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ABSTRACT 

Stepwise Reduction and Approximation Method for Performance Analysis 
of Generalized Stochostic Petri Nets 

by 

Jinming Ma 

This thesis delves into the performance analysis of generalized stochastic Petri net 

(GSPN) model by using an approximation method: the Stepwise Reduction and 

Approximation (SRA) Method. The key point is that we are able to analyze a subnet in 

isolation by keeping its token flow direction and its sub-throughput equivalent with all the 

possible tokens entering into the subnet. The thesis first defines various kinds of 

potentially reducible subnets, subnet selection rules, approximation subnet construction 

rules, and reduction evaluation rules. Then corresponding to the possible subnets, the 

approximation method is used stepwisely until the interested measures are found with the 

global state space reduced. Two GSPN model examples from the literature are analyzed by 

using the proposed method. The approximation errors are given and discussed. Finally, 

the conclusions are drawn and future research is discussed. 
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CHAPTER 1 

INTRODUCTION 

1.1 Petri Net Theory 

Petri nets (PN) [8] are a useful graphical tool for modeling and analyzing systems 

involving such features as concurrence, synchronization and mutual exclusion, and so on. 

The traditional PN model (called non-timed PN or general PN ) has no means of 

expressing time and cannot be used to study system performance [19]. If only a single arc 

is allowed between a place and a transition or vice versa, an ordinary PN results. A 

Marked Graph results if each place in the PN has exactly one input and output arc, and a 

State Machine PN results if each transition in the PN has exactly one input and output arc. 

In the past, many attempts have been made to include time in a PN model, and we will refer 

these models as Timed Petri Nets (TPN), including Timed Transition PN (TTPN) and 

Timed Place PN (TPPN). In TTPN, the firing delay of a transition can be specified either 

deterministically or stochastically. In Deterministic Timed Petri Nets (DTPN), the delay is 

either specified by a constant or a finite interval. In Stochastic Timed Petri Nets (STPN) 

[11], the delay is a random time that is generated by a user-specified distribution, that is, 

the transitions are with arbitrarily distributed time delays, also called arbitrary stochastic PN 

[12]. Assuming the firing times with exponential distribution, we obtain Stochastic Petri 

Nets (SPN) [18]. If it also involves the immediate transitions, meaning no time delay, we 

call it Generalized Stochastic Petri Net (GSPN)[21]. The Extended Stochastic Petri Nets 

(ESPN) [14], which partition transitions into three classes - exclusive, competitive and 

concurrent - are developed to allow delays generally distributed, including the deterministic 

transition delays, and non-exponential transition delays, and for concurrent ones the 

memoryless property of exponential distribution is required for exact solutions. 

Deterministic and Stochastic PN (DSPN) contain both deterministic and stochastic 

transition firing time delays [13]. 

1 
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In addition, there are many kinds of extensions applicable to both timed and non-timed 

PN - such as inhibitor arcs, probabilistic arcs (or random switches), priority function and 

so on. They lead to different classification of PNs. An inhibitor arc with multiplicity k 

from a place to a transition has a small circle rather than an arrowhead at the transition. The 

transition cannot be enabled unless the number of tokens in that place is less than k. Firing 

that transition does not affect the number of tokens in the inhibiting input place. When a 

transition fires, the tokens remove from the normal input places and deposit into the output 

places as usual, but the number of tokens in inhibiting input place remains unchanged. A 

probabilistic arc from a place called place probabilistic arc to a set of immediate transitions 

is used to resolve conflicts between two or more immediate transitions and is basically a 

discrete probability distribution. A probabilistic arc from a transition called transition 

probabilistic arc to a set of output places deposits a token in one and only one of the places 

in the set. The choice of which place receives the token is determined by the probability 

labeled on each branch of the arc. We also have counter arc, counter-alternative arc, and so 

on [14]. A priority function is defined for the marking in which both timed and immediate 

transitions are enabled. Usually, immediate transitions are given the higher priority. 

Inhibitor arcs and transition probabilistic arcs do not expand the modeling power of TPN, 

but in some cases, they allow a simpler description of the system operations, since the use 

of inhibitor arcs and transition probabilistic arcs can reduce the number of random switches 

to be defined in the TPN [14]. 

1.2 Performance Evaluation (PE) 

Recently the Performance Evaluation (PE) for TPN has received much attention. For 

DTPN, each transition takes exactly r units of time to complete its execution. The 

maximum cycle time can be computed for processing a task. This cycle time is regarded as 

a performance measure. Basically it can deal with only decision-free PN or those that can 

be converted to them. 
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For STPN, performance measures are average production rate, average in-processing 

inventory, average resource utilization and average waiting time. Molloy [18] established 

the connection between SPN and discrete space Markov process and formed the basis for 

PE using SPN. The PE method based on Markovian analysis models and numerical 

solution of the equilibrium equations is called Numerical Method. 

1. Software tools for PE, in which the steps are involved in going from the PN model 

to reachability tree and then to the Markov Chain have all been automated. They can be 

found in several software packages. 

Chiola [15] has developed Great SPN for the construction and analysis of SPN and 

DSPN models. This software accepts deterministic delays or exponentially distributed 

firing rates. It also computes the transient and steady state solutions to the Markov Chains. 

Dugan et al. [16] have developed the Duke extended SPN evaluation package (DEEP) 

for the PE of SPN models. This led to a new version: Stochastic Petri Net Package 

(SPNP) [1], which is available in ITC computer laboratory, NJIT, and can deal with 

GSPN, which also permits the use of inhibitor arcs, priority functions, place probabilistic 

arcs, marking dependent firing rates, and throughput subnets such as Erlang subnet. All 

those additional modeling capabilities do not destroy their equivalence to Markov Chain. 

Holiday and Vernon [17] have developed the GTPN analyzer for PE of the Generalized 

timed PN models. 

	

All NM methods mainly used the steady state probabilities obtained from the Markov 

chain to compute the average (expected) tokens in a place, average firing rate (throughput) 

of a transition, and the probability that a place is not empty and a transition is enabled . 

2. Moment Generating Function Approach (MGF), which offers the closed form 

analytical solutions, is another way to conduct PE for a class of PN by using Moment 

generating function. Theoretically, it can deal with SPN, GSPN, ESPN [4] and DSPN 

[23]. 
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In addition, Viswanadham and Narahari [19] have given a brief review of other existing 

PE techniques. First is the discrete event simulation, which enables us to run through the 

detailed operation of the system using the computer program but at the expense of greater 

programming time to create the model, greater input time to generate data, and increased 

computer time for running the model. Second is the queueing networks, which capture the 

dynamics, interactions, and uncertainties in the system in an aggregate way. Third is the 

perturbation analysis, which enables parameter sensitivities to be computed on-line, in real 

time and can handle detailed features of the systems, but cannot predict accurately the 

effects of large changes in decisions. Using NM by solving the equivalent Markov chain 

involves the solution of a set of linear algebraic equation. In this case, a theoretical solution 

is only available since closed-form solutions are difficult, if not impossible, to find. 

Particularly, for the large state cases, we cannot use the NM and MGF methods to conduct 

PE. Since ASPN or practical PN model often leads to a very large state space, either 

approximation (APPR) or the simulation (SIM) methods are needed. 

From the above discussions, here we give a relationship graph (Figure 1.1) for 

outlining the state-of-art. 

1.3 Basic idea of the approximation method 

It is impossible to analyze a GSPN with the state space explosion problem by using the 

conventional techniques such as Numerical Method (NM) and Moment Generating 

Function (MGF) approach. Because many real PN suffer from the state explosion problem, 

approximation methods are needed. For a class of GSPN, it is possible to analyze it in 

isolation by using the approximation subnets which can be equivalent to Generalized 

Stochastic PN (GSPN) subnets. After obtaining the section results, we can construct the 
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Figure 1.1  The relationship graph of Petri Net theory 

approximation subnets with reduced state space and substitute them stepwisely into the 

original PN model which would be computationally intractable with conventional methods. 

