#define omega22 fpar (7]
#define cutoff22  fpar(8]
#define cutoff2sq2 fpar[9]
#define ppgain2 fpar[10]
#define intgain2  fpar(ii]
#define omega3?2 fpar(12]
#define cutoff32  fpar[13]
#define cutoff3sqg2 fpar[14]
#define ppgain3 fpar[15]
#define intgain3  fpar[16]
#define omega4d?2 fpar[17]
#define cutoff42 fpar[18]
#define cutoff4sq2 fpar[19]
#define ppgaing fpar [20]
#define intgain4  fpar(21]
#define refscale fpar[22]
float est_x2,cal_x2,est_x7,cal_x7,est_x12;
float cal_x12,est_x17,cal_x17;
/ *

*x User state derivative function.

*/

derv(t, x, dxdt)
double t, *x, *dxdt;

{
dxdt (1] = x[2];
dxdt[2] = -omegat2+x[1]+ ul1];

plotout[1] = fabs(x[2]);

dxdt[3] = x[4];

dxdt[4] = -cutoffi12*x[3] -cutoffisq2*x[4] + cutoffi2*plotout[1];
plotout (2] = x[3]-refer;

dxdt[5] = plotout[2];
dxdt (6] = x[7];
dxdt[7] = -omega22*x[6] + ul1];

plotout[3] = fabs(x[7]);

dxdt[8] = x[9];

dxdt[9] = -cutoff22+x[8] -cutoff2sq2*x[9] +cutoff22x*plotout([3];
plotout[4] = x[8] - refer;

dxdt [10] = plotout[4];

dxdt{11] x[12];

dxdt [12] -omega32*x[11] + ufl1];

plotout[s] = fabs(x[12]);

dxdt[13] = x[14];



NS

dxdt[14] = -cutoff32*x[13] -cutoff3sq2*x[14] + cutoff32*plotout[5];
plotout{6] = x[13]-refer;

dxdt([15] = plotout[6];

dxdt{16] = x[17];

dxdt[17] = -omega42+x[16] + u[1];

plotout (7] = fabs(x[17]);

dxdt[18] = x[19];

dxdt [19] = -cutoff42+#x[18] -cutoffd4sq2*x[19] + cutoff42+plotout{7];
plotout[8] = x{18] - refer;

dxdt[20] = plotout[8];

y[1] = -.0614*x[2] +.1062*x[7] -.1226%x[12] +.1061*x[17];

y[2] = -.1059*x [2] .1058%x (7] +.0004*x{12] -.1063*x[17];

y[3] = -.1214%x[2] -.0008*x[7] +.1226%x[12] +.0005*x[17];

y[4] = -.1033*x[2] -.1065%x[7] -.0008+%x[12] +.1059*x[17];

y[5] = -, 0563%x[2] .1046%xx[7] -.1223%x[12] -.1064*x[17];

y[6] = +.0072*x[2] +.0037*x[7] +.0025*x[12] +.0019*x[17];

cal_x2 =22.17#(-.0614*y[1]-.1059%y[2]-.1214%y[3]-.1033%y[4]-.0563*y[5]

+.0072%y[6]);

est_x2 = cal_x2 + 5.18%133%.0072*y[6];

cal_x7 =22.17#(.1062+y[1]+.1058*y[2]-.0008+y[3]-.1065%y[4]-.1046%y[5]
+.0037*y[6]1);

- est_x7 = cal_x7 + 5.18%133%.0037*y[6];
cal_x12=22.17%(~.1226%y[1]+.0004*y [2]+.1226%y[3]~.0008*y[4]-.1223xy[5]
+.0025xy[6]);

est_x12 = cal_x12 + 5.18%133*.0025*y[6];

cal_x17 =22.17%(.1061xy[1]-.1063%y[2]+.0005%y [3]+.1059y[4]~.1064+*y [5]
+.0019*xy[6]);

est_x17 = cal_x17 + 5.18%133*%.0019*y[¢._

ul1] = refscale*(ppgaini*est_x2*plotout(2]+ppgain2*est_x7+*plotout [4]

+ ppgain3*est_x12*plotout[6] + ppgaind*est_x17+*plotout[8] );

}

3.2.2 Rundata File

0 ;initial time

400. ;final time

0.25 ;maximum stepsize

1.0e-6 ;minimum stepsize

0.001 ;fractional error criterion

200 ;multiple of maximum stepsize for print output
5 ;multiple of maximum stepsize for plot output
20 ;number of plant states

;number of plant inputs
;number of plant outputs



0 ;oumber of controller states

8 ;size of user defined plot vector

0 ;size of user common area

0 ;size of gaussian random number vector
;vector multiplied by sqrt(hmax) to provide approx. uniform
;variance for variable stepsize

