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ABSTRACT 

The Flow Approach to Swept Volume 

by 

Haitao Jiang 

In this thesis, a method for representing swept volume based on the sweep 

differential equation and sweep vector field flow is developed. This method can be 

used to determine the boundary representation of a swept volume generated by any 

polygonal object undergoing a general smooth 2-D sweep. For any given sweep and 

object, a. set of candidate boundary points is computed using a selection criterion 

based on vector field behavior. The set of candidate boundary points is then trimmed 

in order to obtain the true boundary of the swept volume. This trimming procedure 

is based on some simple topological principles and it utilizes the concept of extended 

sweep. This method is more general and efficient than existing approaches (e. g. it 

can readily deal with the cases in which the swept volume area. has "holes") and can 

easily be extended to 3-D sweeps; the 3-D extension is discussed but only briefly. 

Several examples are given to illustrate the implementation of the prototype software 

for 2-D sweeps which has been developed in conjunction with this research. 

Keywords: Swept volume, Geometric modeling, NC machining 
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CHAPTER 1 

INTRODUCTION 

1.1 Literature Survey  

The swept volume is the set of points in Euclidean space traversed by a solid object 

undergoing a continuous Euclidean motion (sweep). Evaluation and representation 

of the swept volume of an object undergoing a rigid-body motion have many im-

portant applications in manufacturing automation, such as NC machining program 

verfication, the path planning and manipulation of robots, etc. 

There are several different solid modeling schemes for representing swept vol-

umes on which evaluation procedures are based. A representation scheme should, in 

principle, contain all the geometric properties of the swept volume and automatically 

support a variety of applications. The selection of the representation scheme really 

depends on the applications for which it is intended; however, here we shall discuss 

only the two most commonly used schemes, which are constructive solid geometry 

and boundary representation. 

• Constructive Solid Geometry  

Constructive Solid Geometry (CSG) represents an object as Boolean combi-

nations of primitives through operators called regularized set union (Ս*), in-

tersection (∩*), difference (--* )  and complement (c*) [16]. The regularized set 

operators are extensions of the corresponding standard set operators, followed 

by a regularization process, which guarantees that an operation on valid solids 

results also in a valid solid. The primitives are the basic geometric objects on 

which different solids are built: the commonly used primitives include blocks, 

cylinders, cones and tori. The different. primitives that a system can support 

directly decide the capacity of the system. CSG representation is essentially a 
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binary tree, whose root represents the entire solid, whose leaves are the primi-

tives, and whose internal nodes are the regularized Boolean operations or rigid 

motions. Each internal node can also be considered to represent a solid which is 

the part of the entire solid obtained by applying the operation to its two sons. 

The main advantage of this scheme is that it corresponds closely to how the 

solid is actually constructed; however, much of the geometric information is in 

implicit form which requires the application programs to have some procedures 

for evaluating the geometric properties of the solid in this representation. 

Boundary Representation 

As indicated by its name, Boundary Representation represents a solid by its 

boundary. The boundary should be expressible as a set of surfaces. If the 

underlying manifolds of these surfaces are difficult to determine, they are often 

approximated by a set of patches whose underlying manifolds are known. Two 

of the most commonly used patches are the planar patch (which is a line segment 

in 2—D space) and the bicubic patch. The main advantage of this scheme is 

that the boundary is expressed explicitly, as is all of the important geometric 

information, which makes Boundary Representation very useful for a. variety of 

applications. 

For the details and other solid modeling schemes, readers can refer to [17], [18], [19]. 

Much research has been done in order to evaluate the swept volume and obtain 

various solid geometric representations. Sungertekin and Voelcker did a. feasiblity 

study of using the PADL solid modeling system for simulation of NC programs (see 

[221). Since PAM, uses Constructive Solid Geometry (CSG) to represent solids, the 

cost of simulation is proportional to the fourth power of the number of tool move- 

ments and this is computationally prohibitive. Drysdale, Jerard and their students 
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used surface discretization and normal vectors to indicate the geometry (see [8], [10]); 

this is computationally more efficient than the CSG representation since its compu-

tation time is linearly proportional to the number of cutting movements. However, in 

this method the cutter swept volume is not explicitly represented; instead the points 

of intersection between the lines of surface normals and the cutter swept volume are 

computed. The method of employing envelope theory to model the swept volume 

using boundary representation has been studied by K. K. Wang, W. P. Wang, Sam-

bandan, etc. (see [20], [23], [24]). Due to its close relationship with our research, we 

will briefly introduce the basic theory of the envelope method and describe the most 

recent work being clone in this area. in the following section. 

1.2 Envelope Theory Approach  

There are many equivalent ways to define the envelope of a family of curves: 

Definition 1.1 If there is a curve to which some of the curves of a family 

F ( x ,t) = 0 are tangent and if the point of tangency describes a curve as t 

varies, the curve is called the envelope (or part of the envelope if there are 

several such curves) of the family 

F ( x ,

t) = 0. 

Definition 1.2 If we have a family of surfaces (or curves), then the envelope 

can be defined as another surface (or curve) that is tangent at each of its points 

to some member of the family [6]. 

It is also useful to think of an envelope as the limit of the points in which neighboring 

curves of the family intersect; this is sometimes taken as the definition of the envelope: 

lim 1/∆t [F(x, t) — F(x, t + ∆t)] = lim Ft(x.t + 0 ∆t) = Ft(x, t) = 0 ∆t-0 	∆t-0  
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To find the envelope of a family, it is easy to prove from the definition that the points 

on the envelope must satisfy the following two conditions: 

F(x, t) = 0 	

(1) 

Ft(x, t) = 0 	

	 (2) 

where Ft denotes the partial derivative of F with respect to t. 

Once we have these two equations, the equation of the envelope of the family 

F(x, t) 

= 0 may be found by solving them simultaneously to find a parametric 

equation x = ϕ(

t) 

 or by eliminating t from the equations to obtain the envelope 

equation in the form of 1 ϕ(x) = 0. 

Example 1.1 Find the envelope of F(x, t )  = ( x — t)2 + y2 - 1 = 0. 	  

We compute F,(x, 1) = —2(x — t) = 0. By eliminating t from these two equations, 

we obtain y = +1, which is the equation of the envelope. This example is shown in 

Figure 1. 

The above concepts and methods can be easily extended to finding the envelope of 

a family of curves with k parameters, say F(x, t1 ,  t 2, • • • tk) = 0. For example, if the 

family has 2 parameters, 

F(x, t1 ,  t 2,

) = 0, the conditions for the envelope are: 

Ft1(x, t1 ,  t 2,

) = 0                                          	 (3) 

Ft1(x, t1 ,  t 2,

) = 0                                          	 (4) 

Ft2(x,t1 ,  t 2,

) = 0                                          	 (5) 

If we want to apply the envelope theory directly to the problem of determining the 

boundary of a swept volume, some difficulties may arise. A first difficulty may occur 

in the process of obtaining the equation of the envelope; the locus found by the 

process described above may contain curves other than the envelope. For instance 

if the curves of the family F = 0 have singular points and if x = ϕ(t) is the locus 
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Figure 1  Envelope of a family of circles whose centers are along the x axis 
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of the singular points as t varies, (1.) and (2) will hold, thus the rule for finding the 

envelope leads also to the locus of the singular points. Other extraneous factors may 

also be introduced in performing the elimination. We must take special care in the 

eliminaton process, otherwise not only may extraneous solutions be mistaken for the 

envelope, but the envelope may be missed completely. 

Example 1.2  Consider y  — sin tx, = 0 and t — x -1  sin-1  y = 0. The families of curves 

are identical, and it is geometrically clear that y = ±1 is their envelope. This is 

precisely the result if we eliminate t from F = 0 and Ft  = 0 of the first family. But 

if we apply the same process to the second, we will find 	= 1 	0, which does not. 

vanish and hence indicates no envelope. 

The above process should be checked carefully using the implicit function theorem. 

A second difficulty can occur when the actual object is a finite piece of an infinite 

object. Direct application of the envelope equation often yields points which are not 

on the boundary of the swept volume. This is illustrated in the following example. 

Example 1.3 Consider the swept. volume of the line segment {I y l< 1,x = 0}. 

under the following general 2-I) motion: 

[x]            [ξ(t)]      	[cosθ(t) — sin 0(t)] 	[x0]  
σt =                  +                                                    , 
[ y] 	[ η(t)]   	[ sinθ(i) 

cosθ (t)] 
	

[ye
] 

where ( x0, y0) describes the inital position of the points. From the sweep equation 

above, it is easy to derive the equation for the whole swept volume (or the family of 

line segments produced while sweeping); namely: 

y — ya(t)/ x — xa(t) =  yb(t) —  ya(t)/ xb(t) — 

xa(t) = -2cosθ/2sinθ = - cot θ 

 
 

where xa(t), ya(t)), xb(t), yb(t))  are the positions of the end points at time t . 

