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ABSTRACT 

DEVELOPMENT OF AN INTELLIGENT GEOMETRY MEASUREMENT 

PROCEDURE FOR COORDINATE MEASURING MACHINES 

by 

Tae-Sung Kim 

A Coordinate Measuring Machines (CMM) is a highly accurate electronic scale 

for the automatic measurement of 2 and 3 dimensional geometries. In a typical operation 

the CMM measures a set of user defined points, and then utilizes some internal logic to 

ascertain whether the inspected part meets the specifications. CMMs have received 

widespread acceptance among the manufacturing community, and in many instances are 

required as per supplier contract. Applications of CMMs vary from the measurement of 

simple 2D parts to complex 3D spatial frames (as for example in their use to measure the 

integrity of automobile frames). The primary objective of the proposed research is to 

investigate procedures for the efficient use of CMMs. 

Two of the key parameters in CMM usage are the number of points measured, and 

the relative location of the points measured. In this thesis we firsts show that when these 

two inspection parameters are varied, for the same part, then different conclusions with 

regard to the part's geometry may be drawn. Next we investigate the relationship between 

these two parameters and the reliability of the concluded data. Specifically we focus on a 

2D circle, a 2D rectangle, and a 2D plane. The experiments were conducted on the Brown 

& Sharpe's Coordinate Measuring Machine. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Modern manufacturing processes for discrete parts require fast and accurate measuring 

devices to check critical dimensions against their specified values. As demands for better 

quality assurance, faster turnaround time and lower production costs continue to increase, 

so does the use of coordinate measuring machines (CMMs) for inspection operations. 

Advantages such as enhanced accuracy, reduced inspection time and better equipment 

utilization are just some of the reasons for the growing use of CMMs. 

With the advent of numerically controlled NC machine tools, mainly mills and 

drills, demand has grown for a means to support NC production with faster, first-piece 

inspection, and in many cases, 100 % inspection. To fill this need, coordinate measuring 

machines (CMMs) were developed by modifying precision layout machines. In effect, 

most CMMs can be used as layout machines before machining and for the checking of 

hole locations after machining. Thus the CMM plays a vital role in the mechanization of 

the inspection process. 

There are many types of CMM. Cantilever is the easiest to load and unload, but it 

is the most susceptible to mechanical error because of sag (deflection) in the Y axis beam. 

The bridge type is less sensitive to mechanical errors, but more difficult to load. The 

horizontal bore mill type is best suited for large, heavy workpieces. The floating bridge is 

a compromise between cantilever and bridge. It is fast to operate, alignment is simple, 

and rugged construction affords consistent accuracy. 

For these reasons the relatively recent development of the modern CMM 

represents a significant contribution to the state of the art of dimensional metrology. Built 

to facilitate the inspection of discrete piece parts, the machine has improved the quality 

1 
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and reliability of measurement data and has reduced inspection time by as much as 80 

percent. CMMs are manufactured in both manual and automatic (computer-controlled) 

models and come in a wide range of sizes to accommodate a variety of applications. 

Since the measuring probe can be moved manually from point to point and the 

measurement data is displayed on the readout at a very brisk pace in most cases, the 

automatic recording and processing of data is essential to full utilization of the machine's 

potential. The complexity of the computation required will vary with different 

measurements, ranging from a simple calculation of difference between actual and 

nominal coordinates to complex geometric and statistical analyses. 

Although the incorporation of automatic on-line data processing increased the 

utilization of CMM's, there still remains the problem of operator-induced errors in the 

inspection of complex parts, and parts with numerous dimensional features. Machine 

operators subject to distraction which measuring numerous similiar or dissimliar 

component features. This will seriously damage if consistency of measurement which can 

only be achived autometic control. 

It is impossible to manufacture a mechanically perfect machine. It is important to 

be able to analyze the geometry errors associated with individual precision CMMs and to 

determine their effects on the machine's measurement accuracy. The results of such 

analyses can be used to compensate for these effects and thus to provide a degree of 

accuracy that could not otherwise be achieved. 

The accuracy of CMMs and machine tools depends on the accuracy of the 

position transducers on the linear and rotary moving axes and on the geometric accuracy 

of the motion of these axes. In the past, high-precision machines have been so designed 

that the geometry of the various motions could be adjusted during assembly to achieve a 

required level of accuracy. More recently machine-precision requirements have become 

so stringent that such an adjustment is not always sufficient. Instead it is necessary to 
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analyze the geometry errors involved and to determine their effects on the machine's 

measurement accuracy. 

Reliable estimates of overall machine accuracy can be made in the design stage, 

based on the accuracy of the measurement transducers and on the deviation of the actual 

position of the gauging probe from the position indicated by the transducer readouts. 

Such an estimate assits in one to predict machine specifications, to determine whether 

design changes are necessary to achieve the level of accuracy that will be required, and to 

set up a tolerance budget for use during design and manufacture. Geometric-error 

analysis also makes it possible to compensate for the effects on these errors, either by 

introducing mechanical design features or by adding external data-handling systems 

capable of upgrading the measurement accuracy of the machine. If machine geometry is 

mapped to determine repeatable errors, data can be stored that will make the necessary 

corrections. Errors that are not repeatable cannot be corrected for in this manner, but 

instead must be continually monitored if correction is necessary. In certain case's error 

signals can be made to drive servos that will correct machine geometry, though more 

often than not this method of correction is impractical. 

The task is to calculate, for each machine configuration of interest, the actual 

position of the gauge tip relative to the machine datum point in terms of the position 

indicated by the measurement transducers and the geometry errors. In addition, it is 

useful to determine the uncertainty in actual position in terms of the uncertainties in the 

position-transducer indications and geometry error measurements. The calculations must 

include every sensitive error possible, every deviation from the desired motion that cause 

the tool or gauge tip to move in the measurement direction. Any motion that causes the 

tool to move in a direction normal to the desired motion is insensitive since its effect on 

the actual position of the tip is usually negligible. 

An inspection planning procedure is created. The inspection planning procedure 

can assist process designers in determining an initial inspection plan based on 
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manufacturing process capability, assigned geometric error and inspection accuracy 

requirements. 

If the geometric form of the part surface is perfect, the coordinate estimation 

based on enough number of discrete points, will be exact. On the surface of any real part, 

however, geometric errors always exist. They appear in a continus manner. Therefore, the 

result of coordinate estimation depends on the number and locations of the discrete points 

being used. In other words, when using discrete coordinates, variations of coordinate 

estimation should be expected as long as geometric errors exist. 

In manufacturing, this might result in the production of products that are out of 

tolerance. In inspection, this might lead to the wrong decision of acceptance or rejection 

of the inspected part. Therefore, for the quality assurance of high precision engineered 

products, the coordinate measuring points must be analyzed. 

For inspection planning, some research has been conducted on the generation of 

collision-free inspection path [Yau and Menq, 1991; Lim, 1992]. However, little research 

has addressed the problem of determining the number and locations of the required 

measurement points. The determination of measurement points is a rather complicated 

problem. It is believed that the number and locations of the required measurement points 

would depend on various factors of relevance to design specification, manufacturing 

processes and requirements for inspection accuracy. Menq et al.[1992] proposed a 

method to determine the number of measurement points for the inspection of form 

tolerance based on a statistical analysis. This research is a good starting point for 

studying inspection planning. However, there are two limitations of these works. First, 

the geometric error on the part surface is assumed to follow a normal distribution. In 

reality, not only the real error distribution will be different from a normal distribution in 

some degree, but also the variation of geometric form fitting will influence on the results 

of tolerance evaluation. In current practice of dimensional inspection, there are no 

guidelines available for selecting the number and locations of measurement points. 
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1.2 Research Objectives 

There two primary research objectives in this thesis. These are: 

(a) To identify and characterize the type of errors made by a CMM when measuring 

geometrical shapes. 

(b) To design an inspection procedure, that is the number and location of measured 

point, so as to optimize the reliality of the inspection process. 

This study formulate an optimization algorithm to analyze the measured 

coordinates' data. The algorithm is labelled GMP/C. The current study deals with 

geometric features and geometric tolerances. The analytical procedures, which deal the 

size tolerance and different geometric errors, that are round, straight, flat, angle and 

perpendicular. How many points are needed to inspect the product reliably? Which points 

should be measured? What should be the sampling size on a production line? Should the 

identical points be measured on all inspected products? These are all the deviations 

related to a circle, rectangle, and polygon.  

Figure 1.1 The Diagram of using a CMM to Inspection Parts  

When the measuring procedure is completed, the data input to the CMM 

Geometry Measurement Procedure (GMP/C) is a design data file. The user then specifies 
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which geometric in the design are to be inspected, what is the required reliability and 

accuracy, and finally how the part is manufactured. The GMP/C analyze the input data 

and determine which points (and how many points) in the geometry should be measured, 

further it will specify what the inspection sample size should be. As part of the seed 

money project we are concentrating on simple 2-D geometric such as circles, rectangles, 

and polygons. 

The objective of this thesis is to develop an intelligent procedure for the efficient 

use of Coordinate Measuring Machine (CMM). A CMM is basically a highly accurate 

electronic scale for the automatic measurement of 2 and 3 dimensional geometry. In a 

typical operation, the CMM measures a set of user defined points, and then utilizes some 

internal logic to ascertain whether the inspected part meets the specifications. This 

configuration is shown in figure 1.1. One significant disadvantage of a CMM is that it is a 

point measuring device, and hence unable to utilize measurement tools such as V-blocks, 

go/nogo blocks, calipers, etc. Further, it is left to the user to specify to the machine which 

points are to be measured. 

1.3 Thesis Organization 

This thesis organized as follows: Chapter 2 describes the coordinate measuring machine. 

There are advantages of using coordinate measuring machines in section 2.6. A review of 

research about coordinate measuring machines presented in section 2.7. Chapter 3, 

modeling of coordinate measuring machine is described as a function of the number of 

measured point. Chapter 4 describes the experimental analysis of CMM model. Chapter 5 

states the conclusion. 



CHAPTER 2 

COORDINATE MEASURING MACHINES 

Market saturation and the pressure of worldwide competition are forcing firms today to 

manufacture products of higher quality and performance without rising production costs. 

At the same time there is a demand for even more customer orientation, i.e., a greater 

variety of products made in smaller quantities. 

This can only be achieved by a higher degree of automation in production and 

quality control. While automatic inspection routines have been state-of-the-art for many 

years, the automatic measurement center where even component feed and the choice of 

part program are computer-controlled. 

The primary consequences for us as manufacturer are to offer future oriented 

solutions to problems in dimensional metrology that are geared to specific customer 

requirements, grow with changing needs and can easily be put into practice. An important 

aspect is compatibility of hardware and software, so that your investment in the solution 

of today's measuring problems forms the basis for future success as well. Coordinate 

measuring machine(CMM) offers a carefully matched range of hardware and software 

components for production and quality control. 

