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ABSTRACT 

Finite-Element Ray Tracing 

by 
Yong-chun Liu 

The interesting acoustic modeling problems often push the practical limits of 

full-wave models. For instance, in acoustic tomography one needs to be able to 

predict the propagation of an acoustic pulse for successive realizations of 31) environ-

ments. For these types of problems ray methods continue to be attractive because of 

their speed. Unfortunately, existing codes are prone to a number of implementation 

difficulties which often degrade their accuracy. 

As a result most ray models are actually incapable of producing the ray the-

oretic result. We discuss a new method for implementing ray theory that uses a. 

finite-element formulation. This method is free of artifacts affecting standard ray 

models and provides excellent agreement with more computationally intensive full-

wave models. 
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CHAPTER 1 

INTRODUCTION AND DERIVATION OF RAY THEORY 

1.1 Introduction to Ray Theory  

Ray-based models were very popular many years ago in underwater acoustics. Today. 

however ray tracing codes have fallen somewhat out of favor in this research commu-

nity. A recent survey [9] of available navy models concluded that none of the tested 

models was satisfactory for transmission loss model. The main reason ray models 

have languished is that improvements in computer performance have made full-wave 

solutions practical. These full-wave approaches are not subject to the accuracy limi-

tations caused by the high-frequency approximation in ray methods. 

Two common problems occur in ray theory predictions [7]: 

• shadow zones where no rays pass and therefore the acoustic pressure is identi-

cally zero in this zone. 

• caustics which are curves where the cross-section of a ray tube vanishes and 

therefore the predicted intensity is infinite. 

Nevertheless, ray theory retains some key advantages. The ray paths themselves pro-

vide a clear indicator of the paths along which energy propagates. This information 

is much harder to extract. from full-wave models. Furthermore, broad-band problems 

have become increasingly important and ray models are especially efficient for such 

problems. For instance, acoustic tomography relies on time-of-flight information to 

image the ocean. Ray models have been used almost exclusively to provide this sort 

of broad-band prediction. 

The goal of this thesis is to develop an improved numerical approach to ray model. 

The method, which we refer to as finite element ray tracing combines ideas from 

Gaussian beam tracing [13] and the finite element method. Like Gaussian beam 
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tracing. the resulting algorithm is particularly simple to implement. The primary 

difference is that  'hat'-shaped basis functions are used instead of Gaussian functions. 

This seemingly  small difference leads to significant differences in the nature of the 

solution. The  Gaussian functions are in many ways a natural basis of the wave 

equation. The  equations governing the spreading and wave-front curvature for the 

beams are derived  from a paraxial solution of the wave equation. In contrast. the 

finite clement, beams  are chosen for purely numerical reasons. They lead to a piecewise 

linear approximation  of the acoustic field. 

Thus, the resulting algorithm combines features of ray and beam models. Most 

importantly, the appealing structural simplicity of a Gaussian beam code is preserved. 

However. unlike Gaussian beam tracing the initial beam width and curvature are 

precisely defined. Picking good values for these parameters remains one of the key 

difficulties of Gaussian beam codes. The trade-off is that finite-element ray tracing 

does retain the problems of caustics and shadow zones that are intrinsic to ray tracing. 

In the following sections we will review the underlying equations of ray tracing. Our 

derivation follows Ref. [7] closely. 

1.2 Derivation of Ray Theory 

The fundamental equation of acoustics is the wave equation. The wave equation 

can be derived from the mass-continuity equation and Euler momentum equations. 

Iwo important approximations are required. One is that the flow can be treated as 

inviscid. The other is that convective derivatives are negligible compared to unsteady 

derivatives. Further details are provided in Ref. [16]. 

In an ideal fluid, the wave equation can be written as: 

∇2 p(x. t) — - 
1

/c2(x. t ) ∂2 p(x, t)/∂ t2  =0, 

where p is the pressure field, c is the sound speed as a. function of time 1, and space 

x. 
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When sources are introduced, the wave equation can be expressed in a general inho-

mogeneous form: 

∇2p (x,t ) = 1/c2 (x,t) ∂2p (x,t )/∂t2 = f (x,t ),            

(2) 

where f (x,t )  is a volume force. 

Since the time scale of oceanographic change is much longer than the time scale of 

acoustic propagation, we can assume the sound speed is independent of time, i.e. 

c(x,t) = c(x). 	 (3) 

Using the frequency-time Fourier transform pairs 

f(t) = 1/2π ∫ ∞ -∞  F(ω)e-iωt dω, 

	

F(ω) = ∫ ∞ -∞  f(t)eiωt dt 	 (5) 

we can then write Eq. (2) as: 

, 
∇2 p(ω, x) + ω2/ c2(x) p(ω, x) = F(ω, x). 	(6) 

This is called the Helmholtz or reduced wave equation. 

