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ABSTRACT

PROPERTIES AND DETERMINATION OF OPTIMAL
DECENTRALIZED FEEDBACK STRUCTURE

by

Kangsong Han

In this thesis, the decentralized feedback structure for large scale, linear time
mvariant systems is studied. The internal differences rand the relationship between
decentralized feedback structure and centralized feedback structure are discussed.
The conventional diagonal feedback structure. corresponding to the classical single
loop design strategy, is first analyzed. This is followed by an arbitrary decentralized
information flow constraint which is dependent upon the actual plant characteris-
tics. Although signal flow graphs have limited use in describing decentralized control
svstems. the concept of a control cycle unit based on signal flow is introduced as
a supplementary tool to characterize some fixed modes and decentralized feedback
structures. For the decentralized feedback structure, the Jordan normal form method
and essential control tuple space method are presented. The later method can be
readilv applied in a computer-aided design environment.

From the theory a set of relationships of eigenvalues and eigenvectors between the
plant system and the synthesis system are deduced. Based upon such eigenstructures,
conditions have been found to determine the optimal decentralized feedback structure,
that is, one with the least number of non-zero gain elements. The notion of a feedback
gain lattice is introduced for both the diagonal and Jordan form representation of the
plant state matrices. This lattice structure is then utilized algorithmically to generate
the optimal decentralized feedback structure. These algorithms can be used to reduce

hardware implementation and system complexity for the control of large scale systems.



PROPERTIES AND DETERMINATION OF OPTIMAL
DECENTRALIZED FEEDBACK STRUCTURE

by
Kangsong Han

A Thesis
Submitted to the Faculty of
New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of
Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering
May 1993



APPROVAL PAGE

Properties and Determination of Optimal Decentralized Feedback

Structure

Kangsong Han

Dr.Timothy' N. Chdng, Thesis Advisor : (date)
Assistant Professor of Electrical and Computer Engineering, NJIT

/ DrBernard Friedland, Committee Member (date)

],/ Distinguished Professor of Electrical and Computer Engineering, NJIT

Dr.Yunqging Shi,Committee Member (date)”
Assistant Professor of Electrical and Computer Engineering, NJIT



BIOGRAPHICAL SKETCH

Author:Kangsong Han
Degree: Master of Science in Electrical and Computer Engineering

Date: May, 1993

Undergraduate and Graduate Education:

e Master of Science in Electrical and Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 1993

e Master of Science in Automatic Control Engineering,
East China University of Chemical Technology, Shanghai, P.R.China, 1988

e Bachelor of Science in Automatic Control Engineering,
East China University of Chemical Technology, Shanghai, P.R.China, 1982

Major: Electrical Engineering

v



ACKNOWLEDGMENT

I wish to express my sincere thanks to Dr. Timothy N. Chang for his guidance
and care throughout my master’s program and financial support.

I also wish to gratefully acknowledge the assistance and work of Dr. Bernard
Friedland and Dr. Yunging Shi on my thesis committee, and Dr. Denis Blackmore
for guidance with mathematics.

I also would like to thank my wife, Jianying Tan, for her support and understand-
ing and myv friends for assistance in whatever way they could, during the entire work

of myv thesis.



TABLE OF CONTENTS

Chapter Page
L INT RO DU CTION o 1
2 DECENTRALIZED FEEDBACK STRUCTURE ... ... oo 6
2.1 Decentralized or Centralized Information Flow Constraint ............... 6

2.2 Fixed Mode Feature and Classification ........... ... ... .. ... ..., 9

2.3 Relationship between Signal Flow Graph and Feedback Structure ....... 12

2.4 Decentralized Feedback Structure Analysis ...... ... ... ... ... ... .. 16

3 DECENTRALIZED FEEDBACK STRUCTURE SEARCH ................... 21
3.1 Jordan Normal Form Method ... . .. ... o 21

3.2 The Signal Flow Graph Method ....... ... . ... ... ... ... ... ... ... 27
3.2.1 Control System Tree Unit ..... e 31

3.2.2 Control Tuple Space Method ... ... ... ... ... . .. ... ... 36

4 THEORETICAL DEVELOPMENT ON FEEDBACK STRUCTURE ......... 44
4.1 General Theory for Eigenvalue and Eigenvector ................ e 44

1.2 Eigenvector and Eigenvalue Analysis for Diagonal Matrix ............ ..ol

1.3 Eigenvector and Eigenvalue Analysis for Jordan form ...... ... .. ... 60

1.4 Right and Left Eigenvector Analysis for DFM ... ... ... . 74

5 CONCLUSION S L 79
REF R ENCES L 81

Vi



LIST OF FIGURES

Figure Page
1 Relationship between Invariant Zeros and Fixed Modes ...... ... ... .. .. .. 11

2 A Single-input and Single-output System Description in Signal Flow Graph ...13

3 A Signal Flow Graph of A Synthesis System ........ . ... ... .. ... . ..., 15
4 Invariant Fixed Mode Description .......... .. i 16
5 Feedback Structure Description in Signal Flow Graph ............ ... ... 19
6 Signal Flow Type I ... .o o o L 29
7T Signal Flow Type 11 o 30
S Elementary Unit Trees ... i 32
9 Search Steps in Single Control Cycles ....... ... ... ... e 33
10 Essential Search Trees ... ... . i 35
1T Elementary Unit Trees for An Example ... ... o oo . 37
12 Essential Control Search Tree for An Example ... ... ... . ... ... ..., 38
13 Single Flow Graph for An Example ... .. o 70

Vil



m

mnooN

R"? X 113
K

LIST OF SYMBOLS

for all

there exists

implies

sufficient condition
necessary condition
equal by definition
empty set

the set of whose elements are z,
elements of set or vector
belonging to

contained 1n

contained 1n or equal to
exclude 0

ntersection

lattice

complex number

real number

n X m matrix
decentralized feedback structure
control tuple space

end of proof

spectrum

counting function

combination operator

vill



CHAPTER 1
INTRODUCTION

In the control of large scale industrial process, implementing and maintaining the
feedback links constitute a major hardware cost. ‘For example, consider a linear
svstem with m inputs and r outputs. In conventional centralized feedback control,
the feedback matrix has rm non-zero elements (interconnection). If » = 100, m = 100,
then r x m = 10,000. This may be an unrealistically large number from both design
and hardware point of view. Therefore, a decentralized féedback structure with the
fewest non-zero elements should be used, provided the resultant synthesis system
remaining stablizable. The notion of decentralized fixed mode [4],{6] has long been
used as the primary criterion in accessing the feasibility of a certain decentralized
feedback structure.

A decentralized feedback structure is said to be admissible if the corresponding
svnthesis svstem has no decentralized fixed modes. In this thesis, we focus on the first
step of the decentralized control system design: how to obtain an admissible decen-
tralized feedback structure with a least number of non-zero interconnection elements,
such a least number of structure 1s said to be optimal. In this case, the stabilization
technique described in [4] may be used to control the plant.

It should be noted again that the word “optimal” in a decentralized feedback struc-
ture refers to the mimimizing if feedback interconnections rather than performance of
the closed loop systems. The selection of a decentralized feedback structure that
balances structural and performance optimizing is a topic for future research. Here
we introduce a decentralized feedback structure used to compensate the plant modes
and to explicitly distinguish the decentralized from the usual centralized feedback. It

can be thought as a part of feedback structure of whole control system because the
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other part will be designed to stabilize control system. Comparing with the central-
ized feedback structure (matrix), the decentralized feedback structure (matrix) has
several internal properties: (1) there exist much more zero elements; (2) each zero
element is determined before controller design; (3) each non-zero element value can be
changed in larger range; (4) the selection of each element is limited by decentralized
information flow constraint [4], and (5) each feedback structure is dependent on the
actual plant models.

Before discussing the decentralized feedback structure, let us review the relevant
literatures. In the decentralized and centralized control system field, the notion of
fixed mode was introduced and researched by Davison [4],[5],(6],[17]. A mode is said
to be a decentralized fixed mode (DFM) if it is an eigenvalue of the system matrix
which can not be altered by some linear feedback components. This is a general-
ization of the uncontrollable or unobservable mode of centralized control problem.
Traditional treatment of decentralized control structure is to pre-impose a certain
decentralized information flow constraint, for example, one corresponding to a block
diagonal feedback structure. Analysis is then applied to this decentralized structure
to determine if the resultant system possesses any decentralized fixed modes. Such
approach is useful in standardizing the analysis of decentralized fixed modes but may
not be as convenient in dealing with the synthesis aspects of the system. Therefore,
in this thesis, all decentralized structure are considered. It should be noted that any
general decentralized information flow constraint (DIFC) may be converted into the
traditional framework by means of non-singular input-output transformation. Find-
ing the fixed modes from the aspect of transmission zero of a plant was addressed
by Davison and Chang [4]. The advantage of this method not only the developed
algorithms. but also introduced the certain square subsystems which can effect on

fixed modes. and easily be applied in computer. Vaz and Davison [16] presented a



method to find approximate decentralized fixed modes.

In the theoretical control area, many new mathematical tools were introduced to
design control svstem. For example, the singular value decomposition and principal
component. analysis were given by Klema [11] and Moore [13]. They made use of
singular value analysis and studied its application for controllability, observability,
and minimal realization . The model order reduction of a plant can be completed by
singular value analysis and then the feedback matrix dimension can be further reduced
1o the synthesis system control. In fact, the objective of model reduction is the same as
that of decentralized feedback structure design, i.e. in order to significantly decrease
the complexity of the controllers. Brockett [2] developed the linear central control
theorem based on the transition matrix and the Gramian formula in time domain.
Although many theorems were developed, but due to the limitation of transition
matrix in time field. these could not be extended in application of practical plants.
These theorems are limited in control system theory and analysis. Basile [1] developed
the linear control theory by the tools of geometric theory and linear algebra,. Based
on the concept of an invariant space, many useful concepts, theorems, and algorithms
were presented. Some of the results can be used to decentralized control systems and
feedback structures to analyze qualitatively.

This thesis is based on decentralized control theory, linear time-invariant (LTI)
svstem theory, linear algebra, geometric theory, and signal flow graph. The objective
of thesis is to develop theories and algorithms for searching for an optimal decentral-
ized feedback structure. Especially, I hope that a few of new idea in this thesis can
be considered and developed in future. Because the decentralized feedback structure
can be determined based on many different criteria, the objectives of this work are:
1) retain only those gain elements in the feedback matrix that can be used to shift all

modes and 2) use the minimum number of non-zero elements in the feedback matrix
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to shift all modes. Since the Gramian formula is inconvenient in analyzing decentral-
1zed structure, two additional tools, signal flow graph and geometric approach will be
introduced. Because the decentralized feedback matrix is determined before a system
control design on a plant model,the value of each gain element in the decentralized
feedback matrix often may be independent or partial dependent on the plant model.
Generally speaking. non-unique solution will often occur. For a synthesis system, its
structure is not changed, but the some element values in the synthesis model may be
varied 1n a certain interval.

The organization of this thesis is as follows: Chapter 2 determines the problem and
outline the relevant existing results. From a decentralized control aspect, the notion
of fixed mode is defined and classified. A few well-known theorems are cited. The
main result on fixed mode classification is the relationship between fixed modes and
transmission zeros. Chapter 3 deals with the general feedback structure description in
terms of matrices and signal flow graphs and determination of the minimal number of
non-zero elements in the feedback structure necessary for shifting all modes in a plant.
Finallv. Chapter 4 deals with the theoretical development in decentralized feedback
structure. The use of eigenstructure analysis provides a useful way in characterizing
decentralized fixed mode and in determining the admissible and optimal feedback
structure.

It should be noted that only the selection of admissible decentralized feedback
structure is considered in this thesis. The stabilizing control system for the synthesis
syvstem may be developed 1n future.

The linear time-invariant system description has many forms. The strictly proper

state-space description is given by

{.’l) = Az + Bu (1.1)

y = Cx
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is referred to as a (C, A, B) triple, while general proper dynamic system is given by

t = Az + Bu (1.2)
y = Ca+ Du

is referred to as a (C, A, B, D) quadruple. For the sake of simplicity, most of the
analyses in this thesis will be referred to triple system, the method which is used to

extend the triple system to the quadruple system awaits future research effect.



CHAPTER 2
DECENTRALIZED FEEDBACK STRUCTURE

2.1 Decentralized or Centralized Information Flow

Constraint

Decentralized control approach is an extension to centralized control approach. Many
papers [4] [5] [6] deal with the existence of decentralized fixed modes (DFM) in a large
scale system under certain decentralized information flow constraint. Assume that

the following output feedback controller
u= Ky for K € Ka (2.1)

is applied to (1.1) or (1.2), where 2 € R, v € R™', y € R™*! A € R"™",
BeR™" (e R De R The standard decentralized feedback structure is

block diagonal defined as follow:
Definition 2.1 (Decentralized Information Flow Constraint)[4]

The output feedback is said to have a decentralized information flow constraint

K, imposed on linear time-invariant system (1.1) or (1.2) if K € K where
Ka = {N e R™"""| K = block diag (K;, Ky, , K, ), K; € R™*7 1 = [1,v,] }

(

The linear time-invariant system (1.2) can be rewritten to explicitly show the

[\

2)

dependency on the v, control agents, i.e.
r = Az+ Y, B
v
Yy, = Cj-'z + 2 is D]','U,‘

6



where u; € R™, y; € R™.

