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ABSTRACT 

Improving the Jitter Performance of Timing Recovery by Employing 

Delay Shifts 

by 

Xin De Lu 

Many methods have been developed for evaluating the jitter performance of 

timing recovery circuits for binary synchronous transmission systems. These circuits 

consist of a nonlinear device followed by a narrowband filter tuned to the pulse rep-

etition frequency. This thesis introduce delay shifts in the timing recovery circuits 

to improve the jitter performance. The function of the delay shifts is analyzed and 

mathematical proof of jitter performance improvement is given for the system using 

square-law device. Finally, the numerical results obtained from the specific examples 

serve to illustrate the significant improvement between the system with and without 

delay shifts. That is, one delay shift introduced in the system can gain nearly 3 db 

in rms jitter performance. 
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CHAPTER 1 

INTRODUCTION  

Synchronization is a basic issue in communication and control. In digital communi-

cation systems, synchronization problems can be classified into three levels: phase, 

symbol, and frame. Most digital communication systems using coherent modulation 

require all three of these levels of synchronization. The knowledge of synchronization 

information at all three levels is the key to successfully detect the transmitted signal. 

Phase Synchronization: phase-locked loop (PLL) 

Phase synchronization is needed in coherent modulation and demodulation. For 

example, in the case of coherent phase modulation (PM), the receiver is required to 

generate a reference signal whose phase is identical to the phase of incoming signal. 

Generally, at the heart of all phase synchronization circuits is the some version of a 

phase-locked loop. Figure 1.1 is a basic phase-locked loop. The details of phase-locked 

loop are discussed in several textbooks [1] [2]. 

Frame Synchronization:  

Frame synchronization is required when the information is organized in blocks. 

This will occur, for example, if a block code is used for forward error control, or if 

the communications channel being time shared on a regular basis, by several users 

Figure 1.1  Basic Phase-Locked Loop 
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Figure 1.2 STR Block Diagram 

(TDMA). Frame synchronization is usually accomplished with the aid of some special 

signal procedure from the transmitter. A simple example of frame synchronization 

aid is the frame marker, which is a single hit, or a short pattern of bits that the 

transmitter injects periodically into the data sequences. Although adding additional 

synchronization bits will reduce the information rates transmitted in a given channel, 

the correlation should be nearly perfect. 

Symbol Synchronization: 

All digital receivers need to have demodulation synchronized to the incoming 

digital symbol transition in order to achieve optimum demodulation. The main ob-

jective of this thesis is to design a symbol timing recovery circuits (STR) to extract 

synchronization information or timing wave from incoming signal. Fig. 1.2 is a basic 

STR block diagram used to illustrate the principle of STR circuits. 

where x(t) is the incoming binary sequences and can be expressed as  

+∞  
x(t) =  ∑ akg(t — kT) 	(1.1)  

k=-∞  

where ak  is data sequences (±1), assumed to be statistically independent, g(t) is 

impulse response of the prefilter. T is the data period or data clock. Clearly after 

even-law device, the output waveform will contain a Fourier components at the fun-

damental frequency of the data clock (1/T). This frequency component is isolated from 

its harmonics by a bandpass filter (BPF). Thus, timing recovery is achieved. 

Based on the principle above, many methods such as absolute value, square 
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law, full wave rectifier, high order non-linear device, half bit delay etc., have been 

developed to extract timing wave and their timing jitter are thoroughly analyzed by 

[3] [4] [5] [6] [7] [8]. This thesis developed a new method to improve jitter performance 

of STR circuits. That is, for the nonlinear device keep the same, every delay shift 

introduced, the resulted jitter performance is improved by nearly 3 db. 

1.1 Previous Work Review  

Timing recovery has been the subject for the research in synchronous digital 

communication for long time. There are a number of strategies developed to achieve 

this purpose by transmitting extra power and using additional bandwidth. For exam-

ple, one can insert synchronization bits in data sequences or use a separate sub-channel 

for transmitting synchronization information. 

Synchronization by using extra power and bandwidth is not economical and 

timing recovery using no extra power and bandwidth have been developed, which 

extracts timing information directly from incoming data sequence. In this thesis, we 

restrict our discussion in this class of synchronization strategies. 

The performance of timing recovery circuits employing simply a narrowband 

filter tuned to a harmonic of pulse repetition frequency was analyzed by Bennett [1]. 

His results showed that, this scheme works only when incoming data sequence having 

a nonzero mean value and Fourier transform of the data pulse not vanish at pulse 

repetition frequency. Therefore, this scheme requires a strong restriction on channel 

bandwidth and signal power. 

In the interest of meeting power and bandwidth limitations, a nonlinear device 

must be inserted before the narrowband filter. Franks and Bubrouski [2] considered 

a timing circuits involving a square-law device followed by a narrowband filter, their 

results showed that the jitter performance depends on the excess bandwidth of the 



input pulse and it is satisfactory for medium and large values of rolloff factor of 

incoming pulse. 

When the incoming pulse is strongly bandlimited (rolloff factor goes to zero), 

the pulse overlap or intersymbol interference is significant and timing recovery fails, 

hut for small rolloff factor, it is possible to use high order nonlinear device or other 

nonlinear device to achieve satisfactory jitter performance. Yegal Barness [3] devel-

oped a new method (moments method) to evaluate jitter performance of SIR circuits 

employing high order nonlinear device, his method is suitable particularly for the case 

of incoming pulse having small rolloff factor. 

1.2 System Model  

From previous work, it is recognizable that square-law device works well for 

incoming pulse with medium and large rolloff factor, for small rolloff factor incoming 

pulse, other nonlinear device must be considered in order to achieve satisfactory jitter 

performance. This thesis developed a new method to improve jitter performance when 

prefilter, nonlinear device and postfilter are kept the same. 

Fig 1.3 is the system model for extracting the timing information. Where G(f) 

is prefilter used to reshape the pulse and reduce the influence of noise. f() is nonlinear 

device such as absolute value, square law, the fourth-law rectifiers etc. These nonlinear 

device must be symmetric. k1T...knT are delay shifts. ki  is an integer. H(f) is a 

narrowband filter used to eliminate high order harmonic components. H(f) is centered 

at the pulse repetition frequency 1/T and satisfies the band-limiting condition. 

 
H(f) = 0  for ││f││ - 1/T >1/2T  

 

The output of postfilter is timing wave used as reference signal for demodulation. 

