
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

An Efficient Guaranteed Bandwidth
and Balancing Mechanism for

High Speed MANs

by
Venediktos Hadjisavvas

The Distributed Queue Dual Bus (DQDB) has become the IEEE 802.6 stan-

dard for Metropolitan Area Networks (MANs). The main advantage of DQDB is

that its throughput performance is not affected by the network parameters such as

size, number of connected stations, or channel bandwidth. Its main drawback is that

the location of the stations on the bus strongly affects their performance. For this

reason a Bandwidth Balancing Mechanism (BBM_DQDB) has been proposed and in-

cluded in the 802.6 standard that can provide the requested bandwidth by the lightly

loaded stations and evenly distribute the remaining bandwidth among the overloaded

stations. The guaranteed bandwidth required by some applications has also mo-

tivated the recent introduction of another mechanism, the Guaranteed Bandwidth

(GBW_DQDB) mechanism, that can guarantee the required level of throughput to

certain high priority stations. In this thesis we first discuss the main advantages

and disadvantages of BBM_DQDB and GBW_DQDB and then we introduce a new

mechanism, the Guaranteed Bandwidth and Balancing Mechanism (GBBM), that

combines the advantages of the previous two mechanisms and can significantly im-

prove the throughput and delay performance of the stations. We provide a detailed

description of the new mechanism and we investigate its performance through sim-

ulation results. Furthermore, we compare its performance with the corresponding

performance of BBM_DQDB and GBW_DQDB.

AN EFFICIENT GUARANTEED BANDWIDTH
AND BALANCING MECHANISM FOR

HIGH SPEED MANS

by
Venediktos Hadjisavvas

A Thesis
submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

October 1993

APPROVAL PAGE

An Efficient Guaranteed Bandwidth
and Balancing Mechanism for

High Speed MANs

Venediktos Hadjisavvas

August 9, 1993

Dr. Dennis Karvelas, Thesis Adviser
Assistant Professor of Computer Science, NJIT

Dr. Anthony Robbi, Committee Member
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Sotirios Ziavras, Committee Member
Assistant Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: Venediktos Hadjisavvas

Degree: Masters of Science in Electrical Engineering

Date: October 1993

Undergraduate and Graduate Education

• Master of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 1993

• Bachelor of Science in Electromichanical Computer Technology,
New York Institute of Technology, New York, NY, 1990

Major: Electrical Engineering

iv

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to his supervisor, Assistant

Professor Dennis Karvelas, for his guidance,friendship, and moral support throughout

this research.

Special thanks go to Associate Professor Anthony Robbi and Assistant Professor

Sotirios Ziavras for serving as members of the committee.

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

1.1 High Capacity Networks 	 1

2 	CURRENT ACCESS MECHANISM OF HIGH SPEED MAN 	 6

2.1 Distributed Queue Dual Bus MAC Mechanism 	 6

2.2 Bandwidth Balancing Mechanism 	 11

2.3 Guaranteed Bandwidth Mechanism 	 13

3 	GUARANTEED BANDWIDTH AND BALANCING MECHANISM 	 17

3.1 GBBM Implementation 	 19

3.2 The GBBM Main Algorithm 	 22

4 	PERFORMANCE ANALYSIS 	 26

	

5 CONCLUSIONS 35

APPENDIX A. FORMULA DERIVATION 	 38

APPENDIX B. ARRAY DESCRIPTION 	 39

APPENDIX C. BBM_DQDB Simulation Program 	 41

APPENDIX D. GBW_DQDB Simulation Program 	 49

APPENDIX E. GBBM Simulation Program 	 58

	

BIBLIOGRAPHY 69

vi

LIST OF FIGURES

Figure Page

1 The DQDB Topology 	 7

2 Internal structure of a station 	 9

3 Internal structure of a station in the case of GBBM 	 21

4 Main steps of GBBM algorithm 	 	 23

vii

LIST OF TABLES

Table Page

1 Effect of high priority station location on performance 	 28

2 Effect of location performance. N2 = 6, B=14 	 29

3 Effect of location performance. Np = 6, B=16 	 30

4 Effect of location performance. N2 = 18, B=16 	 31

5 Effect of location performance. Np = 18, B=12 	 31

6 Effect of location performance. Offered load per low, 10.213 Mbps 	 32

7 Effect of location performance. Offered load per low, 11.825 Mbps 	 34

viii

CHAPTER 1

INTRODUCTION

1.1 High Capacity Networks

Data communication networks are essential for providing information exchange among

various non homogeneous communicating devices such as personal computers, work-

stations, peripheral devices, facsimiles, etc. Local Area Networks (LANs) interconnect

these devices within a room, a single building or a group of buildings located close to

each other.

An essential characteristic of the local area networks which usually differentiates

them from other kinds of networks is that the transmission from any station is received

by all other stations (packet broadcasting). Typically, in a local area network there

are no central control stations and all stations cooperate to ensure fair access to the

transmission medium. Today's LANs operating at 1-10 Mbps support a quite variety

of services such as file transfers, graphics applications, word processing, electronic

mail, distributed databases and interconnection to other LANs.

The recent advances in fiber optics technology provide a huge bandwidth which

enables service integration and opens up new prospects to the network users. It is now

expected from the networks of the future to support massive data transfer between

supercomputers as well as voice, video, and other types of real or non-real time

services. In fact, although we can easily envision a large number of new applications,

there will be others we cannot currently foresee. Such diverse services will generate

flows of information with very different traffic characteristics, throughput and delay

requirements. Therefore, one of the major challenges for the network designer is

the efficient distribution of the available enormous channel bandwidth among the

competing users.

There have been many interesting proposals on how to access and share effi-

ciently a high capacity channel in the local area environment. Among them EX-

1

2

PRESSNET [1], FASNET [2], and FDDI [3,4] have received a great amount of at-

tention. The extension of local area network services over longer distances, provides

significant advantages in terms of increasing efficiency and productivity. The so called

metropolitan area networks (MANs) are optimized for a larger geographical area than

the LANs, ranging from several blocks of buildings to entire cities. MANs share many

characteristics with LANs and also provide means for inter-networking with LANs.