Frequently, the control agents v, and K structure constraint are determined in
advance and independent on any element distribution in the A, B, C, D matrices of
a practical plant model. However, some plant modes may not be shifted by any one
of ;. 7 = [1,v,]. In this case, the m; and r; in each K; need to be increased in order
to shift all modes. The increase of m; and r; forces K to approach R™*", central

control structure.
Definition 2.2 (Decentralized Fixed Modes)[4]

Assume that v = Ny, ¥ € KA controller is applied to (1.1) or (1.2). There exists
a decentralized fixed mode (DFM) A, € C with respect to K 1f
A€ ) olA+BRC) o A€ [) o(A+BK(I-DK)"'C) (2.3)
vieKa vRheKa
where o denotes the set of eigenvalues of (.).

From Definition 2.2, ). is exactly called fixed mode of output feedback control.
Certainly. there is the fixed mode for state feedback control. For the sake of simplicity,
the fixed modes mentioned in this thesis correspond to those of output feedback.

It should be further noted that an open loop system is often called plant (system)
and a closed loop system is often called synthesis system. For the sake of explicitness,
the A, A. are denoted as the open loop eigenvalue and the closed loop eigenvalue
respectively. If I’ = 0 in (2.3), the fixed mode A, of a synthesis system is equal to the
eigenvalue A, of a plant system. Definition 2.2 implies that any fixed mode is brought

by anv i € KA in which the element does not shift the eigenvalue of a plant system.

Definition 2.3 (Centralized Fixed Modes)[4]
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Assume that v = Ky, K € R™*" controller is applied to (1.1) or (1.2). There
exist a centralized fixed mode (CFM) A, € C if
A€ () (A4 BKC) or A€ (] o(A+BK(I- DK)™'C)
VR ER™x VR eRmxT
Comparing with Definition 2.2, K in Definition 2.3 1s not constrained. As weknow,
if a plant system is a minimal realization then the set of centralized fixed modes in
its synthesis system is empty. Therefore, the centralized fixed modes correspond to

the uncontrollable eigenvalues and/or the unobservable eigenvalue in a plant system.

Theorem 2.1 Given a completely controllable and observable quadruple (C, A, B, D)
system. Assume a centralized output feedback of the form v = Ky, K € R™*
is applied {o it. then there does not exist any fixed mode in the synthesis system
(C.A+BN(I—-DK)'C, B,D),ie.

N oA+ BE( - DK)C)=¢
VR eRmxr

Proof. Because the plant system is controllable and observable, 1t implies that
ImB # o. ker(’ = ¢ and almost any eigenvalues of synthesis system can be placed
with a suitable I [1]. Therefore any eigenvalues can be shifted by A € R™*". O
Theorem 2.1 implies that if K € K4 is constrained, then the situation without any
fixed mode can not be guaranteed even for a controllable and observable plant system.
In this thesis, we mainly emphasize on how to find the special decentralized feedback
structure, denoted by K so that no fixed modes occur for the synthesis system when
the plant is controllable and observable. Because the number of control agents v, is
limited for a decentralized control system, the choice I € R™*" is not suitable and
mav not be admitted to be used for a decentralized control system. On the other

hand. if using the fixed-limited control agents v, like (2.2) we may squander many
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agents which do not shift on some fixed modes. Therefore, a realistic decentralized
information flow constraint (RDIFC) which depends on the realistic plant model is
very important. A RDIFC not only should satisfy with the requirement that the v,
control agents be limited in K € K (DIFC), but also should shift all modes (like
L' € R™*") for a controllable and observable system. The RDIFC takes advantage

of both virtues of K5 (DIFC) and R™*".
Definition 2.4 (Realistic Decentralized Information Flow Constraint (RDIFC))

The output feedback(2.1) is said to have a realistic decentralized information flow

constraint K imposed on the linear time-invariant system (1.1) or (1.2) if K € K and
K 2 (N =[k;]ER™ | k;; =0, VY(i,7)¢S,i={1,m],j=[1,7]} (2.4)

where S is a set which depends on a realistic plant system and a algorithm, which
will be detailed in later chapters.

Comparing with (2.2), if S is replaced by K = block diag (K, {5, -+, K,,) then
(2.4) is equal to (2.2). Hence the Definition 2.4 contains Definition 2.1 if S is inde-
pendent on the actual plant system and the algorithm. For the decentralized fixed

mode. The Definition 2.2 is still valid if the K instead of KA. .

2.2 Fixed Model Feature and Classification

A centralized fixed mode must also be a decentralized fixed mode, due to the de-
centralized feedbacks are contained in the centralized feedback. Although there is
meaning for the invariant zero in both plant system and synthesis system, for the
sake of simplicity, the invariant zero[7],[15] mentioned in this thesis often indicates

that of plant system. According to Theorem 2.1, this result inversely implies that a

decoupling zero[7],[15] may introduce some fixed modes. Because the decoupling zero
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will produce an non-minimal realization for a plant system, this imphes that there

exists the internal relationship between invariant zero and fixed mode.
Definition 2.5 (Transmission Zero)|7][15]
A complex number A is a transmission zero of a quadruple (C, A, B, D) if

< n + min{r,m} (

™
o
N’

oy | A-A B
rank C D

A complex number A is a input decoupling zero if rank [ A—-Al B } < n. A complex

— Al

: . : A , -
number A is a output decoupling zero if rank c < n. The transmission zeros

and decoupling zeros are contained in the set of invariant zero.

Lemma 2.1 [4] Consider a quadruple (C, A, B, D) system. the synthesis system
eigenvalue A, € o(A) is a decentralized fixed mode with respect to K if and only if

A s a transmission zero of all the following square subsystem:

1. {C‘_“.‘A.b,‘]} V({l:j]) € S.

I 0 d;; . o

9 g1 ; . N Jite )

= {{ (..]2 } "‘%‘ { b’l b';: } 3 [ djgi, 0 }} v(“?]l)\(??n)?) € S
¢y 0 dyy o dya
Ciy CZ‘,‘] O d'gé

3 " A { bi] bm bz } 3 J-Q . .
¢, digiy - dia, 0

v(il:jl)a(i?wj?)v- . 's(isajs) € S'

Corollary 2.1 Consider a quadruple (C, A, B, D) system. A, € o(A) is a centralized
fixed mode with respect to R”™*" if and only if A, is a transmission zero of all the

square subsystems of (C, A, B, D).
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invariant zeros fixed modes

transmission
fixed modes

input decouple

input fixed
Zeros

modes

output fixed
modes

output decoupla

J - J

Figure 2.1: Relationship between Invariant Zeros and Fixed Modes

Proof.  The proof is completed by equating K to R™*". The details are omitted.
]

The fixed modes mav be caused by invariant zeros. For the sake of clarity, fixed
modes can be classified under the invariant zero classification [16]: invariant fixed
modes and transmission fixed modes. This is because the fixed mode of synthesis
svstemn are caused by invariant zeros. The relationship can be described like Figure
2.1, In the case of » = m. all centralized fixed modes (CFM) are contained in the
transmission zero (TZ) set, i.e. CFM C TZ. In the case of r # m, the centralized
fived modes are not contained in the transmission zero set. i.e. CFM ¢ TZ[5]. The
fixed modes which are caused by input decoupling zeros and output decoupling zeros
are called input fixed mode and output fixed mode respectively. The fixed modes
which are caused by transmission zeros are called transmission fixed mode. In fact,
due to the cancellation between a transmission zero and a pole, the transmission zero

mav produce a fixed mode. The invariant fixed modes contain both input fixed modes

and output fixed modes.
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Property 2.1 Consider a quadruple (C, A, B. D) system. Let u = Ny, K € K then
the output fixed modes with K, remain invariant i.e. RDIFC, can not be shifted by
N e R™. They can be shifted only if u = Kz by & € R™*". According to
duality, if v = Ky, K € K then any input fixed modes with K can not be shifted by

A€ R"™™. They can be shifted only if z = K'u by K € R**"

Proof. Because the output fixed modes are generated by a output decoupling
zero. the output decoupling zero implies that there exist a disconnection between a
state and an output. Therefore no output feedback can be imposed on these output
fixed modes except for a state feedback. In duality, because the input fixed modes
are generated by input decoupling zero, the input decoupling zeros implies that there
exist a disconnection between an input and a deferential state. Therefore no output
feedback can be imposed on these input fixed modes except for an additional input.

0

2.3 Relationship between Signal Flow Graph and Feedback

Structure

Definition 2.6 If a feedback matrix & € R™*" has no zero elements, then the
matrix is called full matrix or centralized feedback structure. Otherwise it is called a

non-full matrix or decentralized feedback structure.

Definition 2.7 Let p be a counting function imposed on a K matrix or its structure
described by

p(K'} = the number of non — zero elements in &t

0
Example 2.1 Assume N = 0 |. The K 1s called non-full or decentralized
X

@ X X

feedback structure and p(i') = 3.



13

Figure 2.2: The Single-Input and Single Output System Description in Signal Flow
Graph

Let the minimal and the maximal number of non-zero elements in K be given
by piK™) and p(K) if N € [K", K], where K* C K. Generally, the minimization of
the number of non-zero feedback elements is appealing in the control of large scale
svstems. Hardware complexity can be significantly reduced if a suitable feedback
structure 1s chosen so that the resultant system has no fixed modes.

For a single-input/single-output closed loop control system. the system consists of
four signal nodes (u.y. 2, 2) and six oriented branches containing six gains (e, b, ¢, d, %, k},
which can be described as a signal flow graph in Figure 2.2

Decomposing a complex svstem into interconnected unit systems, for example
(€. 4. 8;) for a uiple (C. AL B), will facilitate the analvsis of the system. The de-
composing method is useful because many properties of a whole system are often
determined by analyzing the corresponding properties of the subsystems. A complex
svstem consisting of numerous interconnected parts can be presented by drawing a
signal-flow graph. Its application range is restricted to show the internal structure.
The major advantage of the signal-flow graph is that the input and output decou-
pling zero can be found directly. From them, the invariant fixed mode can be derived

directy. The disadvantage is that signal-flow graphs does not show the transmission
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zeros of large scale systems and the cancellation transmission fixed mode directly, but
1t can show some transmission fixed modes and be used in computer for large scale
svstem control. Please note that a fixed mode exists for VI € K or R™*". Therefore
the transmission fixed modes may be generated by a signal flow stuck, or a stuck
around, or no signal flow pass through these modes which will be mentioned more
detail in Chapter 3.

A signal-flow graph is composed of the brunches and the nodes. A brunch has
oriented characteristics by an arrow. The nodes are classified as independent nodes
and dependent nodes. Clearly, every dependent node represents a linear equation,
so that the graph 1s equivalent to as many linear equations with many unknown
variables, i.e. dependent nodes. When the feedback structure is synthesized for
a plant syvstem. the signal flow graph has an additional branch for every non-zero
element in feedback matrix. The zero elements do not map any one corresponding
branch. Some nodes may change from independent node into dependent node due to

the additional imterconnection by non-zero feedback gains.

Definition 2.8 An oriented cyclic loop with respect to u node is called an active
loop. The corresponding node on an active loop is called a life node. Any node in a

non-active loop is called fixed or dead node.

Property 2.2 Given a triple (A, B,C) and assume the number of distinct eigen-
values v (£ n) and A matrix can be transformed into a Jordan form with v (< n)
distinct and elementary Jordan blocks, i.e. every algebraic multiplicity is equal to the

h

corresponding geometric multiplicity. In this condition, a i"* mode can be shifted if

and only 1f the corresponding z; is life node.

Proof. Because any an #'" mode exists in &; — z;, the signal flow in a active loop

for shifting the " mode must enter z; node. Because the fixed mode is based on any



Figure 2.3: The Signal Flow Graph of A Synthesis System

I and v distinct eigenvalues condition. therefore the active loop can not generate a
constant transmission zero for any A if the cancellation{16] between zero and pole

and the decoupling zero in transfer function does not occur. O

Example 2.2 Consider a plant

200 0 1
T = 0 1 1 a+ 0 1 ju
L0 0 1 1 0
. (10 0]
Y= 1o o]
) } 0 /\“]2 . . .
and a feedback structure K = 3 E In Figure 2.3, loops u; — #3(x3) —
21

iolay) — yo — uy and up — y(2y) — y3 — uy are active loop. All nodes are life -

nodes. There are no decentralized modes in this synthesis system.

Example 2.3 Given a triple (C,A,B)as A=1,, B = { i } .C= [ 11 ] . We can
find that #3(x3). 2o(2;) are live nodes, but the eigenvalue of this plant A, = 1 is non-
distinct in two elementary Jordan blocks. Therefore the eigenvalue of the synthesis

svstem A, mav a fixed mode. We can verify this result by obtaining the transfer
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Figure 2.4: Invariant Fixed Mode Description

functions of the plant system (C, A, B) and the synthesis system (C, A + BKC, B),

denoted by H,(s) and H.(s) respectively. are given

—_ _ 1 _ As=1}
HO('S) To2(s=1) T 2({s-1)?

- 2 _ 2{s-1)
Hels) = 5555 = 6o toi-2r
The one of two eigenvalues A, =X, = 1 is a fixed mode caused by the cancellation

between a transnussion zero and a pole in the both system.

Corollary 2.2 An /" mode must be fixed mode if and only if the corresponding z;

15 a dead node for a mimimal realization system.

0
I“21 O

mode. because the corresponding 2,, 3 are not in any oriented cycle loop.

