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ABSTRACT 

Forward Kinematics Solution of a Special 
Class of General Stewart Platforms 

by 
Jian Li 

A Stewart platform is a fully parallel, six-degree-of-freedom manipulator 

mechanism. A platform manipulator has a fixed platform acting as base, a mobile 

platform on which end-effector is mounted, and in-parallel kinematics chains 

(legs) between the two platforms. Although some direct position kinematics 

solutions for Stewart platforms of simplified geometry have been represented, to 

the best of our knowledge, no close-form direct kinematics solution for the general 

Stewart platform is available yet. 

A common feature of six-degree-of-freedom Stewart platform of simplified 

geometry is the use of pairs of concentric ball joints. Due to inevitable 

manufacturing and assembly errors, practically there are no perfect concentric ball 

joints. This thesis presents an efficient method for solving the forward kinematics 

of this class of general Stewart platforms. The approach described in this thesis 

first finds an initial solution by approximating the original platform with a 

platform of simplified geometry, then improve the solution with a Jacobian based 

method. A numerical example is used to illustrate the method. 
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CHAPTER 1 

INTRODUCTION 

Industrial robots have traditionally been used as general-purpose positioning 

devices and are anthro-promotion open-chain mechanism that generally has the 

links connected end to end or serially. A radical departure from conventional robot 

design is to connect the links side by side, in parallel. The advantage of a parallel 

linkage is the increased rigidity because it doesn't have cantilever-link structure 

and high force/torque capacity as the actuators are arranged in parallel and near 

the base. Therefore they are good candidate as high accuracy positioning devices 

under high loads. The most notable configuration of this kind is a six-degree-of-

freedom Stewart platform (Figure 1), which has been originally designed as an 

aircraft simulator, and later as a robot wrist. A manipulator consists of a base 

platform, six extensible links, and a moving platform on which end-effector is 

mounted. The moving platform is connected to the links by the means of spherical 

joints, the other ends of the links are connected to the base platform through 

universal joints. Sometime spherical joints are used at both ends of a link. By 

altering the lengths of the six limbs, the moving platform can be manipulated with 

respect to the base platform through all six degree of freedom. 

Manipulator kinematics is concerned with distances and angles and 

transitional and angular velocities and accelerations, but not with forces, masses, 

torques and moments of inertial that are the province of dynamics. The 

fundamental problem of robot kinematics deal with mapping between vectors in 

two spaces: joint space θ  and Cartesian space x, where θ  represents the joints of a 

robot manipulator and x  represent the position and orientation of the robot end 

effector. The mapping from joint space to Cartesian is referred to as "direct 
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Figure 1. Stewart platform of general geometry 

Waldron and Hunt showed that kinematics behavior of parallel manipulator 

has many dual characteristics to that of serial manipulators. Several examples of 

such duality were discussed in (4). While inverse kinematics of a serial 

manipulator is much more difficult than its direct kinematics, the opposite is true 

for a parallel manipulator. The direct kinematics of Stewart platform can be stated 

as follow: given the values of the six lengths of the legs (AG, BH, CI, DJ, EK and 

FL in Figure 1), compute the position and orientation of the moving platform. Due 

to the difficult in solving direct kinematics of Stewart platform with general 

geometry, the direct kinematics of simple geometry was studied first. The most 

simplified form of the mechanism contains six legs which meet in a pair-wise 

fashion at three points in both the top and base platform. This form of the 

mechanism is called the "3-3 Stewart Platform". Its direct kinematics was solved 

by Griffis and Duffffy. Significant progress has been now made in solving direct 

2  



3  

mechanism is called the "3-3 Stewart Platform". Its direct kinematics was solved 

by Griffis and Duffffy. Significant progress has been now made in solving direct 

kinematics problem of platform manipulators, as evidenced by the large number of 

published reports. Closed-form solutions, expressed as single-variable 

polynomials, have been obtained for various special platform configurations, such 

as "3-6", "4-4", "4-5", "4-6" and "5-5" platforms (5-10), where the numbers show 

the configuration of the platforms. For general "6-6" platforms (Figure 1), 

Raghavan (11) concluded that there are forty solutions to the direct kinematics, 

based on a numerical technique known as polynomial continuation. With a mono-

dimensional-search algorithm, Innocenti and Parenti-Castelli (12) developed a 

numerical approach to find all the real solutions to the direct kinematics of the 

most general Stewart platforms, based on their position analysis of "5-5". To the 

best of our knowledge, no closed-form direct kinematics solution for the general 

Stewart platform is available yet. 

For all the simplified Stewart platforms, at least one concentric ball joint is 

used. Due to inevitable manufacturing and assembly errors, practically there is no 

perfect concentric ball joint between cointersecting connecting legs. Therefore the 

actual platforms are all of general geometry. Since it is not possible to solve this 

direct kinematics in closed form, a new method needs to be developed. In the 

thesis, we present a method for a class of general Stewart platforms whose moving 

plate has at least one of very closely placed ball joints (Figure 2) either purposely 

to alleviate design difficulty or as the result of manufacturing and assembly errors. 