For some practical cases, modeling a system with PN can lead to a large number of 

places, transitions and arcs. For general PN, it is possible to make a conclusion about the 

token flow and structural properties of the original PN by studying and analyzing the 

reduced net [20], [21]. In those cases, the number and flow direction of tokens into and 

out of the original PN (or subnet) are conserved. Thus from an input and output point of 

view, the flow of tokens is indistinguishable, and the nets are equivalent and still keep the 

properties such as boundedness, liveness etc., of the original PN. The related results were 

also reported in [10]. 

For the STPN, based on the similar idea, we proposed a method which tries to keep 

both the token and flow direction, and throughput (expected firing time) equivalent to the 

original one by replacing the reducible subnet which can be analyzed in isolation. For the 

cases exactly meeting the two element requirements, we can have the equivalent reduced 

PN model. For some other cases, which frequently exist, we must loosen some 
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conditions in order to further conduct PE, especially for a large state space case. The 

approximation methods must be used in order to avaid the time-consuming simulation. 

1.4 Main Work 

The limitation of STPN is that the graphical PN model for a system rapidly becomes more 

difficult as system size and complexity increase. Therefore, the number of states of 

associated Markov chain grows very fast as the dimension of the PN graph increases, or as 

the initial markings are of large number even if this PN may not be so complicated. 

This thesis proposes a Stepwise Reduction Approximation method (SRA) [25], [28] to 

approximate the GSPN model with approximation subnet and then to reduce its state 

space. Based on the reduced model, we conduct the performance analysis by using SPNP 

software [1] to get the numerical results. Two GSPN examples [3] [19] are used to show 

how the approximation method works. It shows that the approximation method is one of 

the reasonable and efficient methods to deal with the practical PN model. Further research 

works, such as combining the approximation method with the MGF approach to get the 

closed form results of performance analysis, and the approximation method dealing with 

the ASPN or so, are under study [24],[27]. 



CHAPTER 2 

THE STEPWISE REDUCTION AND APPROXIMATION METHOD 
- DEFINITIONS AND RULES 

2.1 Fundamental Theory 

For a fundamental knowledge of Petri net theory, a reader is referred to [7],[8]. To be 

consistent, we introduce the following definition and notation [29]. 

A Petri net Z=(P, T, I, O), where 

(1) P={p1, p2, ...., pn}, n>0; 

(2) T={t1, t2, ..., ts}, s>0 with PՍT = Ø and P∩T = Ø; 

(3) I: PxT→  [0, 1}; and 

(4) O: PxT→{ 0, 1}. 

In this definition, pi (1≤i≤n) is called a place, ti  (1..$) a transition, I an input function 

defining the set of directed arcs from P to T, and 0 an output function defining the set of 

directed arcs from T to P. (P, T, I, O, m0) is a marked Petri net where m0  is an initial 

marking whose ith  component represents the number of tokens in place pi. 

The preset of p is the set of all input transitions to the place p, i.e., p={t: tϵ  T and O(p, 

t)≠0}. The postset of p is the set of all output transitions from the place p, i.e., 

p•

= {t: to T 

and I(p, t)≠0}. Similarly, •t={p │ O(p,t)≠0} and t• ={p│I(p,t) ≠ 0}. 

2.1.1 Definitions 

The subsystem can be thought of as a black box whose behavior is characterized by the 

expected amount of time delay that takes under the conditions of putting all the possible 

arriving tokens to the subsystem, and the path that takes through the system with the time 

that takes to leave it. In general, these expected delays will depend on the present state of 

the subsystem. 

7 
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Definition 1 [Subnet Z'] Petri nets is defined as Z = (P, T, I, O) [12]. Let Z' = (P', T', I',O'). Z' is a subnet of Z, Z כ Z', iff P' כ P',  T כ T', and I'(p,t) = I(p,t), " p ϵ P', t ϵ T' ; O'(p.t )= O'(p.t)  " p ϵ P',t ϵ T'. Definition 2 [ Input (Output) Place Pin ( pout) ( for Transition: Tin ,Tout) ] A place p ϵ P' is a pin ( pout) place iff there exists t ϵ ∙p (t ϵ p∙) such that t ϵ T'. A  set of  Pin ( Pout) are denoted as Pin ( Pout). So, Pin = { p1in ... pkin}, P out = {p1out ... plout}. A  transition t ϵ T' is a tin ( tout) transition iff there exists p ϵ ∙ t (p ϵ t∙ ) such that p ϵ P'.  A  set  of  tin (tout) is denoted as Tin are called Input of subnet, and Pout, Tout are called  Output of subnet. If K>1, we call it multi-input; if l >1, multioutput results.  Definition 3 [Place Subnet Zp] A place Subnet Z p is a subnet of Z, Z p = (P p, T p , Ip ,O p ), if Pp = ( Pin , Pout) U Pf where Pin and Pout are two sets of distinct places, and Pf is a set of places except Pin and               pout in Zp Definition 4 [Transition Subnet Zt] A transition Subnet Zt is a subnet of Z, Zt= (Pt , T t , It ,Ot ), if Tt = ( Tin , Tout) U Tf where, Tin and Tout are two sets of distinct transitions. Tf is a set of transitions except  Tin and Tout in Zt . Definition 5 [Complete Subnet Zc] A complete Subnet Zc is a subnet of Z, Zc = (Pc, Tc , Ic ,Oc), if Pc = Pin U Pf and Tc  = Tout U Tf, or if Pc = Pout U Pf and Tc = Tin Ս Tf. 
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Definition 6  [General associated Petri net Za  ] 

A general associated Petri net Za  of a subnet ZP, Zt  , or Zc  is a PN which is made up of 

the subnet and appropriate arcs to link the Input and Output of the subnet as follows: 

the dumb transitions Td  , for the ZP  subnet, 

the dumb places Pd  , for the Zt  subnet, 

the dumb arcs , for the Zc  subnet, 

and maintain the agreeable (same) configuration in Z. For single input and output case, we 

call it associated Petri net. 

Definition 7   [Equivalent Throughput Subnet (ETS) Ze  ] 

The equivalent throughput (approximation) subnet for each above subnet is a GSPN which 

(1) has the agreeable (same) configuration as ZP, Zt  and Zc  in Z but a reduced state 

space, 

(2) has of the equivalent expected time delay entering the subnet through setting all 

possible initial tokens with its general associated PN of the subnet to keep the input and 

output dynamic properties. 

REMARK: It is necessary to mention that the equivalent average time, or the equivalent 

throughput, is subnet initial marking dependent. From the following definition on 

interactive subnet, one will see that this concept is the key for the ETS construction in order 

to keep the approximation accurate. It is called marking dependent ETS. 

2.1.2 Subnet Selection Rules 

For using the approximation method, we must select the reducible subnets. They should 

satisfy the following conditions in order to keep the approximation accuracy: 

1. Pf  ∩  (T - T) = Ø, Tf  ∩  (P - P') = Ø  

2. "  t ϵ  Tout 

(

∙t ∩ P)ϵ P'  



"  pϵ  pout  (•p ∩  T)ϵ T' 

3. " tϵ Tin (t• ∩ P)ϵ  P' 

"  pϵ  Pin  (p• ∩  T)ϵ T' 

Physical meaning: 

Subnet selection rule 1 guarantees that the system is calculated in isolation, because the 

subnet is independent on the rest of Z both in the structure and parameters, and that a token 

which enters the subnet eventually leaves it, and that no tokens are created or absorbed by a 

firing sequence within the subnet. Rule 2 and Rule 3 guarantee that no tokens will be 

deposited in the place given by (P

•

T'} and that the recycling the subnet only depends on 

the marking of P'. This guarantees that the subnet is self-contained. 

2.1.3 ETS Subnet Construction Rules 

Definition 8  [K-order Closed Subnet Zcl] 

Let ETK  be the subnet equivalent throughput at initial marking m(p0) = K. If ETK-1  ≠  

ETK  = ETK+1, it is called K-order closed subnet. Otherwise, it is called open (loop) 

subnet. 

For example, subnet Z1 is 3-order closed subnet, since the subnet throughput is same 

when m(p0) = m(p) ≥ 3. Similarly, Z2, Z3 and Z4 all are 2-order subnets. 

Definition 9  

If │ETK-1  - ETK│> ε ≥ │ETK - ETK+1│ , it is called ε —K-order subnet where ε is a given 

small positive number. 