Example 2.4 In Figure 2.3, if K = { } i.e. cross out kyo, then A, = 1 is fixed

Example 2.5 In Figure 2.4, z;, &, are dead nodes. So, A, = 1 is either input

invariant mode or output invariant fixed mode.

2.4 Decentralized Feedback Structure Analysis

The invariant fixed modes are generated by decoupling zeros. This type of fixed

modes can not be shifted directly by output feedback structure. In this thesis, we
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mainly consider transmission fixed modes which are not caused by cancellation zero

with certain X .

General feedback structure can be described by a matrix and a signal flow graph.

kl] kl?

For Example 2.2, we can take K = { I J too. In Example 2.5, if add only k9,
21

Y
the “fixed” mode A. = 1 can now be shifted by either k;, or kys because the loops is

active, 1.e.
for kyg o wy — 23(x3) = B2(22) = y2 —
for kypp 1 up — Za(22) = Y2 — us

In general. several different feedback elements may shift the same mode. It is of

interest to come up with an “minimal” feedback structure in which the number of

non-zero feedback elements p(K') is minimized.

Definition 2.9 A feedback structure, denoted by K, is called an admissible decen-

tralized feedback structure if the resultant synthesis has no DFMs.

Definition 2.10 A feedback structure, denoted by K=, is called minimal decentral-
ized feedback structure if it is an admissible feedback structure with the least number

of non-zero elements.

Example 2.6 In Figure 2.3 if add ky; and ky,, we can conclude that

k17 can shift
kyo  can shift
key can shift
kqo can shift

o ,2} based on kqy

(¢

P O>/ >
il Il
P S S Sy

[¢]

The admissible feedback structure is generally non-unique. This example give us
the follow admissible feedback structure denoted by K and minimal feedback struc-

ture denoted by K~ in matrix description:

__”;\‘11 0 ] § 0 ]\’12- ) ki ko ! 0 kl?
K= | 0 kzz_ “ [k'ﬂ 0 7 ka1 ka2 “ kg Koy

[y 0] o | 0 ko |
0 ]»‘22‘ koy 0
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The corresponding feedback structures described by the signal flow graphs are in
Figure 2.5

We can find that K* € K. As the plant complexity increase, the signal flow graph

description of the feedback structures becomes less intuitive. Now let us look at the

fixed mode from invariant zero for Example 2.2.

[2-X 0 0 01
0 1 — A 1 0 1
rank {AEA] g}zrank 0 0 1—-A 1 0} =5
1 0 0 00
0 1 0 00

This means that in this plant no invariant fixed mode exists for a suitable feedback

200 01
structure. If A, B changeinto A= |0 1 0}|,B=|0 0| then

0 01 10

[2-1 0 0 01

0O 1-Xx 0 00

rank { A —CM g } = rank 0 0 1-XA10]|<«<5 for A =1
l 1 0 0 00
0 1 0 00

o
I
-
)
)
o
[ R Y

rank { A=A B ] = rank 0 1—A 0 0 <3 for A =1

2 0 0
, 0 I—A 0
rank [ A Z,)\] } = rank 0 0 1—X | <3 for A =1
' 1 0 0
.0 1 0

we can find that A =1 is either input and output decoupling zeros. Therefore A = 1
1s also an invariant fixed mode. Generally, the invariant fixed mode is in no way to
be moved by the output feedback controller. If there exists a decoupling zero, the
svstem must exist on inherent fixed mode, because of non-minimal realization.
Based on the Gauss Elimination theory(14], the D term in (2.5) may alter the

svstem matrix rank, i.e. changing the possibility of the transmission zero emergence.
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Figure 2.5: Feedback Structure Description in Signal Flow Graph
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Therefore the full rank of D matrix may compensate the non-full rank of ¢ or B

matrices and decrease the possibility of the fixed mode emergence in the decentralized
control.

The minimal feedback structure is desirable for reduction of hardware complexity.

It 1s also appealing because it saves many feedback components without reducing the

function of mode shifting and generating any new fixed mode. In later Chapters, the

search procedure for obtaining the minimal and admissible feedback structures will

be addressed.



CHAPTER 3
DECENTRALIZED FEEDBACK STRUCTURE SEARCH

In Chapter 2, the realistic decentralized information flow constraint definition and
decentralized feedback structure are defined. In this Chapter, two methods to search
decentralized feedback structure are introduced: 1) feedback structure search based

on the Jordan normal form and; 2) the signal flow graph.

3.1 The Jordan Normal Form Method

Since the Jordan normal form provides good information about the structure of a
linear dynamic system, it can be easily to analyze the complete controllability and
observability with respect to this form(1].

The linear time-invariant system (1.1) can be transformed into

where J, € C™" B e C™™ (C ¢ C™*". J is Jordan form with v (< n) elementary
Jordan blocks. This means that 4 may have at most v distinct eigenvalues. The

notations are

= Tz
Jo= T7'AT = block diag (J(A\1), J(A2). - J(Ax),)
]i_?z T-'B
C= CT
where
A1
Ji(A;)
*]<)‘7) = and JI()\J) =
IROY 1
(A) N



are the j Jordan block and the :** elementary Jordan block respectively. Let
B,
. B, _ - -
B=1|" and C=[C Cp - (| (3.2)
B,

where Ji(A;) € C™Xmi By € Cw¥m C; € C™*™ ¢ = 1,2, ...v. Denote the last row of

every B; as

bf;z b for 7 = 13 23 -~y Uy Ei € Clxm

T

and the first column of every C; as

&,

& = C? fori=1,2....,0v, & € C™*!
<,

corresponding to every elementary Jordan block.

Many methods exist to determine the transform matrix 7' [14],[3], i.e. the right

generalized modal matrix.

Lemma 3.1 [1] Given a triple (C, A, B). A suitable transformation in the complex
field vields the equivalent system (C,J,, B)(3.1). The pair (A, B) is controllable if

and only if the every b; corresponding to the last row of every elementary Jordan

block is not zero. The pair (C, A) is observable if and only if every ¢ corresponding

to the first column of every elementary Jordan block is not zero.

The set § of Definition 2.4 and its RDIFC based on the Jordan normal form

method can now be defined as follows:

Definition 3.1 Theoutput feedback, u = Ky, is said to have a realistic decentralized
information flow constraint K imposed on the linear time-invariant system (1.1) if

N e K where

K 2 {K = [k;) € R™| ki =0,Y(6,) ¢ S, i = [Lom],j = [1,7] }
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The set
5= {(ilyjl)ﬁ(z.Zan)* SRR (B
contains palr tuples which are dependent on the actual plant mode and describes the

realistic internal connection information.
Theorem 3.1 (K, K" Existence {for minimal realization for a plant model)

Given a triple (C, A, B) system which is controllable and observable, there exists
at least one K such that plant (C, A, B) has no fixed mode’ with respect to X € K.
In particular, K can be reduced into the upper bound structure K¥ which contains

min{v.r X m) non-zero elements for an optimal structure K~.

Proof. Because (1.1), (1.2) can be transformed into v subsystems (Ci, Jo, B;)
(3.1).(3.2) corresponding to v elementary Jordan block which are equivalent to {1.1),
(1.2). every subsystem defined by one elementary Jordan block is controllable and
observable based on Lemma 3.1. Every subsystem with its feedback has no fixed
mode. Therefore, all subsystem feedbacks synthesize a K € K such that the syn-
thesis svstem has no fixed mode, because K depends on the actual model (C, A, B),
according to Theorem 2.1 and K C R™".

Every controllable and observable subsystem needs at least one feedback to shift
its mode distinctly. The number of direct feedback components which shift modes is
less than or equal to the any number of indirect feedback components which shift the
same modes. Therefore the sum of every subsystem feedback element in (Cy, A, B;)
is just v non-zero elements which belongs to direct feedback elements in the feedback
matrix. On the other hand, many subsystems use a common input node and/or a
common output node. Therefore the number of non-zero element in K* is min(v, rm).

]
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It should be noted that the relationship among the feedback structures is K* C

K*“C K C R™". Based on Theorem 3.1, an algorithm is derived to determine K.
Algorithm 3.1 ( Determine K and K* )
1. Transform a triple (C, A, B) system into its Jordan normal form (C,J,,B).
2. Find a pair (i, 7;) such that column in B and row in C respectively are

<]

X

o
o
ot

1

o=

and
Cil é {{ X X Ef: X X } ! E’,’l € 5,‘\0~‘ { = 1,2,,..,7‘}

A—=M B, ]
C 0 ]

\{.} is an operator of excluding{.}. For the 1'* elementary Jordan block, obtain

=n-+1forz=1,2,.. v, where

which s satisfied with rank [
1

S = (14,1) (3.3)
For v elementary Jordan blocks, we can get
S ={5,5....5} (3.4)
3. The decentralized feedback structure is given by
K={K=[k;]e R"|k; =0,Y(s,j) & 5}
where S is given by (3.3),(3.4).
4. The optimal decentralized feedback structure i1s given by
KY={K =[k;] e R™"| k; =0,9(z,7) ¢ S}

where §* = {57.55,...,S5.}. S* is given by the following algorithm



(a) 51‘ = m Sj] 74 ¢.
J1E[1 v)max G}

M Sj # -
72 €1 W\ j1.max GI?

(c) S; = ﬂ ‘S'js -'T/‘ .

J2€(1W\{j1,52} max G

(b) S

i

Vs
il
"st

. O Cr
Until 55, = ﬂ D
jut EE] «U}\{jl ,jg,_.,juu},mafo."'
where (' is an operator of combination.

Remark 3.1 The feedback structure relationship is K¥C K C R™*". Generally, the
KX is unique. but K" may not be unique. K* may not be the best feedback structure
for shifting a fixed mode because the elimination of the feedback signal flows mutually

may be such that the region of mode variability is small.
For an illustration of the algorithm, take the plant model in Example 2.2 again.

Example 3.1 Consider a plant

2 0 0
z = 0 1 1 a4+ u
1001 1
_[1too]
YT lo1 0]

The plant is already in Jordan normal form with two elementary Jordan blocks
(v = 2) and is controllable and observable. According to the previous algorithm, we

can find that

sfor) ac[23] ac[s] e[

<=1
I
O
(-
[F—
i
(&)
il
—t
(]
[—
~
Il
[y
[an T
| SO |
[
[N)
|
ey
— D
d
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1
For Ay =2, because 1, =2, I, =1, B, =| 1|, Cy, = [ 100 } , and
| 0
0 0 0 1
o JA-x B,Y o111
rank { c,, 0 }—ranl\ 000 -1 0 =4
10 0 0
then Sy = (2,1).
— O —
For A,y =1, v =1, because 2, = 1,2, =2, By, = | 0 |, Cy, = [ 010 } , and
1
{1 000
| A=X By | _ 10010}
rank [ Co, 0 ]—ranl\ [0 00 ] =4
0100
) o , o ‘ _ 0 ke
then S; = (1.2). Therefore S = {5, .5} = {(2,1).(1,2)} and K = L E
21

Because S; NS, = ¢.s0 57 = 51 # ¢ and 55 = S # ¢, but 55 = ¢. Hence
S ={57.55) =S,

The A in which all feedback elements can directly shift some modes is called di-
rect feedback structure. In fact, the K obtained from Jordan normal form method
is a direct feedback structure. Because the non-zero elements of K is derived from
each elementary Jordan block subsystem by direct feedback connection to shift cor-
responding modes, this method does not consider the indirect feedback connections

to shift corresponding and other modes. In previous example, S loses two indirect

feedback structure, i.e.

S={5.5}={{1,1),22} 20}, {{{1L.1),(2,2)}.(1,2}}

From this set. we can find that {(1,1),(2,2)} belongs to the pair set of (ix,4¢). This
means that the pair set existing appears in pair form. We can conclude that the triple

or quadruple or more may exist and that the &k number indices of the set can shift at
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least & modes. In the next section, we will see a graphic method which can find the

mdirect structures.

3.2 The Signal Flow Graph Method

A multivariable control system is composed of many single variable states. Although
multivariable state nodes may contain many single state nodes like Z, and z. but from
the u, y nodes aspect, we can simply consider that there are many subsystems. In an
open loop system the u is called an independent node. In a closed loop system all
nodes are called dependent nodes, but a u node can still be considered as independent
node. called start node, because it contains a signal flow path.

Because the signal flow graph tool may be difficult to analyze a large scale system,
the signal flow definition, classification, and decomposition must be required for a
large scale system analysis. Specifically, because a signal flow graph tool 1s easily
realized in computer system, the standard definition of signal flow is needed to operate

a complex signal flow graph.
Definition 3.2 { Control Cycle Unit)

The signal flow cvcle form which starts from u; node, goes through at least a state
node ., and ends to u; node in Figure 3.1 (a) is defined as a unit of the control cycle
with ;. Every control cycle has common features: 1) the start node and the end node
of a signal flow are the same input node; 2) a signal flow completely goes through z,
to x;. The types of control cycle can be classified as independent like Figure 3.1 (a)

and dependent. Dependent control cycle has:

1. y-dependent control cycle with z; in Figure 3.1 (b). It has other feature: a

signal flow goes through a y,, node (m # k) before it comes down z; node.
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3]

. z-dependent control cycle with z, in Figure 3.1 (¢),(d). It has other feature:
a signal flow goes through a 2, or z,, node (m s k) before it comes down z;

node.

