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ABSTRACT 

A Review of Energy Storing Prosthetic Feet and 
Computer Aided Structural Optimization of a Below-knee Prosthesis. 

by 
Poonam Gope Lalwani 

Because people with physical disabilities have shown an interest in 

participation in sports, a new class of prosthetic feet known as "energy 

storing prosthetic feet" has been developed. These new developments in 

prosthetic foot design utilize energy storage and return to improve 

ambulation. This thesis reviews the design, materials, advantages and 

disadvantages of various energy storing prosthetic feet. Research studies, 

comparing gait in below-knee amputees using different prosthetic designs, 

can be applied to the design of prosthetic feet that are lighter, stronger and 

more reliable. Comparisions among these feet are reviewed in the context of 

functional capability and patient satisfaction. This study indicates a 

significant improvement in the amputees overall function with the use of 

energy storing prosthetic feet compared to the conventional feet. 

In this thesis, a model of a below-knee prosthesis is constructed and its 

response to two different loading conditions studied by finite element stress 

analysis using the Computer Aided Engineering package of IDEAS. The 

main criterion in the design of a prosthesis is a balance between minimizing 

stress and weight, for a required level of functional capability. The effect of 

different geometry, material properties and loading conditions on minimizing 

the weight of the prosthesis and on stress distribution within the prosthesis is 

determined. An optimal prosthesis with minimum weight is designed for use 

by geriatric amputees. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction to Energy Storing Prosthetic Feet 

Presently, there is an increased demand among amputees for a prostheses that 

would allow them to participate in sports. Recent developments in the design 

of energy-storing feet have enabled lower-extremity amputees to significantly 

increase and improve their ability to jog and run. New prosthetic materials 

have resulted in improvements in prosthetic durability, weight and cosmesis. 

Energy storing prosthetic feet store energy during stance and release the 

energy as body weight progresses forward, thus helping to passively propel 

the limb. Manufacturers claim that these feet increase the duration of daily 

use of the prostheses and improve overall amputee function and satisfaction. 

These feet reduce the energy consumption of gait. This is especially 

important when considering prosthetic prescription for the young athlete and 

the compromised geriatric amputee. 

Requirements for energy-storing prosthetic feet vary because of different 

physical characteristics and activity objectives of patients. The amputees age, 

body weight, activity level and the level of amputation are major 

considerations in the selection of an energy storing prostheses. Proper 

selection of a prosthetic foot allows an appropriate balance of energy storage 

and release over a wide range of walking and running speeds. Design, 

materials, alignment and suspension are all contributing factors in the success 

of an energy storing prostheses. This thesis will review the design 

philosophy, materials and applications of five different types of energy-

storing prosthetic feet that are now commercially available. 

1  
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1.2 Comparative Analysis of Energy Storing Feet 

At present, there is limited information available that describes how energy 

storing prosthetic feet perform in achieving optimal and symmetrical gait. 

Several methods have been used to evaluate and compare the advantages and 

disadvantages of different energy storing feet. Most of these comparison 

studies have focused on the extent by which amputees benefit from wearing 

different prosthetic feet, as far as load-bearing structure, metabolic cost of 

walking, aesthetics and comfort are concerned. Significant research has been 

published so far in this field and some of these comparative research studies 

will be reviewed in this thesis with respect to improvement in the amputees 

overall function and satisfaction with the prosthesis. 

1.3 Purpose of this Thesis 

In order to design and develop a model of a lower-limb prosthesis, it is very 

important to incorporate analytical tools such as mechanical Computer-Aided 

Engineering into the design process at an early stage. This allows us to 

assess the loads imposed on the musculo-skeletal system due to the use of a 

given prosthesis-amputee interface. In this study, an optimal prosthesis with 

minimum weight will be designed for use by geriatric amputees. 

A finite element model of a lower-limb prosthesis and altered variations 

of the model will be developed using the Computer Aided Engineering 

package of I-DEAS. The models will consist of shell elements of 0.5 cm 

thickness. The original finite element model will be used to investigate the 

stress distributions on the prosthesis for different prosthetic materials. 

Finite element stress analysis will be performed on the models in order to 

determine the response of the prosthesis to load during weight-bearing and 

during heel strike. 
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The objective of this study is to determine the effects of altering the 

model on the stress distribution and magnitudes within the model and on the 

weight of the model. Since the prosthesis with the minimum mass is 

considered to be the best possible design for geriatic amputees, the structural 

mass of the models will be determined to select the optimum design. The 

original design will be modified to decrease weight and improve function. A 

hollow model of the prosthesis will be constructed and its weight determined. 

Changes in the model that result in minimizing the weight of the prosthesis 

will be identified. 



CHAPTER 2 

ENERGY STORING PROSTHETIC FEET 

2.1 Introduction to Energy Storing Prosthetic Feet 

Anatomists, biomechanical engineers, and clinicians have studied the foot and 

ankle complex for centuries. Each discipline has provided its unique insight 

into the structure and function of this unit (1). The human foot is a very 

complex structure. The pair contain 52 separate bones, dozens of intrinsic 

muscles, and scores of extrinsic muscles. The feet are composed of multiple 

layers of ligaments, fascia, and muscle, and contain numerous interrelated 

articulations (2). 

Hundreds of times a day, with every step we take, we crash down upon 

our heel with a force that often reaches several times our total weight. The 

foot sustains these impacts and reduces potential injury to the body by 

deforming upon striking the ground. If the foot were extremely rigid, the 

ground reaction force would be of great magnitude and short duration. The 

foot, however, is restrained by flexible tendons, and its many bones are held 

together by flexible ligaments. 

As the foot deforms, the ligaments and tendons stretch to absorb much of 

the shock, and the impulse is a more sustained force of smaller amplitude, 

reducing the potential for injury to the body. During running our muscles 

provide kinetic and potential energy as we simultaneously speed up and rise, 

but later in the gait cycle this energy is lost as we slow down. Ligaments and 

tendons store some of this energy and return it during the cycle, reducing the 

work our muscles must do (3). Thus, the foot-ankle complex provides the 

dual functions of support and propulsion by combining the characteristics of 

flexibility and rigidity as the foot adapts to the gait cycle. 

4 
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Figure 2.1 The SACH Foot 
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Although there have been many attempts to imitate the foot-ankle 

complex structure, very few designs have been widely accepted. All 

prosthetic feet simulate the general contour of the human counterpart. 

However, they differ in the internal design characteristics, which enable them 

to simulate some actions of the human foot. 

Several functions are common to all prosthetic feet. They all provide 

1) a base of support when the wearer stands or is in the stance phase of gait, 

2) shock absorption at heel-strike as the device plantar flexes, and 

3) simulation of the push-off phase as the device dorsiflexes. Foot motion 

occurs passively, in response to the load applied by the wearer (4). 

2.1.1 The SACH Foot  

The conventional SACH foot (4) has for years been the industry standard. It 

was developed at the University of California, Berkley in 1950's. The Solid-

Ankle Cushion Heel (SACH) shown in Figure 2.1 consists of a central rigid 

heel (solid ankle), a posterior wedge of resilient material (cushion heel) and a 

covering of resilient synthetic rubber. 

The compressible heel enables the SACH foot to bend only slightly and 

absorb shocks on uneven surfaces. However, the rigid keel prevents ankle 

dorsiflexion. The rate of plantarflexion after heel-strike determines the time 

required for the amputee to place his foot flat on the ground and achieve 

stability. Plantarflexion is delayed in the SACH foot. As a result, the 

amputee has to apply substantial load to the prosthesis to achieve the flat-foot 

phase of stance and thereby gain knee stability (4). The SACH foot is 

available in a variety of sizes, weights and heel heights. It has no moving 

parts and requires little maintenance. Because of its simple design and 

durability, the SACH foot is the most popular prosthetic foot in the U.S. 
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Traditional prosthetic feet such as the SACH foot were designed only 

for walking. Most amputees, even young athletic amputees, were not 

expected to run or participate in sports. Even highly motivated amputees 

were severely limited in their activities because of a lack of appropriate 

prosthesis and training (5). Little or no exercise often led to excessive weight 

gain, hypertension and abnormal glucose tolerance among amputees. 

The major problem encountered in sports is running. During running, 

the downward force during heel-strike exceeds body weight by two to three 

times. Similarly large differences are seen between normal and amputee gait. 

The loading of the foot that occurs during running leads to further 

deterioration of the amputee gait pattern as speed increases. An asymmetrical 

gait could contribute to the development of degenerative disease. This type 

of loading may also shorten the life of the prosthesis. Thus any design of 

prosthetic feet should be able to deal with the loading of the feet that occurs 

during running. In addition amputees are unable to push off after foot-flat. 

Therefore, prosthetic feet should be able to simulate the push-off phase of 

normal running. It is also important for prosthetic feet to be as light as 

possible, without sacrificing strength. 

In the past several years there have been numerous advances in the 

development of prosthetic feet for the amputee. New materials having better 

mechanical properties and reduced weight are now available. New designs in 

prosthetic feet assemblies now offer amputees a much wider choice than was 

the case a few years ago. Because amputees have increased participation in 

sports, there is a demand for prosthetic feet that will endure and improve 

athletic performance. This has resulted in the development of a new class 

prosthetic feet known as "energy-storing" prosthetic feet. 
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Figure 2.2  The S.A.F.E. Foot 
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Energy-storing prosthetic feet (ESPF) represent an attempt to approach 

normal running gait patterns by responding to the downward force during 

heel-strike. The energy stored during heel contact is later used during push-

off to initiate the swing phase of the gait cycle, while increasing forward 

acceleration of the leg and body. This allows the patient to walk and run 

smoothly and conserve more energy than when using traditional prosthetic 

feet (6). ESPF have more dynamic action than the SACH foot, which for 

years has been the industry standard. 

