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ABSTRACT 

Vibratory Size Segregation of Particulate Matter 

by 
Anthony La Rosa 

Size segregation imposed by vibration or shaking is an ubiquitous phenomenon 

whereby a large particle will rise to the top of a bed of smaller spheres upon vibration. 

Several mechanisms based on computer simulations have been proposed, however a 

complete theory remains elusive. The objective of this study was to perform 

experiments to study vibratory segregation of particles for varying size ratios and 

vibration parameters. More specifically, the rise time of a sphere from the bottom to 

the top of a vibrated bed was examined. It was found that the rise time decreased with 

an increase in amplitude for fixed frequencies. In addition, an increase in frequency led 

to a decrease in rise time for fixed amplitudes. Also, particles of all diameter ratios, 

including unity, rose to the top of the vibrated bed. Large diameter ratios showed a 

decrease in rise time when compared to that of smaller diameter ratios. It was found 

that convective flows within the vibrated system have a strong influence on the rising 

particles. Based on these findings, conclusions were drawn which lead to a hypothesis 

explaining the difference in rise time for different diameter ratios in a vibrated bed. 
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CHAPTER 1 
INTRODUCTION  

Particulate matter size segregation imposed by vibration or shaking has been an 

observed phenomenon that has long plagued the granular materials handling industry. 

Though much effort has been exhausted to reduce particle segregation, little is known 

about its nature. Various mechanisms of segregation have been identified, but a 

consistent theory still remains elusive. In this study, segregation induced by vibration 

was examined experimentally. 

1.1 Literature Survey  

To date, research in this field involves the formulation and identification of mechanisms 

that contribute to particle size segregation. In the context of this work, size 

segregation is the resulting separation of different size particulates in a granular mixture 

caused by mechanical processes such as pouring, mixing, vibration, and shearing. The 

processes listed, though diverse, all rely on one major factor, i.e., particle size 

difference [Olsen and Rippie, Williams (17,29)]. Although segregation may be 

desirable in some applications, it is generally problematic where homogeneity of a 

granular mass is required. The main avenues used to explore this field are through 

observation, experimentation and computer simulation. This phenomenon was first 

observed in nature in the form of avalanches [Shreve (25)]. Later, it was studied 

experimentally in vibrated beds [Brown (4), Olsen & Rippie (17), Williams (29,30), 

Ahmad & Smalley (2), Jaeger and Nagel (14)]. More recently, computer simulated 

segregation models have been examined [Meakin (12,13), Rosato (21,22,23), and Haff 

& Werner (10)]. 

1  
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Segregation occurring from the pouring of materials having size discrepancies is 

well known [Weidenbaum (28), Brown (4)]. When a material containing different size 

particles is poured into a heap, the larger particles have a greater tendency to roll down 

the inclined sides of the heap, while the smaller particles tend to stay in the core of the 

formed cone-shaped heap. This occurrence has significant implications in the materials 

handling industry. Frequently, homogeneous mixtures are released onto conveyors in 

heaps for transport where some degree of segregation occurs regardless of previous 

preparation (mixing). 

Mixing is an anti segregation process used in the granular materials industry to 

force homogeneity. However, the mixing process may lead to unmixing [Williams 

(31,32)]. Mixing can produce temporary equilibrium where homogeneity exists; but 

this situation changes as mixing continues. Williams explains this by considering a 

granular mixture in which the large spheres lie at the bottom of the bulk. In such a 

sample, mixing will force the larger spheres to the top. Thus, at some point during 

their movement towards the top they will reach a near perfect quality mix. Lacey [15] 

postulated three basic mechanisms of mixing: convective, diffusive and shear mixing. 

The convective mixer is classified as non-segregating while the shear and diffusive 

mixer are segregating mixers. The non-segregating mixers rely on the motion of 

material while segregating mixers rely on surface effects (tumbling). In the material 

handling process, it is essential to keep mixing as a last step. 

In addition to pouring segregation, vibration and percolation also counteract the 

mixing process during material handling. Percolation is the process by which smaller 

particles sift through the gaps between large particle in a granular mixture under the 

influence of gravity. In a study by Bridgewater [24], percolation was observed in 

binary mixtures where the percolation rate was determined by the aspect ratio. A 

larger aspect ratio gave more percolation than a smaller aspect ratio with the same 
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strain. This mechanism is self-evident, however when size discrepancy diminishes in 

the aspect ratio and sifting cannot occur, vibration can promote size segregation. 

Indeed, single large particles have been made to rise in a vibrated bed of comparably 

smaller spheres [Olsen & Rippie (17,19)]. In this study, segregation induced by 

vibration is studied. 

Williams [29] observed the segregation of a large particle by vibrating a bed of 

comparably smaller spheres. It was found that the large sphere rose even when it was 

more dense then the bed spheres. Segregation of a larger sphere of a lesser density was 

explained by buoyancy. However, segregation still occurred when the density of the 

larger spheres was greater than that of the surrounding bed. Williams hypothesizes a 

pressure differential as an explanation for this occurrence. The pressure beneath the 

large sphere must be great enough so that the smaller spheres below it experience no 

movement. Thus, if the spheres surrounding the large sphere cause an upward 

movement of the large sphere, the spheres below the large sphere will support the large 

sphere from falling by flowing beneath the large sphere and holding their position. 

After obtaining a certain height, the pressure drops and the large sphere can no longer 

lock the smaller spheres beneath it. A continuous series of such moves can be 

compared to that of a ratchet. However, this mechanism does not explain why less 

dense spheres also rise in a vibrated bed. Also, wall effects were not considered by 

Williams. 

Similar experiments, though more extensive, were carried out by Olsen & 

Rippie [17]. Here segregation of a binary system was examined. The segregation of 

glass and steel spheres ranging from 3/32" - 1/4" diameter were examined in a 3/4" 

diameter by 6" high cylinder. It was found that segregation of the systems lead to an 

equilibrium state described by first-order kinetics. In addition, segregation rate 

(determined by the method of least squares from the kinetic data) was found to be 
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influenced strongly by size ratios. Experiments were carried out at a frequency of 17.1 

Hz and 0.100 inch amplitude with various binary combinations. However, no 

correlation between frequency of vibration and segregation rate was made. Moreover, 

wall effects were completely ignored. The diameter of the cylinder in the experimental 

set-up was small, at best only eight diameters compared to that of the bed particles, 

which could quite possibly affect packing and consequently affect segregation. 

Later, Ahmad and Smalley [2] studied the segregation rate of a single large 

particle system. They sought factors which influenced the process. A list of 

parameters including initial position, frequency, bed acceleration, bed depth and particle 

size, shape and density were examined in a system similar to that of Williams. Here the 

aspect ratio between bed particles and the large sphere was large, about 20:1. As in 

most other investigations, particle size was found the most influential factor. More 

interesting, acceleration was found to be a critical variable. It was found here that 

segregation time is inversely proportional to acceleration. That is, for fixed 

frequencies, segregation time decreased with acceleration increase. 

Parsons [18] studied the effects of vibration on the particle size distribution. 

Experiments performed on granular coarse mixtures, were an attempt to simulate, in a 

controlled manner, the handling which occurs during material transport. Segregation 

was present within a wide distribution with fines sifting or percolating. Conversely, 

narrow particle size distribution led to little difference or segregation. 

Jaeger and Nagel [14] conducted experiments similar to those previously 

mentioned. Here the segregation of a single large glass bead through a bed of smaller 

beads under vibration was examined. Unlike previous studies, the mechanism of 

segregation was identified as convection rather than the geometric mechanism of 

particle rearrangement and piling [12,7,21,22]. It was found that upon vibration, a 

symmetric convective flow was produced throughout the bed. It is on this flow that 



5  

particles larger then the convective zone are pushed upward. When the convection was 

eliminated from the experiment, no segregation occurred. In addition, variance in the 

segregation rate was based on bed depth rather then particle size difference. 

Simulations have also been put forward to explain the mechanism of 

segregation. Rosato [19,20] used a modified Monte Carlo simulation in attempt to 

isolate several parameters which influence segregation, i.e., particle size ratios and 

shaking amplitude. Results from the simulation showed that size differences among 

the particles, modeled as disks, created voids beneath the large disk under vibration. 

The voids created would be filled by the smaller disks which in turn cause the large disk 

to rise in the bed. In addition, increasing the shaking amplitude increased the 

segregation rate of the large particle in qualitative agreement with those found in 

previous experiments [Ahmad and Smalley (2)]. 