3. u-dependent control cycle with z, in Figure 3.1 (e). It has other feature: a

signal flow goes through a u,, node (m # ¢) before it comes down z; node.

From Figure 3.1 and features of control cycle, we can conclude that the y-dependent
control cycle must contain a u-dependent control cycle, and vice versa. The any z-
dependent control cycle must contain a control cycle with z,, besides with zx. A
simple single loop is the independent control cycle with . The feedback connec-
tional feature in independent and dependent control cycles are the same as those of

direct and indirect connections, respectively.
Definition 3.3 ( Deadlock Unit)

The non-cyclic signal flow form which starts from node u;, goes through at least
a state node ., and ends to any node except u; in Figure 3.2 (a) is defined as a unit
of deadlock with 2. Every deadlock unit has common feature: signal flow is stuck by
the last node except u;. The types of deadlock with z; can be classified as self-node

deadlock in Figure 3.2 (a) and the other node deadlock. The other deadlock has are:

<

1. y-deadlock with z; in Figure 3.2 (b).

o

r-deadlock with z; in Figure 3.2 (c).
3. u-deadlock with z; in Figure 3.2 (d).

From Figure 3.2 and features of deadlock unit, we can conclude that two u-

deadlock unit series connection may be a control cycle unit if the end node in a



o)

Uj

Xk Xk Y u;
BO—8-O0— — —p-O— — — 0
1/s
(a)
ym Xk xk yJ u,
B0~ — —-»(1)/———.—0— — e O~ — — B0
s
(b)
);’m ;(k Xk Yij U,
B-O— — —»olls—»—o— - — pO— — — O
(c)
B-O— — — BO—#0— — —pBp-O0— — — B0
1/s
(d)
Um Xk X k ¥j u;
BO— — ""”OU——PO-— — — O = — =0
S
(e)

Figure 3.1: Signal Flow Type I
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uj Xk xk X m
Q= v o Qe e o B
1/s
(a)
Uy Xk X k y_;
O— = - B0—0— — « =0
1/s
(b)
u; Xy Xy Xpm  Xm Xm
O = - OO — — OO
1/s /s 7
(©)
u; X | X, UL
o— — — B0—p0O0— — — B0
1/s
(d)
u; Yj u;
o— — — B0O— — — B0
(e)

Figure 3.2: Signal Flow Types Il

deadlock umit is equal to the start node in another deadlock unit. A control cycle

unit may contain one or more u-deadlock unit.
Definition 3.4 { Shortcut Unit)

The signal flow form which starts from a node w,;, does not go through any one
X node and endé at a u; node in Figure 3.2 (e) is defined as an unit of shortcut with
;. Every shortcut unit has a common feature: a signal flow shortcut is caused by d
(feedforward) or k (feedback) gains between v node and y node without other gains

in this signal flow.
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3.2.1 Control System Tree Unit

Consider a quadruple (C, A, B, D) system, then every vector and matrix in this system

can be described as:

. . . . T T
a,:[m] R S :,;n} I:{l.}-... @ - mn}
T T

w=luw cw o w | y=w o o W]

[ an ayn | [ b bim ]
A= an  an G B=1bgy by bk.m

L dny Apn J L b brm J

[ cn Cin | [ diy dym ]
C= Ci1 Cy Cin D = djl dﬁ d]"t

L Cr1 Crn J L d:r1 e

[ k1 kir 7
NN = kit kl-j k;r

Lk o R ]

For the sake of simplicity, an elementary unit tree containing two nodes and one gain
is defined. Any elementary unit tree can be composed of one start node and many
end nodes with same type. For example, (u,z) can be described as m elementary
unit trees in 3.3(d). According to the above vectors and matrices, we can draw a set
of control cycles with z, for each u; based on elementary unit types. Firstly, we draw
a set of elementary pair nodes into elementary unit trees in Figure 3.3 which have six
tvpes in the linear system: (z,z),(z,y), (z,z),{u,z),(uv,y), and (y,u).

We can find that the total search steps of single control cycles are rm, nrm,



Figure 3.3: Elementary Unit Trees

ey
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U1 gj uj
&7r #m
(a)
uj X Xy Y Uy
P ® | &r e m >
(b)
U XK1 X k1 X2 Rk 2 3 o'
& n & 1 # (n-1) e | &r & m
(c)
uj X1 Xy ).(kzl Xk 2 Xk3 X ks
-0 -0 %P*?
* N 1 # (n-1) # 1 # (n-2) # 1
_______________________ -
|
t).(kn Xkn gj U
# 1 & r # m
(d)

Figure 3.4: Search Steps in Single Control Cycles
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n(n — 1)rm, and n!rm for the forms in Figure 3.4 (a), (b), (¢), and (d) respectively.
These search feature is one of the essential searches which can directly find the u;
node and does not continually make a deep search for u,. Hence the independent
control cycle is safe for a control system due to the fact that it only corresponds to a
single feedback gain k;;, i.e. the signal flow transfer does not need any other feedback
components as the bridges to connect u nodes and y nodes. A u or y dependent
control cycle is seemly unsafe for a control system relatively, because it consists of
many different gain &;;s in series form. If one k;; in the u- or y- dependent control cycle
is broken then signal flow is stuck and whole modes in this cycle unit can not move to
their oriented places in a left-hall S plan. The essential graphic path for searching a
control cvele unit or u-deadlock unit tree and their search steps are shown in Figure
3.5.
Generally, a LTI system can be equivalently transformed into the Jordan normal
form. Note that the unit tree (z, ) is constrained only by the multiplicity of eigen-
values and its branch number is only one for single distinct eigenvalues in the Jordan

normal form.

Example 3.2 Consider Example 3.1. The corresponding elementary unit trees are

in Figure 3.6. According to the oriented connection of elementary unit tree as

(u,z)(z,2)(x, 2)(2, 2)(z,y)(y, u)

and

(u,)(#, 2) (2. 1)y, )
direction, the corresponding control cycle unit and u-deadlock unit are constructed in
Figure 3.7. Figure 3.7 shows that &,, 23 are live nodes and their states, z, and z3, can

be adjusted by signal flow between (u;,u;) if kj» changes or between (uy, uz)(uq, uy)



h
CISCECEIER
& r
ey M1/ 12 0-2 /0 (n-3)

CCACINE

#r Zr &r
ORI CERCIRE

& m # m #m & m

Figure 3.5: Essential Search Trees
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if &y, and/or ky, change, where (.)(.} is denoted as unit oriented connection. The
r,. live node, @, can be adjusted by signal flow between (uq,us) if ko1, kep change
respectively or between (uq, uy){uy,uq) if kyy and/or kgy change. The eigenvalues
corresponding to live state nodes can be shifted. For the sake of explicitness, the

relationship in which a x can be adjusted by a & is denoted by z(k).

We can define a tuple to describe the unit of a u-deadlock or a u-control cycle

with ¥, as

>

t(uilsuig) t(uilsxlaki]‘auig)

where u;, is a starting independeﬁt input, 24 a controlled state, k;; a feedback gain,
and wu;, is a ending dependent input . Each variable is a single variable for an ele-
mentary unit (u;,.u;,). 2; 1s used as a symbol for (&, 2;) with a signal flow to avoid
deadlock and short cut states. Therefore in this example we can find that elementary

units can be described by four cases: (uj,,u;, ) for 13,1, = 1,2.

3.2.1 Control Tuple Space Method

Definition 3.5 A tuple of control is a set of nodes and branches, which can describe

a control signal flow and is denoted by

2 2

t(u)ﬁ u]') t(ufﬁ Iks k[js 'U,j) t(ui', "L‘}\". yla k[]a 'U]')

where w;. 2,y are nodes in the graph, and kj; is the corresponding output feed-
back gain. xx, y., ki can be a set of z’s, yi's, ki’s respectively, for example
v = (Zp), Thys -y T, ) Uiy u; are a starting element and a ending element, respec-

2

tively. o) = (2}, 24) 1s a unique oriented set.

Definition 3.6 ( Control Tuple Space T)



Figure 3.6: Elementary Unit Tree for an Example



Figure 3.7: Essential Control Search Tree for An Example

38
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A set of control tuples organizes a space of a control system, denoted by T, which

satisfies the following conditions with + oriented operation:
1. Let ty{uy, ug), to{ug, u1), ta(uz,uaz) € T, then
ty 41y = tpluy, ug, uy) = to{uy, 1),
Ly + 1 = to)(ug, uy, ug) = gy (g, uy).
bty F o+t ity # 1y
2.1y + 1y = tya(uy, ug).
ly+ 1 = lo(ug, us, uy, ug) = 9.

Property 3.1 The operational result of any two control tuples is contained in tuple

space T.1e. T is closed.

Example 3.3 Consider Example 3.1. We can find the four control tuples in Figure

3.7
fluyouy) = Gluy, (23, 22), ki, wa ) = 4 (g, (23, 22) Y2, kyg, uh)
taluy. ) = tolug, (23, 29), kg, ua) = to(wr, (@3, 22} Y. ko2, uz) (3.5)
Llug. uy) = Uslug 2y (), 2a(kia) wr) = ta(ug, @1(kya )y 22lkiz), (31, y2), 1) ‘
Lalug. wz) = Lylug. 2y (ko) w2o(kaa), o) = talug, a1(kay ). 22(ka2), (11, y2), u2)

where ¢,. 74, are control cycles, {5, 15 are u-deadlock based on the tuple description
n (3.5). Please note that the description z{k) in t3, 14 which reflects the relationship
between a and &. In fact, the t3, ; are not unique. They contain two u-deadlock

units and two control cycle units, respectively as follows.

i3(ug, vy) = G(ug, 21(kny), us)
Bug,wy) = 13(u, vo(kia), up)
13(ug, ug) = 1i(ug, x1(kgy), ua)
th(ug, up) = 15(uz, 29(ka2), us)

It should be noted that the u-deadlock unit can be changed into control cycle if
and only if there exists at least an intermediate tuple such that these two unit can

be connected by it.
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Example 3.4 Consider Example 3.3 where t,(uy,us), t3(us,u;) € T. Then

ly+ 13 = tloa(wg,uy) = tog(uy, z1(kny, kg )y 2alkya, ka2), walkya, ko2 ), Tl by, k2a), uy)
la+ 1y = taplus, up) = taolug, 2y{kyy, koo )y Ta(kizy ko), 23(kay, k2o ), 23(kaa, K22, ug)

Therefore the total control cycles are 1y, 15 + {3, t3 + 1o, and 4 and

In 1; cycle: ko can shift 9,23
(K1, 1522) Iy,T2,23
In 15 + t3 cycle: can shift
(km» k??) Zy,Z3
ko1 Ty
In t4 cycle: can shift
k2o Tq
(k]l: k?Q) Ty, T2, T3
In i3 + 1, cycle: can shift
(K12, k22) Ta,23

Based on the above four cases, we can easily conclude that

. [k 0 » R _ - 10 ki
K—[O kﬂ} or K—-[O Fon o1 K= k0

Definition 3.7 The any type of unit is called elementary unit if it contains only one

single flow. The relationship between x and k is unique.

Theorem 3.2 The z(k) in the new tuple 115 or 151, which 1s produced by any two
elementary u-deadlock unit tuples {; and ¢, operating with +, is unique if t; + 1, # ¢

and 15 + 1, # ¢. And the corresponding new tuples are a control cycle unit.

Proof.  Vij(uy, a1, ki, uz), to(uz, T2, koy,uy) € T are elementary unit, then

iy 4ty = tio{uy, (21(kyy )y 22(kar ), wy)
ta+ 4 = tor(uo, (z1(kir), za(koy)), uz)

therefore The z(k) in the new tuple {15 or ty; are unique, i.e. z1(ky), z2(ke;). O
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Clearly any (k) in elementary unit is unique. If 2(k) is unique, then the corre-
sponding tuple is an elementary unit. Therefore the elementary unit may be cascaded

by many other elementary units.

Corollary 3.1 I finite elementary unit tuples operate with + and produce at least
two new non empty tuples, then z(k) relationship in the new tuples are unique and
the corresponding new tuples are a control cycle unit. If any finite elementary unit
tuples operate with + and produce the new tuples with non unique z(k), then the

new tuples are deadlock unit.
Algorithm 3.2 ( Construct the Elementary Tuple and Control Cycle Unit)

1. Transform the state-space equation into an elementary tree set as in Figure 3.3.

2. Make the oriented connecting operation + in related elementary set as following
direction.

U— T 2= 51— T~ Y — U (3.6)
3. Find all elementary tuples

1. Carry out the operation + for all elementary tuples, find all control cycles in

T.



Example 3.5 Consider Example 3.1, then

Ty Tp 3
(2 0 0 T (zy,21)

A= 0 1 1 fbg = (l?-z,i?g) (.’Z‘g,.’i}z)
L 0 0 1 .'i?3 (.’Eg,.’iﬁg)
Uy U2
01 T (u2, %1)

B= |0 1| i = (2, &2)
L ] O :;33 (ulai‘li)
Ty Ty T3

. 1 00 1 (z1, 1)

= =
{ 010 } Y2 [ (29, ¥2)

¥y1 Y2

N = ki1 ke Uy = (yhkllsul) (yQ«kl%ul)
kay koo Uy (ylakmﬂlz) (yzakmyuz)

According to (3.6). the corresponding direction 1s .