==> x cos
θ  + ysinθ 

— 

(ξ cosθ  + η sinθ) = 0 	
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F ( x , y , t) = 0 : 	x cosθ  + y sinθ  — (ξ 

cos

θ +  η sinθ ) = 0 	 (6) 

	

Ft( x , y , t) = 0 : 	θ[-x sinθ + y cosθ — (— ξ sinθ +  η cosθ )] 

 

— (ξ cosθ +  η sinθ) = 0 	(7) 

Solving for the envelope x = x(t),y = y(t), we obtain 

[ cos θ sin θ     ]    [x]        	[cosθ(t)      sin θ(t)]   [ξ]       [ 	0           ] 

= +  

[ -θ sin θ θ cos θ ]    [y]   [ -θ sin θ θ cos θ]   [η] [ξ cos θ +  η sinθ ] , [  cos θ sinθ     ]     	

det                                    =  θ 

[ -θ

s inθ     θ cos 
θ  ] 		

 

  

Notice that 

 

 
 

If θ  ≠ 0, then: 

[ x ]      [ ξ ]      1    [ θ cos θ   

— sin θ ]   [         0           ] 

=          +   - 

[ y ]      [ η ]      θ     [  θ 

sin θ   cos θ     ]   [ ξ cos θ + η sin θ ] 

 

[ x ]      [ ξ ]      1    [ 

— 

sin θ(ξ cos θ  + η sin θ)      ] 

==>     =          +    - 

[ y ]      [ η ]      θ     [  θ 

sin θ   cos θ     ]   [ ξ cos θ + η sin θ )] [ x ]      [ ξ ]      ξ sin θ + η sin θ [ 

— sin θ ]    [ -sin θ  ] 

==>     =         +  --------------------------------------- 

[ y ]      [ η ] θ [ cos θ   ] 

 

y 	77 	9. _ cos 0(e cos 0 + sin 0 

 

When ξ = 4t, η  = 0 and θ(t) = πt, the swept volume and the envelope obtained from 

the above equations are shown in figures 2 and 3. One can clearly see the portion 

of the envelope which is not part of the swept volume boundary; this is due to the 

finite extent of the object undergoing the sweep, that is, the line family equation we 

derived is in fact the equation of a line of infinite length which contains the swept 

line segment. 

The envelope we obtain thus is actually the envelope of the family of lines, which 

also contains points which are outside the line segment being swept. 
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Figure 2  Swept volume of a line segment undergoing a 2-D sweep 
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Figure 3  Envelope curve of the swept volume of a line segment 
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If the 0 = 0, then the equation for the envelope is undefined since we are dividing 

by zero. Nevertheless, useful information can still be obtained from the equations. 

θ =0 ==>      

F ( x , y , t) = 0 :    x cosθ + y sinθ — (ξ 

cos

θ +  η sinθ ) = 0 	Ft( x , y , t) = 0 : 	ξ 

cos

θ  +  η sinθ = 0 

 

This system of equations may not have a solution at all or will have infinitely many 

solutions if  ξ 

cos

θ  +  η sinθ 

= 0

. 

A third difficulty lies in the fact that in order to obtain the envelope, one usually 

needs to solve a system of nonlinear equations using numercial methods, which may 

require large amount of CPU time. In this case, one may put some restrictions on 

the shape of the object or on the type of sweep in order to simplify the problem (e. 

g. [15]). 

In one of the most recent and successful efforts using envelope theory. Samban-

dan[20] took an indirect approach to solving the envelope equations. He developed 

an envelope criterion which basically is equivalent to our candidate boundary point. 

selection criterion. On the edge across which there is a discontinuity of surface nor-

mals, he adjusted the definition of the normal there in order to apply the envelope 

criterion. Due to the difficulty of evaluating the velocity at given points, he used an-

other alternative which requires the computation of the instantaneous rotation center 

of the motion at each time instant and then found the points on the boundary of 

the object whose distances from the instantaneous rotation center are local extrema. 

This computational work, as we shall see in the following chapters, is uncessary if 

the problem is considered in the context of sweep differential equations and sweep 

vector fields. 
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In addition, Sambandan's approach has other features which we shall try to 

improve on using our method; They are: 

• He developed a local higher order derivative criterion to reduce the number 

of candidate boundary points. It required the computation of higher order 

derivatives. These derivatives were checked to see if they were zero, and if 

they were not zero, their sign had to be determined. This may cause numerical 

difficulties and may not be completely reliable; in particular, the criterion will 

not be applicable if all of the derivatives vanish, and it may produce incorrect 

results when some of the derivatives are very close to zero in value. This may 

explain why he did not implement this criterion in his programs. 

• The trimming procedure developed by Sambandan can not deal with the case 

when the swept volume has "holes ", i. e. when the boundary of a planar swept 

volume has more than one connected component. 

• Sambandan's trimming procedure apparently cannot he extended to 3-D swept 

volumes. 

Recently, Blackmore and Leu [2], [3], [4], [5] have developed a very general method 

for analyzing and representing swept volume which they called the sweep differential 

equation approach. Their approach has several points in common with the envelope 

method; in fact, it can be shown that the envelope method can be derived from the 

sweep differential equation approach. The algorithm for computing planar swept vol-

ume which we develop in this thesis is directly based on the approach of Blackmore 

and Len. It will be shown that this approach leads to several theoretical and compu-

tational improvements of existing methods for characterizing and illustrating swept 

volumes. 

	

The organization of this paper is as follow: In chapter 2, we introduce some basic 

notations and definitions, as well as sonic basic theorems of the sweep differential  
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equation approach which will be used extensively in the succeeding chapters. The 

sweep flow method, including our candidate boundary points selection criterion and 

global trimming procedure are developed in chapter 3. In chapter 4, we describe 

the implementation of the prototype software in the 2-D case which is based upon 

the theory proposed in chapter 4. Some examples are also given to illustrate the 

utility of our procedure. In chapter 5, we briefly discuss the extension of the sweep 

flow method to the 3-D case. In chapter 6, we make some relevent observations 

and remarks concerning the contents of this thesis and possible future research work. 



CHAPTER 2 

TEORETICAL PRELIMINARIES  

In this chapter, we will introduce some notations and definitions, as well as some 

basic theorems which will be used rather extensively in the sequel. For more details, 

one can refer to [2] and [3]. The real numbers will be represented by R. Let Rn  

• denote Euclidean n-space consisting of n-tuples of real numbers x = (x1, x2 ,........ xn )  

with the usual inner product (.,.) and norm ║ • ║ defined by 

‹x, y› = Σn 

x

k yk  and ║x║ = (x, x)1/2 
k=1 

The members of 

Rn 

 are often called n-vectors. 

The Euclidean group E( n ) is composed of all mappings 

R

n → 

R

n of the form x → 

ξ + Ax, where ξ  ϵ 

R

n , and A ϵ SO(n ); here SO(n ) is the special orthogonal group 

consisting of all real, it x n orthogonal matrices A with det A = l. 

Definition 2.1 A sweep σ  is a continuous mapping of the unit interval [0, 1] into the 

group E(n) of rigid motions in the 

Rn

, which is initially the identity. Let at  denote 

the value of sweep at time t, t ϵ  [0,1], then we can write the sweep equation: 

σt (x) = ξ(t) + A (t)x 

where : [0, 1] 	RI' and A : [0, 1] -4 SO(n) are continous and satisfy (0) = 0 and 

A(0) = I. Here the use of the unit time interval [0,1] in our definition involves no 

loss of generality, since the parameter can always be scaled to range between 0 and 

1. 

Definition 2.2 Let a be a sweep and Al be an object in R". The swept volume of 

M generated by a is the region: 

S0( M ) = {σt (x): x  ϵ M, t ϵ [0,1]} 

13 



14 

The sets σt(M) = {σt (x): x ϵ M} are the t.-sections of M  generated by the sweep   

σ and σ(x) = {σt(x) : t ϵ [0,1]} is the σ-trajectory of x. 

Definition 2.3  Let σt  = ξ (t) + A(t)x be a smooth sweep (i. e. a sweep for which    

ξ and A have continuous derivatives of all orders). The sweep vector field(SVF) 

corresponding to σ  is the smooth vector field Xσ  defined by 

Xσ (x,t

) 

 = ξ(t)  + A ( t )AT ( t ) (x — ξ ( t))  

We call the differential equation 

 
x = 
dx/dt 

= 
	

Xσ (x, t ) ≡ ξ(t) + A(t)AT(t)(x — 

ξ(t)) 

 

associated with this vector field the sweep differential equation (SDE) of a. Here 

the dot. denotes differentiation with respect to t and the superscript denotes the 

transpose. It should be noted that 

A

(t )

AT

(t ) ϵ  o(n) for t ϵ [0.1].where o(n) = 

{Bnxn  : B + B

T 

= 0}  is the set of real skew-symmetric matrices. 

Definition 2.4  A smooth sweep a is autonomous if its sweep differential equation 

dx/dt 
= Xσ (x, t ) = ξ

( t

) + A ( t ) AT ( t )(x — 

ξ(t)) 

 
 

is an autonomous differential equation. 