In a simulation done by Jullien, Meakin and Pavlovitch [12], a random packing 

of two or more different size spheres is generated using the model and algorithm of 

Visscher and Bolsterli [27]. In a manner analogous to Rosato [21], particles are 

initially packed and arranged in ascending height of their centers. The mixture is 

uniformly lifted and then allowed to repack, thereby simulating shaking. Each packing 

is allowed to come to rest before the next packing or "shake". It was found that 

segregation rate increases with increase in particle size difference up to a critical size 

ratio. The monotonic motion found was explained via an analytical model involving 

the angle of repose as a parameter. This was deduced by assuming that a conical 

region is formed tangent and below the large sphere during shaking. This void is then 

filled by smaller spheres during vibration, thus providing the upward motion. The 

segregation rate is determined by the displacement after a shake. The outcome of the 

simulation produced a geometric explanation of the segregation in agreement with 

Rosato [21] while also postulating the existence of a critical size ratio. 
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Using both experimentation and simulation, Duran et al [7] examined 

segregation due to vibration. Here a 2-D cell filled with a granular medium, consisting 

of many small disks and a single large disk, was used. It was found that under induced 

agitation (step-by-step lifts) the large disk created a void in the medium. The large disk 

then comes to rest and is either supported by the underlying discs or by a few 

surrounding disks in a "vault" situation leaving a void beneath the large disk. In turn, 

the large disk gets lifted when the surrounding supporting disks slip into the void 

beneath the large disk caused by additional agitation. This is termed the "arching" 

model from which an algorithm was founded. Contrary to previous simulations [Jullien 

et al. (12) and Rosato et al. (21)], avalanching was used as the result of the particle 

ascent rather then the cause. The results of the simulation produced a critical size ratio 

for segregation which is in agreement with Jullien [12]. In addition, it was found 

experimentally that a large sphere in a smaller mass will segregate at a constant rate 

while a smaller sphere will have intermittent motion which is supported by the arching 

model. 

Haff and Werner [10] also used computer simulation to study segregation. 

Here a 2-d system of inelastic frictional discs was studied. A single large disk was 

placed on the bottom of a bed of similar smaller discs. Under induced agitation, a 

harmonic oscillation in both the vertical and horizontal directions, the large particle 

moved towards the top of the bed. The principal mechanism for segregation was 

attributed to shear driven rotational motion. The rolling motion of the large particle 

caused it to move up and over adjacent smaller particles. Since the segregation here 

was caused by shear induced by the friction between particles, frictionless particles 

would not have this rotational motion and therefore could not segregate. 

In addition to the above mentioned mechanisms, other parameters which affect 

segregation have been examined, such as static electricity. It has been found that an 



7  

increase of static charge in particulate systems eliminates or reduces to some degree the 

rate of particle interaction [Abouzeid and Fuerstenau (1), Boland and Geldart (3)]. 

Through experimental means, Bolan and Geldert found that varying the relative 

humidity of the examined system altered the static electricity discharge. This discharge 

in turn produced notable changes in segregation rate. In general, lower humidity 

allowed for greater static build-up which decreased with higher humidity. A median 

humidity, one which allowed repeatability of results, was found at 60%. Too much 

humidity, (above 70%), had an inverse effect because of moisture build up. The 

addition of moisture produced cohesiveness and agglomerates formed which 

subsequently affect particle movement. 

	

It is clear from the above that this field needs further investigation. The 

approach in this effort is experimental. The experiments in this study will be mainly 

concerned with the segregation time and rate, based on a mean velocity, of a large 

sphere through a bed of vibrated smaller spheres. For four fixed frequencies, a variety 

of amplitudes and size ratios will be examined. In addition, the influence which 

convective currents produce during vibration will be examined. Also, wall effects will 

be investigated to understand their contribution to vibratory segregation. 

1.2 Motivation  

The driving impetus behind this study is to gain further insight into the phenomenon of 

particle segregation through experimentation. More specifically, the author sought an 

understanding of effect and the degree of effect that various parameters have on 

vibratory segregation. Alternatively, it is hoped to gain knowledge in the field to 

advance the methods used in industry from trial and error to a science. 
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1.3 Outline of Chapters  

Chapter 2 describes the experimental procedures and the angle of repose results for the 

material used in the experiments. In addition, the significance and the role of the angle 

of repose in the study will be discussed. In Chapter 3, the experimental methods used 

to determine the segregation rate will be described as well as the experimental setup. 

The experimental data will be presented and analyzed in Chapter 4. Finally, in Chapter 

5, conclusions and summaries drawn from the study will be presented, as well as 

practical considerations for future experiments. 



CHAPTER 2 
THE ANGLE OF REPOSE 

The angle of inclination of a heap of granular material between its surface and the 

horizontal is known as the angle of repose. The angle of repose is considered to be a 

measure of the flowability of the granular medium and is thus a property of the 

material. This angle for the material used in the experiment is obtained since it has 

been postulated to have a strong effect on particle size segregation. [Meakin (12)] 

2.1 Experimental Setup 

There are various experimental methods for determining the angle of repose. Six such 

methods are described by Grey [8]. However, there is controversy as to which angle 

gives the "correct" measure of the angle of repose. In this experiment, three different 

methods were employed for comparison purposes. All results presented here were 

based on a minimum of ten test runs (see Appendix C). The first method involves the 

pouring of the 1/8" diameter acrylic spheres into a 2-7/8" diameter cylindrical container 

from which the naturally formed heap is studied (see Fig. 1). Using the Pulnix TM-

7CN camera, the image of the heap was captured using AFG (Advanced Frame 

Grabber) and down-loaded into a PC where the image processing was done using the 

Visilog (image processing software) library of routines. Here the captured grey-level 

image was processed and saved to a file as binary edge data. The file was then loaded 

onto a Sun Sparc 2 workstation where the binary edge data was converted by means of 

a filter to x-y format. The converted image was then plotted using Templegraph*  , a 

software plotting package. A linear fit was obtained using Templegraph which then 

gave the slope of the heap and hence the angle of repose (see Appendix C for a  

* Templegraph, Mihalisin Associates Inc. 1992. 

9  
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Figure 1 Cylindrical setup for the determination 
of the angle of repose by pouring . 
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complete listing or Figure 2 for an example). An alternate method using a robust fitting 

technique [6] was utilized to fit the data. The results found here were not significantly 

different than those obtained from Templegraph (see Table 1). From these 

experiments, the angle of repose (Θr) of the acrylic spheres via the heap method was 

30.04°+/- .72° (see Table 1). 

An angle of repose was also determined from a rotating drum experiment. The 

setup consisted of miniature lathe, Jensen Model 334B400, fitted with a 2-3/4" 

diameter acrylic cylinder (see Fig. 3a). The face of the cylinder that was chucked to 

the lathe was opaque while the opposing surface was clear for visual purposes (see Fig. 

3b). The lathe was rotated at various rpm's until the 1/8" diameter acrylic spheres 

reached a state where visual inspection of the formed heap was possible. At this point 

the dynamic heap angle was captured, processed and analyzed in the same manner as 

described above. Here the angle of repose was found to be 34.70°+/-1.37° (see Table 

1). 

Finally, the angle of repose was determined by means of draining a rectangular 

acrylic box. The box was constructed with three rigid sides and an adjustable fourth 

side (see Fig. 4). The fourth side placement could be varied in the vertical upward 

direction, thus allowing for an opening in one side of the box. The box was then filled 

with the spherical medium and drained through an opening, approximately five times 

the sizes of the spheres. Once again the angle of the material left after draining was 

captured, processed and analyzed so that the 2-D slope could be determined. Here the 

angle of repose was found to be 32.23°+/-1.04° (see Table 1). 
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Figure 2  Sample of generated plot for angle of repose data. 
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Run Type Avg. OR 
(Templegraph) 

Avg. Θ R  
(Alt. Technique[6]) 

Poured Angle 
of Repose 

30.04°+/-.72° 29.99°+/-.76° 

Dynamic Angle 
of Repose 

34.70°+/-1.37° 

 NA 

Drained Angle 
of Repose 

32.23°+/-l.04° NA 

Table 1  Summarized Angle of Repose Data. 



Figure 3a Miniature lathe apparatus. 
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Figure 3b  Miniature lathe apparatus for determining the dynamic angle of repose. 
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Figure 4 Drainage cell setup for determination of the angle of repose. 
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2.2 Discussion  

Since three different results were found for the same material, a selection criteria was 

selected, based on that given by Brown and Richards [5], i.e., the steepest angle is 

chosen as the repose angle. The basis of this selection is that the angle closest to the 

slippage angle, that angle separating stationary material from flowing material in a 

formed heap, should be selected. 

Having selected an angle of repose, the analytical model of Meakin et al [12] 

can be examined. They derived an expression for the critical size ratio Qc below which 

segregation should not occur, i.e., 

Qc = (4/ρ)1/3  sin2/3Θr/cosΘr 

In this expression, the angle of repose (Θr) appears as a parameter. For this model, it 

is assumed that a geometric piling mechanism is responsible for segregation (see 

Chapter 1). Upon substituting Θr = 34.70° (see Table 1) and a density of small sphere 

packing of ρ  = .58 [12] we find that Qc = 1.45. In this particular study, a Qc = 1.45 

corresponds to using a large sphere size of 3/16" diameter with 1/8" diameter smaller 

spheres. Knowing this, the critical size ratio can possibly be experimentally verified 

provided no convection exists in the system. In this particular study, convection was 

observed, thus the critical diameter ratio will not be examined. 



