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ABSTRACT 

PROPERTIES AND DETERMINATION OF OPTIMAL 

DECENTRALIZED FEEDBACK STRUCTURE 

by 

Kangsong Han 

In this thesis, the decentralized feedback structure for large scale, linear time 

invariant systems is studied. The internal differences and the relationship between 

decentralized feedback structure and centralized feedback structure are discussed. 

The conventional diagonal feedback structure. corresponding to the classical single 

loop design strategy, is first analyzed. This is followed by an arbitrary decentralized 

information flow constraint which is dependent upon the actual plant characteris-

tics. Although signal flow graphs have limited use in describing decentralized control 

systems. the concept of a control cycle unit based on signal flow is introduced as 

a supplementary tool to characterize some fixed modes and decentralized feedback 

structures. For the decentralized feedback structure, the Jordan normal form method 

and essential control tuple space method are presented. The later method can be 

readily applied in a computer-aided design environment. 

From the theory a set of relationships of eigenvalues and eigenvectors between the 

plant system and the synthesis system are deduced. Based upon such eigenstructures, 

conditions have been found to determine the optimal decentralized feedback structure, 

that is, one with the least number of non-zero gain elements. The notion of a feedback 

gain lattice is introduced for both the diagonal and Jordan form representation of the 

plant state matrices. This lattice structure is then utilized algorithmically to generate 

the optimal decentralized feedback structure. These algorithms can be used to reduce 

hardware implementation and system complexity for the control of large scale systems. 
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CHAPTER 1 

INTRODUCTION 

In the control of large scale industrial process, implementing and maintaining the 

feedback links constitute a major hardware cost. For example, consider a. linear 

system with m inputs and r outputs. In conventional centralized feedback control, 

the feedback matrix has rm non-zero elements (interconnection). If r = 100, m. = 100, 

then r x in = 10,000. This may be an unrealistically large number from both design 

and hardware point of view. Therefore, a decentralized feedback structure with the 

fewest non-zero elements should be used, provided the resultant synthesis system 

remaining stablizable. The notion of decentralized fixed mode [4],[6] has long been 

used as the primary criterion in accessing the feasibility of a certain decentralized 

feedback structure. 

A decentralized feedback structure is said to be admissible if the corresponding 

synthesis system has no decentralized fixed modes. In this thesis, we focus on the first 

step of the decentralized control system design: how to obtain an admissible decen-

tralized feedback structure with a least number of non-zero interconnection elements, 

such a least number of structure is said to be optimal. In this case, the stabilization 

technique described in [4] may be used to control the plant. 

It should be noted again that the word "optimal" in a decentralized feedback struc-

ture refers to the minimizing if feedback interconnections rather than performance of 

the closed loop systems. The selection of a. decentralized feedback structure that 

balances structural and performance optimizing is a topic for future research. Here 

we introduce a. decentralized feedback structure used to compensate the plant modes 

and to explicitly distinguish the decentralized from the usual centralized feedback. It 

can be thought as a part of feedback structure of whole control system because the 
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other part will be designed to stabilize control system. Comparing with the central-

ized feedback structure (matrix), the decentralized feedback structure (matrix) has 

several internal properties: (1) there exist much more zero elements; (2) each zero 

element is determined before controller design; (3) each non-zero element value can be 

changed in larger range; (4) the selection of each element is limited by decentralized 

information flow constraint [4], and (5) each feedback structure is dependent on the 

actual plant models. 

Before discussing the decentralized feedback structure, let us review the relevant 

literatures. In the decentralized and centralized control system field, the notion of 

fixed mode was introduced and researched by Davison [4],[5],[6],[17]. A mode is said 

to be a decentralized fixed mode (DFM) if it is an eigenvalue of the system matrix 

which can not be altered by some linear feedback components. This is a general-

ization of the uncontrollable or unobservable mode of centralized control problem. 

Traditional treatment of decentralized control structure is to pre-impose a certain 

decentralized information flow constraint, for example, one corresponding to a block 

diagonal feedback structure. Analysis is then applied to this decentralized structure 

to determine if the resultant system possesses any decentralized fixed modes. Such 

approach is useful in standardizing the analysis of decentralized fixed modes but may 

not be as convenient in dealing with the synthesis aspects of the system. Therefore, 

in this thesis, all decentralized structure are considered. It should be noted that any 

general decentralized information flow constraint (DIFC) may be converted into the 

traditional framework by means of non-singular input-output transformation. Find-

ing the fixed modes from the aspect of transmission zero of a plant was addressed 

by Davison and Chang [4]. The advantage of this method not only the developed 

algorithms, but also introduced the certain square subsystems which can effect on 

fixed modes, and easily be applied in computer. Vaz and Davison [16] presented a 
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method to find approximate decentralized fixed modes. 

In the theoretical control area, many new mathematical tools were introduced to 

design control system. For example, the singular value decomposition and principal 

component analysis were given by Klema [11] and Moore [13]. They made use of 

singular value analysis and studied its application for controllability, observability, 

and minimal realization . The model order reduction of a plant can be completed by 

singular value analysis and then the feedback matrix dimension can be further reduced 

to the synthesis system control. In fact, the objective of model reduction is the same as 

that of decentralized feedback structure design, i.e. in order to significantly decrease 

the complexity of the controllers. Brockett [2] developed the linear central control 

theorem based on the transition matrix and the Gramian formula in time domain. 

Although many theorems were developed, but due to the limitation of transition 

matrix in time field. these could not be extended in application of practical plants. 

These theorems are limited in control system theory and analysis. Basile [1.] developed 

the linear control theory by the tools of geometric theory and linear algebra. Based 

on the concept of an invariant space, many useful concepts, theorems, and algorithms 

were presented. Some of the results can be used to decentralized control systems and 

feedback structures to analyze qualitatively. 

This thesis is based on decentralized control theory, linear time-invariant (LTI) 

system theory, linear algebra, geometric theory, and signal flow graph. The objective 

of thesis is to develop theories and algorithms for searching for an optimal decentral-

ized feedback structure. Especially, I hope that a few of new idea in this thesis can 

be considered and developed in future. Because the decentralized feedback structure 

can be determined based on many different criteria, the objectives of this work are: 

1) retain only those gain elements in the feedback matrix that can be used to shift all 

modes and 2) use the minimum number of non-zero elements in the feedback matrix 
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to shift all modes. Since the Gramian formula is inconvenient in analyzing decentral-

ized structure, two additional tools, signal flow graph and geometric approach will be 

introduced. Because the decentralized feedback matrix is determined before a system 

control design on a plant model,the value of each gain element in the decentralized 

feedback matrix often may be independent or partial dependent on the plant model. 

Generally speaking, non-unique solution will often occur. For a synthesis system, its 

structure is not changed, but the some element values in the synthesis model may be 

varied in a certain interval. 

The organization of this thesis is as follows: Chapter 2 determines the problem and 

outline the relevant existing results. From a decentralized control aspect, the notion 

of fixed mode is defined and classified. A few well-known theorems are cited. The 

main result on fixed mode classification is the relationship between fixed modes and 

transmission zeros. Chapter 3 deals with the general feedback structure description in 

terms of matrices and signal flow graphs and determination of the minimal number of 

non-zero elements in the feedback structure necessary for shifting all modes in a plant. 

Finally. Chapter 4 deals with the theoretical development in decentralized feedback 

structure. The use of eigenstructure analysis provides a useful way in characterizing 

decentralized fixed mode and in determining the admissible and optimal feedback 

structure. It

 should be noted that only the selection of admissible decentralized feedback 

structure is considered in this thesis. The stabilizing control system for the synthesis 

system may be developed in future. 

The linear time-invariant system description has many forms. The strictly proper 

state-space description is given by 
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is referred to as a (C, A, B) triple, while general proper dynamic system is given by 

is referred to as a (C, A, B, D) quadruple. For the sake of simplicity, most of the 

analyses in this thesis will he referred to triple system, the method which is used to 

extend the triple system to the quadruple system awaits future research effect. 