A necessary and sufficient condition for σ  to be autonomous is that ∂Xσ /∂t = 0; that is, 

the sweep vector field Xσ  is independent, of time variable t. It can be shown (see [2]) 

that the SDE of an autonomous sweep has the form 

x = Bx + c 

Definition 2.5 The extended sweep differentail equation (E.51)12) of a is defined as: 

 

dx/dt 
= Xσ (x, t ) 

dt/d

s = 1 
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which can be written in the more concise form 

du/d

s = X*σ(u) 

 

where u 

 = 

 (x, t) and X*σ 

=(

u ),1). X*σ  is called the extended sweep vector field         

(ESVF) of σ.  

Definition 2.6   If σ : [0, 1] → E(n) is a sweep defined by  σt (x) 

= 

ξ 	(t ) + A(t)x, the 

mapping σ*  : [0, 1] → 

E(n) 

x R  defined by σ*(x,t) = (σ (x), s +t)    is its extended 

sweep. The sweep. The extended swept volume of the object M under the sweep σ is 

S*σ( M) 

= 

Ս{ σ*s ( M) : s ϵ [0,1]} 

Where M  is identified with M x 0 = {(x,t): x ϵ  M, t = 0} in Rn  x R. 

The connection between the swept volume and extended swept volume is given by 

following lemma: 

Lemma 2.1  

Sσ( M ) 

= 

II (S*σ (M)) 

 

Where the projection II : Rn+1 → Rn is defined to be the natural projection onto the 

first n coordinates ; namely, 

II(x,t) 

= 

x. 

Definition 2.7 Let M  be a codimension 1 submanifold of 

R

n.  A sweep σ  is of type 

I with respect to (wrt) M  if the mapping. 

Σ : M x [0,1] → Sσ (M )  c 

R

n  

defined by 

Σ( x,t )  = σt 

(x) 

 

satisfies the following properties: 

• If  x ϵ 

 

 int ( M ) , then σt 

(x) 

= Σ

(

x,t

) 

ϵ Int(Sσ(M)),  
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• If x ϵ  ∂M , then σt(x) ϵ  Fr(Sσ( M ))  for every t ϵ  (0,1). 

Here Int  denotes the (topological) interior and Fr the frontier or boundary of a set. 

Otherwise, we say that σ  is of type II wrt M. 

Note that Int ( M ))  and ∂M refer to subsets of M  defined in terms of its manifold 

structure. Int ( So (M))  and Fr(Sσ(M)) refer to the relative topology of So(M) as 

a subset of 

Rn 

 (see [7] ). In particular, x ϵ  Int(Sσ

( M )) 

 if there exists an open 

neighborhood U of x in Rn such that U C 

S

σ

( M )

, and x ϵ Fr(

S

σ

( M

)) , the frontier 

(or boundary) of Sσ( M ) , if every open neighborhood of x in 

R

n  contains points of 

both 

S

σ

( M ) 

 and its complement. 

Definition 2.8  A smooth sweep σ  is regular with respect to (wrt)  M if the smooth 

mapping Σ is a homeomorphism of M x [0,1] onto 

S

σ

( M ) 

 and is a smooth diffeomor-

phism on the interior of M  x [0, 1]. We say that σ is regular periodic wrt M when 

σ1( M ) = M  and Σ  induces a homeomorphism from M  x 

S

1  to 

S

σ

( M ) 

 which is a 

smooth diffeomorphism on the interior of 

M  x 

S

1 

 where S l  is the unit circle. If a is 

not regular or regular periodic. it is singular wrt M. 

Theorem 2.1  Let M be as defined above and a be a smooth map. Then a is of type 

I wrt. M if σ  is regular or regular periodic wrt M. 

Theorem 2.2  Let σ  be a smooth sweep in Rn  and M be a codimension I submanifold 

as described above. Suppose that, the sweep vector field Xσ(x,t) is nonvanishing on 

σt(M) and is transverse (not tangent) to the interior of σt(M)  for every 0 ≤  l ≤  1 . 

In addition, suppose that Sσ

(M) 

 never intersects itself, or more precisely, the natural 

projection II of the extended swept volume onto the swept volume is injectire (one-

to-one). Then σ  is regular wrt M (and therefore of type I wrt M).  

The proofs of the above theorems can be found in [2]. 

The nontangency hypothesis of this theorem can be readily checked as follows: 
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Define 

T(x,t) = (X (σt (x) , t), N t (σt (x)))  = (Xσ (σt (x), t) , A(t) N0 (x)) 

	 (8) 

where the unit normal family Nt  : 0 ≤  t ≤  1 is a collection of unit vector fields such 

that 

Nt 

 is normal to σt ( M ) at every point t of the interval [0, 1]. It is easy to see 

that the nontangency condition is tantamount to the requirement that T be nonzero 

on Int(M) x [0, 1]. 

Definition 2.9  The tangency condition refers to the following equation: 

T (x, t) = 0 	 ( 9 ) 



CHAPTER 3  

THE THEORY OF THE SWEEP FLOW APPROACH 

3.1 The General Evaluation Procedure  

In this chapter, we will introduce the basic theory of the sweep flow approach to the 

swept volume problem, which can he stated as follows: 

	

Given an object M and smooth rigid sweep σ, and the sweep time in- 

	

terval [0, 1], we want to obtain the boundary representation of the swept 

	

volume generated by the object M undergoing the sweep a during the 

time interval [0, 1]. 

The assumption of unit time interval [0, 1] here will result in no loss of generality, 

since any time interval can be scaled to range between 0 and 1. 

	

Generally speaking, our evaluation scheme is similar to the "local generation 

and global trimming"category as in [201 etc., however, several improvements can be 

made in comparsion to the existing approaches. 

Our general evaluation process can be outlined as follows: 

Input:  

Solid object M 

Sweep differential equation: 

x = Xσ = ξ + AAT(x — ξ)  

The unit time interval [0, 1]. 

Local generation and trimming:  

Divide the time interval [0,1] into a finite number of 

intermediate instants. At each time instant, generate 

the candidate boundary patches which satisfy the cri- 

18 
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terion we will describe in the sequel. We will use the 

local trimming procedure to immediately trim out those 

candidate boundary patches which belong to the interior 

of the swept volume. 

Global trimming:  

Trim those candidate boundary patches which are in 

fact members of the interior of the swept volume and 

thus produce the boundary patches of the swept volume. 

The global trimming will include two steps: initial global 

trimming and secondary global trimming. 

Boundary forming:  

Connect the boundary patches, properly to form the 

piecewise approximation of the boundary of the swept 

volume. 

Output:  

Boundary representation of the swept volume 

	

The trimming process is necessarily global since the boundary patch of swept 

volume at some time t i  may belong to the interior of the swept volume at t j, where 

t j  may greater than t i  or less than ti. This is illustrated in figure 4. In fact, effec- 

tive implementation of the trimming procedure is the most challenging part of our 

research. 

3.2 The Selection of Candidate Boundary Points  

It has been shown in Weld & Leu[25] ( see also [24] ) that for any given sweep σ,, if 

the object M  is a compact, n- dimensional submanifold of 

R

n  possessing a piecewise  
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Figure 4  The global nature of the sweep process 
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smooth boundary ∂M , the swept volume of the object M  is given by 

Sσ(M) = M U  Sσ(∂M) 

and this will reduce to 

Sσ(M) = Sσ(∂M ) 

 

if  M ∩ σt (M ) = ϕ for t ϵ  (0,1). This means that the swept volume of the 

n-dimensional manifold M is actually determined by the swept volume of ∂M, which is 

of codimension 1 in the object M . In what follows, we shall assume that the object M 

is a compact, n- dimensional submanifold of Rn  with a piecewise smooth boundary. 

Blackmore & Leu [5] study the linear, circular and helical sweeps in 

R3 

 which 

constitute one special class of sweep which they call autonomous sweeps, and use a 

technique they call the boundary flow method(BFM), which is based on the sweep 

differential equation approach, to compute the swept volume. 

Our approach, which is also based on the sweep differential equations and sweep 

vector fields can be viewed as the natural extension of the BFM to general sweeps. 

At any time t, the boundary of the object M  can be partitioned into three sets: 

∂ M(t) = 	M(t) Ս ∂o M(t) Ս ∂+ M(t) 

Where ∂+M(t )  is called the instantaneous ingress point set, ∂o M(t) is the set of 

instantaneous grazing points and ∂_ M(t) is the instantaneous egress point set. A 

point x ϵ ∂M is an instantaneous ingress point at time t if the sweep vector at x at 

time t  is directed into the interior of M , it is an instantaneous egress point if the sweep 

vector at x at time t is directed out of the interior of M; otherwise it is a grazing 

point. From this definition, it is straightforward to decide if a point x ϵ  ∂M is an 

ingress, egress or grazing point at time t. This may be done as follows: If x belongs 

to a smooth portion of ∂M , and N(x , t )  is the normal vector to ∂M  at x pointing 

into the interior of the object M, we set T ( x, t )  = (Xσ(x, t ) , N(x,t)). Then x is an 
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instantaneous ingress point, egress points or grazing point at time / according as the 

sign of T(x , t) is positive, negative or zero, respectively. If x belongs to the edge of 

two contiguous smooth portions of ∂M , then it can he assumed to have two normal 

vectors—the normal vectors of the abutting smooth surfaces, say N1 (x, t), N2 ,(x,t). It 

is an instantaneous ingress point, egress points or grazing point at time t according 

as the signs of T1 (x, t )  and T2 (x, t )  are both positive, both negative or otherwise, 

respectively. 