They use packet broadcasting over a shared transmission medium and are intended

to provide high capacity services to their users at a much lower cost.

In both LANs and MANs, the data rate, length, and medium access control

techniques that are employed, are key factors in determining the effective capacity

of the network. From the user's point of view, the performance of a network is

given by the following two measures: throughput and packet delay. Delay is the

time interval from the generation of a packet at a station until its transmission onto

the medium. In some cases the actual transmission time and the propagation time

to the destination are also included in the computation of the delay. Throughput is

defined as the total rate of data being transmitted between nodes. Another important

network performance measure is the utilization of the transmission medium which is

defined as the fraction of total capacity being used.

A very important parameter for determining the performance of a LAN is the

parameter a, which is defined as:

α = propagation time

/ length of frame = RD/V L
(1.1)

	
		

where

R = data rate (Mops)

D = distance of the communication path (km)

V = propagation velocity (m/s)

L = length of the frame (bits)

3

D/V = propagation time on the medium (worst case)

Typical values of α, range from a 0.01 to 0.1. It has been shown that the

theoretical maximum possible utilization of a LAN using an IEEE 802 MAC scheme

can be expressed as:

u = 1/1 + α (1.2)

For instance an 1km long LAN, with a data rate R of 10 Mbps, a propagation

delay (4) of 5µ sec /km and a packet size of 1000 bits will have a value of a = 0.05 and

corresponding maximum utilization of 0.95. However, as the channel capacity and size

of the network increase, i.e. as we move from the local area to the metropolitan area

environment, the value of α increases significantly and the corresponding utilization

decreases drastically. For instance 20 km, 100 Mbps MAN, with the same propagation

delay of 5µ sec /km and same packet size of 1000 bits will have a value of α = 10 and

a corresponding maximum utilization of 0.091. Therefore it becomes evident, that

the IEEE 802 MAC schemes are not appropriate for high speed MANs, and that new

more efficient medium access mechanisms are needed.

The above challenging problem has motivated a great amount of research in

the area of high speed MANs and several mechanisms have been proposed. The most

prominent among them is the Distributed Queue Dual Bus (DQDB) MAC mechanism

[5,6,7] whose throughput performance is not affected by the network size, the number

of connected stations, or the channel bandwidth. For this reason DQDB has been

accepted as the IEEE 802.6 standard for MANs. However, this mechanism has a

major fairness problem. That is, the location of the stations on the network strongly

affects the bandwidth or perceive the delay that their messages will encounter [8,9,10].

in order to deal with this problem a Bandwidth Balancing Mechanism (BBM_DQDB)

has been recently proposed [11], that can provide the lightly loaded stations with the

4

bandwidth they have requested and evenly distribute the remaining bandwidth among

the overloaded stations. This mechanism has also been included in the 802.6 standard.

Although BBM_DQDB can fairly distribute the channel bandwidth among the various

stations in overloaded conditions, the location of the stations still strongly affects their

delays. Furthermore, it can not guarantee that the performance characteristics of high

priority users will always be better than those of lower priority users. Finally, it can

not guarantee that high priority stations can receive a certain level of throughput

which is required by the applications they support.

The above disadvantages have motivated the recent introduction of another

mechanism [12], called the Guaranteed Bandwidth Mechanism (GBW_DQDB), that

can guarantee the bandwidth requested by certain higher priority stations. Neverthe-

less GBW_DQDB has also a drawback. That is, it does not enable a station to acquire

idle bandwidth not used by other stations and therefore improve its performance.

In this thesis, we first provide a discussion on the advantages and disadvan-

tages of BBM_DQDB and GBW_DQDB. Then, we introduce a new medium access

mechanism that can provide guaranteed bandwidth to higher priority stations and

at the same time enable them to use the available idle bandwidth . The new mech-

anism, called Guaranteed Bandwidth and Balancing Mechanism (GBBM), combines

features from both BBM_DQDB and GBW_DQDB and is expected to achieve a much

better performance. Two variations of GBBM are introduced and their correspond-

ing performances are investigated. The second variation (GBBM2) which is a minor

modification of the first one (GBBM1) improves the delay performance.

The organization of the thesis is as follows. In Chapter 2 we provide a brief

description of the medium access control mechanism of DQDB, BBM_DQDB and

GBW_DQDB, and discuss their advantages and disadvantages. In Chapter 3 we in-

troduce the Guaranteed Bandwidth and Balancing Mechanism (GBBM). In Chapter

4 we investigate the performance of GBBM and we compared it with the correspond-

5

ing performances of BBM_DQDB and. GBW_DQDB. Finally, in Chapter 5, we present

our conclusions.

CHAPTER 2

CURRENT ACCESS MECHANISM OF HIGH SPEED MAN

2.1 Distributed Queue Dual Bus MAC Mechanism

The high bandwidth and long distances used in Metropolitan Area Networks (MANs),

have made Distributed Queue Dual Bus (DQDB) the most appropriate protocol for

satisfying the current bandwidth demands. DQDB has been adopted by IEEE as the

802.6 standard for MANs.

Some Slotted systems efficiently use only the transmission medium by allowing

nodes with data to transmit on empty slots. Uncontrollable transmission, however,

can create a major problem in the case of a single unidirectional bus, because the nodes

which are closest to the origin see the idle slots first, they then can write on all of them,

and prevent other downstream nodes from transmitting in idle slots. Unlike such

Slotted systems, the Distributed Queue Dual Bus (DQDB) uses two unidirectional

buses in which slots are travelling in opposite directions. This configuration enables

downstream nodes to use the reverse bus to make slot reservations.

DQDB is a totally distributed protocol, and its throughput is not affected by the

network size or the number of stations connected to it. A major drawback of DQDB,

as extensive research in the area has indicated [8,9,10], is that its Medium Access

Mechanism (MAC) exhibits unfair behavior. That is, the location of the stations has

a very strong effect on both, throughput and delay performance.