CHAPTER 3 
EXPERIMENTAL INVESTIGATION 

Experiments were conducted on the rising of a large sphere through a bed of smaller 

vibrated spheres for a series of varying parameters. Initially, the large sphere was 

placed at the bottom of a transparent cylinder filled with a smaller spherical medium. 

The entire content, being fixed to a vibratory unit, was shaken with a fixed bed height 

using four different frequencies and a spread of amplitudes. The segregation time of 

the particle was measured from the base of the cylinder to the top of the bed using the 

timing feature of a Kodak*  high-speed video system. This procedure was repeated for 

three different large particles in order to examine the effect of size, frequency and 

amplitude, on segregation. At complete list of parameters used in the experiments is 

given in Chapter 4. 

3.1 Experimental Equipment 

For the  study, a 2-7/8" inner diameter by 8" high acrylic cylinder, a mass of 1/8" 

diameter acrylic spheres and a series of larger acrylic spheres (varying from 1/8" to 

3/4" in 1/8" increments) was used (see Fig. 5). The vibratory equipment consisted 

of an electromagnetic shaker and head powered by a power amplifier. The 

equipment was controlled by an exciter unit which allowed for the variation of 

frequency. The output of the controller is sinusoidal in a vertical direction and is 

adjustable by a digital meter to three decimal places. In addition, the 

displacement/amplitude, velocity and acceleration of the shaking head could be set 

or read using an accelerometer as a feedback loop. The measurements were again 

read from a digital meter to three decimal places. All of the vibratory equipment 

* Kodak EktaPro 1000 High Speed Digital Imaging System.  

17  
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Figure 5 Experimental cell and material used for vibratory experiments. 
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was manufactured by Bruell and Kjaer (a detailed list of all model numbers are 

given in Appendix D). Additional equipment consisted of a humidifier with a built 

in humidstat as well as a hygrometer for reading both the relative humidity and 

temperature of the surrounding area. Also an Kodak EktaPro 1000 high-speed 

video image processing system was used to capture the particles movement. All 

the equipment was arranged in such a manner (described below) such that they 

were enclosed by a canvas chamber to maintain proper humidity conditions (see 

Fig. 6a & 6b). A schematic of the setup is given in Figure 6c. 

3.2 Experimental Procedure  

Initially the frequency was selected using the exciter control unit. In these experiments, 

frequencies ranging from 10Hz to 25Hz in increments of 5Hz were used. Next, the 

amplitude was selected by using the feedback provided from the accelerometer. Here 

the amplitude ranged from .5" (the maximum capability of the equipment) to a lower 

critical cut-off limit governed by segregation time. Then, the size of the large particle is 

selected. In this study we chose three particle diameters of 3/4", 3/8", and 1/8" which 

when compared to the bed spheres corresponded to a 6, 3 and 1:1 diameter ratio, 

respectively. Following this, the particle is placed in the bottom of the cylinder and 

filled, by pouring randomly with smaller 1/8" diameter bed spheres to a bed height 

corresponding to 26 layers of the smaller sphere. The cylinder, completely transparent, 

is fixed onto a aluminum base which in turn is mounted on the shaking head. The 

EktaPro 1000 is then mounted by tripod directly above the mounted cylinder so that 

the top of the bed can be viewed. Auxiliary lighting, which is necessary for proper 

recording, is then turned on. Next, the humidity is set to about 50% using the 
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Figure 6a  Canvas enclosure for vibratory equipment. 
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Figure 6b Vibratory equipment and humidifier setup. 
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Figure 6c  Schematic of experimental apparatus. 
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humidifier and hygrometer described above. Now complete, the camera and shaker 

are manually synchronized and powered up. The setup runs until the large sphere 

rises to the top of the bed. The large sphere is detected optically via a monitor 

which is contained in the Kodak EktaPro 1000 system. Once a series of runs are 

complete, the recorded tapes are viewed to obtain the time of travel for the rising 

of the large sphere in the vibrated bed. The series of runs last for the allotted time 

on the video tape. This procedure is carried out carefully five times 

(see Appendix B) for each run for all of the experiments to assure accuracy 

of results. All the parameters mentioned are controllable and repeatable. 



CHAPTER 4 
EXPERIMENTAL RESULTS AND ANALYSIS 

As detailed in Chapter 3, "segregation" in a vibrated bed was examined. At this point 

segregation is used to denote the rise of the selected sphere through the bed. The 

reason for this distinction will be made apparent in the following sections of this 

chapter. 

The experiments were run varying a list of parameters including: 

Frequency 
Amplitude 
Particles Size Difference 
Wall Conditions 

From the recorded data, plots were generated to analyze and interpret the data. In 

general, the plots showed results which were in qualitative agreement with two 

previous studies Jullien [12] and Nagel [14], but which do not support each other. The 

conflict lies in the degree of influence that particle size difference (diameter ratio 

between large and bed spheres) makes in a vibrated system. In this study it was found 

that particle difference influences segregation time and rates quantitatively as in Jullien 

[12]. On the later side, Nagel [14] found that particle size difference had no qualitative 

effect on segregation even as the diameter ratio became unity. Since the results found 

in this study have not been explained by recent theories, a hypothesis is put forward to 

explain this discrepancy. It is postulated that competition exists among the particles 

within a convective flow, thus being responsible for particle size discrepancies found in 

a vibrated bed for this study. In what follows, an attempt will be made to justify the 

stated hypothesis. 
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4.1 Results  

The results of four typical runs on a system having a diameter ratio of 6:1 are shown in 

Fig. 7 in Appendix A. These results are for smooth wall conditions which refers to a 

polished acrylic surface. Frequencies of 10, 15, 20 and 25 Hz were run for a spread of 

amplitudes ranging from .05" to .5", peak to peak. From the plot it is clear that 

segregation time decreases with an increase in amplitude for a fixed frequency. 

Furthermore, segregation time decreases as frequency increases for fixed amplitudes. 

The trends of the plotted curves appear to be asymptotic, thus suggesting that 

segregation time becomes very large for a small amplitude. The segregation rate is 

plotted in Figure 8 (see Appendix A) using the data shown in Figure 7. This curve was 

generated by dividing the segregation time by the number of layers through which the 

larger sphere traveled, thus giving the mean velocity or rate. Here we find four curves 

which appear linear. Figure 8 appears the inverse of Figure 7, but leads to conclusions 

similar to those of the Figure 7. The results of Figure 7 were scaled by their relative 

acceleration ratio F = aω2/g and plotted in Figure 9 (see Appendix A). All of the 

scaled data falls on one curve indicating that segregation time in these experiments is 

dependent on acceleration rate only. Identical experimental runs were started, with a 

diameter ratio of 3, to examine the dependence of segregation time with diameter ratio. 

However, early on in the experiment, the rise of the large sphere to the bed surface 

completely stopped. The large sphere could not be made to rise regardless of aspect 

ratio, frequency and/or amplitude combination. A series of parameters were examined 

in order to determine the cause of this as discussed below. 

Initially, the spheres were removed from the experimental setup and cleaned in 

a mild soap and water solution. This was done to remove any dirt buildup which could 

have changed the spheres' surface properties which ultimately could affect segregation. 

Since this was ineffective, a new cylinder was constructed to regain initial wall 
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conditions. Repeated attempts to achieve segregation at various vibratory conditions 

failed. Upon closer inspection, it was observed that the induced vibration caused a 

sinusoidal shape on the surface of the bed which differed in appearance from earlier 

experiments. The shape on the surface of the bed during the earlier experiments (those 

experiments used to generate Figure 7) was in the form of a central heap. Since the 

bed movement had changed, the output of the shaking head was checked. As described 

in Chapter 3, the output of the shaking head is sinusoidal in a vertical direction. A 

deviation in the equipment's output would lead to an altered shaking condition. The 

vibratory equipment was checked by both the author and a qualified Bruel and Kjaer 

engineer for defect. The apparatus was operating well within its tolerances, thus it was 

ruled out as problematic. Next, new identical spheres were purchased. The new 

spheres, when used with a new cylinder under identical parameters, showed 

segregation. The results were comparable to that of the previous runs. However, after 

only one day of experiments, the large sphere would not rise to the top. At this point it 

was hypothesized that the change in surface properties of the experimental material due 

to wear could be the source of the problem. Since it was not practical or feasible to 

purchase and reconstruct a new apparatus for each experiment, other measures were 

taken. 

Since the problem was assumed to be related to surface properties, sand 

papers of various grits were placed on the cylinder walls. As suspected, the large 

sphere rose to the bed surface. Although this worked, the bed spheres became 

significantly damaged. Therefore, spheres equal in diameter to the bed spheres were 

fixed with adhesive to the walls and base of the cylinder. This was done to achieve a 

bumpy surface without the abrasive qualities of sandpaper. Experiments, identical to 

the previous run (see Fig. 7) were performed and showed comparable results to that of 
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the smooth wall setup. The changes here were quantitative and will be discussed 

below. 

The remainder of the experiments were done with rough wall conditions. The 

first run taken was a system in which the diameter ratio was 6 (see Fig. 10 in App. A). 

