
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

Object Oriented Design of
Petri Net Simulator

by
Himanshu Juneja

Petri nets are highly useful for modeling discrete event dynamic systems. The

objective of this effort is to develop a tool for drawing, editing and simulating Petri

nets using object oriented programming on a standard platform. The object

oriented approach was chosen because of its code reuse and extendability features

which simplify the task of adding features to the tool as the model evolves. The

design stresses on modeling of the problem by objects which closely relate the

system design with the implementation.

C++ is used for implementing the object oriented design, and the XView

toolkit is used for building the graphical editor in compliance with AT&T's

OPENLOOK standards on a Sun Sparc IPX running SunOS 4.1.2. The object

oriented paradigm was successfully applied to develop a user friendly, graphical

editor and a simulator for Petri nets.

OBJECT ORIENTED DESIGN OF

PETRI NET SIMULATOR

by
Himanshu Juneja

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

October 1993

APPROVAL PAGE

Object Oriented Design of
Petri Net Simulator

Himanshu Juneja

Dr Anthony D. Robbi, Thesis Adviser 	 date
Associate Profesor of Electrical and Computer Engineering, NJIT

Dr Meng Chu Zhou, Committee Member 	 date
Assistant Professor of Electrial and Computer Engineering, NJIT

Dr David Wang, Committee Member 	 date
Assistant Professor of Computer and Information Science

BIOGRAPHICAL SKETCH

Author: Himanshu Juneja

Degree: Master of Science in Electrical Engineering

Date: October 1993

Date of Birth:

Place of Birth:

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering

New Jersey Institute of Technology, Newark, NJ, 1993

• Bachelor of Engineering in Electrical Engineering

Delhi Institute of Technology, Delhi, India, 1990

Major: Electrical Engineering

iv

This thesis is dedicated to
my brother Ashish Kapoor

and my father the late A.S. Juneja

ACKNOWLEDGMENT

The author would like to express his sincere gratitude to his advisor,

Professor Anthony D. Robbi, for his guidance, support, kindness and

encouragement throughout this thesis.

Special thanks to Professor David Wang and Professor MengChu Zhou for

serving as members of the thesis committee.

The author appreciates the help and suggestions from all the members of the

Petri net group.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

1.1 Objectives... 1

1.2 Petri Nets Concepts 	 1

1.2.1 Petri Net Terminology and Representation

1.2.2 Petri Net Marking and Firing Rules 	 3

1.2.3 Petri Net Liveness 	 4

1.3 Petri Nets Applications 	 4

1.4Thesis Organization 	 5

2 OBJECT ORIENTED CONCEPTS AND X WINDOW SYSTEM 	7

2.1 Basic Concepts of Object Oriented Programming 	7

2.1.1 Terminology. 	 7

2.1.2 Encapsulation or Data Abstraction 	 8

2.1.3 Inheritance, Generalization and Specialization 	9

2.1.4 Polymorphism and Late Binding 	 11

2.2 Reuse and Extensibility of Code...11

2.3 X Window System Concepts 	 12

2.3.1 Window Manager .13

2.3.2 Writing X Applications and User Interface Standards 	 13

2.3.3 XView Toolkit and Notifier based Approach 	13

3 DESIGN OF PETRI NET TOOL 	 15

3.1 How OOP is Applied to Design of PNT 	15

3.2 The Controller Object 	 16

	

3.3 The Net Object... 17

3.4 The Transition Object 	18

3.5 The Place Object ..19

3.6 The Arc Object 	20

3.7 The Segment Array Object 	 20

vii

Chapter 	 Page

3.2 The Segment Object 	 21

3.3 The Basic Object. 	 71

4 PNT USERS MANUAL 	 23

4.1 Overview of PNT 	 73

4.2 The File Menu 	 24

4.2.1 The New Button...25

4.2.2 The Load Button 	 ...25

4.2.3 The Save Button...25

4.2.4 The Quit Button 	 26

4.3 The Draw Menu 	 26

4.3.1 The Place Button. 	.27

4.3.2 The Horizontal and Vertical TransitionButtons...27

4.3.3 The Normal and Inhibit Arc Buttons 	 27

4.3.4 The Token Button 	 28

4.4 The Edit Menu ... 28

4.4.1 The Tag and Arctag Button 	

4.4.2 The Eraser and Erase Text Buttons 	 31

4.4.3 The Clear and KillText Buttons 	 .31

4.4.4 The Delseg and Del arc Buttons 	 31

4.5 The Simulate Menu 	32

4.6 The Utilities Menu 	 33

4.8 Control Flow in PNT 	 35

5 CONCLUSION 	 37

5.1 Enhancement and Portability issues 	37

5.2 Summary 	 38

APPENDIX 	39

REFERENCES 	 46

viii

LIST OF TABLES

Table 	 Page

1.1 	Typical Interpretations of Transitions and Places 5

3.2 Attributes and Operations of Controller Object.. 	17 3.2 Attributes and Operations of Net Object.. 	19 3.3 	Attributes and Operations of Transition Object 	 19

3.4 	Attributes and Operations of Place Object 	 19

3.5 	Attributes and Operations of Arc Object 	 20

3.6 	Attributes and Operations of Segment Array Object 	 21

3.7 	Attributes and Operations of Segment Object 	 21

3.8 	Attributes and Operations of Basic Object 	22

ix

LIST OF FIGURES

Figure 	 Page

1.1 	A Simple Petri Net 	 2

2.1 	Real World Object Hierarchy 	 8

2.2 	XView Object Hierarchy 	 10

2.3 	Software Architecture of PNT 	 14

4.1 	PNT in Openwindows Canvas 	 23

4.2 	The File Menu in Openwindows Canvas 	 25

4.3 	The Draw Menu in Openwindows Canvas 	 26

4.4 	The Edit Menu in Openwindows Canvas 	 .29

4.5 	Tag Panel for Place 	 30

4.6 	Tag Panel for Transition 	 30

4.7 	Tag Panel for Arc 	 30

4.8 	The Simulate Menu in Openwindows Canvas 	 32

4.9 	Panel for Simulation in Openwindows Canvas 	 32

4.10 The Utilities Menu in Openwindows Canvas... 	 33

4.11 A Sample Verify Window in Openwindows Canvas 	 34

4.12 A Sample Log Window in Openwindows Canvas 	 35

CHAPTER 1

INTRODUCTION

1.1 Objectives

The objective of this effort is to build a user friendly, interactive graphical simula-

tion tool for Petri nets using object oriented programming. The tool has capabi-

lites to draw, edit and simulate a Petri net which models any discrete event

dynamic system examples include communication protocol, flexible manufactur-

ing system and system software. Once such system is translated into a Petri net

model, the model is useful for studying system performance and behavior. At

present an object oriented computer tool with this capability does not exist. Ear-

lier Petri net tools have been developed by Chiola[2] and Feldbrugge[5]. A suite

of tools in C language have been developed by graduate students at NJIT[3], [11],

[12]. They lack the extensibility of the object oriented style, do not support X Win-

dows and are not fully operational.

