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ABSTRACT 

A Direct Method for Surface Structure Recovering 
Based on UOFF 

By 
Ping Lin 

The unified optical flow field (UOFF) theory which can be used for 

estimating motion and recovering surface structure was recently established in [9, 

10]. The direct method developed in [2, 3, 4, 6, 7] does not need to explicitly 

solve the optical flow field and to find feature correspondence. Based on the 

UOFF, a direct method in space domain is developed to reconstruct the curved 

surface structure characterized by an Nth degree polynomial equation from a pair 

of stereo images. The initial work on this new method was reported in [8, 11]. 

In this study, I basically work on simulation images characterized by a 2nd 

degree polynomial equation. The main difference from the simulation results 

obtained in [8, 11], is that each object image in the pair of stereo images is formed 

from a set of images, which is referred to as the composite image. The gray levels 

in real images taken with general CCD cameras usually range from 0 to 255, since 

most of CCD camera systems are 8-bit in quantization resolution. This gray level 

range is too narrow to use the direct method in space domain to recover surface 

structure. However, with the Composite Image, it is possible to build a system 

with the current technology in the solid state industry, which is described in this 

thesis, to recover curved surface structures from real image sequences. 
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CHAPTER I 

INTRODUCTION 

Estimation of motion and structure from image sequences has come to play an 

important role within the computer vision community over last ten years [12]. 

Basically there are two different approaches to recovering the structure of objects 

and the relative motion between objects and cameras: (1) the feature based 

approach [13] and (2) the optical flow based approach [5]. 

On one hand, it is known that extracting and establishing feature 

correspondence are difficult and only partial of solutions suitable for simplistic 

situation have been developed [1, p.299]. On the other hand, the optical flow 

approach needs to determine the optical flow field as an intermediate step. It 

involves a large amount of computation. Moreover, with only one equation and 

two unknowns, an extra constraint has to be imposed. The smoothness constraint 

of the optical flow field is one commonly utilized. However, sometimes it is not 

realistic. 

The newly developed direct method [2, 3, 4, 6, 7], does not need to explicitly 

solve the optical flow field nor have to find feature correspondence. It is therefore 

very attractive. 

However, this method only solves the planar surface successfully, because a 

set of linear equations can be formed from the minimization equation to recover 

motion and surface structure. But when surface order becomes higher, only non-

linear equations can be formed from the minimization equation. It is really difficult 

to recover the motion and surface structure even for the second order surface. 

Recently, a new concept of the unified optical flow field (UOFF) is 

established which is an extension of the fundamental optical flow formulation by 
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Horn and Schunck [5]. There are two major aspects of the UOFF concept: The 

first one is that the brightness function of an image is considered not only as 

function of time, but also as function of the various sensors' spatial positions. And 

the second one is that the brightness invariance equation is recognized not only for 

the time variation but also for the place variation. It is noted that the optical flow 

from a temporal image sequence discussed in [5] is a special case within the frame 

work of the UOFF. 

In this thesis, the new concept of unified optical flow field is studied. Based 

on UOFF, a direct method in spatial case is applied in reconstructing a surface 

structure described by an Nth degree polynomial equation. A pair of stereo 

simulation images for a second order surface is used, and the Composite Image 

method is used to extend gray level range. 

In Chapter Two, we first go through the development of the general case of 

brightness invariance equation. Then we discuss the UOFF, based on it, a direct 

method in space domain is developed. A set of linear equations are derived to 

determine all the coefficients of the polynomial equation which characterizes the 

curved surface structure. 

In Chapter Three, a pair of simulation stereo images for a second order 

surface is used to test this direct method. The simulation images are created with 

two different methods. In the first method each image in the stereo image pair is 

created by a brightness function, whereas, in the second method each image is 

formed from a set of thus generated images with some weights and it is referred to 

as a Composite Image. By constructing the Composite Image, we can extend the 

image gray level range. 

In Chapter Four, discussions are conducted and conclusions are drawn. 



CHAPTER II 

UOFF AND DIRECT METHOD 

As mentioned earlier, the UOFF approach is a relatively new method that 

combines parameter's time, and space (the sensor spatial position) in the brightness 

function. In this chapter, the united optical flow field (UOFF) will be introduced, 

and based on UOFF the direct method in space domain for recovering surface 

structure will be developed. 

2.1 United Optical Flow Field (UOFF) 

2.11 Image Space 

Consider a sensor located in a specific position in 3-D world space keeps 

generating images about the scene. As time goes by, the sensor forms a sequence 

of images at this particular position in 3-D space. The set of these images can be 

represented with brightness function g(x, y, t), where x and y is coordinates on the 

image plane. This is the basic outline about brightness function g(x, y, t) which is 

treated by Horn and Schunck [1]. 

A different sequence of images can be formed as follows. At a specific 

moment in time, there are infinitely many sensors in the Imaging space to view the 

object from all possible different positions, then we cannot use the previous 

brightness function g(x, y, t) to describe the gray levels of the image plane. 

Combining the two factors of time and space, we obtain yet another, much larger, 

set of images. To describe the brightness of this new set, we could use a more 

general brightness function: 

g = g(x, y, t, s) 	 (2.1) 

3 
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where s indicates the sensor's position in 3-D world space, i.e., the 

coordinates of the sensor center and the orientation of the optical axis of the 

sensor. Since the sensor as a solid object can be translated (which has three 

degrees of freedom) and rotated (which has two degrees of freedom), s is a 5-D 

vector. That is 

s = (x, y, z, ß, γ) 	 (2.2) 

where x, y and z represent the coordinate of the optical center of the sensor in 

3-D world space; and ß, γ  represent the orientation of the optical axis of the 

sensor in 3-D world space. 

2.1.2 Brightness Invariance Equation (BIE) 

In the image space, each image points is corresponding to an arbitrary but  fixed 

point P. At time t, in 3-D world space possess the same brightness,  i.e., P is 

isotropic. 

For a point P in world coordinate system, if its optical radiation is invariant 

with respect to a time interval from t1  to t2, we then have: 

g(xp(t 1,s1 ),yp (t1 ,s1 ),t i ,s1 )= g(xp,(t2 ,s1 ),yp (t2 ,s1),t2 ,s1)                        	(2.3) 

This is the brightness time-invariance equation and it is utilized in the 

determination of optical flow by Horn and Schnook [1]. At a specific moment t1, 

if the optical radiation of P is isotropic, we then get: 

	

g(xp (t i ,s1 ),yp(t i ,s1 ),t i ,s1 )= g(xp,(t1 ,s2 ),yp(t i ,s2 ),t i ,s2 ) 	(2.4) 

This is the brightness space-invariance equation. If the two variables, time 

and space, are considered simultaneously, we get the brightness time-and-space 

invariant equation, i.e., 

	

g(xp(t1 ,s1),yp(t1 ,s1 ),t 1 ) = g(xp ,(t 2 ,s2 ),yp(t2 ,s2 ),t 2 ,s2 ) 	(2.5) 
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Comparing two brightness functions g(x(t, s), y(t, s), t, s) and g(x(t+∆t, 

s+∆s), y(t+∆t, s+∆s), t +∆t, s+∆s), At, the variation of time, and ∆s, the variation in 

spatial position of sensor, are very small. Due to the time-and-space-invariance of 

brightness, we can get: 

g(x(t, s), y(t, s), t, s = g(x(t +∆t, s +∆s), y(t +∆t, s +∆s),t +∆t, s +∆s)    (2.6) 

The right-hand side of the above equation is expanded into the Taylor series. 