Our approach has three major steps. First, the pair of closely placed joints are 

approximated by concentric joint, and the position and the orientation of the 

coordinate frame fixed to the moving plate is obtained for the resulted 

"Simplified" platform, using the closed-form solution is available, which will 

bring us quickly to a solution close to the exact solution of the original 
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lengths is then mapped to obtain the position and orientation error of the moving 

plate. Finally, a correction to the approximation is made to improve the solution. 

To illustrate our new method, we implemented our approach with a near "3-

-6" Stewart platform whose six joints of moving platform from three pairs of 

closely placed joins shown in Figure 3. In Figure 3, points A, B, C, D, E and F 

reprsent the three concentric joints of the approximate platform. For a given set of 

leg lengths, the position and orientation of the moving platform is approximated 

using the triangle RST. The resulted errors in leg lengths are then used to improve 

the solution with a Jacobian based method. 

The results using Jacobian method is listed at the end of the thesis. The data 

show the better tendency to modify the approximate leg lengths using jocobian 

method. It also shows the better results of the Jacobian method when just using a 

fraction of the error. 

Figure 2. Equivalent form of general Stewart platform 



Figure 3. The approximate configuration of "6-6" moving platform 
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CHAPTER 2 

TRIANGLE APPROXIMATION 

2.1 General Description of the Approximation 

In this chapter, the equations for the direct position kinematics of the "3-6" 

Stewart platform has been presented, and the solution has been show to be 

reducible to a 16th-order polynomial equation in tan(ϕr/2). This result implies that 

for a given set of link lengths, the Stewart platform can be assembled in at almost 

16 different configurations. 

2.2 Equations for Satisfying the Geometry Conditions 

First we simplify this problem, assuming that the joint center of pairs of adjacent 

limbs of the upper platform is coincident. (Figure 4) 

Figure 4. The structure of "3-6" platform 
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It  is shown that the direct kinematics equation for this form of Stewart 

platform can be put into a form that is similar to those of the triple arm 

mechanism. Then, we think it without moving platform for the moment. In the 

triangle A1RA2, because R is the joint of two limbs RA1  and RA2, according to the 

geometry of the structure, R must be located either on a sphere with its center at 

A1  and radius equal to L1  or on a sphere with its center at A2  and radius equal to 

L2. Thus the locus of R will be at the intersection of the two spheres, which is a 

circle with its center located on the line joining the centers of the two spheres. 

Thus, the triangular structure A1RA2  can be replaced by a single link with a 

revolute joint at one end and a spherical joint at the other end, which is passing 

through R and perpendicular to the line A1A2. The analyses are the same to those 

of B1SB2  and C1TC2. We use OrR, OsS, OsT standing for the triangular A1RA2, 

B1 SB2  and C1TC2, see Figure 5.  

Figure 5. Base and the links with the moving member  
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We place the fixed coordinate system x-y plane in the base platform, the 

position vector of R,S,T are determined as following: 

Pr  = Por  + mr • Wr  

Ps  = Pos  + ms  • Ws 	 (2.1) 

Pt  = Pot  + mt  • Wt  

Still, we should add some constrained equation for R, S, T's moving. 

|Pr - Ps|2 = b12  

|Ps - Pt|2 = b22 	(2.2) 

|Pt - Pr|2 = b32  

Let us use the notation to express the limb length as the figure before. 

t2  = A3  - t1  

mr  = (L12  - r12)1/2  

ms  = (L6 2  - s12 )1/2  

mt  = (L 42  - t12)1/2  

Next 



POr = PA1 + A1Or 

POs = P131 + B1Os 

POt = PC1 + C1Ot 

At last, Wr = cosβrcosϕri + sinβrcosϕrj + sinϕrk Ws = cosβscosϕsi + sinβscosϕs j + sinϕsk Wt = cosβtcosϕti + sinβtcosϕtj + sinϕtk 
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or 

Where (x, y) = (R, A), (S, B) or (T, C). 

2.3 Solve the Polynomial Equation  

So far, we have all the kinematics equations to solving our problem. 



Figure 6. Description of vector 
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Figure 7.  Description of angle  
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Substitute of the expressions for Pr and Ps, Ps and Pt, Pr  and Pt  from (2.1) into 

(2.2), we simplify them and get the following equations. 