In general, a point x can belong to k surfaces which abut each other at x (e. 

g. the vertex of a cube in 3-D space), then we can assign k normal vectors to it, 

say N1

(x, t )

, • , Nk

(x, t )

, and it is an instantaneous ingress point, egress points or 

grazing point at time t according as the signs of T1

(x, t

), • • , Tk

(x, t ) 

 are all positive, 

all negative or otherwise, respectively. A point x can also belong to a surface; but 

have a 1-parameter family of normal vectors associated with it (e. g. the vertex of 

a cone in 3-D space). The sign of the family Tα

(x, t ) 

 can then be used to determine 

ingress, egress and grazing points in the obvious way. Figure 5 is a 2-D example of 

boundary partition. 

Notice that the definition for a grazing point on smooth portions of 0i11 coincides 

with the tangency condition of chapter 2, that is: 

T (x, t) = (Xσ (σt(x), t ) ,Nt (σt(x))) 

= (

Xσ (σt(x), t ) ,A t,(t)N0 (x)) 

= 0                                                    (1)  

The relationship between grazing points and envelope points is given by the following 

theorem: 

Theorem 3.1  Given an object M undergoing a smooth sweep σ, the grazing points of 

the smooth portion of ∂M(t) (Tide points that satisfy the tangency condition T (x, t) = 
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Figure 5  Illustration of partition of the boundary  
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0, x ϵ  ∂M )  as t ranges over [0,1] are the envelope points of the family σt(∂M ) ,  ϵ  

[0,1]. 

Proof.  Let x0  belong to the smooth portion of ∂M . Then by a standard result of 

differential topology( see [14] ), there exists an open neighborhood U of 

x

0  in 

R

n  and 

a smooth function f : U → 

R

n such that 

W= U ∩ ∂M = {x0 ϵ U : f(x0) = 0}     

It is not difficult to see that the family {σt (W ) : 0 ≤  t ≤  1} is characterized by 

F(x,t) = 0 

where 

	

F(x, t ) = f (σt-1(x)) = f(AT(t) (x - ξ(t))) 

The envelope points of the family {σt ( W )} are obtained from the equations 

F(x, t )  = 0 Ft(x, t

) = 0 

Using the chain rule, we compute that 

 

Ft(x, t ) 

 =  ∂/∂t f ( AT(

t

)(x-ξ )))   

= ‹ ∇ 

f 

(

AT (

t

) (x - ξ(

t

) ), AT(

t

) (x - ξ(t)) - ATξ(t) › 

= ‹ ∇ 

f 

(

AT (

t

) (x - ξ(

t

) ), AT [AȦT(x - ξ) - ξ]› 

= ‹ ∇ 

f 

(

AT (

t

) (x - ξ(

t

)), AT [ȦAT(x - ξ) - ξ]› 

	 

since AAT  = I  implies that ȦAT  + AȦT = 0. Hence 

	

Ft(x, t )  = - ‹ ∇ 

f 

(

AT (

t

)(x - ξ(

t

)(x - ξ(t)), AT  Xσ(x, t)›, 

 

from which we conclude that 

		

Ft

( σt(x0

)

, t) = - ‹∇ 

f (x0

), AT Xσ(σt(x0), t)› 

= - ‹Xσ(σt(x0

), t), A(t)∇ 

f 

(x0)› 

 

= — (X,( 0-t(x°, 1 ),A(/) V 1.(x°))  
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But, since 

∇f (x0

) 

 is normal to W , 

∇ f (x0

) = - 

KN

(x0)

, 

= - ‹Xσ(σt(x0

), t), A(t)∇ 

f 

(x0)› 

 

where N  defines the normal family and K  is a positive nonzero constant. Hence 

Ft(σt(

x

0 , t ))  = K T (

x

0 , t ) 	 ( 2 ) 

and therefore we see that envelope points coincide with points satisfying T = 0. This 

completes the proof. 

Theorem 3.2  Let σ  be a given smooth sweep in 

Rn 

 and M  an object. Then the 

boundary of the swept volume of M satisfies the following formula: 

∂ Sσ(M) C { Ս∂ σM (t) } Ս1t=0 ∂+M(0) Ս∂ _M(1) (3)  

where t ϵ  [0, 1] 

Here we use C instead of = because of the global nature of the sweep process which 

we mentioned before. 

Proof.  We first note that by the properties of the object M there exists a. piecewise 

smooth function f : 

R

n  → 

R 

such that f  is negative in the interior of M . f is positive 

on the exterior of M  and f  vanishes on the boundary of M . This implies that the 

function F : 

Rn 

 x [0,1] → R  defined by 

F ( x,t ) = f (AT (t )(x — ξ(t))) 

characterizes the t-sections of the swept volume of M  as follows: ∂ ∂

M

( t ) = {x ϵ 

R

n : F(x,t)= 0}  

intM(t) = 

{x 

ϵ 

R

n : F(x,t)< 0} 

extM  (t) = 

Rn 

\

M

(t)

={xϵ 

R

n : F (x,t)> 0} 

Let 

x0 

 ϵ  

∂M

( t ) 

 for some 0 ≤  t ≤  1. It is easy to see that ∂+

M

(0)Ս∂ 

+

M

(1)U  may 

contain boundary points of the swept volume so we shall assume that 
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x0 ϵ ∂

+

M

(0)

Ս∂_M(1)        

	  

Clearly the proof is complete if we show that x0  E 30/(0 for some 0 < t < 1. This 

will be done by contradiction. 

Suppose, on the contrary, that 

x0 

 ϵ ∂

+

M

(to) 

for some 0 < to  ≤  1 or 

x0 

  ϵ  ∂

+

M

(to) 

 for some 0 ≤  t o  < 1. We shall only show that 

x

0  ϵ ∂

+

M

(

to

) 

 leads to 

a contradiction, since the proof of the contradictory nature of the second supposed 

alternative is analogous. The definition of an ingress point implies that there is an 

0 ≤  e < to  such that F (

x

0 , t ) is a strictly increasing function of t on (to  — ϵ 

 

, to  + ϵ 

 

). 

As F(x0 , to ) = 0, we infer that F(

x

0 , t o  — ϵ) < 0, which implies that 

x0 

 belongs to 

the interior of M(to  — ϵ). Hence there exist an open neighborhood Ս of 

x

0  such that 

U C M(

t o  — ϵ) = 

σto-c ( M )  C Sσ ( M )  

This contradicts our basic premise that 

x

0  ϵ  ∂ Sσ

( M )

, and this concludes the proof. 

Corollary 3.1  Let σ  be a linear, circular or helical sweep in. R3  such that Xσ has 

Sao zeros in the object M and Sσ  (∂M)  has no self-intersections. Then the boundary 

of the swept volume of M is given by the formula 

∂Sσ (M) = Sσ(∂0M(0)) Ս ∂_M  Ս ∂+M (1))  

Proof. From the above theorem, the proof of this corollary is straightforward. Since 

the linear, circular or helical sweeps in R3  have have been shown in [4] to constitute 

the class of autonomous sweeps for which the sweep vector geld is independent of 

time t, we see that, 

x ϵ  ∂ 0M (0) ==> σt (x) ϵ σt (∂ 0 M(0)) = ∂ 0M (t) ==> Ս1t=0 ∂ 0M(t) = Sσ(∂ 0 M(0)) 

As there are no intersections, the global trimming is unnecessary in this case, and we 

can use = instead of C in the formula (12). Thus the proof is complete. 
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3.3 The Global Trimming Procedure for the Candidate Boundary 

Points 

The candidate boundary patch selection process results in a set of candidate boundary 

patches which are guaranteed to contain the boundary of the swept volume. 

In order to trim those candidate bounday patches or the portions of candidate 

patches which belong to the interior of the swept volume, we need an efficient way of 

determining whether or not a patch belongs to the interior of some t-section of the 

swept volume. 

The global trimming procedure can also be viewed from the extended sweep 

point of view. The extended swept volume, which is imbedded in 

R

n+1  spacetime, is 

much better behaved than the swept volume in 

R

n  since it has no self-intersections. 

Figure 6 is an example of an extended swept volume of a 2-D sweep. By intuition, 

one can immediately see that a candidate boundary point x0  should not be kept if 

the line x = xo  intersects the interior of the extended swept volume. If this line does 

not intersect the interior of the extended swept volume, but intersects the boundary 

at more than one point, it may not be a boundary point; such cases will be handled 

by a secondary global trimming procedure. 

Although it is very difficult to implement a general global trimming procedure 

for 

Rn

, it is possible to construct efficient algorithms for specific dimensions (like 

the algorithm we will describe in the implementation chapter for 2-D space). In 

addition, we shall see that there are local trimming techniques which can immediately 

be applied to certain grazing points. 