It leads to 

g(x(t +∆t, s+∆s), y(t +∆t, s +∆s), t + ∆t, s+∆ s) = g(x(t, s), y(t, s), t, s) + ∂g/∂x (∂x/∂t dt + ∂x/∂s ds) + ∂g/∂

y(∂g/∂y dt + ∂y/∂s ds) + ∂g/∂s ds + ε (2.7)   	 
			  

where ε  contains the second and higher order terms in t and/or ∆s. The next 

equation follows then from the use of Equation (2.3) 

	  

∂g/∂x u + ∂g/∂y v + ∂g/∂y)∆t + ∂g/∂x us + ∂g/∂y vs + ∂g/∂s)∆s 	(2.8

) 
	

		 where u = ∂x/∂t,  v = 	∂y/∂t, us = ∂x/∂s, vs = ∂y/∂s. Dividing both sides of the above 
 

equation by ∆t, ignoring the term containing and examining the limit as ∆t→0 

yields, 

∂ x/∂t + ∂g/∂ x (∂ x/∂t + ∂x/∂s δs/δt) + ∂g/∂y (∂y/∂t + ∂y/∂t + ∂y/∂t δs/δt) + ∂g/∂s δs/δt = 0 	(2.9)  	  
	

(2.9) 

 

where δs/δt = lim ∆t → 0 ∆s/∆t 

 
 

Denote the velocity of a point in the image space by 

V(dx/dt, dy/dt δs/δt)  
  

 

  
where 

d

/dt = ∂/∂t + ∂/∂s δ

s

/δt is a differential operator. 
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Let ∇  = (∂/∂x, ∂/∂y, ∂/∂s) be a vector operator in imaging space. Equation (2.9) then 

becomes 

(

∂g/∂t +V • ∇ ( gV ) = 0 

 

	 (2.10) 

Similar to the well-known continuity equation in fluid dynamics : 

∂g/∂t + ∇ • ( gV ) = 0 	(2.11) 

As compared with Equation (2.10), the left-hand side of Equation (2.9) lacks 

a term of g∇  • V. It is related to the sum of all the second and higher order terms 

oft and/or s, i.e., the c in the right-hand side of Equation (2.6). 

2.1.3 United Optical Flow Field 

As mentioned in the image space, the general brightness function is described in 

Equation 2.1 

g = g(x, y, t, s) 	 (2.1) 

And 

s = (x, y, z, ß, γ  ) 	 (2.2) 

x, y and z represent the coordinate of the optical center of the sensor in 3-D 

world space; and 

ß , γ 

 represent the orientation of the optical axis of the sensor in 

3-D world space. 

In dealing with a "spatial" sequence, we consider the various positions of the 

cameras in space at a specific moment. The movements of imaging camera are 
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Figure 2.1  An image setting 

described in Figure 2.1. The right camera is moving where the left camera is 

fixing in space. The movement of the right camera can be viewed as: the 

translation of the lens center OR  followed by a rotation of the optical axis ORZR. 

The two optical axes OZ and ORZR  are assumed, for simplicity, to be coplanar. 

The lens center OR  can therefore only be translated on the OXZ plane. Hence any 

translation of the OR  on the OXZ plane can be decomposed as the translation 

along the direction parallel to the OX axis and the translation along the direction 

parallel to the OZ axis. The rotation of optical axis ORZR  about the ORYR  is 

marked by ψ. However, the assumption made previously that the OR  lies on the 

OX implies z = 0. Therefore z will not be considered under the assumption made. 
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Define 

δs = (x2 + χ2ψ2)1/2 

 

χ  is a characteristic length chosen according to imaging setting. So 6s is a 

measurement of a variation of the right camera position with respect to the left 

camera position. i.e. the variation of the position of the right lens center OR with 

respect to that of the left optical axis OZ. Let s denote the camera position in 

space and its superscript denotes which camera is considered. For instance, 5L is 

used to denote the left camera position, sR the right camera position, and we have 

sR  = sL + δs. It is obvious that when x = 0, kv = 0 (hence δ s = 0), the two cameras 

are at the same position in space. i.e., SL = 

s

R . If the camera's moving path is 

specified on the X-(1/ plan, different values of x and (hence different values of δ

s

) determine the various values of sR. i.e., the various positions of the right camera 

in space. 

At special moment t1 , if the optical radiation of a point P is isotopic we then 

get Equation (2.4)     

g(xp t1 ,s1 ),yp(t1,s1 ),t1 ,s1 )= g(xp,(t1 ,s2 ),yp(t1 ,s2 ),t1 ,s2 ) 	(2.4) 

the images generated with sensors at different spatial positions can be viewed 

as a space sequence of images. Since at this situation, the vairation of time is 

equal to zero, the brightness time-and-space invariant Equation (2.8) will reduce 

to: 

∂gL/∂x us + ∂gL/∂y vs + ∂gL/∂s = 0                                    (2.12) 

 

 
  

Now let us take a close look at each quantity in Equation (2.12). The 

quantities with the superscript L are related to the left sensor. The ∂gL/∂s  can be 

estimated from the image data as following: 
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∂g/∂xs = (xL ,yL ,t) - gL (xL ,yL ,t )/δ s  (2.13) 

The quantities with the superscript R are related to the right sensor. 

The us  and vs  are defined as follows. 

Let 

d x =  xR 

- xL 

 

dy  =yR 

- yL 

 

where (x R , yR ) and (x L, yL ) are projections of the same world point on the 

right and the left image planes, respectively. δx and δy  are therefore, respectively, 

the horizontal and vertical coordinate differences of the image points, 

corresponding to the same world point in 3-D space, reflected on the right and left 

image planes. And then,= 

	us = limδs → 0 δ x/δs 	(2.14) 
 

vs = limδs → 0 δ y/δs 	(2.15) 

Hence, us  and vs  defined above are the spatial variation rates of 6x and 5),  

with respect to δs. These two quantities generated from the spatial sequence of 

images, can be viewed as counterparts of u

L 

and v

L

, (or uR  and vR), generated from 

a temporal sequence of images. 

2.2 Direct Method in Space Domain  

2.2.1 Relationships between 3-D Space and Image Plane  

Following our system setup, the left sensor is located at the origin of Cartesian 

coordinate system, and the other sensor is at a known different position. Since any 

rigid body motion can be resolved into two components, a translation and a 

rotation, the right sensor movement with respect to the origin of the world 
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coordinate center, can be also decomposed into translational component Ts  and 

rotational component ωs. The subscript s indicates the s-domain. As described in 

Figure 2.2. 

