
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

A Simulation of
a Monitoring and Alarm System

in an Energy Management System

by
Hui-Jen Liu

This is a simulation for an energy system's monitoring and alarm and working under

KEE's environment. Because of KEE's powerful capabilities, we can monitor and get

warning signals from several active windows that we attaching them from KEE's system

knowledge base to our source code.

It is very convenient for us to set every member of the energy system on an image

panel. We can monitor the entire conditions of that member and get highlighted warning

signals from its own image panel. Also we can initialize them by a kind of method-

actuators windows if we want to restore the system.

A SIMULATION OF
A MONITORING AND ALARM SYSTEM

IN AN ENERGY MANAGEMENT SYSTEM

by
Hui-Jen Liu

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Mechanical Engineering

Department of Mechanical and Industrial Engineering
May 1993

APPROVAL PAGE

A Simulation of
a Monitoring and Alarm System

in an Energy Management System

Hui-Jen Liu

Dr. Nouri Levy, Thesis Advisor 	 (Date)
Associate Professor of Mechanical and Industrial Engineering, NJIT

Dr. Rajpal Sodhi, Committee Member 	 (Date)
Director of Manufacturing Engineering
Associate Professor of Mechanical and Industrial Engineering, NJIT

 Dr. Rong Ya Chen, Committee Member 	 (Date)
Professor of Mechanical and Industrial Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: Hui-Jen Liu

Degree: Master of Science in Mechanical Engineering

Date: May 1993

Undergraduate and Graduate Education:

• Master of Science in Mechanical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1993

• Bachelor of Engineering in Mechanical Engineering,
Tamkang University, Tamsui, Taiwan, R.O.C., 1991

Major: Mechanical Engineering

This thesis is dedicated to
my parents

v

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to his supervisor, Professor Nouri

Levy, for his guidance, friendship, and moral support throughout this research.

Special thanks to Professor Rong-Yaw Chen and Rajpal Sodhi for serving as members

of the committee.

And finally, a thank you to E-Pin Lin for his help.

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

1.1 Chapter Synopsis 	 1

1.2 Expert System 	 1

1.3 Energy Management System (EMS) 	 1

1.4 KEE (Knowledge Engineering Environment) 	 2

1.5 Monitoring System 	 2

1.6 Energy System 	 3

1.6.1 The Distribution Level 	 3

1.6.2 The Transmission Level 	 3

2 THE PURPOSE OF THE MONITORING SYSTEM 	 4

3 KNOWLEDGE AND INFERENCE ORGANIZATION 	 7

3.1 The KEE System Structure 	 7

3.2 Objects 	 7

3.3 Attributes Of Objects 	 8

3.3.1 Member Slots 	 8

3.3.2 Own Slots 	 8

3.4 Summary 	 9

4 THE ENERGY MANAGEMENT MONITORING

AND ALARM SYSTEM DESIGN DETAIL 	 12

4.1 Chapter Synopsis 	 12

4.2 The Structure of the System 	 12

4.2.1 Knowledge Base 	 12

4.2.2 Function File 	 12

4.2.3 Knowledge Base: MANAGEMENT.0 	 13

4.3 The Operating Procedures 	 16

vii

Chapter 	 Page

4.3.1 Open an "IMAGE.PANEL" for "CIRCUIT1" 	 16

4.3.2 Attach Proper Image Windows to Every Slots in the Unit "CIRCUIT1" 	16

4.4 The Chosen Windows and Their Functions 	 17

4.4.1 BUS1 and BUS2 	 17

4.4.2 CIRCUIT1 and CIRCUIT2 	 17

4.4.3 PLACE1 .FUSE and PLACE2.FUSE 	 18

4.4.4 PLACE1 and PLACE2 	 18

4.4.5 The Functions of These Image Windows 	 18

4.5 Using ActiveImages 	 19

4.5.1 Types of Images 	 19

4.5.2 Attaching Images 	 21

4.6 The Structure of the Program 	 21

4.6.1 Electrical Components 	 21

4.6.2 Electrical Appliances 	 22

4.6.3 Places 	 22

4.6.4 Manager 	 22

5 RUNNING THE SYSTEM 	 25

6 FUTURE WORK 	 28

7 CONCLUSION 	 30

APPENDIX SOURCE CODE 	 32

REFERENCES 	 45

LIST OF FIGURES

Figure 	 Page

1 System Operation Flowchart 	 6

2 KEE System Structure 	 10

3 KEE System Hierarchical Organization 	 11

4 Program Structure 	 24

ix

CHAPTER 1

INTRODUCTION

1.1 Chapter Synopsis

This chapter describes a knowledge-based expert system, an Energy Management System

[6] and the KEE (Knowledge Engineering Environment) [11] which is an expert-system-

building-tool. This chapter also introduces the reasons and values of an expert system to

be used as an alarm system to monitor an energy management system. This work is

dedicated to those who want their energy transmission system to be under control easily.

1.2. Expert System

An expert system is a set of programs that manipulates encoded knowledge to solve

problems in a specialized domain that needs human expertise. Energy systems are a recent

product of artificial intelligence. An expert system is a knowledge-based system, that gets

its power from the expert knowledge that has been coded into facts, rules, heuristics, and

procedures. This knowledge is stored in a knowledge base separate from the control

components. This makes it possible to add new knowledge or refine existing knowledge

without recompiling the control programs. This greatly simplifies the construction and

maintenance of knowledge-based systems [4].

1.3 Energy Management System (EMS)

Energy Management System is viewed by many electrical utilities as new and emerging

technology. Operators can operate, control, monitor and restore a whole power system by

EMS. The major components of an energy management system include: hardware,

application programs, communications, man-machine interface and software support [4].

Many energy management system functions have been devised to answer three

questions:

1

2

1. What might be done to improve system efficiency and reliability, and reduce stress on

equipment?

2. Can the system withstand any single or a sequence failures?

What will be the state of the power in the near future after planned outage and

generation changes occur?

All of the above questions are addressed by energy management experts with the

development of computer and Artificial Intelligence theories. Now, expert systems can

manage the energy systems very well, no matter what the energy systems are, simple or

complex.