B—+l——+A—;—1-——aA—+——)—————)C———>]{
S S 8

therefore the all elementary tuples are

{1(uy. g, T3, &0, To, Y2, k12, wy) = Gun, (2, T9), k12, U1)
{o(ty, T3, T3, B9, T2, Y2, ka2 Uz) = Ta(ua, T3, 29), kag, Ua)
1a(uy, &3, T3)
1(1g. 21, 2y, Y1y ki Uy ) = talus, 71 k1p, 1)
ts(19. Ty, @1 Y1, ko1, Uz) = ts(ug, a1, oy, u2)
te(uz, T2, T2, Y2, ki, 1) = to(uz, 22, k12, u1)

( ) =

t-(uy, Ty Toy Y2, Koz, U tug, 22, koo, ug)

where 1, {5, 1- are control cycles; 1o, 14, tg are u-deadlocks; and 15 is an z-deadlock.
The control cycles are given by tg + 14, ts + 12, t2 + 16, {s + 12, 11, t5, and 7. The total

number of control cycles in T is seven for this example.
Algorithm 3.3 ( Minimize K Structure Elements )-

1. Categorize the control cycles in T into (u;, u;) type.? = 1,2,...,m.
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2. Choose just one control cycle in each type and then make combinations in tuples

for all states.

3. Find the minimal number of K elements with all live state nodes z in all com-

bination set, through the standard sorting algorithms.

Example 3.6 Continue Example 3.5. Categorize the control cycle into two type:(uy, u;)

and {us. uy). le.

by 1 + Ly, 1y + s, € t{uy. uy)
ts, 17, by + 15, te + 1o € t(uz. uy)

According to Corollary 3.1, 19 + 14 ~ 14 + 15 and {3 + 1 ~ g + 12, therefore we can
find a 3 x 4 combination. The minimal number of elements of combination for K are

ty+ 14 and (1s,1;). then the corresponding K are fip o 0 and 0 Fi .
0 ko kyy O

Algorithm 3.2, can be realized in a computer through a certain stream operation
by a hashing function search[9]. Construct a function to search K structure with

mput (€. A, B. D) svstem and output the optimal structure K.



CHAPTER 4
THEORETICAL DEVELOPMENT ON FEEDBACK
STRUCTURE

In Chapter 3, the essential decentralized feedback structures are obtained by the
Jordan normal form method and the signal flow graph methods. In this Chapter,
the closed loop eigenstructure under RDIFC is analyzed to minimize the feedback
structure for a synthesis system. Firstly, the general relationships of eignevectors and
eigenvalues of an open loop and the corresponding closed loop systems are discussed.
Secondly. the relationships are considered for the system in which the A is the diagonal
matrix. Thirdly, the relationship are further developed to the system in which the
A contains only one elementary Jordan block and then to the system in which A
contains many elementary Jordan blocks. Finally, the relationships between a plant

and corresponding synthesis system under right and left eigenvectors are developed.

4.1 General Theory for Eigenvalue and Eigenvector

Consider a triple (C. A, B) and assume that there exists a ' € K such that corre-
sponding synthesis system is (C, A+ BK C, B). The i** open loop system eigenvalue
Noi € 0(A) and the eigenvector V,; for A,; may be changed into A, € ¢(A + BKC)
and/or V; by I imposed or may be invariant. To classify the variation of eigenvalues

and eigenvectors. a definition of characteristics of them is given as follow:

Definition 4.1 Given a triple (C, A, B), a RDIFC K. and the corresponding syn-
thesis system (C, A + BKC,B) for K € K. The " synthesis system eigenvalue
Ai € C is sald to be fixed if Ay € o(A), 1.e. Ay = A, for VA € K. Similarly, the

/" right eigenvector V; of the corresponding synthesis system is said to be fixed if

44



45

Vi, € ker(A = A1) VK € K, ie. V,; = aV,;, for all & € C\0. As the duality of
eigenvectors, the 1! left eigenvector W,; of the corresponding synthesis system is said

to be fixed if WI € ker(AT — A1) VK € K, ie V= al, for all a € C\0.

Theorem 4.1 Consider a triple (C, A, B) and the corresponding synthesis system
(C.A+BLKC. B) systems. Assume that (A, V,;) and (A, V.i) are the corresponding

eigenvalue and eigenvector pairs for two systems, respectively. Then
(A4+ BKC — X ; 1)V, #0 (4.1)

if and onlv if A,; € o(A + BKC)

Proof. (<) Since (A+ BRKC)V,; = A;V., and (A + BKC)V, # VA, hence
Aot # Act

(=) Ao € 0(A+ BKC) implies (A+ BNC)V, # VA, O

Please note that V; variation is the vector direction change in a geometric space.
A free V,; means that V is linearly independent of the corresponding V;;. A change
is scale variation in complex field. Generally, the A, free does not preserve the V
{ree. vice versa. Because the BKXCV,; item includes the information of both systems,
i.e. the plant system and the synthesis system, it can be used to reflect the properties
of their relationship.

According to the Definition 4.1 and an assumption of A — A,;I # 0, the states of
eigenvalues and right eigenvectors changed from a pair (A, V,i) to a pair (A, Vi)
with ' € K have four case: 1) Ay # Ay, Vo = aV,; for Va € C\0; 2) Ay # Ay,
Vi # oV, for Ya € C\0; 3) Ay = Ay, Vi # aVy; for Yo € C\0; and 4) A, = A,
Vi = aV,; for Va € C\0. The four cases can reflect on the BKCV,; term change as

following properties:
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Property 4.1 If 7, = aV,;, Va € C\0 and A, # A, then

BECV,; = (A — Aoi)Vii # 0 (4.2)

Proof. (=) {A+BKC)V,; = A;V, implies (A+ BKC)aV,; = AaV,; by assump-

tion. Cancelling a # 0, we obtain

(A+ BKC)V,i = AiVir = AV + BKCV,i = AiVii + BRCV;

Hence

B]&’CVO,' = Vm’()\ci - )‘oi) 7é 0.0

This shows that V,; is not only A invariant, but also BN C invariant when V; =

all; and A, # A,

Property 4.2 I V,, # aV,;, Vo € C\0 and A, # A, then

B]{C\/oz -7.‘4 ‘/oi()‘cz' - )‘J!) # 0

and

BKCV,; #0
Proof. (=)
(A+ BKC)aV,; # oV, A, (4.3)

Substituting AV,; = V,; A, into (4.3) and cancelling o # 0 it becomes

BI\'CVOI' 7& V)i()\ci - /\of) # 0 (44)

To establish the second condition, assume BACV,; = 0. However, a result deduced
from (4.4) 1s

07 V(A = Ai) # 0 (4.5)
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Based on the assumption, (A + BKXC)V,; = AV,; = V,;\,;. This means \,; € ¢(A +

BR () and the 1™ cigenvalue Ay = A, Substituting A, = A, into (4.5), we obtaining
0 % Voi()‘ci - )‘ai) =0
Therefore. this equation does not exist and a contradiction to (4.4). O

Property 4.3 If V; # aV,;,a € C\0 and A = A, then BKCV,; # 0.

Proof. (=) Since (A4 BKC)V,; # V,:A,; and AV,; = V,;\,; then BKCV,; # 0.

0
Property 4.4 I{ ¥, = oV,;,a € C\0 and A\, = A,; then BKCV,; = 0.

Proof. (=) Since (A+ BKC)V,; = V,;A,; then BKCV,;, =0. O
Remark 4.1 Based on Properties 4.1-4.4, it can be deduced that
1. Both V; and A,; are fixed = BACV,; = 0.
2. Either ¥ or A, is free = BKCV,; # 0.

Example 4.1 Consider a plant system as
r= Ax+ Bu
y= Cx

0 {3V 10 10

ues and right eigenvectors of the plant are given by

where A = { a0 } , B = [ 01 } , C= [ 01 } , and @y # ag9. The eigenval-

4 ; 1 0
Ao = {)‘Ol’AOQ} = {a11’a2'2}> V.= [ Vo Vi J - { 01 J

Consider the four elementary output feedback cases with u = Ky:
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I. UK = [ L‘On 8 ], the corresponding eigenvalues, eigenvectors are given by
, . 10 i
Ae = {\c]:/\ﬂ} = {Gvn,azz T kn}, Ve= [ Va Ve ] = { 01 } =V
Furthermore,
0 0 0 . 0
(= ; /o= \ { "/’0‘7 =
BRC {0 . }, BKCV, {0} BECYV,, {k” J

. 0
\/02(/\1:2 - AOZ) = [ }f“ j‘

Hence. BN ('V,; satisfies Property 4.4 and BNCV,; = Vo(An — Ayo) satisfies

Property 4.1.

20N = [ 8 1\‘(1)2 } then
. My - 0
Ao = {Aa A} = {an,an} = A, Ve= [ Va Ve ] = { azz—klju 1 }

0 a

k] ] 0

Bh(C = [ by 0

}, BKCV, = { 0 } BKCV,, = [O}

Hence. BNC'V,; and BKCV,, satisfy Property 4.3 and Property 4.4 respec-
tively.

. .1 00
3N = { ka0 }, then

. 1 —k
’\c = {/\cls /\ci} = {an,an} = )‘oy Ve= [ Va Vo } = [ 0 ag _2;11 ]

0 ky

0 0

BKC = { 0 0

} N B[(C‘/o] = { 0 } \ B]\’C‘/og = { kﬂ }

Hence, BNCV,, and BKCV,; satisfy Property 4.4 and Property 4.3 respec-

tively.
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4. N = [O 0 },then

O /CQQ

. 1 0
/\r = {)\c]a)\cQ} = {all + k223a22}> VC: [ Vc'i Vc2 } = [ } = Vo

o 1

, ke 0 , ky , 0
BAC:{SQO],BAC%pz{ﬁ},BAC%y:[O}

Hence, BN CV,; and BKCV,, satisfy Property 4.1 and Property 4.4 respec-

tively.
Corollary 4.1 If rankB = m, then KCV,; # 0 if and only if BKCV,; # 0.

Proof. Consider BRKCV,; = 0 with rankB = m. Pre-multiply B by its left

pseudo-inverse { BT B)~' BT and yields
(B"B)Y Y(B'BYKCV,; = KCV,; # 0
for BACV,; # 0. the proof is similar and is omitted.O

Example 4.2 Consider Example 4.1. Assume the feedback of controllers is

. 0 ]J]Q
]‘”‘{kﬁ 0}

] and M —~A—-BKC|=) ~bi+c

then

A+BKC:[“1k“

ko (DY)

b= (o dal = (R VT S )

1
vl |
where b = (ay; + ag7), ¢ = @y1a99 — kigkqgy. Let V; = { 5 } ,t = 1,2, then

ct

o

. 1 _ L 2
(A+BKC—AJH@:[ (et —an g ‘m%z}:{Ol

. 1 2
_]"IQUC{ + (all - 0'72)1)&



Assume kqyy # 0. from the first row of the previous matrix, we can get

2‘2' _ (’\m - ali)vl' _ 1
Ct }CQI ct 2132!

(CLQQ — a1y :{: \/(CL]] - 022)2 + 4131'21621)1)2'- (46)
substitute it into the second row of same matrix, the result is given by

1
-knvli + ';'c‘()\ci — ) (As — a]l)vii =0
21

vl 0% = 0 are trivial solution. This implies that two corresponding equations are

mutually dependent. This result can be verified as follows:

Assume Ay # a);, from the second row of matrix , the corresponding equation is

1 1
vl = o
cr T ct T oo,
/\c; — U i)lm

(aze —an £ \/'(ﬂ'n = ap)? + dkyakoy vy
too. 1.e. same as (4.6). So

rank(A + BRC) = rank Ai—an —kn fori=1,2
_klil )\ci-‘am

. 2'31 v, Vet vig ; 1,1
Vo= 2 2 1= 1 1 I I ¢ for Vv vy € C\O, A # an

Ve e Aci—azy €l App—app C2

_ 0

5 ()‘cl - /\01} —
()\cl - /\o]}

. 2
B[\'("l‘iﬂ — I: /“'2] ,;)LI)] } # o (/\Cl _ /\01) — { UO]
0l

v(gn()‘cl - ’\ol)

satisfying with Property 4.2.

For the i'" left eigenvector W,;, the states of eigenvalues and left eigenvectors from
a pair (W0 Ayr) to a pair (W, A,;) with respect to K € K have four cases as those

of the i'" right eigenvector. The dual properties of Properties 4.1-4.4 are given by
Property 4.5
1 I W, = aW,;, Va € C\0, and A, # A, then W, BRC = (A — M)W, # 0.

2. W, # oWy Va € C\0, and Ay # Ay, then W BRC # (A — A )Wy #£ 0
and W, BN C # 0.



3. W W, # oW, Va € C\0, and \; = A ;, then W,;BKC # G.

4. W, = aW,,, Va € C\0, and \; = A,;, then W, ;BKC = 0.

Proof.  The proof is similar to that of Properties 4.1-4.4 and is omitted.