Ts 

 = (Us,Vs,Ws )T 	 (2.16) 

where the superscript T represents the transposition of the concerned vectors, 

Us, Vs, Ws  are translation velocity component along with the OX, OY, OZ, 

direction, respectively. 

ωs = (As,Bs ,Cs) T 	 (2.17) 

As, Bs, Cs  are rotation velocity component around the OX, OY, OZ, 

directions, respectively. 

Since the object movement is equivalent to the camera movement in the 

reverse direction, the object movement with respect to the origin of the world 

coordinate center, Vs, can be also decomposed into translational component -Ts  

and rotational component -cos  due to the movement of right camera. Let rs  be a 

vector (X, Y, Z)

T

. By rigid body moving equation, we have 

Vs 

 = T

s 

— ω x rs 	 (2.18) 

if we define 

Vs 

 = (dX/ds, dY/ds, dZ/ds)

T 
 

 
(2.19) 
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Figure 2.2 Cartesian coordinate system 

Then Equation (2.18) can be rewritten in component form: 

dX/ds = -Us - BsZ + CsY                                  (2.20) 
 
	  

 

dY/ds = -Vs - CsX + 

As

Z   
	 	 (2.21) 

dZ/ds = -Ws - AsY + 

Bs

X 

 
	 (2.22) 

 

Reproducing the prospective projection formulas we have 

 
x = X/Z 
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 y=Y/Z 
 

so 

dx/ds= 

d/ds(xZ) = x 

dx /ds + Z dx/ds 

= 	
  

	  

Z dx/ds = dx/ds - x dZ/ds   

 

Combining this with Equation (2.20), we have: 

dX      dZ  us = dx/ds = ds/Z - x ds/Z 	(2.23) 
 

and similarly with Equation (2.21): 

dY/ds  =  d/ds(yZ) = y dZ/ds + Z dy/ds          (2.24)  
	

 
dy  Y dZ 

=

> vs = dy/ds = ds/Z - ds /Z2 

	 

 	 (2.24) 
 

From Equations (2.23) and (2.20) we get: 

vs  = (— Vs/Z - As + Csx) -y(-Ws/Z - Asy + Bsx) 	(2.25) 
	 

from Equations (2.23) and (2.20) we get: 

 v
s = (- V s/Z - A s  + C sx) - y(- W s/Z - Asy + Bsx) 	(2.26) 

2.2.2 Surface Structures of Nth degree Polynomial Equation 

The object under study in the 3-D world is a surface structure that can be 

described by an Nth degree Polynomial Equation in the O-XYZ coordinate system. 

The general form of the polynomial is 
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 K-1 

	 (2.27) 
∑ λjXαj Yßj Zγj = 0 j=0  

where 0 ≤ αj + ßj + γ j ≤ N, and K is the number of coefficients present. 

Out of the K different coefficients of the polynomial, there are K-1 

independent terms, the polynomial can therefore be normalized with respect to one 

arbitrary coefficient λ(r). By rewriting the polynomial as 

K-1 

	 (2.27) 

∑ λnjXαj Yßj Zγj ) + λr Xαr Yßr Zγr = 0 

j=0, j=r 

 

 

we divide through both sides by term λr 

K-1 

	 (2.27) 
∑ λnjXα j Y ßj Zγ j ) + λr Xα r Y ßr Zγr = 0                                                                                           j=0, j=r 

 
 

 
where λnj = λ j/λr , λ j  is normalized. 

This equation will be used in reconstructing the polynomial since now we 

have      (K- 1) independent coefficients. 

2.2.3 Direct Method in Space Domain 

Let us examine Equations (2.25), (2.26) again. it is found that us, vs are expressed 

as a linear function of the motion parameters As, Bs, Cs, As, Bs, Cs  and only one 

factor Z-1, since in spatial domain there is a brightness invariance equation. 

∂g/∂x us + ∂g/∂y vs + ∂g/∂s = 0    	 

	

	  

 

and if we define 

gx = ∂gL /∂x  



14 

gy  =  ∂g L/∂ y  gs  = ∂gL/∂s 

 

so from Equation (2.25) and Equation (2.26), we get 

1/Z = (-Asy + Bsx)(xgx + ygy

) 

- gx (-Bs + Csy) - gs (-Csx + As

) 

- gs /xWsgx + yWsgy - U sgx - V sgy 

 
(2.28) 

	  

or if we define Q =1/Z, Q = (-

A

s

y + Bs x )(xgx + ygy ) - gx (- Bs + C sy ) - gs (-C sx + As)- gs / / xWs

gx + yWsgy - U sgx - V sgy 

(2.29) 

 

 
 

 

Note that As  Bs  Cs  Us  Vs  Ws  can be determined once the relative positions of the 

two sensors in stereo imagery are known. Also, gx ,gy, gs can be determined from 

the given image data by similar algorithms as used in [1]. x, y are the coordinated 

on the image plane. 

Substituting Q-1  for Z in Equation (2.27), we get 

K-1 

	

∑ λnj Xαj Y ßj Q-γj  + Xα, Y ß,Q-γ, = 0                                       (2.31)          
j=0 

 
 

Now, to reconstruct the original polynomial we have to use the recovered 

depth as in Equation (2.31) so we define a performance function as 

K-1 
J = 

∫∫ { ∑ λnj Xα j Y ßj Q-γ j  + Xα, Y ß,Q-γ, = 0                                       (2.31) 

	 (2.32) 
R    j=0, j≠r     

where R is the region on the image plane associated with the concerned 

surface in 3-D space. 

The task here is to find a set of coefficients λnj: so that the performance 

function is minimized (brought as close to zero as possible). It is well known that 
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following linear equations are necessary conditions for minimization of the J 

function:                              ∂J/∂λi 

= 0                                         

	(2.33)  

 

where i = 0,1, 2, . . . , (K-1), and i ≠  r. Differentiating with respect to λ1, 

yields 

∫∫  2{ 
Σ R j=0,  j≠rK-1 λnj Xα j Y ßj Q-γ j  + Xα, Y ß,Q-γ, } Xα, Y ß, Qλ j 

dx

dy 

= 0 

(2.34) 	 	

 

or,  

∫∫ R{ λ nj Xα j+α j Y ßr+ ßiQ- γ j+γ j} dxdy (2.35)        

 

 

with i = 0, 1, 2, . . , (K-1), and i ≠ r. 

The above equations can be put in matrix form as follows: 

Mi,j   = ∫∫R{Xα j+α j Y ßr+ ßiQ-γ j+γ j}dxdy 	(2.36) 

Di  = ∫∫R{λnj Xα j+α j Y ßr+ ßiQ-γ j+γ j}dxdy 	 (2 37) 

In this set of linear equations, all of the coefficients of the Nth degree 

polynomial,i.e., j, where i = 0,1, 2, . . (K-1), and i ≠  r are unknown. All of the 

entries in the matrix Mi,j and in the vector Di can be calculated from the given 

image data. 