From Figure 10, it can be seen that segregation time decreases with an increase in 

amplitude for a fixed frequency. In addition, segregation time decreases as frequency 

increases for fixed amplitudes. The trends of the plotted curves are again asymptotic. 

The plots for segregation time versus amplitude for diameter ratios of 3 and 1 are 

shown in Figures 11 and 12 (see Appendix A), respectively. The results here are in 

qualitative agreement with both Figure 10 and with the smooth wall results shown in 

Figure 7. The changes are quantitative, in that segregation time increases, for identical 

experimental conditions, as the aspect ratio approaches one, indicating that particle size 

difference does in fact affect segregation. This particle size dependence is seen more 

clearly in figures 13-16 (see Appendix A). Because of the large range of data, a 

logarithmic scale was used to plot segregation time as the ordinate. However, this 

does not facilitate an easy comparison of the results. The magnitude of the difference 

between the varying runs can be readily seen from the numerical data tabulated in 

Appendix B. The data taken for this study was based on the mean value taken from 

five trial runs. Since only five trials were taken, the experimental error of these results 

can only be estimated by finding the sample deviation from the mean. 

The segregation rate for the rough wall experiments was produced in the same 

manner as for the smooth wall data in Figure 8. This was done to observe whether or 

not the trends of the segregation rates (based on bed height) compared with those of 

segregation time. The plots showing the segregation rate, for all the experiments (Figs. 

17-19 in App. A), were adjusted to compensate for particle size difference. Although 

the bed height remained fixed throughout the experiments, the number of layers used to 
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calculate the segregation rate was based on the bed height minus the radius of the large 

sphere thus ensuring comparable results. The plots showed curves which appear to be 

linear. These curves, though adjusted for bed height, yield the same conclusions as 

drawn from Figures 10-12. All conclusions drawn from the trends of the plots (in Fig. 

17-19) were consistent with Figures 10-12 in that their dependency on frequency, 

amplitude and large particle size difference produced comparable results. 

All of the rough wall data was scaled by the relative acceleration rate (Γ) and 

plotted in Figures 20-22 (see Appendix A). Unlike the smooth wall results of Figure 9, 

the data did not fall onto one curve, indicating that there is an additional dimensionless 

group which controls the observed phenomena. An increase in the segregation rate 

from a diameter ratio of 1:1 to 6:1 can be noticed in Figure 23 (see Appendix A). 

The results found here were typical in that they contained characteristics which 

are in agreement with previous studies [Nagel (7) and Meakin (12)]. However, the 

underlying cause for our experimental results cannot be solely explained by the theories 

proposed by either Jullien et al. [12] or Duran et al. [7]. 

4.2 Interpretation of Results 

Initially the effect of particle size on vibratory segregation was to be studied. 

However, the discontinuity found early on in the smooth wall experiments expanded 

the study. The focus of the study was expanded to investigate the role of convective 

velocities in vibrated beds. 

The explanation of why a single large particle rises to the top of a vibrated bed 

has been explored. As explained in Chapter 1, the geometric mechanism of avalanching 

or piling has been identified as a mechanism for size segregation [Rosato et al. (21)]. 
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This theory readily explains why larger spheres rise faster than do smaller spheres in a 

vibrated bed. However, based on this hypothesis, a particle equivalent in size to the 

bed spheres will not rise. In addition, a critical size ratio below which segregation no 

longer occurs has been hypothesized by Jullien et al [12]. The results found here are in 

agreement with this in that the larger sphere does in fact rise quicker than the smaller 

spheres. On the other hand, it was found that spheres, including those equal in size to 

the bed sphere, also rise. Previous studies would attribute this case of segregation to 

convection and not avalanching. However, comparing Figures 10-12 one notices that 

the trends of the plotted data are very similar indicating that one source or mechanism 

may be responsible for all the results. In addition, as explained earlier, the large particle 

did not rise to the top when the surface properties of the system changed. By fixing 

spheres to the walls, convection was increased in the cylinder and consequently 

segregation, similar to that observed for the smooth wall experiments, was once again 

present. Recently, Nagel [14] postulated that vibration induced size separation is 

attributed solely to convective flows rather than avalanching. Nagel [14] found no size 

segregation in the range he tested. In fact, the segregation rate was found similar 

regardless of large particle size. If segregation does in fact depend on convection in a 

vibrated bed, it would imply that all size spheres move upward at the same rate. It is 

obvious that no particle could rise quicker then the convective current of the bed 

spheres unless other mechanisms were present. Based on this hypothesis, the mean rate 

of a rise of a sphere having the same diameter as the bulk spheres should give a value 

equal to that of the convective velocity of the bed. This was measured (see Appendix 

B) and plotted in Figure 12. Assuming that the segregation found in this study is based 

only on convection, the rate for all aspect ratios should be comparable. Nevertheless, 

the data and plots (see Fig 10-12) clearly do not support this, i.e., segregation time 
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decreases as the diameter ratio increases. Since neither of the well-known hypotheses 

encompasses all the results in this study, further investigation was carried out. 

While carrying out the experiments using the 1:1 aspect ratio, inconsistencies in 

the results were observed. Specifically, the time of segregation occasionally became so 

large that it could not be considered with the otherwise repeatable data. This behavior 

was not seen for the larger diameter ratios examined. This seemed to indicate that the 

particle was veering off the convective stream path in its rise to the top of the bed, that 

is, it was experiencing a significant amount of lateral diffusion. Therefore an 

experiment that would reduce the possibility of the particle from wandering was 

devised. Experiments were performed for the diameter ratio of unity in which the 

quantity of dyed particles was increased. Instead of tracing one dyed particle, ten dyed 

spheres were used. The dyed spheres were arranged in such a manner that they formed 

a small pile at the base of the bed of the cylindrical apparatus (see Fig. 24 in App. A). 

The spheres were placed in a manner that the convective current, if in fact present, 

would carry them all up. After carrying out the experiment for a fixed amplitude and 

frequency, a change was noticed (note, due to time constarints not enough data was 

taken to generate plots). Rise time was reduced in comparison to data which produced 

the segregation time plots in Figure 12 (see Appendix B). In addition, the results were 

repeatable in that none of the trials exhibited large deviations from each other. Since 

the initial vertical locations of the dyed spheres differed no more then one particle 

diameter, the particle that rose first was timed. This is valid because at worst the initial 

position of the spheres (that is, its height from the cylinder base) only varied by one 

diameter as shown in Figure 24. The extra diameter could easily be subtracted out of 

the bed height in the segregation rate calculation (see Chapter 3). Based on these 

results, it seems that there is competition for particle levitation in the bed within the 

convective flow. Statistically, one of ten dyed particles has a much greater chance of 
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rising to the top of the bed then does one out of one dyed particles. The possibility of 

the dyed particle getting off path is reduced as was found above. The idea of this 

competition between rising particles in a vibrated bed is discussed below. 

The existence of competition in the convective flow can explain size 

"segregation" produced by convection. As the diameter of the large sphere approaches 

the size of the bed spheres, its ability to resist velocity change imposed by the 

interaction of the surrounding bed spheres becomes less. When the aspect ratio reaches 

unity, any sphere may effectively move another sphere. Thus a small sphere is more 

likely to veer off the path during its movement to the top than is a large sphere. The 

larger the sphere the greater the mass and inertia which gives it a greater ability to 

resist velocity change. In a rectangular cell this competition was observed. A 

rectangular cell was mounted on the shaker in a manner similar to that of the cylinder. 

The cell was filled with bed spheres identical to that of the cylindrical setup. A 

convective flow was produced with mass of spheres containing one tracer sphere. The 

tracer after a brief transient period, developed up a convective motion. However, 

during inspection it was noticed that the sphere spuriously moved out of the convective 

zone. In addition, the tracer particle also oscillated within the convective zone 

sometimes causing it to become stuck in a small volume. If the behavior is similar in 

the cylinder, it could explain the inconsistencies found in the 1:1 diameter ratio 

experiments. Assuming that the previous assumptions are true, it is believed that the 

motion of the largest particle examined in this study is closer to the actual convective 

velocity than that of the smaller sphere (1:1 aspect ratio). 

Since segregation was regenerated by inducing convection, the mechanism for 

the large sphere rising to the top of the bed is attributed to the convective flow. 

However, as outlined above, the author believes that interactive particle dynamics also 

plays a significant role in this behavior. The term segregation means a sorting of 
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particles by some property, which, in this case is size. Since convection does not 

differentiate between sizes, then convection is not strictly a segregation mechanism. 

Rather, it may be regarded as a mixing mechanism. The experimental results for the 

different size ratios clearly indicate a competition between the induced vibratory 

convection stream and the local particle level influence. 



CHAPTER 5 
SUMMARY 

As of present, several mechanisms of size segregation have been identified but are yet 

to be fully explained. The objective of this study was to examine the effects of particle 

size on vibratory segregation through experimental means in hope of gaining insight 

into this phenomenon. The term size segregation is used to describe the sorting of 

particles by size. In the context of this study, segregation was used to describe the rise 

of an examined sphere through a vibrated bed. The author found that convection in 

conjunction with local particle interactions are responsible for the observed 

"segregation" and its characteristics. For the range of parameters studied the 

following conclusions were drawn: 

[1] An increase in amplitude was always accompanied by a decrease in 

segregation time for fixed frequencies regardless of aspect ratio. 