D(1) • cosϕr + D(2) • cosϕs + D(3) • cosϕr • cosϕs + D(4) • sinϕr • sinϕs+ D(5) 

E(1) • cosϕs + E(2) • cosϕt + E(3) • cosϕt • cosϕs + E(4)• sinϕt • sinϕs + E(5) 

F(1) • cosϕt + F(2 ) • cosϕr + F(3) • cosϕt • cosϕr + F(4) • sinϕt • sinϕr + F(5) 

In between: 

D(1) = 2 • mr • cosβr{(Por)x - (Pos)x} + 2 • mr • sinβr • {(Por)Y - (Pos)Y} 

D(2) = -2 • ms • cosβs{(Por)x - (Pos)x} - 2 • ms • sinβs • {(Por)Y  - (Pos)Y} 

D(3) = -2 • mr • ms • cos(βr - β s) 

D(4) = -2 • mr • ms 

D(5) = {(Por)x — (Pos)x}2  + {(Por)Y  — (Pos)Y}2  + mr2  + ms2  — b12  

E(1) = 2 • ms • cos

βs{(Pos)x - (Pot)x} + 2 • ms • sinβs • {(Pos)Y - (Pot)Y} 

E(2) = -2 • mt • cosβt{(Pos)x - (Pot)x} - 2 • mt • sinβ t • {(Pos)Y - (Pot)Y} 

E(3) = -2 • ms • mt • cos(βs - βt) 
E(4) = -2 • ms • mt 

E(5) = {(Pos)x - (Pot)x}2  +{(Pos)Y - (Pot)Y}2  + ms2  + mt2  - b22  

F(1) = 2 •  mt • cosβt{(Pot)x - (Por)x} + 2 • mt • sinβ t • {(Pot)Y - (Por)Y} 

F(2) = -2 •  mr • cosβr{(Pot)x - (Por)x} - 2 • mr • sinβ r • {(Pot)Y - (Por)Y} 

F(3) = -2 • mt • mr • cos(βt - βr) 

F(4) = -2 • mt • mr 

F(5) = {(Pot)x - (Por)x}2  + {(Pot)Y  - (Por)Y}2  + mt2  + mr2  - b32  
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Let (i = R,S,T) 

Solve D, E, F simultaneously to determine the possible values of ϕr, ϕs, ϕt. 

We get: 

[G(1) • Xr2  + G(2)] • Xs 2  + [G(3) • Xr )] • Xs  + [G(4) • Xr 2  + G(5)] = 0 

[H(1) • Xt2  + H(2)] • Xs 2  + [H(3) • Xr)] • Xs + [H(4) • Xt2 + H(5)] = 0 

[I(1) • Xr2  + I(2)] • Xt 2  + [I(3) • Xr )] • Xt  + [I(4) • Xr 2  + I(5)] = 0 

G(1) = —D(1) — D(2) + D(3) + D(5) 

G(2) = D(1) — D(3) — D(3) + D(5) 

G(3) = 4 • D(4) 

G(4) = —D(1)+ D(2)—D(3)+ D(5) 

G(5) = D(1)+ D(2)+ D(3)+ D(5) 

H(1) = —E(1) — E(2) + E(3) + E(5) 

H(2) = E(1) — E(3) — E(3)+ E(5) 

H(3) = 4 • E(4) 

H(4) = —E(1)+ E(2)— E(3)+ E(5) 

H(5) = E(1) + E(2)+ E(3)+ E(5) 
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I(1) = —F(1)—F(2)+ F(3)+ F(5) 

I(2) = F(1)—F(3)—F(3)+F(5) 

I(3) = 4 • F(4) 

I(4) = -F(1)+ F(2) - F(3) + F(5) 

I(5) = F(1) + F(2)+ F(3) + F(5) 

Using Bezout's method (13), we eliminate Xs from equations of G(i) and H(i) 

(i=1, 	5) to get: 

(2.3) 

We simplify equation (2.3) as: 

J1 • Xt4 + J2 • Xt3 + J3 • Xt2 + J4 • X • J5 = 0 

J1  = K1  • Xr4  + K2 • Xr2  +K3  

J2  = K4 • Xr3  + K5  • Xr 

J3  = K6 • Xr4  + K7 • Xr2  + K8  

J4  = K9  • Xr3  + K10  • Xr 

J5  = K11 • Xr4  + K12 • Xr2  + K13  
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K1, K2, ...., K13  are constants computer from about G's and H's. We can rewrite 
the equation about I's as: 

M1  = I1 • Xr2 + I4  

M2  = I3 • Xr 

M3 = I2  • Xr2  + I5  

Using the same method of Bezout's, eliminate Xt from J's and M's equation: 

(2.4) 

Then we get the equation as following: 

A(9) • Xr16 + A(8) • Xr14 + A(7) • Xr12 + A(6)•Xr10 + A(5)•Xr8 

 
(2.5) 

+ A(4) • Xr6  + A(3) • Xr4  + A(2) • Xr2  + A(1) =0 

The coefficients A(1), A(2), ......., A(9) are computer from K1, K2, ........, K10, I1, I2, ........, I6
. 

We evaluate the determinations in equation (2.3) and (2.4) with 

"MATHEMATICA" in symbolic forms. The symbolic solution is then used in our 

program to get the coefficient of equation (2.5). 

The polynomial equation (2.5) have some complex roots, we just disregard 

those conjugate complex results of Xr's. 

As we described before 
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Substitute above values into F's, E's equation, we can change the equation form 

into as below: 
P•cosϕ + Q•sinϕ +R =0 

It is easy to solve this equation as 

Now we get the results of ϕs, ϕt consequently. 