Due to the intersymbol interference and noise in channel, this timing wave is nearly 
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Figure 1.3  System Model With Delay Shifts 

sinusoidal wave which is fluctuated at zero crossing time to. No matter what kind of 

modulation scheme is used in transmitting the data sequence, the system model above 

is suitable because one can select proper demodulation scheme to get the received 

signal as described in equation 1.1. 

There are five chapters in this thesis. The first chapter states what kind of 

STR circuits we are interested in and we review the previous work related to this 

subject. In chapter 2, we follow Frank and Bubrouski, Y. Barness in analyzing the 

STR circuit employing a square-law device followed by a narrowband filter tuned 

to the pulse repetition frequency. Although the results are the same as [4] [5], the 

analytical approach is different, which helps us in analyzing the STR circuits with 

delay shifts. 

In chapter 3, we evaluate the jitter performance of STR circuits with delay 

shifts. For comparison purpose and for mathematical reason, we give the final rms 

jitter performance expression only for the STR circuits with one delay shift. The 

numerical results are given in chapter 4 and the property of STR circuits (jitter 

performance and bandwidth relation) are also discussed in this chapter. In the last 

chapter, we draw our conclusions from the study of this subject. 



CHAPTER 2 

JITTER PERFORMANCE OF STR CIRCUITS 
WITHOUT DELAY SHIFTS  

The symbol timing recovery (STR) circuits that employed only a square-law device 

followed by a narrowband filter were investigated by many people [4] [5]. No matter 

what kinds of analytical approaches were used in evaluating the jitter performance of 

STR circuits, it is desirable to consider square-law device at first. Because mathemat-

ically, a square-law device is ease to deal with, and many properties of SIR circuits 

can be uncovered through this analysis. 

It is possible that the timing circuit might he simply a narrowband filter tuned 

to the pulse repetition frequency. This scheme requires that the data sequence have 

a nonzero mean value and that the Fourier transform of the data pulse not vanish 

at the pulse repetition frequency. However, in many communication systems, these 

conditions do not hold. So other STR circuits employing nonlinear devices were 

developed, such as absolute value, square-law, full wave rectifier, high order nonlinear 

device etc. Previous work [4] [5] showed that the STR circuits involving only a square-

law device followed by a narrowband filter will give satisfactory jitter performance 

for medium and large rolloff factor. For a rolloff factor that goes to zero, high order 

nonlinear device must be employed to get a satisfactory jitter performance. 

In this thesis, a different analytical method is used. This chapter emphases on 

the STR circuits employed only square-law device followed by a narrowband filter. 

Although the mathematical expression for rms jitter is slightly different from those 

given by [4] [5], the simulation results are exact the same. 

2.1 Definition of Timing Jitter  

The jitter of timing wave (∆τ ) is defined as the deviation between the timing  

6 
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Figure 2.1 Timing Wave Sample Functions 

wave's actual zero crossing time and its mean timing wave zero crossing time. 

Suppose we have a cyclostationary process (CT process) z(t) and its mean 

waveform E[z(t)]. One sample of these two waveforms is sketched in Fig. 2.1 

In Fig.2.1, t0  is zero crossing of mean wave E[z(t)] and t1  is zero crossing of 

random process z(t), from the definition of timing jitter, we have 

∆τ  = t1  — t0  

Assuming the timing jitter is relatively small compared to the period of mean 

timing wave T, approximately, 

tan  θ = 
z(

t 0

) 
/∆τ = E[z (

t

0 )]  
 

or 
 

∆τ = E[z (

t

0 )] 

 
 

Clearly ∆τ  is random variable. Normalized it to the period T and measure its 

root mean square value, thus 
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(∆τ/T) rms = 1/T (E[z2(

t

0 )] 1/2 / E[z(

t

0 )] 

	 
(2.1) 

The equation 2.1 is the criteria for evaluating jitter performance of STR circuits. 

This thesis analyzed different scheme only based on this criteria. The main objective 

of this thesis is just to improve the rms jitter value by using more complicated scheme. 

2.2 Evaluation of the Mean Value of the Timing Wave  

As mentioned previously, the incoming data {an} is random variable, so the 

input signal for nonlinear device is random process. Here we chose square-law device 

as nonlinear device, therefore we get 

y (t ) = x 2(t )  = ΣmΣn  amang(t — mT )g(t  — nT ) 	 (2.2) 
 

Obviously y(t) is a random process. H ( f ) is a linear narrowband filter, and 

its output z (t )  is a random process too. According to the properties of linear filter, 

the expected value of 

 z(t) 

 equals the response of the system to the mean waveform 

E[ y (t )]  of the input, thus; 

E [z(t )]  

= 

∫ +∞-∞ 	E[y(α)]h(t — α)dα 	(2.3) 

and 

E [z(t )]  

= 

 E [ΣmΣn  ama ng(t — mT )g(t — nT )]                                                                 
 

ΣmΣn E[aman]g(t — mT)g(t — nT) 	(2.4) 
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The data sequence an  is assumed to be statistically independent binary sequence 

taking value of ± 1, with equal probability, hence 

{ 0 m≠n  
E[aman ] =  { 1 m=n 		(2.5)  

Substitute equation (2.5) in (2.4), the expected value of y(/) as follows; 

E[y(t)]  = ∑n g2 	(t — nT) 	(2.6)  

Examining the equation above, it is not difficult to find that this expected 

waveform is periodic with period T. As it is known that any periodic signal can be 

expressed as Fourier series, and the spectrum of this periodic signal has frequency 

components only at fundamental frequency 1/T and its higher order harmonics. Thus, 

if we use a narrowband filter to pick up frequency component at 1/T, we can get a 

nearly sinusoidal wave with period T at output. 