[2] An increase in frequency decreased segregation time for fixed amplitudes. 

[3] Segregation time shortened as diameter ratios became greater. 

[4] Spheres with a diameter ratio of unity also rose to the top of the vibrated 

bed. This along with the rising of the larger diameter ratios is attributed to the 

convection stream in the center of the cell. 

[5] Early in the experiments the rising of the larger sphere in the bed ceased. 

Because of this, a rough-wall experimental setup was introduced. The 

roughened wall produced convection within the examined cell which in turn 

levitated the examined sphere through the vibrated bed and allowed for the 

experiments to be continued. 

[6] There exists a competition in the convection stream which could be 

responsible for the change in rise time for the different diameter ratios 

examined. 
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The experiments performed gave results necessary for a fundamental analysis. Much 

more investigation needs to be done in this area if the phenomenon of segregation is to 

be fully characterized. The following are some considerations for future work: 

[1] The convection velocity of the bed needs to be measured more carefully for 

comparison with the particles of interest in the bed. Once accomplished, the 

convective velocity may be combined, possibly subtracted out, with the rate 

found for the examined particle. 

[2] An experimental setup where the bed is vibrated independently from the 

walls need be constructed. Such a setup could give insight to what roll wall 

effects have in segregation. The setup could consist of a fixed cylinder in 

which a piston moves vertically thus moving only the payload. 

[3] Experiments where the ratio between the bed spheres diameter and cylinder 

diameter should be varied. A series of experiments identical in all parameters 

except for this ratio could also aid in explaining wall effects. 

[4] Different wall roughnesses could be used for all of the setups mentioned 

above to further examine wall effects. This can be achieved by varying the 

diameter of the spheres which are adhered to walls. 

[5] Tracing the examined particle by a non-intrusive tracking system would aid 

in understanding particle dynamics and possibly give insight to the segregation 

phenomenon. 

[6] A setup where a granular medium was lifted slowly, dropped and repeated 

need be constructed. A setup of this sort would simulate shaking and at the 

same time eliminate convective flows. If no convection is present, other 

mechanisms, if present, could be examined. 



APPENDIX A  

Chapter 4 Figures  
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Figure 7  Segregation time vs. amplitude for an 
aspect ratio of 6:1 with a bed height of 
26 layers for smooth wall conditions.  
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Figure 8  Segregation rate vs. amplitude for an 
aspect ratio of 6:1 with a bed height of 
26 layers for smooth wall conditions.  
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Figure 9  Segregation time vs. acceleration rate 
for an aspect ratio of 6:1 with a bed height 
of 26 layers for smooth wall conditions. The 
asterisks represent the 4 frequencies tested. 



39  

Figure 10  Segregation time vs. amplitude for an 
aspect ratio of 6:1 with a bed height of 
26 layers for rough wall conditions. 
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Figure 11  Segregation time vs. amplitude for an 
aspect ratio of 3:1 with a bed height of 
26 layers for rough wall conditions. 
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Figure 12  Segregation time vs. amplitude for an 
aspect ratio of 1:1 with a bed height of 
26 layers for rough wall conditions 
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Figure 13  Segregation time vs. amplitude for 
f=10Hz with a bed height of 26 layers for 
rough wall conditions. 
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Figure 14  Segregation time vs amplitude for 
f=15Hz with a bed height of 26 layers for 
rough wall conditions 
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Figure 15  Segregation time vs. amplitude for 
f=20Hz with a bed height of 26 layers for 
rough wall conditions. 
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Figure 16  Segregation time vs. amplitude for 
f=25Hz with a bed height of 26 layers for 
rough wall conditions. 
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Figure 17  Segregation rate vs. amplitude for an 
aspect ratio of 6:1 with a bed height of 
26 layers for rough wall conditions 
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Figure 18  Segregation rate vs. amplitude for an 
aspect ratio of 3:1 with a bed height of 
26 layers for rough wall conditions. 
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Figure 19  Segregation rate vs. amplitude for an 
aspect ratio of 1:1 with a bed height of 
26 layers for rough wall conditions. 
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Figure 20 	Segregation time vs. acceleration rate 
for an aspect ratio of 6:1 with a bed height 
of 26 layers for rough wall conditions. The 
asterisks represent the 4 frequencies tested. 
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Figure 21  Segregation time vs acceleration rate 
for an aspect ratio of 3:1 with a bed height 
of 26 layers for rough wall conditions. The 
asterisks represent the 4 frequencies tested.  
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Figure 22 Segregation time vs. acceleration rate 
for an aspect ratio of 1:1 with a bed height 
of 26 layers for rough wall conditions. The 
asterisks represent the 4 frequencies tested. 
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Figure 23 	Segregation time vs acceleration rate 
for aspect ratios of 1:1 and 6:1 with a bed 
height of 26 layers for rough wall conditions 
The plot. is representative of the 4 frequencies 
tested 
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Figure 24  Experimental setup with adjusted bed height for ten dyed spheres. 



APPENDIX B  

The following is the data taken for the experimental setup 

having a smooth cylindrical wall. There are four data sets.  
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Data Set 1  

f=10Hz Weight=305g #layers=26 Lg/sm=6  

Amp. 
[in] 

Gain 
[volts] 

Humidity 
[%] 

Time 
[sec] 

Avg. Time 
[sec] 

0.469 4.35 50 9.983 
" " 50 9.202 
" " 51 9.433 9.45 
" " 50 9.199 
" " 51 9.433 

0.433 4 50 14.001 
" " 51 13.781 
" " 50 13.566 13.666 
" " 53 13.633 
" " 50 13.299 

0.385 3.6 51 25.001 
" " 50 22.733 
" " 49 21.599 22.613 
" " 50 21.766 
" " 51 21.966 

0.351 3.2 50 32.399 
" " 51 32.799 
" " 50 29.299 30.492 
" " 50 30.299 
" " 51 27.666 

0.3 2.8 50 58.001 
" " 49 58.499 
" " 52 55.299 56.713 
" " 51 56.599 
" " 52 55.166 

0.289 2.7 50 71.166 
" " 52 71.133 
" " 53 77.399 74.067 
" " 52 74.202 
" " 50 75.833 

0.28 2.6 52 96.433 
" " 53 84.433 
" " 52 89.333 88.88 
" " 52 87.466 
" " 52 86.933 

0.268 2.5 53 128.399 
" " 51 120.433 
" " 51 128.631 124.406 
"  " 52 123.933 
" " 50 120.633 

0.259 2.4 50 135.299 
" " 51 140.499 
" " 51 158.633 142.773 
" " 50 138.966 
" " 51 140.466 

0.254 2.35 52 184.699 
" " 51 178.499 

" " 
" 

" 
" 
" 52 

184.001 177.833 

180.499 

181.106 
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Data Set 2  

f=15HZ Weight=305g #layers=26 Lg/sm=6  

Amp. 
[in] 

Gain 
[volts] 

Humidity 
[%] 

Time 
[sec] 

Avg. Time 
[sec] 

0.472 6.3 48 3.899 
" " 49 3.899 
" " 49 3.566 3.719 
" " 50 3.666 
" " 50 3.566 

0.391 5.2 50 4.433 
" " 49 4.199 
" " 48 4.099 4.299 
" " 49 4.366 
" " 48 4.399 

0.287 3.8 48 5.766 
" " 48 5.333 
" " 48 5.599 5.553 " " 49 5.966 " " 49 5.099 

0.235 3.1 50 10.001 
" " 50 9.666 
" " 50 9.833 9.766 
" " 51 9.599 
" " 51 9.433 

0.19 2.6 50 14.733 " " 51 14.199 
" " 50 14.766 14.646 
" " 50 14.666 
" " 51 14.866 

0.174 2.35 50 21.799 
" " 50 21.966 
" " 50 22.001 22.039 
" " 50 22.399 
" " 50 22.033 

0.153 2.06 50 38.001 " " 50 38.666 
" " 52 39.333 39.006 
" " 53 38.099 
" " 51 40.933 

0.136 1.83 48 64.299 
" " 48 72.933 " " 48 72.56A 78.559 
" " 48 89.033 
" " 48 93.966 

0.116 1.55 52 200.233 
" " 51 212.333 
" " 54 219.066 213.266 " " 51 210.666 
" " 52 224.033 
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Data Set 3  

f=20HZ Weight=305g #layers=26 Lg/Sm=6 

Amp. 
[in] 

Gain 
[volts] 

Humidity 
(I] 

Time 
[sec] 

Avg. Time 
[sec] 

0.457 7.9 50 1.233 
" " 43 1.533 
" " 48 1.299 1.419 

" " 48 1.599 
" " 51 1.433 

0.409 7.1 50 1.733 " " 53 1.699 
" " 53 1.833 1.813 
" " 53 1.833 
" " 50 1.966 

0.35 6 49 2.399 " " 49 2.033 
" " 50 2.233 2.966 
" " 48 2.733 

" " 50 2.533 

0.321 5.55 51 3.033 
" " 50 3.199 
" " 52 2.966 2.966 
" " 49 2.766 
" " 49 2.866 