CHAPTER 2 

DECENTRALIZED FEEDBACK STRUCTURE 

2.1 Decentralized or Centralized Information Flow 

Constraint 

Decentralized control approach is an extension to centralized control approach. Many 

papers [4] [5] [6] deal with the existence of decentralized fixed modes (DFM) in a large 

scale system under certain decentralized information flow constraint. Assume that 

the following output feedback controller 

is applied to (1.1) or (1.2), where 

The standard decentralized feedback structure is 

block diagonal defined as follow: 

Definition 2.1 (Decentralized Information Flow Constraint)[4] 

The output feedback is said to have a decentralized information flow constraint 

K∆, imposed on linear time-invariant system (1.1) or (1.2) if 

The linear time-invariant system (1.2) can be rewritten to explicitly show the 

dependency on the vs  control agents, i.e. 

6 
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where 

Frequently, the control agents vs  and K∆  structure constraint are determined in 

advance and independent on any element distribution in the A, B, C, D matrices of 

a practical plant model. However, some plant modes may not be shifted by any one 

of K1, i = [1, vs]. In this case, the mi  and ri  in each Ki  need to be increased in order 

to shift all modes. The increase of mi  and ri  forces K∆  to approach Rmxr, central 

control structure. 

Definition 2.2 (Decentralized Fixed Modes)[4] 

Assume that u = Kg. K E K∆  controller is applied to (1.1) or (1.2). There exists 

a decentralized fixed mode (DFM) λc E C with respect to K∆  if 

where a denotes the set of eigenvalues of (.). 

From Definition 2.2, λc is exactly called fixed mode of output feedback control. 

Certainly. there is the fixed mode for state feedback control. For the sake of simplicity, 

the fixed modes mentioned in this thesis correspond to those of output feedback. 

It should be further noted that an open loop system is often called plant (system) 

and a closed loop system is often called synthesis system. For the sake of explicitness, 

the λo, λc are denoted as the open loop eigenvalue and the closed loop eigenvalue 

respectively. If A' = 0 in (2.3), the fixed mode A, of a synthesis system is equal to the 

eigenvalue A, of a plant system. Definition 2.2 implies that any fixed mode is brought 

by any K E KA  in which the element does not shift the eigenvalue of a plant system. 

Definition 2.3 (Centralized Fixed Modes)[4] 
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Assume that u  = Ky, K E Rmxt controller is applied to (1.1) or (1.2). There 

exist a centralized fixed mode (CFM) λc E C if 

Comparing with Definition 2.2, K in Definition 2.3 is not constrained. As we know, 

if a plant system is a minimal realization then the set of centralized fixed modes in 

its synthesis system is empty. Therefore, the centralized fixed modes correspond to 

the uncontrollable eigenvalues and/or the unobservable eigenvalue in a plant system. 

Theorem 2.1 Given a completely controllable and observable quadruple (C, A, B, D) 

system. Assume a. centralized output feedback of the form 

is applied to it. then there does not exist any fixed mode in the synthesis system 

Proof. 	Because the plant. system is controllable and observable, it implies that 

ImB 	o. ker C = ϕ and almost, any eigenvalues of synthesis system can be placed 

with a suitable K [11. Therefore any eigenvalues can be shifted by K E 	D 

Theorem 2.1 implies that if K E K∆  is constrained, then the situation without any 

fixed mode can not be guaranteed even for a controllable and observable plant system. 

In this thesis, we mainly emphasize on how to find the special decentralized feedback 

structure, denoted by K so that no fixed modes occur for the synthesis system when 

the plant is controllable and observable. Because the number of control agents vs  is 

limited for a decentralized control system, the choice K E Rmxr is not suitable and 

may not he admitted to be used for a decentralized control system. On the other 

hand. if using the fixed-limited control agents v3  like (2.2) we may squander many 
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agents which do not shift on some fixed modes. Therefore, a realistic decentralized 

information flow constraint (RDIFC) which depends on the realistic plant model is 

very important. A RDIFC not only should satisfy with the requirement that the va  

control agents be limited in K E K∆  (DIFC), but also should shift all modes (like 

for a controllable and observable system. The RDIFC takes advantage 

of both virtues of 

Definition 2.4 (Realistic Decentralized Information Flow Constraint (RDIFC)) 

The output feedback(2.1) is said to have a realistic decentralized information flow 

constraint K imposed on the linear time-invariant system (1.1) or (1.2) if 

where S is a set which depends on a realistic plant system and a algorithm, which 

will be detailed in later chapters. 

Comparing with (2.2), if S is replaced by K = block diag 	K2 , ..., Kvs) then 

(2.4) is equal to (2.2). Hence the Definition 2.4 contains Definition 2.1 if S is inde-

pendent on the actual plant system and the algorithm. For the decentralized fixed 

mode. The Definition 2.2 is still valid if the K instead of K. . 

2.2 Fixed Model Feature and Classification 

A centralized fixed mode must also be a decentralized fixed mode, due to the de-

centralized feedbacks are contained in the centralized feedback. Although there is 

meaning for the invariant zero in both plant system and synthesis system, for the 

sake of simplicity, the invariant zero[7],[15] mentioned in this thesis often indicates 

that of plant system. According to Theorem 2.1, this result inversely implies that a 

decoupling zero[7],[15] may introduce some fixed modes. Because the decoupling zero 
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will produce an non-minimal realization for a plant system, this implies that there 

exists the internal relationship between invariant zero and fixed mode. 

Definition 2.5 (Transmission Zero)[7][15] 

A complex number A is a transmission zero of a quadruple (C, A, B, D) if 

A complex number λ is a input decoupling zero if rank [ A — λI B < n.. A complex 

A — A/ 
number λ is a output decoupling zero if rank 	 < 72. The transmission zeros 

C 

and decoupling zeros are contained in the set of invariant zero. 

Lemma 2.1 [4] Consider a. quadruple (C, A, B, D) system. the synthesis system 

eigenvalue 	E σ(A) is a decentralized fixed mode with respect to K if and only if 

λc is a transmission zero of all the following square subsystem: 

Corollary 2.1 Consider a quadruple (C, A, B, D) system. λc E σ(A) is a centralized 

fixed mode with respect to Rmxr if and only if λc is a transmission zero of all the 

square subsystems of (C, A, B, D). 
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Figure 2.1: Relationship between Invariant Zeros and Fixed Modes 

Proof. 	The proof is completed by equating K to Rmxr. The details are omitted. 

The fixed modes may be caused by invariant zeros. For the sake of clarity, fixed 

modes can be classified under the invariant zero classification [16]: invariant fixed 

modes and transmission fixed modes. This is because the fixed mode of synthesis 

system are caused by invariant zeros. The relationship can be described like Figure 

2.1. In the case of r = m. all centralized fixed modes (CFM) are contained in the 

transmission zero (TZ) set, i.e. CFM C TZ. In the case of r 	m, the centralized 

fixed modes are not contained in the transmission zero set. i.e. CFM 	TZ[5]. The 

fixed modes which are caused by input decoupling zeros and output decoupling zeros 

are called input fixed mode and output fixed mode respectively. The fixed modes 

which are caused by transmission zeros are called transmission fixed mode. In fact, 

due to the cancellation between a transmission zero and a pole, the transmission zero 

may produce a fixed mode. The invariant fixed modes contain both input fixed modes 

and output fixed modes. 
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Property 2.1 Consider a quadruple (C,A, B,D) system. Let u = Ky, K E K then 

the output fixed modes with K, remain invariant. i.e.RDIFC, can not be shifted by 

They can he shifted only if u = Ka by K E Rmxn. According to 

duality, if u = Ky, K E K then any input fixed modes with K can not be shifted by 

They can be shifted only if 

Proof. 	Because the output fixed modes are generated by a output. decoupling 

zero, the output decoupling zero implies that there exist a disconnection between a 

state and an output. Therefore no output feedback can be imposed on these output 

fixed modes except for a. state feedback. In duality, because the input fixed modes 

are generated by input decoupling zero, the input decoupling zeros implies that there 

exist a disconnection between an input and a deferential state. Therefore no output 

feedback can be imposed on these input fixed modes except for an additional input. 