1.4 KEE (Knowledge Engineering Environment)

KEE is a kind of knowledge engineering language for frame-based representation. It also

supports rule-based, procedure-oriented, and object-oriented representation methods. Its

main features include multiple knowledge bases to facilitate modular system design,

forward and backward chaining for its rule interpreter KEE's support environment

includes a graphics-oriented debugging package, flexible end-user interfaces using

windows, menus, and an explanation capability with graphic displays which can show

inference chains.

KEE was developed by Intellicorp, is LISP based and is operated on systems such

as Symbolic machines, Xerox 1100's, or TI Explorers. KEE has been used for the

development of intelligent user interfaces, diagnosis and monitoring of complicated

systems, planning, design, process control, scheduling and simulation. [2,3,4].

1.5 Monitoring System

An expert system used as a monitoring system has some basic characteristics:

1. Distinguish if alarms are necessary or unnecessary.

2. A short reaction time.

3

3. Keep the operators aware of most emergency situations.

4. Remind the operators of the problems as they occur. and of emergency actions to be

taken.

To be useful in a monitoring system, an expert system will have to have the following

characteristics:

1. Energy management system being a real time system is time critical and high speed

processors are an absolute requirement for proper operation.

2. Many of the development and maintenance tools now used in stand-alone workstations

can be made available to the Artificial Intelligence software environment [1,5,7,8,9].

1.6 Energy System

The Energy System, also called a Power system, is a huge and complex combination.

Generally speaking, it includes several layers

1.6.1 The Distribution Level

The distribution level, which represents the lowest structural level of the power system,

usually consists of two voltage levels

1. The so-called primary or feeder voltage which is moderately high (for instance, 240KV

or above).

2. The so-called secondary or consumer voltage which is low (for instance, 120V).

1.6.2 The Transmission Level

The transmission system interconnects all the generating stations of the system;

consequently, in addition to transmitting power to the bulk power substations and

extremely large consumers, the transmission system also governs the power exchange or

mutual assistance which results from the interconnection of power plants.

CHAPTER 2

THE PURPOSE OF THE
MONITORING SYSTEM

In our modern world, people can not live without electricity. So, how to maintain

electricity supply normally is one of the most important issues to the power companies.

Power companies spent lots of money to build power plants, power distribution systems,

and power transmission lines, just to provide enough electricity to people for using in

their daily life. But with the growing population power systems had to grow up

simultaneously. Now the modern power system has become huge and complex, and also

hard to maintain and manage. As a result maintaining and monitoring power systems

become a new engineering development topic.

We simulated a real-time monitoring system to monitor a power system. The so-called

real-time means to respond immediately to inputs from sensors, conventional programs, or

other computer-based devices. So, a real-time monitoring system means a system that can

monitor and respond is inputs from sensors or other computer-based devices and that is

what the system we developed is supposed to do. The monitoring system monitor all the

power systems through sensors and collects all the data output from sensors or other

computer-based devices (or we can just call them monitor points in general). The

monitoring system will compare the data we collected from monitor points and expect

normal value. If the data fluctuates between a acceptable range, then we treat them as

normal conditions and record them. But if some of the data go out of the normal range,

then our monitoring screens instantly to warn the operator to under take some proper

procedures to maintain or restore the abnormal parts of the power system.

We developed this monitoring system focused on setting the normal value, display the

actual value we collect from the sensors and to display warning signals.

4

5

By using the KEE environment to develop our displaying warning signals, we could get

a humanized and easy-operating screen; a particular advantage of using the KEE

environment is that it executes all the data comparing and displaying, automatically, Even

some changes can be made using an ActiveImage, LISP-Listener or a conclusion of rules (

all of them are functions of KEE system). No matter where the change originates, the

comparing and displaying will take place automatically.

6

Fig 1 System Operation Flowchart

CHAPTER 3

KNOWLEDGE AND
INFERENCE ORGANIZATION

3.1 The KEE System Structure

When we work with the KEE system, a collection of objects (while solving the problems,

we probably think in terms of "objects", which can either be tangible objects: like cars,

airplanes, etc., or intangible objects: like some procedures.) will be called a knowledge

base. For tangible as well as intangible objects, it usually makes sense to differentiate

between class objects and non-class objects. A class object represents a collection of

objects sharing similar characteristics or attributes.

3.2 Objects

Objects in KEE system are usually called units, and from now on the term object and unit

will be used interchangeably (some other system call the same thing a "frame" or an

"entity"). A distinction is made in the KEE system between two types of objects (or we

can call them units).

1. Class units

2. Non-class units

Non-class units are frequently linked to class units as members or instances of the more

general class.

Attributes of objects are represented as slots in the KEE system. Slot can be used to

represent two kind of information:

1. Descriptive or factual information such as the height of building.

2. Procedural information in the form of a code.

One benefit of having class units, and units that are member of classes is conceptual

clarity. More important, however, we can control how slots (attributes) of units are

7

8

inherited by objects lower in the hierarchy. Whether a slot in a unit is inherited is in part

determined by the type of link between two objects. In the KEE system, we can work with

two kind of links:

1. Class-subclass relationship (represented by a solid line)

2. Class-member relationship (represented by a dashed line)

shown as Fig 2.

3.3 Attributes of Objects

Descriptive or sometimes procedural information about units is stored in slots. To make

the distinction between local and general information possible, the KEE system offers two

kind of slots: member slots and own slots. To make the distinction between existence and

full specification of a slot possible the KEE system differentiates between slots and slot

values.

3.3.1 Member Slots

Member slots are used to store information relevant for a class of objects. They will be

inherited by each descendant of the class unit. Member slots are called member slots

because all members of a class share them. We can give a member slot a value to be

passed to its descendants, or we can leave the value unspecified.

Member slots stay member slots if they are inherited down a class-subclass link (solid

line). Member slots become own slots if they are inherited down a class-member link (

dashed line)

3.3.2 Own Slots

Own slots hold information specific to one object. They should therefore not be inherited

by other objects lower in the hierarchy. The information is specified only locally and is not

passed down to any of the members of the class shown as Fig 3.