2.1 Coordinate Measuring Machine Approach 

CMM has used in one of three ways in a manufacturing firm. There are three approaches 

in manufacturing firms. First, the CMM at the end of the production line or in an 

inspection area. With this approach, the CMM is used to inspect the first part of a 

production run to verify the machine setup. Once the setup is verified, it then measures 

parts on a random basis. 

7  
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Figure 2.1  Diagram of the Coordinate Measuring System 
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Second approach is to incorporate the CMM between two work centers and then 

measure 100% of the parts produced at the first center before any secondary operations 

are performed at the second work center. This approach is possible because CMMs are 

capable of measuring three-dimensional geometry and making many different 

measurements within a short period of time. When this approach is used, the CMM 

indirectly controls the production process. 

A third approach integrates the CMM into the production line. This permits the 

CMM to directly control the production process. In operation, an integrated system would 

measure the workpiece, compare the measurements with required dimensions, and, if 

necessary, automatically adjust the machine controls so that the part is manufactured 

within the required specifications. 

2.1.1 A Basic Coordinate Measuring Machine  

(1) The machine structure, which basically is an X-Y-Z positioning device 

(2) The probing system used to collect raw data on the part and provide input to the 

control system 

(3) Machine control and computer hardware 

(4) The software for three-dimensional geometry analysis 

2.1.2 Machine Configurations  

A variety of machine configurations are available from the manufacturers of CMMs. 

Each configuration has advantages that make it suitable for particular applications. 

(a) Cantilever 

Cantilever-type CMMs are usually the smallest in size and the lowest in cost, and occupy 

a minimum of floor space. This configuration permits a completely unobstructed work 

area, allowing full access to load, inspect, and unload parts that may be larger than the 

table. 
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It also provides convenient, close grouping of machine controls. The single 

overhanging beam support for the probe head may limit accuracy if a special 

compensation is not built into the cantilever arm. The movement of the probe from one 

inspection point to another is usually performed manually by the machine operator; 

however, joystick and CNC machines are available. The machine of this configuration is 

shown in Figure 2.2, (a). 

(b) Bridge 

Bridge-type coordinate measuring machines employ three movable components moving 

along mutually perpendicular guide ways. The probe is attached to the first component, 

which moves vertically (Z direction) relative to the second. The second component 

moves horizontally (Y direction) relative to the third. The third component is supported 

on two legs that reach down to opposite sides of the machine base and moves horizontally 

(X direction) relative to the base. The workpiece is supported on the base. This 

configuration is shown in Figure 2.2, (b). 

The bridge-type CMM is the most popular configuration. The double-sided 

support of this type of CMM provides more support for large and medium-sized 

machines. The bridge can slide back on the base to give complete accessibility to the 

working area for safe, easy loading and unloading of parts. 

(c) Column 

Column-type CMMs are similar in construction to accurate jig boring machines. The 

column moves in a vertical (Z) direction only, and two-axis saddle permits movement in 

the horizontal (x and Y) direction. 

Column-type CMMs are often referred to as universal measuring machines rather 

than CMMs by manufacturers and are considered gage-room instruments rather than 

production-floor machines. This configuration is shown in Figure 2.2, (c). 
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(d) Gantry 

Gantry-type CMMs employ three movable components moving along mutually 

perpendicular guide ways. The probe is attached to the probe quill, which moves 

vertically (Z direction) relative to a cross beam. The probe quill is mounted in a carriage 

that moves horizontally (Y direction) along the cross beam. The cross beam is supported 

and moves in the X direction along two elevated rails, which are supported by columns 

attached to the floor. 

The gantry-type configuration was initially introduced in the early 1960s to 

inspect large parts such as airplane fuselages, automobile bodies, ship propellers, and 

diesel engine blocks. The open design permits the operator to remain close to the part 

being inspected while minimizing the inertia of the moving machine parts and 

maintaining structural stiffness. This configuration is shown in Figure 2.2, (d). 

(e,) Horizontal Arm 

The horizontal arm configuration employs three movable components moving along 

mutually perpendicular guide ways. In the moving-ram design, the probe is attached to 

the horizontal arm, which moves in a horizontal Y direction. The ram is encased in a 

carriage that moves in a vertical (Z) direction and is supported on a column that moves 

horizontally (X direction) relative to the base. 

Horizontal arm CMMs are used to inspect the dimensional and geometric 

accuracy of a broad spectrum of machined or fabricated workpieces. Utilizing an 

electronic probe, these machines check parts in a mode similar to the way they are 

machine on horizontal machine tools. 

They are especially suited for measuring large gear cases and engine blocks, 

where high-precision bore alignment and geometry measurements are required, By 

incorporating a rotary table, four-axis capability is obtainable. This configuration is 

shown in Figure 2.2, (e).  



to position (same y and z readings as position ) and drive it in the positive x 
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Figure 2.2 The Type of Coordinate Measuring Machines 

2.2 Probe 

The probe is used only to provide a sensitive and reproducible indication of when the 

probe touches the measured part; the three-dimensional position of the probe is 

actuarially read from the slide-position transducers on each machine axis. Thus to 

measure the width ω  of the part shown in Figure 2.3, we drive the slide from position 

in the negative x directions until contact is made, at which instant the x, y, z readings will 

be "frozen" so that we (or a machine memory) can record them. Then we move the slide 

direction until a "touch" signal again freezes the readings. Knowing the diameter of the 

probe's spherical trip, we can easily calculate ω  from the difference among the two x 

readings. 

In the actual CMM, the probe may be positioned anywhere in the working space 

manually (air bearings and z-axis counterweights allow you to grasp the probe body in 
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one hand and easily move all three slides where you wish), by using a joystick control to 

manually command electric motor drives at preselected speeds or by using computer-

commanded electric motor servo drives to accomplish the desired moves automatically 

under program control. This last computer numerical control capability provides a 

powerful measurement tool when it is combined with software to automate the various 

geometric calculations needed to extract part features from slide-position readings. 

A common and important use of CMMs is to check, for conformance to 

specifications, the first machined part in a production run from some numerically 

controlled machine tool. This verification of the part-programming process and all other 

aspects of machining are necessary before you can confidently proceed with the 

production run. 

Figure 2.3  Simple Dimension Measurement with Touch Probe 

2.3 Probe System  

The accuracy of the measurement data and the universal application potential of CMM 

depend to a large extent on their measuring probe system. A CMM probes head measures 

the deflection in x, y and z direction when probing a workpiece and is therefore called a 

measuring probe system. 
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2.3.1 Main Construction Features 

a) The deflection of the probe system is recorded electromagnetically with high 

resolution (differential transformers with moving core) 

b) Parallel motion is achieved for all three axes with spring parallelograms. 

c) The patented force-path characteristic ensures a large safety margin 

without large forces acting on the workpiece. 

d) When work is carried out on the probe head (probe change) all axes can be 

clamped to protect the probe system. 

2.3.2 Advantages 

a) Measurement without clamping of the axes. 

b) A workpiece surface with random spatial orientation can be probed vectorially 

from an equally random direction. 

c) The deflection of the workpiece surface and the actual direction of the surface 

normal is detected for each probe point. 

d) The measuring force is produced in proportion to the deflection and also acts 

perpendicularly to the workpiece surface. 

e) Each time a measurement point is recorded, the deflection of the probe system 

in all axes is determined and stored. The bending of the probe pin can thus be 

calculated and compensated. 

2.3.3 Dynamic Single-Point Probing 

With dynamic single-point probing, the probe system is driven back at continuous speed 

after a deflection, whereby the coordinates of the linear measurement systems and the 

values of the probe system deflection are constantly read off. A spatial characteristic is 

formed from these values, which can be read off for any probing force between 0 and 0.5 

Newton's. 
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Figure 2.4 Probe Sequence 

2.4 Probe Type 

Three types of probes are commonly used: 

(1) hard, (2) electronic, and (3) noncontact. A probe is selected according to the 

dimensional and geometrical requirements of the inspection process. 

2.4.1 Hard Probes 

Hard probes consist of a shaft and a probe tip mounted in various ways to the probe arm. 

A variety of probe tip shapes and sizes is available; the shape of the probe determines its 

application. Conical probes are used for locating holes; ball probes for establishing 

surface locations; cylindrical probes for checking slots and holes in sheet metal parts; and 

measurement of flat surfaces or edges of parts. Hard probes can only be used in small, 

manually operated CMMs when inspecting simple parts of a short production run. 
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Figure 2.5 The Probe Type for Coordinate Measuring Machine 

2.4.2 Electronic Probes 

Electronic probes are commonly classified into one of three categories: (a) switching, (b) 

proportional, and (c) nulling probes. 

Switching probe is the most popular probes, and is an omnidirectional triggering 

device consisting of a probe body and a stylus; multiple stylus arrangements are also 

available. When the stylus is brought into contact with the workpiece, a signal is sent to 

the computer interface, indicating the instantaneous three-dimensional location of the 

stylus. 
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Figure 2.6  Principle of an on/off Switching Type Probe 

The most widely used probe is the touch-trigger type, usable in all three machine 

operating modes. As explained briefly earlier, this probe is an on/off switching type 

which "freezes" the readings of the three slide motion sensors as the probe tip touches and 

is deflected by the part surface. The most common form is shown in figure 2.6. The probe 

stylus is kinematically located in a single unique position by the six contacts of the three 

cylindrical rods with the six balls, with a light spring preload maintaining this position 

when no external forces are applied to the stylus. The six contacts are electrically wired in 

series, as shown, and a constant-current source of about 0.5 mA is connected. The total 

resistance of the six contacts in the neutral position is on the order of a few ohms, making 

the voltage eo  a few millivolts. When the probe's spherical tip is deflected against the 

spring preload by contact with a measured part, one or more of the contact resistance's 

increase very greatly with tiny deflections. When the total resistance exceeds about 3000 

Ω, voltage 

eo 

 passing through 1.5V trips a circuit that freezes all three slide-position 

readouts, recording the position of the probe at the instant of touch. A uniquely favorable  
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feature of the probe is its three-dimensional nature; tip deflections in ±x  ,±y,+z directions 

will all cause triggering, thus the probe may approach the measured part from various 

directions. Note that -z forces are opposed, not by the light spring preload, but by the very 

stiff rod-and-ball contacts. Thus the -z direction cannot be used for gaugging; however, 

this is rarely a problem. 

All probe designs allow stylus overtravel, some by as much as 0.04" (1.0 mm) 

normal to probe axis and 0.08" (2.0 mm) perpendicular to the probe axis. When the 

deflection force is removed, the stylus returns to its initial position. Switching-type 

probes suffer from lobbing due to stylus bending. 