2.3 Relationship between Signal Flow Graph and Feedback 

Structure 

Definition 2.6 If a. feedback matrix K E Rmxr has no zero elements, then the 

matrix is called full matrix or centralized feedback structure. Otherwise it is called a. 

non-full matrix or decentralized feedback structure. 

Definition 2.7 Let p be a counting function imposed on a K matrix or its structure 

described by 

feedback structure and p(K) = 3. 
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Figure 2.2: The Single-Input and Single Output System Description in Signal Flow 
Graph 

Let the minimal and the maximal number of non-zero elements in K be given 

Generally, the minimization of 

the number of non-zero feedback elements is appealing in the control of large scale 

systems. Hardware complexity can be significantly reduced if a suitable feedback 

structure is chosen so that the resultant system has no fixed modes. 

For a single-input/single-output closed loop control system, the system consists of 

four signal nodes 	.r ) and six oriented branches containing six gains 

which can be described as a signal flow graph in Figure 2.2. 

Decomposing a complex system into interconnected unit systems, for example 

(C',..-1. Bi) for a triple (C..4, B), will facilitate the analysis of the system. The de-

composing method is useful because many properties of a whole system are often 

determined by analyzing the corresponding properties of the subsystems. A complex 

system consisting of numerous interconnected parts can be presented by drawing a 

signal-flow graph. Its application range is restricted to show the internal structure. 

The major advantage of the signal-flow graph is that the input and output decou-

pling zero can be found directly. From them, the invariant fixed mode can be derived 

directly. The disadvantage is that signal-flow graphs does not show the transmission 



14 

zeros of large scale systems and the cancellation transmission fixed mode directly, but 

it can show some transmission fixed modes and be used in computer for large scale 

system control. Please note that a fixed mode exists for VK E K or Rmxt. Therefore 

the transmission fixed modes may be generated by a signal flow stuck, or a stuck 

around, or no signal flow pass through these modes which will be mentioned more 

detail in Chapter 3. 

A signal-flow graph is composed of the brunches and the nodes. A brunch has 

oriented characteristics by an arrow. The nodes are classified as independent nodes 

and dependent nodes. Clearly, every dependent node represents a linear equation, 

so that the graph is equivalent to as many linear equations with many unknown 

variables, i.e. dependent nodes. When the feedback structure is synthesized for 

a plant system. the signal flow graph has an additional branch for every non-zero 

element in feedback matrix. The zero elements do not map any one corresponding 

branch. Some nodes may change from independent node into dependent node due to 

the additional interconnection by non-zero feedback gains. 

Definition 2.8 An oriented cyclic loop with respect to u node is called an active 

loop. The corresponding node on an active loop is called a life node. Any node in a 

non-active loop is called fixed or dead node. 

Property 2.2 Given a. triple (A,13, C) and assume the number of distinct eigen-

values v (< n) and A matrix can be transformed into a Jordan form with v (< 

distinct and elementary Jordan blocks, i.e. every algebraic multiplicity is equal to the 

corresponding geometric multiplicity. In this condition, a Ph  mode can be shifted if 

and only if the corresponding xi is life node. 

Proof. 	Because any an 	mode exists in 5: 	xi, the signal flow in a active loop 

for shifting the i th  mode must enter 	node. Because the fixed mode is based on any 
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Figure 2.3: The Signal Flow Graph of A Synthesis System 

K and r distinct eigenvalues condition, therefore the active loop can not generate a 

constant transmission zero for any K if the cancellation[16] between zero and pole 

and the decoupling zero in transfer function does not occur.  

Example 2.2 Consider a plant 

Example 2.3 Given a triple (C, A, B) as A = I2, B 	C = 1 1 . We can 

find that x3(x3). x2(x2) are live nodes, but the eigenvalue of this plant λo = 1 is non-

distinct in two elementary Jordan blocks. Therefore the eigenvalue of the synthesis 

system λc may a fixed mode. We can verify this result by obtaining the transfer 
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Figure 2.4: Invariant Fixed Mode Description 

functions of the plant system (C, A, B) and the synthesis system 

denoted by Hc(s) and Hc(s) respectively. are given 

The one of t wo eigenvalues λc =λo = 1 is a fixed mode caused by the cancellation 

between a transmission zero and a pole in the both system. 

Corollary 2.2 An ith  mode must be fixed mode if and only if the corresponding 

is a dead node for a minimal realization system. 

i.e. cross out k12, then A, = 1 is fixed 

mode. because the corresponding 2 , x3  are not in any oriented cycle loop. 

Example 2.5 In Figure 2.4, x1, x2 are dead nodes. So, A, = 1 is either input 

invariant mode or output invariant fixed mode. 

2.4 Decentralized Feedback Structure Analysis 

The invariant fixed modes are generated by decoupling zeros. This type of fixed 

modes can not be shifted directly by output feedback structure. In this thesis, we 
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mainly consider transmission fixed modes which are not caused by cancellation zero 

with certain K . 

General feedback structure can be described by a matrix and a signal flow graph. 

ki2  ] 
For Example 2.2, we can take K = k21 

	22 
too. In Example 2.5, if add only k22, 

k 

the "fixed" mode A, = 1 can now be shifted by either k12  or k22  because the loops is 

active, i.e. 

In general, several different feedback elements may shift the same mode. It is of 

interest to come up with an "minimal" feedback structure in which the number of 

non-zero feedback elements p(K) is minimized. 

Definition 2.9 A feedback structure, denoted by K, is called an admissible decen-

tralized feedback structure if the resultant synthesis has no DFMs. 

Definition 2.10 A feedback structure, denoted by K*, is called minimal decentral-

ized feedback structure if it is an admissible feedback structure with the least number 

of non-zero elements. 

Example 2.6 In Figure 2.3 if add k11  and k22, we can conclude that 

The admissible feedback structure is generally non-unique. This example give us 

the follow admissible feedback structure denoted by K and minimal feedback struc-

ture denoted by K-  in matrix description: 
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The corresponding feedback structures described by the signal flow graphs are in 

Figure 2.5 

We can find that K* C K. As the plant complexity increase, the signal flow graph 

description of the feedback structures becomes less intuitive. Now let us look at the 

fixed mode from invariant zero for Example 2.2. 

This means that in this plant no invariant fixed mode exists for a suitable feedback 

we can find that A = 1 is either input and output decoupling zeros. Therefore λ = 1 

is also an invariant fixed mode. Generally, the invariant fixed mode is in no way to 

be moved by the output feedback controller. If there exists a decoupling zero, the 

system must exist on inherent fixed mode, because of non-minimal realization. 

Based on the Gauss Elimination theory[14], the D term in (2.5) may alter the 

system matrix rank, i.e. changing the possibility of the transmission zero emergence. 
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Figure 2.5: Feedback Structure Description in Signal Flow Graph 
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Therefore the full rank of D matrix may compensate the non-full rank of C or B 

matrices and decrease the possibility of the fixed mode emergence in the decentralized 

control. 

The minimal feedback structure is desirable for reduction of hardware complexity. 

It is also appealing because it saves many feedback components without reducing the 

function of mode shifting and generating any new fixed mode. In later Chapters, the 

search procedure for obtaining the minimal and admissible feedback structures will 

he addressed. 



CHAPTER 3 

DECENTRALIZED FEEDBACK STRUCTURE SEARCH 

In Chapter 2, the realistic decentralized information flow constraint definition and 

decentralized feedback structure are defined. In this Chapter, two methods to search 

decentralized feedback structure are introduced: 1) feedback structure search based 

on the Jordan normal form and; 2) the signal flow graph. 

3.1 The Jordan Normal Form Method 

Since the Jordan normal form provides good information about the structure of a 

linear dynamic system, it can be easily to analyze the complete controllability and 

observability with respect to this form[1]. 