0.287 4.9 49 3.766 
" " 49 3.933 
" " 50 3.501 3.913 
" " 49 4.099 

" " 51 4.199 

0.235 4.15 50 5.366 
" " 50 5.433 
" " 52 5.566 5.686 
" " 54 6.199 
" " 51 5.866 

0.21 3.65 55 5.933 
" " 51 6.933 

" " 51 6.466 6.453 
" " 50 6.633 
" " 51 6.299 

0.179 3.1 49 7.003 
" " 49 10.003 

" " 50 7.499 8.026 " " 51 7.066 
" " 51 8.499 

0.103 1.83 52 22.899 " " 51 22.633 
" " 53 22.133 22.386 

" " 51 22.233 
" " 51 22.033 

0.08 1.43 49 58.133 
" " 49 55.433 
" " 52 53.533 56.733 
" " 50 59.599 
" " 48 56.966 

0.067 1.175 54 146.166 
" " 49 189.399 
" " 55 157.199 160.833 

" " 52 169.533 
" " 51 147.866 
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Data Set 4  

f=25HZ Weight=305g #layers=26 Lg/Sm=6 

Amp. 
[in] 

Gain 
[volts] 

Humidity 
[%] 

Time 
[sec] 

Avg. Time 
[sec] 

0.45 9.7 53 0.996 
" " 50 1.001 
" " 50 0.899 0.966 
" " 49 1.001 
" " 51 0.933 

0.358 7.95 48 1.266 
" " 51 1.233 
" " 50 1.266 1.255 
" " 52 1.236 
" " 48 1.274 

0.254 5.6 48 2.333 
" " 48 2.433 
" " 49 2.366 2.377 
" " 50 2.466 
" " 48 2.288 

0.216 4.8 45 3.166 
" " 46 3.333 
" " 48 3.233 3.279 
" " 47 3.433 
" " 49 3.233 

0.18 4 48 4.466 " " 49 4.266 
" " 48 4.866 4.626 
" " 46 4.833 
" " 47 4.799 

0.117 2.7 46 10.099 
" " 46 10.199 
" " 47 10.166 10.026 
" " 48 9.766 
" " 50 9.899 

0.089 2.06 46 21.399 " " 47 18.933 
" " 47 19.266 20.339 
" " 46 22.033 
" " 47 26.066 

0.07 1.625 48 25.499 " " 48 26.233 
" " 47 26.499 26.153 " " 48 26.633 
" " 49 25.849 

0.048 1.1 47 146.733 " 
" 

" 
" 

47 
46 

120.001 
121.833 130.14 " " 48 134.633 

" " 47 127.499 



The following is the data taken for the experimental setup 

having a rough cylindrical wall. There are twelve data sets. 
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Data Set 1  

f=10Hz Weight=305g #layers=26 Lg/sm=6  

Amp. 
[in] 

Gain 
[volts] 

Humidity 
[%] 

Time 
[sec] 

Avg. Time 
[sec] 

0.495 0.495 54 3.466 
" " 54 3.499 
" " 55 3.166 3.333 
" " 54 3.333 
" " 52 3.199 

0.43 4.18 52 6.299 
" " 52 6.466 
" " 51 6.033 6.073 
" " 51 6.066 
" " 51 5.533 

0.385 3.7 49 11.866 
" " 50 12.199 
" " 53 14.366 12.699 
" " 54 13.133 

" " 54 11.933 

0.37 3.5  53 19.199 
" " 54 16.733 

" " 53 19.499 18.359 
" " 53 17.733 
" " 52 18.633 

0.35 3.3 51 25.766 
" " 51 27.199 

" " 55 26.899 26.679 
" " 56 25.366 
" " 56 28.166 

0.34 3.18 53 36.399 
" " 50 35.866 
" " 50 36.633 36.353 
" " 55 35.866 
" " 51 37.033 

0.325 3.05 52 56.399 
" " 52 68.733 
" " 51 59.066 60.073 

" " 55 60.033 
" " 55 56.133 

0.31 2.9  52 91.833 
" " 53 101.833 

" " 53 104.633 98.5 
" " 53 102.133 
" " 55 92.066 

0.3 2.8 2.8 50 120.733 
" " 51 114.599 
" " 50 133.066 133.933 

" " 50 156.866 
" " 50 144.399 
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Data Set 2  

f=15HZ Weight=305g #layers=26 Lg/sm=6  

Amp. 
[in] 

Gain 
[volts] 

Humidity 
[%] 

Time 
[sec] 

Avg. Time 
[sec] 

0.48 6.4 64 1.266 
" " 64 1.166 
" " 63 1.066 1.133 
" " 62 1.133 
" " 61 1.033 

0.425 5.65 57 1.399 
" " 57 1.433 
" " 57 1.566 1.566 
" " 56 1.966 
" " 56 1.466 

0.35 4.7 56 2.233 
" " 57 2.233 
" " 54 2.166 2.226 
" " 53 2.333 
" " 52 2.166 

0.3 4.05 54 3.433 
" " 54 3.266 
" " 52 3.233 3.346 
" " 52 3.333 
" " 52 3.466 

0.25 3.38 55 6.366 
" " 52 6.733 
" " 52 6.433 6.433 
" " 52 6.399 
" " 52 6.233 

0.2 2.65 51 18.033 
" " 51 18.366 
" " 51 18.166 18.379 
" " 52 18.899 
" " 51 18.433 

0.185 2.42 50 34.466 
" " 50 32.533 
" " 52 32.666 32.073 
" " 53 30.733 
" " 51 29.966 

0.175 2.38 51 45.399 
" " 51 45.566 
" " 51 45.866 45.353 
" " 50 47.866 
" " 52 42.066 

0.165 2.2 52 84.766 
" " 51 89.933 
" " 54 82.299 84.946 
" " 51 80.966 

" 
" 52 86.766 
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Data Set 3  

f=20HZ Weight=305g #layers=26 Lg/Sm=6  

Amp. 
[in] 

Gain 
[volts] 

Humidity 
[%] 

Time 
[sec] 

Avg. Time 
[sec] 

0.45 8.1 52 0.499 
" " 54 0.466 
" " 57 0.533 0.499 
" " 56 0.533 
" 

0.4 

" 

7.02 

55 

51 

0.466 

0.733 
" " 55 0.733 
" " 56 0.733 0.726 

" " 57 0.699 
" " 53 0.699 

0.35 6.1 54 1.066 
" " 53 1.099 
" " 53 1.099 1.126 
" " 52 1.266 
" " 52 1.099 

0.3 5.2 51 1.633 
" " 51 1.799 
" " 51 1.766 1.759 

" " 51 1.866 
" " 53 1.733 

0.25 4.35 54 2.699 
" " 52 2.699 
" " 51 2.733 2.719 
" " 50 2.799 
" " 50 2.666 

0.2 3.45 51 5.266 
" " 53 5.233 
" " 53 5.199 5.259 

" " 53 5.366 
" " 50 5.233 

0.15 2.62 50 14.399 
" " 50 13.866 
" " 51 13.533 13.959 

" " 51 14.199 
" " 50 13.799 

0.125 2.19 51 34.766 
" " 51 34.833 

" " 50 32.566 34.059 
" " 51 33.833 

" " 50 34.299 

0.11 1.9 50 85.599 
" " 52 79.733 

" " 51 87.633 82.886 
" " 52 84.566 

" 
" 53 76.899 
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Data Set 4  

f=25HZ Weight=305g #layers=26 Lg/Sm=6  

Amp. 
[in] 

Gain 
[volts] 

Humidity 
[%] 

Time 
[sec] 

Avg. Time 
[sec] 

0.385 8.4 55 0.633 
" " 53 0.699 
" " 54 0.699 0.659 
" " 55 0.599 
" " 55 0.666 

0.3 6.59 52 1.166 
" " 51 1.166 
" " 52 1.133 1.173 
" " 49 1.133 
" " 50 1.266 

0.24 5.4 52 2.033 
" " 52 1.899 
" " 53 1.966 1.999 
" " 53 2.099 
" " 54 2.001 

0.18 4 53 4.266 
" " 53 4.166 
" " 53 4.266 4.239 
" " 53 4.199 

" " 53 4.299 

0.15 3.38 53 7.833 
" " 52 7.599 

" " 49 7.666 7.586 
" " 53 7.499 
" " 53 7.333 

0.125 2.8 54 15.599 
" " 54 15.133 
" " 54 14.533 14.856 
" " 54 14.399 

" " 54 14.566 

0.105 2.38 54 36.599 
" " 54 37.066 
" " 54 40.133 38.366 
" " 53 38.133 
" " 54 39.333 

0.095 2.1 54 60.166 
" " 51 60.166 
" " 52 59.299 60.126 

" " 53 61.233 
" " 52 59.766 

0.0898 2 52 82.766 
" " 53 84.799 
" " 52 80.433 82.539 
" " 53 79.533 
" " 54 85.166 
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Data Set 5  

f=10Hz Weight=305g #layers=26 Lg/Sm=3  

Amp. 
[in] 