This lobbing effect is exacerbated by high trigger forces and long stylus 

extensions. Electronic touch probes are used on all CMMs. Because of their design, 

proportional-type probes are used exclusively on CMMs that are controlled by direct 

computer control (DCC). This type of probe is designed for automatic scanning of 

through the probe axis. The probe consists of a transducer and a motor-powered, servo 

controlled axis and carries on its tip a servo-assisted feeler that generates an error signal, 

proportional to the pressure exerted on the part and reacts with its motor to profile  

variations whose amplitudes is smaller than the probe axis working stroke. 

Longer profile variations are in turn followed by the CMM axes that are coupled 

to the probe axis position through the control system. A typical proportional probe stroke 

is ±0.5" (± 12.5 mm ) from the center of probe axis stroke. Other probes with 

simultaneous radial and axial scanning capabilities are designed with the above concept. 

Nulling probes are basically the same as the proportional probe with two major 

differences. First of all, it is more accurate than the proportional probe because the 

control system indicates the three-dimensional location of the stylus when  the probe is at 

null condition. The second major difference is that the probe must leave the surface to 

proceed to the next inspection location whereas the proportional probe does not. 
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2.4.3 Noncontact Probes  

Noncontact probes are used when fast, accurate measurements are required with no 

physical contact with the part. Several types of noncontact probes are used. 

Optical probes are used when inspecting drawings, printed circuit boards, and 

small, fragile workpieces. When these probes are used, the basic measuring programs can 

still be used. 

The two types of optical probes used on manual CMMs are a projection 

microscope and a centering microscope. On the projection microscope, the image under 

inspection is displayed on the screen. Part feature locations are obtained by moving the 

CMM to align the screen reticule to the feature. With the centering microscope, part 

feature locations are obtained in the same way as the projection microscope as the user 

looks through the eyepiece. 

Another manufacturer has developed an acoustical probe that senses contact with 

the workpiece by the sound wave generated by the touch rather than by any physical 

displacement of the probe. At contact, vibration travels up the probe and is picked up by a 

sensitive acoustic microphone inside the head. 

A third type of noncontact probe contains a laser light source that projects a small 

diameter spot on the part surface. A digital solid-state sensor detects the position of this 

spot and computes part surface location by optical triangulation. Because of the intrinsic 

nature of these probes, part inspection is generally limited to two dimensions. 

2.5 Probe Operation  

An important detail of probe operation that was ignored in figure 2.3 is probe bending 

and "pretravel." The probe does not actually trigger at the instant of touch since it 

requires a small, but finite, force and deflection to increase the electric resistance to the 

3000-Ω  trigger point. Also bending deflection of the probe (minimized by using short, 

stiff probes whenever possible) causes a small unmeasured deflection between touching 
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and triggering. Fortunately, these effects are largely repeatable and may be corrected by 

calibration. For example, in figure 2.6 before measuring an unknown w, one would 

measure a precisely known w (such as a gage block), to find the "effective working 

diameter" de  of the probe from the equation 

de  = measured size - actual size 

Then this one de  value can be used to correct for all three effects (ball diameters, 

pretravel, and bending) by using the formula 

Actual size = measured size - de  

In practice, de  is usually found by touching a calibration sphere at about 10 points on the 

sphere's surface and using a special algorithm to compute de . This more complicated 

scheme is better since it "exercises" the probe's characteristics in many directions, making 

the de  value more correct for a general measurement. 

2.6 Advantages of Using Coordinate Measuring Machine  

Some of the advantages of using CMMs over conventional gaugging techniques are 

flexibility, reduced setup time, improved productivity. 

2.6.1 Flexibility  

Coordinate measuring machines are essentially universal measuring machines and do not 

need to be dedicated to any single or particular measuring task. They can measure 

practically any dimensional characteristic of virtually any part configuration, including 

cams, gears, and contoured surfaces. No special fixtures or gauges are required; because 

electronic probe contact is light, most parts can be inspected without being clamped to a 

surface plate. 



21  

2.6.2 Reduced Setup Time 

Establishing part alignment and appropriate reference points are very time consuming 

with conventional surface-plate inspection techniques. These procedures are greatly 

simplified or virtually eliminated through software available on computer-assisted or 

computer-controlled CMMs. 

Such software allows the operator to define the part's orientation on the CMM, 

and all coordinate data are subsequently automatically corrected for any misalignment 

between the part reference system and the machine coordinates. A CMM with 

sophisticated software can inspect parts in a single setup without the need to orient the 

part for access to all features even when a fourth axis (rotary table) is employed. 

2.6.3 Improved Accuracy 

All measurements on a CMM are taken from a common geometrically fixed measuring 

system, eliminating the introduction and accumulation of errors that can result with hard 

gage inspection methods and transfer techniques. Moreover, measuring all significant 

features of a part in one setup prevents the introduction of errors due to setup changes. 

2.6.4 Reduced Operator Influence 

The use of digital readouts eliminates the subjective interpretation of readings common 

with dial or venire-type measuring devices. Operator "feel" is virtually eliminated with 

modern electronic probe systems. All CMMs have canned software routines for typical 

part features, such as bores or center distances. In the part-program-assisted mode, the 

operator positions the machine; once the initial position has been set, the machine is 

under the control of a program that eliminates operator choice. In the computer 

numerically controlled (CNC) mode, motor-driven machines run totally unattended by 

operators. Also, automatic data recording, available on most machines, prevents errors in 
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transcribing reading to the inspection report. This all adds up to the fact that less skilled 

operators can be readily instructed to perform relatively complex inspection procedures. 

2.6.5 Improved Productivity 

All the factors previously mentioned help to make CMMs more productive than 

conventional inspection techniques. Further dramatic productivity improvements are 

realized through the computational and analytical capabilities of associated data handling 

systems, including calculators and all levels of computers. 

2.7 The Review of Research about CMMs 

2.7.1 Case 1 (Roundness Error) 

The research of the roundness error presents a computational geometry based method  of 

determining the roundness of a measured workpiece. A roundness error is evaluated with 

reference to ideal geometric features (i.e., a pair of ideal concentric circles), which must 

be established from actual measurements. The problem is defined as follows. A set S of n 

points ( P1  , P2  , P3  ,..., Pn) in a plane being given for n ≥ 4 (for n < 4, the minimum 

separation of the pair of concentric circles from the n points can always be found to be 

zero) finds a pair of concentric circles C1  and C2 with the minimum radial separation SEP 

such that no point is exterior to the space bounded by the two circles. 

Condition; 

(1) Minimize SEP = R1  - R2  

(2) C1  and C2  are concentric 

(3) S is contained between C1  and C2  

(4) R1  ≥ R2 ≥ 0 

where, R1  and R2  are the radii of C1  and C2 , respectively. 
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The traditional shop-floor method for evaluating a roundness error is by V-block 

measurements. The minimum radial separation between the concentric circles cannot be 

established directly by this method. In the ANSI standard, three methods are suggested: 

(a) The maximum inscribed-circle (MIC) method 

(b) The minimum circumscribed-circle (MCC) method 

(c) The least-squares circle (LSC) method 

	

If a circle is drawn with any point on a medial axis as its center, the circle touches 

two or more edges of the simple polygon (generated from the measured points figure 1.7) 

This contact point on the edges is the nearest (compared with points on other edges) to 

the center point of the circle. However, the contact points may not be points belonging to 

the point set. Therefore, the inner circle may not pass through any point of the desired 

point set. The roundness error thus obtained would be large than it should  be. 

Figures 2.7 Medial Axes and Inscribe Circle 

So that the correct ways of solving the geometric errors can be sought, it is 

necessary to mathematically formalize the geometric errors. The method for evaluating 

the roundness error is based on the computational-geometry-based techniques relating to 

convex-hull and Voronoi diagrams. 
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Figure 2.8  Each of the Circles Touches 

Let 

C1 

 and 

C2 

 be any pair of concentric circles such that each point of S is 

properly inside the space bounded by C1  and C2  (see figure 2.8 (a) ). With the same 

center, 

C1 

 can still be enlarged while 

C2 

 can be shrunk until each of the two touches at 

least one of the data points. Imagine that 

C1 

 touches exactly on point P1  of the data points 

while 

C

2 also touches exactly one data point P2,  so that all the other points are still 

bounded by the two circles (see figure 2.8 (b) ). 

From condition (1), evidently a decrement of SEP can be achieved by a decrease 

in R1  and/or an increase in R2 . Here, it is assumed that R1  is constant. To satisfy 

conditions (2) and (3), the center 0 of the circles 

C1 

 and 

C2 

 can only be shifted along the 

arc of radius 

R1 

 that is centered at 

P1 

 (see figure 2.8 (c) ). It can shift either towards point 

P2 

 or away from 

P2

. When the center shifts away from 

P

2, 

R2 

 becomes larger. Thus, it 

results in a smaller SEP. The minimization of SEP proceeds until 

C

1  or 

C

2  touches one 

more point. As an example, in figure 2.8 (c), the shifting of center 0 continues until 

C

2  

hits another point P3 . This step provides a new center O' and a new radius R ' 2  of the 

inner circle. 

Under conditions (2) and (3), center O' can still be shifted along the bisector of 

P2P3  to change SEP as shown in figure 2.8 (d). The center can move in either of the 

directions, towards or away from point C, from O'. Point C is the center of the circle 

passing through three points P1, P2  and P3 . As center O' moves towards point C, SEP is 

decreased. This is shown in figure 2.9. 
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Figure 2.9  Calculation of Change of SEP Towards C 

Depending on the location of the point P1, two cases arise: Case (a), in which 

point P1  lies on the right-hand side of the line that passes through P2  and P3 , and (b), in 

which point P1  lies on the left-hand side of the line. For (a), ∆R1 = O'O"cosα1 and 

∆R2 = O'O"cosα2 . When O'O" is small, R'1 ≈ R1 - ∆R1 and R"2 ≈ R'2 - ∆ R2 . 

SEP" = R '1 

— 

R"2  

≈ (

R

1 — R'2) — (∆

R

1  — ∆

R

2  ) 

= SEP'— (∆

R

1 — ∆

R

2 )  

as α2  > α1, ∆

R

1  > ∆

R

2  . Thus SEP" < SEP'. 

For (b), it can be seen that the point C lies on the left-hand side of the line passing 

through P2  and P3. In a similar way to that of (a), when the center O' of the concentric 

circles is shifted towards point C, the increment of the radius of the inner circle is more 

than that of the outer circles, resulting in smaller radial that of the outer circles, resulting 

in smaller radial separation of the concentric circles. 

As the center shifts towards C, the separation of the concentric circles becomes 

smaller and smaller. The minimization procedure stops when circle C1  or circle C2  

touches another point. In the example above of figure 2.8 (d), the outer circle touches P4. 

The new center is O", and the new radii are R '1  and R"2 . 