The linear tin-le-invariant system (1.1) can be'transformed into 

Jordan blocks. This means that A may have at most v distinct eigenvalues. The 

notations are 

where 

21 



22 

are the j' Jordan block and the ith  elementary Jordan block respectively. Let 

Denote the last row of 

and the first column of every Ci  as 

corresponding to every elementary Jordan block. 

Many methods exist to determine the transform matrix T [14],[3], i.e. the right 

generalized modal matrix. 

Lemma 3.1 [1] Given a triple (C, A, B). A suitable transformation in the complex 

field yields the equivalent system (C, J0, B)(3.1). The pair (A, B) is controllable if 

and only if the every bi  corresponding to the last row of every elementary Jordan 

block is not zero. The pair (C, A) is observable if and only if every 	corresponding 

to the first column of every elementary Jordan block is not zero. 

The set S of Definition 2.4 and its RDIFC based on the Jordan normal form 

method can now' be defined as follows: 

Definition 3.1 The output feedback, u = Ii y, is said to have a realistic decentralized 

information flow• constraint K imposed on the linear time-invariant system (1.1) if 

E K where 
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The set 

contains pair tuples which are dependent on the actual plant mode and describes the 

realistic internal connection information. 

Theorem 3.1 (K, K" Existence for minimal realization for a plant model) 

Given a triple (C, A, B) system which is controllable and observable, there exists 

at least one K such that plant (C, A, B) has no fixed mode- with respect to K E K. 

In particular, K can be reduced into the upper bound structure K" which contains 

min( e. r x in) non-zero elements for an optimal structure K. 

Proof. 	Because (1.1), (1.2) can be transformed into v subsystems 

(3.1 ).(3.2) corresponding to v elementary Jordan block which are equivalent to (1.1), 

( 1.2). every subsystem defined by one elementary Jordan block is controllable and 

observable based on Lemma 3.1. Every subsystem with its feedback has no fixed 

mode. Therefore, all subsystem feedbacks synthesize a K E K such that the syn-

thesis system has 110 fixed mode, because K depends on the actual model 

according to Theorem 2.1 and 

Every controllable and observable subsystem needs at least one feedback to shift 

its mode distinctly. The number of direct feedback components which shift modes is 

less than or equal to the any number of indirect feedback components which shift the 

same modes. Therefore the sum of every subsystem feedback element in 

is just. v non-zero elements which belongs to direct feedback elements in the feedback 

matrix. On the other hand, many subsystems use a common input node and/or a 

common output node. Therefore the number of non-zero element in K" is min(v, rm). 

□  



and 

where 
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It should be noted that the relationship among the feedback structures is K C 

K"⊆ K ⊆ Rmxr. Based on Theorem 3.1, an algorithm is derived to determine K. 

Algorithm 3.1 ( Determine K and K" ) 

1. Transform a triple (C, A, B) system into its Jordan normal form (C, 	B). 

2. Find a pair (i k , i 1 ) such that column in B and row in C respectively are 

which is satisfied with rank 

\{.} is an operator of excluding{.). For the 	elementary Jordan block, obtain 

For v elementary Jordan blocks, we can get 

3. The decentralized feedback structure is given by 

where S is given by (3.3),(3.4). 

4. The optimal decentralized feedback structure is given by 

is given by the following algorithm 
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Remark 3.1 The feedback structure relationship is K"⊆ K ⊆ Rmxr.  . Generally, the 

is unique. but. K" may not he unique. K" may not be the best feedback structure 

for shifting a fixed mode because the elimination of the feedback signal flows mutually 

may be such that the region of mode variability is small. 

For an illustration of the algorithm, take the plant• model in Example 2.2 again. 

The plant is already in Jordan normal form with two elementary Jordan blocks 

= 2) and is controllable and observable. According to the previous algorithm, we 

can find that 
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The K in which all feedback elements can directly shift some modes is called di-

rect feedback structure. In fact, the K obtained from Jordan normal form method 

is a direct feedback structure. Because the non-zero elements of K is derived from 

each elementary Jordan block subsystem by direct feedback connection to shift cor-

responding modes, this method does not consider the indirect feedback connections 

to shift corresponding and other modes. in previous example, S loses two indirect 

feedback structure, i.e. 

From this set, we can find that {(l, 1), (2,2)) belongs to the pair set of (ik,il). This 

means that the pair set existing appears in pair form. We can conclude that the triple 

or quadruple or more may exist and that the k number indices of the set can shift at 
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least k modes. In the next section, we will see a graphic method which can find the 

indixect structures. 

3.2 The Signal Flow Graph Method 

A multivariable control system is composed of many single variable states. Although 

multivariable state nodes may contain many single state nodes like and z. but from 

the n, y nodes aspect, we can simply consider that there are many subsystems. In an 

open loop system the u is called an independent node. In a closed loop system all 

nodes are called dependent nodes, hut a u node can still be considered as independent 

node. called start node, because it contains a signal flow path. 

Because the signal flow graph tool may be difficult to analyze a large scale system, 

the signal flow definition, classification, and decomposition must be required for a 

large scale system analysis. Specifically, because a signal flow graph tool is easily 

realized in computer system, the standard definition of signal flow is needed to operate 

a complex signal flow graph. 

Definition 3.2 ( Control Cycle Unit) 

The signal flow cycle form which starts from ui node, goes through at least a state 

node x k , and ends to ui  node in Figure 3.1 (a) is defined as a. unit of the control cycle 

with r k . Every control cycle has common features: 1) the start node and the end node 

of a signal flow are the same input node; 2) a signal flow completely goes through x k 

to x k .The types of control cycle can be classified as independent like Figure 3.1 (a) 

and dependent. Dependent control cycle has: 

I. y-dependent control cycle with x k  in Figure 3.1 (b). It has other feature: a 

signal flow goes through a ym  node (m k) before it comes down x k  node. 
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2. s-dependent control cycle with x k  in Figure 3.1 (c),(d). It has other feature: 

a. signal flow goes through a xm or xm  node (m. 	k) before it comes down xk  

node. 

3. u-dependent control cycle with x k  in Figure 3.1 (e). It has other feature: a 

signal flow goes through a urn  node (m i) before it comes down x k  node. 

From Figure 3.1 and features of control cycle, we can conclude that the y-dependent 

control cycle must contain a u-dependent control cycle, and vice versa. The any x-

dependent control cycle must contain a control cycle with 5, besides with xk . A 

simple single loop is the independent control cycle with xi,. The feedback connec-

tional feature in independent and dependent control cycles are the same as those of 

direct. and indirect. connections, respectively. 

Definition 3.3 ( Deadlock Unit) 

The non-cyclic signal flow form which starts from node 	goes through at least 

a state node xk, and ends to any node except ui  in Figure 3.2 (a) is defined as a unit 

of deadlock with xk. Every deadlock unit has common feature: signal flow is stuck by 

the last. node except 	The types of deadlock with 5k  can be classified as self-node 

deadlock in Figure 3.2 (a) and the other node deadlock. The other deadlock has are: 

1. y-deadlock with 5k  in Figure 3.2 (b). 

2. s-deadlock with 5k  in Figure 3.2 (c). 

3. u-deadlock with 5k  in Figure 3.2 (d). 

From Figure 3.2 and features of deadlock unit, we can conclude that two u-

deadlock unit series connection may be a control cycle unit if the end node in a 
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Figure 3.1: Signal Flow Type 
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Figure 3.2: Signal Flow Types II 

deadlock unit is equal to the start node in another deadlock unit. A control cycle 

unit may contain one or more u-deadlock unit.. 