The architecture of DQDB is shown in figure 1 and consists of two unidirectional

buses and a multiplicity of nodes connected to these buses. The buses, denoted in

Figure 1 as bus A and bus B, support data transfer in opposite directions allowing full

duplex communication between the nodes. Each node can transmit data to any other

node by selecting the appropriate bus. Both buses operate at all times, therefore, the

capacity of the network is twice the capacity of a single bus.

6

7

Every station of the network has an access unit for each bus with the corre-

sponding attachment to that bus. The access unit is attached to the bus via one

read and one write connection. The first station of each bus generates fixed size slots

that are travelling downstream and can be written by all stations having data for

transmission. These slots are destroyed at the end of the bus.

Figure 1 The DQDB Topology

The operation on the two busses is identical and therefore in the sequel we will

focus on the operation of bus 'A'. We denote station '0' the first station on bus 'A'

which is also responsible for generating the slots for that bus. In this case, bus A is

called the forward bus and bus B is called the reverse bus.

When a station generates a message for transmission, it appends some header

and trailer information to it and creates what is known as the Initial MAC Protocol

8

Data Unit (IMPDU). This overhead information contains among other things the

source and destination address of the transmission, control bytes that have been

reserved for future use, a CRC field, and control bytes that can facilitate the detection

of lost packets or inform the receiver about buffer requirements. The slot size in

DQDB is 53 bytes out of which 1 byte is used as Access Control Field, 8 bytes

carry overhead information, and only the remaining 44 bytes carry useful information.

Therefore each station once it has created an IMPDU it has to break it into fragments

of 44 bytes and attach the appropriate headers to each fragment. If the last fragment

of the original IMPDU is smaller that 44 bytes the station will add some padding

information to extend it to 44 bytes.

The operation of DQDB protocol is based on two control bits: the BUSY bit

and the REQUEST bit. The Busy bit indicates whether a slot travelling on the

forward bus has already been written by another upstream station. The Request

hit indicates whether a slot travelling on the reverse bus carries a request from a

downstream station. Each station, counts both the number of requests it receives on

bus 'B' and the unused slots that pass by on bus 'A' and in this way it can determine

the number of empty slots that must be allowed to pass before it transmits its own

segment.

When a station has a segment ready for transmission, it will send a single

Request on the reverse bus. The station can do that by setting to 1 the first 0 request

bit observed on the reverse bus. All the upstream stations will see the request bit

and will increase their Request Counter (RQ_CTR) by one. If a station is idle, it

will decrease its RQ_CTR by one for each empty slot that passes on the forward bus.

In this way, RQ_CTR will keep a record of the number of segments queued to the

downstream stations.

When a station is active (it has a segment to transmit) it will transfer the

current value of RQ_CTR to a Count Down Counter (CD_CTR) and reset RQ_CTR

9

to zero. In this way CD_CTR contains the number of requests from the downstream

stations that have sent reservations before that station had received this segment in

its Transmission Queue. CD_CTR is now decreased by one for every idle slot that

passes by on the forward bus. When the CD_CTR becomes zero, the given station can

transmit its segment at the next empty slot observed on bus 'A'. While the station

is waiting to transmit its own segment, it will keep on increasing its RQ_CTR by one

for every request that observes on the reverse bus (Figure 2).

Figure 2 	Internal structure of a station

Notice that if a station has transmitted a segment before it was able to send the

request bit on the reverse bus, because other downstream stations have already set

10

these bits to 1, the station will send the request after the transmission of the segment.

That is, the operations of writing request bits on the reverse bus and sending segments

on the forward bus are independent.

A priority mechanism has also been included in the 802.6 standard that can

support three priority classes of traffic. In this case a separate request bit is required

for each priority class in the ACF of a slot. Furthermore, each station must have a

separate request and count down counters. Priorities are introduced in the follow-

ing way. The RQ_CTR of each class counts requests of similar and higher priority.

Furthermore the CD_CTR of each class increases whenever a request bit of higher

priority is observed on the reverse channel.

The objective of this priority mechanism is to enable segments of higher priority

to have access on to the channel ahead of segments of lower priority. That is, to

create three global queues and allow low priority segments to be transmitted only

when the higher priority queues are empty. Although this is accomplished in the case

of 0 latency, i.e., when the cable size is 0 or it is a good approximation in the case

of a small network, as the network size increases this priority mechanism becomes

ineffective. Higher priority users have absolute priority over lower priority users only

inside the same station. Among users inside different stations, their relative location

has a significant effect on their performance. That is, depending on their location

on the bus, the performance characteristics of low priority users may be significantly

better than those of high priority users [11].

The major advantage of DQDB is that it enables stations to use any idle slot,

and for this reason it has a maximum throughput of 1 regardless of network size,

number of connected stations or channel bandwidth. However, in its attempt to use

every single slot on the bus, the protocol introduces unfairness in the sense that the

bandwidth that a station can receive, or the delay its segments will encounter, strongly

depends on its location on the bus. This unfairness of DQDB becomes more severe

11

when the end-to-end propagation delay, the network utilization, and the message

size increase. For this reason a Bandwidth Balancing Mechanism has been recently

proposed, and has been included in the standard, that can improve significantly the

throughput fairness of the system.

2.2 Bandwidth Balancing Mechanism

The Bandwidth Balancing Mechanism (BBM_DQDB) is a modification of the basic

DQDB MAC Mechanism [11]. It has the ability to provide the requested bandwidth

by lightly loaded stations and evenly distribute the remaining bandwidth among the

overloaded stations, regardless of their location on the bus. In DQDB a station can

transmit a segment whenever its countdown counter (CD_CTR) is zero and the slot

on the bus is idle. In the case of BBM_DQDB the station can transmit only on a

fraction a of that time, where

α =

B
/1 + B (2.1)

and B is the so called bandwidth balancing modulus.