9

3.4 Summary

We can get some concepts in our mind after reading the description about KEE system

above

1. Units are often organized into hierarchies.

2. Objects hierarchies are composed of class units and their subclass and member

3. Units have characteristics or attributes that are stored inside the unit as slots.

4. Slots can be entered at any level and specified at any level in the hierarchy.

10

Fig 2 KEE System Structure

11

Fig 3 KEE System Hierarchical Organization

CHAPTER 4

THE ENERGY MANAGEMENT
MONITORING AND ALARM SYSTEM

DESIGN DETAIL

4.1 Chapter Synopsis

This chapter introduces the Monitoring and Alarm System of an Energy Management

System. This Monitoring and Alarm System is created under KEE's environment and

written in COMMON-LISP language. The function of this Monitoring and Alarm System

includes monitoring circuits, fuses, buses (loads). If there is any state abnormal, it also will

have a warning signal to warn the operator that what or where the wrong state is

happening. This system also focuses on the restoration of the Energy System. Operators

can initialize the system from the METHOD-ACTUATOR which says

"MANAGER::INITIALIZE!METHOD".

4.2 The Structure of the System

The Monitoring and Alarm System is written in COMMON-LISP, and used under KEE's

environment. The whole system contains two parts:

4.2.1 Knowledge Base

It includes a header part and 14 knowledge bases. It exists as a filename

"MANAGEMENT" with a extension "U".

4.2.2 Function File

It contains 9 function definition files which exists as a filename "MANAGEMENT" with a

extension "LISP": After compiling, the KEE's system creates a new file with name

"MANAGEMENT" and an extension "sbin":

12

13

We explain the two parts in detail follows

4.2.3 Knowledge Base: MANAGEMENT.U

The header part: This program is a collection of several small knowledge bases with a

header at the beginning of this program. This part is something like a declaration. It tells

us the name of this program, when and who created and modified this program, the

corresponding function file's name, the size of this knowledgebase, and several version

numbers we used:

The knowledgebase part: This part contains 14 knowledgebases. We call these

knowledgebases as "unit" or "slot":

4.2.3.1 ELECTRICAL.COMPONENTS

We see this knowledgebase as a class unit. From the program, we can see that the

contents of this unit includes the name of this unit and the name of who created it: This

unit has a super class "ENTITIES", which is inherited from KEE's System's

KNOWLEDGEBASE "GENERICUNITS", and is a member of "CLASSES" in

"GENERICUNITS": It also has two subclasses named "FUSES" and "CIRCUITS"

respectively, which we can see later: This unit has three members slot called

"INITIALIZE", "PLACES: AFFECTED", and "STATUS" respectively. The

"INITIALIZE" slot is a kind of Method as we can see in the program. The second slot is

called "PLACES.AFFECTED": It has at least one value from unit "PLACES". The third

slot is called "STATUS": It is much like "PLACES" but it only has one value from its

value class which contains: OK, NOW.OK, OVERLOAD, BLOWN, REPLACED,

NEEDS. REPLACEMENT.

14

4.2.3.2 CIRCUITS

It is a class unit of "ELECTRICAL.COMPONENTS" and has two members named

"CIRCUIT1" and "CIRCUIT2". It has seven member slots. The first slot is called

"APPLIANCES" Its value is coming from unit "ELECTRICAL.APPLIANCES". The

second slot is called "CURRENT.FLOW". It has only one integer value. The third slot is

called "VOLTAGE". It also has only one integer value. The fourth slot is called

"INITIALIZE", which is a method as we can see in the program: The fifth slot is called

"REVELANT.FUSE". It has only one value in the unit "FUSES". The sixth slot is called

"STATUS": It has only one choice from "OK, NOW.OK, OVERLOADED". The last slot

is called "TOTAL.CURRENT". It has a choice from "TOO:HIGH, NOW.NONE, OK":

4.2.3.3 ELECTRICAL.APPLIANCES

It is a class unit of the KB "Management": It is the same as class unit

"ELECTRICAL.COMPONENTS" which has a super class "ENTITIES" and is a member

of "CLASSES". There are six member slots in this unit. The first slot is called

"CURRENT.DRAWN". It has only one integer value. The second slot is called

"INITIALIZE", which is a kind of method as we can see in the program. The third slot is

called "LOCATION". It has only one value. The fourth slot is called

"RELEVANT:CIRCUIT": It has only one value from class "CIRCUITS". The fifth slot is

called "STATUS". It has only one choice from "OK, OUT". The last slot is called

"SWITCH". The choice of its value is one of "ON" and "OFF".

4.2.3.4 FUSES

It is a class unit of "ELECTRICAL.COMPONENTS" and a member of "CLASSES". It

has two members named "PLACE1.FUSE" and "PLACE2.FUSE". There are four member

slots in this unit: The first slot is called "CHECK.FUSE": It is a method as we can see in

15

the program. The other slots "INITIALIZE", "PLACES.AFFECTED", and "STATUS"

are as mentioned before.

4.2.3.5 PLACES

It is a class unit of KB "Management". It is a easier unit. It has two member slots in this

unit called "INITIALIZE" and "STATUS" respectively as we mentioned before.

4.2.3.6 MANAGER

It is a class unit of KB "Management" and has one own slot named

"INITIALIZE.ELECTRICAL SYSTEM". This slot is a method as we can see in the

program:

4.2.3.7 PLACE1 and PLACE2

They are two members of "PLACES".

4.2.3.8 PLACE1.FUSE and PLACE2.FUSE

They are two members of "FUSES" and are connected with unit "PLACES" by slot

"PLACES: AFFECTED".

4.2.3.9 BUS1 and BUS2

They are two members of "ELECTRICAL.APPLIANCES". Both of them have a

"CURRENT.DRAWN" integer value. They are connected with units "PLACES" and

"FUSES" by slots "LOCATION" and "REVELANT.FUSE" respectively.

4.2.3.10 CIRCUIT1 and CIRCUIT2

They are two members of "CIRCUITS". They have two integer values for

"CURRENT:FLOW" and "VOLTAGE" respectively. They also connected with units

16

"ELECTRICAL.APPLIANCES", "FUSES", and "PLACES" by slots "APPLIANCES",

"REVELANT.FUSE" and "PLACES. AFFECTED" respectively.

4.3 The Operating Procedures

These procedures are getting start with going into the KEE's environment then:

4.3.1 Open an "IMAGE PANEL" for "CIRCUIT!"

4.3.2 Attach Proper Image Windows to Every Slots in the Unit "CIRCUIT1"

1. APPLIANCES: Simple-Value-Displays:

2. CURRENT.FLOW: Numeric-Dials;

Digimeters;

Numeric-Alarms (2);

Value-History-Monitors.