Gain 
[volts] 

Humidity 
[%] 

Time 
[sec] 

Avg. 	Time 
[sec] 

0.495 
" 

4.9 "  57 
57 

3.699 
3.466 

" " 56 3.533 3.526 
" " 55 3.599 
" " 55 3.333 

0.43 4.18 57 7.033 
" " 54 6.433 
" " 52 6.499 6.493 

" " 51 5.999 
" " 54 6.499 

0.385 3.7 57 12.799 
" 

" 
57 13.466 

" " 57 14.399 13.333 
" " 58 13.066 

" " 53 12.933 

0.37 3.5 55 17.399 
" " 51 17.033 

" " 52 17.866 17.753 
" " 52 17.399 
" " 52 19.099 

0.35 3.3  53 27.299 
" " 53 28.566 
" " 52 25.033 26.926 
" " 52 26.299 
" " 52 27.466 

0.34 3.18 52 38.299 
" " 52 41.933 

" " 51 44.499 40.726 
" " 51 40.733 
" " 51 38.166 

0.325 3.05 51 56.733 
" " 51 52.899 

" " 51 63.266 58.366 
" " 50 56.566 
" " 50 62.366 

0.31 2.9 53 90.766 
" " 53 97.866 
" " 52 106.333 99.593 
" " 52 100.599 
" " 50 102.599 

0.3 " 2.8 "  50 
51 

131.299 
129.766 

" " 50 128.366 128.519 
" " 50 125.899 

" " 50 127.266 



65 

Data Set 6  

f=15HZ Weight=305g #layers=26 Lg/Sm=3  

Amp. 
[in] 

Gain 
[volts] 

Humidity 
[%] 

Time 
[sec] 

Avg. Time 
[sec] 

0.48 6.4 51 1.499 
" " 54 1.466 
" " 55 1.533 1.493 
" " 54 1.466 
" " 54 1.499 

0.425 5.65 54 1.866 
" " 53 1.833 
" " 53 1.933 1.846 
" " 54 1.733 
" " 53 1.866 

0.35 4.7 52 2.606 
" " 50 2.733 
" " 52 2.933 2.801 
" " 53 2.899 

" " 54 2.833 

0.3 4.05 54 4.233 
" " 54 4.166 
" " 54 4.166 4.166 
" " 54 3.966 
" " 54 4.299 

0.25 3.38 54 8.533 
" " 54 7.366 
" " 53 8.199 8.039 
" " 52 8.099 

" " 52 8.001 

0.2 2.65 52 21.933 
" " 51 25.833 
" " 51 24.533 24.573 
" " 50 25.333 
" " 50 25.233 

0.185 2.42 50 48.899 
" " 51 45.066 
" " 51 51.433 48.086 

" " 51 49.399 
" " 50 45.633 

0.175 2.38 51 62.433 
" " 51 63.499 
" " 50 65.533 64.953 
" " 50 64.466 
" " 50 68.866 

0.165 2.2 55 111.032 
" " 50 110.599 
" " 52 108.499 108.16 

" " 50 106.333 

" 
" 52 104.333 
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Data Set 7  

f=20HZ Weight=305g #layers=26 Lg/Sm=3  

Amp. 
[in] 

Gain 
[volts] 

Humidity 
[%] 

Time 
[sec] 

Avg. Time 
[sec] 

0.45 8.1 55 0.933 
" " 56 0.733 
" " 56 0.799 0.793 
" " 56 0.766 

" " 57 0.733 

0.4 7.02 56 1.133 
" " 51 1.133 

" " 51 1.199 1.119 
" " 51 1.099 
" " 51 1.033 

0.35 6.1 51 1.666 
" 

" 
" 

" 
51 
51 

1.599 
1.599 1.599 

" " 50 1.566 
" " 50 1.566 

0.3 5.2 50 2.433 " " 50 2.366 
" " 52 2.366 2.366 
" " 50 2.399 

" " 51 2.266 

0.25 4.35 52 3.799 
" " 53 3.433 
" " 53 3.666 3.573 
" " 52 3.599 
" " 52 3.366 

0.2 3.45 50 6.866 
" " 50 6.399 
" " 51 6.699 6.686 
" " 51 6.866 

" " 51 6.599 

0.15 2.62 53 18.566 
" " 53 19.033 
" " 51 21.466 19.966 
" " 51 21.866 

" " 53 18.899 

0.125 2.19 51 53.899 
" " 54 47.366 
" " 53 48.566 49.899 
" " 52 49.333 
" " 51 50.333 

0.11 1.9 50 107.833 
" " 51 109.199 
" " 49 117.366 108.259 

" " 50 100.966 
" " 51 105.933 
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Data Set 8  

f=25HZ Weight=305g #layers=26 Lg/Sm=3 

Amp. 
[in] 

Gain 
[volts] 

Humidity 
[%] 

Time 
[sec] 

Avg. Time 
[sec] 

0.385 8.4 56 0.833 
" " 55 0.833 
" " 55 0.833 0.846 
" " 54 0.833 
" " 57 0.899 

0.3 6.59 58 1.399 
" " 57 1.566 

" " 56 1.466 1.513 
" " 56 1.599 
" " 54 1.533 

0.24 5.4 50 2.599 
" " 55 2.699 
" " 54 2.799 2.632 

" " 55 2.366 
" " 54 2.699 

0.18 4 54 5.566 
" " 54 6.033 
" " 54 5.799 5.899 
" " 54 5.866 
" " 53 6.233 

0.15 3.38 53 8.566 
" " 53 8.899 
" " 53 9.001 9.019 

" " 52 9.433 
" " 52 9.199 

0.125 2.8 51 20.433 
" " 53 23.133 
" " 51 21.766 22.54 

" " 51 25.633 
" " 51 21.733 

0.105 2.38 50 44.699 
" " 54 44.733 
" " 54 48.199 45.906 
" " 53 46.766 
" " 53 45.133 

0.095 2.1 54 77.733 
" " 53 80.766 

" " 53 76.699 78.626 
" " 52 78.499 

" " 53 79.433 

0.0898 2 53 102.499 
" " 54 108.799 

" " 53 104.566 107.686 
" " 52 115.133 

" 
" 53 107.433 
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Data Set 9  

f=10Hz Weight=305g #layers=26 Lg/Sm=1 

Amp. 
[in] 

Gain 
[volts] 

Humidity 
[%] 

Time 
[sec] 

Avg. Time 
[sec] 

0.495 4.9 51 5.233 " 
" 

54 5.566 5.477 
" " 55 5.633 

0.43 4.18 51 9.566 
" " 52 9.699 9.71 
" " 53 9.866 

0.38557 " 3.7 " 
57 

19.399 
20.033 19.133 

" " 57 18.066 

0.37 3.5 51 25.899 
" " 53 25.933 25.966 
" " 53 26.066 

0.35 3.3 53 34.333 
" " 53 30.466 32.498 
" " 52 32.699 

0.34 3.18 52 44.001 
" " 52 42.499 42.477 
" " 51 40.931 

0.325 3.05 51 60.099 
" " 51 69.766 65.055 

" " 51 65.299 

0.31 2.9 53 102.766 
" " 53 110.766 103.844 
" " 52 98.001 

0.3 2.8 50 169.499 
" " 51 205.766 183.505 
" 

" 
50 175.251 



Data Set 10  

f=15HZ Weight=305g #layers=26 Lg/Sm=1  

Amp. 
[in] 

Gain 
[volts] 

Humidity 
[1] 

Time 
[sec] 

Avg. Time 
[sec] 

0.48 6.4 56 2.133 
" " 54 2.133 2.266 
" " 53 2.533 

0.425 5.65 50 2.766 
" " 53 3.001 2.977 
" " 54 3.166 

0.35 4.7 54 4.133 
" " 54 4.766 4.411 
" " 55 4.333 

0.3 4.05 50 7.533 
" " 50 7.001 7.511 
" " 50 8.001 

0.25 3.38 50 9.899 
" " 51 10.333 9.744 
" " 49 9.001 

0.2 2.65 51 26.001 
" " 50 29.899 29.266 
" " 50 31.899 

0.185 2.42 50 46.899 
" " 49 45.766 46.266 
" " 50 46.133 

0.175 2.38 50 83.501 
" " 50 88.133 86.133 

" " 50 86.766 

0.165 2.2 52 150.133 
" " 53 141.766 149.144 
" " 50 155.533 
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Data Set 11  

f=20Hz 	Weight=305g 	#layers=26 	Lg/Sm=1  

Amp. 
[in] 

Gain 
[volts] 

Humidity 
[%] 

Time 
[sec] 

Avg. 	Time 
[sec] 