Defining g2 (t )  = g2( t ) , equation 2.6 can be written as 

E[y(t )] = 

∑n g2(t — nT) 	(2.7) 

 

Taking Fourier transform of equation 2.7 

F{E[ y(t )]} = 1/T ∑n G2(n/T

)e j2πnt/T                                                                        

= 

1/T ∑n G2(n/T )δ ( f — n /T). (2.8) 

 

taking the Fourier transform of equation 2.3 on both side and substitute equation 

2.8 into it, 
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F{E[z(t)]} =  1/T ∑n G2(n/T

)δ ( f 

— n/T 

) 

H ( f )  
 

 

 =  
1/T ∑n G2(n/T

) H(n/T)δ H(

f — 

n/T ) 	(2.9) 
 

H(f) is a narrowband filter centered at pulse repetition frequency 1

/T 

 and satisfies 

the bandlimiting condition, we get H(n/T) ≠ 0 only for n = ±1. therefore, 

		  
F{E[z(t)]} =  1/T G2 (-1/T) H(-1/T) e j2πnt/T 

 
+  1/T G 2(1/T) H(1/T) e j2πnt/T 	(2.10) 

Defining │ul│= 1/T│

G2 (

1/T) H (1/T)│ , and noting that G

2(-1/T)H (-1/T) 

= [ G (1/T)H(1/T)]*  , 

taking the inverse Fourier transform, we obtain; 

E [z (t )]  = 2│u1│cos(
2

πt/T + ϕ) 	 (2.11) 

Where ϕ  is the phase of G2 (1/T)H (1/T). If the bandwidth of G2 ( f )  is greater than  

1/T 

, 

then, E[z(t )] ≠ 0. That means this STR circuits works, but we can not know  how 

well this system works up to this point. The next section, we will evaluate the  mean 

square value of timing wave z(t )  at zero crossing time to, and get the exact  expression 

of rms of jitter value, the jitter performance of different prefilter and  postfilter can 

be discussed thoroughly. 

From equation 2.11, zero crossing time of timing wave satisfies 

2πt0/T + ϕ = (2n - 1) π/2                                         (2.12)  
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and 

t0  = T (2n - 1/4 - ϕ/2π) 	(2.13) 
 

where n  is an integer. 

2.3 	Evaluation of the Mean Square Value of the Timing 
Wave  

For any non stationary process, we can write 

 
E[z2 (t)] = E [∫ +∞-∞ ∫ +∞-∞ y (t — α) y ( t — ß) h(α )h

(ß)dαdß] 

 
  = E [∫ +∞-∞ ∫ +∞-∞ y (t — α) y ( t — ß) h(α )

h(ß)dαdß]             (2.14) 
 

	  

Similar as equation 2.2, y(t  — α ) and y ( t — ß )  can be expressed as 

y(t — α) 

= 

 ΣmΣn  am ang(t — α  —mT )g(t — α  — nT ) 	(2.15) 
 

y(t — ß) 

= 

 ΣiΣj 

 

ai a jg(t — ß  —iT )g(t — ß — jT ) 	(2.16) 

Equation 2.15 multiplies equation 2.16 and taking the expected value, yield 

E [ y( t — α)(t — ß)] = ΣmΣnΣiΣj  E[

am ana

i

a

j ]g(t — α  — 

mT ) 

 
 

g(t — α 

 — nT )

g(t — ß 

— iT )

g(t — ß 

— jT ) 

	(2.17) 
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The only random variable here is data sequence {an} which is statistically in-

dependent and having values ±1 with equal probability. The expected value of right 

side of equation 2.17 can be done by directly using following relation [6]. 

E[

am anaia j

] 

= 

δ mnδij + δmi δnj + δmjδni - 2δm

nij 

	

(2.18

) 	 (2.18) 

Where δ

m

nij means it equals 1 only when m  = n  = i  = j, Substitute equation 2.18 

into 2.17 and rewrite it as 

E[ y (t — α)(t — ß)] = ∑

m 

g2 ( t  — α  — mT )  ∑g 2 ( t  — ß  — iT )  

+ 2 [

∑m g(t — α — mT) g(t — ß — mT) ]2 

 - 2 [

∑m g2(t — α — mT) g2(t — ß — mT) 	(2.19) 

There are three terms on the right side of equation 2.19. Later on, we will 

show that the first term has no contribution on the jitter performance. Only the 

last two terms play an important role on the rms jitter performance of timing wave. 

Substitute equation 2.19 hack into equation 2.14 and evaluate the influence of the 

first term of equation 

E1{z

2

(t )] = 

[∫ +∞-∞ ∫ +∞-∞ ∑

m 

g2 ( t  — α  — mT )∑

m 

g2 ( t  — ß  — iT )h (α)h (

ß)dαdß 	  
 

= [∫ +∞-∞ ∫ +∞-∞ ∑m g2(t — α — mT )h (α)dα∫ +∞-∞∑i g2(t — ß — iT )h (ß)dß = [∫ +∞-∞ ∑m g2(t — α — mT )h (

α)dα]

2 

(2.20) 
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From equation 2.6, equation 2.20 can be written as the square of the convolution 

of the mean wave of input and impulse of response 

Ei [z2 (t)] = {E[y(t)]  * h (t )}2  =  {E[z (t )]}
2                            

(2.21) 
 

 

This term evaluated at zero crossing time (t0), obviously it equals zero 

Ei [z2 (t )] = 0 

	for t = 

t0 

 

The last two terms can be combined together, and this can he explained as 

intersymbol interference. But for mathematical ease, we still write them separately 

Ei [z2 (t )] = 

[∫ +∞-∞ ∫ +∞-∞ ∑m g2(t — α — mT)g(t — ß — mT)]2  h(α

)h ( ß )dαd ß 

 

	
 

= [∫ +∞-∞ ∫ +∞-∞ ∑m ∑n g(t — α — mT )g(t — ß — mT ) 

 

 

ₓg ( t  — α  — nT )g ( t  — ß — mT )h

(

α

)h ( ß )dαd ß 

=   ∑

m

∑n[∫ +∞-∞ g(t — α — mT)g ( t  — α  — mT — kT )

h (α)dα] 2 (2.22) 

 

Where k=n-m, if we denote 

 
∫ +∞-∞ g(t — α)g(t — α — kT)h(α)dα = Pk(t) 	(2.23) 

and 

∑k P2k (t) = Q(t )  
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then the expected value E2[z2(

t

)] could be rewritten as 

E2[z 2 (t )] = ∑

m

[∑k Pk2(t — mT)] = ∑m Q(t — mT) 	(2.24) 
 

Similarly, the influence of the last term of equation 2.19 can be evaluated as 

E3[z2 ( t )] = ∫ +∞-∞ ∫ +∞-∞ ∑

m 

g 2  (t  — α  — mT )g2( t — ß — mT)h(α)h(ß)dαd ß  

 

 

 

= ∑

m

[∫ +∞-∞ (t — α — mT)h(α )dα]2                                                  

(2.25) 
 

Using the notation of equation 2.23, hence k=0 

∫ +∞-∞ g2 (t — α)h(α)dα = P0(t) 	(2.26) 

then 

∑3 [z2(t)] ∑m 

P

02 (t — mT) = ∑m s(t — mT) 	(2.27) 
	  

where S(t) is defined as 

P0

2 (t)

. 