The taxonomy of the Petri nets is so wide that implementations for all kinds

of Petri nets by one student is impossible. The object oriented approach was cho-

sen because of its properties like inheritance and generalization which make code

reusablility much easier. This approach relates the design phase very closely to

the implementation phase which eases debugging and management. The current

tool has used an entirely new design for the simulator. Some of the features of the

previous user interface have been retained but the implementation is in compli-

ance with OPENLOOK standards of graphical user interface (GUI) design. It is in

a networkable windowing system unlike the previous tools which used a kernel-

tied windowing system. The biggest challenge in using this approach is software

design which is much closely related to the implementation phase than the modu

lar approach. Considerable effort has been made in the design of the tool and the

selection and definition of various objects to make it provide a robust infrastruc-

1

2

Lure for adding new features and porting it to other platforms.

1.2 Petri Net Concepts

A Petri net is a bipartitie graph for modeling discrete event dynamic systems.

Petri net theory was developed by Carl Adam Petri in 1962[9]. A Petri net are

abstract and formal model of information flow[8]. The properties, concepts and

techniques of Petri nets have been developed to obtain natural, simple and pow-

erful methods for describing and analyzing the flow of control in systems, partic-

ularly those which exhibit asynchronous and concurrent activities. As a graphical

tool Petri nets can be used as a visual communication aid similar to flowcharts,

block diagram and networks with much stronger modeling power. Analysis of a

Petri net can reveal important information about the dynamic behavior of the

modeled system. This information can then be used to suggest improvements or

changes in the system and its parameters.

1.2.1 Petri Net Terminology and Representation

In a Petri net the graph nodes are the places, transition and tokens. In a Petri net

graph, a place is represented by a circle and a transition is represented by a solid

bar. The places and the transitions are connected by directed lines called arcs.

Figure 1.1 A Simple Petri Net

If pi is an input place of a transition ti, the connecting arc is pointed to transition.

3

If pi is an output place of a transition tj, then the connecting arc is pointed away

from the transition. For example if pi and P2 are input places of t1 and p3 is an

output place of t1, in Fig 1.1.

The interpretation of the places and transitions is related to the modeled sys-

tem. For example in Fig 1.1 p1 could represent the availability of a part in a factory

cell, p2 could represent availability of robot, t1 could represent the operation of

robot moving the part in the destination, and p3 could represent the destination or

a buffer. The tokens in this place indicate availablity. The presence of the required

part and robot leads to the operation. Transition t1 fires removing the tokens from

pi and P2 and depositing a token in p3. Thus a marked net represents the state of

the system and the movement of tokens describes the dynamics of the system.

Petri nets provide a natural representation of the systems where control and state

information is distributed. The use of finite state machine to model these prob-

lems could lead to an unmanagebly large number of states.

Mathematically a Petri net is composed of four parts: a finite set of places P, P

= {p1 , 	p2,..., pn}, where n ≥ 0; a finite set of transitions T, T = {t1 , t 2,...., tm},

where in 0; an input function I, and an output function O. The set of places and

the set of transitions are disjoint, P ∩ T = 0.

I:P X → N where N= {0,1,2,,} is the input function, for all p ϵ P and

all t ϵ T such that I(p,t) is a non negative integer. O: P X T → N where N =

{0,1,2, ...} is the output function, function, for all p E P and all t E T such that

O(p,t) is a non negative integer.

1.2.2 Petri Net Marking and Firing Rules

A marking m is an assignment of tokens to the places of a Petri net. Tokens reside

in the places in a Petri net. Pictorially tokens are represented by dots or by an inte-

ger. The number and position of tokens normally change during the execution of

a Petri net.

4

A transition ti ϵ

T in a marked Petri net with marking m is enabled if each of

its input places has at least as many tokens in it as arcs from the places to the tran-

sition. For drawing convenience, multiple parallel arcs are represented by a single

arc with an integer weight. That is, for all p ϵ P,

µ(p) ≥ I(p,t)

A transition can fire if it is enabled. Firing a transition will in general change the

marking µ of the Petri net to a new marking µ'.

A transition fires by removing an input token per arc from its input places

and then depositing into each of its output places one token for each arc from the

transition to the place. That is, for all p ϵ P,

µ'(p) = µ(p) — I(p,t) + O(p,t)

1.2.3 Petri Net Liveness

A deadlock in a Petri net is a marking in which no transition can fire. The execu-

tion of a Petri net is the firing of all enabled transitions in one state (marking) to

reach another state. A live Petri net guarantees deadlock-free operation no matter

what firing sequence is chosen. If a Petri net represents a working system, then it

should be kept live.

1.3 Petri Net Applications

Conventional systems are unable to model concurrent systems successfully. On

the other hand Petri nets have demonstrated a powerful approach towards the

solution for concurrency and parallelism problems. The knowledge of the

fundamentals of Petri net theory is becoming mandatory for various engineering

disciplines. Due to the generality and permissiveness inherent in Petri nets, they

have been proposed for a very wide variety of applications like modeling and

analysis of distributed-software systems, distributed-database systems,

concurrent and parallel programs, flexible manufacturing/industrial control

systems, multiprocessor memory systems, dataflow computing systems, fault-

5

tolerant systems, programmable logic and. VLSI arrays, asynchronous circuits and

structures, compiler and operating systems, office-information systems, formal

languages, and logic programs.

In Petri net modeling, using the concept of conditions and events, places rep-

resent conditions, and transitions represent events. A transition has a certain

number of input and output places. The input places of a transition represent the

preconditions of the corresponding event and the output places the

postconditions. The concurrence of events corresponds to the simultaneous firing of the cor-

responding transitions.

The presence of tokens in a place is interpreted as holding the truth of the

condition associated with the place. In another interpretation, k tokens are put in

a place to indicate that k data items or resources are available. When a transition

fires it removes the tokens representing the truth of the precondition and creates

new tokens which represent the truth of postconditions. Some typical interpreta-

tions of transitions and their input places and output places are shown in Table

1.1

Table 1.1 Typical Interpretations of Transitions and Places

Input Places Transitions Output Places

Precondition Event Postconditions

Input data Computation step Output data

Input signals Signal processor Output signals

Resources needed Task or job Resource release

Conditions Clause in logic Conclusion(s)

Buffers Processor Buffers

1.5 Thesis Organization

The next chapter introduces the reader to object oriented programming, the basic

concepts and features which make it so attractive. A comparision is drawn

6

between object oriented and conventional modular programming. Then it

provides the basics of the X Window System which is a network based windowing

system employing client-server design.

The third chapter provides an in depth discussion of the software design and

how the object oriented programming paradigm was applied to achieve the

desired design. All the objects defined are discussed in detail including their

attributes, operations and how they communicate with other objects. Finally the

integration with XView (an Object Oriented Toolkit) to put the complete tool

together is described.

Chapter Four is the User's Manual of PNT(Petri Net Tool). All the capabilities

of the tool are described in detail, how to use the tool to draw and edit a Petri net

using the graphical user interface and how to simulate its execution. It describes

all the buttons and their usage and various associated files. The conclusion of this

thesis includes a discussion of portablility and enhancement issues.

CHAPTER 2

OBJECT ORIENTED CONCEPTS AND X WINDOW SYSTEM

2.1 Basic Concepts of Object Oriented Programming

An object is an abstraction of an identity capable of independent existence,

something which has properties and is not just a property itself. For example a

thermometer is an object but temperature is not, because temperature is not

capable of independent existence. A fundamental concept behind object oriented

programming which separates it from modular programming, is the binding of

data with its associated functionality, model the problem in terms of real world

objects with data and functions associated with them. C++ provides this by

allowing structures to include function definitions. Although a more general data

type, class is also provided. In theory the modularity achieved by "top-down"

design ought to provide software components that fit well together. In practice the

fit is seldom perfect, and conventional software components nearly always require

modification before they can be reused. Object oriented programming changes all

this, by providing built-in techniques for managing the software development.