Implementation of a global trimming procedure is quite problematical, but a 

theoretical characterization is not at all difficult as shown by the following result. 

Theorem 3.3  (Global Trimming Criterion) Let σ  be a smooth sweep of the form σ t (x) = ξ(t) + A(t)x and lry M be an object which can be characterized by a con-  
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Figure 6  Global trimming procedure from extended sweep point of view 
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tinuous, piecewise smooth function  f : 

R

n → R such that intM = {x ϵ 

Rn  

:f

(x) < 0}∂M =  {x ϵ 

R

n 

: f(x) = 0} and extM = {x ϵ 

R

n : f (x) > 0}. Set F(x,t) = f  (AT(t)(x - ξ(t))). Then x ϵ (U1t=0 ∂0M(t)Ս∂+M (0)Ս∂-M(1) is a point of a ∂Sσ (

M

) iff  x  satisfies following conditions: 

1.  

F(x,t)> 0 V E[0,1] 

2. If x satisfies (1) and F(x, ti) = 0 for more than one ti  ϵ  [0, 1] then it 

should also satisfy following condition: ∀  nbd U of x, there exists y ϵ  U such that. 

F (y ,t) >   ∀ t ϵ [0,1]  

Proof.  The proof of this theorem is quite straightforward. From Theorem 3.2 as 

we have already proven, if σ  is a given smooth sweep in 

R

n  and M  an object. then 

the boundary of the swept volume of M satisfies the following formula:  

∂Sσ (M) C {Ս1t=0 ∂ 0M(t)}Ս∂ +M (0)Ս∂ -M (1)        

 
" 

 

Also we notice that the function F : 

R

n x [0,1] → R defined by F(x, t) = f(AT(t)(x — 

ξ(t)))  characterizes the t—sections of the swept volume of M  as follows: 

∂ M (t) = {x 

ϵ Rn 

: 

F (x, t) = 0}                                      

intM(t)= 

{x 

ϵ Rn 

: 

F (x, t) < 0} 

 

extM(t) = {x ϵ Rn:F(x,t)>0)  

∀x ϵ  {Ս1t=0 ∂ 

0

M

(t)}Ս∂ +M (0)Ս∂ -M (1)

,  if x also satisfies F(x,t) ≥  0,∀ ϵ  [0, 1], 

x does not belong to the interior of any t—section of the swept volume, and so is a 

point of ∂Sσ(M)  except possibly for singular cases (one of which we illustrate using 

a 2-D example in Figure 7). From Figure 7, we can see that even through x does 

not belong to the interior of any t-section of the swept volume which means that it 

satisfies condition (1), it still belongs to the interior of the swept volume and needs 

to be trimmed. We notice that x satisfies F(x, ti)  = 0 for more than one t i  ϵ  [0.1]. 
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In these cases, we need to add condition (2) which means that no neighborhood of 

x is completely contained in the swept volume of M  because it contains a point 

which is in the complement of every t-section of M. Thus the proof is complete. 

Definition 3.1  Trimming those candidate boundary points which do not satisfy 

the condition (1) is called initial global trimming. Secondary global trimming is the 

elimination of those candidate boundary points which satisfy (1) but not (2). 

As a practical corollary, we have the following result: 

Theorem 3.4  (Local Trimming Procedure) Let a be a given smooth sweep in 

Rn

, 

and M  the object. At time t, suppose xo  belongs to the smooth portion of ∂ M(t)  and 

is a grazing point. Then xo  is not a valid boundary point if T(x0,t — ∆ t) > 0 or 

T(x0,t + ∆(t)  < 0 for positive and arbitarily small ∆ t. 

Proof.  We will prove only the case T(xo, t — At) > 0, since the proof of the second 

case is analogous. 

Let F(x, t) describe the object at time t with F(x,t) < 0, F(x, t) = 0 and 

F(x, t )  > 0 representing the interior, boundary and exterior of object, respectively. 

From the previous theorem, we know that if xo  is a grazing point on the smooth 

portion of boundary of M ( t ), it satisfies 

F(x

0

, t) = 0 

Ft (x0 , t ) = 0 

By Taylor's theorem, we can expand F(xo, t 0 ) as follows: 

F (xo, to ) = F (xo, to  — ∆t) Ft(xo, to  — ∆ t )  ∆ t + o(∆t )  = 0 

where At is positive and arbitarily small. Hence 

F(xo, to  — ∆t ) = — Ft (xo , to  — ∆

t

) ∆ t + o(∆

t

)  
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Figure 6  A 2-D example of singular case in the global trimming 
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So if T(

x0

,t0  — ∆t ) > 0, from (11) and the fact that ∇ F  points out of M , we know 

that Ft (xo,t0  — ∆t ) 

> 

 0, which implies that 

F(x

0

,t0  — ∆t ) < 0     

 

This means that 

x0 

 belongs to the interior of the M(t0 — ∆t ), hence 

x

0  is an interior 

point of the swept volume. This completes the proof. 

We observe that when 

x0 

 is a grazing point of the smooth portion of ∂M  

(t0 ) 

 

one can also expand the Taylor series in another way: 

F(x

0

,t0  — ∆t ) 

 

=  F((

x

0 ,t0 ) 

+ 

Ft (xo,t0

)(— ∆t ) + ΣNk=2 ∂k/∂tk F(x0 ,t0 )(-∆t )k  + o(│∆t│N) = ΣNk=2 ∂k/∂tk F(x0 ,t0 )(-∆t )k  + o(│∆t│N) 

 
 

 
= 

 

From which we can easily obtain the following result which is the "higher ordei 

criterion" Sambandan proved in [20]. 

Let a cochmension-1 face f of the solid 6; in 

Rn 

 be given by an implicit 

equation F(x) = 0 and let F(x) > 0 denote the region in 

Rn 

	which is 

outside the solid generator. Let P  be a. point on the face which satisfies 

the envelope criterion, i. e., F ( P ) = Ft ( P ) = 0. Then, there exists a 

neighborhood U ( P ) of P  on the envelope of the face f that will be on 

the boundary of or outside the swept volume if 

either  ∂k

F

/∂tk = 0 ∀ k  

or Ǝ  an even integer N  > 0 such that 

 
1.  ∂k

F

/∂tk = 0, k < N 

 
 

2. ∂N

F

/∂tN   > 

0 

i. e. , the first non-vanishing derivative must be of even order and be 

positive. 
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Hence P is included in the type-2 patch (envelope curve). If N is even 

but the condition 2 is not satisfied, then Ս(P ) lies on the side of f that 

contains the swept volume and hence need not be included in the type-2 

patch. If N  is odd, Ս(P ) may lie partially in the swept volume. 

It is instructive to compare Sambandan's local trimming procedure with that of 

Theorem 4.2. First, we observe that Theorem 4.2 applies to any grazing point on 

a smooth portion of ∂M(t), whereas Sambandan's procedure is inconclusive if the 

first nonvanishing derivative is of odd order. Second, although theoretically possible, 

it may be very difficult to find F(x, t) for even a simple object. M and sweep σ  in 

practice. It is, in general, much easier to check the sign of T (x,t ) than it is to 

compute F(x, t) and its various derivatives with respect to t . 



CHAPTER 4 

IMPLEMENTATION OF PROTOTYPE SOFTWARE IN 2-D 

SPACE  

In this chapter, we will describe the implementation of the theory developed in chap-

ter 3 for evaluating the boundary representation of the swept volume generated by a 

planar polygonal object undergoing a general 2-D smooth rigid motion. 

The given object M , which is a n-sided polygon, will be represented by a se-

quence of its vertices in the order in which they are encountered when marching 

counter-clockwise along its boundary. We observe that the configuration of the ob-

ject at any time t, which is denoted as M(t), is completely defined by the positions of 

its vertices, say {(x

i

(t),y

i

(t)), t  ϵ [0,1], i = 1, ..., m}.  The i th vertex of the polygon 

will be denoted by vi ( t ) which is (x i ( t ) , yi(t)), and the ith edge which represents the 

ordered pair v

i ( t ), vi+1 (t)

) is denoted by ei (t ) 

The general 2-D smooth sweep σ  will be defined by the sweep equation or the 

sweep differential equation as follows: 

x = ξ (t) + A(t)xo 	(1) x = Xσ = ξ + Ȧ(t)AT(t)(x - ξ) 	(2) 

where ξ : [0,1] → R2 and A : [0, 1] → SO(2) are smooth and satisfy ξ(0) = 0, and 

A(0) = I . Here 

xo 

ϵ  R2  denotes the initial position of the point and x [0, 1] 

the position of the point at time t. As we described in chapter 2, it is not difficult to 

derive (13) from (12). Here, we note that 

 

x = 

ξ + θ   [  0   -1]  	(x - ξ) [1 0]     	 (3) 

[ cos θ(t) - sin θ(t) ]  
since A (t ) =  

[ sin θ(t) - 
	

cos θ(t) ] 
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For the direction of the edge normals, we choose those which point into the 

interior of the polygon. 