3. INITIALIZE: Method-Actuators.

4. PLACES. AFFECTED: Simple-Value-Displays:

5. REVELANT:FUSE: Simple-Value-Displays.

6. STATUS: Vertical-Push-Bottoms;

State-Alarms;

Value-History-Monitors.

7. TOTAL.CURRENT: Vertical-Push-Buttons;

State-Alarms;

Numeric-Alarms;

Value-History-Monitors.

8. VOLTAGE: Numeric-Dials;

Digimeters;

Numeric-Alarms (2);

17

Value-History-Monitors.

When every slot has been set up, the system is at normal state: But if you change the

value of the slot "CURRENT.FLOW" and let it go out of the limits which are set by two

"Numeric-Alarms", then the relative alarms will highlight till you initialize the system:

4.4 The Chosen Windows and Their Functions

To choose a proper image window is an important step for operating this system. The

right choices can show you the situations that the system is situated now, easily and

clearly. The choices we made for those slots are as follow:

4.4.1 BUS1 and BUS2

I . SWITCH: State-Dials

2 CURRENT:DRAWN: Numeric-Dials;

3. Digimeters;

4. Numeric-Alarms (2);

5. Value-History-Monitors.

6. INITIALIZE: Method-Actuators.

7. LOCATION: Simple-Value-Displays:

8. REVELANT CIRCUIT: Simple-Value-Displays.

9. STATUS: Horizontal-Push-buttons;

State-Alarms;

10. Value-History-Monitors:

4.4.2 CIRCUIT] and CIRCUIT2

as we mentioned above.

18

4.4.3 PLACEI.FUSE and PLACE2.FUSE

1. CHECK.FUSE: Method-Actuators.

2. STATUS: Vertical-Push-Buttons;

State-Alarms

3. Value-History-Monitors.

4. INITIALIZE: Method-Actuators.

5. PLACE. AFFECTED: Simple-value-displays.

4.4.4 PLACE1 and PLACE2

1. STATUS: Vertical-Push-Buttons;

State-Alarm;

Value-History-Monitors:

2. INITIALIZE: Method-Actuators:

3. MANAGER: INITIALIZE: Method-Actuators.

4.4.5 The Functions of These Image Windows

1. Simple-Value-Displays: These kind of image windows can display the value of the

attaching slot: You can not update their values from those kind of windows. So it is only

good for the slots with fixed values.

2. State-Alarms: If the value of this slot is equal to the value of the State-Alarms, this

alarm will highlight.

3. Vertical-Push-Buttons or State-Dials: They are good for that the slots which have a

valueclass of "ONE.OF":

4. Numeric-Dials: These kind of windows are good for integer valueclass slots. They can

be updated easily but it is not easy to see the actual value: So we combined it with a

Digimeter for a clear digital display.

19

5. Digimeter: As mentioned above, it displays a value in digits but can not be updated

from window directly.

6. Numeric-Alarms: They can set up digital limits for integer valueclasses.

7. Value-History-Monitors: They can record many values that happened before

sequentially.

8. Method-Actuators: These kind of windows are good for a method valueclass slot.

You can activate this method by left clicking the mouse when the cursor is in its

window.

4.5 Using Activelmages

Activelmages is a graphics package that is part of the KEE system. We can use

ActiveImages to graphically represent slots, objects, and knowledge base. The

ActiveImages package is built on KEE pictures which is developed on top of Common

Windows.

4.5.1 Types of Images

When we create an image, the KEE system creates a unit and its graphic representation on

the screen: The image unit is a member of the image class we choose in the

ACTIVEIMAGES3 knowledge base and it inherits functionality from this image class.

4.5.1.1 Panel Image

Panel Images are a type of window that allows the user to collect all related images into

one central location. There can be many panels in one application that would monitor

different parts of the system: Panels can be attached to units, knowledge bases, or even

other image panels:

There are two main advantages to using panels

20

1. We can visually arrange related images on the screen. That means we can have a

predetermined layout that is then fixed for that knowledge base until we decide to change

it.

2. More importantly, we can use image panels to manipulate related images as a

group: For instance, it is possible to bury, close, delete, move, or shrink all images on a

panel with a few simple mouse clicks. That means that we can shrink a screen size panel

with two mouse clicks, and when it is expanded later, all images on it will appear together

the appropriate place:

4.5.1.2 Slot Images

The greatest variety of images is given in the SLOT-IMAGES class: What type of image

we can attach to a slot depends on the valueclass of the slot:

4.5.1.2.1 Numeric Images

A numeric value class will result in a selection of numeric images. For example, if we

attach an image to a VOLTAGE slot and the valueclass of the slot is numeric (that is,

NUMBER, INTEGER, etc.) the system gives us a choice of images suited for numbers,

such as DIGIMETERS, THERMOMETERS, and so on:

4.5.1.2.2 State Images

If we have a valueclass (ONE OF A B C), we will get, among others, the choice of

STATE IMAGE: A state image can show the possible values of a slot, the current values,

or no value if the value is unknown: It can also change the value if an actuator image is

chosen: VERTICAL-TRAFFIC-LIGHT is such a image.

21

4.5.2 Attaching Images

We can attach images through the mouse and menu interface or programmatically. When

we attach an image to a slot through the mouse and menu interface, the system offers us a

wide selection of possible images from which to choose. The images to choose from come

from the subclass of SLOT-IMAGES in the ACTIVEIMAGES3 knowledge base shown

above. We will not have to choose among all classes each time, however, since the KEE

system is designed to pass down the choices so that only the appropriate ones are revealed

to the user.

In addition to representing slot values, SLOT-IMAGES can also be used to change slot

values: For many SLOT IMAGES, the system offers us an interactive image or a simple

display image: The interactive image is often called an actuator and is usually distinguished

by having "actuator" as part of the image name.

There are more than twenty SLOT-IMAGES that could be attached to a slot

potentially: The KEE system helps us to choose the appropriate image by narrowing down

the selection and offering any images good for a slot if attachment takes place through the

mouse-and-menu interface. The system makes the selection by looking at the valueclass of

the slot to which we are attaching the image: The system only displays images that make

sense for the given valueclass:

4.6 The Structure of the Program

We introduce the structure of the program in Fig 4: From the diagram, we can see that

there is a knowledge base "Management" and that it has four subclasses: "electrical

component"; "electrical appliance"; "places" and "manager".