Now, checking all three terms of mean square value of the timing wave, it is 

interesting that they are all periodic waveform with period T. Combine all three terms 

together and note that E1[z2 (t0)] = 0,  

E[z2 (

t0

)] = E2[z2 (

t0

)]+ E3[z2 (

t0

)] = ∑m[ 2Q(t0 - mT) - ∑m2P20(

t

0 - mT

)] 

	(2.28) 

According to the definition, the rms jitter performance is evaluated at zero 

crossing time instant. Therefore the final expression of rms jitter at time domain is 
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obtained 

(∆t/

T

)rms   = 1/T E[z2 (to )]1/2 

/E[z (t0)]  

= [Σ

m 

2

Q

(t

0 - mT ) - Σ m 

2P

20 (t0 

- 
mT )]/4π│u1│ (2.29) 

 

	  

 
 

If we know h(t ) which is the impulse response of postfilter (narrowband filter), 

then Pk ( t )  can be evaluated by numerical integration, and it is possible to write 

a program to evaluate the final rms jitter performance based on the equation 2.29. 

But in order to understand the behavious of the postfilter especially the band-limiting 

condition. It is better to derive the final rms jitter expression in frequency domain, 

and this is discussed in next section. 

2.4 Evaluation of the Mean Square Value of the Timing 

Wave in Frequency Domain  

The jitter expression in equation 2.29 is determined by the term PZ(t) only. 

Taking the Fourier transform on equation 2.23, we have 

Pk ( f ) 

= 

H( f)∫ +∞-∞ G( ß)G( f — ß)e-j2π ßkT d ß                                            (2.30) 
 (2.30) 

 

in the case of k=0, and noting g2(t )  = g2 (t ) , or 

G2 ( f )  = ∫ +∞-∞

G (

ß

)G( f 
 — 

ß

)

d ß                                         (2.31)  
then 
P0 (f ) = H( f)∫ +∞-∞  G( ß)G(f — ß)d

ß = H(

f )G2( f) 	(2.32) 
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Using the properties of Fourier transform, the Fourier transform of Q(t) can 

easily he obtained 

Q( f )  = Σk Pk ( f )  Pk ( f)  
 

 
 = Σk ∫ +∞-∞  Pk (α

)P

k 

(

f - α)dα 	(2.33) 
  

Substitute equation 2.23 into 2.33, then 

 
Q( f)= Σk ∫ +∞-∞ ∫ +∞-∞ ∫ +∞-∞ H(α)H

( f - α)

G(u

)

G(α - u

)

G(v

) 

 
  

G( f  — α — v )e-j2π(u+v)kTdudvdα 	 (2.34) 

Using the famous relation 

Σm e j2πtmT = 1/T Σm  δ (t — m/T) (2.35) 
 

then 2.34 becomes 

 
Q( f ) 

= 

∫ +∞-∞ ∫ +∞-∞ ∫ +∞-∞  H (α)H ( f - α)G (u )G(α - u)G (v)G ( f - α - v)  
 

x Σ 1/Tδ(u + v — k/T ) dudvdα 

= Σk 1/T ∫ +∞-∞ ∫ +∞-∞ H(α)H ( f - α)G(v)G(k/T - v) 

 

 = 
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x G( f — α  — v )G(α  + v — k/T)dvdα  

(2.36) 

Since g(t ) is band-limiting prefilter response, therefore 

G( f )  

=

0 

  f or│ f│≥ 1/T  

that is 

G(v )G(k/T — v)= 0   fork ≥  2 

finally, the expression becomes 

 

 Q

( f )

= 1/T ∑k=-1  ∫ +∞-∞ ∫ +∞-∞ H (α ) H(f —α )G(v )G(k/T — v )G(f — α —v)G(α + v - k/T)dvdα  
  

(2.37) 

2.5 Final Rms Jitter Expression  

Using Fourier series, the intersymbol interference term of equation 2.24 and 

equation 2.27 can be expressed as 

E2 [z2 ( t )] = 1/
T 

∑m  Q(m/T)e-j2πmt/T 	(2.38)  

and 

 
E3[

z2 ( t )] = 1/
T ∑m S(m/T)e-j2πmt/T                                                             (2.39) 

	 	 (2.39) 
 

where Q(m/T) and S(m/T) are given by equation 2.40 and 2.41 respectively Q(

m/T) = 1/T ∑1k=-1  ∫ +∞-∞ ∫ +∞-∞ H (α ) H (m/T - α

)

G(v)G(k/T—v)G(m/T - α - v) G(α + v - k/T)dvdα  
(2.40) 

and 
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S(m/T) =  ∫ +∞-∞  H (α ) H (m/T 

 
— α)G2(α ) G2 (m/T 

 
— α)dα 	 (2.41) 

Using the hand-limiting condition for H(f), clearly 

H (α) H (m/T  
— α) 

≠  0 only for m = 0, ± 2; 

So 

	  
E [z2(t)]  = ∑m=0

,
±2[Q(m/T)e j2πmt/T - S(m/T)e j2πnt/T]  

 

 
=  ∑m=0,±2 vme j2πmt/T 	(2.42) 

 

Noting that v-2 = v*2, then 

E[z2 (t )] = v0 + │v2│cos(4πt/T + θ)        	(2.43) 	 (2.43) 

where 

v

0 = 2/T [Q(0) — S(0)]  

 

│

v

2│= 2/T [Q(2/T) — S(2/T)] 

 

θ = arctan[Q(2/T) — S(2/T)] 

Evaluating equation 2.43 at zero crossing time t0  we have 

E [z2 (

t0

)] = v0 	+│v2│ cos(nπ — 2ϕ + θ) n odd 	(2.44) 

the minimum rms jitter occurs when 

2

ϕ  = θ  

(

∆τ/T)rms,min = (v0 — 2│v2│)1/2 / 4πu1 

 

	
(2.45) 
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where 

 
 

	

v

0 = 2/T2 [Σk=-1 ∫ +∞-∞ ∫ +∞-∞ H (α ) H (- α )G(v )G(k/T 
 

—  v ) G(— α  — v )G(α  + v — k/T)dvdα  
 

 

	

—T

∫ +∞-∞  H (α ) H (- α )G2 (α ) G

2 (- α

)

dα] 	 (2.46) 

and 

	

		  

v2 = 2/T [Σk=-1 ∫ +∞-∞ ∫ +∞-∞ H(α)H(2/T - α)G(v)G(k/T 2/T - v)G(2/T - α 2/T - α - v) 

	  
 

 
G (α + v  -  k/T 

)dvdα - T ∫ +∞-∞ H(α)H(2/T -  α)

dα] 	 (2.47) 