2.1.1 Terminology

A "class" is a group of objects with similar properties (attributes) and common

behavior (operations). "Attributes" are data values held by an object or simply the

properties of an object. Operations are the behavior of an object in response to a

stimulus or a message from another object. The implementation of operations for

a class is called "method". As an example from the real world, take the example of

motor vehicles which is a class of similar objects such as cars, motorcycles etc, see

Fig 2.1. They all have certain properties like power, engine volume, fuel

consumption, etc, which are the attributes of the class but the values for each

instance of the class may not be the same. Similarly each instance of the class is

7

8

capable of some operations like driving which describe the behavior of the object.

Since driving a car would be different than driving a motorcycle (though

functionally similar) the specific implementation is called method. The above

concept is used in modeling a problem in terms of objects. Their class membership,

their attributes and their operations are defined. The choice of objects depends on

the problem at hand. The figure 2.1 illustrates the above discussed concept.

2.1.2 Encapsulation or Data Abstraction

If we keep in mind a metaphor that reflects the way real world object exist and

interact, we can create "software objects" that exhibit attributes and behaviors

Figure 2.1 A Real World Object Hierarchy

"Encapsulation" defines a data structure of attributes and a group of member

function as a single unit called an object. Object attributes in C++ are stored in data

structures that resemble ordinary C structures. Object behaviors are implemented

as functions called member functions in C++.

C++ affords the programmer a great deal of flexibility in controlling access to

an object's attributes and member functions. For example attributes and member

functions declared to be "private" cannot be accessed from outside the object,

except by functions declared to be "friends" of the object. Attributes and member

9

functions declared to be public can be accessed by any object, while those declared

to be protected can only be accessed by certain objects. This OOP feature is called

data hiding and it limits the visibility of data and allows it to be manipulated only

via public member functions.

Data hiding enhances reliability and modifiability of software by reducing

the interdependencies between the objects. In fact, if public member functions are

specified correctly, the private data structures and member functions of an object

may be changed without affecting the way other objects are implemented. This

hiding of data is analogous to our experience in the real world, where there is often

no need to know, how the internals of an object, such as a telephone, work.

2.1.3 Inheritance, Generalization and Specialization

Perhaps the most powerful feature of object oriented programming is

"Inheritance", which allows objects to acquire the attributes and behavior of other

objects. Inheritance contributes to economical and maintainable design, because

objects can share attributes and behaviors without duplicating the program code

that implements them.

Classes with similar attributes and operations may be organized into a

hierarchial relationship. All common attributes can be factored out and assigned

to a broader SuperClass, this is also referred to as "Generalization". A class can be

iteratively redefined into SubClasses that inherit the attributes and operations of

SuperClass. This is called "Specialization". Generalization is transitive in the sense

that each instance of the subclass is an instance of its ancestor class and each

descendent class refines its ancestor by adding new attributes and operations

(though there is no strict requirement to refine for inheritance). Each object has a

value for every attribute in its chain of ancestors and each operation available to its

ancestor is available to it. A very good analogy from real world is the taxanomic

scheme used by zoologists and botanists to classify living things

Software objects occupy a hierarchy in much the same way as real world

10

objects. A very good example is the object oriented toolkit XView, which is used

for the user interface design of the PNT. This toolkit has various objects like Menu,

Font, Window, Cursor, Screen, Frame, Server etc. These objects are implemented

in a certain hierarchy, see Fig 2.2 for example Frame is a SubClass of Window, as

it has all the properties of Window, but also has several properties of its own such

as a header, footer etc. The hierarchy has multiple level, as there is SuperClass

Figure 2.2 XView Object Hierarchy

called "Generic Object" from which all the objects are defined. To illustrate the

benefit of inheritance consider the following argument. When the Window Class

is created, a move operation is defined for moving the Window in the workspace.

Frame inherits that function from Window, which means Frames can be moved

11

around without reimplenting the code and it helps guarantee that if the move

function is implemented correctly for class Window it is correct throughout the

hierarchy beneath Window.

C++ also allows multiple inheritance which permits a class to inherit

attributes and operations from more than one class, thus providing more flexiblity.

2.1.4 Polymorphism and Late Binding

Another powerful feature of object oriented programming is

"Polymorphism", which is the multiplicity of implementations for a single

method. The need for polymorphism arises when operations have more than one

method. A technique called late binding, which means the procedure address is

not bound to the procedure untill the procedure call is made, is used to implement

this feature and the programmmer makes use of this by declaring a member

function virtual. Thus a descending SubClass may redefine operations to suit its

need. This is extremely important in cases where there are many subclasses from

a class and the operation needs to be redefined for each of them. For example

consider the SubClasses Frame, Scrollbar, Tty, Icon etc inheriting attributes and

operations from a higher class Window, the operation redraw would be different

for each subclass so the SuperClass Window should declare the operation redraw

as virtual.

2.2 Reuse and Extensibility of Code

Creating new SubClasses of previosly defined classes and using their previosly

implemented operations is called "Reuse". Generalization and Inheritance make

code reuse possible. The combination of Inheritance and Polymorphism gives the

user of object oriented code the remarkable benefit of being able to extend that

code without having the source code. This is possible because inheritance operates

across compile time boundaries. As long as the programmers have a description of

the interface to a class (namely the header files),They can define a derived class

12

that inherits everything the base class has. The programmer can even selectively

overload (because late binding occurs at run time), or redefine the behavior of a

selected function to suit their needs. This means object libraries can be distributed

without having to reveal algorithms. Also, an application using an object library is

not necessarily limited by the specifications of objects in that library. If one or more

objects in the library don't meet a programmer's needs, those objects can be

modified by extending them as new classes.

2.3 X Window System Concepts

The X Window System , is a network based graphics windowing system that was

developed at MIT. It has been adopted as an industry standard windowing system

and is supported by many industry leaders. One of its major features is that its not

operating system dependent unlike most windowing systems, but is instead

comprised entirely of "user-level" programs. It is based on what is known as a

"client-server" architecture. The system is divide into two distinct parts the

"display server" and client. The display server provides display capabilities to

many clients, handles user input (which could be through keyboard or mouse)

and passes it to the clients. The clients are application programs that perform

specific task. The local hardware is controlled by the server.

What has made X a standard is the fact that it is based on a network protocal

called X-Protocol and which does not use system specific calls. X Protocol is a

predefined set of requests, queries, replies and can be implemented on different

computer architectures and operating systems, making X device independent.

Another advantage of network based windowing system is that programs can run

on one architecture while displaying on another. The display server controls all the

resources of the client. A client needs to send a request to Xserver in X Protocol in

order to do an operation. For example a client like a drawing program sends a

request to draw a line on a local display in X Protocol. Many times the message

may be a query from client.

13

2.3.1 Window Manager

Window Manager is a special client that manages the position and sizes of main windows

of application on a server's display. It allows the user to move and resize windows,

rearrange the order of windows in the window stack, create additional windows, convert

windows into icons, etc. X consortium's "Inter Client Communications Conventions

Manual (ICCCM)" defines the standards for interaction between window managers and

other clients.

The window manager distributed by MIT is twm. There are two major industry

enhancements, mwm (Motif window manager) and olwm(OPENLOOK window

manager).