This definition is used in a open subnet in order to save cost. 

So the definition also can be generalized to multiinput and multioutput modules as 

follows: 
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Definition 10 

Let ETK be the subnet equivalent throughput at initial marking vector M(p0) = 

(k1,k2,...kp), Let ETK-i  be the subnet equivalent throughput at initial marking vector 

M(p0) = {k1 -i, k2-i,... kp-i}, If ETK-1  = ETK  = ETK+1, it is called K-vector-order 

subnet. 

Similarly, we can define the ε—K-vector-order subnet. 

For explanation, see example 2 with selection of subnet Z'-1 in Chapter 3. 

According to Definition 7, we formalize its behavior as following general structure of 

ETS for subnet Z'(Fig. 2.1) 

i = 1,2 .. n ( Multisubnet input dimension) 

Figure 2.1 General structure modules of the ETS for subnet Z' 

In Fig. 2.1, the token enters through the immediate transition tid and is deposited in 

place pile . The timed transition tie with the firing rate λie  models the equivalent time delay 

of tokens in the system. pi2e  forms the probabilistic switch with immediate transitions tijd. 

The probabilistic arcs are defined by wij. Here i = 1,2..  l and j = 1,2.. m are the dimension 

of Input and Output of the subnet, respectively. 

Figure 2.2 and 2.3 show the ETS structure for the single input subnets.  

Figure 2.2 The single input and single output ETS structure 
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Figure 2.3  The single input and multiple output ETS structure 

Definition 11  [ETS subnet behavior function]  

f: (Input, Output) →  W ϵ  RIxm  
m 

Where ∑wij  = 1, 	i = 1,2...l  
j=1 

and there is one and only one nonzero entry per column. 

1 and m are the input and output dimension of a subnet 

The matrix W =(wij) defines the probabilistic arcs. 

For example, if a subnet has one input and two output, then W = [ w 11w12  ] and 

w

11 

 + w

1

2 = 1.0. 

If a subnet has two inputs and two outputs, then w = [w

11

=1.0, w22=1.0, w12 = 0 w21= 0. 

Definition 12  [Throughput algebra]  

The mathematical operation on throughput is called throughput algebra [27], based on  the 

property of throughput conservation among all transitions in a STPN. This property  is the 

basis of calculating equivalent throughput. 

This idea is shown by the example in Figure 2.7 in Section 2.2. 
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If the subnet is a SPN, we have the throughputs for its every transition. So it is not 

necessary to do throughput algebra. Let Fin  = [f1in, f2in ... flin  ] and Fout  = 

[f1out,...fmout] be the throughput vector of Tin

(T

fi ) and Tout(Tfo) respectively. If the 

subnet is a GSPN, since only the throughput of the timed transitions in the subnet are 

available, we must use throughput algebra to calculate the equivalent throughputs. 

Without loss of generality, we simply use Fin  and Fout  to classify the throughputs. 

From the conservation of the token flow and throughput for a subnet,we have the 

following construction rules, according to the above analyses. 

1. Initial values with the Input P

in

(Pd), and Td  at associated PN are P

in 

(Pd) = all 

possible tokens from 1 to k, and dumb transition firing rate λd  = ∞  Here k corresponds to 

the k-order subnet and k > 0. 

2. The general structures of ETS are in Figure 2.1. For any given subnet, one can 

construct its ETS, based on the general structure. 

3. The corresponding associated PN is analyzed in isolation. According to the 

conservation of the token from the P

in 

 (Pd) to Pout with the throughput flow from F

in 

and 

Fout  we have: 
l 	m  

∑ f1 in =   ∑ fj out 	f1in = ∑ f jout (1≤ i≤ l, 1≤ j≤ m)   i=1 	j=1 	 j=n+ 1 

4. Equivalent parameters: "  fi in ϵ  Fin  
 

let (1) λi e = f1in 	(2) wij 

= f

jout / fiin ( l ≤ i ≤ l, n+1 ≤ j ≤ n+r)  

Or we can use throughput algebra to find the parameters. 

From Definition 8, for K-order subnet, we should have K sets of equivalent 

parameters. 

Figure 2.4 is an example of two-input and three output subnet and its ETS structure. 

Figure 2.5 is its associate PN. 
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Figure 2.4. An example of the ETS for a multiple-input-multiple-output subnet 

Figure 2.5  The corresponding associated PN in Fig. 2.4 

From the above discussion, we can see that for different equivalent structures, we can 

use different construction rules to derive its parameters. 
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2.1.4 Reduction and Approximation Evaluation 

According to the definitions of subnets, we can select one kind of subnets within the given 

GSPN. In order to avoid the subnet state explosion problem and reach the best reduction 

degree, we define the reduction evaluation rules as follows: 

Definition 13  [N step approximation Petri net] 

After using the stepwise reduction and approximation method with one subnet to be 

approximated, the substituted PN is called one step approximation PN. The subnet is called 

one step subnet. Similarly, one can have N step's. If one have had the N step 

approximation PN and do not go further, the N step approximated PN is called Final 

Approximation PN. 

Definition 14  [Global reduction degree] 

Global reduction degree is defined to compare the state numbers of all subnets with that of 

the Final Approximation PN. If the state number of Final approximation PN is less than 

one of those in the subnets, the global reduction degree is defined as negative; otherwise, 

positive. 

This implies that the approximation is required to make the reduction and 

approximation globally effective. 

Definition 15  [Reduction ratio] 

The reduction ratio refers to the ratio of the original PN state number to the maximum state 

number we have involved in N step approximation PN. It is defined by: 
No  

Rr =  Nf 	If the global reduction degree is positive 

No  
Rr=  Nmax    otherwise 

Where, Nf means the state number of Final approximation PN 

No means the state number of original PN 
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Nmax means the maximum state number of N step approximation PN 

For the state explosion case, we simply define the reduction ratio as infinite, because 

the state number of the original PN, No is very large. By using computer, it will  be 

overflow. 

This comparison is not enough when we have a series of subnets during the  evaluation 

process since they may result in a much larger space than that of the final one,  i.e. the 

global reduction degree is negative. An ideal situation is that the number of states in  each 

subnet is equal to or less than that in the final net. In other words, we need to compare  the 

number of states between the original one and those of the subnets and the final net. 

It is true that the reduction ratio is the initial marking dependent in the PN. We denoted 

it as  Rr(

P

in 

 = K), simply, Rr (K). Here 

P

in 

 = 

{pi1, pi2,... P

in 

}, K = {k1, k2,...kn }, n is 

the dimension of  Input of multisubnet. 

Definition 16  [Performance analysis error] 

Performance analysis error is the relative error in throughput between the original PN and 

the final approximation PN, which is 

 Error(%) = lexact throughput - approximate throughput
l / exact throughput * 100  

Definition 17 [Stepwise Reduction Approximation (SRA)] 

There are three kinds of SRA methods, when N>1. If the N step approximation PN is 

based on the N independent subnets, the method is called Serial SRA (SSRA). If the N 

step approximation PN is based on the N dependent subnets, and for any i-1 step (1<i<N) 

subnet , it also is a subnet of i-step subnet, the method is called Parallel SRA (PSRA). If 

both SSRA and PSRA are used , Hybrid SRA (HSRA) results. 

Using above discussions, we have reduction and approximation evaluation as 

follows: 
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1. Keep the global reduction degree positive. 

2. Decide the step N when global reduction degree changes from positive to 

negative, if N>1; Otherwise, N=1. 

3. Make the reduction ratio as large as possible. 

4. Make performance analysis error acceptable to meet the engineering need. 

Therefore, the evaluation should make the error small enough and the reduction ratio as 

large as possible. 