In the case of a monochromatic (single -frequency) point source the inhomogeneous 

term assumes the form of a delta function so that we obtain 

	∇2p(x) + ω2/ c2(x) p(x) = — δ(x — xs). 	(7) 

where ω  is the circular frequency of the source which is located at x8. 

To solve the -Helmholtz equation. we seek a solution in the form of a ray  series. 

∞ 

p(x) = eiωt(x) Σ Aj 

( x

)/(iw) j   (8) j=0 

Here τ  is the phase of the pressure and Aj (x) is the amplitude of the pressure. 

Taking derivatives of p(x) with respect to its component x, we obtain px  and pxx  

respectively: 

 



pxx  = ei ωt ([- ωτ 2 x + iωτ xx] ∑ ∞ j=0   A j/(iω )i  +2iωτ x ∑ ∞ j=0 + ∑ ∞ j=0   A j,xx/(iω ) j ) . 	(13) 

 
	  

 

 

	

 

 

Thus we can write 

∇2p = eiωt ([-ω│∇τ│2 + iω∇2τ] ∑ ∞ j=0  Aj/(iω)j + 2iω∇τ ∙ ∑ ∞ j=0  ∇Aj/(iω)j  + ∑ ∞ j=0  ∇2Aj/(iω)j ) . 	(11)) 

 

 
 

 
 

Substituting this result into the Eq. (7) and equating terms of like order in ω . the 

following equations for τ(x) and Aj (x) are obtained: 

O(ω2) :                      │∇τ│2  = 1/c2(x).+ 	 (12) 

 
 

O(ω) :             2∇τ ∙ ∇A0 + (∇2 τ) A0 = 0                                                           (13) 		2\7 7-   	  O(ω1-j) :   

	

2∇τ ∙ ∇Aj + (∇2 τ) Aj = -∇2  A j-1,  j = 1, 2... 	

	

(14) 

	 (tA) 

Equation (12) for τ(x) is known as the eikonal equation while the equations for Aj(x) 

are called the transport equations. 

We retain only the lowest. order transport equation. This is obviously a high frequency 

approximation. Next we will show how to solve the eikonal equation and transport, 

equation. 

1.2.1 Solving the Eikonal Equation  

Note that, the eikonal equation is a nonlinear equation. To solve the eikonal equa-

tion we introduce auxiliary variables and perform some manipulations to reduce this 

nonlinear equation to the familiar form involving first order ordinary differential 

equations (ODEs). 

The first step is to introduce a family of curves (rays) that are perpendicular to 

the wave-fronts (curves where the phase of the wave T(x) is a. constant). This is 

illustrated in the Fig. 1. 

This family of curves defines a new coordinate system, ray coordinates. In these 

coordinates, the eikonal equation can be reduced to a much simpler system of ODEs. 
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Figure 1: Rays and wave-front ( from Ref. [7]) 

The ray trajectory x(s) satisfies the following differential equation: 

dx
/ds  =  c∇τ 

(15) 

 
                  	  

 

where .s denotes arclength along the ray and the factor c was included so that the 

tangent vector of dx/ds has unit length. We now consider the particular case of 

cylindrical coordinates. Then the trajectory of the ray in the range-depth plane is 

represented as (r(s), z( 8)). In these coordinates. we obtain the following equations 

from Eq. (15): 

dr/ds = c∂τ/∂r, 	

 

dz/ds = c∂τ /∂ z,                                                                        (16) 

 

 
 

Note that the phase τ(x) is still unknown. However, with sonic manipulations we 

can write the ray equations in a form involving only c(x). 

To reduce the nonlinear eikonal equation, we introduce some auxiliary variables p 

and (r, which are proportional to the local tangent vector of ray trajectory. These 

equations may be written in the first-order form: 

dr/ds 
= cρ(s), 

 

 
dz/ds = cξ(s), 	(17) 
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Figure 2: Schematic of ray geometric and take-off angle  

Using Eq. (17), Eq. (16) and Eq. (12), we calculate  

dp/ds = d /ds (1 dr /c ds) = d /ds (∂ τ/∂r) 
= ∂ 2 τ /∂ r2   dr /ds + ∂ 2 τ /∂ r∂ z dz /ds  

= c(∂ 2τ/∂ r2  ∂ τ/∂ r +∂ 2τ/∂ r∂ z  ∂ τ/∂ z) = c/2 ∂ /∂ r [(∂ τ/∂ r)2 +(∂ τ/∂ r)2] 

= c/2 ∂ /∂ r (1/c2) = - 1/c2 ∂ c/∂ r ∙ (18) 

 

 

	
 

Similarly, we obtain an equation for ξ:  

dξ/ds = - 1/c2 ∂ c/∂ z ∙ (19) 
 
	

 

Putting this all together, we  obtain the ray equations in the first-order form:  

dr/ds = cp(s) 

 
 

dz/ds = cξ(s) dp/ds = -1/c2 ∂ c/∂ r , 

dξ/ds = -1/c2 ∂ c/∂ z ,                                             (20) 

 

dp 	Dc 

ds 	c2  37 
d( 	1 Oc (20) 
ds 	e2  dz 



In this form, the ray equations can be solved using standard numerical integrators 

(Euler's Method or Runge-Kutta) for systems of ODES. However, we shall first, need 

initial conditions. Each ray starts from the source with a take-off angle a, as shown 

in Fig. 2. Thus, we have the initial conditions as follows: 

r(0) = rs,  

z(0) = z8 .  
 