4.1 Overview of the Whole Process 

The whole evaluation process can be outlined in detail as follows: 

Step 1 	Given: the polygonal object M, a smooth 2—D sweep 

which is represented by sweep differential equation 

x = Xσ = ξ(t) + ȦAT 	 (x — ξ)  

and the time interval [0, 1] 

Step 2 	For each edge ei, compute the edge normals (normal

ized, inward directed) at time 0, which are denoted 

by Ni;  (x,0). We note that all of these normals are 

constant on ei  (which is a straight line segment). 

Step 3 	Subdivide the time interval [0, 1] into a finite number 

of segments which are represented by a sequence of 

time instants. 

Step 4 	At time t = 0, compute the instantaneous ingress 

portion of ∂M(0) which may be composed of several 

ingress boundary curves. Discretize them into a. finite 

number of straight line segments and determined by 

a. set of ingress points. 

Step 5 	For each time instant, compute the instantaneous 

grazing points of ∂M(t) and note their geometric rela-

tionship. By making use of the geometric relationship 



between these grazing points, form a set of grazing 

boundary curves. 

Step 6 	At time t = 1, compute the instantaneous egress 

portion of ∂M(1 ) which may be composed of sev-

eral egress boundary curves. Discretize them into a 

finite number of straight line segments which are de-

termined by a. set of egress points. 

Step 7 	Collect the points and curves obtained in steps 4, 5  

and 6. These are the candidate boundary points and 

candidate boundary curves. 

Step 8 	Global trimming   

(1) Initial global trimming:  eliminate those can-

didate bounadry points which belong to the interior 

of the swept volume Scr(M) = Ս1t=0  M(t). 

(2) Secondary global trimming:  If a. candidate 

point belongs to the boundary of more than one t-

section of the swept volume and has not been elim-

inated by initial trimming, it may still need to be 

removed. If its normal vectors for two of the sections 

are in opposite directions, it should be trimmed. This 

occurs when the inner product of the two normal vec-

tors equals —1. 

Step 9 	Connect the remaining candidate boundary curves to 

form an approximation of the boundary representa-

tion of the swept volume.  
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We will discuss some steps in detail in the next section and the following  example 

will be used to illustrate the steps. 

Example 4.1  The object is the pentagon shown in figure 8. and the swept volume 

produced is shown in figure 9. 

Object description: 

	

(0, 0) →  (2.0, 0) → 	(2.0, 0.5) → 	(1.0, 1.5) → 	(0.0, 1.0) 

This is the sequence of vertex points in the counter—clockwise orientation. 

Sweep equation: 

[ x ]    =   [ 4t ]    +   [ 	cos(πt) —sin(πt) ] 	[ x0 ] [ y ] 	[ 0  ]        [ sin(πt ) 
	

cos(πt ) ] 
	

[ y0 
] 

Sweep differential equation. 

[ x ]    =   [ 4 ]    +    [   —πt ] 	
	

[ 0 ]         [ 0 ]         [   π(x - 4t) 
	] 	

 
 

4.2 Implementation of Candidate Points Selection Procedure  

Here, we will describe in detail how to apply the sweep flow method to obtain a 

set of candidate boundary points, and join them into candidate boundary curves by 

making use of their geometric relationship. Let T(x, f) denote the clot, product of the 

sweep vector and the normal vector at x on the boundary of Al (1) at time t. which 

is defined by equation (1). 

As we can see from equation (1), in order to determine the value of T(x, t), the 

edge normal N (x,0) needs to be computed. This is quite easily done as follows: Let. 

x ϵ  ei  and define 

[  0    	1] 
N*(x) = (vi+1(0) — vi(0))  [-1    0] 

 

Then 

N(x, 0) = 

N*(x)/║N*(x)║ 
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Figure 8  The object in example 4.: 
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Figure 9 The swept volume in example 4.1 
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The following result characterizes the grazing point sets on the edges of the object 

being swept. 

Lemma 4.1  Given a smooth. 2-D sweep and a polygonal object. At any given time 

t  ϵ  [0,1], one and only one of the following is true for an edge excluding the vertices: 

there is exactly one grazing point; or there are no grazing points; or every point is a  

grazing point. 

Proof.  As we mentioned before, at any given time t, for each edge e;  except at 

its two vertices, the normal vector is constant which can be expressed as: N; (t) = 

( N1(t ) , N2(t )). From equation (14), the sweep vector at any given point x and time 

t is: 

 

	

X, = .(t) 	
0 X0 = ξ(t) + θ (t) [0     -1]       (x(t) - ξ(t)  [1     0] [ ξ1 ]   + θ [0     -1]    [( x1 — ξ1)] 

	
	

[ ξ2 ]               [1     0]   [( x1 — ξ1

) ] [ ξ1 + θ(ξ2 —  x2)]              

	
	

[ ξ2 + θ(x1 — ξ1

) ] 

 

If x is a grazing point on the interior of an edge e;  at given time t, it must satisfy 

the tangency condition: 

T (x, t)   = ‹ Xσ , Ni › = 	

.1,\T 2 x 1 — = θ N2 x1 

— θ N1 x2  + N1 (ξ1 —  θξ2

) 

+ N

2(ξ2 

—  

θξ1 ) 

= 0 

Since x is on the edge ei, it must satisfy the edge equation which is in the form: 

ax1  + bx2 = 

c 

 

In which a, b and c are contants for t fixed. 

Equations (16) and (17) constitute a pair of linear equations in the two unknowns 

x1, x2  at time t. The determinant of this system is: 

Det = det   [ N2θ —  N1θ)]              

	
	 [  a b   ] 
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= θN2b  + N1a) = θK 

 

Where K = N2b + N1a ≠ 0. If θ ≠ 0, this linear system has unique solution 

x = (x1, x 2 ), which means that in this case the grazing point on edge ei  is unique if 

exists (it does not exist if the point lies on the line (17) outside the edge). If θ  = 0, 

(16) and (17) either have no solution, or every point of the line (17) is a solution. 

Thus the proof is complete. 

It follows from Theorem 3.2 proved in chapter 3 that the following procedure 

will yield all of the candidate boundary points. 

At time 0, compute the normal vector Ni(x, 0) of each edge ei . Let Ti (vj,t) 

denote the dot product of the sweep vector at vertex v.;  and the normal vector of 

edge ei  at time t. At any time t, for each edge ei  = (vi ( t ),vi+1 (t )), compute Ti (vi , t ) 

and Ti (vi+1 , t). 

For each edge ei , check the signs of Ti (vi , t ) and Ti( v

i+1

, t ): 

• If they are both greater than or equal to zero, then this edge as a whole belongs 

to the ingress portion of ∂M ( t )  

• If they are both less than or equal to zero, then this edge belongs to the egress 

portion of ∂M

( t ) 

 

e If Ti (vi ,t ) • Ti (vi+1,t )  < 0, then we can use some standard numerical algorithm 

(e. g. bisection method) to find the grazing point x on the edge ei  which satisfies 

T(x,t) = 0. The portion from x to the vertex satisfying T < 0 is the egress 

portion of this edge, and the other side is the ingress part. 

At any time t, each vertex can be classified as follows: 

• If Ti(vi , t ) > 0 and Ti+I (vi , t )  > 0, this vertex is an ingress point.       If Ti(vi , t

) < 0 and 

Ti+1(vi , t ) 

 < 0, this vertex is an egress point. 



• If 

Ti(vi , t ) ∙  Ti+1(vi, t) ≤ 0, it is a grazing point. 

This classification is directly based on the definition we stated in chapter 2. The 

candidate boundary points of example 4.1 are shown in figure 10. 

In order to improve the efficiency, it is also very important to exploit the geo-

metric relationship between the candidate points in order to save the computational 

work of forming the final boundary representation of the swept volume. The following 

properities of the candidate boundary points are very useful: 

• During the sweep, the grazing point of an edge will move along the edge. Usually 

it will start, at one of the end points and move to the other end. However, the 

grazing point may start at an end and terminate at. an intermediate point or 

begin at an intermediate point and end at a vertex, or even start and end at 

intermediate points. In an case, if we connect the grazing points of this edge 

according to their movement along the edge as it moves through successive 

instants of time, we obtain an edge candidate curve. 

• Because of the multiple normals at a vertex, there exist some time intervals 

in which the vertex is a candidate point. The trajectories of this vertex 

during those time intervals are the vertex candidate curves. 

In the actual implementation, we use a double link structure to keep a record of the 

geometric information connecting the candidate points. The link will be changed 

during the global trimming procedure described below. 