2.2 Illustrative Example for Selection and Construction of Subnets 

In Figure 2.6, it is a computer system modeled by GSPN [3]. Let us discuss subnets 

below: 

In Figure 2.7 the subnet Z'-1 with the place p01  forms its associated PN. Where p01  

is the dumb place. It is easy to verify that it meets the subnet Zt  definition where Tin  

= [14] 

and Tout  = {t21, t22}. First, we find the throughputs of transitions t14  and t20, 

i.e., f(t14)    and f(t20). Then the parameters in Figure 2.7(a) are obtained as follows according to 

the  throughput algebra. 

f(te11) = Pr(t21)f(t14) and f(te12 ) = Pr(t22 )f(t20) 

and the parameters in Fig. 2.7(b) are 

f(te

1

) = f(t9) = f(t

14

) - f(t

15

) = n(t

14

) - Prt

15

)f(t

20

) 

  
Pr(td11) = Pr(t21) / Pr(t21)+Pr(t22)Pr(t17)             

 and Pr(td12) = Pr(t

22)Pr(t17 ) 

/ Pr(t21) + Pr(t22)Pr(t17) 

 

   

The probability of the immediate transition td1  remains the same. Note that Pr(t21) and 

Pr(t

22

) are probability of transitions t21  and t22  in the associated net. 
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Figure 2.6  A computer system modeled by GSPN 
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Figure 2.7 The associated PN of transition subnet Z'-1 and its ETS-1 

Here we also can construct an ETS-1, based on Z'-1, by assuming the subnet is an 

GSPN. In this example, l  =1, m = 2, then n=0, r=2. 

f1 in = flout + f2out  

w11 = flout/f1in  

w12 =f2out/f1in  

Let λ14  = λ20  = 1.0, by using SPNP [30]: 

f1in = 1/2 and flout = 1/3, f2out  = 1/6 

Then we find : 

w

11  = 2/3 , 

w

12  = 1/3 

From the above calculation, we can get the ETS of the subnet Z'-1, based on the 

general ETS structure as shown in Figure 2.7. 

NOTE: If we select the subnet not including t4  and p4., it is a subnet Zt  and also 1- 

order closed subnet. If the selected subnet does not include t4  , we know it is a  complete 

subnet Zc; for its associated PN only the dumb arcs are required. Its ETS will  be the subnet 

of Figure 2.7. The immediate transition t1  in it will be cancelled. And it is  also 1-order 
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closed subnet. If the place p01ϵ  P' the subnet will be a place one and its ETS structure 

will have only p11e  , t1e  and p12e. This shows that the subnet selection is flexible. 



CHAPTER 3 

ALGORITHM AND EXAMPLES 

3.1 Stepwise Reduction and Approximation Algorithm 

Given a discrete event system, a GSPN Z is modeled and its initial marking is determined. 

A procedure to derive the results is formulated as follows: 

1. If Z can be evaluated with the software packages available, it is done; otherwise, 

2. According to the subnet selection rule, identify a subnet Z' while keeping those 

transitions or places in Z unchanged if they are of special interests. 

3. Construct the ETS for this subnet and derive the parameters for ETS based on the 

throughputs in Z': 

a) Find the maximum numbers of tokens possible in the related places, 

b) Find the throughput by starting from l's in the places to the maximum numbers 

or the numbers whose increase will not change the throughputs of the subnet, and 

c) Calculate the parameters in ETS. 

If S(Z') cannot be evaluated with software packages, either re-select a subnet or select 

a sub-subnet in S(Z') and continue this procedure. 

4. Let Z" be the net which is the reduced net of Z by replacing Z' with its ETS. Let 

Z=Z", go to Step 1. 

It is clearly that we need to keep the right size of the subnet since a big subnet itself will 

be difficult to evaluate even though the final net may have a few number of states. The net 

which satisfies the conditions may not exist. Then we must loosen the conditions at the 

expense of approximation accuracy. 

All discussion on the single input case can be generalized to the subnet with MIMO 

modules [28]. 

21 



22 

3.2 Examples 

3.2.1 Example 1 

Consider a GSPN model in Figure 2.6. In Section 2, we have discussed the subnet Z'-1. 

We get the equivalent subnet ETS-1 in Figure 2.7. Similarly, we can analyze that the 

subnet Z'-2 also meets the ETS conditions and has its equivalent subnet ETS-2 in Figure 

3.1. We also have a similar discussion (see NOTE in section 2). 

For the original PN model, we assume that all the timed transitions are exponentially 

distributed with firing rates: 

λ2 =λ10 =λ11 =λ12 =λ13 =λ14 =λ19 =λ20 =1 .0 

In the following, we use the GSPN model with different assumptions to show the 

different cases: 

Figure 3.1 The transition subnet Z'-2 and its ETS-2 in Fig. 2.6 
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CASE 1: SPN model with subnet selection (1) 

To use this GSPN model to compare the performance results for a SPN model, we 

assume the immediate transitions as the timed ones with very large firing rate value w 

(that implies no vanishing states in the PN) and define w to have the following 

properties; 

1. 0<λ <<ω <∞  

2. If ω1<ω2 , then the transition with firing rate ω2  will fire before one with ω1. 

3. In a given PN model, ω  is set fixed once for all . 

Here, λ  is the general exponential firing rates, and ω1, ω2  are very big positive 

number. 

If the probabilities of probabilistic arcs are wi  , which corresponds to transition ti, 

then we can use the firing rate with 

wi 

 * ω  to represent the immediate transition with 

probability 

wi

. For example, in Figure 2.7, we found the probabilities w11  = 2/3, and 

w12  = 1/3, then the immediate transition t'14  and t'16  in Figure 3.4, representing t11  

and t12  in the ETS -1, have the firing rate, λ:14  = 2/3  * (λ :16  = 1/3 * 

ω       It is easy to verify that w11 = λ:12 / (λ'14 + λ'16) 

By using SPNP we got the performance analysis based on the two PN models, the 

original one in Figure 2.6 and the approximation PN in Figure 3.2 ~  3.6. The error is 

very small [30]. Here we summarize some results as Tables in Appendix 1, 

corresponding to the approximation ones. 
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Figure 3.2 The approximation PN -I  by substitute of two ETS subnets 
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Figure 3.3 The approximation PN - II (2-step) 

Figure 3.4 The approximation PN model - III (3-step) based on Fig. 3.3 

CASE 2: SPN model with subnet selection (2) 

In this case, all assumptions are the same as case 1, the difference is the subnet 

selection method. Here we select subnet Z"-3 and Z"-4 by another way in Figure 3.7 

and 3.8. Then we can construct the final approximation F-III PN model in Figure 3.9. 



Figure 3.5 The approximation PN model -IV (3-step) based on Fig. 3.4 

Figure 3.6 The approximation PN model - V (3-step) based on Fig. 3.5 
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Figure 3.7 The subnet Z"-3 based on Fig. 3.3 
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Figure 3.8 The subnet Z"-4 based on Fig. 3.3 

Figure 3.9 Approximation F-III PN based on subnet Z"-3 and Z"-4 

CASE 3: GSPN model with subnet selection (1) 

In this case, all parameters are the same as above, but we use the GSPN model. The 

throughput results are the same as before by ignoring the calculating error, but the state 

number is divided into tangible states and vanishing ones. 

CASE 4: GSPN model with subnet selection(2) and different firing rate 

In this case, we use the original parameters of transition firing rates in [3], which are 

as follows: 
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λ2  =1/0.2, λ 10  =1/0.056, λ11  =λ 12  =1/0.036, λ 13  =1/0.06, λ 14  =1/0.081, λ 1

9  =1/0.058, λ20 =1/0.121 

And the subnets are selected as Z'-1, Z'-2, Z"-3, and Z"-4. 

The performance results by Z'-1, Z'-2 are shown in Table 1-4, and the further 

results on state number are in Table 6-3. 

CASE 5: Comparison of two general equivalent subnet structure 

In this case, we use GSPN model to compare the results based on two equivalent 

subnet structures. Here we compare only that based on the approximation PN model-I 

in Table 2.2. Two GSPN ETS equivalent structure structures have the same 

performance results and tangible states, but the latter in Figure 3.1 has the fewer 

vanishing states. 

CASE 6: Comparison of the GSPN and its revised one 

In this case, we assume the GSPN model in Fig.2.6 as follows: 

Transitions t19  and t21  are connected to place p2, not pi, which will show that the 

branches in the equivalent subnet structure must be decided [30]. 

3.2.2 Result Analysis 1 

According to the assumptions on input values, we have the following results: 

1. In Example 1, for transition subnet Z'-1 (and Z'-2), the approximation error 

can be nearly ignored, especially when m(p1) = 1 as shown in Table 1.1 and 1.2. 