ρ(0) = cos α /c(0) 

 

 
ξ(0) = cos α/ c(0) (21)  

The source position is obviously a known quantity. The take-off angle a is determined 

by which ray we choose to calculate. 

Calculating r (s), z(s ). ρ(s )  and ξ(s) is, however, only an intermediate step. Our 

purpose is to obtain the pressure field. The pressure field is determined by two 

components, the pressure amplitude and the its phase. In ray coordinates, it is easy 

to calculate the phase T. We rewrite Eq. (12) as: 

∇T • ∇T = 1/ c2,  (22)  

Using Eq. (15), this reduces to 

∇τ • 1/c dx/ds 	= 1/c2,  
(23)   

or,  

 
(24) dτ/ds = 1/c,  

This is the eikonal equation written in terms of the ray coordinate s . Solving  this 

differential equation, we obtain:  

 
τ( s ) =  τ(0) + ∫0 s 1/c(s') ds', 	(25) 

 



The integral term in this equation is the travel time along the ray. so that this 

equation is simply stating that the phase of the ray is delayed according to travel  time.  

1.2.2 Solving the Transport Equation  

Let us recall the transport equation: 

= 2∇τ ∙ ∇A0 + (∇2τ) A0 = 0, 	(26)  	  

Substituting Eq. (15) into the above equation, we get 

2/c dx/ cds • ∇
2 

A0 + (∇2τ

) A0 = 0 

 	  
 

This can be rewritten, 

2/c dA0/ds + (∇2τ

)

A0 = 0.     	.  (28) 
 

To solve Eq. (28), we use the following property [7] of tile Jacobian determinant 

(denoted by J) 

∇2τ = 1/J d/ds (J/c),  
                                    	 (29) 

Thus Eq. (13) can be written as: 

 
2 dA0/ds + [c/J d/ds (J/c)]A0 = 0.   	(30) 	 (30) 

 

Integrating this equation, we obtain the final result for the solution of the transport 

equation: A0(s) = A0 (0)│c(s)J(0)/c(o)J(s)│1/2 
 
	 (31) 

 

To complete the solution of the transport equation We must have formulas for the 

Jacobian determinant and the initial amplitude. In general three dimensional coor-

dinates. the Jacobian determinant can be expressed as: 

J = │∂x/∂(s,α,ß)│,                                          (32) 
 

 



Figure 3:  The ray tube cross-section 

where α  and ß are respectively the declination and azimuthal take-off angles of the 

ray.                                  In our cylindrically symmetric problem, this can be written: 

 
J = (∂r/∂s ∂z/∂α - ∂z/∂s ∂r/∂α), 	(33) 

	

	 

or, 

	
 

	  

J = r [(∂r/∂α)2 - (∂r/∂α)2]1/2 (34) 

	  

As shown in Fig. 3, the Jacobian determinant can be written as: 

J = r/cos
θ 	∂ z/∂α, (35)  

 

and. 

J = r/

s
in θ 	∂r/∂α, (36) 

 

 

where θ  is the angle of the ray at the receiver. 

To find the initial values we use the 'method of canonical problems'. Consider a point 

source in an infinite homogeneous medium. We know the solution of this problem: 

 

	

p0(s) = eiws/co/4πs 	(37)  

where .s is the distance from the source to the receiver. The amplitude and phase 

associated with this solution are: 

 

	

A0(s) = 1/4πs 	(38) 
 

T0(s) = s/c0 	(39) 
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Note that τ(0) = 0, however, as s → 0 Ao   → ∞.  

In this homogeneous case, the rays are straight lines fanning out from the source. 

The ray equations can be easily solved: 

x(s ) = xs  + s(cos α cos ß , cos α  sin ß, sin α). 	 (40) 

From these ray paths the Jacobian determinant is calculated as: 

J( s ) 

= -s 2  cos α. 	 (41) 

We note that: 

lim Ao

( s ) │J (s)│1/2 

= 

│cos α│1/2. 	(42) 

.s->.o 

is a bounded value. So Eq. (31) can be written as: 

 

Ao 

( s ) = 
1

/4π│c(s) cos α / c(o) J (s)│1/2 (43) 	 	 (43) 
 

Combining 	(25) and Eq. (43), we write the pressure held as: 

 

p( s ) = 
1 /4π│c(s) cos α / c(o) J (s)│1/2   eiw f0 s  1/e(st) dst 	(44) 

 

In the next chapter we will discuss the numerical solution of these equations. 