4.2 Eigenvector and Eigenvalue Analysis for A Diagonal
Matrix

Property 4.6 Given the triple (C, A, B), where A is assumed to have n distinct

eigenvalues. Let V, = { Voo Vo -0 Vi } be the right modal matrix of A and
D, =diag | A A2 +or Ao | cigenvalue matrixof A. Let Vo= [ Vo Vi -or Vi |
and D, =diag [ Aa A2 o A ] are corresponding right modal matrix and eigen-

value matrix for the synthesis system (C, A+ BK C, B) with respect to K € K, respec-
tively. Assume that the synthesis system has a fixed mode A; € oc(A+ BKC)No(A)

for all A". Then
(A+BRC - ;W =0 if A; = A,; and V; = al;, a € C\0
or (A+ BKC = M)V, 20 i Ay = A but Vi # alV,;, o € C\0

Example 4.3 Refer to Example 4.1, in which D, =diag [a; am) and V, = I,. Take

- 0 llCIQ _ ;o dgp — dyy 0
]\~{O 0 }Lhen DC_DO,XC—-{ k, )

for Ay = A,y but Vg # oV, then (A+ BKNC — A\, 1)V, [
for Ay = A, and V,; = aV, then (A+ BKNC — A\, 1)V, 0.

H

Consider a triple (C, A, B). Let V, D, be the right modal matrix and eigenvalue

matrix of A, respeciively. 1t i1s well known that if the eigenvalues are distinct, then

AV, =V,D, & A"WI=w!D, (4.7)



and
AV, = Voidoi is dual of ATWE = WIA,; fori=1,2,... n (4.8)
where V, = | V,; Vo -+ V,, | and W, = V7', is known as the left modal matrix
Wor
H/'o?
W, =
14 von
Since VW, = 30, Vi, W, = I, and
WV, = diag [ Walis Waalia - Wanliw | = T
. 0 if 2 # 7
Woilio; = { 1 =y
Pre-multiply and post-multiply W, in the left equation of (4.7), then take transpose on
it. The result is the right equation of (4.7). Because W7 = [ wi wi ... wl },

D, = DI and
AW = [ ATWE ATWE o ATWE = [ WA WA o WA, |
AV, = [ AV AV o AV | = [ Vada Vada o Vindoo |

Therefore AV,; = V,;A,; and ATWCZ? = WZI), are dual.
Consider a triple(C, A + BKC, B), let V., D. be the right modal matrix and
the diagonal eigenvalues matrix, respectively. Assume that all the eigenvalues are

distinct. Then
(A+ BNC)V. = VA is the dual of (A+ BKC)TWI = Wi, fori=1,2,..,n
(A+ BKC)V,=V.D, & (A+BKC)Y'WI=wID,

Theorem 4.2 Consider a triple (C, A, B) system and assume A,; € o(A) with V.
There exists V ' € K such that synthesis system {(C, A + BKC, B) has A\ € (A +

BL () with V;. Then V,; is a fixed eigenvector with respect to K if and only if
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1. Vi € ker(BNC), for A fixed. or

2.V, is BKC invariant with BKCV,; = V,;(Ag = Ay, for Ay free.
Proof.
1. (=)Because A\; = A, V,; € ker(BKC), l.e. BKCV,; =0, so
AVoi + B]‘;C‘/::vi = A\ou = Voz‘)‘m‘ = Voi)‘ci

Comparing with (A + BKC)V,; = VA4, we can find a « such that V; = al/;,
a € C\0 and
(A + B[\,C)Q'Vo,' = Q‘VO,'/\C,‘ = V:i)‘ci

(<) Vi fixed means that Ja # 0, V; = oV,;. Together with the condition
Asi = Ag, we can find that the invariant equation of (C, A+ BRKC, B) change
Into

(A+BKC)aV, = aV, A, = aV, A,

Because AV, = VA, cancelling a # 0, then BNCV,; = 0, le. V,; €

ker(BNC).

2. (=) Since

BECVy = Vii(dei = Aoi} = Viidoy = AV
Multiply a # 0 and add AV,; in both sides of the previous equation
(A4+ BKC)aV,, = aV, X,
Comparing with (A+BKC)V, = VA4, we can find that V; = oV,;, Vo € C\0.
(<) UV fixed then Ja # 0, V,; = aV,; and

(A+ BKC)aV, = aVyAa
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Due to A, # Ay, and AV,; = V,; ), after cancelling o # 0, then

(A -+ BKC)VO,' = Vo Ap + BECV,; = V,; A4

This equation can be reduced to BKCV,; = V,i(Asi — Aui). O

Example 4.4 Take the plant mode! in Example 4.1 with K = [ kO 8 } ,Vo=1,
21 !
and
D, = diag [ ay; Qa9 } .
then

Ve= { . -k21 1 s Dc = Do

0 ag—an

BKCV,y =0, =V, € ker(BAC)

BKN(CV, = [ kél } , but Vio(Ayg — Ase) = 0 = V,p 1s not BA'C invariant.

Therefore we can conclude that V,; is fixed for A, fixed, V, free for A, fixed in

1 =y }

agreement with Ve =
0 ap —ay

Theorem 4.3 Consider a triple (C, A, B). Assume that A is a diagonal matrix with
distinct eigenvalues. The synthesis system (C, A+ BN C. B) has a decentralized fixed
mode(DFM} A, with respect to YA € K if and only if the i** row or the i** column

of BK( is identically zero.

Proof.  Because A is diagonal matrix, A = D, and V, = W, = I,,. From Theorem
4.2, we can conclude that

Vo=aV,; & BKCV,;=0 f{or A, fixed

and

Mi = i & BKCV,;=0 for Vy fixed (4.9)



From (4.8), the dual of (4.9) and Property 4.5, we can conclude that
Aei = Aoi & W, BKC =0 for W, fixed (4.10)

T
Due to Wk =1V, = [ O --010 -0 J , Therefore, together with the (4.9)
ith

and (4.10), we obtain
Aei = Aoi & the i column and/or the " row of BKC are zero. D

Corollary 4.2 Consider a triple (C, A, B) system. Assume A is a diagonal matrix.
The synthesis system (C, A + BKC, B) has no DFM with respect to &' € K if and

only if BN C has no zero rows and no zero columns.

0 Uooy 1 0
s 0 1 kll ]\7]'2 01 . k?? k?l
B]\ (/ el { ] 0 ] [ k21 ‘ICZQ J [ 1 O } - [ }le_) kll

Therefore, using Corollary 4.2 and inspection, the special BKXC structures, which

Example 4.5 Consider A = { a0 } , B=C= { 01 } , then

may not produce any one DIFM, are given by

s | ke 0 ‘ 0 hay
B]\C—-[O k“},m [km 0]

the corresponding optimal feedback structures are

[k 0] [0k
K”[o b |0 |k 0}
1 0 01 101 10 0
Example 4.6 Consider A=|0 2 0|,B=|0 1 ,C:[O 1 O}Jhen
00 3] |01

bk kiy +kyy kg4 key O
BKCzB{“ ”}c:

k k 0
S

Therefore. because there exists the 37 zero column in BKC, Mg = 3 is a fixed mode.
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If C is changed into C = [ 011

} ,then

k koo k
by koo 21 22 29

S kyy 4+ koy kio 4 koo kig + kg
11 K12 }C‘ _
ko koo koo

BRC = B[

Therefore. using Corollary 4.2 by inspection, the special BA C structures, which may

not produce any one DFM, are given by

k?l k?'Z k22 k?l }\‘12 kl? kl] k?? k22
B]\’ C‘ = k?l }C'zQ kgg , Or k?l 0 0 , OT O .1622 ]C22
koy koo koo kpy 00 0 ko ko

the corresponding feedback structures are

K = 0 0 . 0 :I\']Q or ]C]] 0
B R N 0 kg

In Chapter 2, p is defined as a counting function on a K, It can be extended to

anv matrix T, T € C™*",

010 01 2 0 10
Example 4.7 U T =0 2 3|, Ts=13 2 3|,75=}7 0 5 | then
0 0 4 0 0 4 0 0 4

p(Th) = p(Tz) =4 and p(T3) =6

Definition 4.2 (Lattice)[l] A lattice L is partially ordered set in which for any pair
v.y € L there exists a least upper bound, i.e. an 7 > 2,7 > y and z > 75 for all
= € Lsuch that = > 2, z > y, and greatest lower bound, i.e. an € € L such that

> c.y>e and € > z for all z € L such that z <z, 2 < y.

Definition 4.3 For any a T € C™"* we can decompose T as row vectors, column
A s I 3

vectors, and R distinct symbol element matrices, 1.e.

’

71

Tr'l R
T=| " |=][Ta To - Ta|=3 T (4.11)
k=1

Ten
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where R = p(K), K = [kj], K € K
The R distinct matrices T (k = 1,2,..., R) contain R distinct symbol elements

A‘,"

;. respectively. Any two element set intersection of the distinct matrices is empty,

l.e.

{iij}}:l N {tz’j}kz = ¢ for v{ix'j}kl € Tl?lv {t,‘]'}kg € T}?Q, k1 7& k2

Based on the previous Theorems 4.3 and Corollary 4.2, an algorithm is devised to

determine K as follows.
Algorithm 4.1 (Determine K and K~)

1. Given a controllable and observable triple (C, A, B) system in which the eigen-
values of A are distinct. Transform (C, A, B) into its diagonal normal form

(C'. D,. B) through

D,=V'AV, B=V 'B, C=CY,

2. Calculate T 2 BKC by the symbol method for ' = [&;].
3. Find K is denoted in the Chapter 2 by

K ={KeR™ |k;=0 ilk;¢T, i=[1,ml,y=[,7]}

4. Calculate R = p(K), where K € K.

According to each k; # 0, decompose T as R distinct matrices T}, (k =

(a1

1.2, R) by (4.11).
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6. Calculate p(Ty) for every 7%, construct a lattice {1} as
L={17,77,...,Th}
with partially ordered set based on

p(I7) 2 p(T3) 2 -+ 2 p(TR)

Make combination for any distinct matrices in L from one-matrix combination
to min{n,r x m)-matrix combination. Start from Ty and end to T§. T~ is

dencted by
T"2T2 4T 4 +T2  1<i, <R TP el k=t1ipnin  (4.12)
such that T has no zero rows and columns as (4.11), i.e.
T7#0, and T, #0 for VI7 T5€T {(4.13)

until at least one of 7;-matrix combination is satisfied with (4.12)-(4.13).

o

. Find K~ is denoted by

K = { KER™ [ k,=0 if by ¢ 77, i =[Lom], j=[1,7])

Example 4.8 Consider Example 4.1, let

kay
T=BKC=| > *
' { ko

then

Fvy ko

K =
{ Fay kg

] and R=p(K)=4 for K € K,
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because

.
& hy o0 0 ki, 0 0 0 0
T“L_;Tk”[o 0}*{0 0 | T ko 0] 7|0 ke

and p(TP) =1, k=1,2,3,4, hence L = {T?, 75,739,735 }.

Now start from one-matrix combination from 77 and end to min(n,r X m) = 2-

matrix combination, in which

T #T7+ TS = kgz kél } = { g:’o; } because T}, =0
T-£ T+ TS = fji 8 } | because T2, =0
T =T+ T = }‘82 A‘?z } it is satistied with (4.13)

as the same way. we can find other 7 = T3 4+ T3 and stop more elementary matrices

combination. Based on Algorithm 4.1 and T~ the optimal feedback structures are

Remark 4.2 From Algorithm 4.1 and Example 4.8, we can conclude that
1. T is unique but 7" may be non-unique for a plant svsten.
2. K 1s unique but K~ may be non-unique for a plant system.

Example 4.9 From Example 4.6, the T 1s given by

kip + ko kio 4 koo kyg + koo

T =BKNC = i\'Q] }\722 kgﬁz for C = { (1) (1) (1) }
kay k29 k2o
RS ST _ _
then K= - and R = p(K) =4, and
21 K22
0 koo ko kpy 0 0 0 ki ko ki 0 0

-4
F=ST0=]0 ky ko |+ | kn 0 0|+]0 0 0 |+| 0 00
k=1 0 A‘QQ ]\722 kg] 0 0 0 0 0 0 0 0
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pTY) > p(T3) > p(T3) > p(T7) . L= {1713, 75,17}

Based on (4.12)-(4.13) in step 7 of Algorithm 4.1, we can find that

ka1 koo ka2 ki kay koo
T =T +Ty = kyy koo ko |, or T°= TV +T7 =1 0 ko kyp
koy kyp kg 0 kyp koo

koy  kyo ky2

or T"=T+T;=1|ky 0 0

by O 0

Therefore the corresponding minimal feedback structures are

- k]] O | 0 O R G }\712
K —.{ 0 kzz}’m [}m [;22]’01 {]\‘21 0

4.3 Eigenvector and Eigenvalue Analysis for Jordan Form

For the case that A can not be diagonalized. the Jordan form of A may be used.
The theorems and corollaries in the previous section remains valid for Jordan form.
For the sake of explicitness in this section, firstly, the A is assumed as an elementary
Jordan block in the theoretical development, and then the A is assumed as the Jordan

form in which contains many elementary Jordan blocks.

Theorem 4.4 Consider a triple (C, A, B). Assume A, € o(A) with geometric multi-
plicity ye = n and the corresponding right generalized modal matrix V,. There exists
an A € K such that a synthesis system (C, A+ BKC, B) has A\. € o(A+ BKC)
with geometric multiplicity n and the corresponding right generalized modal matrix
V.. Then

(A+ BKC)V4 # AV, (4.14)

(A+BEKC)Vi # AVa+ Vi, fori=2.3,..,n (4.15)

if and onlv if A, ¢ o(A + BKC).
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Proof. (=) Because A, # ), then [14]
(A+ BNC)W, = AV + Vo, fori=1,23...,n (4.16)

(A+BEKC)Vy # AV + Vo fori=1,2.3,...n

let Vo =0, 50 (A4 BKC)Vy # A, V.