0.45 8.1 58 1.899 
" " 55 1.266 1.655 
" " 55 1.799 

0.4 7.02 55 2.233 
" " 56 2.133 2.122 
" " 56 2.001 

0.35 6.1 56 2.899 
" " 53 2.966 2.955 
" " 52 3.001 

0.3 5.2 56 3.766 
" " 55 4.001 3.755 
" " 55 3.501 

0.25 4.35 55 4.766 
" " 55 5.233 5.122 
" " 54 5.366 

0.2 3.45 54 10.233 
" " 53 9.166 9.722 
" " 53 9.766 

0.15 2.62 53 26.001 
" " 52 28.133 25.455 
" " 53 22.233 

0.125 2.19 52 51.166 
" " 52 47.233 48.466 
" " 51 46.999 

0.11 1.9 52 132.133 
" 

" 
" 

" 
53 
52 

132.799 
126.533 

130.488 
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Data Set 12  

f=25HZ Weight=305g #layers=26 Lg/Sm=1  

Amp. 
[in] 

Gain 
[volts] 

Humidity 
[%] 

Time 
[sec] 

Avg. Time 
[sec] 

0.385 8.4 54 1.233 
" " 53 1.133 1.211 
" " 53 1.266 

0.3 " 6.59 " 51 
53 

2.799 
2.266 2.51 

" " 52 2.466 

0.24 5.4 54 3.199 
" " 50 3.899 3.688 
" " 52 3.966 

0.18 4 49 8.266 
" " 50 8.001 8.133 
" " 50 8.133 

0.15 3.38 52 12.566 
" " 53 12.133 12.344 
" " 52 12.333 

0.125 2.8 51 33.499 
" " 51 22.899 27.966 

" " 51 27.499 

0.105 2.38 54 45.233 
" " 52 43.366 44.911 
" " 53 46.133 

0.095 2.1 53 67.733 
" 
" 

" 
" 

51 
55 

74.566 
77.366 

73.222 

0.0898 2  50 96.766 
" " 52 90.233 93.711 

" 

" 52 94.133 
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Angle of Repose Plots 

72 



73 

The following are the plots generated from the Angle of Repose experiments. 

The plots shown here were generated using Templegraph software. 
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List of Experimental Apparatus  
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LIST OF EXPERIMENTAL APPARATUS 

Vibratory Equipment: 

Bruel and Kjaer Power Amplifier Type 2707 
Bruel and Kjaer Vibration Exciter Control Type 1050 
Bruel and Kjaer General Purpose Head Type 4812 
Bruel and Kjaer Exciter Body Type 4801 
Breul and Kjaer Accelerometer Type 4332 
Bruel and Kjaer Charge Amplifier Type 2635 
Bruel and Kjaer Accelerometer Calibrator Type 4291 

Humidifying Equipment: 

Crest Deluxe Ultrasonic Humidifier Model 16-103 
Micronta LCD Twin Display Thermometer and Hygrometer Cat. No. 63-844 

Video and Lighting Equipment: 

Kodak EktaPro 1000 Monitor Model 08500003-001 
Kodak EktaPro 1000 Processor 
Kodak EktaPro 1000 Intensified Imager 
Kodak EktaPro 1000 Intensified Imager Controller 
Elicar V-HQ Macro MC 90mm f/2.5 062 No. 611091 
Mole-Richardson Co. Two-Light Molecool Type 4721 

Other Equipment: 

10' x 18' Plastic Drop Cloth 
6' x 6' Clear Plastic Drop Cloth 
1/8" Diameter Acrylic Spheres (Engineering Laboratories, NYC, N.Y.) 
2-7/8" Diameter by 8" High Acrylic Cylinder 
Three Acrylic Spheres, 3/4", 3/8" and 1/8" Diameter (Grewe Plastics, Newark, N.J.) 



REFERENCES  

1. A. M. Abouzeid and D. W. Fuerstenau, "Effect of Humidity on Mixing of 
Particulate Solids", Ind. Eng. Chem. Process Des. Develop. 11 (2) (1972) 296-
301. 

2. K. Ahmad and I. J. Smalley, "Observation of Particle Segregation in Vibrated 
Granular Systems", Powder Tech. 8, (1973) 69-75. 

3. D. Boland and D. Geldart, "Electrostatic Charging in Gas Fluidised Beds", 
Powder Tech. 5  (1971/1972) 289-297. 

4. R. L. Brown, "The Fundamental Principles of Segregation", J. Inst. Fuel 13  
(1939) 15-19. 

5. R. L. Brown and J. C. Richards, Principles of Powder Mechanics, Vol. 10, 
New York, Pergamon Press, (1966). 

6. R. N. Dave, "Robust Fuzzy Clustering Algorithms", Second IEEE International 
Conference on Fuzzy Systems 2, (1993) 1281-1286. 

7. J. Duran, J. Rajchenbach and E. Clement, "Arching Effect Model for Particle 
Size Segregation", Physical Review Letters 70  (16), (1993) 2431-2434. 

8. M. D. Faiman and E. G. Rippie, "Segregation Kinetics of Particulate Solids 
Systems III", J. of Pharm. Sci. 54  (5) (1965) 719-722. 

9. W. A. Gray, The Packing of Solid Particles, Chapman and Hall Ltd., London 
(1968). 

10. P. K. Haff and B. T. Werner, "Computer Simulation of the Mechanical Sorting 
of Grains", Powder Tech. 46, (1986) 239-245. 

11. H. M. Jaeger, C. Liu and S. R. Nagel, "Relaxation at the Angle of Repose", 
Physical Review Letters 62, (1989) 40-43. 

12. R. Jullien, P. Meakin and A. Pavlovitch, "Three Dimensional Model for 
Particle-Size Segregation by Shaking", Physical Review Letters 69, (1992) 640-
643. 

13. R. Jullien and P. Meakin, "A mechanism for particle size segregation in three 
dimensions", Nature 344  (1990) 425-427. 

14. J. B. Knight, H. M. Jaeger and S. R. Nagel, "Vibration-Induced Size 
Separation in Granular Media: the Convection Connection", Preprint, Phys. 
Rev. Lett. (1993). 

15. P. M. Lacey, "Development in the Theory of Particle Mixing", J. App. Chem. 
4, (1954) 257-269. 

16. P. Meakin, "A Simple Two-Dimensional Model For Particle Segregation", 
Physica A 163  (1990) 733-746. 

98  



99  

References Continued 

17. J. L. Olsen and E. G. Rippie, "Segregation Kinetics of Particulate Solids 
Systems I", J. of Pharm. Sci. 53 (2) (1964) 147-150. 

18. D.S. Parsons, "Particle Segregation in fine Powders by Tapping as Simulation 
of Jostling During transportation", Powder Tech. 13, (1977) 269-277. 

19. E. G. Rippie, J. L. Olsen and M. D. Faiman, "Segregation Kinetics of 
Particulate Solids Systems II", J. of Pharm. Sci. 53 (11) (1964) 11360-1363. 

20. E. G. Rippie, M. D. Faiman and M. K. Pramoda, "Segregation Kinetics of 
Particulate Solids Systems IV", J of Pharm. Sci. 56 (11) (1967) 147-150. 

21. A. Rosato, F. Prinz, K. J. Strandburg and R. Swedson, "Monte Carlo 
Simulation of Particulate Matter Segregation", Powder Tech. 49, (1986) 59-69. 

22. A. Rosato, K. J. Strandburg, F. Prinz, and R. Swedson, "Why the Brazil Nuts 
Are on Top: Size Segregation of Particulate Matter by Shaking", Phys. Rev. 
Let. 58 (10) (1987) 1038-1040. 

23. A. D. Rosato, Y. Lan and D. T. Wang, "Vibratory particle size sorting in 
multi- component systems", Powder Tech. 66, (1991) 149-160. 

24. A. M. Scott and J. Bridgwater, "Interparticle percolation: a Fundamental 
Solids Mixing Mechanisms", Ind. Eng. Chem. Fundam. 14 (1), (1975) 22-26. 

25. R. L. Shreve, "Sherman Landslide", Science 154, (1966) 1639-1643. 

26. B. Thomas, M. O. Mason, Y. A. Liu and A. M. Squires, "Identifying States in 
Shallow Vibrated Beds", Powder Tech. 57, (1989) 267-280. 

27. W. M. Visscher and M. Bolsterli, "Random Packing of Equal and Unequal 
Spheres in Two and Three Dimensions", Nature 239, (1972) 504-507. 

28. S. S. Weidenbaum, "Mixing of solids", Adv. Chem. Eng. 2, (1958) 209. 

29. J. C. Williams, "The Segregation of Powders and Granular Materials", Fuel 
Soc. 14 (1963) 29-34. 

30. J. C. Williams, "The Segregation of Particulate Materials. A Review", Powder 
Tech. 15 (1976), 245-251. 

32. 	J. C. Williams and R. Richardson, "The Continuous Mixing of Segregating 
Particles", Powder Tech. 33 (1982) 5-16. 


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: The Angle of Repose
	Chapter 3: Experimental Investigation
	Chapter 4: Experimental Results and Analysis
	Chapter 5: Summary
	Appendix A: Chapter 4 Figures
	Appendix B: Data Sets
	Appendix C: Angle of Repose Plots
	Appendix D: List of Experimental Apparatus
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)