Three distinct things may arise during this minimization procedure, as shown in 

figure 2.10. In the above example, each of the outer and inner circles passes through two 
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points (a). The other two possibilities are (b), in which the inner circle passes through 

three points and the outer circle passes through one point, and (c), in which the outer 

circle passes through three points and the inner circle passes through one point. In (b) and 

(c), as either the outer or the inner circle passes through three points, the center is fixed, 

and it has no degree of freedom for further movement. Therefore, no further minimization 

of the radial separation is possible. 

In general, given n points ( P1 , P2 ,..., Pn ) ( n ≥ 4 ) in a plane, there exists a pair of 

concentric circles with minimum separation such that all the points are bounded by those 

circles. The circles pass through at least four data points, and there is at least one datum 

on each circle. If an exhaustive ad hoc technique is used to find the concentric circles 

(with minimum radial separation) with any four points out of n data points being 

considered at a time, there is a risk of running into the danger of computational explosion. 

The computational complexity of this method is O (n). To overcome the drawback of the 

method, a much more efficient method is provided below. It is based on a computational-

geometry technique. 

Figure 2.10  Three Cases of Concentric Circles for Roundness Error 

The principles and procedure of this method are as shown in the flowchart shown 

in figure 2.11. The input to the system is the point set S obtained from the measured 

workpiece profile (on a cross-sectional plane that is perpendicular to the rotational axis). 

If the initial point set is arbitrarily measured, it is required to be sorted so that a simple 

polygon is generated from the data points. The sorting can be completed in the time of 
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O(n log n). It is then necessary to establish pairs of concentric circles for all three cases, 

and to select the desired pair with minimum separation. A brief discussion of the 

procedure follows. 

Figure 2.11  Flowchart for Calculation of Roundness Error 

Step 1: Construct the convex hull CH(S) from the simple polygon. This step can be 

completed by the use of the Graham Scan method in O(n). 

Step 2: Generate the Voronoi diagrams. The farthest Voronoi diagram FVor(S) is 

generated from the convex hull CH(S). The computational complexity is O(n log n). The 
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nearest Voronoi diagram NVor(S) is constructed from point set S. The computational 

complexity of constructing NVor(S) is the same as that for FVor(S)-O (n log n). 

Step 3: Establish the pair of concentric circles with minimum separation for each of the 

three cases. 

Case 1: Compute the intersection of FVor(S) and NVor(S), and obtain a set Ip  of all the 

intersecting points of the two Voronoi diagrams. By Property 1, for every intersecting 

point ip ∈ Ip, a pair of concentric circles centered at ip , can be constructed. The inner 

circle of the pair passes through at least two points of S nearest to the center 

i

p  ; the outer 

circle passes through at least two points of S farthest from the center 

i

p . The concentric 

circles contain the whole point set S. The separation of the concentric circles is 

calculated. The |Ip| pairs of such concentric circles can be generated in Case 1. The 

minimum separation SEP 1 of Case 1 is selected from the separations of all the pairs of 

concentric circles. As the computational complexity of calculating the intersections of 

EN  and EF  is O(n), the complexity may be further improved to O (n log n). 

Case 2: Construct each pair Pc  of concentric circles at every vertex vn  of V N  (the 

nearest Voronoi vertex set). By Property 1, therefore, the inner circle passes through at 

least three points (of S) that are nearest to the vertex 

v

n . The circle contains a set that is 

empty except for the points of S on the circle. The outer circle is determined by it being 

centered at 

v

n , and passing through a point of S that is farthest from the center 

v

n . For the 

vertex set V N, |VF| pairs of concentric circles are found. Their separations are calculated. 

The minimum separation, denoted by SEP2, is eventually selected from these separations 

for Case 2. 

Case 3: In a similar way to that of Case 2, the concentric circles are constructed at 

vertices VF. For each pair of the concentric circles, the radius r1 of the outer circle is 

calculated, which is the distance from vertex v f  to any one of the three points that are 

farthest from v f  . The radius r2  of the inner circle is the distance from vertex v f  to the 

point S that is nearest to 

v f

. The separation of the pair is obtained by subtracting r2  from 
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r1 . A set of the separations is found that corresponds to set VF. The minimum separation 

SEP3 of Case 3 is selected. 

Step 4: If the results from the above-mentioned three cases are compared, the roundness 

error is determined as the minimum of SEP1, SEP2 and SEP3. 

2.7.2 Case 2 (Circular Profiles)  

The coordinates of the center of a sphere are determined "... arising from the position that 

the spherical center is the point for which the sum of the squares of distances from this 

point to points on a surface (which describe a sphere) is a minimum." On the basis of this 

strange definition, the author obtains for the center of the sphere, the center of mass of the 

this can be seen by establishing the position of the Z-coordinate of the center when 

computed this way from measurements of only the upper hemisphere. 

A method for an approximation to a general equation of a circle is suggested in 

[T. S. R. Murthy, 1986] which includes its presentation in the form 

f ( x, y)=  A(x 2  + y2 ) + ux + vy — 1 = 0  

and the minimization of the functional E ( A , u,v) = Σ f2  ( Xi , Yi). A basic inadequacy of 

this algorithm is the fact that the position and radius of the given curve depend on the 

choice of system coordinates (in other words, on the choice of position of a feature in the 

field of a microscope or on the base of the machine). Omitting a deep, but simple proof of 

this assertion, let us look at only an obvious demonstration of this error. We determine a 

circle from some set of points 

Xi, 

Yi  and select a shift of the entire configuration so that 

the circle passes through the coordinate (0,0). An unfortunate normalization Equation 

(2.1) leads to a different circle since f(0,0) ≠ 0 for arbitrary A, u, and v. Thus, an attempt 

to repeat the computation for a new set of coordinates yields a problem that either 

becomes insoluble or gives a completely different circle. 
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One then finds the 
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Figure 2.12  The View of Coordinate Measurement of Circular Profiles 

Algorithm A3:  

The mean circle is constructed, based on conditions for a minimum of the sum of 

squared distances from N measurement points, Xi , Yi to the circle of unknown center A, 

B and radius R: 

This nonlinear program is solved by the well-known numerical method of linearizing the 

functional and iterating. Let A1, B1, R1  be the first approximation to the desired quantities 

A, B, and R that minimize ϕ3. At the k-th iteration, xi  = Xi  — Ak  , yi 	— Bk , the 

coordinate's relative to the most recent approximation of the center, and the quantities 

corrections a, b, and r to Ak , Bk  , Rk  , (|a|, |b|, |r| << R). 

Linearization of equation (2.1) yields 

The condition for a minimum of ϕ3  gives rise or a system of linear equation for a,b,and r 
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Having determined a, b, and r, Ak+1  = Ak  + a , Bk+1  = Bk  + b, Rk+1 = Rk  + r , and the 

procedure is respected until the desired accuracy are obtained (max(|a|,|b|,|r|)<ε~0.1µm). 

Algorithm A2:  

This algorithm involves finding a circle of fixed radius Ro  through points Xi,Yi  

where Ro  is equal to the nominal or most probable value, that is, the minimization is for 

ϕ 2 (A, B) = ϕ3(A, B, Ro). The algorithm proceeds just as in algorithm A3 with the only 

difference since the deviation r is set equal to zero. This leads to a system of two 

equations (three equations in the case of a sphere) for the accuracy of the center position 

at each iteration: 

Figure 2.13  The Circular Profiles 

Algorithm A1: 

This algorithm concludes the series started with algorithms A3 and A2. It fixes 

the center position while varying only the radius. This is no different from the usual 

determination of mean radius for the distances from measured points to a nominal center 

position. 



Introducing the transformation Q = R 2  — A 2 — B2, one finds (A, B, Q) = Σ  (2AXi+ 

2BYi  + Q - Ri2 )2 where Ri2 = Xi2 + Yi2. The condition for a minimum yields the 

(2.3) 
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Algorithm AO: 

This algorithm can be used in order to obtain a first approximation for algorithms 

A3 and A2. In it Φ3  is "mapped" to a function Φ0  that does not contain a radical: 

Φ0(A,B,R ) = Σ[( Xi - A)2 + (Yi - B)2 - R2]2  

following system of linear equations, 

A rotation to the measurement center-of-mass coordinates system simplifies the solution 

of equation (2.3): Sx  ,Sy ,and Sz. become zero. Then.  A and B are determined 

from a system of two equations, 

back to the initial coordinate system.  

and A and B are then translated 

Now let us look at the system of coordinates in which an arc of a circle with angle 

a is distributed symmetrically on both sides of the abscissa. We determine R0  according 

to algorithm A0. The coefficients in equation (2.2) are substituted with their mean values, 

which are designated by the symbol s. From the conditions for a minimum of 

Φ0  , Σ(ri2 - R02

) 

= Σ((R0 + di)2 - R02

) 

 = 0, from which sd = —sdd / (2R0) ≅ σ2 / (2 R0) 

where σ  is the standard deviation. If the points are distributed approximately uniformly 

on the arc, an estimate for Su  from the mean value of the cosine becomes, 

Analogously, Suu  = (1 + ωcosα) / 2,Svv = 1— Suu,Suv = 0,Sv = 0 if di is distributed 

randomly and does not depend on angle, Sud  ≅  SuSd  = ωSd,Svd  ≅  SySd  = 0. Then 

equation (2.2) takes the form 



(2.4) 
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from which it follows that a ≈ 0, b ≈ 0, Thus, for σ ≈ 100 µm and R ≈ 10 mm, 

r≈1 µm. That is, for microscopic deviations from circularity and macroscopic dimensions 

of features, algorithms A3 and A0 give practically the same value for the center 

coordinates, but show a difference in their values for a radius that is non negligible in 

comparison to the characteristic deviations of the order of σ. These estimates hold only 

for parameters of complete circles (apertures) or large arcs. For small α, equation (2.4) 

becomes poorly defined (Suu  → 	ω2, Svv → 0) and lead to the divergence of algorithm A3. 

	

Therefore, we now examine the properties of data reduction for small arcs in more detail. 

The illustrated in figure 2 is the displacement ∆  of the center 0 of an arc defined 

by three points A, B, and C that result in a small displacement α  of point B. For ε << R, ∆ ≅  

ε ×  cot an-2  (α/4). This indicates that "in the allowed range ±ε" can be found in the arc 

of a circle, the scatter in the radius will exceed a by many times. 

The sensitivity of algorithm A0 to errors of measurement can be estimated by 

transforming the sum of equation (2.3) into integral form. The error ε for the point B 

gives the displacement of the center of the mean circle and is given by 

For arcs of 15, 30, 45, 90, 180, and 360°, K is equal to 440, 110, 50, 13, 4, and 2, 

respectively. A high sensitivity of the algorithms is mentioned in [G. A. Osokov and N. I. 

Chernov, 1984] as are their shortcomings. We consider that these are "shortcomings" of 

the geometrical properties of arcs and are thus inherently reflected in the algorithms. 