Because, for this case, the all reduction rules defined in Section 2, are well 

satisfied, we can simply say both, the original one and the reduced one, are equivalent. 

2. Using the SRA method, we reach the following conclusions: 
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(1) With the initial tokens increasing, the reduction ratio will be fast decreased in 

Table 2. When it is beyond some value (in Table 2, m(p1) 8 ), the original will be 

overflow. But we can easily find excellent results by using SRA. 

Generally speaking, if the PN consists of n sets of subnets Z'-1 or Z'-2, the 

method can be efficiently generalized to be used. We also can make sure the error is 

very small. 

(2) By using the SRA method, we must keep the global reduction degree 

positive. Otherwise, the approximation may lose the power. In Example 1, although 

the Final approximation PN state number is reduced, by 3-step approximation PN, the 

subnet state number is higher than it in Table 6.1, meaning the global reduction degree 

is negative. So this step approximation is not necessary. For this example, only two 

step approximation meet the reduction rules, N=2. 

We can also select different subnets: in CASE 2, we selected subnet Z"-3 and Z"- 

4. The performance error is almost the same as that in CASE1, but the reduction 

ratio has significantly increased in Table 6.2. It is 23.3 at m(p1)=5, and when m(p1) 

= 15 - 30, the Original PN is overflowed. But we can also easily have the results by 

Approximation F - III, the state number of which is 816 - 5456. 

(3) For dumb immediate transition tid in ETS model, if it is also involved with 

other immediate ones, generally the probabilistic arcs must be defined. Otherwise the 

approximation error will be large. 

In this Example, we set the same large value for immediate transitions, meaning 

their probabilities are same. After approximation, for example, the 3-step 

approximation PN model-III (using subnet Z'-3), the probabilities of immediate 

transitions tl and t3 in ETS, corresponding to the t1 , and t'3,t'4,t5,t6,t7 in the 

original, are 1/6 and 5/6 in Table 3.1. If one using 1/5, 4/5, the error will be large. in 

Table 3.2. Particularly if one using 1/2, 1/2, the error will be more than 20%. 
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(4) One important property of SRA is that if the subnet is K-order closed subnet, 

for example, subnet Z'-1, (if t4 is not immediate, the Z'-1 is not k-order subnet), and 

m(p01) > K, the equivalent throughput will not be constant. Here k = 1, for any initial 

marking in original PN, only one set of ETS is needed. In this situation, the 

approximation will be much simpler and the error will be very small. In other words, 

the global reduction degree will be always positive in Table 2. (for marking dependent, 

see Table 4). 

We also have other approximation PN in Figure 3.5 and 3.6, to show the 

approximation method using subnet Z'-4 in Table 5. 

3. The throughput of a transition will approach its initial firing rate with the 

increasing  of initial token. In our example, when m(p1) > 10, the throughput of t2 will 

converge to the initial  firing rate of transition. Thus one can use this property to inspect 

the results by using SPNP. 

4. The paper [20], [21], [10] have stated the conditions for reducing the general 

PN. If the time is assumed to be involved, the advantages there will be fully taken by 

using SRA here. 

5. For performance analysis, generally speaking, we must go further from the 

equivalent subnet to some approximation; otherwise, the PN may be intractable. So the 

approximation will be a must but the error will be larger than what we have here, to 

some extent. 

3.2.3 Example 2 

The FMS system considered in [14] is shown in Figure 4.1, which comprises a load / 

unload system (L/U), a machine center (M/C), a head changer (H/C), and a vertical 

turret lathe (VTL). The system produces two types of parts, each part being mounted 

on a fixture at L/U and carried between the machines by a conveyor system. The part 

routing and mean service times at each station are shown in Fig. 4.2. respectively. It 
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can be seen that each part type has two alternative routing. For example, a part of type 

1 is loaded into the system and transported to WC, then to the VTL, and finally 

unloaded. The alternative routing is L/U, Conveyor, H/C, Conveyor, VTL, conveyor, 

and L/U. The routing probabilities are 0.15 for the first route and 0.85 for the second. 

Figure 4.1 Layout of a flexible manufacturing system with three machines 

Figure 4.2 Flow sequence of parts in the FMS with routing probabilities and mean 
processing times: (a) part type 1, (b) part type 2. 
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Figure. 4.3  GSPN model of the FMS example 

Under the assumption that each machine service time is exponentially distributed with 

mean equal to the sum of the means of the machine and the conveyor time and there are 

a limited number of fixtures in the system but enough buffer space at each machine. 

Figure 4.3 shows a GSPN model for above system. 
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Figure. 4.4 The place subnet Z'-1 and its ETS-1 in Fig. 4.3 

By using SPNP, the performance analysis results of GSPN for this system are shown 

in Table7, 8, and 9. For other probabilistic arcs from the places, the probabilities are 

assumed equal to each other. 

3.2.4 Result Analysis 2 

1. Performance analysis based on the GSPN model in Figure 4.3. 
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Figure 4.5 Approximation PN (1-step) model with subnet Z'-1 

Table 7 shows the results for three different cases; Casel, there is one fixture for type 

1 and type 2; Case2, two fixtures for type 1 and one fixture for type 2; Case3, two 

fixtures for type 2 and one fixture for type 1. It is to be noted that the GSPN is the 

same but only the initial marking is changed to initialize the number of fixtures, 

similarly to compute the performance measures for changing the other parameters such 

as machine speed and loading time. 
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Figure 4.6 Approximation PN (2-step) with subnet Z'-2 

Table 8 shows the results in [14] which are different from the throughputs by using 

SPNP shown in Table 7 but the others are almost the same. 

Table 9 shows the results by using the SRA method to approximate the PN model. 

The error is small, and the state space is reduced. Figure 4.4 is a place subnet Z'-1 

and its ETS-1, and Figure 4.5 is the corresponding 1-step approximation PN model. 

Meanwhile, as the subnet Z'-1 is 2 -order closed subnet, its equivalent throughput 

will be initial marking independent when the initial marking ≥  2. If one uses the same 

throughput as that at initial marking 1, the results will have the bigger error. By using 

the SRA method based on 1-step approximation PN with Z'-1, we have the 2-step 

approximation PN with subnet Z'-2 in Figure 4.6. 

If we use only 1-step to get the approximation PN in Figure 4.6 rather than 2-step 

one, the performance error is small. The global reduction degree, however, is very 

negative, which means the subnet is of large state space. According to the reduction 

evaluation rules, approximation is insignificant. 
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From now on, we simply use the SPN model to represent the GSPN for easily 

comparing the state number which is the sum of tangible ones and vanishing ones. The 

following results are by running GSPN model. The performance measures are the 

same as those before; the states consist of tangible and vanishing ones. In this case, 

the tangible state number is small. 

Again, if 2-order closed subnet is considered here, the reduction ratio is upto 178. 

According the reduction rules, the approximation error should be reasonably small. 

We can easily verify that the performance approximation error will be increased with 

the approximation step N. Generally speaking, for this case, the error will be large, 

i.e., the reduction rule 3 is weakly satisfied. The reason is that the subnet Z'-1 here is 

closely coupled one, but we still simply use the decoupled throughput equivalent 

subnet ETS-1 to approximation it. Therefore the error will be large. 

Here one can find that in general the reachability set of a GSPN is a subnet of the 

reachability set of the non timed PN, because in GSPN, precedence rules introduced 

with immediate transitions do not allow some states to be reached. However, the 

reachability set of SPN is the same as for the non timed PN. Therefore, the 

reachability set of GSPN is divided into two disjoint subnets, one of which comprises 

markings that enable exponentially distributed transitions only, while the other 

comprises markings that enable immediate transitions. We called a state or marking of 

the former type tangible state and a state of the latter type vanishing one. Let SS 

indicate the state space which can be partitioned the tangible states, denoted as TS, and 

vanishing states, denoted as VS, then we have: 

SS = TSՍVS and TS∩VS = Ø  

2. Performance analysis based on the following assumption 

In Figure 4.3, we assume place p12  is the input place of transition t9  and t10  , and the 

output place of transition t13  and t14  place p13  is the input place of transition t11  and 

t12, and the output place of transition t15  and t16.  
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Then, the subnet Z'-1 in Figure 4.4 will be changed to the decoupled one. In this 

case, the performance analysis is good [30]. 

