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ABSTRACT 

Modal Control of Flexible Beam Using Smart Materials 

by 
Sujata Mallepalle 

In this work, the dynamics and control aspects of a vibrating flexible beam us-

ing modal analysis are studied. To damp the vibrations of the system, the vibrations 

of each mode has to he controlled, which can he done if we know the individual mode 

shape. and the resonance frequency. These quantities can be derived mathematically 

or measured experimentally with a spectrum analyzer. Individual modal velocities 

can be computed by integration of the product of beam velocity and the mode shape, 

over the interval of beam length. The integration is carried out using numerical meth-

ods. The necessary discrete ordinates are obtained by measuring the system velocity 

at several points on the beam. This mode velocity estimation method constitutes 

the mode separation scheme which is the principle feature of this thesis. Controlling 

of the system vibrations can be achieved by controlling individual mode vibrations. 

The control action for each mode are decoupled from others, because of the frequency 

separation. So the resulting the controller is modular, consisting of N0  (N0  = number 

of outputs to be regulated) structurally identical modules. The combined mode sepa-

ration scheme and modular controller are the desired modal controllers that stabilize, 

and regulate the beam dynamics. 
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CHAPTER 1 

INTRODUCTION  

Flexible systems are characterized by the presence of many modes. By means of 

parallel decomposition, it is evident that the modes of vibration, each having its own 

frequency, behave essentially as second order systems. This allows us to express the 

motion of the system in terms of the modal vibrations, each proceeding at its own 

frequency, completely independent of the other, the amplitudes and phases being de-

termined by the initial and excitation conditions. The total motion of the system 

is given by superposition of the modal harmonic vibrations. In Chapter 1, the dy-

namics of a flexible structure undergoing transversal motion is modelled. From the 

mathematical model, natural frequencies and mode shapes are calculated. 

To damp the system vibrations, individual mode vibrations have to be damped. 

In this work, clamping of the individual mode velocities is implemented by feeding 

back the individual mode velocities with proper gain. For this we need have individ-

ual mode velocities, which can be estimated by numerical methods by placing several 

number of sensors on the beam. In Chapter 2, how to estimate the modal velocities 

using numerical methods is discussed. And a method to estimate the minimum num-

ber of sensors we need to use for good estimation of modal velocities is given. Finally, 

these results are simulated using ALSIM software, for open loop dynamics, closed 

loop dynamics with good estimation of modal velocities, and closed loop dynamics 

without good estimation of modal velocities. 

In Chapter 4, how to implement the estimation of modal velocities using smart 

materials is discussed. Finally, in Chapter 5, conclusions are stated and directions 

for further development are given. 
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CHAPTER 2 

MATHEMATICAL MODEL OF FLEXIBLE BEAM 
DYNAMICS  

The equation of motion of long thin members undergoing transverse vibrations can 

be described by (2.1), which upon solution, generates an infinite natural modes of 

vibration. Figure(2.1) shows the freebody diagram of a. beam undergoing transverse 

motion. 

In this work, the Bernoulli-Euler assumptions of elementary beam theory are 

employed, namely: 

1. There is an axis of the beam which undergoes no extension or contraction, which 

is a neutral-axis. 

2. Cross sections perpendicular to the neutral axis in the underformed beam remain 

plane and remain perpendicular to the deformed neutral axis, that is transverse 

shear deformation is neglected. 

:3. The material is linearly elastic and the beam is homogeneous at any cross sec-

tion. 

2.1 	Mathematical Model of a Flexible Beam  

The equation of motion for transverse vibrations of a beam, neglecting shear deflection 

and rotary inertia is given by 

E I y""  = — ρ ÿ 	 (2.1)  

where E is the Young's Modulus 

I  is the moment of Inertia 

ρ is linear density 

y is displacement 

y' is differentiation with respect to x 

9 
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Figure 2.1 Free Body Diagram of the Flexible Beam 

ẏ is differentiation with respect to t 

The left end ( x = 0) of the beam is hinged to the motor. The concentrated 

mass m is attached at the right end (x = l). 

The appropriate boundary conditions are: 

y(0, t ) = 0 	 (2.2) 

y

"(0, t

) = 0 

y"(

l, t

) = 0 

E I y''(l, t) = m ÿ(l,t )  

The solution to (2.1) is given by the method of separation of variables: 

y ( x, t )  =  ∑i=1  xi (x )ϕi (t ) 	 (2.3) 
 

then 

Xi"' = -ki Xi 	(2.4) 

ϕi = -ωi2ϕi 		(2.5) 



where  

ki = u2/l 

ω2i = EI/ρ ki4  
 

µi  is mode shape frequency.  

The solution to (2.4) can  he given as  
X (x) = A

icos(kix) + Bisin(kix) + Ci

cosh(kix) + Disinh(kix) 	(2.6)  

Applying boundary conditions (2.2) leads to  

Ai 

 = 0  

Ci 

 = 0 

 

and X(xi ) = B

i

sin(kix) + D

i

sinh(kix). 	  

with  

 

Bi

= 
Di sinh(kil) /sin(kil) 

	  
 

The resulting frequency equation is  

— 2 K µ

i 

sin

µ

i 

sinhµ

i 

= 

sinµ

i 

coshµ

i 

- sinhµ

i 

cosµ

i 

	 (2.7)  

where K is the ratio of end mass to bean mass. 

Combining (2.6) and (2.7) yields  

 

Xi

(x) 

= 

Bi 

 
[sin(µi x/l)/sin(µi) + sin

h(µi x/l)/sinh(µi)]                  (2.8) 

 
 

The orthogonality condition of the mode shapes Xi  (x) are expressed as:  

 

	

	 	  ∫ lu r(x) X

i

(x ) X j( x)dx={  0   i≠ j (2.9)                                                                      

1    i= j 	 

with the generalized weighting function r( x ) given by 

r (x) = 1 + K l δ(x - l)                                                             (2.10)  

 

	

r(x) = 1 + K 16(x — 	 (2.10) 
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where δ(x — l) is the unit impulse function. 

Verification of the orthogonality of mode shapes:  

 
∫0 l r( x) X2 ( x) X j ( x)dx = 0; i ≠ j  

 
∫0 l [1+ K 1δ ( x — 1)] Xi( x) Xi (x)dx  

 
	  

=∫0 l Xi(x)X j( x ) dx+Kl ∫0 l δ (x — 1)X j(x)dx 	(2.11) 

 
 

  ∫0 l δ

(

x — 1 )

X

i

( x )X j( x )

dx= -4BiBj 	(2.12) 
 

Now since 

∫0 l Xi( x )X j( x )dx 

=∫0 lBiBj[sin(µi x/l) / sin(µi

) 

+ sinh(µi x/l )/sinh(µi

)] 

 

 

 
	 	

 

	

	  
	 

 

∫0 l sin(µi x/l) / sin(µi

) sin(µjx/l) / sin(µj) dx = 1/2sin(µi)sin(µj) [sinµiµj)/µi - µj - sin(µi + µj)

/µi + µj] 

  
(2.14) 

∫0 l sinh(µi x/l) / sinh(µi) sin(µjx/l)/sin(µj) dx = µi2/µi2

+ µj2[-1/µj2cot(µj)+µil/µj2coth(µi)] 

(2.15) 

 

∫0 l sinh(µ j x/l

) / 

sinh(µ j) sin(µix/l)/sin(µi) dx = µi2/µi2

+ µj2[-1/µ j2cot(µ j)+µil/µ j2coth(µi)] (2.16) 	 	

∫0 l sinh(µ j x/l ) / sinh(µ j

) 

sinh(µ j x/l ) / sinh(µ j

)dx 

= 1/2(µi 
+ 

µ j ) [cot(µ j) - cot(µi)] - 1/2(µi 

+ 

µ j )[cot(µ j )] (2.17) 

substituting (2.13),(2.15),(2.16),(2.17),(2.18) together with the relation (2.8) in (2.13)  will prove the orthogonality condition (2.9).  

 

	

f i 	.sinh(yi. r .11) sin(p,j x 11) 	Pi  	— 
	 dx = 	 , 1 

	
o, co10.0 + .,  

Pi I  c th( pi ) 	(2.15) 

	

.10 	.sinhot) 	.5i7,00 	ft. + iti 	/a;  it, - 

fl  .92.  nh( f ii. x II) .sin(pi x II) 	Pi  	—1 	 P I 
2 	 dx = 	 ,, cot(p,) +  i  2  coth(kii) 	(2.16) 

	

Jo 	.sinh( ai ) 	.szn( iiLi ) 	Pi + Pj 	1-q 	 Pi 	- 

f 	.sinhokixio .sinh(it j ..r 11) 
	  dx 

	

Jo 	.5.inh(t i ) 	.sin.h( it j) 

1 	 1  

	

= 	 

	

2(it +
/Li) [cot(ii,) — cot(1.0 	

A/L — pi ) 
] 	 , rico104) — cot(p3 )] 	(2.17) 

i i   

substituting (2.13),(2.15),(2.16)42.17),(2.18) together with the relation (2.8) in 

(2.13) will prove the orthogonality condition (2.9). 



Table 2.1  Natural Frequencies of the Flexible Beam 

i µi  ωi  	Bi  
1 3.1711 0.3128 0.0035 

2 6.2983 1.2341 0.0021 
3 9.4349 2,7694 0.0006 
4 12.5740 4.9188 0.0041 
5 15.7141 7.6822 0.0010 
6 18.8546 11.0597 0.0061 
7 21.995.5 15.0514 0.00111 
8 25.1366 19.6542 0.0010 
9 28.2777 24.8770 0.0031 

10 31.4190 30.7110 0.0020 

11 34.5(303 37.1590 0.0052 
12 37.7017 44.2212 0.0001 

13 40.8431 51.8975 0.0049 

14 43.9845 60.1878 0.0022 
15 47.1259 69.0921 0.0029 

16 50.2674 78.6108 0.0042 

17 53.4089 88.74:35 0.0009 

18 56.5504 99.4902 0.0062 

19 59.6919 110.8511 0.0012 

20I 62.8334 122.8260 0.0039 

Therefore, 

B

i = [1(K + 1 + 0.5 (cotµ2i - cothµ2i ))]-1/2 	 (2.18) 

The natural frequencies are calculated from the frequency equation and are 

tabulated in Table (2.1). 