CHAPTER 2 

FINITE ELEMENT RAY TRACING 

2.1 Finite Element Ray Tracing 

In the last. chapter we provided the governing equations to calculate the pressure 

field along each ray. In the study of underwater acoustics we are concerned with 

the pressure field at any point. Sometimes it is difficult to find the eigenray that 

connects the source and a particular receiver point. Furthermore, as we discussed in 

Chap. 1, there are some blemishes of the standard ray tracing method. So several 

informal attempts have been put forward to improve the ray tracing results to achieve 

an answer which more closely resembles reality. One popular approach is Gaussian 

beam tracing [13, 3]. 

The construction of Gaussian beams begins with the central ray which satisfies the 

usual ray equations. Then one constructs beams about the rays by integrating a pair 

of auxiliary equations. which govern the evolution of beam in terms of the beam width 

and the curvature as a function of arc length. The resulting pressure field describes a 

beam whose amplitude decays in a. Gaussian fashion as a function of normal distance 

from the central ray of the beam. 

Encouraged by the idea. of Gaussian beams, we introduce finite element rays (FER) 

in which a. triangular beam is constructed as shown in Fig. 1. Whether or not a ray 

contributes at a particular receiver point depends on the normal distance from the 

ray to the receiver. Beyond the width of the triangle defining the beam there is no 

contribution to the held. 

Note that the amplitude along a ray depends on the change in area of the ray tube. 

There exist simple differential equations that, provide information about how the ray 

paths change for infinitesimal perturbations in either the ray take-off angles or the 

1.1 



p( s, n ) = A( s ) Φ( n, W(s) ) e iω τ( s ) 

A( s ) = const / [ q(s) ]
1/2 

Figure 4:  Construction of a finite-clement ray. 
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ray source point. These are the so-called dynamic ray «mations: 

dq 

/ ds =  cp(s), 

 
           

 
 

dq 

/ ds =cnn / c2(s) q(s). 	(45) 

where c„.„. is the derivative of the sound speed in a normal direction to the ray path. 

Written in terms of depth and range derivatives: 

cnn = c2(  c rrξ2  — 2c rz ξ p + czz p2 (46) 		 (46) 

The type of the perturbation is determined by the initial conditions. If we take 

q(0) =0,  p (0) = 1/c(0),                                         (47)  
 

then we are perturbating the rays with respect, to angle. It turns out that we can 

then relate the Jacobian and the q function by the relation (Ref. [7]): 

rq (s)  = J ( s ) . 	 (48) 

We can write the ray amplitude as 

 

A0(s) = 1/A│c(s) cos α / r c(o)

q(s)│1/2 		(49) 
 

The quantities p( s ) and q( s) are easily obtained by integrating the dynamic ray 

equations along the central ray. 

We use the width of the central. ray to determine whether the ray contributes to the 

receiver or not. There are three steps to calculate the width of tube:  

• From Eq. (4:3), we know  

 J( s ) 

= 

│1/AπA0(s

) │2  c(s) 

cos α/c(0)r 	(50) 
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• δz can be approximated by the Jacobian determinant  

 
δz =  δα J(s)/r  cos θ  =  δα J(s) cp /r,                                            (51) 

 
 

• The beam width W(s) is therefore related to b via  

 

W(s) = δz / cos

2

θ = δα J(s)cp / r cos

2θ  

	 

(52) 

= δα r q c p / r cos

2 

θ = │qδα / cp│, 

 

where δα  is the difference in angles between adjacent rays. 

The contribution of each ray within the ray tube is then deterrnined by: 

p(s) = W(s) - n(s)/W(s)  p(s),                                           (53)  
	  

where n(s)  is the normal distance from the receiver to the contributing ray.  

2.2 Boundary Reflections  

So far we have discussed the finite element rays without considering bottom and 

surface reflections. In deep water. the field is often doininated by purely refracted 

paths and we may ignore the reflected rays. However, in shallow water, typically all 

rays are bottom reflected. Thus, the reflected rays play a very important role in the 

wave propagation. We will now show how to calculate such rays in our finite element 

formulation.  

Whenever the ray strikes the sea floor or surface, it splits into two parts as shown 

in Fig. 5: one is reflected. the other is transmitted. Thus, part of the energy is ab-

sorbed by the bottom and the pressure amplitude of the reflected ray declines. The 

amplitude of the reflected ray is determined by a reflection coefficient which depends 

on the ray angle θ  and medium properties. 
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Figure 5:  Reflection and transmission at different interfaces 

We consider three types of boundary conditions which are determined by the char- 

acteristics of the materials: rigid. vacuum. and half-space. 