4.3 Implementation of Trimming Procedure  

In the 2-D case, global trimming requires a procedure for determining whether or 

not a given candidate point lies within the interior of any of the polygonal t -sections 

M(t), 0  ≤  t ≤  1. This can be done by using following algorithm: 

 Algorithm 4.1 Given any polygon and a point in 2-D space. draw a ray from.  this 

point in any direction (for convience and efficiency, we adopt the upward direction  
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Figure 10  The candidate boundary points of example 4.1 
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or downward direction). Count the number of intersections of the ray with the edges 

of polygon. If this number is odd, then the point is inside the polygon; if it is even, 

then it is outside the polygon. See figure 11. The count of the number of intersections 

is done as follows: If the intersection does not coincide with the vertex of the edge, 

add 1 to the intersection counter; Otherwise, there are the special cases for which the 

count must be defined according to the following illustrations: 

case 1.1  Intersection with a vertex. If the two edges are 
on different sides of the ray starting at x, add 1 to the 
intersection counter. 

case 1.2  Intersection with a vertex. If the two edges are 
on the same side of the ray starting at x. add 2 to the 

x intersection counter. 



case 2.2  Complete intersection with edge. If two ad-
jacent edges are on the same side of x, add 2 to the 
intersection counter. 

case 2.1  Complete intersection with an edge. If two 
adjacent edges are on different sides of the ray starting 
at x, add 1 to the intersection counter. 
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Although a proof of this theorem can be obtained using quite basic results from 

topology, we have not been able to find a complete proof in the literature. In the 

interest of completeness, a proof is given in Appendix A at the end of this thesis. 

Thus the global trimming precedure can be outlined as follow: 

Input: The set  of candidate boundary points 

Global trimming:  

Initial global trimming: For each  candidate bound- 

ary point, use the algorithm 4.1 to test  whether it be- 

longs to the interior of M ( t ) for some  t ϵ  [0, 1]. If it 



46 

Figure 11  Deciding whether a. point is inside a. polygon or not 
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does, eliminate it from the candidate boundary point 

set. Otherwise, record the number of times it belong to 

Al (t) for some t E [0, 1]. 

Secondary global trimming:  For each candidate 

boundary point left after initial global trimming, check 

if it belongs to the boundary of more than one t-section 

of the swept volume. If it does, then compute dot prod-

ucts of the its normals at all the different time instances, 

If one of them is equal to —1, this point is a singular 

candidate point and should be trimmed. 

Output: The set of boundary points 

From the set of boundary points constructed by our algorithm, one can obtain a. 

piecewise linear approximation to the boundary of the swept volume by linear in-

terpolation (i. e. just connect successive points by straight line segments). It is 

clear that the precision of this approximation can be controlled by the choice of the 

subdivision of [0, 1] into time instants. Figure 12 the trimming result of example 1.1 

and the final boundary representation is shown in figure 13. 

4.4 Some Examples  

Example 4.1  Figure 14-17 shows a pentagon undergoing a sweep for which the 

swept volume produced has a hole, which means that the boundary of the swept 

volume has more than one connected component. 

Object description: 

(0, 0) → 	(2.0, 0)  → (2.0, 0.5) → (1.0, 1.5)  → (0.0, 1.0) 
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Figure 12  The boundary points after global trimming of example 4.1 
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Figure 13  The final boundary of the swept volume of example 4.1 
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Sweep equation: 

[ x ]    =    [         4t         ] 	+   [ cos(3πt)  - sin(3πt)]   [ x0 ] 

[ y ]          [4(t - 0.5) 2 

- 1] 	[ sin(3πt)    cos(3πt)]   [ y0 ] 

Sweep differential equation: 

[ x ]    =    [         4t         ] 	+   [ -3π(y  - 4(t - 0.5) + 1)]    

[ y ]          [8(t - 

0.5)      ] 	 [       3π((x - 4t)          ] 

  

Example 4.2  In this example, we approximate a disk by a polygon, and thus obtain 

an approximation of its swept volume. 

Object description: 

A disk of radius 1 whose boundary is a circle approximated by a polygon: 

(1.0, 0.0) → 	(0.707, 0.707) → (0.0,1.0) → (-0.707, 0.707) → (-1.0, 0.0) →  

(-0.707, -0.707) → (0.0, -1.0) → (0.707, -0.707) 

Sweep equation: 

[ x ]    =    [  4t  ]   +   [ cos(πt)  - sin(πt )]   [ x0 ] 
[ y ]          [  0  ] 	[ sin(πt)    cos(πt)]   [ y0 

] 
 

Sweep differential equation: 

[ x ]    =    [  4  ]   +   [     -πyt    ]   

[ y ]          [  0 ] 	[ π(x - 4t) 

]   
 

The results are shown in figures 18-21. 

Example 4.3  Figures 22-25 are the same example which appears on the page SS of 

[20]. 

Object description: 

(-1.0,0.0) →  (1.0,0.0) → (1.5, 1.0) → (0.0,2.0) 	→ (-1.5,1.0) 

Sweep equation: 

[ x ]    =    [  5t ]   +   [ cos(2.7πt)  -  sin(2.7πt) ]   [ x ] 

[ y ]          [  5t ] 	[ sin(2.7πt)       cos(2.7πt)]  [ y ] 

 
  



Sweep differential equation: 

[ x ]    =    [  5.0  ]    +   [ -2.7(y - 5.0t) [ y ]    =    [  5.0  ] 	[  2.7(y - 5.0t)              
 

 

	

+ 1 = 	5.0 	2.7(x — 5.0t) _ 
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Figure 14  The swept volume of example 4.2 
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Figure 15  The candidate boundary points of example 4.2  
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Figure 16  The boundary points after global trimming of example 4.2  



Figure 17  The boundary representation of swept volume in example 

4.2  
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Figure 19  The candidate boundary points of example 4.3  
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Figure 20  The boundary points after global trimming of example 4.3 
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Figure 21  The boundary representation of swept volume in example 4.3 
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Figure 22  The swept volume of example  4.4  
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Figure 23 The candidate boundary points of example 4.4 
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Figure 24  The boundary points after global trimming of example 4,4 
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Figure 25  The boundary representation of swept volume in example 4.4  



CHAPTER 5 

SOME IDEAS ON 3-D EXTENSIONS  

In this chapter, we will briefly describe how our general solution procedure can be 

applied to 3-D space. Although our sweep flow method has no restriction on the 

shape of the object, we still want to concentrate our attention on polyhedra because 

they are more readily handled. We note that any reasonably smooth 3-D object 

can be approximated by a polyhedron to any precision. The resulting boundary 

representation of the swept volume is then a close approximation to the actual swept 

volume boundary. 

We will use the boundary-based, object-based, evaluated-form of representation 

of solid models to model the polyhedral object we want to sweep. There are several 

data structures which can be used to represent the topological information of the 

solid models. We plan to use the edge-based graph data stuctures which include the 

well known winged-edge structure [1] and its variations. For more details, refer to 

[27]. 

The general smooth 3-D sweep and sweep differential equation will also be 

represented as: 

x =  ξ(t) + A(t)x0 (1)      

x =  Xσ = ξ + A(t)AT(t)(x-ξ) (2)  

 

Where ξ : [0, 1] → R3 and A : [0, 1] → SO(3) are smooth and satisfy "(0) = 0, and 

A(0) = I . Here x0  ϵ  R3  denotes the initial position of the point and x : [0, 1] → R3 

the position  of the point at time t. As we described in chapter 2, it is not difficult to 

derive (19)  from (18). For the six degrees of freedom of 3-D Euclidean motions, the 
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sweep equation is: 

x = ξ (t) + A(t )x0  [ ξ1(t)]        [cαcß cαsßsγ - sαsγ cαsßcγ + sαsγ   ]  
[ ξ2(t)]   +   [sαcß sαsßsγ + cαcγ + sαsßcγ - sαsγ ]  x 0 [ ξ3(t)]        [ -s ß               cßsγ          cßsγ         ]   

 

Where cα  = cos α, sα  = sin α, etc., ξ1(t),ξ2(t),ξ3(t) are the three components of the 

translational motion with respect to the fixed world coordinate system, and α, 

are the euler angles which specify the rotation angles of the object with respect to its 

original orientation. With some computational work, the sweep differential equation 

can be shown to have the following form: 

x  = Xσ = ξ 

+ A

( t ) AT( t )(x — ξ)  

[ ξ1(t)]        [     0               -α + γsα        ßcα + γsαcß] [ x1 - ξ1] [ ξ2(t) ]   +   [    α-γsαcß 0           ßcα + γsαcß]   [ x2 - ξ2 ] [ ξ3(t)]        [   - ß - γsαcß    - ßsα + γsαcß             0 ] [ x3 - ξ3 ] 

 

  

Our 3—D evaluation process, which is also based on the general process described 

in chapter 3, is similar to the 2—D case, but is much more complicated. We describe 

it briefly as follows: 

• Step 1.  Input the polyhedral object. M, a smooth 3—D sweep which is repre-

sented by sweep equation or sweep differential equation in the form of (1) and 

(2), and the time interval [0, 1]. 

• Step 2.  For each planar boundary surface, compute the surface normals (nor-

malized and inward directed). We note that all these normals are constant on 

the planar surface to which they belong. The normals of edges and vertices will 

be specified as 

— edge: we assign two normal vectors of two surfaces which intersect at this 

edge. 

— vertex: we assign all the normal vectors of the surfaces which intersect at 

this vertex. 
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From Steps 1 and 2 above, we obtain the normal (or normals) of every boundary 

point at time 0. It is very easy to compute and check the Tangency Condition T(x, t) 

of any point x E am at any given time t E [0, 1] by using formula (1). 