Assuming concentrated moment is applied at x = x0 , the resulting equation of 

motion can be obtained by virtual work, refer [1] as : 

 ϕi 

 

+ ω2i  + ϕi 

= 

M (t )/ρ X'i 

 

(xo)  (2.19) 	 	 	  

Equation (2.19) represents the dynamics of an undamped system. 

By considering clamping effects, the dynamic equation of motion becomes 
ϕi 

 

+ 2ξiωiϕi 

 

+ ω2i ϕi + ω2i ϕ2i 

= 

M(t) /q X'i 

 

(xo)        (2.20) 

 
+ 2 	 ( ) 22. = 	Xii (X o ) 	 (2.20) 



Figure 2.2  Internal Structure of Flexible Beam Dynamics 

The transfer function between y ( x, t )  and u(t )  = M ( t )  is given by 

	  
T(s) =  Y ( x,s)

/u(s)= Σi=1 Hi(x)/s2 + 2ξiωi s+ω

2

i (2.21) 
		  

where 

 
Hi (x )  = X

i( x )
X'i(xo)/q x ϵ  (0,l ]                 	 (2.22) 

The internal structure of the beam dynamics is shown in Figure(2.2). 

Assuming a fourth order model, the finite dimensional model of the flexible 

beam is given by: 

	  
T (s)  = H1(x)/s 2 + 2ξ1ω1 s+ω2 1 + H2(x)/s2 + 2ξ2ω2 s+ω2

2 		(2.23) 
 



Now, the transfer function model is converted to a state-space model of the 

following form: 

q = Aq+Bu 	 (2.24)  

y  = Cq 

where q . u. y  are the state vector. input, and output respectively. 

The A, B. C matrices are given by 

[ 	0 	1 	0 	0 
]                                        [  -ω21 -ξ1 ω1 	0 	0          ]                          (2.25)  

A  = 	  
[ 	0 	0 	0          0 ] 

[ 	0 	0       -ω22 -ξ2ω2           ]  

B=   [0]                                                [1 

]                                                                                      [ 0 ]                                                                                       [ 1 ] 

C 	= [ H1(x )  0 H2(x)  0] 

Since, (2.19) is a minimal realization, (2.18) is clearly controllable. Further 

details may be found in [1]. 



CHAPTER 3 

NUMERICAL METHODS FOR ESTIMATION OF 

VELOCITY FROM MODAL ANALYSIS 

For an elastic continum such as a flexible beam. undergoin g  a transversal !notion. 

total vibration of the system is a sum of the individual mode vibrations. Therefore, 

to control the vibrations of the system, individual mode vibration has to be controlled. 

This objective can be achieved, if we feedback individual mode velocities. with proper 

control gain. For this, we need to have die mode velocities. Since the mode shapes 

representing the system are orthogonal. we can get the individual mode velocity by 

integrating the product of system velocity and the mode shape function over the 

interval of beam length. That is, since 

∫0 l r(x) Xi(x)X j(x)dx = δij 

δij = { 1  i = j { 0  i ≠ j 

Thus, the mode velocity is obtained as 

Φi  = 

∫0 l r(x)ẏ(x,t)

Xi(x)dx  	(3.1) 

where 

Φi 

 is velocity of the i th mode, 

ẏ  velocity of the system at a distance x on the beam 

Xi  is mode shape. 

r ( x )  is the weighting function given by r ( x

) = 1+K 1δ ( x — l ) 	 (3.2) 

where K is the ratio of end mass to end mass 
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By substituting equation (3.2) in equation (3.1), we will get 

Φ = ∫0 l ẏ(x,t)Xi(x)dx + 2 K l ẏ(l,t) 	(3.3) 

 

The integral given by (3.3) is evaluated, using standard numerical methods. 

The numerical methods used in this work, to estimate 

∫0 l ẏ

(

x,t)Xi( x )dx are 1)  

Euler's Rule and 2) Simpson's Rule. 	  

These two methods are now described.below.  

1. Euler's Estimation: 

∫0 l ẏ

(

x,t)Xi( x ) dx = ΣNk=1  ẏ(kh)h Xi(kh) h                                                       (3.4) 

 
 

where Ns is the number of ;ambling points, in other words. the number of sensors 

is h is the sampling interval given by l/Ns. 

2.  Simpson's Estimation: 

 

∫0 l ẏ(x,t)Xi(x)dx = h/3 (ẏ(0,t)Xi(0)+ Σn=1,3.5 Aẏ(nh,t)Xi(nh) 		

 
  

+ Σn=2,4.6  2ẏ(nh,t)Xi(nh)+ẏ(Ns h,t)Xi(Ns h)) 

	

 	 	(3.5) 	(3;1) 
 

where Ns  is the number of sampling points. in other words, number of sensors  an 

even integer 

h  is the sampling interval given by l/Ns . 

Let the estimated mode velocities be ψi(t ). 

Using Euler's Estimation: 

ψi(t) 

 = ΣkNs  ẏi (kh)  Xi(kh)+2K lẏ(l,t) 

 

	(3.6) 	 (a.6) 

where i = 1,  2, . . ., No  

It is to be  noted that is the number of modes to be controlled and ẏ(l,t) is 

the velocity of the   beam end.  



Using Simpson's Estimation 

ψi(t) = h/3(ẏ(0,t)Xi(0)+ Σn=1.3.5 4ẏ(nh,t)Xi(nh) 	 

+ Σn=1.3.5 	2ẏ(nh,t)Xi(nh) + ẏ(Nsh.t)Xi(Nsh))+2Klẏ(l.t) (3.7) 
 

In either cases, the derivation of ψi(t ) requires the knowledge of ẏ(x,t)   and 

Xi(x

)

. for i = 1,2, . . . ., No at locations x = kh, 1.2 . . . . .Ns. 

The system velocity ẏ(x.t)  can be readily determined using 	rate sensors 

placed on the beam. whereas the mode shapes X,(x) are generally determined math-

miatically. In the case of a flexible beam, the mode shapes are given by (2.9). 

To reduce implementational complexity. it is desired that 	the number of 

rate sensors, be kept low. 

An estimate of the lower bound of Ns  is now carried out. 

Since Φi  = ∫0 l ẏ

(

x,t)Xi(x)dx+2Kl ẏ(l,t)  

and ψi = NumIntx Σk[Φk

(

t)Xk(x)Xi(x)]+ 2K l ẏ(l,t) 	 

where NumIntx denotes the numerical integration of 

Σk[Φk (t)Xk(x)Xi(x)] 

 

with respect to x. 

ψi = 

 

NumIntx Σk[Xk

(

x)Xi(x)]Φk

( t)+2K l ẏ(l,t) (3.

8) 		(:3.8) 
k 

Denote mij  = 

NumIntx

[ Xi

(

x)X j(x)], then 

[ Φ1(t) ] 

ψi 

( t) = [mi1 mi2 mi3 . . . mi Nm ]       [ Φ2(t) ] 

+ 2K l ẏ(l,t) 

[ Φ3(t) ] [ ΦNm(t) ] 

let 

ψi 

(t) = [ ψ1(t)    ψ2(t)    ψ3(t)  . . .     ψNo(t)  ] 

Φ

(t) = [ Φ1(t)    Φ2(t)    Φ3(t)  . . .   ΦNm(t)  ] ϵ(t) = [ ψ1(t) - Φ1(t)  ψ2(t) - Φ2(t) . . .  ψNo(t) - ΦNo(t)  ] 

 

_ ( 	(t) _ 

let 

kli(t) = 	tII1 (t) 	(t) 	qi3(t) 	• • • 	W AT,,(t) 

(1) (t) = 	(1)1(t) 	̀12(t) 	(1):3(1 ) 	• • • 	(PN,jt) 

	

EP) = 	Wi(t) —(1)1(1) T2(t) —(1)2(t) • • 	tP,v,(t) — (I),v,,(t)  



then 

	e(t) = MΦ (t) — l Φ(t) = (M - I) Φ(t)  

M = [mij] ϵ RNo x Nm 
  

I = [δij — 4 K1] ϵ RNo x Nm 	(3.9) 	- 

The estimation error bound can now be determined by computing the spectral 

norm of M  — I as follows: 

	  

Supϕ≠0││e││= Sup ││ϕ ││=1 ││[M-I]ϕ││/ ││ϕ││ = σs(M - I) 

	
	 !  

where σs  = maximum singular value of 

(M - I) 

 

Computation of σs(M - I

) 

 entails the following steps:  

1. Determine Nm, No, Ns  

2. Calculate M matrix according to equation (3.9) 

3. Form the matrix M - I  

4. Apply standard singular value decomposition techniques to obtain the maxi-

mum singular value. 

For example, the I matrix and the A/ matrix for 4 modes. 4 sensors for control-

ling 2 modes are calculated using Euler's approximation and are given below. 

Given Nm  = 4, No = 2, Ns = 4, 1= 133. 

Using the frequencies given in Table (2.1), the values of mode shapes are calcu- 

lated using the formula (2.9) and are given in Table (:3.1). 

For Euler's estimation, the values of mij  are calculated using Equation 3.9 as 

follows: 

[ 1.0049 .0056 .0075 .010:3 ] 
Mw  =      

[ .0056 1.0045 .0051 .0067 ] 

[ 1.0  0 	0    0 ] 

δij =        [  0   1.0   0    0  ] 
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Table 3.1  Mode Shape Values at 4 Sensors Placed at Equidistant on the Beam 

x X1(x) 	X2(x) 	! 	X3(x) X4(x)   
33.5 -.0867 .1225  -.0864 -.0002 

66.5 -.1214 -.0008 .1226 	.0005 

97.5 -.0898 	-.1221 -.0828 -.0007      

133.0 .0072 	.0037 .0025 .0019      

maximum singular value of (M  - I) = .0184. 

By increasing Ns, we can make M matrix approach I matrix. Therefore-. the 

maximum singular value of (M  - I ) will approach zero. as M  approaches / matrix. 

For the purpose of comparison. the maximum singular values of (.11 - 1) fur 

different number of sensors are calculated using Euler's and Simpson's approximation 

and summarized in the tables (3.2 thru 2.7). These values are plotted and are shown 

In Figures (3.1 thru 2.6). 

For example, in a system containing 4 modes. suppose we want to control 

• 2 modes 

1. For Euler's approximation From Table(3.1) and Figure(3.1). we can see a 

steep decline in maximum singular value at 4 sensors, so we need 4 sensors 

for good estimation. 

2. For Simpson's approximation From Table (3.4) and Figure(3.4). it can be 

shown we need 6 sensors for good estimation. 