The control of complex features by a coordinate measuring machine demands 

multiple replacement of the center position of a reference ball is measured, with the ball 

rigidly attached to the base of the machine. Usually just a part of the spherical surface, 

sometimes very small, is allowed for the probe that can lead to in adequacies in a table of 
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important operations with errors in the determination of the center position. To address 

this inadequacy, there is algorithm A2 in which the radius of the center position. To 

address this inadequacy, there is algorithm A2 in which the radius of the sphere is set 

equal to the sum of radii of the ball and head, both known with a high degree of accuracy. 

The problem of comparing results of coordinate measurements is real, as far as 

differences in results obtained by various methods are significant. It is the opinion of the 

author that in the area of programmed and systematic resolution of these questions, the 

unified effort of many laboratories and the publication of defined, accepted standards and 

recommendations are necessary. 

The simple algorithm A0 gives good initial approximations for various types of 

basic circles. The parameters are indistinguishable from values given by algorithm A3 

that manifests the greatest rigor for the construction of a mean sphere. Unsatisfactory 

results for the reduction of measurements of small arcs are not from the inadequacy of the 

algorithms but, rather, from a defect in the method of reducing the measurements. In 

these cases, algorithm A2 is recommended for the construction of the base circle. 



CHAPTER 3 

THE CMM DEVIATION AS A FUNCTION OF THE NUMBER 
OF POINTS MEASURED 

3.1 Determining Deviation from Circularity  

When a point by point system is used to inspect a circle, then a minimum of three points 

is required to define the circle. The circle definition includes the radius of the circle, and 

the specific coordinates of its center point. Typically, in inspection we are looking for (i) 

eccentricity errors, and (ii) errors in the location of the center. As the number of points 

measured increases so does the likelihood that these error will be detected. Clearly, the 

only way we can be sure a circle is perfect, is by measuring an infinite number of points. 

Our objective is to measure the circle using the minimum number of points required to 

achieve a desired level of reliability. To do this we first need to define possible errors in 

eccentricity. 

3.1.1 Circle Error  

Figure 3.1  Standard Eccentricity Errors in a Circle 
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Any error in the eccentricity of a circle can be described as a departure from the true 

circle outline. Two parameters, Θe and δe, are measurable from each departure, where Θe 

is the cone angle of the error, δe is the maximum deviation of the error, respectively (see 

figure 3.1). Clearly, the ability to detect the error depends on the magnitude of Θe. When 

multiple errors are presented on the same circle, the smallest error will be the measuring 

countraint. To be able to analyze the errors, we must process (Θe, δe) and hence 

appropriately establish a measurement process. Alternatively, (Θe, δe) can be estimated 

from a historical data. 

3.1.2 Selecting the Measurement Parameters 

Figure 3.2 Facilities and System Integration 

In figure 3.2, a circular geometry is made by a milling machine. The output is 

being inspected on a CMM. Let (Θmin, δmin) is the smallest error that could occur. To 

evaluate the circle, typically N equally spaced points are measured. If this means the 

angular distance between any two measured point is 360/N. Therefore Θmin < 360/N 

then it is quite possible that the error will go undetected. 
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The probability of detecting the error = 

When, N≥360/Θmin then we will in all certainty detect the error. Alternatively, if we are 

willing to accept a α% of defect on average, and the expected production of defective 

parts is β%, then 

Deviations from circularity can be determined by knowing the actual deviations of the 

radial play of the measured rotations' bodies. 

The radial play is the difference between the greatest and smallest distances from the 

points of the real profile of the rotation surface to the base axis in the cross section a 

plane perpendicular to this axis. It is known that deviations of radial play are composite 

deviations of shape and position of the working surfaces relative to the base surfaces, 

axes,etc., i.e., the components of deviations of radial play are deviations from circularity 

(shape deviations) and deviations that are functions of the location of the working surface 

relative to the base axis (location deviations), the fundamental cause of which is the 

presence of eccentricity (shifting of the base axis relative to the geometrical axis). 

Radial play, which is a function only of eccentricity, in the absence of deviations 

from circularity, decreases smoothly along the circumference from the maximum value to 

zero. 

By using these formulas, from the maximum radial play it is possible to calculate the 

radial play at given points through 45°. If the calculated values of radial play and the 

results of the measurement of radial play at the same points are known, then it is possible 

to determine the deviations characterizing the deviations from circularity as the difference 

between the calculated and the measured deviations of radial play. 

In the presence of maximum radial play at any other point, for example at point 4, the 

opposite points 8 is taken as the initial one, i.e., the zero point, and at the remaining 

points the measurement results are recalculated to a magnitude equal to the measured 
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deviation at point 8 - a deviation that was observed at point 8 before it was taken as the 

zero point. 

From this it may be concluded that the method under consideration can be used to 

measure deviations from circularity at a tolerance of more than 10 p.m, when the error is 

equal to 5.4-9.1%, which is allowable. It is characteristic that on the average deviations 

from circularity are approximately 25% of the radial play, i.e., the primary deviations are 

deviations of radial play. 

3.2 How to Measure Circle Using Least Squares Center by CMM  

It is important that the source of measuring errors should, wherever possible, be 

determined and due allowance made for them in the measured size of the workpiece. 

The alternative and recommended definition of roundness error are based on the 

least squares principle. When dealing with straightness, we have seen that it is possible to 

establish a unique datum line relative to a series of measured values by the principle of 

least squares. This enables both the slope and vertical intercept of the line to be 

established mathematically. 

An analogous situation occurs in roundness measurement where we wish to 

establish a circle in relation to a series of measured values. In this case it is required to 

calculate the center of the least squares circle and also its radius and to use this as a datum 

from which to specify the errors of roundness. 

3.2.1 Proof of the Formula for the Determination of the Least Squares Center and 
Circle 

Consider a polar graph in rectangular coordinates xi  and yi, originating at O, as shown in 

figure3.3. Take a number n of radii ri, at equal angular spacing about O, which meet the 

trace at points given by ( riθi  ), where 

i=1,2,3, 	..., n and θi = 
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Let the least squares circle have center C, whose rectangular coordinates are (a,b), 

and whose radius is R. 

Let the distance from the origin O to the center C be c, and let the angle which OC 

makes with the x-axis be α. 

Then, 

Figure 3.3  Diagram for Determination of the Least Squares Center 

From the triangle OPC, 

where ei  is the deviation from the least squares circle along the radius ri . Now in a well-

centered trace c is very much less than R, and 

ri  = c  cos(θi  — α)  + R + ei approximately. 



(3.1) 

(3.2) 
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By the principle of least squares Σ ei2  is a minimum, i.e., Σ [ri  — R  — c cos(θi  — α)]2  is a 

minimum, and so 

giving 

giving 

giving 

Σri sin(θi — α)— RΣsin(θi — α) — c Σcos(θi —α)sin(θi — α) = 0 	(3.3) 

Expressing 

gives 

and 

Σcos(θi  — α)sin(θi  — α) = 0 

also 

similarly, 

Applying these results to equations (3.1), (3.2) and (3.3) give: 



i.e., 

(3.4) 

i.e., 

(3.5)  

from (3.5) 

41  Σri 

—  nR  — 0 = 0 from (3.1) 

i.e., 

and 

i.e., 

Hence  

which substituted in (3.4) give 

now 

therefore 

giving  
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i.e., 

and 

3.2.2 Example 

Twelve equally spaced radial ordinates are drawn relative to the center of the chart and 

numbered 1 to 12 as shown in figure 3.3. The rectangular coordinates of the point of 

intersection between each ordinate and the polar diagram are measured with respect to the 

x and y axes, taking due account of sign. 

These are tabulated, as shown in table 3.1, and the values of Ex and Ey used to 

establish the center of the least squares between each point of intersection and the least 

squares center may now be measured and used to calculate the radius of the least squares 

circle. 

The roundness error is determined on the basis of the maximum peak to least 

squares circle plus maximum valley to least squares circle, which in the example shown 

in figure 3.3 equals 0.0010 in. 
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Table 3.1 Calculation of Least Squares Center and Radius 

Position x coordinate y coordinate radius 

1 0 1.77 1.69 

2 0.83 1.43 1.55 

3 1.28 0.71 1.35 

4 1.5 0 1.42 

5 1.45 -0.8 1.64 

6 0.73 -1.3 1.54 

7 0 -1.3 1.33 

8 -0.7 -1.1 1.4 

9 -1.3 -0.7 1.16 

10 -1.4 0 1.51 

11 -1.1 0.63 1.37 

12 -0.8 1.27 1.46 

TOTAL 0.54 0.57 17.42 

a = +0.0900 in. 	b = +0.0950 in. 	R = 1.4516 in. 

3.3 Minimum Zone Evaluation  

3.3.1 Straightness  

Let S be the set of points in E 2 . The convex hull H(s) of S is the smallest convex set 

containing S. A supporting line l  of H(s) is a line passing through a vertex of H(s) such 

that the interior lies to one side the half-plane defined by line l. 
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Let Z(s) = {x ∈ E2 / l1 ≥ x ≥ l2 }  be a zone, defined by l1 and l2, the two 

supporting parallel lines. The diameter,d, of Z(s) is the distance between the parallel 

supporting lines. 

Figure 3.4 The Convex Hull H(s) of the Set of Points S 

There are many such zones that can be defined, and the minimum zone is the zone with 

the smallest diameter. 

d = l ×  sin{min(a1 ,b1 ),max(a2  ,b2 )} 

where, l  = the length of the line joining the two points 

Figure 3.5 Convex Hull  of Minimum Zone 

The following algorithm can be used to determine the minimum zone. 

Algorithm 

1. Determine the convex hull H(s) of the set of points S. 

2. For each edge ei of the convex hull (i=1,...,m) 

max distance = 0 

for each point Pj on the convex hull 

find distance dj of the point Pj from edge ei 
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if dj > max distance 

then max distance + dj 

next Pj 

if max distance < min zone 

then min zone = max distance 

next ei 

3.4 CMM Straightness  

Figure 3.6  The Basic Diagram of Straightness Tolerance Zone 

Form/straightness 

This option computes the straightness of a line. The axis of the feature you are 

computing must fall within the straightness tolerance zone. 

STR1 = FORM / STRAIGHTNESS ; line name 

3.5 How to Measure Rectangle  

It is often practical to express complex numbers z = x + i y in terms of polar coordinate's 

r, 0. These are defined by 

x = r cos θ, 	y = r sin θ . 

By substituting this we obtain the polar form of z, 

z = r cos θ + i r sin θ = r ( cos θ + i sin θ ) 

r is called the absolute value or modules of z and is denoted by | z | . Hence 
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Geometrically, | z | is  the distance of the point z from the origin Figure3.10. Similarly, 

|z1 - z2| is the distance between z1 and z2 figure 3.7 (b). 

θ  is called the argument of z and is denoted by arg z. Thus figure 3.7 (a) 

Geometrically, θ  is the directed angle from the positive x-axis to OP in figure 3.7 (a) 

Here, as in calculus, all angles are measured in radians and positive in the 

counterclockwise sense. 