Design, materials, alignment and suspension all contribute to a 

successful energy-storing prosthesis. The components can be selected to 

obtain the most suitable balance of energy storage and release over a wide 

range of walking and running speeds. Energy-storing prosthetic feet vary in 

performance levels and can vary from providing a little energy storage, to a 

great deal of energy storage. The amputee's age, body weight ,activity level 

and the level of amputation are major considerations in the selection of an 

energy storing prosthetic foot. 

2.2 Types of Energy Storing Prosthetic Feet 

There are two basic types of energy storing prosthetic feet : 1) models that 

are bolted to conventional prosthesis - Solid Ankle Flexible Endo-skeletal 

(S.A.F.E.) Foot, Seattle Foot, Stored Energy (STEN) Foot and Carbon Copy 

II Foot, and 2) models that incorporate the foot and pylon into a single unit 

which is attached to the socket e.g. Flex-Foot. 

2.2.1 S.A.F.E. Foot 

The S.A.F.E. Foot (Figure 2.2) was developed by Campbell and Childs in 

1979. It was designed and built to meet five predetermined criteria : a dome 
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Figure 2.3 The Seattle Foot 
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shaped arch, a long plantar ligament band, a flexible endoskeleton, a subtalar 

joint and made entirely out of plastic materials with no mechanical joints (8). 

All of these criteria were met in the design. It has a keel composed of a rigid 

polyurethane bolt block (Stationary Ankle) joined to a polyurethane elastomer 

section (Flexible Endoskeletal) at a 45-degree angle in the sagittal plane to 

simulate the subtalar joint. The S.A.F.E. foot is bolted to the shin through the 

bolt block. The S.A.F.E. Unit also has two Dacron(polyester fiber) bands on 

the plantar surface, which tighten at heel-off to make the foot more rigid 

during late stance. 

The flexible keel dissipates energy as it accommodates to irregular 

surfaces. The S.A.F.E. Foot is designed to conform well to uneven ground by 

passively inverting and everting and to remain stiff during push-off. It is 

relatively heavy and noncosmetic in appearance. The S.A.F.E. Foot is 

probably unparalleled for use on uneven surfaces, and many amputees report 

an increase in residual limb comfort because it absorbs much of the shock of 

everyday walking. It has the advantage of requiring no maintenance and 

being moisture and grit-resistant. 

2.2.2 Seattle Foot 

The Seattle Foot (Figure 2.3) was designed by the Prosthetic Research Study 

and Engineers from Boeing Aircraft in 1981. The design specifications have 

varied over the years as the concept was refined. Originally the keel was a 

fiberglass multi-leaf design, somewhat similar to an automobile suspension 

spring. The fiberglass keel extended into the metatarsal area to form a spring, 

and as the patient walked or ran, the keel deflected and sprang back, thrusting 

the patient forward (5). As the patient increased his speed, stiffer portions of 
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the spring came into play. Excessive weight, an unacceptable failure rate, 

and the labor requirements of the fabrication technique were the drawbacks of 

this version of the Seattle Foot. 

The commercial version of the Seattle foot consists of a Delrin keel, a 

Kevlar reinforcement toe pad and an exterior polyurethane foam matrix. 

Delrin is a hard plastic (acetal resin) and Kevlar is a strong, lightweight 

yellow fiber (aramid fiber). The keel extends from the top of the foot, back 

around the heel, and into the metatarsal area. 

Shaped as a leaf spring, the keel compresses during heel contact (stores 

energy) and extends during push-off (gradually releases stored energy). 

Delrin provides the necessary combination of strength, lightness, moldability 

and dampening. Additional keel combinations are available to correspond to 

the weight and activity of the user. 

The Kevlar pad is beneath the heel in the metatarsal area. It is designed 

to reinforce the metatarsal area and keep the keel from pushing its way 

through the foam. The polyurethane foam matrix provides the most life-like 

external replication of any commercially available foot. 

The Seattle Foot is designed to control and store energy that is available 

at heel strike and foot flat, releasing it during push-off to increase the forward 

movement of the foot. It is suitable for both walking and running, but is 

especially suited to running because it provides more spring. It provides 

damping to accommodate to individual gaits. The Seattle foot is available in 

two styles, an athletic model derived from human feet, and a noncosmetic 

model which resembles a SACH foot. The cosmetic model can be difficult to 

fit into some shoes because of its wide profile. 
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Figure 2.4 The STEN Foot 
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The Seattle foot weighs just over a pound which is heavier than the 

Carbon Copy II and Flex-Foot. The return of stored energy exceeds that of 

the Carbon Copy II and STEN Foot. There is no uniformity in dimension 

from size to size. The Seattle foot is compatible with most standard prosthetic 

components and fabrication techniques. It can be tailored to the individual 

and is available in a wide range of sizes for both men and women. A newer 

version of Seattle foot is the SLF30 Seattle Light Foot. It weighs one third 

less than the Seattle foot and is also lighter than most other energy-storing 

prosthetic feet. 

2.2.3 STEN Foot  

The STEN Foot (Figure 2.4) consists of : 1) three hardwood blocks that 

extend to the toe region, 2) two high-density rubber blocks, which act as 

compressible spacers between the wooden blocks, 3) a layer of high-strength 

fabric attached to the plantar surface of the wood blocks, 4) a SACH cushion 

heel wedge, 5) plantar reinforcement fabric bonded to a rubber sole, and 6) an 

exterior polyurethane foam matrix. The wood/rubber/fabric composite is 

designed to store energy during the stance phase as the rubber blocks deform. 

This energy is released when the amputee advances over the foot during 

push-off. 

The STEN Foot accommodates to uneven walking surfaces and smooths 

stance transition with a mild spring action. It is light and inexpensive 

compared to the SAFE Foot. The STEN Foot is similar to the SACH Foot in 

appearance. It is the easiest design to fit in a variety of shoe styles, and 

comes in the greatest selection of sizes and heel heights. 



facing 11 

Figure 2.5 The Carbon Copy II Foot 
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2.2.4 Carbon Copy II Foot  

The Carbon Copy II Foot (Figure 2.5) was introduced by Ohio Willow Wood 

Company in May 1986. The most recent design of Carbon Copy II prosthetic 

foot is a result of the "better way" design that began at Ohio Willow Wood 

Company in 1974. It was decided that the new design would be such that it 

could be used by a wide range of amputees. 

New materials, that had better mechanical properties and reduced 

weight, were beginning to become available. It was therefore decided to use 

new fiber reinforced composites to assist in initiating heel rise at toe-off and 

in moving the prosthesis forward. Such composites also allow an amputee's 

center of gravity to remain at a constant vertical height over a period of time, 

provided that the material's fatigue life was long. A material that met all the 

above mentioned criteria was a high performance carbon fiber-epoxy 

laminate. 

The Carbon Copy II Foot consists of a rigid Kevlar bolt, two carbon 

composite deflection plates, a SACH heel, a Kevlar glide sock and a 

polyurethane exterior matrix. The keel of the Carbon Copy II Foot consists 

of block and the deflection plates. This keel is designed to deform from heel-

strike to late stance, storing energy like a compressed spring, and then to 

release this stored energy just before toe-off to initiate swing. 

The bolt block of the Carbon Copy II Foot is a special ultralight 

reinforced Kevlar/nylon design. The failure of the bolt due to fatigue is very 

common in conventional wooden keels. Due to the mechanical properties of 

this composite material, failure of the bolt block is considerably reduced. 

This composite material also has low moisture absorbency. It has high 

impact resistance and a tendency to dampen vibration associated with impact 

which permits the keel to act as a shock absorber. 
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The deflection plates produce a "graded" or two-stage energy storage 

system. In normal walking, the thin primary deflection plate (which extends 

to the joints of the toes) provides a gentle energy return. At higher speeds or 

during more vigorous activities, the auxiliary deflection plate (which curves 

upward to terminate at the midfoot) provides additional push-off. This 

provides an amputee with two basic levels of resistance for different walking 

velocities. 

Three durometers of heel cushion are used for simulated plantar flexion. 

Compression of the flexible methane heel wedge permits a large evenly 

distributed load base while weight is being transferred to the prosthesis. 

Kevlar is a material that is extremely resistant to abrasion. A Kevlar glide 

sock protects the anterior ends of the keel segments to prevent them from 

piercing the urethane foam body of the foot. The "protection sock" also 

bonds very well to the flexible methane foam, subsequently acting as a 

reinforcement fiber for the methane. The outer shell is made up of "life-

molds", which is a special microcellular polyurethane elastomer blend and is 

shaped in molds derived from human feet. 

The plantar surface of the Carbon Copy II Foot is broad and flat for 

maximum mediolateral stability. It does not yield very much to pavement 

irregularities. The Carbon Copy Foot is the lightest of the "conventional" 

ESPF feet and is very cosmetic. It is also somewhat more expensive than the 

SACH and SAFE feet, but comparable in cost to the Seattle foot. The 

Carbon Copy II Foot is very versatile and is suitable for many levels of 

amputation. 
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Figure 2.6  The Flex Foot 
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2.2.5 Flex-Foot  

The Flex-Foot (Figure 2.6) is a light-weight low-modulus carbon-graphite 

composite structure. It has a graphite composite keel that is the core of the 

foot and shank. Graphite composite was chosen because it can be designed 

thin enough to flex, and thick enough to maintain structural rigidity. 

The Flex-Foot consists of two flat, broad carbon leaves in a soft foam 

cover. A large main leaf extends from the base of the prosthetic socket 

(below knee) or knee unit (above knee) through the ankle and into the toe 

region of the foot. The smaller leaf is attached to the larger leaf at the level of 

the mid-foot and extends posteriorly, forming a heel component. 

The leafspring shape of the Flex-Foot prosthesis stores and releases 

energy as it flexes. The smaller posterior leaf is designed to attenuate the 

shock of heel-strike and force the prosthesis forward. The main leaf is 

designed to dorsiflex under stress during stance phase and to extend forcibly 

during push-off. 

The entire prosthesis bends as downward force is applied. The Flex-

Foot utilizes the entire distance distal to the socket for function. Since it 

stores energy throughout its entire length rather than just within a four inch 

keel, this results in a very responsive and resilient component. 