For the vacuum boundary, the reflection coefficient is 

R(θ)  = e iπ

. 

	 (54) 

Since the magnitude of 

R 

 is one we have perfect reflection. However, the non-zero 

argument indicates that there is a phase change. 

For the rigid boundary, the reflection coefficient is 

R(θ) = 1. 	 (55) 

The ray is completely reflected as in the vacuum boundary case, but the phase of the 

reflected ray is unchanged. 

The half-space boundary is the most interesting case. As mentioned above, when the 

ray strikes the boundary it splits into two rays: a reflected ray and a transmitted 

ray. The phase and amplitude associated with each ray is determined by the complex 

reflection coefficient. Since we are not interested in the field in the half-space we can 



neglect the transmitted ray and focus our attention on the reflected ray. 

The reflection coefficient R(θ ) at the bottom is given by 

 

R(θ) = ρ2γ1 - iρ2γ2 / ρ2γ1 - iρ2γ2 , 	(56) 

 

Here. p is  the density. c is the sound speed and -; is the vertical wave-number   

The subscripts 1 and 2 refer to the upper and lower media respectively.  Furtliermore. 

γ2  are vertical wave-numbers defined by:  γ1 = (ω2/c12 - k2)1/2  , 

 

γ2 = (k2 - ω2/c22)1/2  ,. 

 

(57) 

Here k  is the horizontal wave-number which is related to the angle of incidence θ  via: 

k = ω  c cos θ , 	(58) 

where ω is the circular frequency of the wave. Note, that the reflection coefficient 

is a complex number so there is an effect on both the magnitude and phase of the 

reflected ray. 

To incorporate these effects in the FER formulation we simply carry along an extra 

function to keep track of the boundary losses. This function is set to unity at the 

start, of time ray trace and decremented in accordance with the reflection loss after 

each boundary interaction. The phase change on reflection is incorporated directly 

into the phase function τ (s ). 



CHAPTER 3 

NUMERICAL EXAMPLES  

In this chapter we present a. few examples to demonstrate the performance of the finite 

element ray (FIT) method. 'the examples are chosen to include typical ocean acous-

tic problems in the Pacific and Arctic and including both shallow and deep water. 

Solutions obtained using the FER. approach will be compared to reference solutions 

obtained using either the fast field program (FFP) or a normal mode solution[7]. The 

particular FFP and normal mode models used are SCOOTER. and KRAKEN [14] 

3.1 Isovelocity Case  

The isovelocity case is the most simple and intuitive case. Since the sound speed is 

constant, the ray propagates as a. straight line and the transmission loss follows a 

simple spherical spreading law. Figure 6 shows the ray trace with the anticipated 

straight line paths. The source is at the depth of 50 in where the depth of the bottom 

is 100 in. We present only a few rays with take-off angles in [-140 ,141. 

The ray plot, also shows reflections off the surface and bottom of the wa.veguide. Of 

course, the amplitude associated with these rays is determined by the reflection coef-

ficient. We shall consider different cases involving vacuum and half-space boundary 

conditions. When the half-space parameters are chosen to be the same as those of 

the ocean medium. the reflected ray has vanishing amplitude and therefore makes no 

contribution to the pressure field. 

In the first case, we use homogeneous half-spaces for both the surface and bottom 

boundaries. As a result we suppress any reflected waves. The resulting transmission 

loss obtained using the FER and FFP models is shown in Fig. 7. Here the source 

is located at 50 m with a frequency of 250 Hz. The plot shows a smooth decay 

in amplitude reflecting the spherical energy decay of a homogeneous medium. The 

17 
agreement of the two models is excellent. A more precise indicator of the agreement 
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Figure 6:  Ray trace for the isovelocity ease. 

may be seen by taking a slice through this field. This is displayed in Fig. 8 for a 

receiver depth of 80 m. The FER and FFP results are plotted using a dashed and 

solid line respectively. The agreement is so good that it is not possible to distinguish 

the two curves. This is to he expected in a properly functioning model since ray 

theory is exact for a homogeneous medium. 
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Figure 7:  Transmission loss for the isovelocity case with half-space boundaries. 
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Figure 8:  Transmission loss for the isovelocity case with half-space boundaries. 