Definition 3.4 ( Shortcut Unit) 

The signal flow form which starts from a node u7 , does not go through any one 

xk node and ends at a. ui node in Figure 3.2 (e) is defined as an unit of shortcut with 

u. Every shortcut unit has a common feature: a. signal flow shortcut is caused by d 

(feedforward) or k (feedback) gains between v node and y node without other gains 

in this signal flow. 



types in the linear system: 
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3.2.1 Control System. Tree Unit 

Consider a. quadruple (C, A, B, D) system, then every vector and matrix in this system 

can be described as: 

For the sake of simplicity, an elementary unit tree containing two nodes and one gain 

is defined. Any elementary unit tree can be composed of one start node and many 

end nodes with same type. For example, (u, x) can he described as m elementary 

unit trees in 3.3(d). According to the above vectors and matrices, we can draw a set 

of control cycles with x k for each ui  based on elementary unit types. Firstly, we draw 

a. set of elementary pair nodes into elementary unit trees in Figure 3.3 which have six 

We can find that the total search steps of single control cycles are rm, nrm, 
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Figure 3.3: Elementary Unit Trees 
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Figure 3.4: Search Steps in Single Control Cycles 
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n(n — 1)rm, and n!rm for the forms in Figure 3.4 (a), (b), (c), and (d) respectively. 

These search feature is one of the essential searches which can directly find the ui  

node and does not continually make a deep search for 	Hence the independent 

control cycle is safe for a control system due to the fact that it only corresponds to a 

single feedback gain kij, i.e. the signal flow transfer does not need any other feedback 

components as the bridges to connect u nodes and y nodes. A u or y dependent 

control cycle is seemly unsafe for a control system relatively, because it consists of 

many different gain kij s in series form. If one 	in the u- or y- dependent control cycle 

is broken then signal flow is stuck and whole modes in this cycle unit can not move to 

theix oxiented places in a. left-half S plan. The essential graphic path for searching a 

contxol cycle unit or u-deadlock unit tree and their search steps are shown in Figure 

3.5. 

Generally, a LTI system can be equivalently transformed into the Jordan normal 

foxm. Note that the unit tree (x, X) is constrained only by the multiplicity of eigen-

values and its branch number is only one for single distinct eigenvalues in the Jordan 

normal form. 

Example 3.2 Consider Example 3.1. The corresponding elementary unit trees are 

in Figure 3.6. According to the oriented connection of elementary unit tree as 

and 

direction, the corresponding control cycle unit and u-deadlock unit axe constructed in 

Figure 3.7. Figure 3.7 shows that x2, x3 are live nodes and their states, x2  and x3, can 

be adjusted by signal flow between (u1, u1) if k12  changes or between (u1,u2)(u2,u1) 
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Figure 3.5: Essential Search Trees 
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if k11.  and/or k22 change, where (.)(.) is denoted as unit oriented connection. The 

live node, x2  can be adjusted by signal flow between (u2,u2 ) if k21,k22  change 

respectively or between (u2,u1)(u1,u2) if k11  and/or k22  change. The eigenvalues 

corresponding to live state nodes can be shifted. For the sake of explicitness, the 

relationship in which a x can be adjusted by a k is denoted by x(k). 

We can define a tuple to describe the unit of a n-deadlock or a u-control cycle 

with xk  as 

where 	is a starting independent input, xk  a controlled state, 	a feedback gain, 

and ui2 is a ending dependent input . Each variable is a single variable for an ele-

mentary unit (ui1,  ui2 ). x i  is used as a symbol for (x1, x1) with a signal flow to avoid 

deadlock and short cut states. Therefore in this example we can find that elementary 

units can be described by four cases: 

3.2.1 Control Tuple Space Method 

Definition 3.5 A tuple of control is a. set of nodes and branches, which can describe 

a control signal flow and is denoted by 

where ui, xk, y1 are nodes in the graph, and klj is the corresponding output feed- 

back gain. 27k , 	can be a set of x k's, yl's, 	respectively, for example 

are a starting element and a ending element, respec-

is a unique oriented set. 

Definition 3.6 ( Control Tuple Space T) 



Figure 3.6: Elementary Unit Tree for an Example 
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Figure 3.7: Essential Control Search Tree for An Example 
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A set of control tuples organizes a space of a control system, denoted by T, which. 

satisfies the following conditions with + oriented operation: 

Property 3.1 The operational result of any two control tuples is contained in tuple 

space T. i.e. T is closed. 

Example 3.3 Consider Example 3.1. We can find the four control tuples in Figure 

3.7: 

where t1. t4, are control cycles, t2 , 23  are u-deadlock based on the tuple description 

in (3.5). Please note that the description x(k) in 23, 2 4  which reflects the relationship 

bet weer a and k. In fact., the t3, t4  are not. unique. They contain two u-deadlock 

units and two control cycle units, respectively as follows. 

It should be noted that the u-deadlock unit can be changed into control cycle if 

and only if there exists at least an intermediate tuple such that these two unit can 

be connected by it.. 
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Therefore the total control cycles are 

Based on the above four cases, we can easily conclude that 

Definition 3.7 The any type of unit is called elementary unit. if it contains only one 

single flow. The relationship between x and k is unique. 

Theorem 3.2 The x(k) in the new triple t12 or t21, which is produced by any two 

elementary u-deadlock unit tuples t1  and t 2  operating with +, is unique if 

and t2 	ϕ. And the corresponding new tuples are a control cycle unit. 

therefore The x(k) in the new triple t 1 2 or t21  23 are unique, i.e. x1(k11),x2(k21). 
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Clearly any x(k) in elementary unit is unique. If x(k) is unique, then the corre-

sponding tuple is an elementary unit. Therefore the elementary unit may be cascaded 

by many other elementary units. 

Corollary 3.1 If finite elementary unit tuples operate with + and produce at least 

two new non empty tuples, then x(k) relationship in the new tuples are unique and 

the corresponding new tuples are a control cycle unit. If any finite elementary unit 

tuples operate with + and produce the new tuples with non unique x(k), then the 

new tuples are deadlock unit. 

Algorithm 3.2 ( Construct the Elementary Tuple and Control Cycle Unit) 

1. Transform the state-space equation into an elementary tree set as in Figure 3.3. 

2. Make the oriented connecting operation + in related elementary set as following 

direction. 

3. Find all elementary tuples 

1. Carry out the operation + for all elementary tuples, find all control cycles in 

T. 
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Example 3.5 Consider Example 3.1, then 

According to (3.6). the corresponding direction is 

therefore the all elementary tuples are 

where 1,, 15, i7 are control cycles; t 2 , t 4 , t6  are a-deadlocks; and t3  is an x-deadlock. 

The control cycles are given by t2 t4, t4 t2, t2 + t6, t6 t2, t1, t5, and t 7 . The total 

number of control cycles in T is seven for this example. 

Algorithm 3.3 ( Minimize K Structure Elements ). 

1

. Categorize the control cycles in 
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2. Choose just one control cycle in each type and then make combinations in tuples 

for an states. 

3. Find the minimal number of K elements with all live state nodes x in all com-

bination set, through the standard sorting algorithms. 

Example 3.6 Continue Example 3.5. Categorize the control cycle into two type:(u1, u1 ) 

and (1/ 2. u2 ). i.e. 

According to Corollary 3.1 

find a 3 x 4 combination,  

therefore we can 

The minimal number of elements of combination for K are 

Algorithm :3.2, can be realized in a. computer through a certain stream operation 

by a hashing function search[9]. Construct a function to search K structure with 

input (C..4. I3.1)) system and output. the optimal structure K. 



CHAPTER 4 

THEORETICAL DEVELOPMENT ON FEEDBACK 

STRUCTURE 

In Chapter 3, the essential decentralized feedback structures are obtained by the 

Jordan normal form method and the signal flow graph methods. In this Chapter, 

the closed loop eigenstructure under RDIFC is analyzed to minimize the feedback 

structure for a synthesis system. Firstly, the general relationships of eignevectors and 

eigenvalues of an open loop and the corresponding closed loop systems are discussed. 

Secondly. the relationships are considered for the system in which the A is the diagonal 

matrix. Thirdly, the relationship are further developed to the system in which the 

A contains only one elementary Jordan block and then to the system in which A 

contains many elementary Jordan blocks. Finally, the relationships between a plant 

and corresponding synthesis system under right and left eigenvectors are developed. 