The Flex-Foot is available in an " original " model in which the carbon 

leaf is bonded to the prosthetic socket and a " modular " model in which the 

carbon leaf is bolted to the socket. The weight of the Flex-Foot prosthesis is 

less than a "conventional" ESPF-equipped prosthesis and the mass (less than 

lib) is concentrated proximally. Actual weight savings of 10-15 % are 

common, but patients typically perceive that the Flex-Foot weighs "half-as-

much". 
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The Flex-Foot is hand made from a computer generated design specific 

to each individual patient. Data such as weight, activity level, and residual 

limb characteristics determine the specific orientation and thickness of 

reinforcement fibers. Ultra high pressure, high temperature molding insures 

the greatest possible strength to weight ratio, but requires several weeks for 

fabrication. Although this is a very costly approach, it does permit fitting the 

widest range of individuals. 

The Flex-Foot offers the highest level of energy storage. This is due to 

its long spring leaf design and high modulus carbon construction. It is very 

responsive, provides the smoothest running and walking gait patterns, and 

allows the highest jumping performance of all the ESPF. It makes walking, 

up inclines, much easier for patients. It has been reported that for below-knee 

amputees, walking with the Flex Foot conserves energy at higher walking 

velocities resulting in lower relative levels of exercise intensity and enhanced 

gait efficiencies (13). This, in combination with its light weight, makes it a 

good alternative for many above- and below-knee amputees. 

The chief restriction of the Flex-Foot is that it requires a minimum of 

five inches from the end of the residual limb to the floor, and seven inches or 

greater is preferred. Thus, the Flex-Foot is not suitable for small children, 

Symes and similar amputations, and very long below-knee residual limbs. 

Patients may require a longer time to adjust to the Flex-Foot because it may 

force them to walk more quickly. Some other disadvantages are high cost 

and complexity in fabrication and alignment. Successful use of the Flex-Foot 

requires a high level of commitment on the part of the patient and prosthetist. 



CHAPTER 3 

COMPARATIVE ANALYSIS 

OF ENERGY STORING FEET 

3.1 Introduction to Comparative Analysis of ESPF 

The desire of amputees to participate in sports, and the high demands of 

athletics, have resulted in the development of energy-storing prosthetic feet. 

These prosthetic feet store energy during stance and release energy during 

push-off as body weight progresses forward, thus helping to thrust the 

prostheses forward. 

New prosthetic materials and designs have broadened the range of ESPF 

available. As a result, it is more difficult for prosthetists and physicians to 

choose the best foot for individual amputees (14). In one aspect however the 

advantage of energy storing prosthetic feet over conventional prosthetic feet 

is obvious : as a rule, amputees do not run when fitted with conventional 

prostheses : many of those fitted with ESPF can and do run very well (15). 

There is a decrease in the effort required for walking due to decreased weight 

and increased responsiveness of the energy storing prosthetic feet. 

Design, selection and alignment of an energy storing prosthetic foot 

should be directed towards obtaining optimal gait. Although ESPF have 

achieved widespread clinical acceptance, the effect of these feet on the 

biomechanics of below-knee amputee gait is poorly understood. It has been 

established that comparison of sound-limb to prosthetic-limb symmetry is the 

best method to analyze and evaluate gait (16). 

Presently there is limited information available that describes how 

energy storing feet perform in achieving optimal and symmetrical gait. Also 

there is no universally accepted definition of an energy storing prosthetic foot. 

15  
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Besides observations and anecdotes, there is little evidence available that 

shows energy savings at all. Most of the research done in evaluating ESPF is 

subjective and the relative merits of different prosthetic feet are unclear. 

Therefore it is very important to be able to evaluate and rank the various 

designs quantitatively and scientifically to justify selection of a particular 

prosthetic foot. 

3.2 Methods of Comparative Analysis of ESPF 

Quantitative research, comparing gait in below-knee amputees using different 

energy storing feet, has been performed in the following areas : 

1. Biomechanical analysis 2. 

Energy-Cost measures 

3. 

Subjective preferences 

3.2.1 Biomechanical analysis 

Biomechanical evaluation consists of dynamic evaluation of the foot through 

motion analysis and evaluation of the forces created by and acting on the 

body when wearing a prosthetic foot (17). In the modern biomechanics 

laboratory, it is possible to measure the kinetic and kinematic gait 

characteristics of amputees by using motion analysis. This gives us the 

opportunity to test different prosthetic feet under the conditions in which they 

will ultimately be used. The walking gait of amputees differs significantly 

from that of normal individuals. It is very important to identify these 

differences (or variables) in order to evaluate and compare ESPF. Some of 

these variables are stride characteristics, kinematic variables and foot-floor 

contact forces. Stride characteristics include velocity, cadence, step length, 

gait-cycle duration, single-limb stance, etc. 
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Several different researchers have measured these variables in an effort 

to evaluate different prosthetic feet. Torburn et al. (18) investigated the gait 

biomechanics of five below-knee amputees wearing four different energy 

storing feet and a SACH foot. Only cadence and gait-cycle duration were 

slightly different for the five feet during free-velocity walking. Cadence was 

greater (and gait-cycle duration shorter) for the Carbon Copy 11 Foot than for 

the SACH or Flex-foot. Cadence was 102 steps/min for Carbon Copy II 

versus 98 steps/min for the SACH and Flex-foot. However, this difference is 

not clinically significant. 

The Flex-foot had greater dorsiflexion (Figure 3.1) at the ankle joint 

during late stance compared to the four other feet. There was no significant 

difference in torque or motion at the hip or knee joints. Thus no clinical 

significant changes in gait were detected in this study. 

Macfarlane, Nielsen et al. (19) compared the gait of seven below-knee 

amputees using flex-foot versus a conventional foot. Single-limb stance was 

longer for the flex-foot as compared to the conventional foot (Figure 3.2). 

Also walking with the flex-foot resulted in a smoother vertical trunk motion. 

This suggests an increase in the biomechanical efficiency of the flex-foot 

when compared to the conventional foot. 

Menard et al. (15) performed gait analysis on eight below-knee 

amputees and nine control subjects to compare energy-storing capabilities of 

the Seattle Foot and the Flex-Foot. Larger late vertical forces and smaller 

later anterior-posterior and medial-lateral forces were observed when the 

Flex-Foot was used. The researchers believed that this was due to the forces 

produced by the Flex-Foot very late in stance. These forces are responsible 

for the liveliness and springiness of the Flex-Foot during sports and athletic 

activities. 
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Figure 3.1 Dorsiflexion at the ankle joint during late stance 
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Figure 3.2 Single-Limb stance is longer for the Flex-Foot 

when compared to the conventional foot 
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Barr et al. (20) compared the gait of an amputee using SACH and 

Carbon Copy II prosthetic feet. They found no significant differences in 

stride characteristics, angular kinematics and moments of the SACH and 

Carbon Copy II prosthetic feet. However, the Carbon Copy II showed 

slower unloading in late stance and a later peak propulsive force than the 

SACH foot (Figure 3.3). 

Angular acceleration occurring in the prostheses was the primary 

measurement in a study done by Wirta et al. (22). Angular acceleration can 

be used to study the capacity of prosthetic feet to absorb shocks. Effective 

shock absorption is necessary to avoid joint diseases in amputees. 

This study showed that the shock absorbed by the Seattle foot was the 

greatest followed by the SAFE foot and then the SACH foot. These objective 

findings, when related to the subjective ratings, showed that amputees 

preferred prosthetic feet that developed lesser shock and greater damping 

immediately following heel-strike. 

Barth et al. (14) have investigated several variables in an effort to 

compare energy-storing capabilities of SACH, SAFE, Seattle, Carbon Copy II 

and Flex foot. The SACH foot exhibited less ankle dorsiflexion in late stance 

compared to the flex foot (Figure 3.4). 

This indicates that the SACH foot provides good late-stance stability 

which may be appropriate for lower activity level amputees. More ankle 

dorsiflexion and increased change in dorsiflexion in the Flex foot makes it 

appropriate for higher activity level amputees including amputees walking on 

inclines or uneven terrain. 
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Figure 3.3  Carbon Copy II shows slower unloading 

in late stance and a later peak propulsive force than 
the SACH 
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Figure 3.4 The SACH Foot exhibits less ankle dorsiflexion 

in late stance as compared to the Flex Foot 
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Figure 3.5 The SAFE Foot and the Flex Foot have an 

increased change in ankle dorsiflexion 
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The SAFE foot also has an increased change in dorsiflexion which 

makes it suitable for amputees walking on different surfaces and at different 

velocities (Figure 3.5). The Seattle foot exhibited the most symmetrical gait 

of all the prosthetic feet. This makes it a good choice for average activity 

level amputees. The Carbon Copy 11 showed significantly greater sound-limb 

weight acceptance forces. 

Another variable of interest in the study of ESPF is joint muscle power. 

Czerniecki et al. (23) compared the running performance of two non-disabled 

individuals with a subject wearing below-knee prostheses with Flex-Foot, 

SACH and Seattle foot assemblies. In normal subjects, early stance phase 

was characterized by energy absorption due to eccentric contractions of the 

knee extensors and ankle plantar flexors (24). Energy generation occurs 

during late stance by power output of the ankle plantar flexors and knee 

extensors. In the amputee, the greatest energy absorption during early stance 

and the maximum hip extensor output was observed at the hip. 

The Flex foot performance of the amputee most closely approached 

normal values with regard to energy absorption & power output. The SACH 

foot produced the lowest power output and the Flex foot the highest. Thus 

ESPF result in a more normal pattern of power absorption and generation 

during the stance phase of running. 