4 6.1 Electrical Components

This subclass means that the component we use in power system is a monitor point: It

includes two subclasses: Fuses and Circuits and three member slots: Initialize , Place

22

Affected, and Status: Both of these two subclasses will inherit the characteristic of these

three members from their superclass: Electrical Component.

4.6.2 Electrical Appliances

This subclass means the products we use to consume electricity. All these kind of products

we called them buses: These two buses mean two products we connect on the circuits to

consume power and also we use them as two monitor input points. They have three slots:

Current Drawn; Location and Revelant Fuse. Current Drawn has a integer value and

means the value of current flow through the bus: Location means where the bus is located

and this slot also attaches to the Places subclass. Revelant Fuse means which fuse is taking

care of this bus and it also attach to the Fuses subclass. This subclass represents the

relation between the current fuse and its location and is connected by buses. If the current

flow through the bus is over its normal value (Current Drawn value) then the fuse status

is blown and the Location status becomes dark, and hence we can easily know where and

which component is out of order:

4.6.3 Places

This subclass means where we put our monitor input points and which fuses are going to

take care of them: There are four slots in this subclass: Check Fuse Status Initialize Place

Affected. Check Fuse can inform an operator to check a fuse if some abnormality just

happened and the system was restored already. Status can display the place now dark or

light, and PlaceAffected shows us where the location has all these components, and their

conditions:

4.6.4 Manager

Manager is a subclass different from the other three subclasses The other three subclass

can do some judgments and display any one of abnormal conditions to warn the operators

23

to do some emergency procedures. After the abnormal conditions are recovered, operators

must use this Manager to restore the system, and let all the values set to their normal

conditions indicating what emergency is now over.

24

Fig 4 Program Structure

CHAPTER 5

RUNNING THE SYSTEM

The Monitoring and Alarm System of an Energy Management System that we developed

before has been operating on a SUN WORKSTATION under KEE's environment

successfully: We can monitor all the conditions on the transmission lines and receive

alarms for abnormal states. We also restore the energy system after the abnormal state(s)

was under control:

We monitor circuits by several kinds of active image windows. Simple-Value-Displays

windows can show the slot value of the three slots "APPLIANCES",

"PLACES.AFFECTED" and "REVELANT.FUSE". These values in these kind of

windows can not be changed by activating these windows. For example, if there is any

abnormal state that happened in the "CIRCUIT1 IMAGE PANEL", then we can know

what load is connected to this circuit, what places are affected by this abnormal state and

which is the relative fuse right away: On the other hand, we monitor the

"CURRENT.FLOW", "VOLTAGE", "STATUS", "TOTAL.CURRENT" by more

complex alarms. We attach 5 image windows to monitor and alarm "CURRENT.FLOW"

and "VOLTAGE" slots. We use "Numerical-Dials" to adjust the current flow and

"Digimeters" to see the actual number of current flow (or we can replace these two image

windows by a "Digiactuators" and a "typescript" window). Two "Numeric-Alarms" can

set up the upper and lower limit for ranges of current flow and voltage: If the values of

these two slots ("CURRENT.FLOW" and "VOLTAGE") are going out of their ranges,

then "Numerical-Alarms" will highlight till the values goes back to the fixed ranges: The

last one is a "Value-History-Monitors": This window can record every change of the

current flow and voltage as a reference for operators

The other units are attaching image windows similar to the "CIRCUITS" unit: So we

do not want repeat them again:

25

26

Because of KEE's powerful capabilities, can easily attach any kind of monitoring or

alarm windows to our source codes. There is also a Method-Actuator that can activate the

"INITIALIZE" slot to restore the units respectively no matter what circuits, fuses or

buses. We can even initialize the whole system by activating the "MANAGER" unit.

	

KEE system has two way of giving objects behavior. The first way is to create a

method slot and enter the behavior as Lisp code in the slot. The behavior is activated by

sending an object a message. The other way is using active values as we used in this

project.

Active values are a special kind of unit in the KEE system that have the pre-defined

task of watching a slot: When using an active value, we make a behavior an inherent part

of the slot (almost like its cardinality or valueclass). The behavior executes automatically

under pre-defined conditions as illustrated:

A particular advantage of using an active value is that it will execute the behavior

automatically. Every change can be made using an Active Images, using a Lisp method, or

as a conclusion of a rule: No matter where the change originates, the checking and

message printing will take place automatically.

ActiveImages can be used as a tool in two major areas:

1. During prototyping, we will find them helpful to monitor or change slots that are

accessed frequently. During that stage, they function as a debugging facility or just as an

easy switch for setting values. ActiveImages can be attached quickly to slots that require

monitoring or frequent changes, and detaching them is just as easy.

2. When our prototype becomes more complete, ActiveImages can be used to

develop extensive user interface. Various types of images offer a wide range of uses:

ActiveImages can act as a window to the knowledge bases; allow user input; provide

instructions; or permit the user to alter the knowledge bases.

The KEE system takes advantages of active values in a variety of ways. One very

prominent use is ActiveImages. ActiveImages are pre-defined graphics tools that can be

27

used to monitor slots. Activelmages are a subclass of active values and their behavior is

pre-defined in the system. Instead of a user-defined message, we have a system-defined

change in a graphical representation on the screen.

The implementation of active values in the KEE system lends itself well to working in

an object-oriented fashion since code reuse is encouraged. We can have the same active

value attached to a variety of objects in our knowledge base. The code also resides

directly in the object and is actually part of the behavior of that object, which also has

certain implications:

1. Active values are inherited with member slots they are attached to. We can attach

an active value to a slot at one level in our object inheritance; it will then monitor that slot

at that level and any lower level at which the slot exists.

2. Just like methods that use the obligatory argument SELF to get information from

the unit in which the method is messaged, active values can pick up appropriate

information from the unit in which they are activated using an argument in the argument

list: This menu, in the project above, the PLACE.AFFECTED slot will have a different

value for different individual fuses and the active values will work with that value.