2.3.2 Writing X Application and User Interface Standards

To write an X application requires that it should recieve X protocol messages. The lowest

level of interface to X Protocol is a C interface named Xlib provided by MIT. Xlib provides

complete interface to X Protocol by translating C data structures and procedures into X

Protocol Events. However this interface is more extensive than required for most

applications. Furthermore it becomes difficult to modularize the common functions and

set up standards. Hence there are many toolkits available on top of Xlib. These toolkits

handles basic things for the programmer and thus setting standards on user interface.

There are two major standard graphical user interfaces used, namely OPENLOOK and

Motif. Our choice was OPENLOOK, and the toolkit chosen was XView. Figure 2.3

illustrates the architecture of PNT.

2.3.3 XView toolkit and notifier based approach

XView is an object oriented toolkit in which each piece of user interface is an object from

a particular hierarchy with a list of attributes. These attributes can be queried or set by

message passing functions.)(View objects have callback functions which are triggered by

events. Callback are the functions to which the notifier passes control when the respective

object is selected. These objects are represented in a class hierarchy and all objects are

14

SubClasses of an object called "Generic Object," see Fig 2.2. To pass messages to these

objects a handle is returned by XView each time an Object is created.

XView is a notification based system, in which there is an object called notifier with

whom control resides. All objects register their call back routines with the notifier and

then pass control to the notifier. The notifier reads all the events, translates them to

appropriate XView events and passes control to the object which has registered the

callback for that event.

Figure 2.3 The Software Architecture of PNT

CHAPTER 3

DESIGN OF PETRI NET TOOL

3.1 How OOP is Applied to Design of PNT

The biggest challenge in object oriented programming is to select and define the

objects relevant to the problem domain. The PNT has two major components,

namely editor and simulator. The editor is developed using the object oriented

toolkit XView which defines various user interfaces items as objects in a hierarchy

and it contains an object namely "Notifier" with which the control resides and

which distributes the events to various objects. These objects register their callback

routine with the notifier. Thus all the Editor objects were standard [6].

The choice of simulator objects was inspired by the mathematical definition. of

Petri nets, a tuple of place, transition and arcs. There is a basic_object which contains

the basic properties of both places and transitions, Object transition and place are

both subclasses of basic_object and there is an object arc which contains object

segment_array which is a collection of objects segment. This is so because in this

model arcs are represented as a collection of segments. This model of arcs is a

reasonable compromise between a straight line and a free form bitmap for the

current application. There is an object net which contains the whole topology and

is thus available to both the editor and the simulator. For simulation control there

is an object called controller. The functionality is completed distributed. The

various operations performed by an object decide its role.

The control flow is based upon message passing between objects. The picture

will be clearer once the details of each object described later are understood. At

start up all the necessary editor objects are created and each object registers its

callback with the notifier so that the notifier should can control to it once the user

selects an editor object by clicking a button. Also a controller object and a net object

with nothing in it are created and control is passed to the notifier. As the user

15

16

draws or edits the net the editor object (the button which user clicked to say draw

a place) tells the net object to add a place with a specific location on the canvas. This

message goes through the controller. The net object has an operation to add a place

which creates an instance of object place and sets its initial attributes. The net also

updates its topology. When user clicks the step button to execute the net, control

is passed to that instance of button through the notifier. The button tells the

controller to step. It in turn queries each transition in the net to form a list of ready

transitions, and then resolves the conflict among the ready transition, if any. Then

the controller tells the transitions to fire and the actual fire operations are carried

out by the transition objects. The following sections provide an in depth discussion

of each object.

3.2 The Controller Object

The controller is a key simulator object. Its various attributes and operations are

listed in Table 3.1. Attribute steps specifies the steps of simulation which could be

set by the user through the interface. Attribute rdy_trans is the number of ready

transitions and is used by its member functions for conflict resolution and firing.

list_rdy and size_list are attributes for the list of ready transitions. The controller at

run time forms a list of ready transitions. This list is implemented as a stretchable

array which is intially created with a fixed size and is stretched if needed through

the member function Stretch_Array. Another important attribute of controller is

net_handie which provides the address of net object to both the controller itself at

run time and to all the editor objects. At run time the sequence is Check_Condition,

Form_List, Resolve_Conflict and Execute. The first checks if the ending condition set

by user has been reached. The second forms the list of ready transition by querying

each transition if its enabled. The third resolves conflicts among the ready

transitions and the fourth actually fires the transitions. Destroy_All is used to

destroy all the dynamically created Objects when the user either clears the net or

quits the tool.

17

Table 3.1 Attributes and Operations of Controller Object

Attributes Operations

steps, mode Destroy_All, Stretch_Array

rdy_trans Check_Condition, Form_List

size_list Resolve_Conflict, Execute

net handle Get_Net_Handle

list_rdy Is Conflict

3.3 The Net Object

Net object contains the topology information about the Petri net on the canvas. Its

attributes include the number of places, transition, input and output arcs in the net.

It also holds the default identification number to be assigned to a new place or

transition addition to the net (these numbers are internal and are used for net

manipulation). It contains two stretchable arrays. One holds pointers to various

places and one holds pointers to various transitions. Arc handles are kept with the

transitions. The index of each place and transition pointer in the arrays is an

internal counter which makes locating a specific place or a transition very easy.

Another net attribute is its file name which can be changed by the user.

Major operations include the addition of places, transitions and arcs to the

net. All user drawing operations lead to a message to the net object to add the

respective component. Note that arcs added is also to the transition with which

they are associated. Parallel to these operations are removal of place, transition and

arc from the net. Operations Get_File and Set_File are used mainly when a user

changes the file name or when a load/save, are requested. Get_Place, Get_Transition

are used for getting the handle to place and transitions and Get_PI_No,

Get_Trans_No are used internally to locate the internal index of places and

transitions. Another operation is Get_Arc which is used when a user selects an arc

to modify its tag or to delete it. Table 3.2 lists various attributes and operations of

18

class Net.

Table 3.2 Attributes and Operations of Class Net

Attributes Operations

filename Add Place, Transition, Arc

place_num, place_no Remove Place, Trans, Arc

transition_num, trans_no Get, Set File Name

input_num, output_num Get Place, Transiton, Array

size of arrays Get Place/Transition No

3.3 The Transition Object

The transition object is a subclass of object basic_object, so it inherits all the

attributes and operations of class basic_object, described later. Although the net

object has the complete topology, transition has enough information to decide

whether it's enabled or not and also to fire. Thus by locally keeping some topolgy,

significant computing time is saved during simulation. This is done by keeping

arrays of pointers to arcs connected with each transitions. The index of a pointer in

the array is the internal place number to which the arc is connected. Other

attributes of object transition are the sizes of these arrays and the numbers of input

and output arcs. The state of transition, its orientation and priority are also its

attributes.

The major operations are is_Enabled and Fire. With pointers to arcs and

knowledge about the places connected to the arcs, these operations are easily

implemented. Other operations are addition and deletion of input and output arcs

(actually called by net's add arc operation). There are operations to set or query the

state, priority and orientation. The state is controlled by the controller object. The

priority and orientation can be changed by the user. The usual operation of

Stretch_Array is here because the array of pointers to arcs is stretchable. Table 3.3

19

lists the attributes and operations of transition object.