From the thesis, we claim that the approximation error can be monitored well by 

the following two ways: 

1) If the subnet is loosely coupled or decoupled one, the error will be smaller and 

smaller. Particularly in decoupled case, the error is very small. 

2) For a subnet, by calculating the variance for the corresponding subnet 

throughput, if the variance is small, the approximation error will be small [30]. 

By this way, one can forecast the error to meet the reduction evaluation rules. 

Anyway, for a real PN model, the k-order closed subnet often exists. Thus, the 

approximation method will be powerful in the case with the initial marking increasing. 



CHAPTER 4 

CONCLUSION REMARK AND FURTHER RESEARCH 

The given examples show that using the method to approximate the large PN model can 

reduce the state space to make the analysis possible. The performance analysis errors are 

small. From this thesis, given a PN model, we can do follows by using the approximation 

methods: 

1. At some conditions, one should try to simplify the PN model first in order to 

analyze it. For example, we can do some reduction on no-timed subnet, therefore, the 

vanishing state of the Petri net is reduced. 

2. Based on the simplified PN model, one can use SPNP software to conduct 

performance analysis. 

From this thesis, the conclusion is that the approximation error is dependent on the 

approximation degree i.e. approximating the original PN to what stage. The advantages of 

PN reduction method in [10],[20],[21] can be fully taken in this approach with the 

reduction error almost zero. For the other approximation case, the error will be dependent 

on the approximation degree. 

3. Any present methods, including Numerical Method for a stochastic PNs and 

MGF method for an extended PNs, it was increasingly limited by the situation: for the 

former one, it may have the reachability graph explosion problem which makes the analysis 

more difficult or impossible, and it also cannot solve the one with non-exponential 

transition firing distribution; for the latter one, it is of limited use in an extended stochastic 

PN. In fact, it will be impossible even for a simple PN model with large reachability 

graph, or for the ASPN, it is only theoretically true to find a closed form performance 

analysis. 

4. For the performance analysis of a given PN model, we first need to decide which 

methods are more efficient or possible. No matter what they are, we can use the 
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approximation method to conduct performance analysis theoretically or practically. The key 

is that the approximation method is required to meet the given conditions that make the 

error acceptable. The theoretical conditions are under study. 

5. For some complicated system PN model, perhaps we cannot get the exact result 

by using the conventional methods. Thus studying the approximation method is a way to 

reach the purpose of performance analysis. 

Summarizing, the approximation method has some key concepts involved: 

1. Subnet selection: different subnet selection will lead to the different 

approximating process and the different approximating accuracy. - Flexible 

2. Marking dependent: the equivalent subnet throughput is marking dependent. -

Dynamic 

3. K-order subnet property: the subnet has same throughput if some initial marking 

number is larger than a real number K. -Switching 

4. Throughput algebra: in order to calculate the equivalent subnet throughput, some 

mathematical operation is needed, based on the throughput observation. - Conservation 

5. Global reduction degree: based on flexible subnet selection, we should keep all 

subnets that are of smaller state space than final approximation PN. -Efficiency 

6. Reduction, substitution and decomposition: for any original PN, it is necessary to 

do some reduction and decomposition to allow the method to meet the given conditions and 

to have less state space. Sometimes, the substitution of some subnet or transition by the 

equivalent one is needed. - Equivalent 

Performance analysis plays important roles in using Petri net. Generally it is very difficult 

to conduct performance analysis for a timed Petri net and property analysis for an ordinary 

Petri net, if its state spaces is too large. Thus, the reduction and approximation may be the 

only cost-effactive solutions [25],[28]. A Stepwise Reduction and Approximation Method 

for GSPN is given under some conditions. Particularly, if we are interested only in some 
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important performance measures and hope to have their closed form results, we can 

combine the approximation method and MGF approach to reach the aim [24]. From this 

paper, we know that for the cases that do not meet the given conditions, the error will be 

large and depends on approximation degree. Furthermore, if the subnet is independent 

from the point of structure but dependent on the parameters, the method may not work. 

Anyway, for those situations, the method is limited. Therefore, we are trying to do 

something along the direction, including the theoretical proof, to solve those problems. 

In the future, we will also do some work to loose some conditions, such as subnet 

selection Rule 1, which means independent subnet. we can use some decouplling or 

decomposition method to equivalent and approximate the Petri nets, in order to reach the 

desired results. Another way is to use "throughput subnet" [2] thinking way through 

finding the variance of the subnet throughput. Based on that, we can reconstruct the 

equivalent throughput subnet to reduce the error. 



APPENDEX. SPNP Program and Running Results 

Table 1.1 

Comparison of the Numerical Results by using SRA Algorithm 
(The initial token in place p1 m(p1) = 1 ) 

Throughput Original PN Approximation PN -I Error % 

t1 7.999999140446e-02 8.00000000048e-02 0.00001 

t2 4.799999580464e-01 4.80000000288e-01 0.00002 

t10 7.999999300773e-02 8.00000000048e-02 0.00001 t11 

7.999999300773e-02 8.00000000048e-02 0.00001 

t12 7.999999300773e-02 8.00000000048e-02 0.00001 

Table 1.2 

Comparison of the Numerical Results by using SRA Algorithm  
(The initial token in place p1 m(pl) = 5 ) 

Throughput Original PN Approximation PN -I  Error % 

t1 1.633482547424e-01 1.63218720241e-01 0.079 

t2 9.800895387395e-01 9.79312352733e-01 0.079 

t10 1.633482560739e-01 1.63218718368e-01 0.079 

t11 1.633482560739e-01 1.63218718368e-01 0.079 

t12 1.633482560739e-01 1.63218718368e-01 0.079 
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Table 1.3 

Subnets Z'-1 and Z'-2 Numerical Results for Throughput Equivalent Subnets 

Z'-1 , m(p01) >= 1 
(throughput) 

Z-2 , m(p02) >= 1 
(throughput) 

t4 0.5000 t3 0.6667 

t21 0.3333 t18 0.3333 

t22 0.1667 t19 0.3334 

Table 1.4 

Subnets 1-1 and Z'-2 Throughputs (with CASE 4: GSPN) 

Z'-1 , m(p01) >= 1 
(throughput) 

Z'-2 , m(p02) >= 1 
(throughput) 

t9=t14-t15 5.3 t8=t13 11.23 

t14 7.07 t13 11.23 

t20 3.53 t19 5.62 

Table1.5 

Comparison of Original and Approl, ll throughputs (with CASE 4: GSPN) 

m(p1) (Original) 
throughput t2 

(Approximation) 
throughput t2 Error(%) 

5 4.99852 4.99866 0.003 

7 4.9999576 4.99997 0.0004 

10 ........ 4.999999 ........ 
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Table 2.1 

Comparison on State Numbers at the different initial tokens 

Initial token m(p1) 1 2 3 5 7 

Number 

Original 14 89 364 2940 13728 

Sub.Z'-1 6 not needed, since it is 1-order closed 

Sub.Z'-2 5 not needed, since it is 1-order closed 

of states Appro.I 9 49 165 1287 6435 

Appro.II 7 28 84 462 1716 

Reduction ratio 2.0 3.18 4.33 6.36 8.0 

Table 2.2 

Comparison of state number in Approximation PN I by using two ETS structures 
(tangible + vannishing states) 

ETs structure (a) 6+3 21+18 56+63 252+378 792+1386 

ETs structure (b) 6+1 21+6 56+21 252+126 792+462 
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Table 3.1 

Comparison of the Numerical Results by using SRA Algorithm 
(Throughput of t2 when different m(p1) ) 

m(p1) Original PN Approximation - III Error % 

1 4.799999e-01 4.79991e-01 0.0002 

2 7.45515e-01 7.92033e-01 6.18 

4 9.50442e-01 9.76236e-01 2.19 

5 9.80090e-01 9.89311e-01 0.95 

7 9.97119e-01 9.97808e-01 0.55 

Table 3.2 

(If the approximation PN with error on probabilistic arcs) 