4.1 General Theory for Eigenvalue and Eigenvector 

Consider a triple (C. A, B) and assume that there exists aK E K such that corre- 

sponding synthesis system is (C, A+ BKC, B). The ith  open loop system eigenvalue 

and the eigenvector 	for λoi;  may be changed into 

and/or 	by K imposed or may he invariant. To classify the variation of eigenvalues 

and eigenvectors. a definition of characteristics of them is given as follow: 

Definition 4.1 Given a triple (C, A, B), a RDIFC K, and the corresponding syn- 

thesis system (C, A + BKC, B) for K E K. The ith  synthesis system eigenvalue 

is said to be fixed if λci E σ(A), i.e. 	= λoi, for VK E K. Similarly, the 

ith eight eigenvector Vci  of the corresponding synthesis system is said to be fixed if 
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As the duality of 

eigenvectors, the ith  left eigenvector Wci  of the corresponding synthesis system is said 

to he fixed if 

Theorem 4.1 Consider a triple (C, A, B) and the corresponding synthesis system 

systems. Assume that (λoi,  Voi) and (λci, V ci) are the corresponding 

eigenvalue and eigenvector pairs for two systems, respectively. Then 

Please note that Vci  variation is the vector direction change in a geometric space. 

A free Vci  means that Vci is linearly independent of the corresponding Voi. λci  change 

is scale variation in complex field. Generally, the λci  free does not preserve the Vci 

free. vice versa. Because the BKCVoi  item includes the information of both systems, 

i.e. the plant system and the synthesis system, it can be used to reflect the properties 

of their relationship. 

According to the Definition 4.1 and an assumption of A — λoi I 	0, the states of 

eigenvalues and right eigenvectors changed from a pair 



Substituting AVoi 	= Voiλoi into (4.3) and cancelling α 	0 it becomes 
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by assump- 

tion. Cancelling o 	0, we obtain 

Hence 

This shows that Voi  is not only A invariant, but also BKC invariant when 

To establish the second condition, assume BKCVoi = 0. However, a result deduced 

from (4A) is 



Example 4.1 Consider a plant system as 

where The eigenval- 

Therefore, this equation does not exist and a contradiction to (4.4). ❑ 

Remark 4.1 Based on Properties 4.1-4.4, it. can be deduced that. 
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Based on the assumption, 

BKC 	) and the Ph eigenvalue λci = 	Substituting λci = λoi into (4.5), we obtaining 

ues and right eigenvectors of the plant are given by 

Consider the four elementary output feedback cases with u = Ky: 
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the corresponding eigenvalues, eigenvectors are given by 

Furthermore, 

Hence. BKCV01  and BKCVo2 satisfy Property 4.3 and Property 4.4 respec-

tively. 

Hence, BKCVo1 and BKCVo2 satisfy Property 4.4 and Property 4.3 respec-

tively. 
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Hence, BKCVo1  and BKCV/o2  satisfy Property 4.1 and Property 4.4 respec-

tively. 

Corollary 4.1 

Proof. 	Consider BKCV/oi  = 0 with rankB = m. Pre-multiply B by its left 

pseudo-inverse (BTB)-1BT yields 

for BKCVoi 	0. the proof is similar and is ornitted. □  

Example 4.2 Consider Example 4.1. Assume the feedback of controllers is 
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Assume k21 	0. from the first row of the previous matrix, we can get 

substitute it. into the second row of same matrix, the result is given by 

= 0 are trivial solution. This implies that two corresponding equations are 

mutually dependent. This result can be verified as follows: 

Assume λc1 	a te  from the second row of matrix , the corresponding equation is 

satisfying with Property 4.2. 

For the ith  left eigenvector Woi, the states of eigenvalues and left eigenvectors from 

a pair (Woi, λoi ) to a pair (Wci, λci) with respect to K E K have four cases as those 

of the ith  right elgenvector. The dual properties of Properties 4.1-4.4 are given by 

Property 4.5 
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Proof. 	The proof is similar to that of Properties 4.1-4.4 and is omitted. 

4.2 Eigenvector and Eigenvalue Analysis for A Diagonal 

Matrix 

Property 4.6 Given the triple (C, A, B), where A is assumed to have n distinct 

are corresponding right modal matrix and eigen-

value matrix for the synthesis system (C, A+B KC, B) with respect to K E K, respec-

tively. Assume that the synthesis system has a fixed mode 

for all K. Then 

Consider a triple (C, A, B). Let Vo, Do be the right modal matrix and eigenvalue 

matrix of A, respectively. It is well known that if the eigenvalues are distinct, then 
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and 

Pre-multiply and post-multiply 	in the left equation of (4.7), then take transpose on 

it . The result is the right equation of (4.7). Because 

Consider a triple(C, A + B K C, B), let Z t., Dc be the right modal matrix and 

the diagonal eigenvalues matrix, respectively. Assume that all the eigenvalues are 

distinct. Then 

Theorem 4.2 Consider a. triple (C, A, B) system and assume λoi E σ(A) with Voi. 

There exists VKϵK such that synthesis system 

Then Vci is a fixed eigenvector with respect to K if and only if 



Because 	= Voiλoi, cancelling 

Comparing with 

a E C\0 and 

we can find a a such that Vci  = αVoi, 

(←) Vci  fixed means that 

= λci, we can find that the invariant equation 

into 

Together with the condition 

of (C, A + BKC, B) change 
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Multiply a 0 and add AVoi  in both sides of the previous equation 



This equation can be reduced to 

then 

and 
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Therefore we can conclude that. Vc1 is fixed for λc1 fixed, Vc2 free for λc2  fixed in 

Theorem 4.3 Consider a triple (C, A, B). Assume that. A is a. diagonal matrix with 

distinct eigenvalues. The synthesis system (C, A+ BK C. B) has a decentralized fixed 

mode(DFM) λci with respect to VK E K if and only if the il k  row or the ith column 

of BKC is identically zero. 

Proof. 	Because A is diagonal matrix, A = Do and Vo = 	= 	From Theorem 

4.2, we can conclude that 



Therefore, together with the (4.9) 

55 

From (4.8), the dual of (4.9) and Property 4.5, we can conclude that 

and (4.10), we obtain 

= 	↔ the i t h  column and/or the ith  row of BKC are zero. 0 

Corollary 4.2 Consider a. triple (C, A, B) system. Assume A is a diagonal matrix. 

The synthesis system (C, A + BKC, B) has no DFM with respect to K E K if and 

only if BKC has no zero rows and no zero columns. 

Therefore, using Corollary 4.2 and inspection, the special BKC structures, which 

may not produce any one DFM, are given by 

the corxesponding optimal feedback structures are 

Therefore. because there exists the 3rd  zero column in BKC, λc3  = 3 is a fixed mode. 
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Therefore. using Corollary 4.2 by inspection, the special BKC structures, which may 

not produce any one DFM, are given by 

the corresponding feedback structures are 

In Chapter 2, p is defined as a counting function on a K, It can be extended to 

Definition 4.2 (Lattice)[1] A lattice L is partially ordered set in which for any pair 

. y E L there exists a least upper bound, i.e. an n ≥ X, 7) ≥ y and z ≥  7) for all 

and greatest lower bound, i.e. an c E L such that 

Definition 4.3 For any a T E C"", we can 'decompose T as row vectors, column 

vectors, and R distinct symbol element matrices, i.e. 
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The R distinct matrices T (k 	2,...,R) contain R distinct symbol elements 

kij. respectively. .Any two element set intersection of the distinct matrices is empty, 

i.e. 

Based on the previous Theorems 4.3 and Corollary 4.2, an algorithm is devised to 

determine K as follows. 