In a recent study done by Czerniecki et al. (25), mechanical power 

outputs of the lower extremity in 5 normal & 5 below-knee amputee subjects 

using the SACH, Seattle and Flex foot were studied at a walking speed of 1.5 

m/s. While wearing the SACH foot, negligible energy generation occurred at 

the prosthetic foot during push-off. The ESPF demonstrated increased energy 

generation during push-off. However,no significant differences were found in 

the pattern or magnitude of power outputs of ESPF compared to the SACH. 
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Table 3.1  Work performed and energy stored and returned 

(in Joules) by the SACH and Carbon Copy II prosthetic feet  

Foot Negative Work 
(storage) 

Positive Work 
(Return) 

Net Work Energy Returned(%) 
(Return/Storage) 

SACH -1.1565 0.3417 -0.8148 30 

CC II -2.3348 1.3323 -1.0024 57 
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Barr et al. (20) showed that the Carbon Copy II foot returned energy at 

57% efficiency compared with only 30% efficiency for the SACH foot during 

level, non vigorous gait. The Carbon Copy II performed greater work in both 

the energy storage (CC II = 2.33J, SACH = 1.16J) and energy return(CC II = 

1.33J, SACH = 0.34J) phases of stance (Table 3.1). During late stance, the 

peak power for the Carbon Copy II foot was 19 W as compared with 5 W 

for the SACH foot. 

3.2.2 Energy-Cost measures 

Energy expenditure reduction is of clinical importance in prosthetic selection 

and training. Some foot manufacturers have suggested that their prosthetic 

feet reduce the amputees energy cost. This energy cost can be evaluated by 

comparing different prosthetic feet. Researchers have-found that each 

amputee walks at a self-selected optimal speed. By evaluating the amputee at 

self-selected speed for each foot, the energy cost for that foot can be 

determined. Earlier studies have shown that below-knee amputees have a 

higher energy cost than normal individuals. 

Fisher and Gullickson (26) have written a review paper on the studies of 

the energy cost of ambulation of nonnal people and amputees. According to 

an average of the results available from literature, a normal person walks at 

about 83 in/min, with an energy expenditure of 0.063 Kcal/min/Kg. The 

average below-knee amputee walks 36% slower expending 2% more 

Kcal/min. This study indicates that an amputee consumes more energy than a 

non-amputee at comparable walking velocities. 

For optimum gait efficiency, it is imperative that prosthetic feet keep 

energy expenditure to a minimum. Nielsen et al. (13) have carried out a study 

to investigate the differences in self-selected walking velocity, relative 
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exercise intensity, oxygen consumption and gait efficiency in below-knee 

amputees while wearing the SACH foot and the Flex foot. Seven below knee 

amputees were selected and tested at different walking speeds on a treadmill 

using the Flex foot and the SACH foot on alternate days. Heart rate and 

oxygen uptake measurements were taken at the end of each testing stage. 

The heart rate measurements were used to calculate % MHR (relative work 

load of walking expressed as a % of age-predicted maximum heart rate) 

which was considered as the measure of relative exercise intensity. 

Relative exercise intensity was used to evaluate gait performance in 

amputees wearing the SACH and Flex foot. The reduced % MHR values for 

ambulation with the Flex foot, which occurred at all walking velocities, 

indicated decreased levels of stress (Figure 3.6). 

Oxygen uptake for walking in below-knee amputees was higher than 

normal oxygen consumption resulting in increase in energy-costs compared to 

normal energy costs. Reduced oxygen consumption can be considered as a 

definition of the energy-conserving component of ESPF and can be measured 

in order to determine which energy storing foot produces the more optimal 

gait. 

Lower energy cost values were obtained at higher walking velocities for 

Flex foot walking (17 ml/Kg.min at 3 mph) compared to SACH foot walking 

(19 ml/Kg.min at 3 mph) (Figure 3.7). Energy cost values at slower walking 

velocities was similar for both the Flex foot and SACH foot. Self-Selected 

walking velocities for both the feet were found to be below normal values. 

However self-selected walking velocity for Flex foot walking was higher 

compared to SACH foot walking. 
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Figure 3.6 Relative exercise intensity at different walking velocities 
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Figure 3.7 Energy cost of walking at different velocities 
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Figure 3.8  Gait efficiency at different walking velocities 
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An easily measured criterion of gait efficiency is the energy cost per 

distance travelled. It can be calculated as the ratio of oxygen uptake to 

walking velocity. Improved gait efficiency was observed for Flex foot 

walking at higher velocities (Figure 3.8). Optimal gait deficiency for walking 

with SACH foot was 0.24 ml oxygen/Kg.m at 3 mph and for the Flex foot, the 

optimal value was 0.21 ml oxygen/Kg.m at 3.2 mph. So we can say that for 

below-knee amputees, walking with the Flex foot conserves energy at higher 

walking velocities, resulting in lower levels of exercise intensity and 

enhanced gait efficiency. 

In a study done by Meier et al. (27), SACH, Seattle and Flex foot were 

tested to evaluate energy expenditure. At a treadmill speed of 2 mph and 3.5 

% grade oxygen consumption was 17.7 ml/Kg/min for the SACH foot, 19.10 

ml/Kg/min for the Seattle foot and 15.89 ml/Kg/min for the Flex foot. These 

results indicate that the Flex foot may be the most energy efficient foot in 

treadmill ambulation. The results also suggest that the non energy-storing 

SACH foot may be more energy efficient than the energy-storing Seattle foot. 

In the recent study done by Casillas et al. (28), a new energy-storing 

foot Proteor was tested in ten below-knee amputees and compared with 

SACH foot at various walking speeds. Oxygen uptake, heart rate and blood 

pressure were collected. While wearing the Proteor, the subjects had a higher 

self-selected walking velocity (5.19 Km/hr) than those with the SACH foot 

(4.95 Km/hr). The decrease in oxygen uptake in those with the energy storing 

foot compared to those with the SACH foot was not significant at the speed 

of 2 Km/hr. However this decrease in oxygen uptake at 4Km/hr is significant 

(14.91 ml/Kg/min with the energy storing foot compared to 19.65 ml/Kg/min 

with the SACH foot). During the inclined walking test, the reduction of 
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energy cost with energy storing foot was also significant (18.22 ml/Kg/min 

compared to 22.59 ml/Kg/min with SACH). These results confirmed the 

benefits obtained from energy storing feet but could not explain the 

biomechanical reasons. 

3.3.3 Subjective Preferences 

Requirements for prosthetic feet vary because of different physical 

characteristics and activity objectives of patients. Subjective ratings by the 

amputees help in determining which physical characteristics and activity 

objectives influence the selection of a prosthetic foot. A measure of how 

easy or difficult the subjects find using the prostheses over a functional range 

of walking conditions is also an important measure and could be a factor to 

consider when prescribing a prosthetic foot. 

In a study done by Wirta et al. (22), ratings were related to age, body 

weight, length of residual limb, etc. SACH, SAFE and the Seattle ankle-

foot devices for below-knee prostheses were tested for effects on gait. The 

subjects were asked to rate each ankle-foot device in terms of excellent, 

superior, good, fair and poor. The SAFE and Seattle foot drew most of the 

favorable comments such as flexible, springy, comfortable, energy-saving, 

good on slopes and inclines. The common complaints with the SACH foot 

was that it was too stiff. 

The following was inferred when the ratings were related to age, body 

weight and length of residual limb. The Seattle foot is best if the amputee is 

young, light-weight and has a medium length residual limb. The SAFE foot is 

best when amputee is middle-aged, slightly overweight and has a long 

residual limb. The SACH is good for an old, overweight amputee with a 

medium to long residual limb. 
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Amputee's assessment of walking difficulty was the focus of a study 

done by Macfarlane et al. (29). They investigated the effects of walking 

grade and walking speed on the subjects perception of walking difficulty with 

the Flex foot compared to the conventional foot. The subjects used in this 

study were healthy, active, below-knee amputees. As expected these 

subjects found walking with the Flex foot easier than walking with the 

conventional foot. The Flex-foot was associated with less walking difficulty 

compared to the conventional foot over nine different walking conditions. 

In an earlier study done by Nielsen et al. (13), subjective feedback from 

the amputees using the Flex foot indicated that it improved their balance and 

stability on uneven ground but that the conventional foot might be better for 

slow and down-hill walking. 

Similar results were obtained by Alaranta et al. (30). A comparison 

was made between the use of the Flex foot and the Carbon Copy 11 on the 

basis of subjective ratings for ten items of movement. The below-knee 

amputees who participated in the study gave the Flex foot higher ratings in all 

the ten items. They concluded that moderately active persons benefit from an 

energy storing prosthetic foot system and that the Flex foot is particularly 

benefical for uphill and fast walking as shown in Table 3.2. 

In a recent study, a comparative analysis of the Seattle foot and the Flex 

foot was done by Menard et al. (15). They found that both the Seattle foot 

and the Flex foot users walked well, were happy with their prostheses and 

reported improved functional capability. However many amputees found the 

excessive late "kick" in the Flex foot troublesome during routine activities. 

They preferred to use the Seattle foot for most activities and Flex foot for 

more demanding activities such as sports involving jumping. 



facing 30  

Table 3.2  Subjective ratings of walking disability (0 = normal walking, 
1= mild, 2 = moderate, 3 = severe disability) for the Flex Foot and 
conventional prosthesis for ten different kinds of walking  

ITEM OF 
WALKING 

PROSTHESIS RATING OF DISABILITY 
0 	1 	2 	3 

Indoors FF 20 9 2 0 
CP 12 16 3 0 

Upstairs FF 14 14 3 0 
CP 3 13 15 0 

Downstairs FF 8 18 5 0 

CP 2 12 7 0 

Even street FF 21 9 1 0 

CP 9 17 4 1 

Uneven street FF 13 15 3 0 

(sand,snow) CP 8 1 11 1 

Forest FF 7 16 4 4 

CP 3 6 16 6 

Street Uphill FF 11 16 4 0 

CP 3 8 19 1 
Street downhill FF 10 18 3 0 

CP 3 13 14 1 
Swift Walking FF 13 12 5 1 

CP 5 7 15 4 
Running FF 3 8 9 11 

CP 0 0 11 20 



CHAPTER 4 

FINITE ELEMENT ANALYSIS 

4.1 Introduction to Finite Element Analysis  

The Finite Element Method is an advanced computer technique of structural 

stress analysis. It was introduced in the mid-sixties as a process of solving 

structural problems in mechanics (33). This method was soon recognized as 

a way to find approximate solutions to all the physical problems that can be 

modeled by differential equations. These equations can be analyzed to 

determine the performance (e.g. deformation or stress) of the model. 