The structure of the surface can therefore be recovered, because the 

polynomial equation describing the surface has been fully determined. 



CHAPTER III 

SIMULATION AND RESULTS 

To test the previous algorithm for recovering surface structure, a C program was 

written. The program can be divided into two parts: 

1. Build a pair of stereo images of a surface and save them in image files of 

variable sizes (typically 128 by 128). 

2. Deal with the image data created earlier, and attempt to recover the depth 

field at each image pixel by applying Equation (2.26), and then set up the K 

and D matrices, solve the (K-1) independent 's linear equations. 

3.1 The Construction of Simulation Images 

The simulation images can be created with two kinds of methods. For the first 

one, we assume a surface structure expressed by a certain polynomial equation and 

perform a prospective projection from the surface onto the two image planes, the 

left and the right. The second method, the first step repeats the first method and 

creates a couple pair of images and sums up each pixel value and then gets a pair-

of images. 

3.1.1 Image setting 

The geometry of the setup is a typical stereo system. There is a world Cartesian 

coordinate (X, Y, Z), and two identical cameras positioned as shown in Figure 

3.1. In 3-D space, the movement of a camera can be divided into three 

translational components and two degrees rotational components. The rotation of a 

camera around its optical axis is not considered since no change in the image 

information will result. The optical axis of the left camera coincides with the Z 

16 
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axis of the world coordinate system, and the center of the left image plane is 

located at (0,0,1) exactly. The surface structure has its own coordinate system. 

Figure 3.1  System setup 

The origin of this system is O', which differs from 0 by a sole translation of 

distance D, in the positive direction of Z. This coordinate system is used to make 

the description of the surface structure easier later and to avoid numerical 

problems. The value of D is much larger than 1. For the right camera, which the 

image plane is rotated with ψ degrees, and translated in the X, and Z directions, 
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maintains a constant distance, D, between the center of the right image plane and 

the origin of the surface structure. 

Like this setup, we have 

As  = 0.0 

Bs  = ψ/δs  
 

Cs  = 0.0 	 (3.1) 

sin yi 

Us  = -D sin 

ψ/δs  

 

Vs  = 0.0 Ws = -D (1 - cos ψ)/δs 

 

As Bs Cs are the components of the 

 

rotation rate vector of the right camera in the 

X, Y, and, Z directions, respectively . Us, Vs and, Ws are the components of the 

translation rate vector of the right camera in the X, Y,and, Z directions, 

respectively.  

3.1.2 The Polynomial Equations  

The Sphere chosen is described by the following polynomial: 

 X2 + Y 2  +(Z — D)2  —16 = 0                       	 (3.2) 

or in the shifted coordinates (Figure 3.2): 
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Figure 3.2  The surface in X', Y', Z' coordinates 

X2 + Y 2 +Z2 -16=0  (3.3) 

This surface equation fit the general definition of the polynomial given by 

K-1 
	

∑ λjXαj Y ßj Zγj = 0 

j=0  

 

To associate combinations of X, Y, Z, the standard α, ß, γ  are shown in Table 3.1. 

It is the one of assumption throughout our work. Any arbitrary combinations fit 

this table. When the polynomial equation becomes high degree, the higher degree 

terms can be added without changing the lower ones. 
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Table 3.1:  The standard α. ß. γ  used 

λ  α  ß  γ  

λ0  0 0 0 

λ1  1 0 0 

λ2  0 1 0 

λ3  0 0 1 

λ4  2 0 0 

λ5  1 1 0 

λ6  1 0 1 

λ7  0 2 0 

λ8  0 1 1 

λ9  0 0 2 

λ10  3 0 0 

λ11  2 1 0 

λ12  2 0 1 

λ13  1 2 0 

λ14  1 1 1 

λ15  1 0 2 

λ16  0 3 0 

λ17  0 2 1 

λ18  0 1 2 

λ19  0 0 3 

From Table 3.1, we know that for the Sphere: 

λ0 = —16.0,      λ4 = 1.0, 	λ7 = 1.0,    λ9 = 1.0. 
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3.1.3 The Construction of Simulation Images 

Both surfaces are built in a similar manner. We start from the image screen, 

project a beam of light toward the object, and try to solve for the closest point in 

the object surface in which the beam actually hits the object surface. If no solution 

exists at all, then that particular pixel does not "see" the object surface, and is 

assigned a background gray level value. If solutions do exist, we choose the closest 

one to the image plane, and then from the knowledge of the coordinates in the 

space of that point, we assign a gray level value according to a generating 

function. 

g= K1  cos(K2θ)sin(K3ϕ)+ K1 	 (3.4) 

Where K1 , K2, K3  are some constants. The 0, 0 are in spherical coordinates and 

defined in the Figure 3.2. The Cartesian coordinates transfer into spherical 

coordinates as follows: 

	

 

θ  = tan 

(

X2 

+ γ2) /γ 

ϕ = tan-1 Z'/ X'  

The Left Image: 	The left sensor is aligned with the world coordinate system, 

and thus it is relative to a simple matter of projecting world points onto the screen. 

The distance D between the origin of the world coordinate and the origin of the 

shifted coordinate system is chosen to be 100.0 cm. The same length units are 

assumed for the surface, so we have a relative idea about the size of the surfaces 

being considered. 

To maximize efficiency, the light from the object should occupy about 75% 

of the screen; so the screen size is taken to be 0.11 cm x 0.11 cm. The screen 

consists of In  x Jn  pixels. The row and column indices of the screen are 
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represented by i and j. Coordinates of the image, x and y, are related linearly to i 

and j as follows:  

 
x = 0.11j/Jn  + x0  x = 0.11i/In  + y0 

 
		 (3.5) 

A  

where for the sphere, x0  = —0.055 is the offset in the x direction, and, y0  = 0.050 

the offset in the y direction, from the equation we know the x moves in the same 

direction of j, while y moves in the opposite direction of i. 

In building the left image, we have to start from the screen, not from the world 

point, and our algorithm goes as follows: For a point p(i, j) on the screen, the x, 

and y are calculated as in Equation (3.35). The surface equation for the Sphere 

surface in the world coordinates is 

X2 + γ2  + 

(Z - D)2 - 16 = 0                               (3.6)   

Where D is the distance between the origin of the world coordinate system and the 

origin shifted coordinate system. By prospective projection rule, X and Y are 

equalt to xZ and yZ, respectively. X, Y Substituted with xZ, yZ, in Equation 

(3.6). it becomes another second order equation: 

 

x2Z2 + γ2Z2  + 

(Z - D)2 - 16 = 0 	(3.7) 