The most valuable achievement of this system is that it very easy to understand and

operate: Operators do not need to know much about KEE or Common-Lisp. They can

control it easier then ever. All the system becomes is many active graphs as you can see:

You can operate or control the system through all the active image windows. By the way,

all we can describe about this system is that it is "humanized", and that is just what we are

trying to do.

CHAPTER 6

FUTURE WORK

A modern energy system is combined with many different and complex subsystems. For

example, the energy system includes power plant, power transmission system and power

distribution systems. They all are huge and complex. So, a good energy management

system must be also big and complex, to manage the whole energy system properly.

In the previous work, we simulated a simple monitoring and alarm system for a small

range on the energy system: This is a beginning step for us to create a whole energy

management system piece by piece. In this step, we are going to set up a real-time

emergency states advisory system: That is because when a abnormal state alarm is

highlighted to warn an operator to take some procedures, operators can do it with

sufficient time and make a proper decision. But if there comes a good deal of highlighted

alarms in a short period of time, then all the operators must have a advisory system to

assist them doing the right and proper procedures to keep the energy system working

normally.

	

In this project, we simulated a real-time monitoring and alarm system. These system

are used to respond immediately to inputs from sensors, conventional programs, or other

computer-based devices: Real-time system makes instantaneous knowledge-based

decisions that are needed to respond to different environmental situations. These expert

systems are seen in combat support roles in fighter and bomber airplane and in commercial

airplane as pilot advisors. Control systems for chemical plants, power plants and

manufacturing machining process control are other examples of real-time expert systems

		

The working principle of the monitoring and alarm system we developed is that the

system gathers data from multiple monitored points and compares them to expected

normal values. If there is any difference then the system generates a warning signal. We

can show the procedures as figure 1.

28

29

A good energy management system not only tell you where and what happened, but

also show you what you should do. At that time you can say that you have a real expert

system.

CHAPTER 7

CONCLUSION

All power companies operate under more or less formal contracts with their customers. In

general, these contracts specify the maximum quantity and the quality of the power to be

supplied. The quality of the power is described by

1. The frequency and the limits between which it is constant.

2. The voltage and the limits between which it is constant.

3. The continuity of service:

	

In the normal, steady operating conditions of the power system, the objective is to

produce the power where it can most economically be done at the time, and to distribute it

to the points where it is needed while the voltage and frequency are maintained within

suitable tolerance:

	

When faults occurs they must be eliminated by selectively de-energizing the faulted line

section or equipment, by opening the circuits breakers which are adjoined to the faulted

apparatus: It is the duty of the protective relays of the network protection system to give

the tripping commands to the right breakers:

	

The network protection system gets the wrong state messages from the monitoring and

alarm system: The monitoring and alarm system shows that what and where faults

happened: When a warning signal is highlighted, it means a kind of fault happened.

Operators can get all of the information about the wrong state, relative parts, locations

and even restore the system from the image panel that we set up already.

	

Because of the development of Expert System, we have many convenient Expert-

System-Building-Tools now. Such as KEE we used in this project. KEE's powerful

window-frame capabilities provided us an excellent tool to simulate such a humanized and

easy-operating system. It is very simple for operators to operate and do not need other

special language skill: That is why expert system's application developed so fast. It is also

30

31

extensible. We do not have many units in this project. But if it is necessary, we can add as

many units as we need very quickly and easily. So its scale is very flexible.

An expert system used as a monitoring and alarm system is convenient and effective as

we described above. After this project, we can say that an Expert System is not only a

computer program but also a real applied expertise.

APPENDIX

SOURCE CODE

;;; 	-*- Mode:Common-Lisp; Syntax:Common-lisp; Package:KEE;

Base:10. -*-

(MANAGEMENT

("hx17866" "11-26-92 11:22:33" "hx17866" "11-27-92

15:23:12")

NIL

(KNOWLEDGEBASES)

**

* Above is a general description about this program. 	*

* It includes the language and package we used 	 *

* and program name. 	 *

* It also has the log in name and time. 	 *

**

NIL

()

(

(DELETE.KB ((BEFORE (BEFORE-AI3-KB-DELETE SELF))

(BEFORE (BEFORE-KP-KB-DELETE SELF))))

(KBMETHODFILE ("MANAGEMENT"))

(KBSIZE (14))

(KEE.DEVELOPMENT.VERSION.NUMBER (0))

(KEE.MAJOR.VERSION.NUMBER (3))

(KEE.MINOR.VERSION.NUMBER (1))

(KEE.PATCH.VERSION.NUMBER (0))

32

33

**

* This part includes program name and how many units in *

* this knowledge.base *

* We also can see its version. *

**

(ELECTRICAL. COMPONENTS

("hx17866" "11-26-92 11:24:23" "hx17866" "11-27-92

11:25:14")

((ENTITIES GENERICUNITS))

((CLASSES GENERICUNITS))

NIL

((INITIALIZE ((LAMBDA (SELF) (REMOVE.ALL.VALUES SELF

'STATUS)))

METHOD (#[Unit: METHOD KEEDATATYPES]))

(PLACES.AFFECTED NIL NIL

(#[Unit: PLACES MANAGEMENT]) NIL ((CARDINALITY.MIN (1))))

(STATUS NIL NIL

((ONE.OF OK NOW.OK OVERLOADED BLOWN REPLACED

NEEDS.REPLACEMENT)) NIL

((CARDINALITY.MIN (1)) (CARDINALITY.MAX (1))))

())

**

* Electrical.Components is a class-unit.