Table 3.3 Attributes and Operations of Transition Object

Attributes Operations

state Get/Set state

priority, orientation

Get/Set priority

array of pointers to arcs Get/Set Orientation

size of arrays Add/Remove arcs

number of connected arcs Is_Enabled, Fire

3.4 The Place Object

The place object is a subclass of basic_object, so it inherits all the attributes and

operations of basic_object. Additionally it has attributes the no_of_tokens and

breakpt which represent currently held tokens and execution end condition

specified by user (defaults to don't care) respectively. No more information needs

to reside with this object. It's main operations are Get/Set_Tokens and Add/Remove_

Tokens. The first is normally used when the user queries or sets the number of

tokens through the tag panel. The second is used during net execution. Table 3.4

desribes its attributes and operations.

Table 3.4 Attributes and Operations of Place Object

Attributes Operations

no_of_tokens Get/Set Tokens

breakpt Add/Remove Tokens

20

3.5 The Arc Object

The object arc has among its attributes, type which could be either input, output or

inhibit. weight tells the multipicity of arcs between a place and transition of a given

type. It also has the number of the place and the place handle to ease addressing

for firing. It holds a pointer to object segment array, which actually contains all the

segments comprising the arc.

The operations of object arc are Get/Set_Type which is set once and then can

only be queried; Get/Set_Place, which is set initially and queried later; Get/

Set_Weight which can be changed by the user at any time using the tag panel; Get%

Set_Handle, which is set initially and queried for firing by the transition object and

Get/Set_Seginent_Array, used at creation and destruction time respectively. Table

3.5 lists all the attributes and operations of arc object.

Table 3.5 Attributes and Operations of Arc Object

Attributes Operations

type Get/Set Type

place_num Get/Set Place

place_handle. Get/Set Weight

weight Get/Set Place Handle

segment_array_handle Get/Set Segment Array

3.6 The Segment Array Object

The segment array is an array of straight line segments which comprise an arc. Its

main attributes are no_of_segments and the stretchable array of segment pointers.

Major operations are Add /Remove_Segment to array and Stretch_Array. This object

is created when a user starts drawing an arc. Each segment is added until the

completion of arc. Then the Object segment array is added to arc object. While

editing an arc del_segment removes the last segment from the array. Table 3.6 lists

21

all the attributes and operations

Table 3.6 Attributes and Operations of Segment Array Object

Attributes Operations

array of segments Add/Remove Segment

size of array Stretch_Array

3.7 The Segment Object

Object segment is nothing but a straight line whose attributes are the coordinates

of its endpoints. Its operations are Get/Set_Coordinates which are used at creation

and destruction time. Table 3.7 lists the attribute and operation of class segment.

Table 3.7 Attributes and Operations of Segment Object

Attributes Operations

xl, yl Get_Coordinate

x2, y2 Set_Coordinates

3.8 The Basic_Object

basic_object is a superclass of both transition and place. It's attributes are number

(this is the user defined number), coordinates on the canvas, and comment (upto

50 chars). The various operations are Get/Set_Number, Get/Set_Comment and Get/

Set_Coordinates. The first are triggered by the user through the tag panel. The

coordinates can be queried. They cannot be altered unless the place/transition is

deleted and redrawn. Table 3.8 lists all the attributes and operations of

basic_object.

Table 3.8 Attributes and Operations of Basic_Object

Attributes Operations

number Get/Set_Number

comment Get/Set_Comment

x, y Get/Set_Coordinates

22

CHAPTER 4

PNT USERS MANUAL

4.1 Overview of PNT

PNT has an easy to use graphical user interface. First draw a Petri net

representation of the system to be modeled. Then the net is executed after setting

various conditions to control the simulation run. The tool runs under

OpenWindows environment, so it is necessary to run OpenWindows before

running PNT. To run the tool type "pnt" from a command tool.

Figure 4.1 Petri Net Simulator in OpenWindows Canvas

The header of the tool consists of "PNT:" followed by the current working

23

24

directory, see Fig. 4.1. Below the header is the control panel where there are five

menu buttons, namely File, Draw, Edit, Simulate and Utilities. Each of these

buttons has a down arrow which indicates that they are pull down menus (the

other kind is pull right). For the sake of simplicity the following abbreviations are

used in this chapter, LMB for left mouse button and RMB for right mouse button.

If the RMB is clicked a menu in the downward direction pops up. The control panel

also has a File name Below the control panel is the drawing canvas where the Petri

net is created. The whole frame can be resized and the canvas has horizontal and

vertical scrollbars.

The File menu is used for loading and saving the net to a file on disk and for

exiting the tool. The Draw menu is used for drawing the net on the canvas, it has

all the entities which constitute a net namely place, transition(horizontal and

vertical), arc(normal and inhibit) and tokens. The Edit menu has various options

for editing the drawing of the net and also changing the attributes of the various

entities. The Simulate menu, as the name suggests, is used for simulating

execution. Various conditions for the simulation run can be set. Utilities provide

useful information which includes an execution log and a verify matrix of the net

drawn.

It is important to remember that in OPENLOOK interface one must press

the RMB on the menu button and should hold the RMB down while scrolling

through various choices and should release the RMB when the desired choice is

selected. To acquire basic familiarity with OpenWindows environment it is

strongly suggested to use the online tutorial for OpenWindows. The following

sections discuss the functionality of each menu and button in detail.

4.2 The File Menu

The file menu is typically used in the starting and end of a session. When the tool

is started, the default File name is noname which can be changed by typing in the

"File:" item on the control panel. Fig 4.2 shows the File menu

25

Figure 4.2 The File Menu in OpenWindows Canvas

4.2.1 The New Button

To start a session from scratch, select the New option of the File menu. If there is

a currently an unsaved net on the canvas, a warning will be given to save it first.

The new session will use the file name from the panel as the filename for saving

net. If the file already exists than a warning will be given that the file will be

overwritten. The New button should be typically used when a net simualtion has

finished and another one is to be started from scratch.

4.2.2 The Load Button

To load a net previously saved to a file, the select the Load option after specifying

the name of the file on the control panel. Loading a net will remove the current net

on the canvas, so if the current net on the canvas is not saved, PNT will warn to

save the net first. If an illegal file name is specified PNT will prompt to input the

correct filename. The file name should be from the current working directory or it

should include complete path.

4.2.3 The Save button

It is extremely important to save the work before quitting the tool or loading

another net. The net under construction should be periodically saved. The editor

keeps tracks of the status of current net, saved or not. If not it prompts to save

before doing anything that will destroy the currently displayed net.

26

4.2.4 The Quit Button

To exit PNT use this button and not the OpenWindows quit window button.

Although both will ask for confirmation before closing the window, only PNT quit

prompts for saving an unsaved net.

4.3 The Draw Menu

Figure 4.3 The Draw Menu in OpenWindows Canvas

27

Once the system to be analyzed in terms of a Petri net has been modelled, the Draw

menu provides all the options to draw the net on canvas of the tool. When RMB is

clicked on the Draw button of the control panel it shows the five choices of Fig. 4.3

namely place, horizontal transition, vertical transition, normal arc, inhibit arc and

token. The selection button has an image of these entities rather than text. An

important feature of the Draw menu is that once an entity is selected then as many

instances of that entity can be drawn as desired.

4.3.1 The Place Button

To draw a place on the canvas, select the place(circle) option from the Draw menu.

A cursor move and LMB click at the desired locaion deposits a new place on the

canvas as many times as desired. To exit this mode select another desired menu

option.

4.3.2 The Horizontal and Vertical Transition Buttons

Both transitions have the identical logic functionality. To draw a transition on the

net first select one of the bars (horizontal or vertical) from the Draw menu. Now

move the mouse arrowhead to the desired location on the net and click the LMB

4.3.3 The Normal and Inhibit Arc Buttons

These buttons have identical interfaces but provide different logic functionality.