For example, if the value of B=9, then a = 0.9. In this case the station lets an

extra empty slot to pass every time it transmits nine segments. This can be achieved

by using an extra counter in every node called the Bandwidth Balancing counter

(BBM_CTR). BBM_CTR is increased by one for every transmission of a segment.

When it reaches the value of B, is decreased by B and the request counter (RQ_CTR)

is increased by one. If the station is idle, the RQ_CTR will be decreased by one at

the next empty slot that passes by on the forward bus. Otherwise, if the station has

a segment to transmit, it will transfer the value of the RQ_CTR to the CD_CTR and

will reset RQ_CTR to zero. The operation of CD_CTR is identical to that of the

original DQDB protocol.

12

We see that according to this technique every B segments that a station trans-

mits, it allows one empty slot to pass to the downstream stations. If an active

downstream station with CD_CTR equal to zero sees this empty slot, it will trans-

mit. It has been shown in [11] that in the case of overloaded stations, BBM_DQDB

will eventually distribute fairly the channel bandwidth among the network stations.

It has also been shown in [11] that the convergence speed towards the steady state,

where the fair bandwidth allocation is achieved, depends strongly on the value of

B. The smaller the value of B, the faster the convergence. However notice, that the

above mechanism wastes some channel bandwidth which is given by the following

equation.

Bandwidth loss = 1/1+ NB 	 (2.2)

where N is the number of active stations

Equation (2.2) shows that the smaller the value of B the more significant the

bandwidth loss. Therefore we see that in the case of BBM_DQDB there is a trade

off between convergence speed and bandwidth loss. A value of B between 8 and 10

is a reasonable compromise between the two and is being suggested in the standard.

We also point out that BBM_DQDB can be used to distribute the available channel

bandwidth in any arbitrary way among the competing stations by assigning different

values of 13 to them [13]. For instance if Bi is the value of bandwidth balancing

modulus assigned to station 'i', then in the case of overloaded stations the amount of

bandwidth BW received by station 'i' will be:

N BWi 	= Bi / 1+ ∑ Bi (2.3)

i=1

where N is the number of active and overloaded stations.

13

In the case where some stations are overloaded and other stations are under

loaded BBM_DQDB will provide all the requested bandwidth to lightly loaded sta-

tions and evenly (or proportionally according to Bi) distribute the remaining band-

width among the overloaded stations.

We emphasize that BBM_DQDB mainly provides a fair bandwidth allocation

among overloaded stations. That is, it can not guarantee any level of bandwidth to

a station since if another station becomes active it will receive a portion of the chan-

nel bandwidth. In addition, fair bandwidth allocation takes place in the steady state.

Therefore if stations becomes active and inactive continuously its slow convergence to

the steady state may render its presence ineffective. For these reasons another mech-

anism has been recently proposed that can provide guarantee throughput to certain

stations supporting real time applications. The name of the proposed mechanism is

Guaranteed Bandwidth mechanism [13] and we will discuss it in the sequel

2.3 Guaranteed Bandwidth Mechanism

The Guaranteed. Bandwidth Mechanism (GBW_DQDB) provides guaranteed

throughput and is going to be used by certain high priority stations that support ap-

plications which require a guaranteed amount of bandwidth. The rest of the stations

will operate according to BBM_DQDB mechanism. The GBW_DQDB operation will

guarantee a certain amount of bandwidth to a high priority station in the network

regardless of whether the channel is heavily or lightly loaded. When the high priority

station is not active, other stations (using BBM_DQDB) can use its idle bandwidth

and improve their throughput and delay performance. When the high priority station

becomes active again it will acquire its allocated bandwidth back. However, notice

that if other stations are not active, the high priority station using GBW_DQDB can

not use their idle bandwidth to improve even more, its delay performance.

The Guaranteed Bandwidth Mechanism (GBW_DQDB) is also very similar to

14

the DQDB and BBM_DQDB mechanisms, but instead of having a BBM counter

(BBM_CTR), it uses a Credit counter (CR_CTR). Furthermore, its operation is based

on three additional parameters: the segment cost (SGC), the credit maximum (CR-

max) and the income per slot (INC) which have been assigned to the station.

According to GBW_DQDB mechanism, each station can only write on reserved

slots. A station can send a request and reserve a slot only when it has accumulated

enough income to pay for the slot. The cost of a slot (or segment) is provided by the

value of SGC mentioned above. Each station accumulates income through the slots

it observes on the reverse bus. That is, each station i has a credit counter CR_CTRi

which increases by INCi whenever it observes a slot. The value of INCi is determined

by the amount of bandwidth that station i can reserve. For instance let us say that

the channel bandwidth is 155 Mbps and we want to guarantee a bandwidth of 30

Mbps to station i . Then a straightforward way to do that is by selecting INC; = 30

and SGC=155. In this way station i will increase CR_CTRi by 30 for every slot

that it observes on the reverse bus. When CR_CTRi becomes greater than or equal

to 155 and station i has a segment in its queue for which a request has not been

sent, it will send a request and decrease the value of CR_CTRi by 155. Notice that

contrary to what happens in the case of DQDB or BBM_DQDB, where a station can

send only one request at a time (i.e. a request can be sent only for the first segment

in the queue), in the case of GBW_DQDB the station may transmit many requests

and reserve many slots for the segments waiting in its queue. We also mention that

in order to prevent CR_CTRi to increase indefinitely during the periods station i

is idle, a maximum value of credit CRmax is introduced. That is, if the value of

CR_CTRi exceeds CRmax station i will not continue to increase CR_CTRi although

it observes slots on the reverse bus. It is evident that the minimum value of CRmax

that will provide the station with the guaranteed throughput is the one that satisfies

the following inequality:

15

CRmax > [SGC / INC]* INC 	(2.4)

Where [X] is the smallest integer which is greater than or equal to X. Notice that

higher values of CRmax than the one provided by (2.4) will not improve the band-

width that a station can acquire. Simply they will slightly improve its delay perfor-

mance.