* There are 3 member slots inherited to its

* subclasses:Fuses, and

34

* *** * Circuits. *

* The 3 member slots are: Initialize *

* (a method defined in Manager *

* Place.Affected (relate to Places), and *

* Status *

**

(CIRCUITS

("hx17866" "11-26-92 11:27:56" "hx17866" "11-27-92

11:34:43")

(ELECTRICAL. COMPONENTS)

((CLASSES GENERICUNITS))

NIL

((APPLIANCES NIL NIL (#[Unit: ELECTRICAL.APPLIANCES

MANAGEMENT]))

(CURRENT.FLOW NIL NIL (#[Unit: INTEGER KEEDATATYPES]) NIL

((CARDINALITY.MIN (1)) (CARDINALITY.MAX (1))))

(VOLTAGE NIL NIL (#[Unit: INTEGER KEEDATATYPES]) NIL

((CARDINALITY.MIN (1)) (CARDINALITY.MAX (1))))

(INITIALIZE ((BEFORE (PUT.VALUE SELF 'CURRENT.FLOW 0)

(PUT.VALUE SELF 'VOLTAGE 110))))

(RELEVANT.FUSE NIL NIL (#[Unit: FUSES MANAGEMENT]) NIL

((CARDINALITY.MIN (1)) (CARDINALITY.MAX (1))))

(STATUS NIL NIL ((ONE.OF OK NOW.OK OVERLOADED)))

(TOTAL.CURRENT NIL NIL ((ONE.OF TOO.HIGH NOW.NONE OK)) NIL

((CARDINALITY.MAX (1))))

35

())

**

* Circuits is a class-unit. 	 *

* There are 7 member solts inherited to its subclasses: 	*

* Circuit1 and Circuit2. 	 *

* The 7 member slots are Appliances (related to 	 *

* Electrical.Appliances) 	 *

* Current.Flow (has only one integer value), 	 *

* Voltage (has only one integer value) 	 *

* Initialize (will give Current.Flow and Voltage 	*

* initialize values 	 *

* 0 and 110, respectively. 	 *

* Revelant.Fuses (relaed to Fuses). 	 *

* Status, and Total.Current 	 *

**

(ELECTRICAL. APPLIANCES

("hx17866" "11-26-92 11:34:12" "hx17866 ""11-27-92

11:32:12")

((ENTITIES GENERICUNITS))

((CLASSES GENERICUNITS))

NIL

((CURRENT.DRAWN NIL NIL (#[Unit: INTEGER KEEDATATYPES]) NIL

((CARDINALITY.MIN (1)) (CARDINALITY.MAX (1))))

(INITIALIZE ((LAMBDA (SELF) (REMOVE.ALL.VALUES SELF 'STATUS)

(REMOVE.ALL.VALUES SELF 'SWITCH)))

METHOD (#[Unit: METHOD KEEDATATYPES]))

36

(LOCATION NIL UNION NIL NIL ((CARDINALITY.MIN (1))

(CARDINALITY.MAX (1))))

(RELEVANT.CIRCUIT NIL NIL (#[Unit: CIRCUITS MANAGEMENT]) NIL

((CARDINALITY.MIN (1)) (CARDINALITY.MAX (1))))

(STATUS NIL NIL ((ONE.OF OK OUT)) NIL ((CARDINALITY.MIN (1))

(CARDINALITY.MAX (1)))) (SWITCH NIL NIL ((ONE.OF OFF ON))))

())

**

* Electrical.Appliances is a class-unit.

* There are 5 member slots inherited to its subclasses: 	*

* Bus1, and Bus2.

* The 5 member slots are: Current.Drawn

* (has an integer value),

* Initialize (a method),Location (has only one value) *

* Relevant.Circuit (related to Circuits), and Status

**

(FUSES

("hx17866" "11-26-92 11:37:43" "hx17866" "11-27-92

11:45:41")

(ELECTRICAL. COMPONENTS)

((CLASSES GENERICUNITS))

NIL

((CHECK.FUSE

((LAMBDA (SELF)

(IF (EQUAL (GET.VALUE SELF 'STATUS) 'BLOWN)

37

(PUT.VALUE (GET.VALUE SELF 'PLACES.AFFECTED) 'STATUS

'IN.THE.DARK)

(REMOVE.ALL.VALUES (GET.VALUE SELF 'PLACES.AFFECTED)

'STATUS))))

METHOD (#[Unit: METHOD KEEDATATYPES]))

(PLACES.AFFECTED NIL NIL NIL NIL ((CARDINALITY.MAX NIL)))

(STATUS NIL NIL ((ONE.OF OK BLOWN REPLACED

NEED S.REPLACEMENT)))

0)

**

* Fuses is a class-unit.

* There are 3 member solts inherited to its subclasses:

• Placel.Fuse

• and Place2.Fuse.

• The 3 Member solts are Check.Fuse

• (a method checks which place is

• in the dark and alert operator),Place.Affected

• (no limit values),

• and Status

**

(PLACES

("hx17866" "11-26-92 11:48:21" "hx17866" "11-27-92

11:49:16")

((ENTITIES GENERICUNITS))

((CLASSES GENERICUNITS))

38

NIL

((INITIALIZE ((LAMBDA (SELF) (REMOVE.ALL.VALUES SELF

'STATUS)))

METHOD (#[Unit: METHOD KEEDATATYPES)))

(STATUS NIL NIL ((ONE.OF LIT IN.THE.DARK)) NIL

((CARDINALITY.MIN (1)) (CARDINALITY.MAX (1))))

())

**

* Places is a class-unit. *

* There are 2 member slots inherited to Placel, *

* and Place2 *

* They are Initialize (a method), and *

* Status (can has only one value). *

**

(MANAGER

("hx17866" "11-26-92 11:55:25" "hx17866 ""11-27-92

11:54:42")

NIL

((ENTITIES GENERICUNITS))

NIL

()

((INITIALIZE. ELECTRICAL. SYSTEM

((LAMBDA (SELF)

(DECLARE (IGNORE SELF))

39

(LOOP FOR OBJECT IN (UNIT.DESCENDANTS 'ELECTRICAL.COMPONENTS

'MEMBER)

DO (UNITMSG OBJECT 'INITIALIZE))

(LOOP FOR OBJECT IN (UNIT.DESCENDANTS 'ELECTRICAL.APPLIANCES

'MEMBER)

DO (UNITMSG OBJECT 'INITIALIZE))

(LOOP FOR OBJECT IN (UNIT.DESCENDANTS 'PLACES 'MEMBER)

DO (UNITMSG OBJECT 'INITIALIZE))))

METHOD (#[Unit: METHOD KEEDATATYPES]))

**

* Manager is a method class 	 *

* It can initialize all the member slots and 	 *

* own slots in this 3 class-units. 	