2.4 Some Comments on Solving "3-6" Platform 

So far, the three pairs of closely joints are approximated by three pairs of 

concentric joints. The position and the orientation of the coordinate frame. The 

position fixed to the moving plate can be obtained for the resulted of "3-6" 

platform, using the close-form solution discussed above. 

After we find all the real solutions of "3-6" platform, we can substitute them 

into the equation (2.1) to get the final positions of R, S and T. Except those of the 

values not satisfying the constrained equation (2.2). The approximated position 

and orientation of the moving platform is now obtained. 

2.5 About the Computer Program 

The program consists of main and sub-programs. In main program, we solve the 

simple parameter such as D's, E's, F's and G's, H's, I's, and calculate the 
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coefficients of the polynomial from the symbolic equations obtained with " 

MATHEMATICA." 

The sub-programs include solving the polynomial equation and checking the 

computing angle which quadrant is located, check the value of the angle whether it 

satisfies the constrained equation (2.2). 

In order to increase the precision, "Double Precision" is used for all real 

number. 

Because of the existence of complex numbers, we use FORTRAN language 

to implement our method. 

2.6 Computer Diagram 

Following is the computer program diagram we used to solve the moving position 

of "3-6" platform. The inputs to the program include the side lengths of triangle, 

and the coordinates of joints on the base platform. Through the procedure 

described in the chapter, we get the polynomial equation of degree sixteen, using 

the numerical method to get the results of the equation and at last reach the 

position of the moving platform. 
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CHAPTER 3 

IMPROVEMENT OF APPROXIMATE SOLUTION 

3.1 Jacobian Method 

For the description of the relative configuration of the two plates, a base 

coordinates frame B(O, x, y, z ) and a moving frame M(P, x', y', z') are defined on 

the two plates respectively, as shown in Figure 8. The origins of the two frames 

are located at the centers of the corresponding plates. With this definition, the 

configuration of the moving plate with respect to the base plate can be described 

by a vector P  directed to point P from O, and a rotation matrix T representing the 

orientation of the moving frame M with respect to the base frame B. The 

geometries of the two plates can be described by vector ui and ri here i=1, 2, ...., 6, 

as indicated in figure 1. Clearly, each of the two vectors sets {ui} and {ri} is 

coplanar. Moreover, vector ui has constant components in frame B, while the 

components of vector ri are orientation-dependent in B. 

Figure 8. Illustration of position vector 
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Where ri' is the representation of vector ri in the moving plate. With the above 

definitions, it is a simple matter to derive basic kinematics constraints of the 

manipulator, namely, 

( P+ri -ui )T ( P+ri -ui ) = qi 	(3.1) 

Here qi denotes the coordinate representing the leg length of the ith leg. 

Furthermore, to treat the orientation and translation in the same frame, a 6-D twist 

vector of the end-effector is defined as: 

Upon differentiating the constraint equations with respect to time, we get the 

desired relation between the end-effector twist and the joint velocity, the form is 

At = Bq 

Where 

We define the Jacobian matrix of the manipulators under study as the mapping 

from the end-effector twist vector to the joint velocity vector, namely, 

Jt = q 

J = B-1A 

Since the exact solution to the position and orientation of the moving frame is 

unknown, we use the closed-form solution of "3-6" that is easily to find "6-6" 



(3.4) 

20  

Since the exact solution to the position and orientation of the moving frame is 

unknown, we use the closed-form solution of "3-6" that is easily to find "6-6" 

platform as the exact leg lengths (figure 2). Then use three pairs of concentric 

joints to approximate. For a given set of leg lengths Li (i = 1, ....., 6), represented 

by a rotation matrix Ra and position vector Pa in the reference frame {B} attached 

to the base frame. 

Let us express the relation between the exact solution and the approximate 

solution as 

R = ∆ Ra and P  = Pa  + ∆ P 	

		

(3.3) 

Where 

and ∆ is a differential displacement: 

∆P  = [δx,δy,δz] 	 (3.5) 

The error for the ith legs is 

∆Li = Li - La 	(3.6) 

By defining two 6 x 1 vectors 

∆t = [δθx δθy δθ z δx δ y δz]T  
And 

∆L=[∆L1  ∆L 2  ∆L 3  ∆L 4  ∆L5  ∆L 6]T  

J • ∆t = ∆L 	(3.7) 
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First, from Eqs.(3.1), (3.6) and (3.3) and the approximate solution 

represented by Ra and Pa, we can evaluate the error in leg lengths ∆L and matrix 

J. Second, ∆t  is solved from Eq.(3.7). In this step, we find if the magnitude of 

vector ∆L is not small enough, then we should divided one step of correction into 

two or more. Third, correction in the form of matrix ∆  and the vector ∆p are 

calculated from Eqs (3.4), (3.5). Finally, the improved solution is computed from 

Eq. (3.2). 