• 4 modes 

1. For Euler's approximation From Table(3.1) and Figure(3.1). we can see a 

steep decline in maximum singular value at 6 sensors, so we need 6 sensors 

for good estimation. 

2. For Simpson's approximation From Table (3.4) and Figure(3.4). it can he 

shown that we need 8 sensors for good estimation. 
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By comparing.Tables (3.2) and (3.5), (3.3) and (3.6). (3.4) awl (3.7) we can see 

Euler's approximation gives fewer number of sensors for a given number of modes. 

This is because of the nature of the mode shapes. 

But, if the number of sensors is high. Simpson's rule gives good  approximation 

compare to Euler's approximation. For example, for a system containing 8  modes, 

with 14 sensors, the maximum singular value 

1. using Euler's approximation is .0030 from Table (3.3) 

2. using Simpson's approximation is .6177 x e-3  from Table (3.6). 

From the tabulated data we can form an empirical formula for calculating num-

ber of sensors as follows. 

1. for Euler's estimation 

Ns 

 = 1.28 * 

N

m — 7 * (

N

m  — 

No

) 

 

2. for Simpson's estimation 

Ns 

 = 2.3 * Nm —  (

N

m  — 

No

) 

 

where Ns  is number of sensors Nm 

 is number of modes present in the system 

No 

 is number of modes we want to control 

Mode velocities Φ  and estimated mode velocities ψ  are plotted for different 

number of modes and sensors using Euler's approximation and Simpson's approxi-

mation and are shown in figures (3.7) thru (3.12). From these figures, we can see the 

estimation is good when the maximum is singular value of ( M  — I ) matrix is should 

be around 0.01 or less. 
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Table 3.2 Maximum Singular Values of (M-I) Matrix of a System Containing Modes 
Using Euler's Estimation.  

Maximum Singular Value 

Ns 

 

 

No 

 = 2 	

N

o= 4 

2    .998 1.0 

4    	.0184 .9977 

6   	.0077 .0105 

8   	.0044 0059 

10  
	

.0029  .0038 

Table 3.3  Maximum Singular Values of (M-I) Matrix of a System Containing 8 
Modes. Using Euler's Estimation  

Maximum Singular Value 

Ns  No 

 = 2 

 No 

 = 4 

No 

 = 6 

 No 

 = 

8 
4 .9999 1.0 1.0 1.0 

6 .0199 .9984 1.0 1.0 

8 .0098 .0112 .0129 .9984 

10 .006 .0069 	.0078 .0092 

12 .0041 .0048 .0054 	.0063 

14 .0030 .0035 .00:39 .0046 

16 .0023 .0027 .00:30 .00:35 

18 .0019 .0021 .0024 .0028 



Table 3.4  Maximum Singular Values of (M-1) Matrix of a System Containing 20 
Modes. Using Euler's Estimation 

Maximum Singular Value 

Ns Ns 

 = 2  

Ns 

 = 4 

Ns 

 = 6   .

No 

 = 20 

8 

1.4142 1.4142 1.4142 2.0001 

10 	1.0 1.0 1.0 1.0001 

12 	.0024 	.9986 	1.0 1.0 

11 	.01.12 	.0143 .0149 1.0 

16 .0092 	.0000  
	.0103 1.0 

18 .0069 .0075 	.0077 1.0 
20 .0054 .0059 .0061 .9990 
22 .0044 .0048 .0049     .0066 
24 .0037  .0040 .0041 .0054 
26 .0031 .0034 	.0035 .0046 
28 .0027 .0029 	.003 .0039 
30 .0023 .0025 .0026 .0034 	 
:32 .0020 .0022 .0023 .0030 
36 .0016 .0017 .0018 .0024 
40 .0015  .0014 .0015     .0010 
42 .0012 .001:3 .0013 .0016 
44 .0011    .0012 .0012 .0016 

Table 3.5  Maximum Singular Values of ( M - I ) Matrix of a System Containing 4 
Modes. Using Simpson's Estimation. 

Maximum Singular Value 

Ns 

 

Ns 

 = 2  

No 

 = 4 
2 1.3508 1.6460 
4 .3381 .9977 
6  .3:344 .3366 
8 .7156e-3 .33:39 
10 .2143e-3 .5087e-3 



Table 3.6  Maximum Singular Values of (M-I) Matrix of a System Containing 
Modes. Using Euler's Estimation 

  

uth-es, 1 sine Simpsou's E-itirnaLion 

Maximum Singular Value 

Ns Ns 

= 2 	

N

o = 4 
	i 	

N o = 6 

	

N o = 8 

1 1.3690 1.3744 	1.6620 		1.6667 

6 .4714 1.1026 1.1054 	1.170 

8 .3338 .3:352 .3:366 .9984 

10 .3334 .3343 3352 .3:300 

12 .0015           .3336 .3341 .3347 
14 .6177e-3 .7986e-3 .3335 	.334 

16 	3256e-3 		.38000e-3 .5548e-3 		.3335 

18 	2014e-3 		2263e-3 		2732e-3 	.4606e-3 

Table 3.7  Maximum Singular Values of (M-I) Matrix of a System Containing 
20 Modes. Using Euler's Estimation 

 

 

Maximum Singular Value 

Ns 

 

Ns 

= 2 

No = 4 

 

No = 6     │ 

	

No = 20 

8   1.4907 1.9136 1.01:16 	│ 	

2.

9988 

10 1.4056 1.11356 1.4744     │ 1.6668 

12 .4714 1.1037 1.37:37 1.6667 	 

14 .4714 .4714 .4714 1.1872 

16 .4711 .4714 .4714 1.1872 

18 .4714 	 .4714 .4714 1.1872 

20 .3334 .3335 .3337 .9999 

22 3346 .3334 .3:326 .3:346 

24 .0030 .3333       .3:334 .3:345 

26 .0016 .0018 .3334 .3342 

28 .0010 	.0011 .0012      │ 	.3340 

30 .6793e-3    │ 	7376e-3 .7768e-3 .3338 

32 .4778e-3   │ 	.5171e-3 .3390e-3 .3337 

36 .2710e-3    │ 	.2922e-3 .3019e-3 3335        

40 .187:3e-3  │ 	2015e-3 
	 

.1678e-3   │ 	.1804e-3 

.2076e-3 .:3334 

42 .1860e-1 .3010 

44 . 1566e-3 .1683e-3 .1737e-3 1952e-3 	 

17 
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For example, using Euler's approximation, the maximum singular value for  a 

system containing 4 modes, for Ns  = 4, No  = 4 is 0.9977, No  = 4 is 0.0105. 

From Figures (3.7) and (3.8), we can see the error in the estimation of third 

and fourth  modes is minimized when 

Ns 

 is increased from 4 to 6. 

For Euler's approximation: 

1) Figure(3.7) shows the velocities of first four modes and their estimated 

values for a system containing d modes and 3 sensors. 

2) Figure(3.8) shows the veloocities of first Four modes and their estimated 

values for a. system containing 4 modes and 6 sensors. 

3) Figure(3.9) shows the velocities of first four modes and their estimated 

values for a system containing 8 modes and 10 sensors. 

4) Figure(3.10) shows the velocities of first four modes and their estimated 

values for a. system containing 20 modes and 22 sensors. 

For Simpson's approximation: 

1) Figure(3.11) shows the velocities of first, four modes and their  estimated 

values for a. system containing 4 modes and 10 sensors. 

2) Figure(3.12) shows the velocities of first four modes and their estimated 

values for a system containing 8 modes and 18 sensors. 

3) Figure(3.13) shows the velocities of first. four modes a.nd their estimated 

values for a. system containing 20 modes and 42 sensors. 

In all cases. excellent, agreement between Φ  and ψ  is observed.  
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CHAPTER 4 

CONTROL AND REGULATION OF FLEXIBLE BEAM  

In chapter 1, the dynamics of a flexible beam undergoing transversal motion has been 

modelled. The equation of motion is given by (2.1). It has been shown that the flexible 

beam dynamics are equivalent to 

Nm 
 

second order modules connected in parallel. 

Although these second order modules are reachable by the same control input (e.g. 

the torque generated by a dc motor), they may be decoupled in the frequency domain 

on observing that each second order substructure occupies a unique passband with 

center frequency ωi  given by Table(2.1). The control system described in [2]  exploits 

this property to provide stabilization and regulation of each second order substructure 

based on applying No  structurally identical control module to the flexible structure. 

A critical requirement in [2] is that the individual mode velocities (Φi) be available, 

by means of bandpass filtering of the beam velocity. 

In this thesis. the mode separation method described in Chapter 2 is used in 

lieu of the bandpass filtering operation to generate the mode velocity estimates 

The quantitative effects of using ψi  rather than Φi  are now explored by means of 

numerical simulation. 

The following control objectives are now described: 

1. Stabilization: Velocity of each mode CM goes to zero as t tends to infinity, for 

i = 1, 2,∙ ∙ ∙ No  

2. Regulation: Let amp(Φ

i

( t )), be the amplitude of (Φ

i

( t ))  and ei ( t) = amp(Φ

i

( t )) — 

Φi

ref be the regulation error. For regulation purposes, it is desired that 

limt®¥ ei(t) = 0 	for i  = 	1, 2,∙ ∙ ∙ No 	(4.1) 

Stabilization is a special case of regulation by setting 

Φi

ref  = 0. 

32 
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4 . 1 Controller Synthesis  

In order to increase the damping of the flexible beam. each velocity component (I), 

has to be estimated: and then fed hack to the system using proper gain. A scheme 

for estimating the mode velocities has been described in Chapter 2. 

Assuming there is no or little damping present in the system, our aim is to 

stabilize the required modes, using the mode velocity. We are introducing damping 

into the system, by feeding back the velocity component, and therefore, the structure 

corresponding to each mode can be described as 

Φi  + ωi2 Φi  = —KΦi 	(4.2) 

where the —K Φi  terms are to he synthesized by active feedback control. The 

overall control system to control a flexible beam with Nm  modes, No outputs and 

sensors are shown in Figure(4.1) 

A block diagram showing the closed loop control of a single mode is shown 

in Figure(4.2). A similar control module is implemented for each mode we want to 

control. [2] 

Each Control module consists of 6 components. 