 

(2.47) 

2.6 Computer Simulation  

The C program has been written to explore the jitter performance of STR 

circuits described in this chapter. We investigate two parameters which are related 

to jitter performance of STR circuits. One is the magnitude of timing wave, this is 

an important parameter since small magnitude result in poor synchronization (noise 

is unavoidable and magnitude value can not be increased by using amplifier), the 

other one is minrms jitter performance defined by equation 2.45. For mathematical 

easiness, we use ideal lowpass filter as prefilter and the bandwidth of this prefilter is 

described by rolloff factor γ. For a postfilter, we used a single tuned circuits with 

resonant frequency 1/T and quality factor Q, that is 

 
H ( f )  = H0( f - 1/T) + H0(f - 1/T) 	(2.48) 

with Ho(f), the lowpass equivalent, given by 

H0( f ) 

= 

{ 1/1+ jfTQ  │ f│ < 1/2T                                                                                                                                      { 0         otherwise                                (2.49) 
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Table 2.1: Rms Jitter as a Function of Q, for an Ideal Band-limiting Filter Response  

Q γ  = 0.2 γ   = 0.4 γ  = 0.6 γ  = 0.8 
25 0.034571 0.017257 0.011615 0.009292 
50 0.019658 0.009874 0.006668 0.005291 
75 0.013985 0.007059 0.004783 0.003786 
100 0.010946 0.005489 0.003772 0.002987 
125 0.009035 0.004598 0.003136 0.002484 
150 0.00771.5 0.003941 0.002696 0.002137 

The program is written based on equation 2.45, 2.46, 2.47. Table 2.1 shows 

the rms jitter of timing wave z(t) as a function of quality factor Q. These datas are 

plotted in Fig. 2.2. (Rolloff factor -y as parameter.) 

The quality factor Q reflects the characteristic of postfilter. As quality factor Q 

increase, the postfilter functions more and more like a narrowband filter. Therefore, 

the jitter level decrease as Q increase. The results shown in Fig. 2.2 are exactly the 

same as expected. 

In order to view the influence of rolloff factor, we plot the rms jitter of timing 

wave as function of rolloff factor in Fig. 2.4, where Q is selected as parameter. 

2.7 Property of STR Circuits  

The final rms jitter expression (2.45) shows that the rms jitter performance 

depend on the impulse response of prefilter and postfilter if the nonlinear device is 

chosen. The function of postfilter is clear, it simply pick up the frequency component 

at pulse repetition frequency. The character of postfilter is described by quality factor 

Q, large Q leads single tuned circuit much close to an ideal narrowband filter. There-

fore, the jitter performance is better. The simulation results in Fig.2.1 demonstrate 

this analysis. 

We are much interested in the impulse response of prefilter. There are two reason  



Figure 2.2  Jitter Performance as Function of Quality Factor 
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Figure 2.3  Jitter Performance as Function of Rolloff Factor 
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for this, one is that the channel can be charactlized by a prefilter, the influence of 

channel bandwidth can be uncovered by exploring the function of prefilter. The other 

reason is that reshaping the incoming wave by using prefilter can improve the jitter 

performance of timing wave, in particular, will result in a error-free timing recovery 

[3]. The condition for achieving error-free timing wave is not easy to get and sometime 

impractical [6] 

The result in Fig. 2.2 show that the jitter level decrease as y increase. That is 

to say, if the channel has wider bandwidth, the jitter performance of timing recovery 

circuits is better. While the channel bandwidth decrease, the jitter performance is 

worsen. The decrease of channel bandwidth will increase the intersymbol interference. 

Therefore, the jitter of timing recovery is primarily clue to the intersymbol interference 

when the noise is small. 



CHAPTER 3 

EVALUATION OF JITTER PERFORMANCE FOR STR 
CIRCUITS WITH DELAY SHIFTS  

The evaluation procedure for jitter performance of timing wave z(t) is exactly the 

same as it was in chapter 2. But it is more complicated since we introduce the delay 

shifts. Here only one delay shifts is considered, from this simplest case, we can see the 

improvement by using delay shifts. For the system using nonlinear device other than 

square-law, this scheme also works. Although the close mathematical expression is 

hard to tract, one can use computer simulation package such as BOSS to see the jitter 

performance improvement for the system using different kinds of nonlinear device and 

different number of delay shifts. 

The simplest and most mathematically tractable system is as follows: 

where x(t), G(f), H(f) are described the same as in chapter 2. 

lT is delay time,  l  must be an integer. 

3.1 	Evaluation of Rms Jitter on Time Domain  

From Fig. 3.1, y2 (t ) equals  y2 (t ) 

 = 

 y (t

) + y(t  — lT )  

Figure 3.1  Sample Function 
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Taking the expected value of equation 3.1, we have 

Substitute equation 2.5 into 3.2, we get 

Therefore, the expected value of the output of postfilter H(f); 

Substituting equation 3.3 into equation 3.4 and comparing it to equation 2.3, 

then 

This result is obvious since the postfilter H(f) is time invariant, and the mean 

value of output is the sum of mean value of inputs. Coefficient 2 is due to two inputs, 

one is the output of square device and the other one is the delayed version of it. 



25 

Using the results in chapter 2, the Fourier transform of E[ z2(t )]  is easily ob- 

tained, and finally 

E[z( t )]  = 2E[z(t)] = 4│u1│cos(2πt/T + ϕ

) 

 
	 (3.6) 

and zero crossing time is the same as before, that is 

 

	

t0  = T (2
n -1/4 -ϕ/2π

) 

	 (3.7) 

where n is an integer. 