Algorithm 4.1 (Determine K and K*) 

1. Given a controllable and observable triple (C, A, B) system in which the eigen-

values of A are distinct. Transform (C, A, B) into its diagonal normal form 

(O. Do. f3) through 

2. Calculate T BKC by the symbol method for K = [kij]. 

3. Find K is denoted in the Chapter 2 by 

4. Calculate R = p(K), where K E K. 

5. According to each kij 	0, decompose T as R distinct matrices Ti°,(k = 

R) by (4.11). 
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6. Calculate p(Tok) for every Tok, construct a lattice [1] as 

with partially ordered set based on 

7. Make combination for any distinct matrices in L from one-matrix combination 

to min(n, r x m)-matrix combination. Start from To1 and end to 7. T*  is 

denoted by 

such that T*  has no zero rows and columns as (4.11), i.e. 

until at least one of ih-matrix combination is satisfied with (4.12)-(4.13). 

8. Find K*  is denoted by 

Example 4.8 Consider Example 4.1, let 

then 
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because 

Now start from one-matrix combination from To1 and end to 

matrix combination, in which 

as the same way. we can find other T*  = T° +To3 and stop more elementary matrices 

combination. Based on Algorithm 4.1 and T*  the optimal feedback structures are 

Remark 4.2 From Algorithm 4.1 and Example 4.8, we can conclude that 

1. T is unique but T*  may he non-unique for a. plant system. 

2. K is unique but. K*  may be non-unique for a plant system. 

Example 4.9 From Example 4.6, the T is given by 
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Based on (4.12)-(4.13) in step 7 of Algorithm 4.1, we can find that 

Therefore the corresponding minimal feedback structures are 

4.3 Eigenvector and Eigenvalue Analysis for Jordan Form 

For the case that A can not be diagonalized. the Jordan form of A may be used. 

The theorems and corollaries in the previous section remains valid for Jordan form. 

For the sake of explicitness in this section, firstly, the A is assumed as an elementary 

Jordan block in the theoretical development, and then the A is assumed as the Jordan 

form in which contains many elementary Jordan blocks. 

Theorem 4.4 Consider a. triple (C, A, B). Assume A, E σ(A) with geometric multi-

plicity p = a and the corresponding right generalized modal matrix V,. There exists 

an K E K such that a synthesis system (C, .4 B K C, B) has λc E σ(A B K C) 

with geometric multiplicity n and the corresponding right generalized modal matrix 

Vc. Then 
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In following properties, the Jordan form with only one Jordan block is considered 

i.e. µ = m The characteristics of BKCVoi  with respect to the "fixedness" of the 

eigenvalue and right generalized eigenvectox are described: 



obviously means 

is independent of other Jordan blocks if they 

1, then 
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Corollary 4,3 Consider the elementary Jordan block for A or A + BKC. Assume 

with 1/c.  Let the geometric multiplicities for 

both system be a, then 
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Corollary 4.4 Consider the case that both A and A + BKC consist of a single 

elementary Jordan block. 

Proof. 	The proof is similar to that of Property 4.7-4.10 and is omitted. 

For the ith  left generalized eigenvector Woi, the states of eigenvalues and left 

eigenvectors changed from a pair (Woi, λo) to a pair (Wci, λc) with respect to K E K   

have four cases as those of the ith  right generalized eigenvector. For a. Jordan block, 

the dual properties and corollary of Properties 4.1-4.4 and Corollary 4.2, respectively, 

are given by: 

Property 4.11 Consider the case that both A and A + BKC consist of a single 

elementary Jordan block. 
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Corollary 4.5 Consider the case that both A and A + BKC consist of a single 

elementary Jordan block. 

Corollaxy 4.6 Consider the case that both A and A + BKC consist of a single 

elementary Jordan block. 

Theorem 4.5 Consider a triple (C, A, B). Assume A E a(.4) with geometric multi-

plicity n and Vo then 
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Pre-multiply and post-multiply Wo  in the left equation of the result 1 in Theorem 

Because the leading independent vectors are Vo1  and WTon corresponding to the 

other elementary Jordan blocks if they exist, therefore, the relationship is just an 

inverse order in the elementary Jordan block. 

Theorem 4.6 Consider a triple (C, A, B). Assume λo  E a(A) with geometric mul- 

tiplicity n and right. generalized modal matrix 	corresponding to the elementary 

Jordan block. There exists V K EK (RDIFC) such that synthesis system (C, A + 

with geometric multiplicity n and right generalized 

modal matrix Vc. Then Vc is fixed with K EK if and only if 

Proof. 
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Because 

Example 4.10 Consider the plant model 
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also free. 

Theoxem 4.7 Consider a triple (C, A, B). Assume that A is the elementary Jordan 

block. The synthesis system (C, A + BKC,B) has a DFM λc with respect to 

if and only if BKC is a zero matrix for 

Proof. 	Because A = Jo  then V = 110 = In . From Theorem 4.6, we can conclude 

that λc is fixed if and only if 

0. 

Remark 4.3 Theorem 4.7 is almost same as Theorem 4.3 except A. One is diagonal 

matrix, other is Jordan block. Comparing the two theorems, we can conclude that 

every Jordan block in Jordan form satisfies the theorems based on Jordan block. 

.Jordan form also is satisfied with the separation rule. 

Theorem 4.8 Consider a triple (C. A, B). Assume λo E a(A) with geometric mul-

tiplicity n and right generalized modal matrix Vo corresponding to the elementary 

Jordan block. There exists a K EK (RDIFC) such that synthesis system (C, A + 

with geometric multiplicity n  and right generalized 

modal matrix 	. Then Vc1  E Vc is fixed with respect to K EK if and only if 
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Proof. 

From the result 2 in Theorem 4.5, we can conclude that 

Remark 4.4 Theorem 4.8 explanation is more precise then Theorem 4.6 for the 

condition of a Vc1  fixed. 

Theorem 4.9 Consider a triple (C, A, B). Assume A as the elementary Jordan 

block. The synthesis system (C, A -3- B KC, B) has a DFM with respect to K EK if 

and only if BKC has the first zero column or the last zero row. 



From Theorem 4.8, Proof. 
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eve know that axed. Since therefore 

(see Theorem 4.5 and Property 4.11) for A fixed and W0  

I if and only if the last row vector is zero in BKC 

Example 4.11 Consider the plant model in Example 4.10. Then 

mentioned in the pre- According to Theorem 4.11, we can find that 

BKCVo1  = 0 if and only if the first column vector is zero column vector in BKC 

corresponding to the elementary Jordan block. Because the dual of BKCVo1 = 0 

corresponding to the elementary Jordan block. 0 

Theorem 4.10 Consider a triple (C, A, B) with λo E σ(A), and assume A as the 

Jordan block. The synthesis system (A, A + BKA, B) has no DFM with respect to 

(please note that this is only a necessary condition). 

Pxoof. 	(omit) see proof in Property 4.7, 4.8. 0 

The follow theoretic development is described under an assumption that A is 

Jordan form containing more than one elementary Jordan block. 

Theorem 4.11 Consider a triple (C, A, B). Assume A as the Jordan form. The 

synthesis system (C, A + BKC, B) has no DFM with respect to K EK if and only if 

the first column vectors and the last row vectors in BKC matrix, corresponding to 

each elementary Jordan block of A, are not zero vectors. 

Proof. 	(omit) It is easily concluded from Theorem 4.9, 4.10 and the Jordan block 

separation principal [14]. 0 
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Figure 4.1: Signal Flow Graph for An Example 

result by signal flow graph. Figure 4.1 shows that if add a controller between u2  and 

m with K*, then the signal flow from u2  to y1  is a cycle through two modes. No fixed 

mode exists. 

Example 4.12 Consider the plant model 

Because Jo  has two Jordan blocks, based on Theorem 4.11 and inspection, T* is 

selected by 
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Both matrices of T*  satisfy the conditions of Theorem 4.11 corresponding to 

each elementary Jordan blocks. Therefore, for preserving the elements, the 

Algorithm 4.2 (Find K and K* for a λoi with geometric multiplicity ≥ 1) 

1. Given a (C, A, B) controllable and observable system. Transform (C, A, B) into 

Jordan normal form 

2. Calculate T =A  B K C by the partial symbol method for K. 	[kij]. 

3. Find decentralized feedback structure 

4. Calculate R = p(K). 

5. According ki j 	0, decompose T as R distinct matrices 

1.'3..... R as in Definition 4.3. 