As mentioned before, arcs are implemented as a collection of segments in this

model. The interface to draw an arc is more complicated than other draw

operations. To draw an arc first select the arc (normal or inhibit) from the Draw

menu. Drawing of arc is done from head to tail.First click the LMB on the place or

transition where the arc ends. An arrowhead should appear at that place or

transition. Sometimes it is needed to click more than once as it is possible that the

cursor wasn't in the invisible tile including the place or transition. If there are

already many arrowheads on the selected place or transition it is possible that

arrowheads might overlap, but this does not affect the functionality. The

28

arrowhead will have different appearances for normal and inhibit arcs. Once the

arrowhead appears only the RMB should be used to specify segment endpoints.

One can draw an arc as a chain of many segments (minimum being the arrow

head and one segment). During this process one can draw arcs crossing places,

transitions and other arcs, if necessary. The process will end when the RMB is

clicked at a place or transition.

If an attempt to draw an illegal arc like an arc between two places or an arc

between two transitions, PNT generates a warning and deletes the arc itself. When

an appropiate end point of an arc is selected, a notice is put up to announce that

drawing of arc is complete. Use the Tag button from the edit menu to change the

weight of the arc. There is a button in the edit menu called DelSeg which deletes

the last segment drawn. It is extremely useful for editing while in middle of

constructing an arc. PNT does not permit to draw multiple arcs of the same type

between a given place/transition pair, i.e. for a given place and transition the user

can only draw one input(or inhibit) and one output arc.

4.3.2 The Token Button

This button allows addition of tokens to a place. First select token (dot) from the

Draw menu and then move the mouse arrowhead to the desired place on the net

and click the LMB. If the click is outside a place, a notice is put up saying click on

a place. The visual appearance of tokens is dots for up to four tokens in a place and

then numbers for more.

4.4 The Edit Menu

This menu is used for a number of modifications that can be done to a net structure

and to certain attributes of net entities. The various choices in this menu are Tag,

ArcTag, Eraser, EraseText, DelArc, DelSeg, Clear and. KillText. See Fig. 4.4. Tag is

used to query the attributes of a given place, transition or arc. It can also change

certain of their attributes. Eraser is used to remove places, transition and tokens.

EraseText is used for removing text from the canvas. For removing arcs there is a

29

separate button DelArc because selecting an arc is different than selecting any

other net entity. DelSeg is used while drawing an arc to remove the last drawn

segment. It is possible to remove an entire arc by continously using it. Clear clears

the complete canvas and destroys the net in memory. KillText clears all the text

from the canvas without effecting the net.

Figure 4.4 The Edit Menu in OpenWindows Canvas

4.4.1 The Tag and ArcTag Button

Tag provides access to entity parameters. It can be used with a place, transition or

an arc. To use it one selects the Tag button from edit menu and goes to the desired

place, transition or arc. To select a place or a transition click the LMB over the place

or transition on canvas. For an arc first select ArcTag button and then click the

LMB on its head and RMB on its tail. Once an entity is properly selected a panel

pops up describing the attributes of that object. Tag panel has two buttons Apply

30

and Cancel, Use apply to change attributes and Cancel to remove the Tag panel

without changing its attributes. Figures 4.5, 4.6 and 4.7 show the tag panels for a

place, transition and arc respectively.

Figure 4.5 Tag for a Place in OpenWindows Canvas

For the Place, its number, comment and stop marking can be changed. For

the transition the number, priority and comment can be changed. For an arc the

user can change the weight and comment. Once the changes have been made on

the tag panel click the LMB on the Apply button to bring them into effect. Other

attributes are read only and cannot be edited, for example type of an arc.

Figure 4.6 Tag for a Transition in OpenWindows Canvas

Figure 4.7 Tag for an Arc in OpenWindows Canvas

31

4.4.2 The Eraser and EraseText Buttons

The eraser can remove anything from a net but an arc or text. Eraser is like a loaded

gun and must be used carefully. To erase select Eraser from the Edit menu. Then

click the LMB over the place or transition to remove it. For a place or transition the

implication of erasure is to remove all the arcs connected to that place or

transitions and also the tokens for a place. To remove a token press RMB on the

place from which tokens have to be removed. Tokens can be set also by the Tag

panel for place. There will be a warning before removing both places and

transition that "associated arcs will also be deleted." Tokens will be removed

without any warnings. Use Eraser carefully.

EraseText is used for removing text from the canvas. To erase text first selet

EraseText from the Edit menu. Then select a rectangle in the canvas enclosing the

starting point of the text strings by clicking LMB on its diaganol points. If the

rectangle encloses the starting point of more than one text item, all of them are

erased without any warning.

4.4.3 The Clear and KillText Buttons

Clear removes everything from the canvas and destroys all the dynamically

allocated data structures. This means loss of information if net is not saved to a file

on disk. If the current work is unsaved a warning is given by PNT to save the net.

No warnings are given if the current work was saved.

Kill text will remove all the text from the entire canvas without any warning.

Unlike Clear the net structure is not affected. This is useful when current text is

stale but the net is still useful

4.4.4 The DelSeg and DelArc Buttons

These are used for editing arcs. DelSeg is used only when during drawing arc and

is inoperable once an arc is complete. A notice is put up saying "no unfinished arc"

if the button is clicked otherwise. DelSeg removes the last segment drawn and can

be used successively until all the segments of the current arc are deleted. Once an

32

arc is completed, the only way it can be deleted is by DelArc. A separate button is

provided for deleting arcs because selecting an arc on the canvas requires two

clicks. To delete an arc first select its head with the LMB and then its tail with RMB.

The order is important

4.5 The Simulate Menu

This menu should be used once a complete net has been drawn and verified or

loaded from a file. It has three choices Step, Run and Breakpt. See Fig 4.8. Simulate

in step mode by Step choice from the Simulate menu or simulate in run mode by

selecting Run. For run mode stopping condition can be specified by selecting the

Breakpt choice, see Fig. 4.9.

Figure 4.8 Simulate Menu in OpenWindows Canvas

Figure 4.9 Panel for Simulation Mode in OpenWindows Canvas

Breakpt brings up a panel in which the maximum number of steps can be set and

a toggle option to create an execution log to file on disk. See Fig. 4.9. The default

limit is 100 steps, but it can be modified. Use the tag for place to specify stop

33

marking as another stop condition, see Fig 4.5. The default for this parameter is

"don't care" meaning the marking of a place is ignored. If more than one place has

a token stop condition, the simulation halts when any condition is met. In both run

and step modes, if no transition in the net is enabled a notice saying "Deadlock, no

enabled transitions" is displayed.

4.6 The Utilities Menu

It has five choices Verify, Type, Log, DelLog and Redraw. See Fig 4.10.

Figure 4.10 The Utilites Menu in OpenWindows Canvas

Verify provides a tabulated topology of the net and attributes of various net

entities in the order - transitions, connected arcs and places. Fig. 4.11 shows a

sample verify file.

Type provides the feature to write optional text on canvas from the keyboard.

Text can be written anywhere on the canvas to mark places, transitions, arcs or for

any other purpose. Select Type from Utilities menu and then click the LMB on the

desired location on the canvas and start typing. Press the keys control and s

together to delete the last character. During one selection text can be written only

in a straight line. To place text elsewhere select Type again and click LMB at the

new location. See Fig. 4.1 for examples of superimposed text on net.