In the next case we modify the previous problem by introducing a vacuum at the 

ocean surface. As a result we obtain a strong out-of-phase surface reflection. The 

resulting transmission loss is shown in Fig. 9. Note the so-called Lloyd mirror pattern 

involving alternating bands of high and low intensity. These bands result from the 

alternating constructive and destructive interference between the source and its image 

reflected in the ocean surface. Again, the agreement between the FER and FFP is 

excellent throughout the domain. 
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Figure 9:  Transmission loss for the isovelocity case with a reflecting surface. 
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Figure 10:  Sound speed plot for the munk profile 

3.2 Munk Profile  

In this next example we pass to a much more realistic case. This scenario involves 

deep water (5000 m) and a canonical sound speed profile (the Miink profile[11]) that 

is often used as a. test problem. The sound speed for this profile is given by: 

c(z) = 1500.0[1.0 + z[z'-1+c-z')]. 	(59) 

where 

ε = 0.00737. 	(60) 

and the scaled depth zt is given by 

z' = 2(z — 1300)/1300 , 

	
(61) 

 

This sound-speed profile is plotted in Fig. 10. The corresponding ray trace for a source 

at 1000 m depth is shown in Fig. 11. Notice that the rays form a cyclical pattern 

with a period of roughly 60 kin. This is the so-called convergence-zone pattern which 

is typical of deep-water problems. We can also identify numerous caustics. 



Figure 11: Ray trace for the murk profile 

To simplify the picture we have suppressed bottom reflections. In this case, this is 

easily accomplished by restricting the ray fan to include only rays that are refracted 

before hitting the bottom. The upper surface is modeled as a. vacuum. The resulting 

transmission loss field is shown in Fig. 12 for a source frequency of 50 Hz. Again 

we note the excellent agreement between the FER and FFP results. The caustics 

and foci of the ray trace are clearly visible in the FER result but these errors are 

confined to a small portion of the plot. 
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Figure 12: Transmission loss for the Munk profile. 
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Figure 13: Transmission loss for the munk profile with half-space boundaries. 

It  is useful to look at a single slice to obtain a more quantitative measure of the 

agreement. In Fig. 1:3 we show a slice for a receiver depth of 800 m. Again we see 

excellent agreement apart from a few isolated zones where we pass near caustics of 

the ray field. Though the results are good in agreement. the cost of computation is 

remarkably different. The CPU time of the FER model is f8.5 s; meanwhile the CPU 

time of the FFP model is 188.05 s. 
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Figure 14: Sound speed for the arctic profile 

3.3 Deep-water Arctic  

Another important environment in underwater acoustics is the Arctic Ocean. Arctic 

profiles are typically upward refracting since there is no warming at the ocean surface 

to increase the sound speed. The particular case we consider is based on a measured 

sound speed profile obtained during the FRAM IV experiment. The sound speed 

profile (SSP) is plotted in Fig. 14. Here the bottom depth is 3750 m. The source 

frequency is taken to be 300 Hz and the source depth is 100 m. 

Scattering by the rough ice canopy is a. very complicated problem. It causes an 

effective loss due to scattering which call be included in our ray model. However, for 

the moment we will simply concentrate on the refractive effects of the medium and 

ignore the surface scattering. 

In Fig. 15 we show the ray trace obtained for this problem with a source at a. depth 

of 80 iii. The corresponding transmission loss is shown in Fig. M. Again we see the 

agreement is excellent throughout, most of the region. In the near-field we see a. Lloyd 

mirror pattern similar to the isovelocity case. However, here the refractive effects of 

the ocean medium distort the beams from straight line paths. We can also clearly 
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Figure 15:  Ray trace for the arctic profile 

see a band of energy trapped in the surface duct. 

In Fig. 17 and Fig. 18 we examine two slice through the pressure field. The first is for 

a shallow receiver located in the surface duct at a depth of 100 m. The second is for 

a deep receiver located at a depth of 1000 m. The shallow receiver samples a much 

more complicated zone of the acoustic field. Rays in this region have a short loop 

length and numerous caustics. The overall field has a more complicated structure 

relative to that at a. deeper depth. Primarily because of the large number of caustics, 

the agreement is worse for the shallow receiver than the deep receiver. However, the 

agreement, is quite satisfactory in both cases. 

The CPU time of the FER model is independent of frequency. however the CPU time 

of the FIT model increases very quickly as the frequency increases. For the :300 Hz 

frequency the CPU time of FER is 25.4 s, meanwhile, the CPU time of normal modes 

is 320.5 s. 
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Figure 16: Transmission loss for the arctic profile. 



Figure 17: Transmission loss for the arctic profile. 

Figure 18:  Transmission loss for the arctic profile. 
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3.4 Shallow-Water Case  

The term 'shallow-water is defined ill different ways by different speakers. For the 

navy. shallow-water represents the coastal zone with depths less than a few hundred 

meters. Some individuals define shallow water in terms of the number of wavelengths 

in the water column. This sort of definition often makes sense in wave propaga-

tion problems. However. in underwater acoustics shallow water is characterized by 

numerous features that do not scale with frequency. 

For instance. shallow water problems are often downward refracting due to the effects 

of surface heating. This changes t he physics of the propagation in a dramatic way for 

then all paths are bottom reflected and the reflection coefficient of the ocean bottom 

becomes a critical factor. 