To evaluate the variance of time wave Z2 (t ), we follow all the procedure in 

chapter 2 and write 

y2(t  - α) =  ΣmΣn[aman + am+lan+l

]

g(t - α - nt) (3.8) y2(t  - ß) =  ΣiΣ j[aiaj + ai+laj+l

]

g(t 

- 

ß - iT)g(t - ß - jt) (3.9)                                    

Multiplying two equation above and taking the expected value, yield 

E[y2(t  — α)y2(t — ß)] =ΣmΣnΣiΣj E[(aman  + am+l an+l)(

aiaj

+

ai+laj+l)] 

 
 

g( t — α  — mT )g( t — α  —  nT )g( t — ß  — iT )g(t — ß — jT)  

(3.10) 

The results of equation 3.10 is given by (see Appendix A) 

E[y2(t — α)y2(t —  ß)]  = 2E[y(t — α)(t — ß)]  + 2Σmg2 (t — α  — mT )Σi g2 (t — ß — iT)  
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+ 2 [

Σm g2 (t — α  — mT )g (t — ß — (m + I)T)]

2 

+ 2 [

Σm g2 (t — α  — mT )g (t — ß — (m + I)T)]

2 

- 2Σmg2(t — α — mT )g (t — ß — (m + I)T)                                         - 2Σmg2(t — α — mT )g (t — ß — (m - I)T)                 (3.1

1) 

After filtering, and noting that equation 2.20 and 2.21, we have 

E[ z

2

2(t )] = 2E[z2 (t)] 2Z1(t) — 2 Z2 (t ) 	 (3.12) 

where Z1 (t ) and Z2 (t) are defined as Z1 (t) = 

∫ +∞-∞ ∫ +∞-∞ 

[(

Σm g (t — α  — mT )g (t — ß  — (m + l)T ))

2 

 

+(Σm 

g

2

(t — α  — mT )g (t — ß  — (m + l)T)

)2]h(α)h(ß)dαdß (3.13) 

and 

Z2(t) = 

∫ +∞-∞ ∫ +∞-∞ [Σm g(t — α — mT) g2(t — ß — (m + l)T) 

 
 

 

+Σm 

g

2

(t — α  — mT )g

2

(t — ß  — (m - l)T)]h(α)h( ß)dαd ß (3.14) 

 

 

 

 

+ 



97 

We look Z1(t ), and Z2(t ) as error terms, and if we can prove these error terms 

are small comparing to mean square value of timing wave E[z 2 (t )] at zero crossing 

time to, then these terms can be neglected and approximately, we have  

	  (

∆τ2/T

)rms = 1/T (E

[z22(t0 )])

1/2  / E

[z2(t0 )]            

   

	  

= 1/T (E[z2(t0

) ])

1 /2  / E

[z2(t0 ) ]        

 

 
(3.15) 

=  √2/2( ∆τ/T)rms  

The result above is equivalent to 3 db jitter performance improvement. But for 

real system, the error terms Z1(t), and Z2(t ) are small number which depends on the 

delay time lT and on what kind of prefilter and postfilter the system uses. In the 

next section, we write the error terms expression on frequency domain and simplify 

it to get final rms jitter performance expression on frequency domain. 

3.2 Frequency Domain Expression for Error Terms  

Checking equation 3.13 carefully, we can find that m+l and m-l are symmetric. 

So, we only simplify the term containing (m  + l)T  delay time and use symmetric 

property to get time domain simplified expression for Z1(t). 

First, we have 

∫ +∞-∞ ∫ +∞-∞ (Σm g (t — α  — mT )g (t — ß — ( m + l)T)2  h(α)h( ß)dαd ß = ∫ +∞-∞ ∫ +∞-∞ (ΣmΣn g (t — α  — mT )g (t — ß — ( m + l)T)g(t - α - nT) 

 

  
 

 
 

- CK) 	- !).0 m n  
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g (t — ß — (n + l)T)h (α)h (ß)dαdß = ΣmΣn∫ +∞-∞ g (t — α  — mT )g (t — α — nT )h (α)dα ₓ ∫ +∞-∞  g (t — ß — (m + l)T )g (t — ß — (n+ l) T )h (ß)dß = ΣmΣn∫ +∞-∞ g (t — α  — mT )g (t — α  — mT  — kT )h (α)dα ₓ ∫ +∞-∞  g (t — ß — (m + l)T )g (t — ß — ( m+ l) T — kT )h ( ß)dß = ΣmΣn  Pk(t — mT)Pk(t — mT — lT)                              (3.16) 

 
 

Where k=m-n, and Pk  is defined in equation 2.23. 

Considering the 

m 

 — l term together, we have 

Z1( t ) = ΣmΣn  Pk

(t — mT)[Pk

(

t — mT — lT) + Pk

(

t — mT 

— lT)] (3.17)  mT)tpk(t — mT - 17') + Pk(t - mT + IT)] 	  
 

Similar for Z2 ( t ) , we have  

Z2 ( t ) = Σm P0(t — mT)P0(t — mT — lT) + P0 (t — mT  + lT)] 	(3.18)  

Clearly, Z1 ( t ) and Z2( t )  are periodic with period T. Define A(t) and B(t) is one 

eriod of 

Z1 ( t ) 

and 

Z2( t

) respectively, we have  

Z1 ( t ) 

= 

Σm 

 

A

(t  — 

mT)        	 (3.19)  



 

Z2( t ) 

= 

Σm B(t — mT) 	(3.20) 

Where 

A(t ) 

= 

Σk Pk(t) Pk(t — lT) 

+ 

Pk (t — lT)] (3.21) 

	 	  

and 

B(t) = P0(t )[P0(t — lT ) + P0(t  + lT )] 	 (3.22) 

Taking the Fourier transform of equation 3.19, then 

A( f) 

= Σk Pk( f 

) ⨂Pk( f )e-j2π flT 

+ 

Pk ( f )e+j2π flT

] 

= Σk Pk( f 

) ⨂Pk( f )2cos(π flT)] 

	

= 

Σk ∫ +∞-∞ 2cos( παlT) Pk (α) Pk( f  - α)dα 	(3.23)  

 

Comparing equation with equation 2.33, the only difference is 2cos(2παlT), which is due to delay, therefore 

 

 

A( f ) 

= 

Σk ∫ +∞-∞ ∫ +∞-∞ ∫ +∞-∞ ∫ +∞-∞ 2cos(παlT)H (α)H( f  - α)G (u)G(α - u)G(v) 

G( f - α - v)e-j2π(u+v)kTdudvdα (3.24) 

  

Using the same procedure and condition as in page 16, we have 

  = 	 

A( f ) 

= 

1/T Σ1k=-1 ∫ +∞-∞ ∫ +∞-∞ 2 cos(2

παlT)H (α)H( f - α

) G(v)  
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G(k/T — v)G (f — α — v)G(α + v - k/T)dvdα 	(3.25) 

Similarly, we have 

B( f )  = P

0( 

f 

) 

 

⨂P0 ( f ) 

 e --j2π flT + 

P

0 ( f )e --j2π flT

] = P0( f )⨂ [

2cos(2π flT

) P

0 ( f )] =  ∫ +∞-∞ 2cos(2παlT)

P0 (α)( f - α

)

dα 

                         

(3.26) 

 

 

Substitute equation 2.32 into equation 3.26 

 
B( f )  = ∫ +∞-∞ 2 cos(2παlT) H (α ) H ( f  — α)G2(α )G2 ( f  — α)dα 	(3.27) 

Using the band-limiting condition for H(f) as in chapter 2, we finally have 

Ee[z2 2(t )]  = 2Z1(t )  — 2Z2(t)+  

 
= v0e + │v2e│cos(4πt/T + ϑ)  	(3.28) 

Where 

v

0e = 2/T = [A(0) — B(0)] │v2e│= 2/T [A(2/T) — B(2/T)] ϑ = arctan [ A(2/T) — B(2/T)] 

79 = arctan[A(-1) — B 
2 
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3.3 Final Rms Jitter Expression for STR Circuits with 
Delay Shifts  

According to the definition of rms jitter in equation 2.1, the rms jitter for the 

STR circuits with delay shifts can he expressed as 

(∆τ
2 /T

)rms = 1/T E[ z22

(t

0

) ]1/2 / E[

z 2

(t0)] 

 
(3.29) 

	  

where z2(t )  is the timing wave. 