A station can implement the GBW_DQDB operation by dividing its queue of

segments into two parts. The Queue of Arrivals (QAR) part and the Transmission

Queue (TQ) part. Whenever a message for transmission arrives at the station, it

will be broken into appropriate number of segments and will be queued in QAR part

of the station queue. At the same time the station will increase its CR_CTR by

INC for every segment that observes on the reverse bus. When CR_CTR becomes

equal to or greater than SGC and QAR> 0 the station will pass a segment in the

TQ part, i.e. it will decrease QAR by 1 and will increase TQ by 1, it will send a

request on the reverse bus, and decrease the value of CR_CTR by SGC. Therefore

the TQ part contains the segments for which requests have been sent and the QAR

part contains the segments for which requests have not been sent yet. The station is

also provided with an array which holds the value with which the CD_CTR must he

initialized whenever a segment becomes first in the TQ. That is, whenever a segment

is transfered from QAR to TQ, because of accumulated income, the value of RQ_CTR

is transfered to the appropriate location of this array. We have used the name PSAR

(Paid Segments Array of Requests) for this array. Its ith element contains the value

with which CD_CTR must be initialized when the i th segment of the TQ will become

first in the TQ. Finally, the operation of CD_CTR and RQ_CTR is identical to that

of the DQDB protocol.

GBW_DQDB guarantees a certain amount of bandwidth to each station that

follows its operation. Consequently the delay performance also will not be signifi-

16

cantly affected by the network load, although the station location continues to have

a minor effect. Whenever this station is not active other stations, following DQDB

or BBM_DQDB, can acquire its bandwidth. However, the reverse is not possible.

That is, if the rest of the stations are not active, a station following GBW_DQDB

can not acquire their bandwidth and improve its own performance. For this rea-

son in the next chapter we introduce a new mechanism, the Guaranteed Bandwidth

and Balancing mechanism (GBBM), which can guarantee under overload conditions

the required bandwidth to a high priority station. However, it enables a station in

underload condition to utilize the bandwidth not used by the other stations.

CHAPTER 3

GUARANTEED BANDWIDTH AND BALANCING MECHANISM

In this chapter we introduce a new access mechanism that tries to combine the advan-

tages of both BBM_DQDB and GBW_DQDB. We have used the name Guaranteed

Bandwidth and Balancing Mechanism (GBBM) for this new mechanism.

We have seen that BBM_DQDB achieves fair bandwidth allocation, however, it

converges slowly to the fair state. Therefore, it is not very appropriate for supporting

real time traffic. GBW_DQDB on the other hand provides a guaranteed throughput

to the high priority stations. However, it does not allow these stations to use the idle

bandwidth that is available.

The objective of the Guaranteed Bandwidth and Balancing Mechanism (GBBM)

is to provide a guaranteed bandwidth to the higher priority stations and enable them

at the same time, to use the available idle bandwidth; evenly distributing this band-

width among themselves. We also mention that whenever the high priority stations

are idle, or they do not use all the bandwidth allocated to them, the lower priority

stations can share this bandwidth among themselves.

The main advantage of GBBM is that it can reduce significantly the cost of

the connection. It is evident that since the bandwidth provided by GBW_DQDB

is guaranteed and no one else can use it, it will be expensive. Notice however that

most sources of traffic alternate between an active state during which they generate

a lot of traffic, and an idle state during which they do not generate any traffic at

all. Furthermore, in most of the cases the duration of the active period is usually

significantly lower than the duration of the idle period.

One approach for serving such a traffic source is to provide a guaranteed band-

width to it equal to the bandwidth required during the active period. Since the source

will use this bandwidth only during the active period, which is relatively small, the

17

18

cost of the connection will be high. This is actually the approach that

GBW_DQDB

takes. The other alternative will be to use statistical multiplexing. This approach

is mainly based on the law of large numbers which states that if a large number of

users compete for a channel then the instantaneous bandwidth demand will be very

close to the average. For instance, consider an 400 Mbps channel and sources which

generate traffic of 10 Mbps during the active period and no traffic during the idle

period. Furthermore, let us assume that the active period is one fourth of the idle

period, that is the average amount of traffic generated by each source is 2 Mbps.

Then the law of large numbers indicates that if we accept 200 sources into the system

the instantaneous bandwidth demand will be close to 400 Mbps, i.e. a bandwidth

that the channel can provide. In practice due to statistical variations some times the

bandwidth demand will exceed 400 Mbps and some times will be less than 400 Mbps.

In the former case queues will start to build up inside the stations and the packet

delay may become extremely high. For this reason the number of sources which must

be allowed into the system must be kept to a significant lower level, so that the prob-

ability of the above event to be small. For instance a number of 100 sources may be

appropriate in this case. Notice on the other hand that if we want to guarantee the

10 Mbps bandwidth to each source, then we can support only 40 of them. Therefore

the cost of communications will be absorbed by 100 users in the first case and only

40 in the second. That is, the cost of the connection will be much higher when the

bandwidth is guaranteed.

However, there are applications whose performance is very sensitive to through-

put or delay and statistical multiplexing may not be appropriate for them.

GBW_DQDB can be used in this case to guarantee them the required bandwidth at

the expense of higher cost. The Guaranteed Bandwidth and Balancing Mechanism

proposed here provides another alternative. It can guarantee part of the required

bandwidth by these stations and allow them to compete for the rest. Such an approach

19

has the potential of providing the required bandwidth by these stations at a much

lower cost.

Therefore, in the case of GBBM we can distinguish the segments inside a station

in two types : a) those for which requests have been sent through income and b) those

for which requests have been sent due to observed idle bandwidth. We have used the

name paid segments for the first ones and free segments for the second ones.

3.1 GBBM Implementation

GBBM operates in both, the GBW_DQDB and BBM_DQDB modes. Each station has

a queue of arriving segments (QAR), and a transmitting queue (TQ). In addition each

station has a Credit Counter (CR_CTR), a Request Counter (RQ_CTR), a Countdown

Counter (CD_CTR), a Free Segment Flag (FSFlag), a Free Segment First in Queue

Flag (FSFQFlag), a BBM_CTR, a Free Segment Request Register (FSRR) and a Paid

Segments Array of Requests (PSAR).