Comparison of the Numerical Results by using SRA Algorithm 
(Throughput of t2 when different m(p1) ) 

m(p1) Original PN Approximation - III Error % 

1 4.799999e-01 4.90186e-01 2.12 

2 7.45515e-01 8.02626e-01 7.66 

4 9.50442e-01 9.34157e-01 1.71 

5 9.80090e-01 9.64143e-01 1.30 

7 9.97119e-01 9.84544e-01 1.26 
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Table 4 

Subnets Z'-3 and Z'-4 Numerical Results for Throughput Equivalent Subnets 

Z'-3 Z-4 

m(p03) Throughput m(p04) Throughput 

1 0.7692 1 0.9231 

2 1.2621 2 1.5146 

3 1.5969 3 1.9163 

4 1.83291 5 2.4041 

Table 5.1 

(If the approximation PN with immediate transition ) 

Comparison of the Numerical Results by using SRA Algorithm 
(Throughput of t2 when different m(p1) ) 

m(p1) Original PN Approximation - IV Error % 

1 4.799999e-01 4.80009e-01 0.0001 

2 7.45515e-01 7.92033e-01 6.23 

4 9.50442e-01 9.26170e-01 2.55 

5 9.80090e-01 9.53519e-01 2.71 

7 9.97119e-01 9.80719e-01 1.65 
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Table 5.2 

(If the approximation PN by place subnet only) 

Comparison of the Numerical Results by using SRA Algorithm 
(Throughput of t2 when different m(p1) ) 

m(p1) Original PN Approximation - V Error % 

1 4.799999e-01 4.79979e-01 0.004 

2 7.45515e-01 7.9211e-01 6.25 

5 9.80090e-01 9.9269e-01 1.30 

7 9.97119e-01 9.9874e-01 0.17 

10 overflow 9.9999e-01 No 

Table 6.1 

Comparison on State Numbers at the different initial tokens 

Initial token m(p1) 1 2 3 5 7 

Original 14 89 364 2940 13728 

State 

Numbers 

Sub.Z'-3 7  28 84 462 1716 

Sub.Z'-4 7 28 84 462 1716 

Appro.III 
IV 

3 6 10 21 36 

Appro.V 2 3 4 6 8 

46 



Table 6.2 

Comparison on State Numbers at the different initial tokens (CASE2) 

Initial token m(p1) 1 2 3 5 7 

Original 14 89 364 2940 13728 

State 

Numbers 

Sub.Z"-3 4 10 20 56 120 

Sub.Z"-4 5 15 35 126 330 

ApproF..III 5 10 20 56 120 

Reduction ratio 2.8 5.93 10.5 23.3 42 

Table 6.3 

Comparison on State Numbers at the different initial tokens(CASE 4) 

Initial token m(p1) 1 2 3 5 7 10 

State 

Numbers 

Original 8+6 34+41 104+157 560+1069 1968+4270 8294+20163 

Sub.Z'-1 2+4 N/A N/A N/A N/A N/A 

Sub.Z'-2 2+3 N/A N/A N/A N/A N/A 

Sub.Z"-3 2+2 

3+7 

4+16 6+50 8+112 N/A 

Sub.Z"-4 3+2 6+9 10+25  21+105 36+294 N/A 
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Table 7 

(Here Ni denotes the number of fixtures of type i, i = 1, 2) 

Performance measures for the FMS 
example for 3 situations: Ni, i=1, 2 

N1 = 1 
N2 = 1 

N1 = 2 
N2 = 1 

N1 = 1 
N2 = 2 

N1=5 
N2=5 

Measure 1 Machine utilizations 	(By probabilities) 

L/UL Prob(p4,1)+Prob(p5,1) 0.5283 0.5884 0.6972 N/A 

M/C Prob(p14,1)+Prob(p17,1) 0.3304 0.3468 0.4559 N/A 

H/C Prob(p15,1)+Prob(p16,1) 0.3055 0.4723 0.2850 N/A 

VTL Prob(p21,1)+Prob(p22,1) 0.4289 0.5717 0.4783 N/A 

Measure 2 Fixture Utilizations 	(By probabilities) 

Type 1 1 - Prob (p2, 1) 0.9152 0.7976 0.8254 N/A 

Type 2 1 - Prob(p3,1) 0.9121 0.8729 0.6107 N/A 

Measure 3 Buffer occupancies 

L/UL ET(P2) + ET(p3) 0.1726 0.3614 0.5640 N/A 

M/C ET(P8) + ET(p11) 0.0700 0.1191 0.2174 N/A 

H/C ET(P9) + ET(p10) 0.0219 0.1699 0.0357 N/A 

VTL ET(P18) + ET(p20) 0.1366 0.3701 0.2661 N/A 

Measure 4 Throughput rates ( Number of parts per hour ) 

Type 1 TR(19)  0.9527 1.5224 0.8272 N/A 

Type 2 TR(20)  1.0730 0.8622 1.7271 N/A 
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Table 8 

(Here Ni denotes the number of fixtures of type i, i = 1, 2) 

Performance measures for the FMS 
example for 3 situations: Ni, i=1, 2 

N1 = 1 
N2 = 1 

N1 = 2 
N2 = 1 

N1 = 1 
N2 = 2 (other) 

Measure 1 Machine utilizations 	(By probabilities) 

L/UL Prob(p4,1)+Prob(p5,1) 0.5284 0.5886 0.6975 N/A 

M/C Prob(p14,1)+Prob(p17,1) 0.3305 0.3472 0.4559 N/A 

H/C Prob(p15,1)+Prob(p16,1) 0.3071 0.4176 0.2845  N/A 

VTL Prob(p21,1)+Prob(p22,1) 0.4278 0.5717 0.4783 N/A 

Measure 2 Fixture utilizations 	(By probabilities) 

Type 1 1 - Prob (p2, 1) 0.9152 0.7655 0.8252 N/A 

Type 2 1 - Prob(p3,1) 0.9123 0.8727 0.6103 N/A 

Measure 3 Buffer occupancies 

L/UL ET(P2) + ET(p3) 0.1728 0.3617 0.1728 N/A 

M/C ET(P8) + ET(p11) 0.0702 0.1196 0.2177 N/A 

H/C ET(P9) + ET(p10) 0.0255 0.1695 0.0356 N/A 

VTL ET(P18) + ET(p20) 0.1366 0.3702 0.2662 N/A 

Measure 4 Throughput rates ( Number of parts per hour ) 

Type 1 TR(19)  0.6484 0.8461 0.4541 N/A 

Type 2 TR(20)  0.7907 0.5649 1.1029 N/A 
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Table 9 

(Here Ni denotes the number of fixtures of type i, i = 1, 2) 

Performance measures for the FMS 
example for 3 situations: Ni, 1=1, 2 

N1 = 1 
N2 = 1 

N1 = 2 
N2 = 1 

N1 = 1 
N2 = 2 Error % 

(Max.) 

Measure 1 Machine utilizations 	(By probabilities) 

L/UL Prob(p4,1)+Prob(p5,1) 0.5161 0.5875 0.6931 0.43 

M/C Prob(p14,1)+Prob(p17,1) N/A N/A N/A N/A 

H/C Prob(p15,1)+Prob(p16,1) N/A N/A N/A N/A 

VTL Prob(p21,1)+Prob(p22,1) 0.4174 0.5806 0.4710 2.43 

Measure 2 Fixture Utilizations 	(By probabilities) 

Type 1 1 - Prob (p2, 1) 0.9228 0.7962 0.8363 3.85 

Type 2 1 - Prob(p3,1) 0.9283 0.8864 0.6674 8.56 

Measure 3 Buffer occupancies 

L/UL ET(P2) + ET(p3) 0.1489 0.3482 0.5293 13.73 

M/C ET(P8) + ET(p11) N/A N/A N/A N/A 

H/C ET(P9) + ET(p10) N/A N/A N/A N/A  

VTL ET(P18) + ET(p20) N/A  N/A N/A N/A 

Measure 4 Throughput rates ( Number of parts per hour ) 

Type 1 TR(19)  0.9236 1.5682 0.7887  4.65 

Type 2 TR(20)   1.0531 0.8261 1.7577 4.19 
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#include "user.h" 