Substitute equation 3.28 into equation 3.12 

E[z 22( t )] = 2E[z 22 (t)] + v0e + │v2e │ cos(4πt/T + ϑ) 	 (3.30) 

Using 2.43, we have 

E [z22 (

t0

)] = 2[v0  + 

│v

2e │ 

cos(4

πt/T 

+ 0) 

 

+ 

v

0e + │

v

2e │ cos(4πt/T + ϑ) 	(3.31) 

Substituting equation 3.6, 3.31 into equation 3.29, and the minimum rms jitter 

occurs when 2ϕ  = θ, therefore 

(∆τ
2/ T

)rms,min  = [2(

v

0 — 2│

v

2e │ ) 

+ v

0e — 2│

v

2e │cos(θ - ϑ

)

1/2  / 8πu1  
(3.32)  

	  



CHAPTER 4 

NUMERICAL RESULTS OF JITTER PERFORMANCE 

FOR THE SYSTEM WITH DELAY SHIFTS  

The numerical results for the system without delay elements is given in section 2.6, 

which is exactly the same as the results given by previous work [3] [5]. In this chapter, 

we will present the numerical results for the system with delay shifts, we also explore 

the function of delay time. The simulation is based on the simplest system model 

described in chapter 3. For the comparison purpose, we keep the prefilter, postfilter 

and nonlinear device the same as in chapter 2. 

4.1 Evaluating the Error Terms of Rms Jitter  

In equation 3.15, we assume that the error terms are relatively small comparing 

to the mean square value of timing wave E[z2(t )], here we use computer simulation 

to check the above assumption. 

For the comparison convenience, we normalized the error terms by 2, that is , 

we compare the term Z1 (t )  — Z2(t )  with mean square value E[z 2 (t )].  

Table 4.1 show the mean square value E[z2(t )] for different combination of 

quality factor Q and rolloff factor γ.  

We are interested in the case of small rolloff factor, since the error terms due 

to the intersymbol interference are big when rolloff factor is small. From the data in 

three tables, we find that the error term are roughly 1/10 of mean square value when l 

 = 5 and 1/20 of mean square value when l  = 10. Therefore, we can conclude that 

the assumption in equation 3.15 is correct even the delay is not big. 

Table 4.2 and 4.3 show the value of error term Z1 (t)  — Z2(t )  with respect to 

delay parameter l  = 10 and l  = 5. 

32 
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Table 4.1 Mean Square Value E[z 2(t )]  for Different Q and 7 

Q γ  = 0.2 γ  = 0.4 γ  = 0.6 γ  = 0.8 

25 1.819666e-03 9.793564e-04 5.851355e-04 4.156549e-04 

50 5.883400e-04 3.206290e-04 1.928212e-04 1.347514e-04 

75 2.977757e-04 1.638756e-04 9.922098e-05 6.909118e-05 

100 1.824048e-04 1.012535e-04 6.170691e-05 4.295134e-05 

125 1.242815e-04 6.953538e-05 4.264187e-05 2.970768e-05 

150 9.063022e-05 5.108282e-05 3.151357e-05 2.198970e-05 

Table 4.2  The Value of Error Term Z1(t )  - Z2 (i )  for  l  = 10 

γ  = 0.2 

 	γ 

 = 0.2       γ = 0.6 γ = 0.8 

25 6.907442e-05 3.310523e-05 1.707011e-05 8.895217e-06 
50 4.276068e-05 2.721557e-05 1.824837e-05 1.326071e-05 
75 4.483332e-05 2.768433e-05 1.816317e-05 1.285515e-05 
100 3.745621e-05 2.316030e-05 1.521574e-05 1.073553e-05 
125 3.058372e-05 1.903430e-05 1.257130e-05 8.882619e-06 
150 2.516757e-05 1.579015e-05 1.049565e-05 7.438703e-06 

It is interesting that for a fixed quality factor Q, the ratio of error term to 

the mean square value are almost the same, that is to say, the improvement of jitter 

performance has nothing to do with rolloff factor, even for large rolloff factor, the STR 

circuits with delay shifts can gain 3 db jitter improvement no matter the intersymbol 

interference is relative small. 

As the quality factor increase, the ratio of error terms to mean square value 

decrease and jitter improvement is not significant, especially for high Q (Q=150), 

the ratio is only 1/4, this occurs because when the quality of postfilter is large, the 

spectrum of timing wave much more look like a line spectrum, therefore the jitter is 

small and improvement is not significant. 



Table 4.3  The Value of Error Term Z1(t)  - Z2 (t)  for l  = 5 

Q 

γ  = 0.2 

 

γ  = 0.4 

 

γ  = 0.6 

 

γ  = 0.8 

 

25 1.747496e-04 1.008501e-04 6.231426e-05 4.117055e-05 

50 1.452411e-04 8.357826e-05 5.176824e-05 3.453624e-05 

75 9.694547e-05 5.637615e-05 3.525106e-05 2.372943e-05 
100 6.850740e-05 4.027034e-05 2.541502e-05 1.723578e-05 
125 5.107493e-05 3.033249e-05 1.931039e-05 1.318172e-05 

150 3.966331e-05 2.378646e-05 1.526749e-05 1.048484e-05 
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Table 4.4  Rims Jitter as a Function of Q for l =10 

Q 

γ  = 0.2 

 

γ  = 0.4 

 

γ  = 0.6 

 

γ  = 0.8 

 
25 0.023973 0.011995 0.008092 0.006500 
50 0.014394 0.007272 0.004933 0.003921 
75 0.010605 0.005397 0.003679 0.002917 
100 0.008496 0.004349 0.002978 0.002361 
125 0.007130 0.003670 0.002523 0.002002 
150 0.006166 0.003189 0.002201 0.001748 