In Figure 3, we show the various components of the station whose operation

control the transmission on the bus. These components are the following:

Queue of Arrivals (QAR): This is a part of the station queue that keeps all the

segments for which a request has not been sent yet.

Transmission queue (TQ): Contains all the segments for which a requests has

already been sent.

Request Queue: It contains all the requests that must be transmitted on the

reverse bus. It is needed because a request may not be transmitted immediately on

the reverse bus because the passing request bits may have already been set to 1 by

other downstream stations.

Request Counter (RQ_CTR): Counts the requests sent for slot reservations by

the downstream stations.

Count Down Counter (CD_CTR): Contains the number of empty slots that a

20

station must allow to pass before it transmits its first segment in queue.

Credit Counter (CR_CTR): Indicates the credit that has been accumulated by

the station. CD_CTR increases its value by INC every time it observes a new slot

passing on the reverse bus. The value of INC is determined by the amount of band-

width which has been allocated to the station as well as by the value of SGC that

has been decided for the segment (slot). For instance, if the channel bandwidth is

155 Mbps and we want to guarantee a 30 Mbps bandwidth to the station we can

assign the value of 30 to INC and the value of 155 to SGC. Then every time the

station observes a new slot on the reverse bus it will increase CR_CTR by 30. When

CR_CTR becomes equal to or greater than 155, then the station has accumulated

enough income to transmit a segment and if its QAR> 0 it will send an additional

request to the request queue and decrease the value of CR_CTR by 155. In order to

prevent CR_CTR for increasing indefinitely a maximum value of credit CRmax is also

introduced here whose minimum value is provided by (2.4) in the previous section.

For instance, in the case of INC=30 and SGC=155, the minimum value of CRmax

will be r [155/30] x 30 = 180. Then after the station has observed 6 slots on the reverse

bus its income will have become 180. If at this instant its QAR> 0, then the station

will pass a segment to the TQ, decrease QAR by 1, and make CR_CTR= 180-155=

25.

Paid Segment Array of Requests (PSAR): This array provides for each segment

which has joined the TQ, due to accumulated income, the value with which CD_CTR

must be initialized, when it becomes first in queue. Every time a station has accumu-

lated income, transfers a segment from QAR to TQ and this is the ith segment with

income in TQ, then the station also transfers the value of RQ_CTR to the PSAR(i)

and resets RQ_CTR to zero. When a paid segment is transmitted and there are

additional paid segments in the TQ, the station will transfer the value of PSAR(2)

to CD_CTR and move all other values of PSAR by one position, i.e. PSAR(i) will

21

receive the value of PSA R(i+1).

Figure 3 Internal structure of a station in the case of GBBM

Free Segment Flag (FSFlag): Indicates whether there is a free segment in the

TQ. Initially, FSFlag is equal to 0. If the station has not accumulated enough income

and QAR> 0. it will transfer a segment in the TQ, send a request in the Request

queue and set FSFlag to 1. The free segment is always the last in the TQ in the sense

that a free segment will be transmitted only if there are no paid segments in the

queue. This does not mean that the segments are not transmitted in a first come first

served order. If a paid segment has arrived after the free segment, the free segment

will be transmitted first as a paid segment and the subsequent paid segment will be

22

considered as a free segment. In the case where there is only one segment in the TQ

and FSFlag=1, which means that this is a free segment, the station will transmit it

at the next empty slot and will set FSFlag=0. Now the station can pass another free

segment (if it has one) in its transmission queue. We see that FSFlag ensures that

the station will have one only free segment in its TQ.

Free Segment First in Queue Flag (FSFQFlag): Indicates whether a free seg-

ment has become the first in the TQ.

Bandwidth Balancing Counter (BBM_CTR): Counts the number of transmitted

free segments by each station. It is increased by one, only when a free segment is

transmitted onto the channel. Whenever the value of BBM_CTR becomes equal to B

(BBM_CTR=B), the station increases the RQ_CTR by one and sets BBM_CTR=0.

Free Segment Request Register (FSRR): Indicates how many idle slots the sta-

tion must allow to pass by before it transmits its free segment which has become first

in the TQ. FSRR receives its value from RQ_CTR at the instant a free segment joins

the TQ.

3.2 The GBBM Main Algorithm

In this section we describe two variations for the GBBM operation. The reason

for introducing the second variation is because it improves the performance of GBBM.

We first describe in detail the first variation indicated by GBBM1. Then, we provide

the minor modification needed to produce the second variation, indicated by GBBM2.

In the next chapter simulation results show that in certain load configurations the

second version can significantly improve the performance. In the sequel we describe

the main steps of the GBBM1 algorithm.

GBBM1 main algorithm:

In Figure 4 we show the main four steps of the GBBM1 algorithm.

1) In this step the station increases its CR_CTR by INC for each new slot

23

observed on the reverse bus. For instance, if the value of the income is 30, the

CR_CTR will be increased by 30 for every slot that passes in front of the station. We

point out here that CR_CTR increases by INC just before the slot has arrived at the

station, so that the station can send a request on this slot if its income has exceeded

SGC and its QAR> 0. If the value of CR_CTR is greater than Climax the station

will not increase its CR_CTR.

Figure 4: Main steps of GBBM algorithm

2) In this step the station checks whether a change of status for the first segment

in the queue is required. If this segment is a paid segment, no change is required.

This is also the case if this segment is a free segment (FSFlag=1, FSFQFlag=1) but

CR_CTR<SGC. If however, this is a free segment but CR_CTR≥SGC, the station

will change its status to a paid segment, i.e. FSFlag and FSFQFlag will become 0

and CR_CTR will decrease by SGC.