1. Demodulator : For converting Φi( t ) to │Φi ( t )│ . 

2. Lowpass Filter : For a given natural frequency ωi  a second order Butterworth 

filter is used to remove the ripple. The transfer function of the Lowpass filter 

is given by 

Hi (s) 

	 = (ωie

) 2 / s2 + 2ωie s + (ωie)2 

  

where ωie  , the cutoff frequency, is generally set to one tenth of the value of ωi  . 

3. Multiplier : The function of the multiplier is to translate the controller output 

hack to the passband.  
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Figure 4.1  Flexible Beam Control System Using Modular Controller [2] and Mode 
Separation 



Figure 4.2 Control Module [2] 

4. Gain Adjust : Since the module output is multiplicative to the rate signal. loop 

gain is scaled by the reference signal. 

Φi

ref and must be adjusted. This is carried 

out by inserting the scaling factor 

 
 

1 / Φ

i

ref + 0.01                           (4.3)  

in the loop. The 0.01 factor is included to prevent singularities as Φ

i

ref goes to 

zero. 

5. PI Controller : Stabilization and regulation of Φ

i

(t ) is carried out by a PI 

controller having the form 

K p    +KI / s 
 

where K p  is the proportional gain and K 1  is the integral gain. 

6. Tuning gain εi  : The magnitude of this gain element is determined by on-line 

tuning to obtain satisfactory transient response.  
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4.2 Simulation Results  

Simulation is carried out for the following cases using Euler's approximation for the 

mode separation scheme.= 

4.2.1 Simulation of open loop dynamics  

The state space model for the plant containing 4 modes is given by 

x1 = x2 

 

x2 = -ω12 x2 

 

x3 = x4 

 

x4 = -ω22 x3 

 

x5 = 

x6 

x6 = 

-ω32 x5 

x3 = x4 

 

x8 = -ω 42 x7 	 (4.5) 

The frequency values are given in Table(2.1). Figure(4.3) to Figure(4.6) show 

the 4 modal velocities. We can see they are not stabilized as there is no control. 

4.2.2 Simulation of closed loop dynamics with:  Nm  = 4, 
No 	= 4 , Ns 	= 6. 

From Table (3.3), we can see that for the given system to get a correct esti nation. 

we need 6 sensors, because at this value the maximum singular value is dropped from 

.9977 to .0101. 

From Figure (3.8) we can see, the estimated modal velocities are the same as 

the modal velocities. Therefore, the system can be stabilized when the estimated 

modal velocities are fed back with proper gain. Table (4.1) contains the values of the 

4 modes at 6 sensors. 
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Table 4.1  Mode Shape Values at 6 Sensors Placed at Equidistant on the Beam 

x X1(x )  X2(x) X3(x ) 	  X4(x ) 

22.66 -.0614 	.1062  -.0864 -.0002 

44.33 	-.1059 .1058 .1226  .0005 

66.5 	-.1214 -.0008 -.0872 -.0001 

88.6 -.1033 	-.1065 .0025 .0010 

110.83 	-.0563 -.1046 -.0872 -.0007 

13:3  .0072  .0037 .0025 .0019 

The state space model of the plant: 

x1 = 

x2 

x2 = 

-ω12 x1 + u1 

x3 = x4                                                              	(4.6) x4 = -(ωc1)2 x3 - 2 ωc1 x4 + (ωc1 )2 │ x2│ 

	e1 = x3 - refer  

x5 = 

e1 

x6 = 

x7 

x7 = -(ω22

)2 x6 + u1 

x8 = x9 x9 = -(ωc2)2 x8 - 2ωe2 x9 + (ωc2

)2 │x7│ 

e2 = 

x8 - refer 

x10 = e2 x11 = x12 x12 = -(ω23)2 x13 - 2ωc3 x14 + (ωc3

) 2 │x12│ 

e3 = x13 - refer 

 

 



x15 = ϵ3 

 

 

x16 = x17  

x17 = -ω42 x16  + u1  

x18 = x19 

x19 = -(ω 4)2 x18  - 2 ω 42 x16  + µ1 

 

 

ϵ4 = x18  - refer  

x20 = e4 	(4.7)  

ẏ1 = -.0614 x2 + 1062 x7 - .1226 x12 + .1061 x17  ẏ2  = -.1059 x2 + .1058 x7 - .0004 x12 + .1063 x17 

 

ẏ3  = -.1214 x2 + .0008 x7 - .1226 x12 + .0005 x17 

 

ẏ4  = -.1033 x2 + .1065 x7 - .0008 x12 + .1059 x17 

 

ẏ5  = -.0563 x 2  + .1046 x7 - .1223 x12 - .1064 x 

 

ẏ6  = +.0072 x2 + .0037 x7 - .0025 x12 - .0019 x17 

 

cal ( x2 ) 

= 22.17 (-.0614 ẏ1  - .1059 ẏ2 - .1214 ẏ3 

 

-.1033 ẏ4 

- 

	.0563 ẏ5 +  .0072 ẏ6)  

ψ1 = cal(x2) + 5.18 133 .0072 ẏ6  cal ( x7) 

= 

 22.17 (.1062 ẏ1 + .1058 ẏ2  - .0008 ẏ3  

-.1065 ẏ4  - .1046  ẏ5  + .0037  ẏ6)  

ψ2 = cal(x7) + 5.18 133.0037 ẏ6 

 

cal ( x12) 

= 22.17 (-.1226 ẏ1  + .0004 ẏ2 + .1226 ẏ3 

 

ψ3 = cal(x12) + 5.18 133 .0025 ẏ6 

 

cal ( x17) 

= 22.17 (.1061 ẏ1  + .1063 ẏ2 + .0005 ẏ3 

 

ca/(3:17 ) = 22.17 (.1061 	- .106:3 // 2  + .0005 :I/3 



+.1059 ẏ4 	— 1064 ẏ5 +  .0019 ẏ6) 	 

ψ4 =  cal(x17 ) + 5.18 133 .0019 ẏ6  

u1 	= refscale (k 1   ψ1  e1 + k2   ψ2  e2  

	+ k3 ψ3 e3  + 

k4    ψ4   e4) 

 

The states 

x 1 

 thru x5  represent the first mode and the its lowpass hiter. similarly 

x6  represent the sermid mode and its lowpass filter. and x11  then  x15  represent 

the third mode and the filter. and 

 

x

1

6;  thru x20  represent the fourth 	mode and its 

filter. 

	

The variables  ẏ1  thru ẏ6  represent the output from the sensors. u1  is the input 

formed from the estimated the estimated mode velocities. ψ1  thru ψ3  represent 

the estimated mode velocities. k1  thrum k4  terms are controller gains for modes  i  = 

1, 2 • • • No . 

From Figures (4.7) thru (4.14), we can see that all the modes are stabilized. 

The gains used for this run together with the gain adjust are 

1. k1 = — 50. 

2. k2  = — 40. 

3. k3 

 = 

 — 30. 

4. k4  = — 20. 

4.2.3 	Simulation of closed loop dynamics with: Nm  = 4, No  = 2, Ns  = 

4 	 

State space model is the same as (4.17), except the difference in the output values, 

and the control. The mode shape values at 4 sensors are given in Table (3.1). The 

output of the sensors. and the control term can be calculated as: 

ẏ1 = —.0867 x2 + .1225 x7 — .0864 x12 — .0002 x 14  



10 

ẏ2 = -.1214 x2 - .0008 x7 + .1226 x12 + .0005 

x14                        ẏ3 = -.0828 x2 - .1221 x7 - .0872 x12 - .0007 x14  ẏ4 = -.0072 x2 - .0037 x7 - .0025 x12 - .0019 x14 

 

cal(x2) = 33.25 

(-.0867 ẏ1 - .1214 ẏ2  - .0828 ẏ3  + 0072 

ẏ4) ψ1 =  cal(x2) 

+ 5.18 133 .0072 ẏ4  

cal(x7 ) = 33.25 (-.1225 ẏ1 - .0008 

ẏ2  + .1221 ẏ3 + .0037 ẏ4) 

 

ψ2 =  cal(x7) 

+ 5.18 133 .0037 ẏ4 

 

u1  = refscale (ψ1 k1 e1 + ψ2 k2 e2) 

From Tahle.(3.2), we ran see that for the given system to get a correct estimation, we 

need .t sensors, because at this value the maximum singuler value is dropped from 

.998 to .0184. 

From Figure(4.15) thru (4.22), we can see the first two modes and their estma- 

tions are good and therefore we are able to control those two modes. 

The gains used for this run together with the gain adjust are 

1. k1  = -90. 

2. k2 =-50. 

4.2.4   Simulation of closed loop dynamics with: Nm  = 4, 

No  = 2, No = 3  

The plant state space model is the same as (3.7). The output from the sensors and 

the input can be calculated as: 

 

ẏ1 = -.1059 x2 + .1058 x7 + .0004 x12 - .1063 x 14 

 

ẏ2 = -.1033 x2 - .1065 x7 - .0008 x12 + .1059 x 14  ẏ3 = -.0072 x2 - .0037x7 - .0008 x12 + .1059 x 14 

 

cal(x2)  = 33.25 (-.1059  ẏ1 - .10:33 ẏ2 

+ 

.0072 ẏ3) 
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ψ1 =  cal(x2) 

+ 5.18 133 .0072 ẏ3 

 

cal(x2) = 33.25 (.1058 ẏ1 - .1065 ẏ2 + .0037 ẏ3)  ψ2 =  cal(x7) 

+ 5.18 133 .0037 ẏ3 

 

u1 = refscale (ψ1 k1 e1 

+ ψ2 k2 e2)  

The maximum singular for this system is calculated as .9937. From chapter 2. we 

know that the for good estimation we need, at least 4 sensors. otherwise estimated 

velocities do not agree with the mode velocities. From Figure(4.23) thru (4.26), we 

can see that the estimation is wrong, and the system can not be stabilized. 

The gains used for this run together with the gain adjust are 

1. k1  = —4.7. 

2. k2  = —1. 

4.3  Discussions  

From simulation results, we can see, when the maximum singular value is less, we will 

get correct estimation of mode velocities, and by feeding back the correct estimated 

value, we can stabilize the system from sections (4.2.2. and 3.2.3). 

From section 3.2.4, we can see when the maximum singular value is around 

I, we will not correct estimation of mode velocities, thereby unable to stabilize the 

system.  