In this equation only Z is an unknown value, it can be very easily solved 

numerically. When Z is obtained, we get Z' = (Z-D), Y' = yZ, and X' = xZ. From 

X', Y', Z',we get θ  and ck as shown above, and we obtain the gray level value from 

the function. The quantization value of g is then assigned to the pixel at (i, j) 

which we started with. This process is repeated for all the pixels of the screen. If 

it is not reasonable for the solution of Z at a pixel, the gray value of this pixel is 

assigned as background value. 
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The Right Image: The right sensor's position in 3-D space differs from that of 

the left sensor by a mere rotation of angle ψ  about the O'Y' axis. The angle is 

positive when viewed from the positive Y' axis down onto the origin and rotates 

clockwise. The arm of rotation is D, and thus the distance between the camera and 

the world origin is kept the same. Furthermore, the relation between i and j, and 

xR  and yR  remains the same, namely, 

 

xR = 

	

0.11

j 
/ Jn + x0 	(3.9) 

	
 yR  = 0.11 i / In + y0 

 

Note that the surface is symmetric about the O'Y' axis, the axis of rotation. There-

fore, since both sensors stay coplanar, no change in the shape will take place in the 

right camera. The difference will come from the gray function values. The gray 

function will have to be rotated in the opposite direction for our simulation to be 

correct. So the same procedure is followed here to get X', Y', Z', but in the gray 

function ϕ  is replaced with (ϕ+ψ). Following exactly the same procedure from 

here on, we build the right sensor image and save it in an image file. 

3.2 Simulation  

We now have a pair of stereo images for the analysis. By Equations (2.35),  (2.36), 

(2.37), (2.29) the surface structure can be recovering directly from the  image data. 

K-1 

	

∑ ∫ ∫R{λnjXαr+αiY ßr+ßi Qγr+γi}dxdiy j=0 

	

∫ ∫R{ λnj Xαr+αiY ßr+ßi Q-γr+γi}dxdiy 

	

(2.35) 

 
 

ff {2„i Xc+  a  ler +AQ-rr +r'ICIXd.)) 
	

(2 35) 
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Mi,j = ∫ ∫R{Xαr+αiY ßr+ßi Q-γr+ γi}dxdy (2 36) 
 

Di = ∫ ∫{Xαr+αiY ßr+ßi Q-γr+ γi}dxdyl 	(2 37) 
R 

Q =  
( - Asy + Bsx)(xgx  + ygy) - gx ( -Bs+Csy) - gs(- Csx + As ) - gs 

/ xWsgx + yWsgy - Usgx - Vs gy                       

(2.29) 

 
 

 

We are going to examine the terms that make up Equation (2.29), and describe 

how we can obtain all of them. 

x and y:     The x, y is the coordinate of each pixel in the image plane. Since Q 

is an array of the same size image screen In  x In,, the depth Z is computed for all 

the pixels of the screen. If we denote i to represent the row index, and j to 

represent the row index, and j to represent the column index, then we have, as a 

linear relation between the indices and the real values. The x and y can be 

calculated by Equation (3.5): 

 
x 

= 0.11j /Jn + x0  
 

 

y 
= 0.11i/In + y0 

 

gx  and gy:  The gx  is the gradients in x direction, and gy  is in the y direction, 

We are interested in computing for a spatial sequence of images, not a temporal 

one. Horn and Scunck in [1] described a simple approximation of gx  and gy. We 

slightly modified the approximations from. 
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It becomes: 

∆gj = 0.25{L(i, j + 1) - L(i, j) + L(i + 1, j + 1) - L(i + 1, j)+ 

R(i, j + 1) - R(i, j) + R(i + 1, j + 1) - R(i + 1, j)} 	 (3.10) 

∆gi = 0.25{L(i +1, j) - L(i, j) + L(i + 1, j + 1) - L(i, j + 1)+ 

R(i +1, j) - R(i, j) + R(i + 1, j+ 1) - R(i, j+ 1)} 	 (3.11) 

where L(i, j) and R(i, j), are the gray values of the pixels at row i and column j, of 

the left, and right images, respectively. Considering the change in the values of x 

and y, from pixel to pixel. We have: 

 

 

∆xj = 0.11
/In 	 

 

∆yj = 0.11

/Jn (3.12)                               

where In  and Jn  are the number of pixels in the row and the column, 

	

respectively. In this way, we can approximate ∂yL/∂s and 	 ∂g L/∂ y by:- 

∂g/∂ x = ∂g/∂ j ∂ j/∂ x =  ∆ g j/∆ x j (3.13)   
 

∂g/∂y = ∂g/∂i ∂i/∂y =  ∆g j/∆y j 	(3.14) 
 

gs:    gs  is a rate of change of spatial gradient. In order to get the rate of change of 

spatial gradient, we first get the change of spatial gradient, ∆gs. The approximate 

equation for ∆gs  is: 

∆gs  = 0.25 {L(i , j) - R(i, j) + L(i + 1, j) - R(i + 1, j)+ 

	

L(i, j + 1) - R(i, j + 1) + L(i + 1, j+ 1) - R(i + 1, j+ 1)}                  	 (3.15) 
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Then we need to get the measure of the transition between the left and right 

cameras; the spatial transition becomes: 

 ds = (x'2 + z'2 + D2 ß2 )1/2 	 

where x' and z', represent the displacement of the right optical center from that of 

the left optical center. Dß  is the length of the arc made by the rotation of the 

camera. In short, s is a measure of the movement from the first camera to the 

second, the "Spatial" movement. gs  is therefore approximated as: 

 

gs 

= 

∆gs

/δs (3.16) 
 

By Equation (2.36), and Equation (2.37) 

Mi,j = ∫ ∫R{Xαr+αiY ßj+ßi Q-γr+γi}dxdy 	(2 36)  

Di = ∫ ∫ R{Xαr+αiY ßr+ßi Q-γr+γi}dxdy 	(2 37) 

We can solve the IA and Di, but the result is not good enough. Since the Q-1  is 

too big compared with the values of X and Y, the significance of the values of X 

and Y was lost. To prevent this situation, we watch Equation (2.30), and express 

the surface in the X', Y', Z' system, we have 

K -1 

∑ (λnj X'α j Y' ßj  Z'γ j) + X'α, Y'ß, Z'γ, 

= 0  
1=0. j ≠r 

Going back to the X, Y, Z system, and replacing (X', Y', Z')T by (X, Y, (Z-D))T, 

and then putting that into the above equation and substituting Q-1  for Z, we get. 

K-1 

∑ (λnjX'α j Y' ßj( Q-1 

- D)γ, ) + X'α, Y ' ß,(

Q-1 

- D)γ, = 0                 (3.17) 

1=0. j ≠r 

	  
where X = xZ, and Y = yZ. 
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Then the performance function is defined as: 

r

K-1 

J =∫ ∫R{ ∑ (λnjXα j Y' ßj (

Q 

- D)-γ, + Xα, Y ß,(

Q 

- D)-γ,}2 

= 

dxdy 

	(3.18) 
j=0,j≠  

So we get the new M matrix 

Mi,j = ∫ ∫R{Xα j Y' ßj (

Q 

- D)-γ, + Xα, Y ß,(

Q 

- D)-γ,}2 

= 

dxdy 	(3.19) 

and D matrix 

Di = ∫ ∫R{{Xαr+αiY ßr+ßi (Q- D)-γr+γi}dxdy 	(3.20) 

Since the image is divided by indivaidul pixel, x and y value are discrete. So the 

above integration in the computation for the component of M matrix and D matrix 

aree performed as summations of each discrete value. Equation (3.19) then 

becomes 

In-1Jn -1 
Mij =  ∑ ∑ {λnjXα j + αi Yß j+ßi (Q-1 - D)-γ j + γi} 	(3.21) 

i=0,j=0 

	

 

and Equation (3.20) becomes 

In-1 Jn-1 

 

D i = ∑ ∑ 	{λnjXα j + αi Yß j+ßi (Q-1 - D)-γ j + γi} 	(3.22) 
i=0 j=0  

3.3 Simulation Results 

There are two types of stereo images which are generated and used in the 

simulation. 