Figure 3.7 Distance between Two Points in the Complex Plane 

For z = 0 this angle θ  is undefined. Why? For given z ≠ 0 it is determined only up to 

integer multiples of 2π . The value of 0 that lies in the interval -π < 0 ≤ π is called 

principal value of the argument of z (≠ 0 ) and is denoted by Arg z. Thus θ  = Arg z 

satisfies by definition 

- π < Arg z ≤ π. 

3.5.1 Experimentation 

Figure 3.8 The Diagram of the Rectangle 
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The ideal cross-distance is 6.18466. 

We can 

Measured data: 

This is the real distance between the North-West and South-East Corners. 

r1 = 6.17984 

This is the measured distance between the North-West and South-East Corners. 

r1 = 6.17988 

This is the real distance between the Origin and North-East Corners. 

r2 = 6.18124 

This is the measured distance between the Origin and North-East Corners. 

r2 = 6.18151 

We can calculate R distance by using triangle equation which is 

use this distance (R) when I'm measured the rectangle to compare with another rectangle. 

Figure 3.9  The Diagram of R Distance 

To explain, how to measure, and how many points used to measure rectangle. 

3.5.2 Procedure  

1. To find the original point of rectangle two points of each line of the rectangle's side are 

measured using manually. 
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2. The CMM probe automatically touch to measure the location of orientation of the test 

two line of the rectangle side. 

3. To calculate the distance (R) between the origin and the North East Corner (NEC), 

and then, I change the material on the CMM table. (Assuming that the material is under 

the mass production system.) and the probe touch one point to top's one line. 



We assume that mass confidence level of 95%. Interval is 
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If the hitted point is higher than the original line, the NEC may moved to the point of 

NEC'. Now, the distance between the origin and NEC (R) is changed to R'. 

4. To compare the original material and other material under the mass production system. 

5. If the measured data (R) is different with R, then we reject this material in a 

production system's material is normally distributed. 

Table 3.2  The Distance (R) of Rectangle 

number (times) distance (R) 

1 6.18151 

2 6.18124 

3 6.17984 

4  6.18098 

5 6.18132 

6 6.18135 
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3.6 How to Measure Surface (Flatness) 

Planes are measured by taking from 3 points on a surface. The direction of a plane is 

perpendicular to the plane and goes towards the direction from which the probe 

approached the part. The location of the plane is its centroid. The distance (d) is the 

perpendicular distance from the plane to the origin. 

Figure 3.10 The Measuring of Surface 

3.6.1 Least Squares Evaluation 

The flatness tolerance from a set of coordinate points using the least squares technique. 

Given the form 

z = ax + by + c 

the following sum is minimized, 
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where a, b and c are determined by solving the following equations: 

This system is symmetric. To solve it for the unknown a, b and c. And where N is the 

number of sampled points. The distance of a sample point from the least squares plane is 

then given by 

The flatness tolerance using the least squares approach is then : 

Flatness tolerance = Max (di) - Min (di) 

Figure 3.11 The Tolerance Range of Surface 

Using the CMM, the flatness is measured as following: If I measured as distances 

d0, then I can find the tolerance ranges of d0. But the distance d1 is smaller than the 

distance d0, I couldn't find the same tolerance ranges of d0. The tolerance range of d1 is 

smaller than the tolerance range of do. Tolerance range depends on the distance. 
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Figure 3.12 The Measured Point of the Rectangle 

3.6.2 The Characteristics of the Aligned Rectangle 

The CMM's probe touched minimum surface Lj which the minimum surface Lj is short 

length rectangle. The CMM computes the distance between the A point of figure 3.12 and 

SEC. The distance of C1, also the CMM calculate minimum Lj, which is called the 

minimum length. This is the distance between the Y-axis side. The side is parallel to it. 

Therefore, The optimization function is 

Min T = Max (Lj) - Min (Lj) , j = 1, 2, ..., N  

where Lj is distance between the jth surface point and the straight line OA. 

3.6.3 Angle 

Figure 3.13  The Angle between Two Planes 
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The angle between two planes, 

N1 = a1i + b1j+ c1k , 	N 2 = a2i+b2 j + c2 k 

θ = cos-1  δ 

Figure 3.14  The Angle between Two Lines or Planes 

The angle between two lines or two planes is the included angle between features; 

this angle is independent of the order in which features are entered. The angle between a 

line and a plane is the angle between the line and its projection to the plane. In the case of 

the line, which is perpendicular to the plane, this angle is reported as 90 degrees. 



CHAPTER 4 

ANALYSIS OF THE EXPERIMENTS 

4.1 Objective and Procedure of the Experimentation  

The purpose of this experiment is to find minimum points of the optimal range by using 

the Advanced Validator Interface Language (AVAIL™) of Coordinate Measuring 

Machine. 

Two different alternatives to the Coordinate Measuring Machine Geometry 

Measurement Procedure (GMP/C) were studied. 

* CMM rectangle geometry measurement procedure 

* CMM circle geometry measurement procedure 

CMM rectangle geometry measurement procedure refers to the situation where 

any rectangles are available for a measured data. This procedure evaluates the 

rectangularity of a rectangular part that should be at least a probe diameter in thickness 

and mounted parallel to the table. 

CMM circle geometry measurement procedure also refers to the any circle. This 

circle program used for L-square analysis. At this point of the program will construct a 

point on a radius and angle that you will specify. This point will be the center for 

remeasurement of the origin circle. 

In other words, the new "center" will be "off center" to provide a robust test of the 

integrity of the least squares evaluation can be achieved more safely and more simply by 

measuring a virtual circle that is eccentric to the physical circle and contained whinin the 

physical circle. 
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denote the sample variance, then from has 
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4.2 Statistical Analysis  

Suppose that X1 ,...,Xn  is a sample from a normal population having unknown mean µ 

and unknown variance σ2. We wish to construct a 100(1-α) percentage confidence 

interval for µ. Since α  is unknown, we can no longer base our interval on the fact that 

has a unit normal random variable. However, by letting 

a t distribution with n-1 degrees of freedom. 

or , using that t1-α/2,n-1 = —tα/2,n-1  

Thus, if it is observed that X = x and S = s, then we can say that "with 100(1-α) 

percentage confidence" 
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Table 4.1  The Rectangle Results from Experimentation 

TIMES DIAG1 DIAG2 SEA SWA 

1 6.10483 6.09096 35.00772 34.7844 

2 6.10224 6.09042 35.00041 34.7496 

3 6.10502 6.09057 35.00245 34.7869 

4 6.10333 6.09033 34.99915 34.76422 

5 6.10384 6.0904 35.00013 34.77112 

6 6.10418 6.09051 35.00161 34.77567 

7 6.10407 6.09051 35.00158 34.77413 

8 6.10429 6.09071 35.00431 34.77719 

9 6.10428 6.09077 35.00517 34.77701 

10 6.10416 6.09078 35.00533 34.7754 

11 6.10423 6.09074 35.00478 34.77631 

12 6.10416 6.09074 35.00466 34.77538 

13 6.10416 6.09073 35.00461 34.77534 

14 6.10414 6.09073 35.00456 34.77518 

15 6.10413 6.09077 35.00511 34.775 

16 6.10416 6.09076 35.00504 34.77543 

17 6.10418 6.09073 35.00463 34.77571 

18 6.10418 6.09074 35.00468 34.77573 

19 6.10416 6.09078 35.00521 34.7754 

20 6.10416 6.09079 35.0054 34.77537 
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The diagonal_1 ; 

= 0.000544 

95% confidence interval : tα/2,n-1  = t0.025,19  = 2.093 

= P{6.10384 < µ  < 6.10435} 

The diagonal_2 ; 

s = 0.0001593 

95% confidence interval : t 0.025,19 = 2.093 

= P{6.0905989 < µ < 6.0907481} 

South East Angle ; 

s  = 0.0021728 

95% confidence interval : t0.025,19  = 2.093 

= P{35.0028101 < µ < 35.0048439} 

South West Angle ; 

s = 0.00730717 

95% confidence interval : t 0.025,19  = 2.093 

= P{34.77108968 < µ  < 34.77792932} 
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Figure 4.1  The Diagram of the Diagonal_1 Line 

Figure 4.2  The Diagram of the Diagonal_2 Line 



59 

Figure 4.3  The Diagram of the South East Angle 

Figure 4.4 The Diagram of the South West Angle 
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Table 4.2 The Cast Results from Experimentation 

# of point A B R 

3 0.24855 1.07525 1.53706 

4 1.01337 0.0488 1.56093 

5 0.84502 0.05357 1.5509 

6 0.73418 0.05705 1.54501 

7 0.65592 0.05853 1.54037 

8 0.59725 0.05963 1.5368 

9 0.5514 0.06094 1.5342 

10 0.51411 0.06177 1.53207 

11 0.4843 0.06235 1.53042 

12 0.4597 0.06285 1.52877 

13 0.43811 0.06327 1.5276 

14 0.42017 0.06319 1.52642 

15 0.40431 0.06428 1.52563 

16 0.39057 0.06428 1.5249 

17 0.37832 0.06461 1.52411 

18 0.36768 0.0649 1.52348 

19 0.35815 0.06496 1.52294 

20 0.34938 0.06537 1.52252 
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Cast Radius ; 

s  = 0.010655 

95% confidence interval : tα,n-1 = t0.05,17  = 1.740 

= P{µ < 1.5373768} 

Figure 4.5  The Diagram of the Cast Radius 
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Table 4.3 The Tube Results from Experimentation 

# of point A B R 

3 0.18548 0.92024 1.30764 

4 0.83784 0.03828 1.32354 

5 0.69713 0.04377 1.31663 

6 0.60359 0.04587 1.31181 

7 0.53727 0.04708 1.30847 

8 0.48769 0.04811 1.30593 

9 0.44813 0.04903 1.30398 

10 0.41684 0.04963 1.3024 

11 0.39167 0.04988 1.30109 

12 0.37051 0.05063 1.30002 

13 0.35252 0.05088 1.29911 

14 0.33702 0.05143 1.29834 

15 0.32397 0.05162 1.29764 

16 0.31218 0.05185 1.29706 

17 0.30195 0.05182 1.29654 

18 0.29253 0.05214 1.29608 

19 0.28457 0.05246 1.29568 

20 0.2774 0.05239 1.29526 
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Tube Radius ; 

s = 0.007906 

95% confidence interval : tα,n-1 = t0.05,17  = 1.740 

Figure 4.6 The Diagram of the Tube Radius 



CHAPTER 5 

CONCLUSION  

This thesis offers a carefully matched range of measurement components and 

comprehensive customer support for production and quality control. Firsts of all, the most 

important things are short measuring time and high accuracy. 

This thesis consists of CMM Geometry Measurement Procedure, a so called 

GMP/C, which represent independent functional process. Each procedure is a short but 

powerful process computer that solves the measurement and control tasks put to it. 