3.2 The Idea of Solving the Problem 

As described before, general Stewart platform with moving plate has three pairs of 

very closely placed ball joints, either purposely to alleviate design difficulty or as 

the result of manufacturing and assembly errors. The forward kinematics of this 

class of Stewart platform is much complex than that of the platform with 

simplified geometry, which usually include three steps. 

(1) The three pairs of closely placed joints are approximated by three pairs of 

concentric joints, and the position and the orientation of the coordinate frame fixed 

to the moving plate is obtained for the resulted "3-6" platform, using the closed-

form solution (first part). 

(2) The actual leg lengths corresponding to this approximation are now calculated 

and compared with the given leg lengths. The difference in the leg lengths mapped 

to obtain the position and the orientation error of the moving plate. 

(3) Correction to the approximate solution is made to obtain new solution. 

First step: 

Assuming a set of leg lengths, with base and moving platform (six points) in 

Figure 1 which represented by the solid lines. There also exist three points on the 

moving platform such that, when these three points are used as three pairs of 

concentric ball joints, they should be the same corresponding leg lengths with the 
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concentric ball joints, they should be the same corresponding leg lengths with the 

same position and orientation of a frame {M} attached to the moving plate, but 

since there is no prior knowledge of the position and orientation of the moving 

plate, it is impossible to locate these three points on the moving plate, furthermore, 

these three points could be anywhere if they satisfy the moving platform (six 

points) position and orientation. However, since each pair of joints of two points is 

closely placed together in the platforms under our discus, they can be 

approximated as three pairs of concentric joints. Solution based on the 

approximate "3-6" platform will be close to the exact solution and is therefore a 

good initial data for further improvement. 

Since the exact solution to the position and orientation of the moving plate is 

unknown, the error of the approximation can only be measured in terms of the leg 

lengths. 

Following are the procedure to solve this problem. For a given set of leg 

lengths Li (i = 1,2, ...., 6), we use forward kinematics ("3-6") method to find the 

mid-points of each pair of joint respectively, thus alternatively, we can get this 

each pair of joint with simple mathematical calculation. That is to say, we use the 

triangle approximation for obtaining an initial solution of leg lengths for known 

parameter. Since the exact solution to the position and orientation of the moving 

frame is unknown only the error of the leg lengths can be measured. The detail of 

the calculation is described as following. 

3.3 The Way to Solve the Problem 

For known the leg lengths Li (i = 1,2,...6), the moving platform's distances, the 

coordination of the base platform, we use the program described in chapter one 

and get the positions' results of R, T, S (the points of triangle of moving platform). 

From these three points, we calculate corresponding relative six points that have 
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From these three points, we calculate corresponding relative six points that have 

the same position and orientation frame attached to the moving platform of these 

three points. Now we use six points' leg lengths Lei (calculated by using Te)and Te 

(same as the above three points) as a reference. Let Re, Pe, represent an exact 

solution's (six points) rotation matrix and original position. Now choose the 

middle point of each pair of closely joints of these six points as the approximate 

triangle. Using the same "3-6" platform program to get the R', T', S' when 

knowing leg lengths (now are equal to the six points) and distances of the moving 

platform, also can get the corresponding rotate matrix Ta and original matrix Pa. 

Then use the same way to calculate the corresponding relative six points (we 

choose the same six points as before). Then calculate the approximate leg lengths 

according to the Ta and Lai. 

Now let us express the relation between the exact solution and the 

approximate solution as 

R = ∆ • Ra 
and 

P = Pa + ∆P 

Where ∆  is a differential rotation matrix: 

and ∆P is a differential displacement: 

∆P  =[δx,δy,δz] 
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With some mathematical manipulation to equation, we get the following 

relation by neglecting terms that contain product of δθx, δθy, δθz, δ x, δ y, δ z, we 

get the equation: 

J•∆t=∆L 

At =[δθx δθy δθ z δx δ y δz] T  

And 

∆L = [∆L1  ∆L 2  ∆L 3  ∆L 4  ∆L 5  ∆L6]T  

For J ∆t = ∆ L, knowing J matrix and ∆L, we can get ∆ t directly and that provides 

a way to estimate how the initial approximation should be connected. Following is 

how to get improving solution for correcting. 

When we get ∆ from above procedure, the improved solution then should be 

computed. 

The procedure may be repeated if necessary to better the solutions. 

3.4 The Computer Program Diagram 
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CHAPTER 4 

NUMERICAL EXAMPLE 

4.1 The Geometry and Dimension of the "6-6" Platform 

The "6-6" platform (Figure 9) consists of the base platform (Figure 10) and the 

moving platform (Figure 11), also six extensible link lengths with spherical or 

universal joints at both ends of the link. 

Figure 9. Description of "6-6" platform 



Figure 10. The geometry relation about the base platform 

Figure 11. The geometry relation about the moving platform 
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When we use "3-6" platform to find the initial solution (or the exact 

solution) of Te and Le, its dimension and geometry is following (Figure 3 and 9). 