318 ;random number seed

272 ;random number seed

190 ;random number seed

0 ;number of user defined integer 1nput parameters

0,0 ;end integer input parameters

22 ;number of user defined floating point input parameters

1,.0978 ;omegal2

2,.0009 ;cutoff12

3,.0442 ;cutoffisqg2

4,0 ;refer

5,-.5 ;ppgaini

6,0. ;intgaint

7,1.523 ;omegal?2

8,.0152 ;cutoff22

9,.1745 ;jcutoff2sq2

10,-.4 ;ppgain2

11,0. ;intgain2

12,7.6696 ;omega3?2

13,.0767 ;cutoff32

14,.3916 ;cutoff3sqg2

15,-.3 ;ppgain3

16,0. ;intgain3

17,24.1946 ;omega4d?2

18,.2419 jcutoff42

19, .6955 ;cutoffdsq2

20,-.2 ;pPpgaingd

21,0. ;intgaing

22,100 ;refscale=10 for Orefer, .9 for 1 refer,.476 for 2refer

0,0 ;end floating point input parameters

1,.02 ;

6,.02 ;

11,.02

16,.02 ;

0,0 ;end plant initial conditions

0,0 ;end controller initial conditions
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3.3 SIMULATION OF CLOSED LOOP DYNAMICS for Nm = 4, No

:2, Ns =4.
3.3.1 Dynamic File
#include "\ALSIM\ALSIM.H"
#1nclude "MATH.H"
#include "STDIO.H"
#define omegal2 fpar(1]
#define cutoffl2 fpar[2]
#define cutoffisq2 fpar[3]
#define refer fpar[4]
#define ppgaint fpar([5]
#define intgaini fpar (6]
#define omega22 fpar[7]
#define cutoff2?2 fpar{8]
#define cutoff2sq2 fpar([9]
#define ppgain?2 fpar[10]
#define intgain2 fpar(11]
#define omega32 fpar[12]
#define cutoff32 fpar([13]
#define cutoff3sq2 fpar[14]
#define omega4?2 fpar([15]
#define cutoff42 fpar[16]
#tdefine cutoff4sq2 fpar(17]
#define refscale fpar[18]
/%
** User state derivative function.
*/

derv(t, x, dxdt)

double t, *x, *dxdt;

{

static float est_x2 = 0.,cal_x2 = 0.,est_x7 =0. ,cal_x7 = O.;
dxdt[1] = x[2];

dxdt[2] = -omegai12*x[1]+u(1];

plotout[1] = fabs(x[2]);

dxdt (3] = x[4];

dxdt[4] = -cutoff12xx[3] -cutofflsq2+x[4] + cutoffil2+*plotout(i];
plotout[2] = x[3]-refer;

dxdt[5] = plotout[2];

dxdt[8] = x[7];

dxdt[7] = -omega22*x[6] + u[1];

plotout (3] = fabs(x[7]);

dxdt{8] = x[9];

dxdt[9] = -cutoff22%x[8] -cutoff2sq2*x[9] +cutoff22*plotout(3];
plotout(4] = x[8] - refer;



dxdt[10] = plotout[4];

dxdt[11] = x[12];

dxdt {12] = -omega3d2*x[11] + ul1l:
dxdt[13] = x[14];

dxdt[14] = -omega42*x{13] + uli];

y[1]
y (2]
y[3]
y[4] =
cal_x?2
est_x2
cal_x7

est_x7

uf1] =

-.0867*x[2] +.1225*x[7] -.0864*x[12] -.0002*x[14];
-.1214*x[2] -.0008*x[7] +.1226*x[12) +.0005%x[14];
-.0828*x (2] -.1221*x[7]) -.0872*x([12] -.0007*x[14];
.0072%x[2] +.0037*x{7] +.0025%x[12] +.0019*x[14];
33.25%(-.0867*y[1] -.1214*y[2]-.0828*y[3]+.0072xy[4]);
cal_x2 + 5.18%133%.0072*xy(4];

33.25%(.1225+y[1] -.0008*y[2]-.1221*y[3]1+.0037*y[4]);
= cal_x7 + 5.18%133%.0037*y(4];

refscale*(est_x2#ppgainl*plotout [2] +est_xT*ppgain2*plotout{4d]);

plotout[5] = est_x2;
plotout[6] = x[2] - est_x2;

plotout[7] = est_x7;
plotout[8] = x[7] - est_xT;
}

3.3.2 Rundata File

400.
0.01
1.0e-86
0.001
200

20

(@]

318
272
190

;initial time

;final time

;maximum stepsize

;minimum stepsize

;fractional error criterion

;multiple of maximum stepsize for print output
;multiple of maximum stepsize for plot output

;number of plant states
;number of plant inputs
jnumber of plant outputs
;number of controller states

;size of user defined plot vector

:5ize of user common area

;size of gaussian random number vector

;vector multiplied by sgrt(hmax) to provide approx. uniform
;variance for variable stepsize

;random number seed

;random number seed

;random number seed

;number of user defined integer input parameters
;end integer input parameters



18 ;number of user defined floating point input parameters
1,.0978 ;omegall

2,.0008 ;cutoffi1?

3,.0442 ;ecutoffilsq?

4,0 ;refer

5.-.9 ;ppgainl
6,0 ;intgainil
7,1.523 ;omegal?