The theoretical results obtained in chapter 2 are verified through simulation.  
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CHAPTER 5 

SENSORS  

Certain solid-state materials are electrically responsive to mechanical force. These 

materials are often used in the transduction of mechanical phenomena to electrical 

phenomena. These materials can be divided into two main categories: 

1. Self generating type - applied force generates electrical charge: 

2. Passive circuit type - applied force causes a change in the electrical character-

istics of the material. 

Piezoelectric materials are of the self-generating type. The piezoelectric effect arises 

because when an asymmetric crystal lattice is distorted, an internal charge reorien-

tation takes place, and this causes a relative displacement of positive and negative 

charges to opposite outer surfaces of the crystal. 

The piezoelectric charge constant relates stress to charge density and piezoelec-

tric force constant relates strain to electric field. Piezoelectric sensors are basically 

dielectrics with a high hut finite leakage resistance. Tins insulating property allows 

the sensor to be modeled as a parallel-plate capacitor. The internal parallel plate 

structure of the sensor with lossy medium, characterized by conductivity σ, permi- 

tivity e 	is shown in Figure(5.1). 

5.1 Low-frequency Equivalent Circuit  
The total induced charge produced on the sensor is directly proportional to the applied 

force: 

q=p F=k1 F 	(5.1)  

where p is the piezoelectric constant, in coulombs per newton. 

Within elastic limits, a force applied to a sensor surface deflects it according to 

F = k2  x                                               (5.2)  
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Figure 5.1  Parallel Plate Structure of Piezoelectric Transducer 

where x is displacement. 

By substituting equation (5.2) into equation (5.1) 

q = k1 k2 x = K x 	(5.3) 

The charge generator can be converted to a current generator by differentiation 

and we can model an equivalent circuit as shown in Figure(5.2) 

 it =  dq/dt =  K dx/dt 
	(5.4) 

where 

dx/dt 

 is the pick off velocity , we are interested. 

The capacitance between two parallel plates of length 1, width w, separated by 

a distance d is 

 
C =  ε 	l w / d (5.5) 

where ε  is the permitivity constant of the medium. 



Figure 5.2  Low Frequency Equivalent Circuit of Piezoelectric. Transducer  

Similarly, resistance is given by 

R = d/σwl 	(5.6) 

where σ  is conductivity of the medium. 

In frequency domain, the input admittance Y  of the structure is given by 

 
Y  = 1/V = jωC +  1/R 	(5.7) 

V = I  R/ 1+ jwRC                                                   (5.8)  = I  R-
jwRC/ 1+( wRC)2 

 

At low frequencies, ωRC <<< 1 , reducing (5.8) to 

	

V = IR 	 (5.9) 

Figure(5.3) shows frequency response of a piezoelectric transducer.  
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Figure 5.3  Frequency Response of Piezoelectric Transducer 
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5.2 Application to the Beam Experiment  
Each sensor is placed on the beam where we want to measure the velocity. Suppose 

we want to control the first mode. The value of the ith mode shape can be calculated 

from equation (2.9), at that particular point on the beam where the sensor is placed. 

and incorporated in the sensor as an scale factor as described below. 

Using Euler's estimation from equation 3.4, we have 

∫0 l  ẏi (x,t)Xi(x)dx = ∑ ẏ(kh) Xi (kh) h 
k=1 

Now the voltage from that particular sensor is proportional to the term ẏ(kh, t ) , 

where x = kh is the pick off point, the sensor is placed on the beam. Now our aim 

is to incorporate the value of Xi (k h)  as a gain on the sensor. We can do this by 

changing the values of R in equation 5.9. 

Depending on the output signal, either voltage or current, we are interested to 

measure, X i ( x ) can be made either directly proportional to R, or inversely propor-

tional to R. 

Suppose we are interested in measuring voltage signal, from (5.9) and (5.4), we 

have 
 

V = K  dx/dt R        	(5.10)  

By comparing (5.10) and (3.4) 

Xi( x ) 

 α  R 	

(5.11) 

 

Substituting the value of R from (5.6), we have 

Xi( x ) 

 α  

d/ σwl 	(5.12) 

Now, if we connect all the sensors in series, as shown in Figure(5.4). the resulting 

voltage will give the velocity of the ith mode. 

Suppose, if we want to measure current signal, from (5.9) and (5.4), we have 

 
Is  = K dx/dt = 1 R/Rs+R                       

(5.13) 
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Since Rs  >>>  R  

X i ( x ) α  R 	 (5.14)  

Now, if we connect all the sensors in parallel, as shown in Figure(5.5). the 

resulting current will give the velocity of the ith mode. 

Therefore. changing the effective surface area (i.e. ω  or l)  of the piezoelec-

tric wafer can provide the necessary gain (mode shape at kh, k = 1,2, • • , Ns  for 

integration. 

Suppose. we want to control multiple number modes. Instead of using one sensor 

for each mode, we can take advantage of smart materials and reduce the number of 

sensors by a factor, equal to the number of modes, to be controlled. Using smart 

materials, we can implant multiple number of sensors in a single chip. On each sensor 

the value of mode we want to control will be placed by fetching different surface 

areas. And all the sensors that belong to a particular mode are connected in either 

series or parallel depending on the signal we want to measure. Figure (5.6) shows a 

piezoelectric wafer, containing multiple number of sensors. 

Signal Conditioning: 

There are two methods for conditioning the signals from piezoelectric trans-

ducer. 

1. Voltage amplification 

2. Charge amplification 

Voltage Amplification: 

In voltage amplification, the amplifier must have a high input impedance, be-

cause the addiction of cable capacitance reduces the voltage signal seen by the am-

plifier. This can be avoided, by making use of a voltage follower circuit with high 

input impedance, which converts the signal from the high-impedance transducer to a  
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Figure 5.5  Parallel Implementation for Measuring ith Mode Velocity  



Figure 5.6  Piezoelectric Wafer Containing Multiple Number of Sensors 

voltage output at low impedance. The voltage follower (unity gain), voltage amplifier 

with gain equal to ( R2  + R1 )/R1  is shown in Figure(5.7). Sensor signal conditioning 

devices such as the TLC2272/4 opamp features a 1012 Ω input impedance could be 

used in this application. 

Charge Amplification: 

This method makes use of the fact that the low frequency response of the 

transducer-amplifier system is independent of transducer and cable capacitance. As 

shown ill Figure(5.8), the input of the high-impedance amplifier is a virtual ground. 

Therefore, all of the charge generated then flows to the feedback capacitor, and the 

output voltage is the negative of the voltage on the capacitor. A large feedback 

resistor must be added across the capacitor, to avoid the output voltage drift. caused 

by opamp bias currents.  

4 
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Figure 5.7  Voltage Amplifier: a) unity gain; b) with gain 
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Figure 5.8  Charge Amplifier 



CHAPTER 6 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE 
RESEARCH  

Three objectives have been attained in this work: modelling of flexible beam dynam-

ics. estimation of modal velocities using, numerical methods, and stabilization of a 

flexible beam. The approach used in this work consists of 3 stages : 

1. Determine the model structure and plant parameters, such as the natural fre-

quencies, and mode shapes. 

2. Estimating, modal velocities by using numerical methods. 

3. Stabilize and regulate beam dynamics by feeding hack the estimated modal 

velocities, with proper gain. 

Stage 1 is carried out, by applying classical beam theory.  In stage 2, Enler's 

and Simpson's methods are used for estimating modal velocities. and a method for 

finding the number of sensors needed for good estimation is described. In stage 3. 

stabilization regulation of beam dynamics is carried out, by employing the scheme 

described in stage 2, and simulations have been carried out, using the ALSIM software. 

In conclusion, the simulation results, established the scheme described in stage 2. 

As for future development, the above scheme can be implemented using a smart 

material beam, sensors and a properly set up hardware.. For example, a TV S320C25 

DSP card can be used for signal processing and interfacing. The number of sen-

sors required can be further reduced, by coining up with a more efficient integration 

technique.  
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APPENDIX 

1. BEAM PROPERTIES  

Dimension 	 :   133" x 3" x 3/16" 
Liner density 	 :   p = 0.158 lb/in. 
Young's Modulus 	 : 	E = 2.9x 107

lb/in2
. 

Area Moment of Inertia 	:   I  =bh3/12 = 1.6.5x10-3 n4  
End mass to Beam Mass Ratio   :   K = 5.18  

2. MATLAB ROUTINES  

2.1 To calculate Maximum Singular Values Of (M -I) matrix Euler 

Approximation. 

1 = 133; 	% length of the beam 
K = 5.18; 	% ratio of end mass to beam mass 
m = 20; 	% number of modes 
n = 34; 	% number of sensors 
h = l/n; 	% spacing between sensors 
i = 1:1:20;  % index for number of modes 

j = 1:1:n;  % index for number of sensors 
I = eye(m,m) 

12 = [ eye(2,2) zeros(2,m-2) ] 
14 = [ eye(4,4) zeros(4,m-4) ] 
16 = 	eye(6,6) zeros(6,m-6) ] 
%MU(i) term 

U(i)=[ 3.1711 6.2983 9.4349 12.574 15.7141 18.8546 21.9955 25.1366 .. 
28.2777 31.419 34.5603 37.7017 40.8431 43.9845 47.1259 50.2674 .. 
53.4089 56.5504 59.6919 62.8334 ] ;  

%points at where the sensors are placed on the beam 
for j = 1:1:n 

x(j) = h*j; 
end; % 

% the following loop calulates the constant terms that are needed for 
% calulating mode shapes, velocities 
for i = 1:1:m 
% square of cotangent term for calculating B(i) 

ctsqr(i) = (cos(U(i))*cos(U(i)))/(sin(U(i))*sin(U(i))); 
% square of hyperbolic cotangent term for calculating B(i) 

cthsqr(i) = (cosh(U(i))*cosh(U(i)))/(sinh(U(i))*sinh(U(i))); 
% B(i) term from your project for calculating mode shapes 

B(i) = 1/(sqrt(1*(K+1+.5*(ctsqr(i)-cthsqr(i))))); %  
end; % 

% the following loops calulate modes at differnt points on the beam 
% the j loop is for different sensors(points on beam) 
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% the i loop is for different modes 
for j = 1:1:n 
for i = 1:1:m 

% sine term for calculating mode shapes 
sn(i,j) = (sin((U(i)*x(j))/1))/(sin(U(i))); 

% heperbolic sine term for calculating mode shapes 
snh(i,j) = (sinh((U(i)*x(j))/I))/(sinh(U(i))); 