To illustrate the performance of PER model in shallow water we wills consider two 

cases. Hie environmental parameters for the two cases are illustrated in Fig. 19. 

The first of these cases is based on a well-known test problem from the NORDA PE 

workshop[5]. The parameters are all realistic except perhaps the sediment, density. 

Early PE's were prone to difficulties in the case of large density jumps so the value 

was set artificially low. We will refer to this as the isovelocitv shallow-water case. 

The second case we shall consider modifies the first by introducing a gradient in the 

ocean medium. We shall refer to this as the gradient shallow-water case. Typically. 

shallow water problems vary from isovelocity to downward refracting. These two 

cases bracket, the majority of such. problems. 

Turning now to the hrst (isovelocity) case we obtain the ray trace shown in  Fig. 20 

for a source depth of 50 m. A plot of the pressure field is provided in Fig. 21  where 

the source frequency is taken to be 250 Hz. The agreement is excellent.. This ma

y also  be seen in Fig. 22 which shows a. slice taken for a receiver depth of 50 m. 

Recalling our  previous results with an isovelocitv case one might have expected such 

good results. However, it is important to remember that unlike the previous cases,  
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Figure 19:  Schematics of the isovelocity and the gradient shallow-water case. 
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Figure 20: Ray trace for the isovelocity shallow-water case. 

ray theory is not exact in this case. The difference is that we have included a. half-

space for the lower boundary. In effect we are considering a two-medium problem 

with one isovelocity layer over another. For such cases ray theory is not exact. The 

good agreement. indicates that we have correctly treated the phase and amplitude of 

the surface and bottom reflections. 

We now turn to the downward refracting case. The ray trace shown in Fig. 23 

confirms the downward refracting nature of the gradient. Notice that the inclusion 

of this small gradient has had a. significant effect on the ray trace. Of particular 

importance is that. the ray picture now has many caustics. 

These caustics are clearly visible in the transmission loss plot shown in Fig. 24. If we 

look carefully at the details of this plot we see that the agreement is excellent except 

in the vicinity of these caustics. This is easier to see in Fig. 25 where we have taken 

a slice for a receiver depth of 50 in. The spikes at a range of about 1.7 kin and 3.3 

kin correspond to the location of the caustic.. 

The key point of interest about this case is that the gradient in a shallow water 

problem plays a key role in determining the accuracy of the FER model and ray theory 



Figure 21:  Transmission loss for the isovelocity shallow-water case. 



Figure 22: Transmission loss for the isovelocity shallow-water case. 

Figure 23:  Ray trace for the gradient shallow-water case. 
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Figure 24: Transmission loss for the gradient shallow-water case . 



Figure 25:  Transmission loss for the gradient shallow-water case. 

in general. Frequently the question arises with ray theory as to how shallow the water 

depth can be (in wavelengths) before ray theory breaks down. This example shows 

that the answer depends not just. on the depth of the channel; it is highly sensitive 

to the gradient since the gradient leads to the formation of caustics. Similarly, our 

judgement will depend on range since the density of caustics increases as we go out 

in range. 

For the cases we have considered here the agreement is really quite acceptable in 

both cases. An interesting feature of this problem is that all ray paths are bottom 

interacting. In the far-field the contributing paths involve many bottom reflections. 

Thus, any error in the treatment of bottom reflections tends to accumulate in the 

far-field. The excellent agreement. with the reference solution indicates that the FER 

model is treating the reflection properly at the interface of different media. 



CHAPTER 4 

CONCLUSIONS AND SUGGESTION  

Ray tracing is based on high-frequency asymptotics and is therefore an approximate 

method. Nevertheless. ray methods are still widely used since they are much more 

rapid than the alternatives for high-frequency or broad band problems. Unfortunately, 

ray models can he difficult to implement and generally show serious flaws 

beyond those that are implicit in t he mathematical derivation. As such. most ray 

models are unable to actually produce a true ray theory result and ray theory has a much 

poorer reputation for accuracy than it deserves. 

The problem is to provide an algorithm to efficiently implement ray theory without 

introducing additional numerical artifacts. The FER formulation that we haye de-

scribed eliminates problems with 'drop-outs' that occur in other ray models when 

they fail to locate an eigen-ray connecting the source and receiver. The method bor-

rows ideas from Gaussian beam tracing to completely eliminate the eigen-ray finding 

procedure. This will be especially important in 3D models. 

Compared to Gaussian beam tracing the FER approach has both positive and neg-

ative aspects. Gaussian beams are free of caustics and shadow zones. The FER 

approach may still manifest these artifacts. On the other hand, there are no free 

parameters in this FER formulation. The selection of the free parameters in the 

Gaussian beam method has been an obstacle to the wide-acceptance of that ap-

proach. The various test cases that we have considered all show excellent agreement 

between the FER approach and more computationally intensiye full-wave theories. 