When a structure is loaded, stresses are generated in its materials. The 

magnitude and distribution of these stresses depend on three major factors : 

the geometry of the structure, the material properties of the structure, and the 

loading conditions on the structure. Also, the stresses depend on the boundary 

and interface conditions. 

Theoretically, stress distribution is determined by using a mathematical 

model. Such a model represents the real structure to a certain extent and the 

structural factors (loading, geometry, material properties, boundary and 

interface conditions) are described mathematically. These mathematical 

descriptions are usually based on experimental data. The structural 

descriptions are combined with mathematical equations of the model and the 

equations are solved to determine the stresses. 

Various theories and solution methods are available for certain classes of 

structures. The FEM as a computer method of structural stress analysis, 

however, is suitable in principle for any structure. The powerful Finite 

Element Method is capable of evaluating stresses in structures of complex 

shape, loading and material behavior. 
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The first step in using this method is to geometrically define the model or 

structure. The model is then (mathematically) divided into a number of 

elements, connected at corner locations called nodal points or nodes, thereby 

forming a finite element mesh. The boundary and loading conditions are 

numerically defined as displacements and forces, respectively in the boundary 

nodes. Each element is assigned one or more material properties (e.g. 

Modulus of Elasticity). 

The FEM computer program calculates the stiffness characteristics of 

each element and assembles the element mesh through forces and 

displacements in each node. Since the entire structure is divided into smaller 

elements, the FEM program solves a large number of equations that govern 

force equilibrium at element nodes. 

The solution obtained with the Finite Element Method is approximate in 

the sense that it converges to the exact solution for the model when the mesh 

density approximates infinity. Thus, the accuracy of a Finite Element Method 

depends on the number of elements in the mesh. The larger the number of 

elements, the more accurate the solution will be. 

A variety of element types are usually available for 3-D and 2-D 

structures in an FEM computer package, and they differ in their shapes and 

number of nodal points. The computer time required for 3-D elements is 

higher than the time required for 2-D elements. Mesh accuracy is easy to 

obtain in a 2-D model, because of cost efficiency. 

While interpreting the FEM results, it is very important to differentiate 

between the validity of the model and the accuracy of the model. Validity of 

the model is the precision by which the mathematical descriptions of the 

structural factors (loading, geometry, material properties, boundary and 

interface conditions) mimic the actual structure. Accuracy of the model is the 
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precision by which the FEM mesh approximates the exact solution for the 

model. Accuracy can be checked with a convergency test while validity can 

be determined by experimental verification. 

4.2 The Finite Element Method in Orthopedic Biomechanics 

The Finite Element Method was first introduced to orthopedic biomechanics 

in 1972 to evaluate stresses in human bones. The traditional mathematical 

tools available for stress analysis were not very suitable for the irregular 

structural properties of bone. The logical solution for this problem was the 

FEM, which can be used to evaluate stresses in structures of complex shape. 

Since then, there has been a rapidly growing interest in artificial joint 

replacement and new methods of fracture fixation. New questions and new 

methods have created an environment for the use of the FEM in orthopedic 

biomechanics. Finite element analysis is by far the most exciting and 

promising of the structural analytic techniques that have been applied to 

biomechanics. 

Finite element analysis is presently being used for stress analysis of 

bones and bone-prosthesis structures, artificial joint designs, fracture fixation 

devices and tissues such as articular cartilage and intervertebral discs. The 

aim of the stress analysis is to determine the mechanical behavior of the 

tissues and to test and optimize artificial joint designs and fracture fixation 

devices. 

The Finite Element Method is now well established as a tool for basic 

research and design analysis in orthopedic biomechanics. However, 

significant findings and useful concepts generated by this method are limited. 

One reason for this is the complexity of biological structures. The true 

behavior of biological materials (as opposed to engineering materials) has not 
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yet been fully described in terms of mechanical behavior. Another limitation 

is the lack of a clear understanding of the nature of the clinical problem. The 

model should be designed in such a way that it fits the objectives of the finite 

element analysis. The validity of the model should be determined by methods 

such as experimental verification. 

There are three possible approaches that can be followed in the solution 

of an orthopedics-related problem (33). The approaches and their 

advantages and disadvantages are listed in Table 4.1. The coordinated 

approach is the best approach in order to overcome some of the uncertainties 

inherent in biological material properties. Figure 4.1 illustrates the 

interactions between the finite element analysis, laboratory experiments and 

clinical evaluations in the coordinated approach. Such an approach provides 

a framework for an efficient method for using finite element analysis in 

orthopedic biomechanics. 

In this thesis, a finite element stress analysis model was developed in 

order to provide insight into the mechanical behavior of a below-knee 

prosthesis. A structural analysis using the finite element method was 

performed in order to identify the relative importance of geometry, material 

properties and loading conditions in the design of this prosthesis. 

The finite element method has two major advantages over other 

techniques in the design of a prosthesis : 1) This method allows us to 

represent various geometric and material properties in one particular design, 

which is difficult to do in most other methods. 2) It is possible to analyze 

multiple loading conditions with a single finite element model. 3) A particular 

design of a prosthesis can be tested to failure only once if we use 

experimental techniques. However, a finite element model can be analyzed 
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Figure 4.1 Interactions between finite element analysis, 

experiments and clinical evaluations in orthopedics problems 



Table 4.1 Three approaches to orthopedics problems and their 

advantages and disadvantages  

Approach Advantages Disadvantages 

Computational 
model 

■ 'Low' costs 
■ 'Short' time 

■ Need to verify model 
with measurement 

■ 

Time and cost required 
Experimental 

model 

Coordinated 
computational 

and 
experimental 

■ Measurement for 
stresses rather 
than computations 

 
■ 

Have measurements 
and a degree of 
confidence in 
computations 

■ 

Reduced time and 
costs 

■ Can extrapolate to 
other conditions 

 
■ 

Difficult to study a range 
of parameters 

■ 

Difficult to extrapolate to 
new conditions 

■ Requires more thought in 
planning and coordinating 
programs 
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Presently the capabilities of the Finite Element Method have increased 

due to new developments in engineering mechanics. This, along with 

sophisticated computers, offer exciting possibilities for the future. Progress in 

this area of biomechanics, however, requires a sound understanding of 

engineering mechanics on the one hand, and an appreciation of biological 

complexities on the other.  



CHAPTER 5 

STRUCTURAL OPTIMIZATION 

5.1 Definition of Optimization 

The term optimization is defined to be the process that a designer uses to 

achieve an improved solution (32). Although it is desirable to have the best 

or optimum solution to a problem, the designer usually has to settle for 

improvement rather than perfection in design. Optimization provides a 

logical method for the selection of the best choice from among all the possible 

designs that are available. 

5.2 The Optimization Problem 

The mathematical formulation of the optimization problem is as 

follows : 

Minimize F( x i  ), 	 i = 1, 	n 

Subject to c j( x i  ) = 0,               j= 1,.....p 

	

r k( x i  ) ≤ Rk  , k= 1, 	q 

	xl i ≤ xi ≤ xu i , i = 1, 	n 

where F : Objective function to be minimized 

n 	: Number of design variables xi 

Cj : Functional constraints specified by the designer 

p 	: Number of functional constraints 

rk  : Regional constraints (Inequality constraints) 

q 	: Number of regional constraints 

xi  : Design variables 

xli : Lower limit for the design variables 

xui  : Upper limit for the design variables 
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The objective function or merit function is an equation or expression that 

has to be maximized or minimized. It provides a way to evaluate and 

compare two different designs. Mathematically, the objective function 

defines an (n+1) - dimensional surface. The value of this function will 

depend on the values of the design variables. Functional constraints are 

functional relationships of the design variables that must be satisfied in the 

design solution. Examples of common objective functions to be maximized 

or minimized are cost, weight, strength, size and efficiency. 

If there is only one design variable, the objective function can be plotted 

as shown in Figure 5.1 (32). If there are two design variables, the objective 

function can be plotted as a 3-D surface, as shown in Figure 5.2 (33). The 

physical and mathematical characteristics of the objective function are of 

great importance in the optimization process. Some types of optimization 

problems can be formulated in terms of more than one measure of merit. For 

example, it may be desired to maximize strength, minimize weight, and 

minimize cost. In such a case, the designer must establish priorities and 

assign weighting values to each measure of merit. This process results in a 

trade-off function and provides a single composite merit value to be used in 

the optimization process. 

The optimization problem exhibits some characteristics that make it 

complicated when practical design applications are considered. The main 

difficulties arise from the size and the number of design variables. The 

number of design variables should be reduced by means of an equality 

constraint. Whenever possible, the optimization problem should be scaled so 

that the design variables are of the same relative magnitude. The form of the 

objective function should be as simple as possible. The process of 
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Figure 5.1 A one-dimensional objective function  
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Figure 5.2 A two-dimensional objective function  
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optimization is an iterative one and each iteration consists of a complete finite 

element analysis. The above mentioned difficulties, however, may increase 

the cost of obtaining an optimal design of a structure. 

5.3 Solution of the Optimization Problem 

There are a number of numerical optimization techniques available for the 

solution of an optimization problem. Most of these problems utilize iterative 

and numerical methods of solution. The numerical methods, frequently used 

for the solution of optimization problems, are termed as optimality criterion 

methods. In these methods, the optimality conditions are contained in 

discrete sets of governing equations. 

The selection of an optimization technique depends on the number of 

design variables and on the nature of the design space. For complex shapes, 

the state equations, constraint equations and the optimization conditions form 

a large set of equations. In such a case, it is better to use a purely numerical 

optimization technique. 