1. The first type of stereo images is a pair of images. The left image is 

generated according to Equation (3.4), the right is also generated according 

to Equation (3.4) with ϕ = ϕ + ψ  as discussed in Section 3.1. 
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2, Another type of stereo images is a pair of the Composite Images (see page 

31), i.e., each image is formed from a set of images. 

3.3.1 Single Pair of Images 

By single pair of images, we mean the first type of stereo images just discussed. 

The following results listed in Table 3.2 were obtained in simulation with the 

stereo images generated when the values of k1, k2  and k3  are 4096.0, 0.0 and 0.75, 

Table 3.2 Simulation results for k1 = 4096 

n simulation value for λn  

 

actual value for λn 

 

λ0  —15.999 —16.000 

λ1  0.091 0.000 

λ2  —0.041 0.000 

λ3  —0.049 0.000 

λ4  1.000 1.000 

λ5  0.004 0.000 

λ6  0.034 0.000 

λ7  0.097 1.000 

λ8  0.022 0.000 

λ9  1.014 1.000 

respectively. The size of the image is 128 x 128 pixels. The rotation angle of the 

right camera kv is equal to 1.475 degree(see Figure 3.1) 

If we only change the value of k1  and keep the values k2  = 0.0, k3  = 0.75, we 

will get the Table 3.3: 
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Table 3.3 λ, versus k1 

k1  λ0  λ4  
λ7 

 λ9  

16.0 -7.174 1.000 0.503 0.204 

32.0 -4.984 1.000 0.452 0.268 

64.0 -17.031 1.000 0.736 -0.374 

128 -17.031 1.000 0.810 0.25 

256.0 -16.572 1.000 0.939 0.618 

512.0 -16.162 1.000 0.962 0.829 

1024.0 -15.846 1.000 0.991 1.024 

2048.0 -15.993 1.000 0.995  1.014 

4096 -16.010 1.000 0.997 1.013 

8192 -16.006 1.000 0.998 1.022 

actual value -16.000 1.000 1.000 1.000 

The other coefficients which are not listed on the Table 3.3 tend to approach 

to 0.0 when the k1  increases. From Table 3.3 it is found that the simulation results 

become better, when the k1  is greater than or equal to 1024. When k1  is equal to 

1024, the equivalent gray level range is from 0 to 2047. Also it is found that when 

the k1 increases the simulation results tend to approach the actual values. The 

reason is that when the k1 increases, the gray level range widens, and the relative 

quantization error is decreased. 

3.3.2 The Pair of Composite Images 

Definition: a Composite Image is an image which is constructed by 

accumulating the corresponding pixel values of a given set of images of the same 
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object. The following description will give more details about how the 

construction of the Composite Image is implemented. 

Figure 3.3  The construction of Composite Images 

As shown in Figure 3.3, a camera takes an image of an object, and in this image 

there is a pixel with an analogy gray value A[i][ j] , where the parameters i and j 

describe the location of the pixel. When this image signal passes through the /th 

amplifier, (the gain ratio of the /th amplifier is a1  ), the pixel gray value will 

become Al[i][ j]  in the /th derived image. We then have: 

Al[i][j] = αl 

* 

A

l

[i][

j

]

. 	 (3.22) 

where a1  is smaller than 1.0, but close to 1.0. 

After passing through an 8-bit A-D converter, 

Al[i][j] 

 is quantized and 

becomes an integer, gl[i][j]W. Then the pixel gray value of the Composite Image 

G[i][j] is the sum of the corresponding pixel values in all the derived images. 

m-1 m-1 	m-1  

G[i][j] = ∑ gi[i][j] =  ∑ 	int(Ai[i][j]) = ∑ int(αl * A[i][j]) 	(3.23) 
l=0 	1=0 	 l=0  
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where m is the total number of the derived images. The value of m depends 

on what kind of image one wants to simulate. 

 m = 2n-1 
/128 	(3.24) 

where n is the number of bits which we want to use to represent the gray 

level of one pixel. If you want to compose an image of which the quantization 

resolution is 13 bits, the m is equal to 32. 

In the simulation with a single pair of stereo images, which is generated by 

Equation (3.4), it is found that the simulation result will become acceptable when 

k 1  is greater than or equal to 1024. When k1  is equal to 1024, the equivalent gray 

value range is from 0 to 2047. The gray level in real images taken by general CCD 

camera systems usually ranges from 0 to 255, since most of CCD camera are 8-bit 

in quantization resolution. The gray level range is not wide enough for this direct 

method in recovering the surface structure. Hence the Composite Image could be 

used. Since each pixel gray value G[i][j] in the Composite Image is the sum of the 

corresponding pixel gray value g1

[i][j] 

 in the derived image, the gray value range in 

the Composite Image is expanded. 

In the simulation we assume that the amplifier gain rate α1  is (128-i)/128. The 

simulation uses the stereo images which are constructed by m pairs of derived 

images. The original image A[i][j] is generated by Equation (3.4), where k1 , k2, 

k3  are assigned with 128, 0.0, 0.75, respectively. The rotation angle is 1.475 

degree. 
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Table 3.4  Simulation results with m Pairs of Images 

m pairs of 

images 

λ[0] λ[4] λ[7] λ[9] 

 

gray level 

range 

1 -16.477 1.000 0.789 0.295 0 ~ 255 

2 -16.522 1.000 0.856 0.464 0 ~ 511 

4 -16.137 1.000 0.923 0.754 0 ~ 1011 

8 -16.052 1.000 0.959 0.881 0 ~ 2023 

16 -15.962 1.000 0.976 0.954 0 ~ 4095 

32 -15.954 1.000 0.990 0.975 0 ~ 8091 

From Table 3.4, it is found that when the number of derived images is increased, 

the gray level range is extended, and the simulation results tend to the actual 

values. 

In Table 3.2, the simulation results with a single pair of stereo images, it is 

found that the simulation result is best when the gray level range is from 0 to 8191 

(213-1). Thus, to get the same gray level range for the Composite Image, the 

equivalent total number of derived image is 32. Table 3.5 contains the simulation 

results for the Composite Images with m equal to 32. The original stereo images 

are created by Equation (3.4), the brightness generate function. The value of k1, 

k2  and k3  are equal to 128, 0.0 and 0.75, respectively and the rotation angle of 

right camera ψ is equal to 1.475. Figures 3.4 and 3.5 are the single pair of images. 