/* 1-1-92 This is a SPNP file for my M.S. THESIS, 
(( MAIN PROGRAMME FOR USING SPNP with GSPN model)) From 
N.Viswanadham*/ 

probability_type prb1 = 1.0; 
probability_type prb2 = 0.15; 
probability_type prb3 = 0.85; 

int Z1,Z2; 

parameters() { 
/*iopt(I0P_PR_FULL_MARK, VAL_YES); 

iopt(I0P_PR_MC,VAL_YES); 
lopt(I0P_PR_RGRAPH,VAI_YES); 
iopt(I0P_PR_PROB,VAL_YES);*/ 

iopt(I0P_METHOD,VAL_SSSOR); 
iopt(IOP_PR_MARK_ORDER,VAL_CANONIC); 
iopt (IOP PR MC ORDER, VAL TOFROM); 

Z1 = input ("initial tokens of place p2 (from 1 to 5):"); 
Z2 = input ("initial tokens of place p3 (from 1 to 5):"); } 

net() { 
place("p1"); init("p1",1); 
place("p2"); init("p2",Z1); 
place("p3"); init("p3",Z2); 
place("p4"); 
place("p5"); 
place("p6"); 
place("p7"); 
place("p8"); 
place("p9"); 
place("p10"); 
place("p11"); 
place("p12"); init("p12",1); 
place ("p13") ; init("p13",1); 
place("p14"); 
place("p15"); 
place("p16"); 
place("p17"); place("p18"); 
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place("p19"); init("p19",1); 
place("p20"); 
place("p21"); 
place("p22"); 

(void) trans("tl"); 	priority("t1",10); 	probval 
("t1",prb1); 

(void) trans("t2"); 	priority("t2",10); 	probval 
("t2",prb1); 

trans("t3"); priority("t3",1); rateval("t3",1.0*60/ 
13.0); 

trans("t4"); priority("t4",1); rateval("t4",1.0*60/ 
18.0); 

(void) trans("t5"); 	priority("t5",10); 	probval 
("t5",prb2); 

(void) trans("t6"); 	priority("t6",10); 	probval 
("t6",prb3) ; 

(void) trans("t7"); 	priority("t7",10); 	probval 
("t7",prb2); 

(void) trans("t8"); 	priority("t8",10); 	probval 
("t8",prb3) ; 

(void) trans("t9"); 	priority("t9",10); 	probval 
("t9",prb1); 

(void) trans("t10"); 	priority("t10",10); probval 
("t10",prb1); 

(void) trans("t11"); 	priority("t11",10); probval 
("t11",prb1) ; 

(void) trans("t12"); 	priority("t12",10); probval 
("t12",prb1) ; 

trans("t13"); priority("t13",1); rateval("t13",1.0*60/ 
43.0); 

trans("t14"); 	priority("t14",1); 
rateval("t14",1.0*60/21.0); 

trans("t15"); 	priority("t15",1); 
rateval("t15",1.0*60/9.0); 

trans("t16"); 	priority("t16",1); 
rateval("t16",1.0*60/15.0); 

(void) trans("t17"); 	priority("t17",10); 	probval 
("t17",prb1); 

(void) trans("t18"); 	priority("t18",10); 	probval 
("t18",prb1); 



trans("t19"); 	priority("t19",1); 
rateval("t19",1.0*60/18.0); 

trans("t20"); 	priority("t20",1); 
rateval("t20",1.0*60/8.0); 

iarc("t1","p1"); oarc("t1","p4"); 
iarc("t1","p2"); 
iarc("t2","p1"); oarc("t2","p5"); 
iarc("t2","p3"); 
iarc("t3","p4"); oarc("t3","p1"); 

oarc("t3","p6"); 
iarc("t4","p5"); oarc("t4","p1"); 

oarc("t4","p7"); 
iarc("t5","p6"); oarc("t5","p8"); 
iarc("t6","p6"); oarc("t6","p9"); 
iarc("t7","p7"); oarc("t7","p10"); 
iarc("t8","p7"); oarc("t8","p11"); 
iarc("t9","p12"); oarc("t9","p14"); 
iarc("t9","p8"); 
iarc("t10","p9"); 
iarc("t10","p13"); oarc("t10","p15"); 
iarc("t11","p10"); 
iarc("t11","p13"); oarc("t11","p16"); 
iarc("t12","p11"); oarc("t12","p17"); 
iarc("t12","p12"); 
iarc("t13","p14"); oarc("t13","p12"); 

oarc("t13","p18"); 
iarc("t14","p15"); oarc("t14","p13"); 

oarc("t14","p18"); 
iarc("t15","p16"); oarc("t15","p13"); 

oarc("t15","p20"); 
iarc("t16","p17"); oarc("t16","p12"); 

oarc("t16","p20"); 
iarc("t17","p18"); oarc("t17","p21"); 
iarc("t17","p19"); 
iarc("t18","p19"); 
iarc("t18","p20"); 

oarc("t18","p22"); 
iarc("t19","p21"); oarc("t19","p2"); 

oarc("t19","p19"); 
iarc("t20","p22"); oarc("t20","p19"); 

oarc("t20","p3"); 
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/*The net is defined, and the analysis can be conducted */ 
} 

/* the following three lines should appear in all programs */ 
assert () {return(RES_NOERR);} 
ac _init() { } 
ac _reach() {fprintf(stderr,"/nThe reachibility graph has been 
generated/n/n");} 

/* User-defined output functions */ 

reward_type ef2 () {return (rate ("t3")) ; } 
/* throughput of t3*/ 
reward_type ef3() {return(rate("t4"));} 
/* throughput of t4*/ 
reward_type ef12 () {return(rate("t13")); } 
/* throughput of t13*/ 
reward_type ef13() {return(rate("t14"));}  
/* throughput of t14*/ 
reward_type ef14() {return(rate("t15"));} 
/* throughput of t15*/ 
reward_type ef15() {return(rate("t16"));} 
/* throughput of t16*/ 
reward_type ef18() {return(rate("t19")); } 
/* throughput of t19*/ 
reward_type ef19() {return(rate("t20"));} 
/* throughput of t20*/ 

reward_type ef20() {return(mark("p2") + mark("p3"));} 
/* utilization of p2 and p3 is the buffer occupancies*/ 
reward_type ef21() {return(mark("p8") + mark("p11"));} 
/* utilization of p8 and p11 is the buffer occupancies*/ 
reward_type ef22() {return(mark("p9") + mark("p10"));} 
/* utilization of p9 and p10 is the buffer occupancies*/ 
reward_type ef23 () {return (mark ("p18") + mark("p20"));} 
/* utilization of p18 and p20 is the buffer occupancies*/ 
reward_type ef24() {return(mark("p6"));} 
/* utilization of p6*/ 
reward_type ef25() {return(mark("p7"));} 
/* utilization of p7*/ 
/* 
	

* / 
reward_type ett19 () {return(rate("t19")*rate("t19"));} 
/* second_ moment of t19*/ 
reward_type ett20() {return(rate("t20")*rate("t20"));} 
/* second_moment of t20*/ _ 
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/*Output results*/ 

ac_final() { 

pr_expected("throughput(t3) ",ef2); 
pr_expected("throughput(t4) ",ef3); 
pr_expected("throughput(t13) ",ef12); 
pr_expected("throughput(t14) ",ef13); 
pr_expected("throughput(t15) ",ef14); 
pr_expected("throughput(t16) ",ef15); 
pr_expected("throughput(t19) ",ef18); 
pr_expected("throughput(t20) ",ef19); 

pr_expected("utilization(p2+p3) is the buffer occupancies 
",ef20); 

pr_expected("utilization(p8+p11) is the buffer occupancies 
",ef21); 

pr_expected("utilization(p9+p10) is the buffer occupancies 
",ef22); 

pr_expected("utilization(p18+p20)is the buffer occupancies 
",ef23); 

pr_expected("utilization(p6) ",ef24); 
pr_expected("utilization(p7) ",ef25); 

pr_expected("second_moment of (t19) ",ett19); 
pr_expected("second_moment of (t20) ",ett20); 

pr_std_average( ); 
/* pr_std average der();*/ } 
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