Log is a detailed description of the simulation which is also saved to a disk

file. It shows which transitions were enabled, which of them fired after conflict

34

	 Net Information 	
No of Places = 10 	 No of Transitions = 10
No of Input arcs = 12 	 No of Output Arcs = 12
	 Transition Information 	
transition no = 0, state = 0, priority = 1, or = v
input arc = 1, output arcs = 1
	 Connected Arcs 	
Arc Type = 1, pl_no = 0, wt = 1, seg_no = 4
Arc Type = 0, pl_no = 1, ''t = 1, seg_no = 4
	 Transition Information 	
transition no = 1, state = 0, priority = 1, or = v
nput arc = 1, output arcs = 1
	 Connected Arcs 	
Arc Type = 1, 	= 0, wt = 1, seg_no = 4
Arc Type = 0, pl_no = 2, wt = 1, seg_no = 4
	 Transition Information 	
transition no = 2, state = 0, priority = 1, or = V
input arc = 2, output arcs = 1
	 Connected Arcs 	
Arc Type = 1, pl_no = 1, wt = 1, seg_no = 4
Arc Type = 1, pl_no = 3, wt = 1, seg_no = 4
Arc Type = 0, pl_no = 4, wt = 1, seg_no = 4
	 Transition Information 	
:ransition no = 3, state = 0, priority = 1, or =

Figure 4.11 Sample Verify Window in OpenWindows Canvas

resolution, and how the conflict was resolved (priority difference or random). The

markings before and after firing are also displayed. Fig. 4.12 shows a sample from

a log file.

There is a button DelLog to delete the old log file. Otherwise the log of a

current run is appended to the existing file. Since the log file may become very

large, it is recommended to be periodically deleted. Redraw will redraw the net

and the text on the canvas using the information from the net object and text

object. This is very useful after screen refresh from Olwm, and after editing net.

35

	 Marking of Net is 	
Place No 	0 	1 	2 	3 	4 	5 	6 	7 	8 	9

Tokens 4 0 0 1 0 0 0 0 0 0

PNT: Transition Number 0 ready
PNT: Transition Number 1 ready
PNT finds following transition In conflict
Transition Number 	0 	1
PNT: Transition Number 0 lost to 1 in random resolution
P NT: Step 0 of 100
PNT: Firing Transition Number 1
	 Marking of Net is 	
Place No 	0 	1 	2 	3 	4 	5 	6 	7 	8 	9

Tokens 3 0 1 1 0 0 0 0 0 0

	 Marking of Net is 	
Place No 	0 	1 	2 	3 	4 	5 	6 	7 	8 	9

To 	3 0 1 1 0 0 0 0 0 0

PNT: Transition on Numbe r 0 ready
PNT: Transition Number 1 ready

Figure 4.12 Sample Log Window in OpenWindows Canvas

4.7 Control Flow in PNT

It is important to know the internal control flow in PNT in order to use the tool

efficiently. At a particular instance PNT has a fixed state, out of a set of finite

number of states. The various states the tool can be in are the five draw operations,

namely place, horizontal transition, vertical transition, normal arc, inhibit arc and

token. Besides draw the tool can be in erase, tag or delete arc state. Once one of

buttons from this set is selected, the state of PNT corresponds to the button and

36

does not change until another button from this set is selected. Selecting a button

not in this set, such as Step does not change the state of the tool. For example when

the place draw button is selected, PNT enters the place draw state and as many

places on the canvas as desired can be added. One can step and still draw the place

on the net without selecting the place draw button again as the state of the tool has

not changed. The buttons which do not affect the state of tool are all the buttons in

File, Simulate, Utilities menu, Clear & DelSeg. These buttons do their respective

job and give back control to the current state of PNT. This feature provides the user

with the convenience of not needing to go to the menu options repeatadly. On the

other hand ignorance of this feature could lead to unwanted operations.

CHAPTER 5

CONCLUSION

5.1 Portability and Enhancement Issues

Here is a brief outline on how to enhance the tool by adding features like time and

color by using the inheritance and polymorphism features of object oriented

programming. For simulating timed Petri nets the class controller should be

subclassed to a new class, timed controller, which inherits everything from

controller and adds the attribute clock and overloads the operation execute. Class

net remains the same, but class transition needs to be subclassed into a new class

timed transition which inherits everything from class transition and adds the

attributes time and type. It overloads the operations Is_Enabled and Fire using the

polymorphism feature of object oriented programmming, and it should also add

operations like Time_Remaining, Get_Type, Set_Type. For adding color the classes

place and arc need to be subclassed with new attirbutes representing color.

Porting the application to a new hardware will require recompilation. The

compiler used is AT&T's C++ compiler which is very much the standard. It is

compatible to other C++ compilers. Even on PC's with C++ compilers like Borland

C++ recompilation would not be a major problem. The user interface is designed

using the XView toolkit. XView was developed by Sun Microsystems as a

migration path from SunView, as SunView was hardware and operating system

dependent and was not networkable. XView is implemented purely on top of

and during its implementation there were relatively few problems in porting the

toolkit to other platforms. In fact, the XView toolkit is available from MIT's X

Consortium and many ports to a variety of platforms are currently available.

XView comes as a standard distribution with all Sun machines. The only other

consideration is the user interface standard. There as is currently no clear

consensus on that issue and we had no choice but OPEN LOOK. If the world goes

37

38

for motif in the future, there are even now applications (like Molit) available to

convert OPENLOOK applications into motif.

5.2 Summary

The object oriented paradigm was successfully applied to design of PITT. Object

oriented programming gave greater meaning to design phase as first all the objects

with their attributes and operations were selected and then the corresponding

design was implemented. It also eased the task of debugging as each object was

individually implemented and tested. Once this was done the whole application

was integrated by defining message passing sequences between the objects to

carry out a required task. XView toolkit proved very useful to comply with the

user interface standard and its object oriented design served our objective of using

object oriented design throughout.

APPENDIX

39

1*

* Copyright NJIT 1993 -- All rights reserved
*

Authored by Himanshu Juneja

*
*/

#include "net.h"
class controller
int mode; // simulation mode
net *net_handle; // pointer to the current net
int size list; //size of array;
transition **list rdy; // array of ready transitions

public:
controller(char *);
int rdy trans; // no of rdy transitions

void Stretch Array(void);
void Destroy_All (void) ;
net *Get Net Handle(void);
void Form List(void);
void Resolve Conflict(void);
int Check Condition(void);
void Execute(void);
int Save Net(char *);
int Load_Net(char *);

} ;

File A.1 Class definition for Controller

/*

* Copyright NJIT 1993 -- All rights reserved
*

Authored by Himanshu Juneja

*/
#include "transition.h"
const int PLACE = 1;
const int TRANSITION = 2;
const int ERROR_A = -2;
const int ERROR_B = -3;
const int ERROR C = -4;

40

class net {
public:
int place_no,transition_no,input_no,output_no;
int place_num, trans_num;
char filename[100];
int size_place,sizetransition;
transition **trans list;
place **place list;

net(char *);
int Add_Place(int,int);
int Add Transition(char,int,int,int);
int Add Arc(int,int,int,seg array*);
int Remove Place(int);
int Remove_Transition(int);
int Remove Arc(int,int,int);
char *GetFile(void);
int Set File(char *);
void Stretch Array(int);
place *GetPlace(int,int);
place *Get_User_PlNo(int);
int Get Pl _No 	'
transition *Get_Transition(int,int);
int Get_TransNo(int,int);
arc *Get Arc(int,int,int);
};