Figures 3.6 and 3.7 are the pair of the Composite Images with each pixel gray 

value by 28. 



Figure 3.4 The left single image 
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Figure 3.5 The right single image 
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Figure 3.6  The left Composite Image 
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Figure 3.7 The right Composite Image 
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Table 3.5 Simulation results: the value of λ[i],while k2 = 0.0, k3 = 0.75, ψ=1.475, αl (128-i)/128. 
 

λ[i] simulation result ideal value λ[0] 

-15.954 -16.000 

λ[1] 

0.033 0.0 

λ[2] 

-0.070 0.0 

λ[3] 

-0.089 0.0 

λ[4] 

1.000 1.000 

λ[5] 

-0.001 0.0 

λ[6] 

-0.007 0.0 

λ[7] 

0.0985 1.000  

λ[8] 

0.005 0.0 

λ[9] 

0.991 1.000 

As generally, the amplifier gain ratio al  will vary while the working condition 

change, such as temperatures. So we assume the amplifier gain ratios al  are 

randomly changed between 0.8 to 1.0, we will get the simulation results λ[i] listed 

in Table 3.6. The values of αl  are : 

α0 = 1.000 α1 = 0.9015 α2  = 0.8035 

α3  = 0.8125 α4  = 0.9304 α5  = 0.9725 

α6 = 0.8012. α7  = 0.8245 α8  = 0.9924 

α9 = 0.9823 α10  = 0.9478 α11  = 0.9425 

α12  = 0.8834 α13  = 0.8223 

α14 

 = 0.8213 

α15  = 0.9224 

α16 

= 

 0.9323 α17  = 0.9769 

α18  = 0.9832 

α19 

 = 0.9324 α20  = 0.9456 

α21 

= 

 0.8786 α22  = 0.8954 α23  = 0.9324 
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α24  = 0.9767 α25  = 0.9883 α26  = 0.9546 

α27  = 0.9564 

α28 

 = 0.9534 α29  = 0.9634 

α30  = 0.8936 α31  = 0.9783 

Table 3.6  Simulation results: the value of λ[i], while k

2 

 = 0.0, k3  = 0.75, 

ψ=1.475 degree, αl  is between 0.8 to 1.0. 

λ[i] 

 simulation result ideal value 

λ[0] 

 -16.040 -16.000 

λ[1] 

 0.068 0.0                            

λ[2] 

 -0.077 0.0 

λ[3] 

 -0.188 0.0 

λ[4] 

 1.000 1.000 

λ[5] 

 -0.010 0.0 

λ[6] 

 -0.002 0.0 

λ[7] 

 0.0974 1.000 

λ[8] 

 0.002 0.0 

λ[9] 

 0.959 1.000 

3.3.3 Analysis  

(1) The Composite Image method can extend the gray level. 

From Table 3.4, it is found that the gray level range is extended when the number 

of the derived images is increased. It can be explained by Equation (3.23). Each 

pixel gray value in the Composite Image is the sum of the corresponding pixel 

values in the derived images. So when the number of derived images increases, 

the summation will increase. 

(2) The Composite Image method can make the first order of derivatives more 

precise. 
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From Equations (2.29), (2.35) , it is found that the recovered surface heavily 

depends on the first order derivative of the pixel. In the Composite Image, the first 

order derivatives in The Composite Image will be more accurate than that in the 

original image. Consider two neighboring pixels in the image, their gray values 

are 

A[i][j] 	 = 123.3 

A[i-1][j]                = 124.8 

where the gray level range is 0 to 255. 

In the single image, we get the actual first order derivative as 

first order derivative = A[i][j] - A[i-1][j] 

= 123.3 - 124.8 

= -1.5 

where the distance between two neighboring pixels is assumed to be one unit. 

Since the gray value retrieved from the A/D convert is integer, the first order 

derivative then becomes 

first order derivative = int(A[i][j]) - int(A[i- 1][j]) 

= 123 - 125 

= -2 

Obviously the quantization error is -0.5, which is the difference between the above 

two values. 

In the Composite Image, the total number of derived images, m, is 32. The 

amplifier gain ratio ai  is given by (128- 1)/128, / is from 0 to 31. Using Equation 

(3.23), 

m -1 	m -1 m -1  

G [i][j]  = ∑gl  [i][ j ]  = ∑ int Ai [i][ j ]) =  ∑ int(αl  * Ai [i][ j ]) (3.23)  
l=0 	l=0 l=0  
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we will be able to get these two gray values G[i-1][j], G[i][j] in the Composite 

Image, which are corresponding to A[i][j-1], A[i][j] in the single image 

G[i][j] 
	

= 3466 

G[i-1][j] 
	

= 3508 

The first order derivative in the Composite Image is 

first order derivative = G[i][j] - G[i-1][j] 

= 3466 - 3508 

= -42 

The gray value is expanded by almost 28 times. If the gray value is 

transferred to the original gray value range, the first order derivative is -1.48 (-42 

divide 28.12), which is very close to -1.5. So the first order derivative in the 

Composite Image will be more close to the actual value. Table 3.7 has shown why 

the first order derivative will be more close to the real value. The first column in 

Table 3.7 contains the indices. The second column contains the values of at. The 

third and fourth contain quantization values for A[i][j]*αl  and A[i-1][j]*αl , 

respectively. These are the quantization gray values in the /th derived image. The 

fifth is the first order derivative in /th derived image, which is the difference 

between the item in the third and fourth columns, respectively. The sixth column 

is the quantization error. From Table 3.7, it is found that in each derived image 

the first order of derivative sometimes will be bigger than the actual value of the 

first order of derivative and causes the positive quantization error. Sometimes it is 

smaller than the actual value of first order derivative and causes negative error. 

The positive error and negative error will counteract each other, and the first order 

of derivative will tend to approach the actual value. For example when / index is 

6, the value of αl  is 0.953. By equation (3.23), two pixels float gray values are 

117.50 and 118.93, respectively. The quantization values are 118 and 119. So the 

first order of derivative with float value is -1.43, and the first order of derivative 
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with quantization value is -1.00. The quantization error is -0.43. When index / is 

5, the value of αl  is 0.961. The two pixels float gray values are 118.49 and 119.93, 

respectively. The quantization values are 118 and 120. So the first order of 

derivative with float value is -1.44, and the first order of derivative with 

quantization value is -2.00. The quantization error is 0.56. If we add these two 

derived images, the quantization error is 0.13. It is very close to zero. That is why 

the Composite Images will have a high precision in first order derivative. 

Table 3.8 has shown the first order of derivative for another pair of pixels, 

which gray values are 124.4 and 124.3. Although the difference between two 

pixels gray values are very small. However the similar result has been achieved, 

the first order derivatives in the Composite Image will be more precise than that in 

the original image. The actual first order derivative in the original image is -0.1 

(124.4 - 124.3). The first order derivative for the quantization value is 0.0 (124 -

124). So the quantization error is 0.1, which is equal to the actual value minus the 

actual value. The gray values in the Composite Image are 3500 and 3497 

respectively. So the first derivative is 3, and transferred to original gray value 

range, the first derivative is equal to 0.11(3.0 divide 28.12). 