8,.0152 ;cutoff22
9,.1745 ;cutoff2sq2
10,-.5 ;ppgain?
11,0 ;intgain2
12,7.6696 ;omega32
13,.0767 ;cutoff32
14, .3916 ;cutoff3sqg2
15,24 .1946 ;omega4d?2
16, .2419 ;cutoff4?2
17,.6955 ;cutoffédsqg2

18,100 ;refscale=10 for Orefer, .9 for 1 refer
0,0 ;end floating point input parameters
1,.02 ;

6,.02 ;

11,.02

13,.02

0,0 ;end plant initial conditions

0,0 ;end controller initial conditions

3.4 SIMULATION OF CLOSED LOOP DYNAMICS for Nm = 4, No
=2, Ns =3.

3.3.1 Dynamic File

#include “\ALSIM\ALSIM.H"
#include "MATH.H"

#include “STDIC.H"

#define omegal2 fpar[i]
#define cutoffi12 fpar[2]
#define cutoffisq2 fpar(3]

#define refer fpar[4]
#define ppgainl fpar[5]
#define intgainit fpar [6]

#define omega22 fpar(7]



#define cutoff22 fpar[8]
#define cutoff2sq2 fpar([9]

#define ppgain2 foar(10]
#define intgain?2 fpar(11]
#define omega3?2 fpar[12]

#define cutoff3?2 fpar[13]
#define cutoff3sq2 fpar[14]
#define omega4?2 fpar([15]
#define cutoff4?2 fpar[16]
#define cutoffésq2 fpar[17]
#define refscale fpar{18]

/%

** User state derivative function.

*/

derv(t, x, dxdt)

double t, *x, *dxdt;

{

static float est_x2 = 0.,cal_x2 = 0.,est_x7 =0. ,cal_x7 = O.;
dxdt[1] = x[2];

dxdt[2] = -omegal2*x[1] + u[1];

"plotout[1]) = fabs(x[2]);

dxdt [3] x[4];

dxdt [4] ~cutoff12#x[3] -cutoffisq2*x(4] + cutoffi2*plotout(i];
plotout(2] = x[3]-refer;

dxdt[5] = plotout[2];

dxdt [6] x[7];

dxdt [7] -omegal22+x (6] + ul1];

plotout[3] = fabs(x[71);

dxdt[8]) = x[91;

dxdt[9] = -cutoff22*x[8] -cutoff2sq2*x[9] +cutoff22*plotout[3];
plotout[4] = x[8] - refer;

il

dxdt[10] = plotout[4];

dxdt(11] = x[12];

dxdt[12] = -omega32*x[11] + u(1l]l;

dxdt[13] = x[14];

dxdt[14] = -omegad42*x[13] + uli];

y[1] = -.1059*x[2] +.1058+*x[7] +.0004*x[12] ~-.1063*x[14];
y[2] = -.1033*x[2] -.1065%x[7] -.0008*x[12] +.1059%x[14];
y[3] = .0072%x[2] +.0037xx[7] +.0025*x[12] +.0019*x([14];
cal_x2 = 33.25%(-.1059*y[1] -.1033*y[2]+.0072*y[3]);

est_x2 = cal_x2 + 5.18%133%.0072*y[3];
cal_x7 = 33.26%(.1058*y[1] -.1065%y[2]+.0037*y(3]);
est_x7 = cal_x7 + 5.18%133%.0037*y[3];

ul1] = refscalex(est_x2*ppgaini*plotout[2] + est_x7+*ppgain2*plotout(4]);

plotout[5] = est_x2;
plotout[6] = x[2] - est_x2;
plotout[7] = est_xT7;

43



plotout [8]

}

= x[7] - est_x7;

3.3.2 Rundata File

0 ;initial time
6000 . ;final time
0.1 ;maximum stepsize

1.0e-6 ;minimum stepsize

0.001 ;fractional error criterion

200 ;multiple of maximum stepsize for print output
200 ;multiple of maximum stepsize for plot output

14 ;number
1 ;number

;number
0 ;humber

8 ;8ize of user defined plot vector

0 ;8ize of user common area

0 ;size of gaussian random number vector
;vector multiplied by sqrt(hmax) to provide approx.
;variance for variable stepsize

0 ;number of user defined integer input parameters

318 ;random number seed
272 ;random number seed
190 ;random number seed
0,0 ;end integer input parameters
18

1,.0978 ;omegal?2

2,.0009 ycutoff12

3, .0442 ;cutoffisq2

4,0 irefer

5,-.047 ;ppgaini

6,0 ;intgaint

7,1.523 ;omega2?2

8,.0152 ;cutoff22

9,.1745 ;cutoff2sq2
10,-.01 ;Ppgain2

11,0 ;intgain?
12,7.6696 ;omega3?2

13, .0767 ;cutoff3l2
14,.3916 ;cutoff3sq2

of plant states
of plant inputs
of plant outputs
of controller states

uniform

;number of user defined floating point input parameters



15,24.1946 ;omega42
16, .2419 ;cutoff4?2
17, .6955 ;cutoffdsq?

18,100 ;refscale=10 for Orefer, .9 for 1 refer
0,0 ;end floating point input parameters
1,.02 ;

6,.02 ;

11,.02 ;

13,.02

0,0 ;end plant initial conditions

0,0 ;end controller initial conditions
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