(<) Because there exist (4.14), (4.153), (4.16), and V4 = 0, then A, # X, ie
A ¢o(A+BK(C). O

In following properties, the Jordan form with only one Jordan block is considered
1e. p = n. The characteristics of BACV,; with respect to the “fixedness” of the

eigenvalue and right generalized eigenvector are described:

Property 4.7 I V; = aV,;, Vo € C\0, and A, # A,, then BKCV,; = (A= X, )V,; #

0..=1.2....n.

Proof. (=)Let Vo =0. (A+ BNCOYV,; = AV, + Vi # A Vo + V-1, Because
AV = AV, + Vo, substituting previous equation leads to BKCV,; # 0, and

BRCV, = AV + Vi — AV = (A = A) V. O

Property 4.8 {1}, # oV,;,Va € C\0,and A, # A,,then BRKCV,; # (A=A, )V,; # 0
and BANCV,, #£0,{=1,2,...,n.

Proof.  (=)Let V,; = 0. Because (A + BKC)V,; # VA, + V,;.; and AV,; =
Viids + Vi, combine two equation then BN CV,; # (A, — A,)V,; # 0.

Assume a contrary that BKCV,; = 0. However, BNCV,; = 0 # V,(A: — A,)
and (A 4+ BKC)V,, = AV,; = V,;A,. This means A\, € ¢(A + BKC}), i.e. A = A,.
Substituting A, = A, into previous equation, we obtain 0 # (A.— A, )V,; = 0. Therefore

the equation does not exist and assumption is a contradiction to (A, — A,)V,; # 0. D



Property 4.9 If V alV;, Ya € C\0, and A, = A,, then BKCV,; # 0, : =

1.2....n.

Proof.  (=)Let V3 = 0. Because (A + BAC)V,; # Viido + Viioy and AV, =
";,'/\oi + "i—,,‘_] then B[\’,CVO,‘ }‘[ 0.0

Property 4.10 If V; = aV,;, Va € C\0, and A, = A, then BKCV,; = 0, ¢ =

1.2, ...

Proof. (=)Let V4 = 0. Because (A+ BKC)V,; = Viih, + Voio1 then BKCV,; =

0.0

Corollary 4.3 Consider the elementary Jordan block for A or A + BKC. Assume
Ao € o A) with V, A, € ¢(A+ BKC) with V, Let the geometric multiplicities for

both system be n, then (A+ BKC)V, # V.J, if and only if A\, ¢ o(A+ BKC).

Proof. (=) A, ¢ o(A + BKC) obviously means (A + BKC)V, # V.J,.
(<) Because (A+ BRKC)V,y = AV, is independent of other Jordan blocks if they

exist and (A + BNC)V,; = A\ V; — V;_,, then

(A+ BRC)V. = [ (A+BKC)Va (A+BKCWVa - (A+BKC)V,, |

TA 1
Ao 1
=Vie=[Va Vo oo Vi | '
' 1
Ac |
= [ Vcl)\c Vc2>‘c + Vc? s Vcn)‘c + Vc('n—l) }

Therefore, if (A + BKC)V, # ViJo, then J. # J, = A # A, = A, & o(4 +
BK(). O
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Corollary 4.4 Consider the case that both A and A + BKC consist of a single

elementary Jordan block.

1. I V; = aV,;,¥a € C\0, and A, # A,, then BACV, = V,(J. ~ J,) # 0

(S

If V; # aV,;,Va € C\0, and A, # A,, then BNCV, # V,(J. = J,) # 0 and
BKCV, # Q.

3. IV, # aV,; \Va € C\0, and A, = A,, then BKCV, # 0.

4. I V; = aV,;,Va € C\0, and A, = ), then BKCV, = 0.
Proof.  The proof is similar to that of Property 4.7-4.10 and is omitted.

For the i*F left generalized eigenvector W,;, the states of eigenvalues and left
eigenvectors changed from a pair (W, A,) to a pair (W, A.) with respect to K € K
have four cases as those of the :** right generalized eigen\'fecton For a Jordan block,

the dual properties and corollary of Properties 4.1-4.4 and Corollary 4.2, respectively,

are given by:

Property 4.11 Consider the case that both A and A + BKC consist of a single

elementary Jordan block.
1 T W, = aW,;, Va € C\0, and A, # A,, then W, BKC = [\, — A, )W, # 0.

2. 1f W. # aW,;, Yo € C\O, and Ac # Ay, then Wy, BKC # (A — Ag)W,; # 0 and
W, BKC # 0.

3. U Wa # oWy, Va € C\0, and A, = A, then W,;BKC # 0.

1. U W, = aW,;, Ya € C\0, and A, = A,, then W, ,BKC = 0.
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Corollary 4.5 Consider the case that both A and A + BKC consist of a single

elementary Jordan block.

11 Wy = aW,;,Va € C\0, and A, # Ao, then W,BKC = (J, — J,)W, #0

If W, # oW, ¥a € C\0, and A, # A,, then W,BKC # (J. — J,)W, # 0 and
W,BNC # 0.

3. U W, # oW, Va € C\0, and A, = A,, then W,BKC # 0.
4. H W, = aW,; Vo € C\0, and A, = A,, then W, BKC = 0.

Corollary 4.6 Consider the case that both A and A + BNC consist of a single

elementary Jordan block.
1. I A, # A, then BKCV, #£00or BKCV,; #0,1=1,2,...,n.
2. f V. # oV, then BKCV, #00or BANCV,, #0,1=1.2,...n.

Theorem 4.5 Consider a triple (C, A, B). Assume A, € o(A) with geometric multi-

plicity n and V,. then

1AV, =V, e ATWI =wlJ?

[N

C AV = Vi A, is dual of ATWI = WI

on’'e

3. AV, = Vid + Voony, @ = 2,3,0,m is dual of  ATW] = WIA, + Wiy,

p=n-1.n-2,..,2, respectively.

M/'ol

W,
where W, = VL, V= [ Vi Vo - Vo |, W, o

W,

on



Proof. Because W, V, = V,W, = ], and

. fo i
WoiVer = { 1 ifi=j
Decompose AV, = V,J, as
AV AV o AV | = Vide Vo + Vi oo Vondo + Vognon)

Pre-multiply and post-multiply W, in the left equation of the result 1 in Theorem
4.5, then W, AV W, = W,V,J,W, = W,A = J,W, = ATWT = WIJ7, vice versa.

Decompose ATW! = WIJT as
L Atwl o ATwL ..o ATWI ] = [ WIA, + WL WL +Wh . W2

Because the leading independent vectors are V,; and WZ corresponding to the

other elementary Jordan blocks if they exist. therefore, the relationship is just an

inverse order in the elementary Jordan block. O

Theorem 4.6 Consider a triple (C, A, B). Assume A, € o(A) with geometric mul-
tiphaty n and right generalized modal matrix V, corresponding to the elementary
Jordan block. There exists ¥ X' €K (RDIFC) such that synthesis system (C, A +
BE(C.B) has A\, € 0(A+ BKC) with geometric multiplicity n and right generalized

modal matrix V.. Then V, is fixed with ¥ €K if and onlv if
1. V, € ker (BN C) or WT € ker((BKC)T) for A, fixed.

2. V, is BKC invariant with BKCV, = V,(J, — J,) or W is (BKC)7 invariant

with (BKC)TWT = WI(JT — JT) for A, free.

Proof.
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1. (=) For same geometric multiplicity, A, = A, & J, = J,. Because V, € ker

(BNC)= BRKCV,, =0, V,=| V,;y V, -+ V,. |.then

AV, + BECV, = AV, =V, J,=V,J. = oV, =V, , Yo € C\D

(<) Dueto al, =V, Ya#0,and A\, = )\, & J. = J, then
Lol 1 1, | .
(A+ BKC)=V,=~V,J.=~V,J,= AV, = BKCV, =0
o o a a
Because
W,BKCV,W,=0= W,BKC = 0= (BLNC)"W! =0
then W 7 € ker((BKC)T).
2 (=) For J. # J, , because BNCV, = V,(J, - J,) = V,J. — AV, then
(A+ BKC)W, =V, J. = (A+ BKC)V, = V.J, = 3a,V, = oV,
(<) For J. # J,. because V, = al/, and (A + BKC)V, = V,_J, then
(A+ BNC)W, =V, J, #V,J,= AV, = BRKCV,=V,(J. = J,) # 0

From result 1 in Theorem 4.5, we can conclude that (A + BKC)V, = V,J, &

(A 4+ BNCWF = WTIA, Therefore

BKCV, =V,(he = &) & (BNC)Y'W! =Wl (M. = ),). O

Example 4.10 Consider the plant model

['L: an 1}’8 +[O]}U
2

o
O O

Because J, = A. then AV, = V,J, = V,A,and V, = I, = W,
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0 0 . 0 ko
- y / =

IfK { by O},then BEKCV, {O 0 } # 0

Because J. = J, and the leading independent vector V,; = V,; = [ (1) } , based
on (4.16) we can find V,, = { ? }, ky # =1, B # 0. Since BKCV, # 0 and

kyy 41
BRCV, #V,(J.—J,) =0, then V, is free. If f= 0 then V. = { é (1) } # aV, and
ko 41

V. also free.

Theorem 4.7 Consider a triple (C, A, B). Assume that A is the elementary Jordan
block. The synthesis system (C, A+ BK C, B) has a DFM A, with respect to K €K

if and onlv if BA'C is a zero matrix for V, = aV,, o €R\0.

Proof. Because A = J, then V, = W, = I,. From Theorem 4.6, we can conclude
that A.is fixed if and only i BACV, = 0for V. = oV,. Therefore BKCI, = BKC =

0 0

Remark 4.3 Theorem 4.7 is almost same as Theorem 4.3 except A. One is diagonal
matrix, other is Jordan block. Comparing the two theorems, we can conclude that
every Jordan block in Jordan form satisfies the theorems based on Jordan block.

Jordan form also is satisfied with the separation rule.

Theorem 4.8 Consider a triple (C, A, B). Assume A, € o(A) with geometric mul-
tiplicaty n and right generalized modal matrix V, corresponding to the elementary
Jordan block. There exists a K €K (RDIFC) such that synthesis system (C, A +
BRC.B) has A\, € o(A + BKC) with geometric multiplicity n and right generalized

modal matrix V.. Then V,; € V. is fixed with respect to K €K if and only if

1. V,y € ker (BKC) or WI € ker({BKC)T) for A, fixed.

on

2. V1 is BKC invariant with BKCV,y = V1 (A= A,) or WZ is (BKC)T invariant

with (BKCYTWT = WT (X = A,) for A, free.
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Proof.
1. (=) Because A, = A, and BKCV,; =0, then

AV + BKCV, = AV, = Voho = Vo de = aViy = Vi, Ya € C\0

(<) Due to aV,; = V,; Ya € C\0 and A, = ),, then
(A4+ BRKCYW, = Vah = oV, = BACV,; =0

From the result 2 in Theorem 4.5 AV, = V1 A, is the dual of ATWZT = WI A,
then
The dual of V,y € ker(BK () is WZ ¢ ker((BKC)T)
2. (=) Because BANCV,; = V(Ao = M) = Vo1 Ao — AV, then

(A+ BNCW, = VA= (A+ BRCO)V, =Vod = 3a#£ 0.V, =aVy
(<) Because Vg = oV, and (A+ BN (C)V, : Vi Ae then

(A4+ BRCYW,; = Ve # Vg, = AV, = BKCV,; = Vg (A, — A,) # 0
From the result 2 in Theorem 4.5, we can conclude that

The dual of (A+ BKC)V,; = Ve is (A+ BKC)TWI = WT ),

Therefore

The dual of BKCV,y = V(Ao = A,) is (BKCYWI = WT (X, = ),). 0

Remark 4.4 Theorem 4.8 explanation is more precise then Theorem 4.6 for the

condition of a V,; fixed.

Theorem 4.9 Consider a triple (C, A, B). Assume A as the elementary Jordan
block. The synthesis system (C, A+ BKC, B) has a DFM with respect to KX €K if

and onlv if BN (C has the first zero column or the last zero row.
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Proof. Because A = J, then AV, = V,J, and AV,; = V,;A,. From Theorem 4.8,
1

we know that V,; = oV,; & BKCV,; = 0 for A, fixed. Since V, = G , therefore
0

BECV,, = 0 if and only if the first column vector is zero column vector in BKC

corresponding to the elementary Jordan block. Because the dual of BKCV, = 0

is (BNC)'WT = 0 (see Theorem 4.5 and Property 4.11) for A, fixed and W2, =

0

0 .
, Therefore (BKC)TWT = 0if and only if the last row vector is zero in BKC

1
corresponding to the elementary Jordan block. O
Theorem 4.10 Consider a triple (C, A, B) with A, € o{A), and assume A as the
Jordan block. The synthesis system (C, A + BKC, B) has no DFM with respect to

K e XK only if the BNCV,;, # 0 (please note that this is only a necessary condition).

Proof.  (omit) see proof in Property 4.7, 4.8. O
The follow theoretic development is described under an assumption that A is

Jordan form containing more than one elementary Jordan block.

Theorem 4.11 Consider a triple (C, A,B). Assume A as the Jordan form. The
synthesis svstem (C. A+ BKC, B) has no DM with respect to K €K if and only if
the first column vectors and the last row vectors in BN C matrix, corresponding to

each elementary Jordan block of A, are not zero vectors.