Optimization methods in multidimensional space are classified in two 

broad categories : 

5.3.1 Direct methods 

Direct methods utilize a comparison of functional evaluation. These methods 

try to use a strategy that approaches the optimum value. Some direct 

methods are the Fletcher-Reeves method, Hooke and Jeeves method and 

Simplex method. 
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5.3.2 Indirect methods 

Indirect methods use the mathematical principles of maximization and 

minimization. These methods try to satisfy the conditions of the problems 

without examining non-optimal points. Some indirect methods are the 

sectioning method, the area elimination method and the random method. 

5.4 Structural Optimization 

The aim of structural optimization is to improve the performance of the 

structure. It is very difficult to achieve this aim manually by making a number 

of design changes in an attempt to improve several aspects of a structure's 

performance. The behavior of the structure is highly dependent on local 

design changes. Hence, it is important to limit the number of design changes 

or to reject some combinations of design changes. This often results in a 

great deal of time being spent on achieving a relatively small improvement in 

design. 

5.4.1 The Structural Optimization Problem 

The process of optimization implies producing the best design for a structure 

under the defined loading conditions (37). The relative merit of alternative 

designs is generally evaluated with reference to : 

1. Satisfactory performance - The designer may specify upper and lower 

limits on the structural response. In optimization, for linear static structural 

response, there are displacement (stiffness) constraints and stress (strength) 

constraints. 

2. Structural mass - Of all the possible designs satisfying the performance 

requirements, the one with the minimum mass is defined to be the best. Thus 

optimization is designed to minimize mass subject to the specified 
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Figure 5.3 The design process using structural 

optimization  
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performance constraints. In optimization terminology, mass becomes the 

objective function. Other objective functions can be used but structural mass 

is generally used because minimizing mass results in the lightest and often 

the cheapest structure. 

3. Analysis variables - Analysis variables are structural parameters that are 

fixed at the beginning of optimization. In optimization, material properties 

and outline geometry are considered fixed. In addition, some elements within 

the model of the structure may be assigned to be frozen and may not be 

allowed to change. Analysis variables are crucial to the function or 

fabrication of the structure and therefore cannot be changed during the 

process. 

4. Design variables - Design variables are parameters, defining a structural 

system, that are allowed to vary. For example, in a finite element model 

composed of shell elements, the shell thickness is a design variable that is 

allowed to vary. 

5. Gauge constraints - In addition to constraints on structural response, 

constraints may also be specified for design variables. 

The upper and lower bounds on the design variables are called gauge 

constraints. These constraints may be due to the material sizes available, 

manufacturability, etc. 

Optimization can make multiple simultaneous structural modifications to 

minimize the mass subject to a given set of stress, displacement, and gauge 

constraints. With only a few iterations, the designer can gain insight into 

alternative design studies and load paths. Optimization takes finite element 

analysis a step further by evaluating many design alternatives and selecting 

the best one. Structural optimization helps to minimize the number of 

iterations in the design (Figure 5.3). 
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5.4.2 Solution of the Structural Optimization Problem 

A number of strategies have been adopted to obtain optimum solutions to 

structural problems. Iterative algorithms such as stress redesign and 

displacement /stress redesign are frequently used. In both the methods, the 

user specified constraints are evaluated. This supplies enough information for 

the stress redesign algorithm to resize the structure. However, the 

displacement/stress redesign algorithm requires further information that 

should be calculated for the resizing. 

Convergence testing is used in both the algorithms to decide whether the 

optimum solution has been obtained. If not, the elements in the structure to 

be optimized are resized further and another finite element analysis is 

performed. 

In this thesis, the design of a below-knee prosthesis was optimized for 

reduced weight. Such an optimization may result in improvements in 

amputee gait without a significant increase in amputee effort. Optimization 

was repeated while varying the material properties to determine if the weight 

of the prosthesis could be reduced by the use of different materials, without 

violating any of the functional constraints. The dimensions of the prosthesis 

were also optimized for reduced weight and therefore improved function. 

Interest in Structural Optimization has increased greatly during the last 

decade because of the availability of reliable numerical analysis methods and 

the computer power necessary to use them efficiently. Therefore a number of 

commercial optimization systems, based on finite element analysis, such as 

ANSYS, I-DEAS, CAOS, etc. have been introduced. Most of these systems 

can be integrated into a computer-aided design environment to provide a 

valuable tool to the designer in the design, analysis and optimization process. 



CHAPTER 6 

COMPUTER AIDED ENGINEERING 

PACKAGE I-DEAS 

6.1 Introduction to I-DEAS 

I-DEAS ( Integrated Design Engineering Analysis Software ) is a 

comprehensive and integrated package of mechanical engineering software 

tools. The purpose of this software is to provide a concurrent engineering 

approach to product design and analysis. I-DEAS is made up of a number of 

" Families " of software modules. The main families are : 

1. Solid Modeling 

2. Finite Element Modeling and Analysis 

3. System Dynamics 

4. Test Data Analysis 

5. Drafting 

6. Manufacturing 

I-DEAS integrates these families into one package with a common user 

interface and a shared application database. Each family is further subdivided 

into "Tasks" and each task has its own subdivision. All the tasks are 

executed from a common menu and share a common database. I-DEAS is a 

highly interactive, graphics-oriented and menu-driven package. Here we will 

restrict ourselves to the study of Solid Modeling and Finite Element Analysis 

families because only these two families are utilized in the design and 

analysis of our prosthesis model. 
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6.2 Solid Modeling 

IDEAS Solid Modeling family offers a number of software tools to develop 

and design geometry for any mechanical system. The tasks that were used in 

our design are as follows : 

6.2.1 Object Modeling Task 

The Object Modeling task within the Solid Modeling family can be used to 

create solid objects in the following three ways: 

1. Primitives - geometry from familiar solid shapes. 

2. Profiles - extruding or revolving a 2-D outline. 

3. Skinning - using a set of profile cross-sections to define a solid. 

	

After solid models are created, they can be modified by various 

construction operations such as cutting, joining, and intersecting with 

different objects. 

6.2.2 Construction Geometry Task 

The Construction Geometry Task can be used to create three kinds of 

geometry : wireframe, profiles, and skin groups. Solids can then be created 

from this geometry in the Object Modeling Task. A wireframe is a collection 

of points and curves in three dimensional space. It can be used to create 

profiles and skin groups for more complicated solid geometry. Profiles are 

two dimensional points and curves connected to define 2-D outline. They can 

be used to create solid objects by extruding or revolving one profile, or by 

skinning between multiple profiles. Skin groups are collections of profiles 

representing cross-sections through a part, or collections of wireframe curves 

defining a surface. 
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Figure 6.1 The steps of finite element modeling and analysis  



48 

6.3 Finite Element Modeling and Analysis 

The Finite Element Modeling and Analysis family is used to calculate 

deflections and stresses due to loads on the model. The model is subdivided 

into a mesh of elements which are used to calculate the stiffness of the 

structure and solve for the deflections given the loads and boundary 

conditions. From the deflections, the stresses in each element can be 

calculated. 

A Finite Element Model is the complete idealization of the entire 

structural problem, including the node locations, elements, physical and 

material properties, loads and boundary conditions. The FEM is constructed 

to mathematically model the deflection of the structure, not to look like it. 

The accuracy of the solution depends on how well the structure was modeled, 

the assumptions made for loads and boundary conditions, and the accuracy of 

the elements used for the given problem. 

Finite Element Modeling and Analysis consists of the following steps : 

Pre-processing, Solution/Optimization and Post-processing (Figure 6.1). The 

basic tasks used for these steps of Finite Element Modeling and Analysis are : 

1. Pre-processing 

- Geometry Modeling Task 

- Mesh Creation Task - 

Boundary Conditions Task 

2. Solution 

- Model Solution Task 

3. Optimization 

- Optimization Task 

4. Post-processing 

- Post-processing Task 
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A Finite Element Model is the complete idealization of the entire 

structural problem, including the node locations, elements, physical 

and material properties, loads and boundary conditions. The FEM is 

constructed to mathematically model the deflection of the structure, not to 

look like it. 

The accuracy of the solution depends on how well the structure was 

modeled, the assumptions made for loads and boundary conditions, and the 

accuracy of the elements used for the given problem. 

6.3.1 Pre-processing  

Pre-processing includes developing the geometry of a finite element model, 

entering physical and material properties, describing the boundary conditions 

and loads, and checking the model. The tasks used in pre-processing are as 

follows : 

a) Geometry Modeling Task : The Geometry Modeling Task may be used to 

create or modify the geometry of the finite element model, which will then be 

used for defining mesh-areas. This geometry can either be created in the 

Geometry Modeling task or it can be transferred from an object created in 

Object Modeling. Surfaces for finite element modeling are also created and 

modified in this task. 

b) Mesh Creation Task : The Mesh Creation Task is used to define mesh 

areas and volumes, to generate nodes and elements on mesh areas, to enter 

the material and physical properties and to check the model for errors. 

(i) Mesh Area Definition - The geometry of the finite element model created 

in the Geometry Modeling task is used to define mesh areas. Mesh areas are 

used for generating nodes and elements and for defining mesh volumes. 

Mesh areas can be either mapped or free-mesh. Mapped meshing requires the 
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same number of elements on opposite sides of the mesh area and requires that 

mesh areas be defined by at least three edges. Free or automatic meshing 

allows much more flexibility in defining mesh areas. An algorithm available 

in IDEAS uses the element size in order to automatically create the free 

mesh. Mesh areas can be created by using the Auto_Create command. 

(ii) Mesh Volume Definition - Mesh volumes are defined by closed regions 

bounded by mesh areas. They can be either mapped or free meshed. Mesh 

volumes are defined for a 3-D finite element model. 

(iii) Nodes and Elements - " Nodes " are coordinate points in 3-D space, 

where " Elements " will be connected, loads applied, boundary restraints 

imposed, and displacement information determined. Nodes and elements can 

be created by mesh generation. Nodes can also be created manually by 

keying in their coordinates and elements can be created manually from two or 

more nodes. Nodes and elements can be modified after they have been 

generated. 