It should he emphasized that these highly-accurate results are not typical of other 

production of ray models. 

Other popular methods, such as the FFP and normal modes, are much more 

compu-tationally intensiye than the standard ray tracing method. Thus, for some cases, the 
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ray method continues to be attractive. Sometimes there is no practical alternatiye. 

There are still many interesting issues to address with this approach. Of key interest 

will be the extension to three-dimensional problems. This sort of a tool will be very 

useful for tomography and global acoustic thermometry research. 

In terms of the simpler 21) case the remaining issues are to include a more complicated 

multi-laver model of the sediment and to address the importance of beam displace-

ment. Tindle[18] has suggested that a significant improvement in conventional ray 

theory may he obtained by including this beam displacement. 



REFERENCES  

[1] Batorsky, D.V. and L.B. Felsen. 1971. Ray optical calculation of model excited by 
sources and scatterers in weakly inhom ogeneous duct. Radio Sci. 6, 911-923. 

[2] Bleistein. N. 1981. Mathematical for methods Phenomenon. Freeman, New 

York 

[3] Červený. V.. M.M. Popov  and 1.Pšenčik,  1982. Computation of trace fields in 

inhomogeneous media Gaussian beam approach . Geophys. .1. R. Astr. Soc. 

70, l09-128. 

[4] Červený

. 

 V. and I. Psencik  1984. Gaussian beams in elastic 2-1) laterally oaring 

layered structures, Geophys. J.R. Astron. Soc. 78. 65-91. 

[5] Davis, J.A., D. White. and R.C. Cavanagh, 1982. NORDA  parabolic equation 
workshop, Rep. TN-113 (Naval Ocean Research and Development Activity. Sten-

nis Space Center, MS ). 

[6] Foreman:LI- 1983. Hay modeling methods for rang( dependent ocean 
environments, Rep. TR-83-11 (Applied Research Laboratories, Austin, TX ). 

[7] Jensen, F. and W. Kuperman, M. Porter and 11. Schmidt. 1991. Computational 
Ocean Acoustics. American Instil ate of Physics. New York. 

[8] Keller. J.B., 1978.Rays. wares and asymptotics. Bull. Amer. Math. Soc. 81. 

727-750. 

[9] McGirr. R.W.,  D.B. King, J. A. Davis, .J. 

Campbell, 1985. An evaluation of range-dependent ray theory models NORDA Report 115. 
[10] 

Moler, C.B. and L.P Solomon, 1970. Use of splines and numerical integration  
in geometrical acoustics, J. Acoust. Soc. Am. 48, 739-744. 

[11] Munk, W.H.. 1971. Sound chilli nrl in an exponentially stratified ocean with ap- 
plications ti SOFAR.  J. Acoust. Soc Am. 55, 224-252. 

[12] Pedersen, M.A.. 1961. Acoustic intensity anomalies introduced by constant ve-- 
locity gradients. J. Acoust. Soc. Am. 31, 465-471.. 

[13] Porter. M.B. and Homer P. Bucker, 1987. Gaussian beam tracing for computing 
ocean acoustic fields. .1. Acoust. Soc. Am. 82(4), 1349-1359. 

[14] Porter, M.B., 1991. The KRAKEN normal mode program. SACLANTC'EN 

Memorandum. no: SM-245. 

[15]  Roberts, B.G. 1974. Horizontal-gradient acoustical ray-trace program  TRIMAIN,  
Rep. 7827 (Naval Research Laboratory, Washington, DC ). 

39 



40 

[16] Thompson, P.A.. 1972. Compressible-fluid dynamic. McGRAW-Hill Book Com-
pany. 

[17] Tindle. C.T. and C.E.J. Bold. 1981. Improved ray calculations in shallow water. 
J  Acoust.. Soc. Air. 70, 813-819. 

[18] Tindle. C.T. 1983. Ray calculation with beam displacement. J. Acoust.. Soc. Am. 
73(5). 1581-1586. 

[19] Cornyn J. J. 1973 GRASS:  A digital-computer ray-tracing and transmission- 
loss-prediction system, Rep. 7621 (Naval Research Laboratory, Washington, DC 
). 

[20] Watson W.H. and R. McGirr, 1975. RAYWAVE H: A propagation loss model 
for the analysis of complex  ocean environments, Rep. TN-1516 (Naval Ocean 
Systems Center, San Diego. CA ). 

[21] Westwood, E.K. and P.J. Vidmar, 1987. Eigenray finding and time series simu- 
lation in a layered bottom,  J. Acoust. Soc. Am. 81, 912-924. 


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Acknowledgement
	Table of Contents
	Chapter 1: Introduction and Derivation of Ray Theory
	Chapter 2: Finite Element Ray Tracing
	Chapter 3: Numerical Examples
	Chapter 4: Conclusions and Suggestion
	References