The objectives of thesis are twofold. First, It is to find the geometric error in the 

material. Second, to optimize the number of points to be measured in an inspection that 

the requisite inspection information on the job in question is obtained in the minimum 

possible time. 

The uncertainty of coordinate estimation is characterized by a variation interval 

associated with a specified confidence level. To reduce the influences of coordinate 

uncertainty on the accuracy of manufacturing and inspection, the propagation of 

coordinate uncertainty into the results of dimensional error evaluation and form tolerance 

evaluation is also studied. 

The uncertainty analysis of coordinate estimation depends on the available 

information about the geometric errors on the part. At different stages of an inspection 

process, the available error information is different. 

For inspection planning, since the detailed error information, such as the GMP/C 

of the geometric error at measurement points and the systematic component of form error 

is often not available. The statistical property of geometric errors is represented by the 

process capability in GMP/C analysis. 
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However, at the tolerance evaluation stage, more detailed information about the 

geometric error can be extracted from the measurement data and should be considered in 

tolerance evaluation. 



APPENDIX A 

PROGRAM FOR COORDINATE MEASURING MACHINE  

This is the "oneshot" hits program that is automatically measurd rectangle. 
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! ! 			PC AVAIL ! 

! 		BROWN & SHARPE ! 

! 	ADVANCED VALIDATOR INTERFACE LANGUAGE ! 

!FILENAME : /USR/AVAIL/PART/KIM/LLF 
!CREATED : 16:09:57 18-JUNE-93 ! ! 

VERSION/NUMBER; 2.900000 
UNITS/ENGLISH; 
OUTPUT/DEVICE; RECOUT 
QUALIFY/RECALL; TIPS 
QUALIFY/OLD_TIP; 1 
SETUP/PARAMETERS; 100.0,2,80,0.0917,0.0917,100.0,100.0,25 

COUNT.SC2 = CALCULATION/COPY; 20 
TEXT/DISPLAY; { 
THIS PROGRAM EVALUATES THE "RECTANGULARITY" OF A 
RECTANGULAR 
PART WHICH SHOULD BE AT LEAST A PROBE DIAMETER IN THICKNESS 
AND MOUNTED PARALLEL TO THE TABLE 

} 
TOP 	= GEOMETRIC/PLANE; 

MANUAL/; 3 
DONE/; 

TEXT/DISPLAY; { 
THE EDGE ALONG THE FRONT WITH HITS TAKEN FROM LEFT TO RIGHT ... 

} 
FORX = GEOMETRIC/2D_LINE; TOP 

MANUAL/; 2 
DONE/; 

TEXT/DISPLAY; { 
THE LEFT EDGE WITH HITS TAKEN FROM FRONT TO BACK ..... 

} 
FORY = GEOMETRIC/2D_LINE; TOP 

MANUAL/; 2 
DONE/; 

FORO = INTERSECT/POINT; FORX,FORY 
ALIGNMENT/PART; TOP,FORX,FORO,XYZ 

WID.SC2 = TEXT/PROMPT; { 
***************** PLEASE MOVE PROBE ABOVE PART ***************** 
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WIDTH (a dimension in Y) IN INCHES 

} 
LEN.SC2 = TEXT/PROMPT; { 
LENGTH (a dimension in X) IN INCHES } 

WINT1.SC2 = CALCULATION/DIVIDE; WID.SC2,3 
WINT2.SC2 = CALCULATION/MULTIPLY; WINT1.SC2,2 
LINT1.SC2 = CALCULATION/DIVIDE; LEN.SC2,3 
LINT2.SC2 = CALCULATION/MULTIPLY; LINT1.SC2,2 
WOFF.SC2 = CALCULATION/ADD; WID.SC2,0.5 
LOFF.SC2 = CALCULATION/ADD; LEN.SC2,0.5 

MOVE/TO; LINT1.SC2,WOFF.SC2,0 

P1 = GEOMETRIC/POINT; YES 
MEASURE/; LINT1.SC2,WID.SC2,-PROBE.SC1,-YAXIS.I,-YAXIS.J,-YAXIS.K 
DONE/; 

MOVE/TO; LINT2.SC2,WOFF.SC2,0 
P2 = GEOMETRIC/POINT; YES 

MEASURE/; LINT2.SC2,WID.SC2,-PROBE.SC1,-YAXIS.I,-YAXIS.J,-YAXIS.K 
DONE/; 

MOVE/TO; LOFF.SC2,WOFF.SC2,0 
MOVE/TO; LOFF.SC2,WINT2.SC2,0 

P3 = GEOMETRIC/POINT; YES 
MEASURE/; LEN.SC2,WINT2.SC2,-PROBE.SCI,-XAXIS.I,-XAXIS.J,-XAXIS.K 

DONE/; 
MOVE/TO; LOFF.SC2,WINT1.SC2,0 
P4 = GEOMETRIC/POINT; YES 

MEASURE/; LEN.SC2,WINT1 .SC2,-PROBE.SC 1 ,-XAXIS.I,-XAXIS.J,-XAXIS.K 
DONE/; 

MOVE/BY; 0,0,1 
MOVE/TO; 0,0,1 

P_X = GEOMETRIC/2D LINE; TOP 
RECALL/; P2 
RECALL/; P1 
DONE/; 

P_Y = GEOMETRIC/2D LINE; TOP 
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RECALL/; P3 
RECALL/; P4 

DONE/; 

SEC = INTERSECT/POINT; P_Y,FORX 

TEXT/PRINTER; { 

CHARACTERISTICS OF THE ALIGNED (INITIAL) RECTANGLE 	 

} 
PRINT_OPTION/AXES; XY 
TEXT/PRINTER; { 
THE COORDINATES OF NORTH WEST AND NORTH EAST CORNERS ARE 

} 
NWC = INTERSECT/POINT; FORY,P_X 
NEC = INTERSECT/POINT; P_X,P_Y 

PRINT_OPTION/AXES; D 
TEXT/PRINTER; { 

THIS IS THE DISTANCE BETWEEN THE ORIGIN AND THE NORTH EAST 
CORNER 

} 
DIAG1 = DISTANCE/2D; ORIGIN,NEC,TOP 

TEXT/PRINTER; { 
THIS IS THE DISTANCE BETWEEN THE NORTH-WEST AND SOUTH-EAST 
CORNERS 

} 
DIAG2 = DISTANCE/2D; NWC,SEC,TOP 
PRINT_OPTION/AXES; DY 

TEXT/PRINTER; { 
THIS IS THE DISTANCE BETWEEN THE XAXIS SIDE AND THE SIDE 
PARALLEL TO IT 

} 
WIDTH = DISTANCE/2D; FORX,P_X,TOP 
PRINT_OPTION/AXES; DX 

TEXT/PRINTER; { 
THIS IS THE DISTANCE BETWEEN THE YAXIS SIDE AND THE SIDE 
PARALLEL TO IT 
} 
LENGTH = DISTANCE/2D; FORY,P_Y,TOP 
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REMARK/; { 
angle calculations 

} 
PRINT_OPTION/AXES; 
L1 = GEOMETRIC/2D LINE; TOP 

RECALL/; ORIGIN 
RECALL/; NEC 
DONE/; 

L2 = GEOMETRIC/2D LINE; TOP 
RECALL/; SEC 
RECALL/; NWC 
DONE/; 

TEXT/PRINTER; { 
THESE ARE THE ANGLES BETWEEN THE TWO DIAGONALS AND THE XAXIS 

} 
SEA = ANGLE/BETWEEN; L2,XAXIS 
PRINT_OPTION/AXES; A 
SEA.SC3 = CALCULATION/SUB; 180,SEA.SC3 
SWA = ANGLE/BETWEEN; L1,XAXIS 

PRINT OPTION/AXES; 

TEXT/PRINTER; { 

SOME REPEATED MEASUREMENT 	 

} 

LEN.SC2 = CALCULATION/SUB; LEN.SC2,PROBE.SC1 
MOVE/TO; PROBE.SC1,WOFF.SC2,1 
MOVE/TO; PROBE.SC1,WOFF.SC2,-PROBE.SC1 

LOOP/TIMES; COUNT.SC2,2,1 
INNER.SC2 = CALCULATION/COPY; LOOP.SC1 

FLIP1.SC2 = CALCULATION/POWEROF; INNER.SC2,-1 
INT.SC2 = CALCULATION/MULTIPLY; LEN.SC2,FLIP1.SC2 
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VAR1.SC2 = CALCULATION/COPY; PROBE.SC1 
LOOP/TIMES; INNER.SC2,1,1 
EL[] = GEOMETRIC/POINT; YES 

MEASURE/; VAR1.SC2,WID.SC2,-PROBE.SC1,-YAXIS.I,-YAXIS.J,-YAXIS.K 
DONE/; 

VAR1.SC2 = CALCULATION/ADD; VAR1.SC2,INT.SC2 
MOVE/TO; VAR1.SC2,WOFF.SC2,-PROBE.SC1 
ENDOF/LOOP; 
MOVE/BY; 0,0,1 
MOVE/TO; PROBE.SC1,WOFF.SC2,1 
MOVE/TO; PROBE.SC1,WOFF.SC2,-PROBE.SC1 

PRINT_OPTION/AXES; XY 
P_X = GEOMETRIC/2D LINE; TOP 

LOOP/TIMES; INNER.SC2,1,1 
RECALL/; EL[] 
ENDOF/LOOP; 
DONE/; 

PRINT_OPTION/AXES; 

PRINT_OPTION/AXES; XY 
TEXT/PRINTER; { 
THE NEW COORDINATES OF NORTH WEST AND NORTH EAST CORNERS ARE 

} 
NWC = INTERSECT/POINT; FORY,P_X 
NEC = INTERSECT/POINT; P_X,P_Y 

PRINT_OPTION/AXES; D 
TEXT/PRINTER; { 

THIS IS THE NEW DISTANCE BETWEEN THE ORIGIN AND THE NORTH EAST 
CORNER 

} 
DIAG1 = DISTANCE/2D; ORIGIN,NEC,TOP 

TEXT/PRINTER; { 
THIS IS THE NEW DISTANCE BETWEEN THE NORTH-WEST AND SOUTH- 
EAST CORNERS 

} 
DIAG2 = DISTANCE/2D; NWC,SEC,TOP 
PRINT_OPTION/AXES; DY 

TEXT/PRINTER; { 
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THIS IS THE NEW DISTANCE BETWEEN THE XAXIS SIDE AND THE SIDE 
PARALLEL TO IT 

} 
WIDTH = DISTANCE/2D; FORX,P_X,TOP 
PRINT_OPTION/AXES; DX 

TEXT/PRINTER; { 
THIS IS THE NEW DISTANCE BETWEEN THE YAXIS SIDE AND THE SIDE 
PARALLEL TO IT 

} 
LENGTH = DISTANCE/2D; FORY,P_Y,TOP 

REMARK/; { 
angle calculations 

} 
PRINT_OPTION/AXES; 
LI = GEOMETRIC/2D_LINE; TOP 

RECALL/; ORIGIN 
RECALL/; NEC 
DONE/; 