By Theorem 3.2, the boundary of the swept volume satisfies the following formula: 

∂Sσ(M ) C= {U1t=0 ∂0M(t)}U∂+M(0)U∂-M(1)  

Here, at each given time instant,∂0M(t)  is the set of instantaneous grazing points and 

∂+M(0) and ∂-M(1) , which are the instantaneous ingress portion and instantaneous 

egress portion of the boundary at t = 0 and t = 1, respectively, are both sets of 

planar patches. 

It is quite straightforward to classify any point x ϵ  ∂M  as an ingress point, 

grazing point, or egress point, according to the definitions we stated in chapter 3. 

• Step 3.  Subdivide the time interval [0, 1] into a finite number of segments 

which are represented by a sequence of time instants. 

• Step 4.  At time t = 0, compute the instantaneous ingress portion of ∂M (0) 

and discretize it into a finite number of triangular planar patches which are 

each determined by their three vertices. 

For each time instant, do Steps 5, 6 and 7 below. We note that in the ∂M

(0) 

 case, our 

global trimming algorithm is so fast and simple that the local trimming procedure 

does not seem to be necessary. But, in the 3-1) case, since the global trimming will 

be very complicated and require a. great deal of computation, the local trimming 

procedure which is relatively simple and easy, will become very critical in terms of 

the efficiency of the program. 

• Step 5. Compute the instantaneous grazing points of ∂M

(

t

)

. 

• Step 6.  Apply the Local Trimming Procedure proved in Section 2 to eliminate 

those instantaneous grazing points which are not valid boundary curves. 
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• Step 7.  At time t  = 1, compute the instantaneous egress portion of ∂M(1)  

and discretize it into a. finite number of triangular planar patches which are 

represented by their three vertices. 

• Step 8.  Collect all those points obtained in steps 4, 5  and 6  and organize them 

into groups of points belonging to surfaces. These are the candidate boundary 

surfaces. 

• Step 10. Global trimming: Due to the global nature of the general sweep, we 

need to eliminate those candidate points which belong to the interior of the 

swept volume So (M) = U1t=0 M(t). As in the 2-D case, this will include initial 

global trimming and secondary global trimming 

• Step 11.  Connect the remaining candidate points to form a. set of boundary 

triangular patches which comprise a polyhedral approximation of the boundary 

representation of the swept volume. 

• Step 12.  Use the output of the previous steps and various graphics techniques 

to produce realistic visualizations of the swept volume which can be viewed 

from different perspectives. 



CHAPTER 6 

CONCLUSIONS  

In this thesis, we studied the problem of obtaining the boundary representation of 

a swept volume generated by a rigid object undergoing a smooth, but otherwise 

general sweep. By using the sweep differential equation to characterize the sweep, 

we developed a very general evaluation procedure which is comprised of the following 

basic steps: First, classify the boundary points of the sweeping object based on 

their relationship with the sweep flow field, and thus produce a set of candidate 

boundary patches. Then, apply a local trimming operation to remove some of the 

candidate boundary points which are not members of the boundary of the swept 

volume. Finally, due to the global nature of the general sweep, a. global trimming 

procedure is needed to remove the remaining candidate boundary patches (or portions 

of candidate boundary patches) which belong to the interior of the swept volume. The 

final boundary representation of the swept volume is then formed by the boundary 

patches. We have devised a. general global trimming criterion which theoretically 

identifies valid boundary patches in an efficient. manner. Our general global trimming 

criterion includes both initial global trimming and secondary trimming; secondary 

global trimming is used to deal with singular cases that seem to have escaped the 

attention of some research. 

Based on the general evaluation procedure, 2-D prototype software winch in-

corporates a very efficient 2-D global trimming algorithm has been developed. The 

program produces good approximations to the boundary of the swept volume of any 

planar polygonal object undergoing a. general smooth sweep. Although it is clear that 

the precision of the approximation can be controlled by adjusting the partition of the 

time interval and also by selecting the method to connect the boundary points, we 

68 



69 

have not vet made a thorough error analysis. Compared with other programs, our 

method seems to be more efficient and general; for example, it readily handles cases 

in which the boundary of the swept volume has more than one component. We also 

tested the program on shapes for which the object boundary is not a polygon, e. g. 

, a circle, by using polygonal approximation. However, the relationship between the 

precision of polygonal object approximation and the precision of the resulting swept 

volume approximation, and how to control the approximation of the object for more 

general shapes, etc., need further study. 

The application of the general process to the 3-D case, which is very similiar to 

the 2-D case but certainly will be much more complicated, is also briefly described. 

To actually develop the 3-D prototype software, many interesting problems await 

further research: e. g., rapidly computing the grazing curves, devising an efficient 3-

D global trimming algorithm, and combining the sweep differential equation theory 

with computer graphics techniques in order to obtain realistic renderings of swept 

volume which can be employed to advantage in manufacturing engineering practice. 



APPENDIX A: PROOF OF THE ALGORITHM 4.1  

A proof of a part of this result is outlined in the exercises in [9]. We first recall the 

definition of the mod 2 degree of a map. Let X  and Y  be closed, n-dimensional 

manifolds and 

f : X → Y 

a continous mapping. It is well-known(see [21]) that for any x E X, the nth homology 

group with coefficients in Z2 , the field of integers modulo 2, satisfies 

Hn( X, X \ x; Z 2 ) ≈ Z2  

The map f  induces a map of homology groups. 

f* 	: Hn(X, X \x; Z 2) → Hn(Y,Y\ f (x); Z2 ) 

that yields a map 

f* 	: Z2 → Z2  

by making the usual identifications. The mod degree of f is defined to be 

deg

2

f = 

f

* (1) 

 

Let us now assume that X  is piecewise smooth, Y  is smooth and f : X 	Y  is 

continuous and piecewise smooth. A point y ϵ  Y is a regular value of f if 

f-1( y) = {x ϵ X : f ( x) = y} 

consists only of points at which f is smooth and the derivative D f(x) is invertible. 

By compactness, it follows that f -1(y) is finite if y is a regular value(see [9] and [13)) 

and 

	deg

2

f = #

f -1 ( y ) 
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In addition, Sard's Theorem implies that the set of regular values is dense in Y , so 

any y can be perturbed to a regular value. 

We now further restrict X  by assuming that it is a polyhedron that is imbedded 

in Rn+1 as a closed, n-dimensional submanifold that is homeomorphic to the n- 

sphere Sn. By the Jordan-Brouwer Separation Theorem(see [9], [13] and [21]), X  

has an inside and outside. If x0 ϵ Rn+1\ X, there is a simple method based on degree 

theory for deciding if x0  is inside or outside X . Let Sϵ(

x

0 ) be a small n-sphere of 

radius e > 0 that is centered at xo  and does not intersect X. We can map X into 

S,(x0 ) by radial projection along rays emanating from 

x

o

. For t ϵ  X, this map is 

easily seen to be defined by 

 
f (x)  = 

x0 

 + 
ϵ(

x 

 — 

x0

) / ║x — 

x

0║ 
 

 

 The radial projection 

f 

	

: X → 	Sϵ

(

x

0 ) 

 

is clearly continuous and piecewise smooth. In fact, it only fails to be smooth at faces 

of dimension less than n of the polyhedron X. Standard degree theoretical results 

imply that 

x0 

 is inside X if deg 2 f 	0. 

It is easy to characterize the regular values of the radial projection .1.  as follows: 

y  ϵ  Sϵ( x0) is regular if the ray from xo  through y does not intersect any edges of 

the polyhedron X. At this point, a proof of Algorithm 1.1 is easily within reach, and 

it should be noted that there is also a rather obvious generalization to polyhedral 

objects in any Rn. 

Let 

x0 

 ϵ R2\∂M(t)  and X  be the 1-dimensional polygonal closed curve ∂M(t).  

Draw a ray from 

x

0  in any direction. If this ray does not intersect a vertex of X , the 

corresponding point y  ϵ  

Sϵ

(

x

0 ) is a regular value of the radial projection 

f 

: ∂M(t) → 

S ϵ

(

x

0 ) 
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If the ray has an odd number of intersections with ∂M ( t ) , then deg2

f 

≠ 0 and xo  

is inside of ∂M

( t ) 

 according to the criterion established above. On the other hand, 

when the number of intersections is even, 

deg2

f = 0, and x0  must lie outside of 

a 

∂M

( t )

. The special case 1.1, 1.2, 2.1 and 2.2 correspond to situations where y is 

not a regular value. A small perturbation of y , however, produces an arbitarily close 

regular value since the regular values are dense. Observe that a small rotation of the 

ray in case 1.1 yields an intersection with one less edge and this adds one to the count 

modulo 2. For case 1.2, a small perturbation produces an intersection with either the 

same number of edges or two fewer edges, and this adds zero to the count modulo 2. 

Cases 2.1 and 2.2 clearly yield to the same perturbation analysis, and thus the proof 

is complete. 
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