File A.2 Class definition for net

/*

* Copyright NJIT 1993 -- All rights reserved *

* Authored by Himanshu Juneja

*

*/

#include "arc.h"

const int READY = 1;
const int NOT READY = 0;

class transition : public basic object {
// attributes for class transition

int state; // state of transition ready/not ready

41

42

int priority; // priority of transition
char orientation; // horizontal/vertical

public:
int input no, output_no; // number of input and output arc
int sizeinput,size_outPut; // size of arrays of pointers to
input&output arcs
arc **input;// arrays of pointers to input & output arcs
arc **output;
transition(char,int,int,int,int); //constructor for class
transition
char Get Orientation(void); // returns the orientation
void Set Orientation(char); // sets the orientation
int Get State(void); // returns the state of transtion
void Set_State(int); // sets the state of transition
int Get_Priority(void); // returns the priority of transition
void Set_Priority(int); // sets the priority of transition
void Stretch Array(int); // stretches the input/output array
int Add Arc(int,int,arc *) ; // adds an arc to the input/output
array
void Remove Arc(int,int); // removes an arc from the input/
output array
int Is Enabled(void); // returns whether the transition is
enabled or not
void Fire(void); // fires the transition
};

File A.3 Class definition for transition

/*

* Copyright NJIT 1993 -- All rights reserved
*

Authored by Himanshu Juneja

*/

#include "basic_object.h"

const int SUCCESS = 0;
const int FAIL = -1;

class place : public basic_object {
// attributes of class place
int no of tokens; // no of tokens in place

public:

43

place();
place(int,int,int); // constructor for class place

void Add Tokens(int);
int Remove Tokens(int);
int Get_Tokens(void);
void Set Tokens(int);
;

File A.4 Class definition for place

/*

* Copyright NJIT 1993 -- All rights reserved *

* Authored by Himanshu Juneja
**
*/

#include "place.h"
#include "seg_array.h"

const int INHIBIT = 2;
const int INPUT = 1;
const int OUTPUT = 0;

class arc {
// attribute of class arc
int type; // type of arc input/output
int place no, transition_no; // no of associated place and
transition
int wt; // weight of arc
place *place_handle; // pointer to the associated place
seg_array *seg_handle;

public:
arc(int,int,int,place *,seg_array *); // constructor with
intialization

int Get_Type(void); // returns type of arc
void Set_Type(int); // sets type of arc
int Get Place(void); // returns associated place no
void Set_Place(int,place *); // sets place no
int Get Transition(void); // returns associated transition no
void Set_Transition(int); // set transition ni
int Get_Wt (void) ; //returns wt of arc
void Set_Wt(int); // sets wt of arc

44

place *Get_Handle(void); // returns the place handle
seg_array *GetSeg_Array(void); // returns pointer to segment

array
void SetSeg_Array(segarray *); // sets the current segment

array

File A.5 Class definition for arc

/*

* Copyright NJIT 1993 -- All rights reserved
*

Authored by Himanshu Juneja
**
*

*1

#include "segment.h"
include <stdio.h>

class seg_array {
int size array;

public:
int no of segments;
segment **s array; // array of pointers to segment
segarray();

void Stretch_Array(void);
void Add Segment(int, int, int, int);
void Remove_Segment(void);

;

File A.6 Class definition for segment array
/*

*

 Copyright NJIT 1993 -- All rights reserved
*

*

Authored by Himanshu Juneja

*

*/

class segment
public:
int x1;
int y1;

45

int x2;
int y2;

segment(int, int, int, int); /1 constructor for class segment

} ;

File A.7 Class definition for segment

* Copyright NJIT 1993 -- All rights reserved
*

* Authored by Himanshu Juneja
**

*

*/
#include <iostream.h>
#include <stdio.h>
#include <string.h>

class basic_object
// attribute for the basic object
int no; // the number assigned to a place/transition
int loc_x,loc_y; // the x,y coordinates of the object on the
canvas
char comment[50];

// member functions are public
public:

//constructor and destructor
basic_object();
-basic object();

// member functions are public
int Get No(void);
void Set No(int);
int Getloc x(void);
void Setloc_x(int);
int Getloc_y(void);
void Setloc_y(int);
char *Get Comment();
void Set_Comment(char *);

};
File A.8 Class definition for basic_object

46

REFERENCES

1. Chen, Yan "Timed Petri Net Simulation of Flexible Manufacturing
Systems." Master's thesis, Department of Electrical and Computer
Engineering, New Jersey Institute of Technology, December (1992).

2. Chiola "A Graphical Petri Net Tool for Performance Analysis"
Workshop on Modeling Techniques and performance evaluation.
France, March (1987).

3. Desai, Sanjay "A Graphical Tool for the Simulation of Colored
Petri Nets." Master's thesis, Department of Electrical and Computer
Engineering, New Jersey Institute of Technology, December (1991).

4. Dicesare, Frank and Alan A. Desrochers. Modeling, Control, And
Performance Analysis of Automated Manufacturing Systems.
Control and Dynamic Systems, Vol. 47, Academic Press Inc. (1991).

5. Feldbrugge, F.,"Petri Net Tools," Philips Data Systems, Netherlands.
(1988).

6. Haller, Dan XView Programming Manual, an OPENLOOK Toolkit
O'Reilly & Associates Inc, California, (1991).

7. Gilanli, Arsalan. "A Graphical Editor for Petri Nets." Master's Thesis,
Electrical Engineering Department, New Jersey Institute of
Technology, (1989).

8. Murata, Tadao. "Petri Nets: Properties, Analysis and Applications."
Proceedings of The IEEE, Vol. 77, No. 4, April (1989): 541-579.

9. Peterson, James L. Petri Net Theory and the Modeling of Systems.
Prentice-Hall Inc. Englewood Cliffs-, New Jersey (1981).

10. Quercia, Valerie and. O'Reilly, Tim X Window System User's Guide.
O'Reilly & Assoicates Inc., California (1991).

Shukla, Ashish and Anthony Robbi. "A Petri Net Simulation Tool."
Proceedings of 1991 IEEE Int. Conference on Systems, Man, and
Cybernetics, Vol. 1 ,No.1 , October (1991): 361-366.

12. Siddiqi, Javaid Aslam. "A Graphical Tool for the Simulation of Timed
Petri Nets." Master's thesis, Department of Electrical and Computer
Engineering, New Jersey Institute of Technology, December (1991).

47

References continued

13. Stroutsrop, Bjourne The C++ Programming Language .
Addison and Wesley Publishing House, (1991).

14. Zhou, MengChu, Kevin McDermott, Paresh A. Patel and Tenian Tang.
"Construction of Petri Net Based Mathematical Models of an FMS
Cell." Proceedings of 1991 IEEE Int. Conference on Systems, Man,
and Cybernetics, Vol. 1, No.], October (1991): 367-372.

15. Zhou, MengChu and Dicesare, Frank. Petri Net Synthesis of Discrete
Event Control of Manufacturing Systems. Kluwer Academic Press
1993.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Object Oriented Concepts and X Window System
	Chapter 3: Design of Petri Net Tool
	Chapter 4: PNT Users Manual
	Chapter 5: Conclusion
	Appendix
	References

	List of Tables
	List of Figures