Proof.  (omit) It is easily concluded from Theorem 4.9, 4.10 and the Jordan block

separation principal [14]. O

Example 4.11 Consider the plant model in Example 4.10. Then T = B](Cz[ 222 /;2] }
12 Fn

According to Theorem 4.11, we can find that T~ = { kO 8 } mentioned in the pre-
12
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Figure 4.1: Signal Flow Graph for An Example

. k :

vious section. Therefore K = By ki and K" = 0 b . We can verify that
by koo 0 0

result by signal flow graph. Figure 4.1 shows that if add a controller between u, and

y, with K=, then the signal flow from u; to y; is a cycle through two modes. No fixed

mode exists.

Example 4.12 Consider the plant model

(2.0 0 0 1
T = 01 1z +10 1 u
10 01 1 40
_ 110 .
Yoo
and4—.]—{ JQ},then

R 01 A 110 by ko + kyy O
T=BRC=101 { k’” k” } [ 010 } = | hy kn+ky 0
10 2o ki ki 4k O

Because J, has two Jordan blocks. based on Theorem 4.11 and inspection, T™ is

selected by

kay 000 0 kyp O
T =1 ky 0 01, or T = 0 0 0
0 ko 0 kyy ky 0




Both matrices of T™ satisfy the conditions of Theorem 4.11 corresponding to

each elementary Jordan blocks. Therefore, for preserving the elements, the K* =

'i‘jll 0 AT 0 }C12
b 0 ok=[ 8 b]

Algorithm 4.2 (Find K and K~ for a ),; with geometric multiplicity > 1)

1. Givena (C| A, B) controllable and observable system. Transform (C, A, B) into

Jordan normal form (C, J,, B) as J, = V,'AV,, B= V!B, C = CV,,.

[g9e)

Calculate T 2 BKC by the partial symbol method for & = [k;;].
3. Find decentralized feedback structure
K={KeR™ | k;=0 ilk;eT. i=[l.m]j=[1r]}

1. Caleulate R = p(K).

Ut

According k;; # 0, decompose T as R distinct matrices T (k= 1,2,.., R), k =
1.2..... R as in Definition 4.3.

6. Calculate each p(T¢) for T¢, then construct a lattice L = {I7,T5,..., TR} with

partially ordered set based on p(T7) > p(T5) > -+ 2> p(TR).
7. Make combination for R distinct matrices T2, k = 1,2,..., R, from one to
min(v, rm). Start from T7 .

Denote 1™ by

T ET 4T+ +T2 for1<i<r, T2 €L (4.17)

t

such that 7™ has no the first zero column and no the last zero row corresponding

to each elementary Jordan block, i.e.

VID#0 and VID#0  forij=12..0 (4.18)
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where assume the corresponding J, as v elementary Jordan blocks, T7% and 7¢,

corresponding to the first column and the last row of each elementary Jordan

block, are the first column vectors and the last row vectors 1n T~.

End to until there exists at least one of T of 1,-matrix set combination is

satisfied with (4.17), (4.18).
8. Tind the minimal feedback structure

K™ = {[\ € Rmxrl ]C,‘J' =0 if :lm‘,‘j el 1= [1,7’7?,.], ] = [17‘]}

Remark 4.5 From Algorithm 4.2 for a distinct A,, repeated at least one time, similar

to Remark 4.2, 1t is possible conclude that
1. T is unique but 7™ may be non-unique for a plant.
2. K is unique but K* may be non-unique for a plant.

Example 4.13 Assume that a plant model is given in Jordan normal form as

M1 ] 1 00
21 0 0 0
t= 21 |* Tloo |
i 2 ] 0 10
1000
y = 000 01{x
1010 0
and
_ g _ |
A—JO_[ JJ
then
kvv ks 0 O
A (31 (])3 00 ke 0k
T=BK(C = kay ksz 0 0 = K= kyy 0 kg and p(K)IG
;\‘,2] ]gm 0 O L"?:l 0 lf.33
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Now let us find T™. Because p(T¢) =1 in

k” 0 0 O k13 O 0 0 O
r =1, e N t
: 0 0
0 0 0 -0 kyy 0 0
0 <0 0 -0 0 - -0
+ - + ,
0o -« .. 0 t kfﬁl 0 .0 kgg 0 ¢

and L= {T7.T5.....T?}, therefore based on (4.18) 7, = 1 =7rl, ¢ =1 = ¢l for
Jyand vy = 4 =14, ¢ = 2 = 2 for Jy, and the first, second columns and the
first. fourth rows in BKC can not be zero, i.e. T, .1, T # 0. Please note
that T # T7 and T7 # T7in (4.11). Because of min(v,rm) = 2, start to make

one-matrix combination, then make two-matrix combination

k]] /\713 O O

0

T #T04+To=| | |
0 - - D

because T = 0. As the same way T # T7 + T3, 17 + T3, Ty + 1¢, T7 + 17,
TS+ T2 ... T2 +T¢. But in two-matrix combination. we have found two T~ satisfied

(417)(4.18).0.e.

by 0 oo 0 0 ks 0 0
ﬂ 0 - e 0 L

T =T +T0= | | | oand T =TS 4TS =
0 ky 0 0 by 0 - 0

Therefore the more matrix combination process is ended and corresponding opti-

mal feedback structure 1s

ky 000 0 0 ks
K= 0 }(.23 and K™ = kg] 0 0
0 0 0 0 0 0




4
4.4 Right and Left Eigenvectors Analysis For DFM

In the previous sections, we only discuss that right eigenvector or left eigenvector
distinctively for a eigenvalue. In fact, there exist many relationship between these
two eigenvectors. In this section, an alternative characterization of DFM in terms of

the left. and right modal matrices are given.

Theorem 4.12 Given a triple (C, A, B) and assume that A can be diagonalized. Let
V,, W7 be the corresponding right and left modal matrices for the (C, A, B), where
Vo=V Vi oo Vi |and W2 = [ WD WE oo WE ] Then a ds = Ay is
fixed for the synthesis svstem (C, A+ BKC, B} if and only if the W, BN CV, has the

h

1" zero column and/or the #'* zero row.

Proof.  Since ~
W,(A+ BECIV, = WAV, + W,BKCY,

=D, +W,BKCV, =D, + BKC

(C,A,B) < (C,D,.B)

Use the result in Theorem 4.3. The synthesis system (C, D,+BKC, B) hasa A, = Ay

DM with respect to K € K if and only if BKC' = W, BN CV, has zero rows and /or

zero columns., O

Example 4.14 Consider a plant system which is partially generated by a random

function in the Matlab softpackage, i.e.

0.7564 0 0 0 01
L0 o 0 R [ 0
= 0 ossar o | P 00 C’{OlooJ
] 1 0 02378 11



-3

(&3]

Using Matlab, we obtain

0.1236 0

0 0.4363
—0.9633 0 '
0.2383  0.8998

J
"o

I
O DD
i wow B o B v

0.77942 0
—1.9283 -2.0623
8.9012 0

0 2.2919

W, =

OO D
OO e O

If a centralized feedback structure is given as

ok k|l Laxe .1 0.2749 0.1665
K“{Jm kzz}—R coad K= 13503 0.4865

where I\ 1s generated by the random function in the Matlab, then
0 0 0.3461 1.6544

0 0 -0.0072 -0.1244

0 0 0.3393 1.7175

00 0 0

W,BKCV, =

According to Theorem 4,12, because the 1'%, the 2" columns and the 4" row are
zero. we can conclude that A,; = 0.8847, 0.2378, 0.7727, i = 1,2, 4, are fixed mode
with respect to K. Now let us verify the conclusion by the Matlab, then
0.8847
D. = 0.2378

agree with the previous conclusion.

Corollary 4.7 Given a triple (C, A, B) and assume that A can be diagonalized.
Let V,. WT be corresponding right and left modal matrices for the (C, A, B). Then a

Ao # Ay is free for the synthesis system (C, A+ BK C, B)if and only if the W, BKCV,

non-zero column and the 7** non-zero row.

has the it"



76

Proof.  Its proof is similar to that of Theorem 4.12 and omitted. O

Theorem 4.13 Given a triple (C, A, B) and assume that there is v elementary Jor-
dan blocks for A. Let V,, WZ be corresponding generalized right and left modal

matrices for the (C, A, B), where

VO:{V;], o Vo | | Vi e Von“]
Wh={wh oWl | .| Wi wl, |

Then a A, = A, is fixed for the synthesis system (C, A+ BKC, B) if and only if the
W, BRNCYV, has the first zero column and/or the last zero row for the i'* elementary

Jordan block.

Proof.  Since ’ ‘
W,(A+ BKC)V, = W,AV, + W,BKCV,

=J,+W,BKCV, = J,+ BKC

ol

(C,AB) < (C.,J..B)

Based on the result in Theorem 4.11. The synthesis system (C,J, + BKC, B) has
a Ay = Ay DFM with respect to K € K if and only if BKC = W,BKCYV, has the
‘th

last zero row and/or the first zero column corresponding to the :** elementary Jordan

block. O

Corollary 4.8 Given a triple (C, A, B) and assume that there is v(< n) elementary
Jordan blocks for A, Let V,, WI be corresponding right and left generalized modal
matrices for the (C, A, B). Then a Ay # A, is free for the synthesis system (C, A +
BIL(C. B} if and only if the W,BKCV, has the first non-zero column and the last

non-zero row for the 1" elementary
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Proof.  Its proof is similar to that of Theorem 4.13 and omitted. O

Example 4.15 Consider a triple (C, 4, B) as

Let K = { 0 Fi } and K = [ 100 100} € K. we can find that V, = W, = I,

10 0 0
W,BKCV,=| 10 0 0
0 10 0

satisfies the condition of Corollary 4.8. Therefore the K structure belongs to the

RDIFC and can shifts all modes for this system.

Corollary 4.9 Consider a triple (C, A, B) and assume that there are v elementary
Jordan blocks for A, The synthesis system (C, A4+ BN C, B) has no DEM with respect
to ' €K if and only if the first column vectors and the last row vectors in W,BKCV,

matrix. corresponding to each Jordan block of A, are non-zero vectors.

Corollary 4.10 Consider a triple (C, A, B) with n distinct eigenvalues of A, The
svothesis (C, A 4+ BKNC., B) has no fixed mode (DFM) with respect to K €K if and

only if the every column and row inW,BNCV, are not zero vector.

Example 4.16 Consider a triple system

0.6868 0.5269 0.7012 0.0475
0 0.092 0.9103 0
0 0.6539 0.7622 0
0.8462 0 0 0.6326

A=

_O DO
O OO
O
1
oy
&S
— o
<O
D O
[S—]
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0
which generated by a random function partially in the Matlab. Take K = [ kO 0 },
21

and v = { ? 8 } € K. Using Matlab, we can obtain
0.8619
0.4575
D, = 1.2683
—-0.4141
0.2615 0.2027 —0.5660 0.1116
Vo= 0 0 —0.2047 —0.8650
T 0 0 -0.2645 0.4809
0.9652 -0.9792 —0.7535 ~—0.0902
21676 —2.1366 —4.2624 0.4487
W 2.1365 -0.9008 -2.2251 -0.5789
e 0 —-1.4634 -2.6431 0
0 —0.8083  0.6256 0
and
0.5669 04303 1.2265 0.2418
s nwer, | 05588 0.4331 1.2089 0.2384
W, BKCV, = 0 0 0 0
0 0 0 0
Therefore we can conclude that A,z = 1.2683 and A,y = —0.4141 are fixed mode in a

syvnthesis system with K. Now let us chick the result by Matlab. Because

01.7236
0.5958
Do = 1.2683
—0.4141

with respect to . it agrees with this result.



CHAPTER 5
CONCLUSIONS

This thesis deals with the selection of an optimal the decentralized feedback struc-

ture in large scale control systems. From some aspects of mathematic theory and

application, various definitions, theorems, corollaries, and algorithms are generated

and developed. These theories can be extended into the general control theory. The

main conclusions of this thesis are:

o

. Presented a systematic method to determine if a decentralized control system

possesses decentralized fixed modes.

Introduced the relationship between the system zeros of plant and the fixed
modes of synthesis system. The fixed modes are clarified according to system
zeros. Addressed that only the transmission fixed mode can be avoid with

respect to decentralized feedback structure under output feedback.

Characterized the fixed modes and decentralized feedback structures by means
of signal flow graphs. Defined decentralized feedback structure and set up algo-
rithm to search this structure in plant system based on the control system tree

unit.

Defined and set up the tuple control space. Transfer control system tree into a
set of corresponding tuples. Constructed operation rules in tuple control space

such that the feedback search can be carried aid algorithmically.

. Introduced the fixed eigenvector concept and applied such concept in the deter-

mination of an admissible DIFC.

Developed the theorems and corollaries for the cases that A can be diagonalized

and transformed into the Jordan canonical form.
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7. Designed a set of algorithms to find the realistic decentralized feedback structure

(RDIFC) K and the optimal feedback structure K.

8. Applied the right- and the left-generalized modal matrix to survey the fixed

mode existing in the synthesis system.

As for the future development of the decentralized control system, the following

suggestions are now made:

1. To extend the algorithms in this thesis into computer program for application.

2. To develop a set of realistic algorithm to find feedback structure and controller

parameters.

3. To realize the second step of control strategy. Find reductional algorithm such
that the multivariable system can be transferred into single variable control

svstem successfully based on decentralized feedback compensator.

1. To develop results on how the geometric number variation of Jordan block

affects the feedback structure design.
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