Figure 4.1  Rms Jitter as Function of Quality Factor for  l=10 

Figure 4.2  Rms Jitter as Function of Quality Factor for l=5 
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Table 4.5  Rills Jitter as a Function of Q for l=5 

Q  γ  = 0.2 γ  = 0.4 γ  = 0.6 γ  = 0.8 
25 0.025588 0.012816 0.008639 0.006888 
50 0.015518 0.007839 0.005310 0.004193 
75 0.011383 0.005787 0.003937 0.003105 
100 0.009076 0.004639 0.003169 0.002500 
125 0.007587 0.003897 0.002672 0.002111 
150 0.006540 0.003374 0.002322 0.001836 

4.2 The Final Rms Results  

The final numerical results of rms jitter is given in Table 4.4 when delay param-

eter l  = 10. The data are drawn in Fig. 4.1. We also observe the jitter performance 

for small delay time l  = 5. The data and figure are shown in table 4.5 and Fig. 4.2 

respectively. 

Fig 4.3 shows three curves for 

l 

 = 10, l = 5, and no delay when rolloff factor 

γ=0.2. Clearly, for small delay time 

l

=5, the jitter performance is improved comparing 

the system without delay elements. When l becomes larger, the jitter performance is 

better, for l=10, the jitter performance improvement is nearly 3 db, which is consistent 

with theoretical results given by (3.15). 

Since if we increase rolloff factor, we can get better jitter performance, in other 

words, the jitter performance improvement is equivalent to bandwidth saving. This 

concept is important since when we design STR circuits, the jitter performance (error 

probability) is given and if we design STR circuits with delay elements, we can require 

small rolloff factor for the channel (small bandwidth) to achieve the desired jitter 

performance. 

Fig.4.4 and 4.5 show three curves of rms jitter as function of rolloff factor for 

small quality factor Q equals 25 and 50 respectively. As previous mentioned, for large 



37 

quality factor Q, the jitter is relatively small and jitter improvement is not significant, 

therefore, we explore the bandwidth save for the case of small quality factor. 

Referring to Fig.4.4, the rms jitter for the STR circuits with delay shifts is 0.024 

when γ=0.2 and l  = 10. For the STR circuits without delay shifts, if we want the 

same jitter level, the rolloff factor for the prefilter is approximately 0.3, that is to say, 

the bandwidth save is about 30%. For the case of Q=50, we can get the same result. 
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Figure 4.3  Rms Jitter Comparison  
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Figure 4.4  Comparison of Rms Jitter as Function of Rolloff Factor for Q=25 

Figure 4.5 Comparison of Rms Jitter as Function of Rolloff Factor for Q=50 



CHAPTER 5 

CONCLUSION  

The symbol timing recovery (STR) circuits using no extra power and bandwidth have 

been studied for long time. There are many strategies that have been developed so 

far to achieve the timing recovery. All the strategies are based on the fact that the 

incoming data sequence for the receiver is CT process, and there are some frequency 

components of power spectrum at pulse repetition frequency, if we use some kinds of 

nonlinear device. The function of narrowband filter is simply to pick up this frequency 

component. 

Generally speaking, the principle of different strategies are the same, the dif-

ference is mainly at the use of different nonlinear device. In this thesis, we did not 

explore a new nonlinear to achieve the better jitter performance, however, we use de-

lay shifts to achieve the jitter performance improvement. Because of the mathematical 

difficulties, we only show the simplest case of one delay shift, and the simulation is 

based on this simple model. But we can extend this simple model to more complex 

model by using more than one delay shifts, that is the subject for further research. 

From the study of STR circuits with or without delay shifts, we can draw the 

following conclusion: 

1. Rms jitter decreases as the bandwidth of narrowband filter decrease. 

2. Rms jitter decreases as rolloff factor increase. 

3. The use of delay shifts can improve the jitter performance or save the band-

width for the channel. 
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APPENDIX A 

EVALUATING THE MEAN VALUE OF A DATA 
SEQUENCE  

Rewrite equation 3.10, we have 

E[y2 (t  — α) y2 (t  — ß) = ΣmΣnΣiΣj E [am anai ai  + am+lan+lai+laj+l  
 

+amanai+lai+i  am+i an+iaiaj]  

g ( t — α — mT )g(t — α  — nT )g(t — ß — iT)g(t — ß  — iT ) 	 

(A-1)  

Comparing the first two terms of equation B-1 with equation 2.17, we have 

E[y2(t — α)y2(t — ß)] = E [y (t — α) y (t — ß)]  

+E[am an ai+la j+l am+lan+l ai a j]  

g(t — α  — mT )g( t — α  — nT )g( t — ß — iT)g(t — ß — jT)  

(A-2)  

Similar as equation 2.18, we have 

E[amanai+laj+l ] = δmnδij + δm+l,iδn+l,j + δm+l.j + δn+l,i 

— 

2δm+l,n+l,,j 		 	(A-3) 

and 

E[

am+la n+l aiaj ] = 

δ mnδij 

+ δ m,i+lδn,j+l + δ m,j+lδn,i+l 

— 

2δ m,n,i+l,j+l 

                            

(A-4) 
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The out term results from δmnδij can be neglected since it is zero when 

evaluated at t0. Therefore, combine remaining positive terms yielt 

ΣmΣnΣiΣ j (δm+l,iδn+l,j + δm+l,jδn+l,i + δm,i+lδn,j+l + δm,j+lδn,i+l  
 

x  g(t — α  — mT )g(t — α — nT)g(t — ß — iT)g (t — ß  —  jT )  

= 2[  Σm g(

t — 

α 

 — mT )

g (t — ß  — (m 

— 

l )T)]2   
 

	

 

+2[ 

 

Σm g

(

t — α  — mT )

g (t — ß  — (m 

— 

l

)

T)]2 	(A-5) 
	  

Combine all negative terms, yield 

E

[δm+l,n+l,,j 

+ 

δm,n,i+l,j+l]g(t — α — mT)g(t — α 

—nT

)

g (t — ß  — iT)g(t — ß  — jT)    

 

= 

 

Σm g2(t — α  — mT )g2(t — ß — (m + l)T) 

                
 

+ 

 

Σm g2(t — α  — mT )g2(t — ß — (m - l)T) 

               

	 (A-6) 
 

Add equation A-5, A-6 into A-2, the final result is given by equation 3.11. 
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