*

* The three class-units are Electrical.Components, 	

*

* Electrical.Appliances, and Places
	

*

**

(PLACE1

("hx17866" "11-27-92 11:59:15" "hx17866" "11-27-92

12:02:12")

NIL

(PLACES)

NIL ()

(()

**

40

* Place1 is a subclass of Places 	 *

* It has no own slot 	 *

**

(PLACE2

("hx17866" "11-27-92 11:29:36" "hx17866" "11-27-92

12:21:43")

NIL

(PLACES)

NIL

()

())

**

* Place2 is a subclass of Places 	 *

* It has no own slot 	 *

**

(PLACE1.FUSE

("hx17866" "11-26-92 12:23:21""hx17866""11-27-92 12:27:16")

NIL

(FUSES)

NIL

()

((PLACES.AFFECTED (#[Unit: PLACE1 MANAGEMENT]))

))

**

* Placel.Fuse is a subclass of Fuses 	 *

41

* It has 1 own slot: Placel. 	 *

**

(PLACE2.FUSE

("hx17866" "11-26-92 12:34:22""hx17866"11-27-92 12:36:12")

NIL

(FUSES)

NIL

()

((PLACES.AFFECTED (#[Unit: PLACE2 MANAGEMENT]))

))

**

* Place2.Fuse is a subclass of Fuses 	 *

* It has 1 own slot: Place2. 	 *

**

(BUS1

("hx17866""11-26-92 12:45: 12""hx17866""11-27-92 12:52:34")

NIL

(ELECTRICAL. APPLIANCES)

NIL

()

((CURRENT.DRAWN (5))

(LOCATION (#[Unit: PLACE1 MANAGEMENT]))

(RELEVANT.CIRCUIT (#[Unit: CIRCUIT1 MANAGEMENT]))

))

**

42

 Bus1 is a subclass of Electrical.Appliances

* It has 3 own slots

* They are Current.Drawn (defalut value is 5), Placel,

* and Circuit1.

(BUS2

("hx17866""11-26-92 13:23:11" "hx17866""11-27-92 13:23:12")

NIL

(ELECTRICAL. APPLIANCES)

NIL

()

((CURRENT.DRAWN (7))

(LOCATION (#[Unit: PLACE2 MANAGEMENT]))

(RELEVANT.CIRCUIT (#[Unit: CIRCUIT2 MANAGEMENT]))

))

* Bus2 is a subclass of Electrical.Appliances

* It has 3 own slots

* They are Current.Drawn (defalut value is 7), Place2,

* and Circuit2.

(CIRCUIT1

("hx17866" "11-26-92 13:23:51" "hx17866" "11-27-92

13:32:15")

NIL

43

(CIRCUITS)

NIL

()

((APPLIANCES (#[Unit: BUS1 MANAGEMENT]))

(CURRENT.FLOW (0))

(VOLTAGE (110))

(RELEVANT.FUSE (#[Unit: PLACE1.FUSE MANAGEMENT]))

(PLACES.AFFECTED (#[Unit: PLACE1 MANAGEMENT]))

))

**

* Circuitl is a subclass of circuits.

* Circuitdl includes 5 own slots.

* ..The 5 own slots is Busl, CURRENT.FLOW

* (default value is 0),

* Voltage (default value is 110), Placel.Fuse, and

* Place1.

**

(CIRCUIT2

("hx17866""11-27-92 13:45:23" "hx17866" "11-27-92 13:48:18")

NIL

(CIRCUITS)

NIL

()

((APPLIANCES (#[Unit: BUS2 MANAGEMENT]))

(CURRENT.FLOW (0))

(VOLTAGE (110))

(RELEVANT.FUSE (#[Unit: PLACE2.FUSE MANAGEMENT]))

44

(PLACES.AFFECTED (#[Unit: PLACE2 MANAGEMENT]))))

* Circuit2 is a subclass of circuits. 	 *

* Circuitd2 includes 5 own slots. 	 *

*..The 5 own slots is Bus2, CURRENT.FLOW
	 *

* (default value is 0). 	 *

* Voltage (default value is 110), Place2.Fuse 	 *

* and Place2
	 *

KBEND

* Program end.

REFERENCES

1. Amelink, H., A. M. FORTE, and R. P. Guberman. August, 1986. "Dispatcher Alarm
and Message Processing."IEEE Transacions on Power Systems. Vol.PWRS-1, No.3.
188-194.

2. Berk, A. A. 1985. Lisp, The Language of Artificial Intelligence. New York: Van
Nostrand.

3. Hunt, V. D. 1986. Artificial Intelligence and Expert Systems Sourcebook. New York:
Chapman and Hall.

4. Patterson, D. W. 1990. Introduction to Artificial Intelligence and Expert System. New
Jersey: Princeton-Hall.

5. Sakguch,T., and K. Matsumoto. Feb. 1983. "Development of a Knowledge Based
System for Power System Restoration." IEEE Transactions on Power Apparatus and
System. Vol.PAS-102, No.2. 320-329.

6. Silverman, S., and A. Shoop. 1991. "A Real-Time Expert System in the Area of
Energy Management." HANDBOOK OF EXPERT SYSTEM IN MANUFACTURING.
Maus,R.,and J. Keyes. N.Y. McGraw-Hill.

7. Talukdar, S.N., E. Cardozo, and T. Perry. August 1986. "The Operator's Assistant-an
intelligent, Expandable Program for Power System Trouble Analysis." IEEE
Transactions on Power Systems. Vol.PWRS-1, No.3. 182-187.

8. Tesch, D. B.,D. C. Yu, L. M. Fu, and K. Vairvan. February 1990. "A Knowledge-
Based Alarm Processor for an Energy Management System." IEEE Transactions on
Power Systems. Vol. 5, No.1. 268-275.

9. Wollenberg, B. F. May 1986. "Feasibility Study for an Energy Management System
Intelligent Alarm Processor." IEEE Transactions on Power Systems. Vol. PWRS-1,
No.2. 241-247.

10. Zaborszky, J.,and J. W. Rittenhouse. 1969. Electric Power Transmission, The Power
System in the Steady State. Troy, New York: The Rensselaer Bookstore.

11. 1989. "KEEtutor." IntelliCorp.

45

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: The Purpose of the Monitoring System
	Chapter 3: Knowledge and Inference Organization
	Chapter 4: The Energy Management Monitoring and Alarm System Design Detail
	Chapter 5: Running the System
	Chapter 6: Future Work
	Chapter 7: Conclusion
	Appendix: Source Code
	References

	List of Figures