24

3) In this step the station decides whether a request must be sent on the request

queue to the reverse bus. It first checks whether there is enough income accumulated

to pay for a request. That is, if CR_CTR>SGC and QAR> 1 the station will decrease

CR_CTR by SGC, increase TQ by 1, decrease QAR by 1, pass the value of RQ_CTR

to PSAR(i) (if this is the ith paid segment in TQ) and reset RQ_CTR to 0. Then

the algorithm will move to step 4 which deals with the transmission. If however,

CR_CTR<SGC, the station will check whether it can send a request for a free segment.

This will happen if CR_CTR<SGC, FSFlag=0 and QAR> 0. In this case the station

will decrease QAR by 1, increase TQ by 1, set FSFlag to 1, pass the content of

RQ_CTR to FSRR and reset RQ_CTR to 0.

4) This step deals with the segment transmission. If the first segment in the

queue is a free segment, (i.e. FSFQFlag=1), and CD_CTR=0 the station will transmit

it, set both FSFQFlag and FSFlag to 0, and increase BBM_CTR by 1. If BBM_CTR

becomes equal to B the station will increase RQ_CTR by 1 and reset BBM_CTR to

0. If on the other hand there is a paid segment in the queue (FSFQFlag=0) and the

CD_CTR=0, the station will transmit it and will not increase the value of BBM_CTR.

Then it will decide which must be the first segment in the TQ. If there are additional

paid segments in the TQ, i.e. TQ≥ 2, or TQ=1 and FSFlag=0, a paid segment will

be first in queue. In this case the value of PSAR(2) will be transfered to CD_CTR

and all other values in PSAR (if there any) will move up one position, i.e. the value

of PSAR(i+1) will be transfered to PSAR(i). If there are no paid segments in the TQ

but there is a free segment available, i.e. FSFlag=1 and TQ=1, a free segment will

become first in queue. In this case the content of FSRR will be passed to CD_CTR

and FSFQFIag will be set to 1. Finally, if the station does not have any segments,

i.e. TQ=0, no action will be taken.

GBBM2 algorithm:

This variation is very similar to GBBM1 and was motivated by some simu-

25

lation results showing that in some cases the delay of some stations in the case of

GBBM] was higher than the corresponding delay of the same stations in the case

of GBW_DQDB. We found out that the reason of this behavior was the following.

Upstream stations, favored by their location on the bus, could transmit a significantly

higher number of free segments than the other stations. Consequently the requests,

mainly due to paid segments, of the downstream stations had to travel longer dis-

tances on the bus before they could reserve empty slots thus increasing their delays.

The objective of GBBM2 is to reduce the rate at which a station can transmit

free segments. Since upstream stations have the ability (due to location) to transmit

free segments at a higher rate, the imposed control will penalize them more and

improve the fairness of the system. The only modification that is needed in GBBM1

in order to provide GBBM2 is the following. In step 4 of the algorithm, whenever the

first segment in the queue is a free segment (i.e. FSFlag=1 and FSFQFlag=1) the

station will transmit it, not only when the CD_CTR=O but also when RQ_CTR=0.

In this way the rate of free segments transmitted by upstream stations will be reduced

significantly and the delay variation among stations will decrease.

CHAPTER 4

PERFORMANCE ANALYSIS

In this chapter we investigate the performance of both variations of GBBM mecha-

nism and we compare them with the corresponding performance of BBM_DQDB and

GBW_DQDB.

We consider a DQDB network with channel capacity of 155 Mbps and slot size

equal to 53 bytes, i.e. the transmission time of a slot is equal to 2.735 µsec . The

network consists of 10 stations with a distance between neighbor stations equal to

6 slots. We have assumed a signal propagation delay of 5 µ sec /km which makes

the total length of the cable, from the first station to the last, equal to 6 x 9

x 2.735/5 = 29.54km. The network connects two types of stations. High priority stations

which support real-time traffic with certain throughput and delay requirements and

low priority stations which support data transmission without any particular delay

requirement. The low priority stations use BBM_DQDB whereas the high priority

stations can use any of the BBM_DQDB, GBW_DQDB, GBBM1 and GBBM2.

In order to compare the effectiveness of GBW_DQDB and GBBM, we have

considered the following traffic model for high priority traffic, which has also been

used in [12]. The high priority traffic source alternates between an active period of

fixed size and equal to 16 msec, and an idle period which is exponentially distributed

with mean value of 16 msec. During the active period the traffic source generates

fixed size messages of Np segments at a fixed rate of one message every 85.11 µ sec,i.e.

during the active period 189 messages are generated. No messages are generated

during the idle period. Notice that with the above values for the system parameters,

the value of Np determines the bandwidth required by the source during the active

period. That is, if Np = 1 the traffic source generates 5 Mbps, if Np = 6 the traffic

source generates 30 Mbps. Since no messages are generated during the idle period,

26

27

the average traffic generated by the source is half of the one generated during the

active period i.e. in the above two cases 2.5 Mbps and 15 Mbps, respectively.

In Table 1 we examine how effective BBBM is in supporting the high priority

source. We consider that among the 10 network stations only one supports high

priority traffic. The value of Np

is 6 which indicates that the throughput requirements

of the high priority source is 30 Mbps. In order to examine the effectiveness of BBBM

under pessimistic conditions, we assume that all other stations are overloaded with

data, i.e. they try to write on every idle and unreserved slot which is passing by. All

these low priority stations use BBM_DQDB with value of B=6. In table 1 we show

what will be the delay of the high priority station if it is the first station on the bus,

if it is the second station on the bus and so on, i.e. in the last row of Table 1 if it is

the last station on the bus. Our objective is not only to show whether GBBM can

provide low delay but also low how this delay is affected by the location of the low

priority station. For comparison, we have also included the corresponding delay of

the high priority station if instead of BBBM it uses GBW_DQDB or BBM_DQDB.