Up to now we know by using the Composite Image one can extend the range 

of gray level, and enhance the precision of the first order derivatives. 
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Table 3.7  The first order derivatives for A[i-1][j] = 123.3, A[i][j] = 124.8. 

index αl  int(α1*A[i-1][j]) int(α1*A[i][j]) first order 
derivative 

quantiza- 
tion error 

0 1.000 123 125 -2.000 0.500 
1 0.992 122 124 -2.000 0.512 
2 0.984 121 123 -2.000 0.523 
3 0.977 121 122 -2.000 0.535 
4 0.969 120 121 -2.000 0.547 
5 0.961 119 120 -2.000 0.559 
6 0.953  118 119 -1.000 -0.430 
7 0.945 117 118  -1.000  -0.418 
8 0.938 116 117 -1.000 -0.406 
9 0.930 115 116 -1.000 -0.395 
10 0.922 114 115 -1.000 -0.383 
11 0.914 113 114 -1.000 -0.371 
12 0.906 112 113 -1.000 -0.359 
13 0.898 111 112 -1.000 -0.348 
14 0.891 110 111 -1.000 -0.336 
15 0.883 109 110 -1.000 -0.324 
16 0.875 108 109 -1.000 -0.312 
17 0.867 107 108 -1.000 -0.301 
18 0.859 106 107 -1.000 -0.289 
19 0.852 105 106 -1.000 -0.277 
20 0.844 104 105  -1.000 -0.266 
21 0.836 103 100 -1.000 -0.254 
22 0.828 102 103 -1.000 -0.242 
23 0.820 101 102 -1.000 -0.230 
24 0.812 100 101 -1.000 -0.219 
25 0.805 99 100 -1.000  -0.207 
26 0.797 98 99 -1.000 -0.195 
27 0.789 97 98 -1.000  -0.184 
28 0.781 96 98 -2.000 0.828 
29 0.773 95 97 -2.000 0.840 
30 0.766 94 96  -2.000 0.852 
31 0.758 93 95 -2.000 0.863 

total 	28.12 28.12 3466 3508 -42 -0.185 
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Table 3.8 The first order derivatives for A[i-1][j] = 124.4, A[i][j] = 124.3. 

index αl  int(α1*A[i-1][j]) int(α1*A[i][j]) first order 
derivative 

quantiza-
tion error 

0 1.000 124          124 0.000  0.100 

1 0.992 123 123 0.000 0.099 

2 0.984 122 122 0.000  0.098 

3 0.977 121 121 0.000 	___ 0.098 

4 0.969 121 
t-  

120 1.000 -0.903 

5 0.961 120 119 _ 	1.000 -0.904 
6 . 0.953 119 118 	_. 1.000 -0.905 

7 _ 0.945 118 118 0.000 0.095 
8 0.938 117 117 0.000 0.094 _ 
9 0.930  116 116 0.000 0.093 
10 0.922 115 115 _ 0.000 0.092 
11 0.914 114 114 0.000  0.091 
12 0.906 113  113 0.000 0.091 
13 _ 0.898  112 112 0.000  0.090 
14 0.891 111 111 0.000 0.089 __ 
15 0.883 110 110 0.000 0.088 
16 0.875 109 109 0.000 0.087 
17 0.867 108 108 0.000 0.087 
18 0.859  107 107 0.000 0.086 
19 0.852 106 106 0.000 0.085 
20 0.844 105 105  0.000 0.084 
21 0.836 104 	_ 100 0.000 0.084 
22  0.828 103 103 0.000 0.083 
23 0.820 102 102 0.000 0.082 

_ 	24 0.812 101 101 0.000 0.081 	
. 

25 0.805 100 100 0.000 0.080 
26 0.797 99 99 0.000  0.080 
27 0.789 98 98 0.000 0.079 
28 0.781 97 97 0.000 0.078 
29 0.773 96 95 0.000 0.077 
30 0.766 95 95 0.000 0.077 
31 0.758 94 94 0.000 0.076 

total 28.12 3500 3497 3.000 0.482 



CHAPTER IV 

CONCLUSION 

In this thesis, based on the unified optical flow field, a direct method in space 

domain is used for recovering the surface structure from a pair of stereo images. 

The direct method does not need to explicitly solve the optical flow field and to 

find feature correspondence. Compared with the direct method in time domain, 

which can only estimate the planar surface, the direct method in space domain 

could recover the surface structure of an object which can be characterized by an 

Nth degree polynomial equation. 

4.1 Observation 

Gray Level Range: 	From the simulation results, it is found that the 

coefficients in polynomial equation will tend to approach the actual values, when 

the gray level range becomes wide. The reason is that the direct method to recover 

the surface structure of objects heavily depends on the precision of the first order 

derivatives. If the range of gray level is not wide enough, the neighboring pixel 

could not be distinguished by their gray values since their small difference in their 

gray values may sometimes vanish into the quantization errors. This will cause 

significant error in surface recovery. Therefore a wider gray level range is 

expected to bring about better results. As mentioned before, the Composite Image 

can extend gray value range, and the simulation results agree with this expectation. 

Robustness of Composite Image: 	In total, 100,000 groups of αl, values are 

randomly created by using certain computer software. In each group of αl  values 

there are 32 random numbers, ranging from 0.8 to 1.00. These 100,000 groups of 
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αl are used for constructing 100,000 pairs of composite stereo images. After we 

use these 100,000 pairs of composite stereo images to recover the surface 

structures, the maximum and minimum values for λ[0], λ[4], λ[7], λ[9], which are 

coefficients of constant, X2, Y2, Z2  monomials in the 2nd degree of polynomial 

equation, are obtained. They are listed in Table 4.1. 

Table 4.1 Maximum and minimum values for λ[0], λ[4], λ[7], λ[9] 

λ,[0] λ[4] λ[7] λ[9] 

maximum value -16.230 1.000  0.9995 0.9981 

minimum value -16.023 1.000 0.9625 0.9316 

actual value -16.000 1.000  1.000 1.000 

The simulation results in Table 4.1 are quite good. Hence the Composite 

Image method could be considered robust. 

4.2 Accomplishment 

Simulation results have shown that in order to obtain the results which are close to 

actual value the gray level range needs to be wider than 2048. However the gray 

level in real images taken by general CCD camera systems (which are 8-bit in 

quantization resolution.) usually ranges from 0 to 255. Therefore, the gray level 

range in the real images is too narrow to use this direct method to recover the 

surface structure. In contrast to single pair of images, the gray level range is 

extended with the Composite Image, it makes it possible to build a system that is 

described in this thesis (shown in Figure 3.3), with the current technology in the 

solid state industry to recover surface structures from image sequences. 
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