(iv) Mesh Generation - Nodes and elements are generated on mesh areas and 

mesh volumes by using the Generate command. They can also be generated 

directly on an object that was created in Object Modeling and transferred to 

Finite Element Modeling. In such a case, we do not have to define mesh 

areas and volumes and determine the mesh size in order to generate the mesh 

on the solid object. 

(v) Material and Physical Properties - Material and physical properties are 

entered in the Mesh Creation task. Each element in a finite element mesh is 

required to reference a material property table and a physical property table. 

Physical property tables are different for different types of elements, and 

contain data that define some physical aspect of the elements. Shell 

thicknesses, for example, are stored in physical property tables. 
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A material property table contains the data used to characterize the 

mechanical behavior of materials. Three types of material tables 

(isotropic, orthotropic and anisotropic) are supported by Model Solution 

Linear Statics analysis. The structural behavior of each of these types of 

materials is characterized by constants such as Elastic Modulus, Poisson's 

ratio, Shear Modulus, etc., which are specified in the material property tables. 

In order to represent the model correctly, it is important that the property 

tables are understood and that the entries are correct. 

(vi) Model Checking - Model checking helps in identifying modeling errors in 

the finite element model. Some of the typical errors are duplicate nodes, 

duplicate or missing elements, and highly distorted elements. 

c) Boundary Conditions Task : The Boundary conditions task in IDEAS is 

used to define the loads and other boundary conditions that have to be applied 

to the model. The boundary conditions are collected into five generalized 

menus and the individual boundary conditions are found under these menus. 

These boundary conditions are : 

(i) DOF Sets 

(ii) Constraints 

(iii) Restraints 

(iv) Structural loads 

(v) Heat Transfer loads 

Case sets are used to collect different kinds of boundary conditions that 

belong together for an analysis. The purpose here is twofold : To bring 

together loads, restraints, kinematics and constraints that are pertinent to an 

analysis task. And to be able to do the analysis over again with a different set 

of boundary conditions by defining multiple case sets. The boundary 

conditions for most structural problems are restricted to loads and restraints. 
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6.3.2 Solution 

The finite element model can be solved in the Model Solution task of I-DEAS 

Finite Element Modeling and Analysis. IDEAS Model Solution can solve 

for linear statics, linear dynamics, conduction heat transfer, and potential flow 

analysis on models created in the Pre-processing module. 

a) Model Solution Task : The steps to be performed in the Model Solution 

task are as follows : 

(i) Select the solution type such as linear statics, linear dynamics, etc. 

(ii) Select the execution options such as batch mode, interactive mode, etc. 

(iii) Select the case set to use for the analysis. 

(iv) Select the method of solution such as Verification_Only, or 

Solution_No_Restart. 

(v) Select the type of outputs such as stresses, displacements, strain energies, 

etc. 

(vi) Solve. 

6.3.3 Optimization 

Optimization automatically optimizes the physical properties of models 

created in Pre-processing. This optimization process is based on defined 

loads, and considers stresses, displacements and restraints that have been 

defined. For example, Optimization can be used to run several iterations to 

determine the optimum thickness parameters to minimize weight. 

a) Optimization Task : This task puts Model Solution in a loop to run 

iterations and to optimize the model by using the previous results. The 

following steps are followed in the Optimization task : 

(i) Create a design - A design is created under the Manage_Designs menu. 

This design is created from the finite element model used for the solution. 
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(ii) Setup Optimization - This is done under the Setup_Optimization menu. 

The following selections are available under this menu : 

1. Node groups : If shape optimization is to be performed, node groups are 

selected. The shape of the object can be optimized by changing the location 

of the nodes, and the nodes that have to be moved are selected into groups. 

2. Element groups : The elements that have to be modified are selected into 

an element group. Element groups are created if cross-section, physical, or 

material properties have to be modified. 

3. Optimization variables : The variables that have to be modified are defined, 

for example, thickness of a group of shell elements, node locations, etc. 

4. Optimization constraints : The constraints on the optimization problem are 

defined or the limits on certain variables are defined. For example, maximum 

deflection allowed for a particular node, maximum allowable stress, 

maximum allowable mass, etc. 

(iii) Solution Control - This is done under the Control Solution menu. First 

the method to be used is selected such as linear statics, linear dynamics, etc. 

Then the number of iterations is selected. Then the type of output is selected 

such as stresses, displacements, etc. And finally, the execution options are 

selected such as interactive or batch. 

(iv) Solve - The optimization problem is given to the optimization solver to be 

solved. 

(v) Display the results - Once the solution is finished, the history of mass, 

constraint values, or optimization variables as a function of iteration number 

can be plotted. The results from the optimization including the mass and 

stress history can be displayed and monitored. 
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(vi) Update finite element model - After displaying and analyzing the 

optimized model, it is returned to the original finite element model so as to 

update the old finite element model. 

6.3.4 Post-processing  

Post-processing involves plotting deflections and stresses, and comparing 

these results with the failure criteria imposed on the design such as maximum 

deflection allowed, material static and fatigue strengths, etc. Post-processing 

also includes checking for errors that were not detected while building the 

model. 

Once the solution is finished, the results are displayed, interpreted and 

processed in Post-processing. First the analysis dataset that has to be 

displayed is selected. Then the display type is selected such as deformed 

geometry or contour. For stress data, the data component to be displayed is 

selected. Then the display option is selected such as continuous tone, free 

face, etc. for stress data; hidden line, shaded image, etc. for deflection data. 



CHAPTER 7 

STRUCTURAL OPTIMIZATION 

OF A PROSTHESIS USING I-DEAS 

Since an actual prosthesis was unavailable, the dimensions of the below-knee 

prosthesis were obtained by means of geometrical approximation of the shank 

and foot. The two modules of I-DEAS used in this study were Solid 

Modeling and Finite Element Modeling and Analysis. The steps followed in 

the finite element analysis of this model are explained as follows : 

7.1 Solid Modeling 

The solid model of the prosthesis was created in the Object_Modeling 

task of the I-DEAS Solid Modeling family. Initially the geometry was 

created using profiles in the Construction_Geometry task. Profile points for 

seven sections were created by using the obtained measurements. Splines 

were fit through the points of each section to create seven profiles. The path 

method was used to create a skin group from these profiles. This method 

uses another profile to define a path and the section profiles are "hung" on it. 

A path profile was therefore created to provide a path for skinning betweeen 

the seven profiles. The seven profile cross-sections and the path profile used 

are shown in Appendix A. 

The profiles were positioned at predefined points on the path and a skin 

group was created through the profiles. After the skin group was created, it 

was used in the Object_Modeling task to create a closed solid object as 

shown in Appendix B.1. The Skin command in the Create menu of 

Object_Modeling was used to create this solid model of the prosthesis. Since 
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this model is symmetric about the XY plane (i.e. at Z = 0), the loading on it 

will also be symmetric. In such a case, it is possible to model only half of the 

problem. Therefore, the solid model is cut with the XY plane using the Cut 

command in the Construction menu. The part of the object on the positive 

side of the plane was saved into a file. 

7.2 Finite Element Modeling and Analysis 

The solid model created in Object_ Modeling was transferred to 

FE_Modeling_&_Analysis to create a finite element model of the prosthesis. 

A mesh was generated on the object using the Generate_Mesh command in 

the Mesh_Creation task. The global element length was selected as 0.36cm. 

The model contained 535 nodes and 235 elements. The finite element model 

of the prosthesis is shown in Appendix B.2. 

7.2.1 Physical properties 

Thin triangular and quadrilateral shell elements were used to model the 

prosthetic structure. Thin shell elements can be effectively used for structures 

with relatively thin walls such as molded plastic where bending and in-plain 

forces are important. Using thin shell elements assumes that the stress can 

only vary linearly through the thickness, which is a limitation. However, a 

model made up of thin shell elements takes much less time to solve. The 

thickness of the thin shell elements was assumed to be 0.5 cm which was 

entered as a physical property in the Mesh_Creation task. 
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Table 7.1  Material properties of the below-knee 

prosthesis (Reference 35)  

Material  

Elastic Modulus 

(MPa) 

Specific 
Gravity 

Poisson's 
Ratio 

Fiberglass 
reinforced 
polyster resin 

1.4 * 10000 1.9 0.13 

Fiberglass 
reinforced 
epoxy 

3.9 * 10000 1.84 0.13 

Polystyrene 1.4 * 1000 1.06 0,13 
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7.2.2 Material properties 

The elements were assumed to have isotropic material properties. It was 

decided to utilize qualities of certain fiber reinforced composites to provide 

some form of assistance in initiating heel rise at toe-off and in moving the 

prosthesis forward. Some of these composites can be designed thin enough 

to flex and thick enough to maintain structural rigidity. The advantages of 

these composites include increased flexibility and stress absorption an 

reduced weight. 

Table 7.1 lists the material properties that were used in the analysis. 

Material properties include Youngs Modulus of elasticity, Poisson's ratio, 

yield strength, etc. Each of these sets of material properties were applied to 

the finite element model in order to determine the importance of different 

material properties in the design of the prosthesis. 

7.2.3 Boundary Conditions 

The Boundary_Conditions task was used to build analysis case sets 

containing loads and restraint boundary conditions to be applied to the model. 

Most structural problems only need structural loads and restraints. In this 

case, two different loading conditions were analyzed. 

A resultant force of 1000N (for a person weighing 70 kg) was used as 

one of the loading conditions. This force was applied at a nodes located in 

the heel to simulate heel strike. The second loading condition was used to 

simulate the stance phase of the gait cycle. This load case consisted of a 

distributed load (1000N) applied to the knee and directed parallel to the axis 

of the shank. 
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Since only half of the model was being analyzed, symmetric boundary 

conditions were created on the XY plane by using the Restraints command in 

the Boundary_Conditions task (Appendix B.3). To balance the applied load 

for the stance phase, all the nodes at the base of the foot were restrained. To 

balance the force during heel strike, the nodes at the knee were rigidly 

restrained. Analysis case sets were created for the two loading conditions. 