L2 = GEOMETRIC/2D_LINE; TOP 
RECALL/; SEC 
RECALL/; NWC 
DONE!; 

TEXT/PRINTER; { 
THESE ARE THE ANGLES BETWEEN THE TWO DIAGONALS AND THE XAXIS 

} 
SEA = ANGLE/BETWEEN; L2,XAXIS 
PRINT_OPTION/AXES; A 
SEA.SC3 = CALCULATION/SUB; 180,SEA.SC3 
SWA = ANGLE/BETWEEN; L I ,XAXIS 
PRINT OPTION/AXES; 

IFTEST/EQ; LOOP .SC 1 ,LOOP.SC2,ENDL 
TEXT/PRINTER; { 

NEXT ITERATION 	 

} 
ENDL = LABEL/; 

ENDOF/LOOP; 
RESET/OUTPUT; 
MOVE/BY; 0,0,1 
MOVE/TO; 0,0,1 

ENDOF/PROGRAM; 



APPENDIX B 

PROGRAM FOR COORDINATE MEASURING MACHINE 

This is the circle program by using least squares center method. 
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! 			PC AVAIL 

! 		BROWN & SHARPE 

! 	ADVANCED VALIDATOR INTERFACE LANGUAGE 

!FILENAME : /USR/AVAIL/PART/KIM1/LLF 
!CREATED : 11:59:38 18-JUN-93 ! ! 

VERSION/NUMBER; 2.900000 
UNITS/ENGLISH; 
QUALIFY/RECALL; TIPS 
QUALIFY/OLD_TIP; 1 
SETUP/PARAMETERS; 100,2,80,0.0917,0.0917,100.0,100.0,25 

OUTPUT/DEVICE; CIROUT 
PRINT_OPTION/FORMAT; NONE 
PRINT_OPTION/AXES; 

END.SC2 = CALCULATION/COPY; 20 
REMARK/; { 
minimum value for END.SC2 is 3 

} 
TEXT/DISPLAY; { 
PLEASE MEASURE THE TOP PLANE OF THE SAMPLE PART 

} 
TOP 	= GEOMETRIC/PLANE; 

MANUAL/; 3 
DONE/; 

TEXT/DISPLAY; { 
PLEASE MEASURE ANY CIRCLE ON THE SAMPLE PART: 
1. The center will be the origin (for now) 
2. The parameters of this circle will be used for the L-SQUARE analysis 

} 
FORO = GEOMETRIC/CIRCLE; TOP 

MANUAL/; 3 
DONE/; 

RLIM.SC2 = CALCULATION/MULTIPLY; FORO.SC1,0.97 
ALIGNMENT/PART; TOP,XAXIS,FORO,XYZ 

ALIGNMENT/SAVE; THISONE,FIRST 
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THETA.SC2 = TEXT/PROMPT; { 
AT THIS POINT THE PROGRAM WILL CONSTRUCT A POINT ON A RADIUS 
AND ANGLE THAT YOU WILL SPECIFY. THIS POINT WILL BE THE "CENTER" 
FOR REMEASUREMENT OF THE ORIGIN CIRCLE. IN OTHER WORDS, THE 
NEW 
"CENTER" WILL BE "OFF CENTER" TO PROVIDE A ROBUST TEST 
OF THE INTEGRITY OF THE LEAST SQUARES CIRCLE ALRORITHM. 

PLEASE ENTER SOME ARBITRARY ANGLE (DEGREES) VALUE 	 
} 

TEXT/REPORT; RLIM.SC2,,,,,,,{ 
THIS VALUE IS 97% OF THE ORIGIN CIRCLE RADIUS 
(also, please move probe above part) 
} 

PAUSE/; 
NOGOOD = LABEL/; 
ZONE.SC1 = TEXT/PROMPT; { 
PLEASE ENTER SOME RADIUS VALUE WHICH IS < OR = THE 
PREVIOUSLY DISPLAYED VALUE (make it small) 	 
} 

IFTEST/GT; ZONE.SC1,RLIM.SC2,NOGOOD 

TEXT/PRINTER; { 
THESE 60 XY VALUES ARE THE ORIGIN CIRCLE MEASURED WITH THE 
"AUTO/CIR; ,„„„," COMMAND. 

X 

	

Y 
} 

BIGC = AUTO/CIR; TOP,IC,60,0,0,-PROBE.SC2,FORO.SC2,0,360 
MOVE/TO; 0,0,1 
DONE/; 
BUFFER/DUMP; RAW 

OUTPUT/USER_FORM; CIRPTS 
PRINT OPTION/FORMAT; USER 
PRINT OPTION/AXES; XY 
LOOP/TIMES; 60„ 
RP[] = GEOMETRIC/POINT; YES 

RECALL/; RAW,LOOP.SC1,1 
DONE/; 

ENDOF/LOOP; 
PRINT_OPTION/FORMAT; NONE 
PRINT_OPTION/AXES; 
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TEXT/PRINTER; { 

LEAST SQUARES CIRCLE 
******************************************************** 

} 

SIN.SC2 = FUNCTION/SINE; THETA.SC2 
COS.SC2 = FUNCTION/COSINE; THETA.SC2 
XX.SC2 = CALCULATION/MULTIPLY; ZONE.SC1,COS.SC2 
YY.SC2 = CALCULATION/MULTIPLY; ZONE.SC1,SIN.SC2 
ZZ.SC2 	CALCULATION/MULTIPLY; PROBE.SC2,-2 
PP.X = CALCULATION/COPY; XX.SC2 
PP.Y = CALCULATION/COPY; YY.SC2 
PP.Z = CALCULATION/COPY; ZZ.SC2 
PP.TYP = CALCULATION/COPY; 1 

REMARK/; 
This "trick" is for safe measurement of the "off- center" circle.... 
(using the diameter of the real/physical origin circle) 
The desired results for the least squares evaluation can be achieved 
more safely and more simply by measuring a virtual circle which is 
eccentric to the physical circle and contained within the 
physical circle. 
PP.SC2 = CALCULATION/COPY; FORO.SC2 
SAFE.SC2 = CALCULATION/ADD; ZONE.SC1,0.05 

SETUP/PARAMETERS; 100.0,2,80,SAFE.SC2,SAFE.SC2,100.0,100.0,25 

DP 	= AUTO/CIR; TOP,IC,HITS.SC2,PP.X,PP.Y,PP.Z,PP.SC2,0,270 
MOVE/TO; 0,0,2.888 
DONE/; 

} 

PP2.X = CALCULATION/MULTIPLY; FORO.SC1,COS.SC2 
PP2.Y = CALCULATION/MULTIPLY; FORO.SC1,SIN.SC2 
PP2.Z = CALCULATION/COPY; ZZ.SC2 
PP2.TYP = CALCULATION/COPY; 1 

DDD 	DISTANCE/2D; PP,PP2,TOP 
VC.SC2 = CALCULATION/MULTIPLY; DDD.SC2,2 

NEWO 	= PROJECTION/POINT; PP,TOP 
ALIGNMENT/PART; TOP,XAXIS,NEWO,XYZ 

REMARK/; { 
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MAIN LOOP 
****************************************************************** 

} 
LOOP/TIMES; END.SC2,3,1 
OUTPUT/USER_FORM; DIGIT 
PRINT OPTION/FORMAT; USER 
PRINT OPTION/AXES; R 
COUNT.SC1 = CALCULATION/COPY; LOOP.SC1 
PRINT OPTION/FORMAT; NONE.  
PRINT OPTION/AXES; 

IFTEST/NE; LOOP.SC1,3,NORMAL 
DP 	= AUTO/CIR; TOP,IC,3,0,0,PP.Z,VC.SC2,0,180 

MOVE/TO; 0,0,1 
DONE/; 

PTS = BUFFER/DUMP; 
GOTO/LABEL; OKGO 
NORMAL = LABEL/; 

DP 	= AUTO/CIR; TOP,IC,LOOP.SC1,0,0,PP.Z,VC.SC2,0,360 
MOVE/TO; 0,0,1 
DONE/; 

PTS = BUFFER/DUMP; 
OKGO = LABEL/; 

EX.SC2 = CALCULATION/COPY; 0 
EY.SC2 = CALCULATION/COPY; 0 
ER.SC2 = CALCULATION/COPY; 0 

TEXT/PRINTER; { 

X 

	

Y 

	

R 

} 
OUTPUT/USER_FORM; F_XYR 
PRINT OPTION/FORMAT; NONE 

LOOP/TIMES; COUNT.SC1,, 
PRINT OPTION/AXES; 
DP = GEOMETRIC/POINT; YES 

RECALL/; PTS,LOOP.SC1,1 
DONE/; 

DR = DISTANCE/2D; PP,DP,TOP 

EX.SC2 = CALCULATION/ADD; EX.SC2,DP.X 
EY.SC2 = CALCULATION/ADD; EY.SC2,DP.Y 
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ER.SC2 = CALCULAITON/ADD; ER.SC2,DR.SC2 

P[].X = CALCULATION/COPY; DP.X 
P[].Y = CALCULATION/COPY; DP.Y 

PRINT OPTION/FORMAT; USER 
PRINT OPTION/AXES; XYR 
P[].SC1 = CALCULATION/COPY; DR.SC2 
PRINT OPTION/AXES; 

PRINT OPTION/FORMAT; NONE 

ENDOF/LOOP; 

PRINT OPTION/AXES; 

TEXT/PRINTER; { 

} 
TOTAL.X = CALCULATION/COPY; EX.SC2 
TOTAL.Y = CALCULATION/COPY; EY.SC2 
PRINT_OPTION/FORMAT; USER 
PRINT OPTION/AXES; D 
TOTAL.SC1 = CALCULATION/COPY; ER.SC2 
TEXT/PRINTER; { 

} 
PRINT_OPTION/FORMAT; MEASURED 
PRINT OPTION/AXES; 
EX.SC2 = CALCULATION/MULTIPLY; EX.SC2,2 
EY.SC2 = CALCULATION/MULTIPLY; EY.SC2,2 
RECIP.SC2 = CALCULATION/POWEROF; COUNT.SC1,-1 
PRINT OPTION/AXES; D 
A.SC2 = CALCULATION/MULTIPLY; EX.SC2,RECIP.SC2 
B.SC2 = CALCULATION/MULTIPLY; EY.SC2,RECIP.SC2 
R.SC2 = CALCULATION/MULTIPLY; ER.SC2,RECIP.SC2 
TEXT/PRINTER; { 
************************************************************************ 
****** 

} 
ENDOF/LOOP; 

RESET/OUTPUT; 

ENDOF/PROGRAM; 
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