6. Calculate each p(Tok) for Tok, then construct a lattice 

partially ordered set based on 

7. Make combination for R distinct matrices Tok, k = 1, 2, ..., R, from one to 

min( v, 1'772 ), Start from T1° . 

Denote T*  by 

such that T*  has no the first zero column and no the last zero row corresponding 

to each elementary Jordan block, i.e. 



and 
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where assume the corresponding Jo  as v elementary Jordan blocks, 

corresponding to the first column and the last row of each elementary Jordan 

block, are the first column vectors and the last row vectors in T*. 

End to until there exists at least one of T* of ih-matrix set combination is 

satisfied with (4.17), (4.18). 

S. Flnd the minimal feedback structure 

Remark 4.5 From Algorithm 4.2 for a distinct λoi repeated at least one time, similar 

to Remark 4.2, it. is possible conclude that 

1. T is unique but T*  may he non-unique for a plant. 

2. K is unique but K* may be non-unique for a plant. 

Example 4.13 Assume that a plant model is given in Jordan normal form as 

then 



because T,2 = 0. As the same way 

But in two-matrix combination, we have found two T* satisfied 
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therefore based on J1

 and r2  = 4 = r4, c2  = 2 = c2 for 12 , and the first, second columns and the 

first. fourth rows in BKC can not be zero, i.e. T*r1, T*c1, T*r2, T:2 	0. Please note 

that T*ri 	T*ri and 	(4.11). Because of min(v, rm) = 2, start to make 

one-matrix combination, then make two-matrix combination 

Therefore the more matrix combination process is ended and corresponding opti- 

mal feedback structure is 
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4.4 Right and Left Eigenvectors Analysis For DFM 

in the previous sections, we only discuss that right eigenvector or left eigenvector 

distinctively for a eigenvalue. In fact, there exist. many relationship between these 

two eigenvectors. In this section, an alternative characterization of DFM in terms of 

the left and right modal matrices are given. 

Theorem 4.12 Given a triple (C, A, 13) and assume that A can be diagonalized. Let 

Vo,WTo be the corresponding right and left modal matrices for the (C, A, B), where 

is 

fixed for the synthesis system (C, A+ BKC, B) if and only if the WoBKCVo has the 

P h  zero column and/or the ith zero row. 

Use the result in Theorem 4.3. The synthesis system 

DFM with respect. to K E K if and only if BK C = WoBKCVo  has zero rows and/or 

zero columns. 0 

Example 4.14 Consider a plant system which is partially generated by a random 

function in the Matlab softpackage, i.e. 
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Using Matlab, we obtain 

if a centralized feedback structure is given as 

where K is generated by the random function in the Matlab, then 

According to Theorem 4.12, because the 1th, the 2th columns and the 4th  row are 

zero. we can conclude that λoi = 0.8847, 0.2378, 0.7727, i = 1,2, 4, are fixed mode 

with respect to K. Now let us verify the conclusion by the Matlab. then 

agree with the previous conclusion. 

Corollary 4.7 Given a triple (C,A,B) and assume that A can he diagonalized. 

Let 	VoT be corresponding right and left modal matrices for the (C, A, B). Then a λci

	λoi ;  is free for the synthesis system (C, A+ BKC, B) if and only if the WoBKCVo 

has the 	non-zero column and the ith  non-zero row. 
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Proof. 	Its proof is similar to that of Theorem 4.12 and omitted. 0 

Theorem 4.13 Given a triple (A, A, B) and assume that there is v elementary Jor-

dan blocks for A. Let Vo, WTo be corresponding generalized right and left modal 

matrices for the (C, A, B), where 

Then a λci = λoi is fixed for the synthesis system (C,.4 BKC, B) if and only if the 

WoBKCVo has the first zero column and/or the last zero row for the itch elementary 

Jordan block. 

Pxoof. 	Since 

i.e. 

Based on the result in Theorem 4.11. The synthesis system (C, J0  + BKC, B) has 

a. λci = 	DFM with respect to K E K if and only if BKC = WoBKCVo has the 

last zero row and/or the first zero column corresponding to the i th  elementary Jordan 

block. 0 

Corollary 4.8 Given a triple (C, A, B) and assume that. there is v(< n) elementary 

Jordan blocks for A. Let Vo, WTo be corresponding right and left generalized modal 

matrices for the (C, A, B). Then a λci 	λoi is free for the synthesis system (C, A + 

BKC. B) if and only if the WoBKCVo has the first non-zero column and the last 

non-zero row for the ith elementary 
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Proof. 	Its proof is similar to that of Theorem 4.13 and omitted. D 

Example 4.15 Consider a triple (C, A, B) as 

satisfies the condition of Corollary 4.8. Therefore the K structure belongs to the 

RDIFC and can shifts all modes for this system. 

Corollary 4.9 Consider a triple (C, A, B) arid assume that there are v elementary 

Jordan blocks for A. The synthesis system (C,A + BKC, B) has no DFM with respect 

to K EK if and only if the first column vectors and the last row vectors in Wo B 

matrix, corresponding to each Jordan block of A, are non-zero vectors. 

Corollary 4.10 Consider a triple (C, A, B) with n distinct eigenvalues of A, The 

synthesis (C, A + BKC, B) has no fixed mode (DFM) with respect to K EK if and 

only if the every column and row in WoBKCVo, are not zero vector. 

Example 4.16 Consider a triple system 



. Using Matlab, we can obtain 

and 
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which generated by a random function partially in the Matlab. Take 

Therefore we can conclude that λo3  = 1.2683 and 	= —0.4141 are fixed mode in a 

synthesis system with K. Now let us chick the result by Matlab. Because 

with respect to K. it agrees with this result. 



CHAPTER 5 

CONCLUSIONS 

This thesis deals with the selection of an optimal the decentralized feedback struc-

ture in large scale control systems. From  some aspects of mathematic theory and 

application, various definitions, theorems, corollaries, and algorithms are generated 

and developed. These theories can be extended into the general control theory. The 

main conclusions of this thesis are: 

I. Presented a systematic method to determine if a decentralized control system 

possesses decentralized fixed modes. 

2. Introduced the relationship between the system zeros of plant and the fixed 

modes of synthesis system. The fixed modes are clarified according to system 

zeros. Addressed that only the transmission fixed mode can be avoid with 

respect to decentralized feedback structure under output feedback. 

3. Characterized the fixed modes and decentralized feedback structures by means 

of signal flow graphs. Defined decentralized feedback structure and set up algo-

rithm to search this structure in plant system based on the control system tree 

unit. 

4. Defined and set up the tuple control space. Transfer control system tree into a 

set of corresponding tuples. Constructed operation rules in tuple control space 

such that the feedback search can be carried aid algorithmically. 

5. Introduced the fixed eigenvector concept and applied such concept in the deter-

mination of an admissible DIFC. 

6. Developed the theorems and corollaries for the cases that A can be diagonalized 

and transformed into the Jordan canonical form. 
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7. Designed a set of algorithms to find the realistic decentralized feedback structure 

(RDIFC) K and the optimal feedback structure K. 

S. Applied the right- and the left-generalized modal matrix to survey the fixed 

mode existing in the synthesis system. 

As for the future development of the decentralized control system, the following 

suggestions are now made: 

1. To extend the algorithms in this thesis into computer program for application. 

2. To develop a set of realistic algorithm to find feedback structure and controller 

parameters. 

3. To realize the second step of control strategy. Find reductional algorithm such 

that the multivariable system can be transferred into single variable control 

system successfully based on decentralized feedback compensator. 

4. To develop results on how the geometric number variation of Jordan block 

affects the feedback structure design. 
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