7.2.4 Model Solution 

Both the case sets that were created in the Boundary_Conditions task 

were used in the Model Solution task to obtain the solution. The linear 

statics solution type and the interactive execution option were selected. 

Analysis data sets were formed which included displacement and stress 

output datasets. Finally, the finite element model was solved. 

7.2.5 Post Processing 

In this task the results obtained after the solution were displayed and 

interpreted. First the stored Analysis datasets were selected. The 

displacements data sets were used to determine the deflection of the 

prosthesis as the result of the applied load. The stress datasets were used to 

display maximum principal stresses, normal stresses, shear stresses and Von 

Mises stresses. Von Mises stress is generally considered as the yield 

indicator for most materials. It was therefore used to evaluate the general 

distribution of the stresses on the prosthesis. The contour menu was selected 

to display the stresses in various formats. The deformed geometry menu was 

selected to display the deflection of the prosthesis. Various display options 

such as continous tone and free face for stress data and hidden line for 

deflection data were used. 



CHAPTER 8 

RESULTS  

Maximum principal stresses and Von Mises stresses were obtained from 

finite element analysis of the model of the prosthesis for the loading condition 

of heel-strike. The stress distributions were compared for varying material 

properties of the prosthesis. 

The Maximum Principal and Von Mises stress distributions for the 

composite material polystyrene, which has an Elastic Modulus of 1.4*103  

MPa, are presented in Appendix C.1 and C.2. The weight of the prosthesis 

using polystyrene was found to be 1.094 kg. Similarly, the Maximum 

Principal and Von Mises stress distributions for fiber glass reinforced 

polyester resin, which has an Elastic Modulus of 1.4*104  MPa, are presented 

in Appendix C.3 and C.4. The weight of this prosthesis was found to be 

1.9598 kg. 

When the stress distributions of the two designs were compared the 

pattern of the stress distributions was not different but there was a large 

difference in the magnitudes of the stresses. For both the polyester resin and 

the polystyrene designs, the maximum principal stresses obtained from the 

analysis were highest (about 63 KPa & 65 KPa respectively) at the posterior 

knee region of the prosthesis. The Von Mises stresses obtained were highest 

(60 KPa & 52 KPa respectively) at the anterior and posterior tips of the knee 

region. 

The Maximum Principal and Von Mises stress distributions for the 

loading condition for the foot-flat are presented in Appendix C.5 and C.6 for 

the composite material polystyrene. The stress distributions for glass 

reinforced polyester are presented in Appendix C.7 and C.8. The pattern of 
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Table 8.1 Weights of the solid and hollow models of 
the prosthesis for different materials  

Material Weight of solid Weight of hollow 

Fiberglass-reinforced 
polyester resin 

1.9798 kg. 0.3713 kg. 

Fiberglass-reinforced 
epoxy 

1.9173 kg. 0.3596 kg. 

Polystyrene 1.094 kg. 0.2052 kg. 
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the stress distributions for foot-flat was not significantly different but there 

was a significant difference in the stress magnitudes. For both the polyester 

resin and polystyrene designs, the maximum principal stresses obtained were 

highest (about 16 KPa and 18 KPa respectively) at the anterior ankle region 

of the prosthesis. The Von Mises stresses were highest (26 KPa and 25 KPa) 

at the posterior knee region of the prosthesis. 

	

The resulting stress distributions indicated that higher stresses are 

present during the loading condition of heel-strike compared to the loading 

condition of foot-flat. Also, the weight of the polystyrene prosthesis (1.094 

kg.) was less than the weight of the glass reinforced polyester prosthesis 

(1.9598 kg.). The disadvantage of the low weight polystyrene prosthesis is 

that the displacement (deformation) of this prosthesis under both the loading 

conditions is large as presented in Appendix C.9 and C.10. This results in 

problems such as instability and loss of balance during walking on the part of 

the amputee. In such a case, a trade-off between weight and stress 

distribution should be made in order to design an optimal prosthesis. 

	

A hollow model of the prosthesis was constructed in order to determine 

the effect of the geometry of the prosthesis on its weight. The weight of the 

initial model was 1.9598 kg. for the fiber glass reinforced polyester 

(Appendix C.11). The hollow model was constructed by scaling the initial 

model by a factor of 0.9. Then the initial model was cut by this scaled model, 

which resulted in the hollow model. The hollow model had a weight of 

0.3713 kg. which is a reduction of about 85-90% from the initial model 

(Appendix C.12). The weights of the solid and hollow models of the 

prosthesis obtained for varying material properties are shown in Table 8.1. 



CHAPTER 9 

CONCLUSIONS AND RECOMMENDATIONS 

9.1 Conclusions 

The study of energy storing prosthetic feet in this thesis have led to the 

conclusion that energy storing prosthetic feet approach normal running gait 

pattern more closely than traditional prosthetic feet. Energy storing prosthetic 

feet store energy during stance and release this energy during toe-off to 

passively propel the limb. These feet allow the amputee to walk and run 

smoothly and conserve more energy. 

The Flex Foot provides the greatest energy storing potential and can be 

used for a wide range of activities such as running and vigorous sports. For 

the geriatric amputee, energy storing prosthetic feet provide a decrease in the 

effort required for walking due to low weight and increased responsiveness. 

For the young and athletic amputee, the flexibility of energy storing prosthetic 

feet facilitate participation in sports. 

While prescribing a prosthetic foot for an amputee, the design 

characteristics, materials, advantages and disadvantages of energy storing 

prosthetic feet should be considered. The age, weight, financial resources 

and activity level of the amputee should also be considered in order to 

provide the amputee with the most optimal prosthesis. 

Research studies, comparing gait in amputees using different prosthetic 

feet, provide quantitative information to help in the selection of a prosthetic 

foot. Most of the research studies reviewed here confirmed to a certain 

extent the energy conserving capabilities of energy storing prosthetic feet 

compared to conventional feet. 

61  



62  

In this thesis, a finite element model of a prosthesis was used to compare 

stress distributions for the loading conditions of heel-strike and foot-flat. 

Various geometric and material properties were represented in this design. 

Optimization was repeated while varying the geometry and material 

properties of the prosthesis to determine if the weight of the prosthesis could 

be reduced by the use of different geometries and materials. 

From this study, we can conclude that finite element modeling and 

analysis is very useful in identifying the importance of geometry, material 

properties and loading conditions in the design of a prosthesis. A particular 

design of a prosthesis can be evaluated for weight and stress distribution, 

without actually fabricating and clinically testing a prosthesis, which is 

expensive and time-consuming. 

A prosthesis composed of a material having a low modulus of elasticity 

had a reduced weight compared to the prosthesis composed of the high 

modulus material. The results indicate that fabricating a prosthesis, with a 

material having an elastic modulus 10 times smaller, generally results in 

reduction of stresses within the prosthesis. Therefore, in terms of material 

choice, polystyrene is preferred over glass reinforced polyester resin because 

it produces more favorable conditions. 

A lower modulus model results in a more flexible prosthesis, which is 

definitely an advantage for a young and athletic amputee. However, the low 

modulus material may result in instability in walking for the geriatric amputee, 

due to the increased deformation of the prosthesis. Also, the fatigue or 

deformation limit influence the extent to which the modulus of elasticity can 

be reduced in the design. 
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The stress distributions for the loading condition of heel-strike were 

generally higher compared to those for the loading condition of foot-flat. A 

hollow model resulted in a reduction of weight (about 90%) compared to the 

solid model. 

These results showed a significant dependence of stress within the 

prosthesis on the loading conditions, geometry and material properties of the 

prosthesis. Also, the weight of the prosthesis was found to be dependent 

upon the material properties and the geometry of the prosthesis. Therefore, 

from these results a better understanding of the behavior and the requirements 

of a below-knee prosthesis was obtained. 

9.2 Recommendations 

More clinical research studies, comparing gait in amputees using different 

prosthetic feet should be carried out order to provide objective data regarding 

gait characteristics, energy cost and subjective preferences. Only quantitative 

and scientific studies, such as those reviewed in this thesis, will be able to 

confirm or deny the functional advantages obtained from energy storing 

prosthetic feet. 

One limitation of this finite element study is the approximation of the 

prosthetic structure. In the solid model, the profiles used may not completely 

model the actual shape of the prosthesis. Most of the current shape 

measurement methods rely on artisan techniques. Such techniques depend on 

approximate measurements and the artisans perception of the amputees 

normal limb. 

To overcome such limitations, a CAD/CAM system has been developed 

at the Kessler Institute of Rehabilitation (38) for producing the outer, 

cosmetic shape of the prosthesis. The system uses a 3D shape sensing 



64 

instrument to measure the amputees contralateral limb. This shape can be 

easily quantified and reproduced. A PC-based CAD program accepts the 

shape data from the shape sensing instrument and creates a computer model 

of the prosthesis. This program is similar to the Solid Modeling family of I--

DEAS, which can also be used to develop a solid model of the prosthesis. 

This shape can be modified if desired to obtain optimal weight and 

stress distributions and the modified shape is then output to a computer-

numerically-controlled (CNC) carving machine which carves the desired 

shape from the prosthetic material. 

The advantage of such a CAD/CAM system is that the system may be 

used to fabricate several types of prosthesis for use in the evaluation of a 

design. The variable parameters in each design can be monitored. Such a 

technique provides a scientific and quantitative base for developments in 

prosthetic design. Several different designs can be evaluated prior to use by 

using finite element analysis. Changes can be made based on the finite 

element analysis and the design that provides the most desirable weight and 

stresss distributions can be selected. 

This study assumed the model of the prosthesis to be composed of a 

material having a linear modulus of elasticity. Further studies in the design of 

a below-knee prosthesis could take into consideration a material having a 

non-linear modulus of elasticity. 

In the future, it is very important to use scientific principles in prosthetic 

design and to test and evaluate new designs effectively. Experimental studies 

should be carried out to verify the results obtained and to obtain data which 

can be applied to the computer models. Finally, any future progress in this 

area of biomechanics requires a detailed knowledge of both applied 

mechanics and biological factors. 
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