The initial data include leg lengths Li: 

L1=5.0 	L2=4.5 	L3=5.0 	L4=5.5 	L5=5.5 	L6=5.7 

The distance of the moving platform: 

RT=2.5 	TS=2.5 	RS=2.5 

The position of A, B, C, D,E, F in moving platform's coordinate: 

Suppose we give AR=d=0.001 

F1= -d/2 	F2= -2.5•sin(60)• 2/3+d • sin(60) 	 F3=0.0 

E1=d/2 	E2=F2 	 E3=0.0 

D1=2.5/2 - d • cos(60) 	D2=1/3 • 2.5•sin(60)-d • sin(60) 

	

D3=0.0 

C1=2.5/2 - d 	 C2=2.5/6sin(60) 	 C3=0.0 B1=C1 	B2=C2 	B3=0.0 

A1=-D1 	 A2=D2 	 A3=0.0 

The distance of the triangle of R'T'S': 

R'T'=2.4958 	 T'S'=2.4958 	 R'S'=2.4958 

The dimension of base platform are: 

PA1(-2.9, -0.9, 0.0) 	 PA2(-1.2, 3.0, 0.0) 

PB1(1.3, -2.3, 0.0) 	 PB2(-1.2, -3.7, 0.0) 

PC1(2.5, 4.1, 0.0) 	 PC2(3.2, 1.0, 0.0) 

4.2 The Results 

Let suppose 

∆L = La - Le 
 

∆Lj = Lj - Le  

∆Lj1 = Lj1 - Le  
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∆Lj2  = Lj2  - Le  

For the first result of polynomial equation: 

ϕr = 97.98 

ϕs = 51.06 

ϕt = 56.67 

 
Le 4.713 5.422 5.627 6.731 5.509 5.682 

La 4.709 5.433 5.609 6.748 5.536 5.719 

Lj 4.713 5.429 5.574 6.716 5.504 5.676 

∆L -0.004 0.011 -0.018 0.017 0.027 0.037 ∆Lj 

 0.000 0.007 -0.053 -0.015 -0.005 
 

-0.006 

Le 4.713 5.422 5.627 6.731 5.509 5.682 

La 4.709 5.433 5.609 6.748 5.536 5.719 

Lj1  4.709 5.434 5.560 6.705 5.488 5.660 

Lj2  4.711 5.431 5.592 6.733 5.521  5.698 

∆L -0.004 0.011 -0.018 0.017 0.027 0.037 

∆Lj1  0.000 0.012 -0.067 -0.026 -0.021 -0.022 

∆Lj2  -0.002 0.009 -0.035 0.002 
-0.012 

0.016 

The second result of polynomial equation 

ϕr = 101.02 

ϕs = 28.40 

ϕt  = 54.91 
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Le  5.186 5.612 5.531 6.629 5.522 5.6751 

La  5.179 5.623 5.515 6.645 5.564 5.695 

Lj  5.223 5.588 5.516 6.621 5.569 5.680 

∆L -0.007 0.011 -0.016 0.016 0.044 0.020 

∆Lj  0.037 -0.024 -0.015 -0.008 0.047 0.020 

Le  5.186 5.612 5.531 6.629 5.522 5.675 

La  5.179 5.623 5.515 6.645 5.564 5.695 

Lj1  5.206 5.623 5.505 6.621 5.568 5.694 

Lj2  5.249 5.632 5.524 6.612 5.575 5.732 

∆L -0.007 0.011 -0.016 0.016 0.042 0.020 

∆Lj1  0.020 0.011 -0.026 -0.008 0.046  0.001 

∆L j2  0.070 0.020 -0.007 -0.033 0.053 0.057 

For the third results of the polynomial equation: 

ϕr = 103.92 

ϕs = 38.35 

ϕt = 18.23 

Le  4.990 4.506 4.986 5.509 6.691 6.247 

La  4.991 4.517 4.966 5.531 6.264 6.023 

Lj  4.888 4.487 4.900 5.519 6.115 5.900 

∆L 0.001 0.011 -0.020 0.022 -0.427 -0.224 

∆Lj  -0.102 -0.019 -0.086 0.010 -0.576  -0.347 
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Le  4.990 4.506 4.986 5.509 6.691 6.247 