% calculation of mode shapes at different points on the beam 
X(i,j) = B(i)*(sn(i,j)+snh(i,j)); 
end; 
end; 

for i = 1:1:m 
for k = 1:1:m 
Mode(i,k) = 0; 
for j = 1:1:n 
Mode(i,k) = X(i,j)*X(k,j)*h + Mode(i,k); 

end; 
Mode(i,k) = Mode(i,k) + 4*K*l*B(i)*B(k); 
end; 
end; 
for i = 1:1:m 
for k = 1:1:m 
M = Mode(1:m,1:m) 
M2 = Mode(1:2,1:m) 
M4 = Mode(1:4,1:m) 
M6 = Mode(1:6,1:m) 
end; 
end; 
SgM = (M -I) 
SgM2 = (M2-12) 
SgM4 = (M4 - 14) 
SgM6 = (M6 - 16) 
Sgv12034 = svd(SgM)   % singular values, for Nm = 20, Ns = 34, No =20. 
Sgv120342 = svd(SgM2) % singular values, for Nm = 20, Ns = 34, No =2. 
Sgv120344 = svd(SgM4) % singular values, for Nm = 20, Ns = 34, No =4. 
Sgv120346 = svd(SgM6) % singular values, for Nm = 20, Ns = 34, No =6 

2.2 To calculate Velocity of Each Mode and it's Estimation, Using Euler's 

Approximation. 

s = 0; 	% damping 
Qo = .1; 	% initial displacement 
dervQo = .1; % intial velocity 
l = 133; K = 5.18;  



m = 20; 
n = 22; 
i = 1:1:20; 
j = 1:1:n; 

h = 1/n; 
for j = 1:1:n 
x(j)=j*h; 
end; 

,MU(i) term 
U(i)=[ 3.1711 6.2983 9.4349 12.574 15.7141 18.8546 21.9955 25.1366 .. 

28.2777 31.419 34.5603 37.7017 40.8431 43.9845 47.1259 50.2674 .. 
53.4089 56.5504 59.6919 62.8334 ]; 

W(i) = 	.3128 1.2341 2.7694 4.9188 7.6822 11.0597 15.0514 19.6572 .. 
24.877 30.711 37.159 44.2212 51.8975 60.1878 69.0921 78.6108 .. 
88.7435 99.4902 110.8511 122.826 ]; 

for i = 1:1:m 

ctsqr(i) = (cos(U(i))*cos(U(i)))/(sin(U(i))*sin(U(i))); 
cthsqr(i) = (cosh(U(i))*cosh(U(i)))/(sinh(U(i))*sinh(U(i))); 
B(1) = 1/(sqrt(1*(K+1+.5*(ctsqr(i)-cthsqr(i))))); 
Wd(i) = W(i)*sqrt(1-(s*s)); 
a(i) = (dervQo + (s*W(i)*Qo))/Wd(i); 
A(i) = sqrt((Qo*Qo) + (a(i)*a(i))); 
alph(i) = atan((dervQo +(s*W(i)*Qo))/(Wd(i)*Qo)); 
end; 

for i = 1:1:m 
for j = 1:1:n 

sn(i,j) = (sin((U(i)*x(j))/1))/(sin(U(i))); 

snh(i,j) = (sinh((U(i)*x(j))/1))/(sinh(U(i))); 
X(i,j) = B(i)*(sn(i,j)+snh(i,j)); 
end; 

end; 

t = 1:1:100; % index for time 
T(1) = 0; % intializing time 
% the following for loop decides at which instants(time) the derivative 
% term (velocity) has to be calculated 
for t = 2:1:100 

T(t) = T(t-1)+.1; % time is incremented by .1 
end; 

% the following loops calculate different modes at difeerent points 
% on the beam at differnt instants of time 
% t loop for differnt instants of time 

j loop for different sensors (points) on the beam 
% i loop for differnt modes 

for t = 1:1:100 
for i = 1:m 

%constant term for calculating velocity, PHIdot from your project 

80 



cl(i,t)=((-A(i))*exp((-s)*W(i)*T(t))); 
%calculation of velocity,PHIdot form your project 
dervQ(i,t)=q(i,t)*((s*W(i)*cos(Wd(i)*T(t)-alph(i)))+(Wd(i)*sin(Wd(i) 
*T(t)-alph(i)))); 
end; 
end; 
for t = 1:1:100 
for 3 = 1:1:n 
dervY(j,t) = 0; 
%calculation ofvelocity of beam, Ydot from your project 
for i = 1:1:m 

dervY(j,t) = (X(i,j)*dervQ(i,t)) + dervY(j,t); 
end; 
end; 
end; 

%the following loops calculate the Estimating term of velocity 
%which is SIGHdot from your notes 
for t = 1:1:100 
for i = 1:1:m 
dervchi(i,t) = 0; 
for j = 1:n 

dervchi(i,t)=(dervY(j,t)*X(i,j)*h)+dervchi(i,t); 
end; 

dervchi(i,t) = K*1*dervY(n,t)*X(i,n) + dervchi(i,t); 
end; 

end 

2.3. To calculate Maximum Singular Values Of (M-I) matrix For 

Simpson's Approximation. 

1 = 133; % length of the beam 
K = 5.18; % ratio of end mass to beam mass 
m = 20; % number of modes 

n = 26; % number of sensors 
h = 1/n; %spacing between sensors 
i = 1:1:20; % index for number of modes 

j = 1:1:n; % index for number of sensors 

I = eye(m,m) 

12 = 	eye(2,2) zeros(2,m-2) ] 

14 = [ eye(4,4) zeros(4,m-4) ] 

16 = 	eye(6,6) zeros(6,m-6) 
%MU(i) term 

U(i)=[ 3.1711 6.2983 9.4349 12.574 15.7141 18.8546 21.9955 25.1366 .. 
28.2777 31.419 34.5603 37.7017 40.8431 43.9845 47.1259 50.2674 .. 

53.4089 56.5504 59.6919 62.8334 ]; 



% points at where the sensors are placed on the beam 

for j = 1:1:n 

x(j) = h*j; 

end; 

% the following loop calulates the constant terms that are needed for 

'/,calulating mode shapes, velocities 

for i = 1:1:m 

% square of cotangent term for calculating B(i) 

ctsqr(i) = (cos(U(i))*cos(U(i)))/(sin(U(i))*sin(U(i))); 

% square of hyperbolic cotangent term for calculating B(i) 

cthsqr(i) = (cosh(U(i))*cosh(U(i)))/(sinh(U(i))*sinh(U(i))); 

% B(i) term from your project for calculating mode shapes 

B(i) = 1/(sqrt(1*(K+1+.5*(ctsqr(i)-cthsqr(i))))); % 

end; 

% the following loops calulate modes at differnt points on the beam 

% the j loop is for different sensors(points on beam) 

% the i loop is for different modes 

for j = 1:1:n 

for i = 1:1;m 

% sine term for calculating mode shapes 

sn(i,j) = (sin((U(i)*x(j))/1))/(sin(U(i))); 

% heperbolic sine term for calculating mode shapes 

snh(i,j) = (sinh((U(i)*x(j))/1))/(sinh(U(i))); 

% calculation of mode shapes at different points on the beam 

X(i,j) = B(i)*(sn(i,j)+snh(i,j)); 

end; 

end; 

for i = 1:1:m 

for k = 1:1:m 

Mode(i,k) = 0; 

for j = 1:1:n 

if ((rem(j,2) == 0) & (j == n)) 

Mode(i,k) = X(i,j)*X(k,j) + Mode(i,k) 

elseif ((rem(j,2) == 0) & (j ~= n)) 

Mode(i,k) = 2*(X(i,j)*X(k,j)) + Mode(i,k) 

else 

Mode(i,k) = 4*(X(i,j)*X(k,j)) + Mode(i,k) 

end; 

end; 

Mode(i,k) =(1/(3*n))*Mode(i,k) + 4*K*1*B(i)*B(k); 

end; 

end; 

M = Mode(1:m,1:m) 

M2 = Mode(1:2,1:m) 

M4 = Mode(1:4,1:m) 

M6 = Mode(1:6,1:m) 



SgM = (M -I) 

SgM2 = (M2-12) 

SgM4 = (M4 - 14) 

SgM6 = (M6 - 16) 

Sgv12026 = svd(SgM) 

Sgv120262 = svd(SgM2) 

Sgv120264 = svd(SgM4) 

Sgv120266 = svd(SgM6) 

2.4 To calculate Velocity of Each Mode and it's Estimation, Using 

Simpson's Approximation. 

s = 0; 
go = .1; 

dervQo = .1; 

1 = 133; 

K = 5.18; 

m= 4; 

n = 6; 

i = 1:1:20; 

j = 1:1:n; 

h = 1/n; 

for j = 1:1:n 

x(j)=j*h; 

end; 

%MU(i) term 
U(i)=[ 3.1711 6.2983 9.4349 12.574 15.7141 18.8546 21.9955 25.1366 .. 

28.2777 31.419 34.5603 37.7017 40.8431 43.9845 47.1259 50.2674 .. 

53.4089 56.5504 59.6919 62.8334 ]; 

W(i) =[ .3128 1.2341 2.7694 4.9188 7.6822 11.0597 15.0514 19.6572 .. 

24.877 30.711 37.159 44.2212 51.8975 60.1878 69.0921 78.6108 

88.7435 99.4902 110.8511 122.826 1; 
for i = 1:1:m 

ctsqr(i) = (cos(U(i))*cos(U(i)))/(sin(U(i))*sin(U(i))); 

cthsqr(i) = (cosh(U(i))*cosh(U(i)))/(sinh(U(i))*sinh(U(i))); 

B(i) = 1/(sqrt(1*(K+1+.5*(ctsqr(i)-cthsqr(i))))); 

Wd(i) = W(i)*sqrt(1-(s*s)); 

a(i) = (dervQo + (s*W(i)*Qo))/Wd(i); 

A(i) = sqrt((Qo*Qo) + (a(i)*a(i))); 

alph(i) = atan((dervQo +(s*W(i)*Qo))/(Wd(i)*Qo)); 

end; 

for i = 1:1:m 

for j = 1:1:n 

sn(i,j) = (sin((U(i)*x(j))/1))/(sin(U(i))); 

snh(i,j) = (sinh((U(i)*x(j))/1))/(sinh(U(i))); 

 

 



X(i,j) = B(i)*(sn(i,j)+snh(i,j)); 
end; 
end; 

t = 1:1:100; % index for time 
T(1) = 0; % intializing time 

% the following for loop decides at which instants(time) the derivative 
% term (velocity) has to be calculated 

for t = 2:1:100 
T(t) = T(t-1)+.1; % time is incremented by .1 
end; 

Y. 
% the following loops calculate different modes at difeerent points 
% on the beam at differnt instants of time 
% t loop for differnt instants of time 
% j loop for different sensors (points) on the beam 
% i loop for differnt modes 

for t = 1:1:100 
for i = 1:m 

'/,constant term for calculating velocity, PHIdot from your project 
q(i,t)=((-A(i))*exp((-s)*W(i)*T(t))); 

'/,calculation of velocity,PHIdot form your project 
dervQ(i,t)=q(i,t)*((s*W(i)*cos(Wd(i)*T(t)-alph(i)))+(Wd(i)*sin(Wd(i) 

*T(t)-alph(i)))); 
end; 

end; 
for t = 1:1:100 
for j = 1:1:n 
dervY(j,t) = 0; 
'/,calculation ofvelocity of beam, Ydot from your project 

for i = 1:1:m 
dervY(j,t) = (X(i,j)*dervQ(i,t)) + dervY(j,t); 

end; 
end; 

end; 
'/,the following loops calculate the Estimating term of velocity 
'/,which is SIGHdot from your notes 
for t = 1:1:100 
for i = 1:1:m 
dervchi(i,t) = 0; 

%summation of velocity(beam-Ydot) terms at differnt points on beam 

for j = 1:1:n 
if ((rem(j,2) == 0) 8c (j == n)) 

dervchi(i,t) = dervY(j,t)*X(i,j) + dervchi(i,t) 
elseif ((rem(j,2) == 0) & (j ~= n)) 

dervchi(i,t) = 2*(dervY(j,t)*X(i,j)) + dervchi(i,t) 
else 

dervchi(i,t) = 4*(dervY(j,t)*X(i,j)) + dervchi(i,t) 



end; 
end; 

dervchi(i,t) = (1/(n*3))*dervchi(i,t) + (dervY(n,t)*X(i,n)*K*l); 
end; 

end 

3. ALSIM FILES for SIMULATION 

3.1 SIMULATION OF OPEN LOOP DYNAMICS for Vm = 4. 

3.1.1 Dynamic File 

#include "\ALSIM\ALSIM.H" 
#include "MATH.H" 
#include "STDIO.H" 
#define omega12 	fpar[1] 
#define omega22 	fpar[2] 
#define omega32 	fpar[3] 
#define omega42 	fpar[4] 

/* 
** User state derivative function. 
*/ 

derv(t, x, dxdt) 
double t, *x, *dxdt; 
{ 
dxdt [1] = x [2] ; 
dxdt[2] = -omega12*x[1]; 

dxdt [3] = x[4]; 
dxdt[4] = -omega22*x[3]; 

dxdt [5] = x [6] ; 
dxdt[6] = -omega32*x[5]; 

dxdt [7] = x [8] ; 
dxdt[8] = -omega42*x[7]; 

} 

3.1.2 Rundata File 

;initial time 
100. 	;final time 
0.01 	;maximum stepsize 
1.0e-6 ;minimum stepsize 
0.001 	;fractional error criterion 



200 	;multiple of maximum stepsize for print output 

20 	;multiple of maximum stepsize for plot output 

8 	;number of plant states 

0       ;number of plant inputs 

0       ;number of plant outputs 

0       ;number of controller states 

0 	;size of user defined plot vector 

0       ;size of user common area 

0 	;size of gaussian random number vector 

;vector multiplied by sqrt(hmax) to provide approx. uniform 

;variance for variable stepsize 
318 	;random number seed 
272 	;random number seed 
190 	;random number seed 

0       ;number of user defined integer input parameters 
0,0 	;end integer input parameters 

4 	;number of user defined floating point input parameters 
1,.0978 	;omega12 

2,1.523 	;omega22 

3,7.6696  ;omega32 
4,24.1946 ;omega42 
0,0 	;end floating point input parameters 

1,.02 	; 

3,.02 	; 

5,.02 	; 

7,.02 	; 
0,0 	;end plant initial conditions 

0,0 	;end controller initial conditions 

3.2 SIMULATION OF CLOSED LOOP DYNAMICS for Nm = 4, No 

=4, Ns =6. 

3.2.1 Dynamic File 

#include "\ALSIM\ALSIM.H" 

#include "MATH.H" 

#include "STDIO.H" 

#define omega12 	fpar[1] 



#define cutoff12 	fpar[2] 
#define cutofflsq2 fpar[3] 
#define refer 	fpar[4] 
#define ppgain1 	fpar[5] 
#define intgain1 	fpar[6] 
#define omega22 	fpar[7] 
#define cutoff22 	fpar[8] 
#define cutoff2sq2 fpar[9] 
#define ppgain2 	fpar[10] 
#define intgain2 	fpar[11] 
#define omega32 	fpar[12] 
#define cutoff32 	fpar[13] 

#define cutoff3sq2 fpar[14] 
#define ppgain3 	fpar[15] 
#define intgain3 	fpar[16] 
#define omega42 	fpar[17] 
#define cutoff42 	fpar[18] 
#define cutoff4sq2 fpar[19] 
#define ppgain4 	fpar[20] 
#define intgain4 	fpar[21] 
#define refscale 	fpar[22] 
float est_x2,cal_x2,est_x7,cal_x7,est_x12; 
float cal_x12,est_x17,cal_x17; 

/* 
** User state derivative function. 
*/ 

derv(t, x, dxdt) 

double t, *x, *dxdt; 
{ 

dxdt [1] = x [2] ; 
dxdt[2] = -omega12*x[1]+ u[1]; 
plotout[1] = fabs(x[2]); 
dxdt [3] = x 	; 
dxdt[4] = -cutoff12*x[3] -cutofflsq2*x[4] + cutoff12*plotout[1]; 
plotout[2] = x[3]-refer; 
dxdt[5] = plotout[2]; 

dxdt [6] = x[7]; 
dxdt[7] = -omega22*x[6] + u[1]; 

plotout[3] = fabs(x[7]); 
dxdt [8] = x[9]; 

dxdt[9] = -cutoff22*x[8] -cutoff2sq2*x[9] +cutoff22*plotout[3]; 
plotout[4] = x[8] - refer; 

dxdt [10] = plotout[4]; 
dxdt[11] = x[12]; 
dxdt[12] = -omega32*x[11] 	u[1]; 
plotout[S] = fabs(x[12]); 
dxdt[13] = x[14]; 



dxdt[14] = -cutoff32*x[13] -cutoff3sq2*x[14] + cutoff32*plotout[5]; 
plotout [6] = x [13] -refer; 
dxdt[15] = plotout[6]; 
dxdt[16] = x[17]; 
dxdt[17] = -omega42*x[16] + u[1]; 
plotout[7] = fabs(x[17]); 
dxdt[18] = x[19]; 
dxdt[19] = -cutoff42*x[18] -cutoff4sq2*x[19] + cutoff42*plotout[7]; 
plotout[8] = x[18] - refer; 
dxdt [20] = plotout[8];  
y[1]  = -.0614*x[2] +.1062*x[7] -.1226*x[12] +.1061*x[17]; 

y[2]  = -.1059*x[2] +.1058*x[7] +.0004*x[12] -.1063*x[17]; 
y[3]  = -.1214*x[2] -.0008*x[7] +.1226*x[12] +.0005*x[17]; 
y[4] = -.1033*x[2] -.1065*x[7] -.0008*x[12] +.1059*x[17]; 
y[5] = -.0563*x[2] -.1046*x[7] -.1223*x[12] -.1064*x[17]; 

y[6] = +.0072*x[2] +.0037*x[7] +.0025*x[12] +.0019*x[17]; 
cal_x2 =22.17*(-.0614*y[1]-.1059*y[2]-.1214*y[3]-.1033*y[4]-.0563*y[5] 

+.0072*y[6]); 
est_x2 = cal_x2 + 5.18*133*.0072*y[6]; 
cal_x7 =22.17*(.1062*y[1]+.1058*y[2]-.0008*y[3]-.1065*y[4]-.1046*y[5] 

+.0037*y[6]); 
est_x7 = cal_x7 + 5.18*133*.0037*y[6]; 
cal_x12=22.17*(-.1226*y[1]+.0004*y[2]+.1226*y[3]-.0008*y[4]-.1223*y[5] 

+.0025*y[6]); 
est_x12 = cal_x12 + 5.18*133*.0025*y[6]; 
cal_x17 =22.17*(.1061*y[1]-.1063*y[2]+.0005*y[3]+.1059*y[4]-.1064*y[5] 
+.0019*y[6]); 
est_x17 = cal_x17 + 5.18*133*.0019*y[6] 

u[1] = refscale*(ppgainl*est_x2*plotout[2]+ppgain2*est_x7*plotout[4] 
+ ppgain3*est_x12*plotout[6] + ppgain4*est_x17*plotout[8] ); 

} 

3.2.2 Rundata File  

0 
	;initial time 
400. 	;final time 
0.25 	;maximum stepsize 
1.0e-6 ;minimum stepsize 
0.001 	;fractional error criterion 

200 	;multiple of maximum stepsize for print outpu

t  5        ;multiple of maximum stepsize for plot output 

20 	;number of plant states 
1 	;number of plant inputs 
6 	;number of plant outputs 



0       ;number of controller states 

8 	;size of user defined plot vector 

0 	;size of user common area 

0       ;size of gaussian random number vector 
;vector multiplied by sqrt(hmax) to provide approx. uniform 

;variance for variable stepsize 
318 	;random number seed 

272 	;random number seed 
190 	;random number seed 

0       ;number of user defined integer input parameters 

0,0 	;end integer input parameters 

22 	;number of user defined floating point input parameters 

1,.0978 	;omega12 

2,.0009 	;cutoff12 

3,.0442 	;cutoff1sq2 

4,0 	;refer 

5,-.5 	;ppgain1 

6,0. 	;intgain1 

7,1.523 	;omega22 

8,.0152 	;cutoff22 

9,.1745 	;cutoff2sq2 

10,-.4 	;ppgain2 
11,0. 	;intgain2 

12,7.6696 ;omega32 

13,.0767  ;cutoff32 

14,.3916  ;cutoff3sq2 

15,-.3 	;ppgain3 

16,0. 	;intgain3 

17,24.1946 ;omega42 

18,.2419 	;cutoff42 

19,.6955 	;cutoff4sq2 

20,-.2 	;ppgain4 

21,0. 	;intgain4 

22,100 	;refscale=10 for Orefer, .9 for 1 refer,.476 for 2refer 

0,0 	;end floating point input parameters 

1,.02 	; 

6,.02 	; 

11,.02 	; 

16,.02 	; 

0,0 	;end plant initial conditions 

0,0 	;end controller initial conditions 



3.3 SIMULATION OF CLOSED LOOP DYNAMICS for Nm = 4, No 

=2, Ns =4. 