La  4.991 4.517 4.966 5.531 6.264 6.023 

Lj1  4.941 4.502 4.924 5.516  6.184 5.952 

Lj2  4.802 4.491 4.830 5.484 5.994 5.788 

∆L 0.001 0.011 -0.020 0.022 -0.427 0.224 

∆L j1  -0.049 -0.004 -0.062 0.007 -0.507 0.290 

∆Lj2  -0.188 -0.015 -0.156 -0.025 
 

-0.697 -0.459 

For the forth results of polynomial equation 

ϕr = 56.59 

ϕs = 20.88 

ϕt  = 48.73 

Le  5.106 5.345 6.285 6.856 5.510 5.698 

La  5.093 5.337 6.283 6.847 6.302 6.824 

Lj  5.124 5.428 6.283 6.778 6.313 6.875 

∆L -0.013  -0.008 -0.002 -0.009 0.792 0.126 

∆Lj  0.018  0.083  -0.002 -0.078 0.803 0.177 

Le  5.106 5.345 6.285 6.856 5.510 5.698 
 

La  5.093 5.337 6.283 6.847 6.302 5.824 

Lj1  5.125 5.428 6.283 6.778 6.313 5.875 

Lj2  5.236  5.589 6.194 6.563 6.316 5.937 

∆L -0.013 -0.008 -0.002 -0.009 0.792 0.126 

∆Lj1  0.019 0.083 -0.002 -0.078 0.803 0.177 

∆Lj2  0.130 0.244 -0.091 -0.293 0.806 0.239 



CHAPTER 5 

CONCLUSIONS  

This thesis deals with the direct kinematics of a special class of general Stewart 

platforms, whose moving plates contains some closely placed joints. This class of 

Stewart platforms can be approximated with platform of simpler geometry so that 

closed-form solution can be found as initial solutions. A Jacobian based correction 

method is then used to improve the initial solutions. 

Since the correction with Jacobian method is based on the linear relation. It 

is sensitive to the initial approximation errors. Multi-step correction may be 

needed when the errors in the initial approximation is large. 

A numerical example for a Stewart platform that can be approximated by a 

"3-6" platform is presented. 

The effectiveness of the method developed in the thesis is supported by the 

results obtained from the numerical example. 
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APPENDIX PROGRAM FOR CALCULATION OF SPECIAL 
CLASS OF GENERAL STEWART PLATFORM 

1 C MAIN PROGRAM ( METHOD 1 ) 

2 	CALL LEG ( L, R, S, T ) 

3 	DATA 	L/5.0, 4.5, 5.0, 5.5, 5.5, 5.7/ 

4 	CALL SEL1( R, S, T, RR1, SS1, TT1 ) 

5 	CALL NEWPS ( RR1, TT1, SS1, LE, PE, RE ) 

6 	CALL DATA3 ( RR2, TT2, SS2 ) 

7 	CALL TTF ( RR2, CA, CB, CC, PE, RR ) 

8 	CALL TTF ( TT2, CA, CB, CC, PE, TT ) 

9 	CALL TTF ( SS2, CA, CB, CC, PE, SS ) 

10 	CALL DD1 ( SS, PB2, LA(5) ) 

11 	CALL DD1 ( SS, PB1, LA( 6) ) 

12 	CALL DD1 ( TT, PC2, LA(3) ) 

13 	CALL DD1 ( TT, PC1, LA(4) ) 

14 	CALL DD1 ( RR, PA1, LA(1) ) 

15 	CALL DD1 ( RR, PA2, LA(2) ) 

16 	DO 5 I = 1, 6 

17 	LA1(I) = LA(I) 

18 5 CONTINUE 

19 	ID1 = (LA1 - LE)/2.0 

20 	CALL WPS ( ID1, RE, PE, WP ) 

21 	CALL IP ( WP, C1 ) 

22 	DO 10 I=1, 3 

23 	DO 10 J=1,3 

24 	TA(I,J)=RE( I,J ) 
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25 10 CONTINUE 

26 	TA(1,4)=PE(1) 

27 	TA(2,4)=PE(2) 

28 	TA(3,4)=PE(3) 

29 	TA(4,4) = 1.0 

30 	TA(4,1)=0.0 

31 	TA(4,2)=0.0 

32 	TA(4,3)=0.0 

33 	CALL MUL(C1, TA, TAA) 

34 	PAC=PE+WP 

35 	DO 14 I=1,3 

37 	DO 14 J=1,3 

38 	RAA(I,J)=TAA(I,J) 

39 	CALL WPP ( PAC, RAA, LAA ) 

40 	ID2=LAA - LE 

41 	CALL WPS (ID2, RAA, PAC, WP2 ) 

42 	CALL IP ( WP2, C2 ) 

43 	DO 15 I=1,3 

44 	DO 15 J=1,3 

45 	TAA(I,J)=RAA(I,J) 

46 15 CONTINUE 

47 	TAA(4,1)=0.0 

48 	TAA(4,2)=0.0 

49 	TAA(4,3)=0.0 

50 	TAA(4,4)=1.0 

51 	TAA(1,4)=PAC(1) 

52 	TAA(2,4)=PAC(2) 
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53 	TAA(3,4)=PAC(3) 

54 	PAC2=PAC+WP2 

55 	CALL MUL( C2, TAA, TAA2 ) 

56 	DO 20 I=1,3 

57 	DO 20 J=1,3 

58 	RAA2(I,J)=TAA2(I,J) 

59 20 CONTINUE 

60 	CALL WPP( OAC2, RAA2, LAA2) 

61 	ID3 = LAA2 - LE 

62 	STOP 

63 	END 

1 	C MAIN PROGRAM ( METHOD 2 ) 

2 	CALL LEG ( L, R, S, T) 

3 	DATA L/5.0, 4.5, 5.0, 5.5, 5.5, 5.7/ 

4 	CALL SEL1 ( R, S, T, RR1, SS1, TT1 ) 

5 	CALL NEWPS ( RR1, TT1, SS1, LE, PE, RE ) 

6 	CALL DATA3 ( RR2, TT2, SS2 ) 

7 	CALL TTF ( RR2, CA, CB, CC, PE, RR ) 

8 	CALL TTF ( TT2, CA, CB, CC, PE, TT ) 

9 	CALL TTF ( SS2, CA, CB, CC, PE, SS ) 

10 	CALL DD1 ( SS, PB2, LA(5) ) 

11 	CALL DD1 ( SS, PB1, LA( 6) ) 

12 	CALL DD1 ( TT, PC2, LA(3) ) 

13 	CALL DD1 ( TT, PC1, LA(4) ) 

14 	CALL DD1 ( RR, PA1, LA(1) ) 

15 	CALL DD1 ( RR, PA2, LA(2) ) 
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16 	DO 5 I= 1, 6 

17 	LA1(I) = LA(I) 

18 5 CONTINUE 

19 	ID = LA1 - LE 

20 	CALL WPS ( ID , RE, PE, WP ) 

21 	CALL IP ( WP, C1 ) 

22 	DO 10 I=1, 3 

23 	DO 10 J=1,3 

24 	TA(I,J)=RE(I,J) 

25 10 CONTINUE 

26 	TA(1,4)=PE(1) 

27 	TA(2,4)=PE(2) 

28 	TA(3,4)=PE(3) 

29 	TA(4,4)=1.0 

30 	TA(4,1)=0.0 

31 	TA(4,2)=0.0 

32 	TA(4,3)=0.0 

33 	CALL MUL(C1, TA, TAA) 

34 	PAC=PE+WP 

35 	DO 14 I=1,3 

36 	DO 14 J=1,3 

37 	RAA(I,J)=TAA(I,J) 

38 14 CONTINUE 

39 	CALL WPP ( PAC, RAA, LAA ) 

40 	ID1=LAA - LE 

41 	STOP 

42 	END 
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1 	SUBROUTINE NEWPS 

2 	PE(1) = ( R(1)+S(1)+T(1))/3.0 

3 	PE(2) = ( R(2)+S(2)+T(2))/3.0 

4 	RE(3) = ( R(3)+S(3)+T(3))/3.0 

5 	L1=T(1)-R(1) 

6 	M1=T(2)-R(2) 

7 	N1 T(3)-R(3) 

8 	RE(1,1)=L1/(L12+M12+N12)1/2  

9 	RE(2,1)=M1/(L12+M12+N12)1/2  

10 	RE(2,1)=L2/(L12+M12+N12)1/2  

11 	RE(2,2)=M2/(L12+M12+N12)1/2  

12 	RE(2,3)=N2/(L12+M12+N12)1/2  

13 	RE(3,1)=L3/(L12+M12+N12)1/2  

14 	RE(3,2)=M3(L12+M12+N12)1/2  

15 	RE(3,3)=N3/(L12+M12+N12)1/2  

16 	DO 5 I=1,3 

17 	CA( I,1)=RE(I,1) 

18 	CB(I,2)=RE(I,2) 

19 	CC(I,3)=RE(I,3) 

20 RETURN 

21 	END 

1 	SUBROUTINE TF 

2 	Z(1)=PE(1)+CA(1)*X(1)+CA(2)*X(2)+CA(3)*X(3) 

3 	Z(2)=PE(2)+CB(1)*X(1)+CB(2)*X(2)+CB(3)*X(3) 
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4 	Z(3)=PE(3)+CC(1)*X(1)+CC2)*X(2)+CC(3)*X(3) 

5 	RETURN 

6 	END 

1 	SUBROUTINE LEG 

2 	P1=(1-RROOTS)**2/(1+RROOTS**2) 

3 	P2=2*RROOTS/(1+RROOTS**2) 

4 	CALL FF( F, P1, P2, Q1, Q2, Q11, Q22 ) 

5 	CALL FF( E, Q1, Q2, Z1, Z2, Z11, Z22 ) 

6 	CALL FFF (D, P1, P2, Z1, Z2, ZZ1 ) 

7 	CALL DD( P2, P1 , P ) 

8 	CALL DD( Q2, Q1, Q ) 

9 	CALL DD( Z2, Z1, Z ) 

10 	WR= P/PI*180 

11 	WT= Q/PI*180 

12 	WS=Z/PI*180 

13 	CALL DDD( POR, MR, CSR, P, PR(1), PR(2), PR(3) ) 

14 	CALL DDD( POT, MT, CST, Q, PT(1), PT(2), PT(3) ) 

15 	CALL DDD( POS, MS, CSS, Z, PS(1), PS(2), PS(3) ) 

16 RETURN 

17 	END 
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