3.3.1 Dynamic File  

#include "\ALSIM\ALSIM.H" 

#include "MATH.H" 

#include "STDIO.H" 

#define omega12 	fpar[1] 

#define cutoff12 	fpar[2] 

#define cutoff1sq2   fpar[3] 

#define refer 	fpar[4] 

#define ppgain1 	fpar[5] 

#define intgain1 	fpar[6] 

#define omega22 	fpar[7] 

#define cutoff22 	fpar[8] 

#define cutoff2sq2   fpar[9] 

#define ppgain2 	fpar[10] 

#define intgain2 	fpar[11] 

#define omega32 	fpar[12] 

#define cutoff32 	fpar[13] 

#define cutoff3sq2   fpar[14] 

#define omega42 	fpar[15] 

#define cutoff42 	fpar[16] 

#define cutoff4sq2   fpar[17] 

#define refscale 	fpar[18] 

/* 

** User state derivative function. 

*/ 

derv(t, x, dxdt) 

double t, *x, *dxdt; 

{ 

static float est_x2 = 0.,cal_x2 = 0.,est_x7 =0. 	 = 0.; 

dxdt[1] = x[2]; 

dxdt[2] = -omega12*x[1]+u[1]; 

plotout[1] = fabs(x[2]); 

dxdt[3] = x[4]; 

dxdt[4] = -cutoff12*x[3] -cutofflsq2*x[4] + cutoff12*plotout[]; 

plotout[2] = x[3]-refer; 

dxdt[5] = plotout[2]; 

dxdt [6] = x[7]; 

dxdt[7] = -omega22*x[6] + u[1]; 

plotout[3] = fabs(x[7]); 

dxdt[8] = x[9]; 

dxdt[9] = -cutoff22*x[8] -cutoff2sq2*x[9] +cutoff22*plotout[3]; 

plotout[4] = x[8] - refer; 

90 



dxdt[10] = plotout[4]; 
dxdt [11] = x [12] ; 
dxdt[12] = -omega32*x[11] + u[1]; 
dxdt[13] = x[14]; 
dxdt[14] = -omega42*x[13] + u[i]; 
y[1] = -.0867*x[2] +.1225*x[7] -.0864*x[12] -.0002*x[14]; 

y[2] = -.1214*x[2] -.0008*x[7] +,1226*x[12] +.0005*x[14]; 
y[3] = -.0828*x[2] -.1221*x[7] -,0872*x[12] -.0007*x[14]; 

y[4] = .0072*x[2] +.0037*x[7] +.0025*x[12] +.0019*x[14]; 
cal_x2 = 33.25*(-.0867*y[1] -.1214*y[2]-.0828*y[3]+.0072*y[4]); 
est_x2 = cal_x2 + 5.18*133*.0072*y[4]; 
cal_x7 = 33.25*(.1225*y[] -.0008*y[2]-.1221*y[3]+.0037*y[4]); 
est_x7 = cal_x7 + 5.18*133*.0037*y[4]; 
u[1] = refscale*(est_x2*ppgainl*plotout[2] +est_x7*ppgain2*plotout[4]); 
plotout[5] = est_x2; 
plotout[6] = x[2] - est_x2; 
plotout[7] = est_x7; 
plotout[8] = x[7] - est_x7; 
} 

3.3.2 Rundata File  

;initial time 
400. 	;final time 
0.01 	;maximum stepsize 
1.0e-6  ;minimum stepsize 
0.001 	;fractional error criterion 
200 	;multiple of maximum stepsize for print output 
20 	;multiple of maximum stepsize for plot output 

14 	;number of plant states 
1 	;number of plant inputs 
4 	;number of plant outputs 
0 	;number of controller states 

8 	;size of user defined plot vector 

0 	;size of user common area 
0 	;size of gaussian random number vector 

;vector multiplied by sqrt(hmax) to provide approx. uniform 
;variance for variable stepsize 

318 	;random number seed 
272 	;random number seed 
190 	;random number seed 

0 	;number of user defined integer input parameters 
0,0 	;end integer input parameters 
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18 	;number of user defined floating point input parameters 

1,.0978 	;omega12 

2,0009 	;cutoffl2 

3,.0442 	;cutofflsq2 
4,0 	;refer 

5.-.9 	;ppgainl 
6,0 	;intgain1 

7,1.523 	;omega22 

8,.0152 	;cutoff22 

9,.1745 	;cutoff2sq2 
10,-.5 	;ppgain2 

11,0 	;intgain2 
12,7.6696 ;omega32 
13,.0767  ;cutoff32 
14,.3916  ;cutoff3sq2 
15,24.1946 ;omega42 
16,.2419 	;cutoff42 
17,.6955  ;cutoff4sq2 

18,100 	;refscale=10 for Orefer, .9 for 1 refer 

0,0 	;end floating point input parameters 

1,.02 	; 

6,.02 	; 
11,.02 	; 
13,.02 	; 
0,0 	;end plant initial conditions 

0,0 	;end controller initial conditions 

3.4 SIMULATION OF CLOSED LOOP DYNAMICS for Nm = 4, No 

=2, Ns =3.  

3.3.1 Dynamic File  

#include "\ALSIM\ALSIM.H" 
#include "MATH.H" 
#include "STDIO.H" 
#define omegal2 	fpar[1] 
#define cutoff12 	fpar[2] 
#define cutoff1sq2  fpar[3] 
#define refer 	fpar[4] 
#define ppgainl 	fpar[5] 
#define intgainl 	fpar[6] 
#define omega22 	fpar[7] 
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#define cutoff22 	fpar[8] 
#define cutoff2sq2 fpar[9] 
#define ppgain2 	fpar [10] 
#define intgain2 	fpar[11] 
#define omega32 	fpar[12] 
#define cutoff32 	fpar[131 
#define cutoff3sq2 fpar[14] 
#define omega42 	fpar[15] 
#define cutoff42 	fpar[16] 
#define cutoff4sq2 fpar[17] 
#define refscale 	fpar[18] 
/* 

** User state derivative function. 
*/ 

derv(t, x, dxdt) 
double t, *x, *dxdt; 
{ 

static float est_x2 = 0.,cal_x2 = 0.,est_x7 =0. ,cal_x7 = 0.; 
dxdt[1] = x[2]; 
dxdt[2] = -omega12*x[1] + u[1]; 
plotout[1] = fabs(x[2]); 
dxdt [3] = x[4]; 

dxdt[4] = -cutoff12*x[3] -cutoff1sq2*x[4] + cutoff12*plotout[1]; 
plotout[2] = x[3]-refer; 
dxdt[5] = plotout[2]; 
dxdt [6] = x[7]; 
dxdt [7] = -omega22*x [6] + u[1]; 
plotout[3] = fabs(x[7]); 
dxdt[8] = x[9]; 
dxdt[9] = -cutoff22*x[8] -cutoff2sq2*x[9] +cutoff22*plotout[3]; 
plotout[4] = x[8] - refer; 
dxdt[10] = plotout[4]; 
dxdt[11] = x[12]; 
dxdt[12] = -omega32*x[11] + u[1]; 
dxdt[13] = x[14]; 
dxdt[14] = -omega42*x[13] + u[1]; 
y[1] = -.1059*x[2] +.1058*x[7] +.0004*x[12] -.1063*x[14]; 
y[2] = -.1033*x[2] -.1065*x[7] -.0008*x[12] +.1059*x[14]; 
y[3] = .0072*x[2] +.0037*x[7] +.0025*x[12] +.0019*x[14]; 
cal_x2 = 33.25*(-.1059*y[1] -.1033*y[2]+.0072*y[3]); 
est_x2 = cal_x2 + 5.18*133*.0072*y[3]; 
cal_x7 = 33.25*(.1058*y[] -.1065*y[2]+.0037*y[3]); 
est_x7 = cal_x7 + 5.18*133*.0037*y[3]; 
u[1] = refscale*(est_x2*ppgainl*plotout[2] + est_x7*ppgain2*plotout[4]); 
plotout[5] = est_x2; 
plotout[6] = x[2] - est_x2; 
plotout[7] = est_x7;  
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plotout[8] = x[7] - est_x7; 

} 

3.3.2 Rundata File  

0        ;initial time 
6000. 	;final time 
0.1 	;maximum stepsize 
1.0e-6 ;minimum stepsize 

0.001 	;fractional error criterion 
200 	;multiple of maximum stepsize for print output 
200 	;multiple of maximum stepsize for plot output 

14 	;number of plant states 
1 	;number of plant inputs 
3 	;number of plant outputs 
0        ;number of controller states 

8 	;size of user defined plot vector 
0 	;size of user common area 
0 	;size of gaussian random number vector 

;vector multiplied by sqrt(hmax) to provide approx. uniform 

;variance for variable stepsize 
318 	;random number seed 
272 	;random number seed 
190 	;random number seed 

0        ;number of user defined integer input parameters 
0,0 	;end integer input parameters 

18 	;number of user defined floating point input parameters 
1,.0978 	;omega12 
2,.0009 	;cutoff12 
3,.0442 	;cutofflsq2 
4,0 	;refer 
5,-.047 	;ppgain1 
6,0 	;intgain1 
7,1.523 	;omega22 
8,.0152 	;cutoff22 
9,.1745 	;cutoff2sq2 
10,-.01 	;ppgain2 
11,0 	;intgain2 
12,7.6696 ;omega32 
13,.0767  ;cutoff32 

14,.3916  ;cutoff3sq2 
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15,24.1946 ;omega42 
16,.2419 	;cutoff42 
17,.6955 	;cutoff4sq2 
18,100 	;refscale=10 for Orefer, .9 for 1 refer 

0,0 	;end floating point input parameters 

1,.02 	; 
6,.02 	; 

11,.02 	; 
13,.02 	; 
0,0 	;end plant initial conditions 

0,0 	;end controller initial conditions 
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