We point out that in order to provide a low delay for the high priority station we

have guaranteed a throughput of 30 Mbps to it. That is, during the active period

this station can acquire all the bandwidth it needs. The reason is that if we do not

do that the high priority queue will build up during the active period and this will

result to significant delays. In order to guarantee the 30 Mbps bandwidth to the high

priority station we have selected in the case of BBM_DQDB and GBBM as value for

segment cost (SBC) 155 and we have provided this station with an income (INC) of

30. In the case of BBM_DQDB we have assigned to it the minimum value of B which

will allocate to it a bandwidth of 30 Mbps.This is the value of 14.

Table 1 clearly shows the superiority of BBBM. Both variations of GBBBM pro-

vide lower delays than BBW_DQDB. The reason is that GBBM can write on the slots

which are left unused, by the bandwidth balancing mechanism of the other overloaded

28

stations on the channel. We also see that BBM_DQDB provides significantly higher

delays which demonstrates its limitations in supporting traffic with very stringent

delay requirement. Finally Table 1 shows that GBBM1 and GBBM2 provide similar

delays.

Table 1 Effect of high priority station location on performance.

Overloaded low priority stations with B=6.

Sp = 30Mbps, INC = 30, CR max =, 180, SGC = 155

Packet size Np = 6, B = 14

Average message delay (µ sec)

Stationlndex GBW_DQDB BBM_DQDB GBBM1 GBBM2
0 88.4 415.5 47.0 50.9
1 88.9 262.9 45.2 45.7
2 89.6 	171.9 50.7 50.2
3 90.6 154.5 56.4 51.3
4 91.3 152.6 52.3 47.3
5 92.3 177.9 62.9 57.0
6 93.2 228.5 64.7 58.5
7 94.6 356.9 67.4 62.1
8 97.3 589.1 78.1 76.2
9 96.4 836.6 78.5 78.5

In table 2 we consider the case where there are two high priority stations; each

with a bandwidth requirement of 30 Mbps during its active period. Our objective

is to investigate whether the location of the upstream one, will significantly affect

the performance of the downstream. We see that GBM_DQDB demonstrates in this

case the smallest delay variation between the two high priority stations, however, it

is GBBM that provides the lower delays. Again BBM_DQDB provides significantly

higher delays. The main reason of the higher delays in the case of BBM_DQDB in

tables 1 and 2 is its slow convergence to the fair state which enables other stations,

during the transmission period, to acquire bandwidth and increase its delays. In

29

addition, the slots whose operation wastes, have also a negative effect on its delay

performance. We finally point out that in the case where the two high priority stations

use BBM_DQDB, we must increase their values of B to 16 (from 14, in table 1) in

order to be able to provide them with at least 30 Mbps during their active periods.

Table 2 Effect of location performance. Higher priority are stations 1 and 8.

Low priority stations are overloaded with B = 6

Shp1 = 30Mbps, Sh p2 = 30Mbps,INC = 30, CR max = 180, SGC = 155

Packet size Np = 6, B = 16

Average message delay (µ sec)

Stationlndex GBW_DQDB BBM_DQDB GBBM1 GB131112
1 90.3 220.6 47.5 47.3

8 94.2 	376.7 92.9 79.5

In Table 3 we consider the two high priority stations system of Table 2 and

investigate the effect of the message size on performance. We keep the bandwidth

requirement of the high priority stations at 30 Mbps but we increase the message size

by a factor of 3 i.e.

Np

=

18. In order to do that we have to reduce the number of

message per active period from 189 to 63 and increase the message interarrival time

from 85.11 µ sec to 255.3 µ sec . Table 3 shows that in all cases the average message

delay has significantly increased. We also see that the delay of station 8 in the case

of GBBM1 is significantly higher. The reason is the following. Station 1, because of

its location can transmit free segments of a much higher rate and prevent station 8

from seeing idle slots early. As a result the delay of station 1 is small whereas the

delay of 8 increases significantly.

With GBBM2, however, the rate at which station 1 can transmit free slots is

significantly reduced, since free segments can be transmitted not only when CR_CTR

30

is equal to 0, hut also when RQ_CTR=0. Therefore, downstream stations, and of

course station 8 see earlier the empty slots and the delay of 8 significantly decreases;

at the cost of a minor increase in the delay of station 1.

Table 3 Effect of location performance. Higher priority are stations 1 and 8.

Low priority stations are overloaded with B = 6

Shp1 = 30Mbps,Shp2 =30Mbps,INC = 30, CR max = 180, SCC = 155

Packet size

Np

 = 18, B = 16

Average message delay (µ sec)

StationIndex GBW_DQDB BBM _DQDB CBBM1 GBBM2

1 250.5 386.6 184.3 200.7

8 253.1 565.1 437.6 239.5

In all the previous tables we have chosen such values for income and segment

cost in the case of GBW_DQDB and GBBM, and such values of B in the case of

BBM_DQDB, that guarantee the requested bandwidth by the high priority stations

during their active periods. In table 4 we investigate what happens when this is not

the case. Therefore, we consider the two stations system of table 3, but we now

allocate only 25 Mbps to each of stations 1 and 8 during the active period. We do

that by using as income the value of 25 in the case of GBM_DQDB and GBBM and

the value of B=12 in the case of BBM_DQDB. Table 4 shows that in this case the

performance of GBW_DQDB drastically deteriorates. The reason is that the only

way GBW_QDB can receive bandwidth is through reservations.Therefore, during the

active periods its queue will build up significantly and then will start decreasing during

the idle periods. This behavior will increase drastically the delay encountered by its

messages. In the case of GBBM however, where the station can write on unreserved

slots the performance only slightly is affected. We see again in table 4 the superior

performance of GBBM2 over GBBM1.

31

Table 4 Effect of location performance. Higher priority are stations 1 and 8.

Low priority stations are overloaded with B = 6

Shp1 = 30M bps, Shb1 = 30M bps, INC = 25, CRmax = 175, SGC = 155

Packet size Np = 18, B = 12

Average message delay (µ sec)

Station Index GBW_DQDB BBM _DQDB GBBM1 GBBM2
1 2411.5 389.6 210.6 226.4

8 2250.7 568.1 476.4 246.4

In table 5 we consider the system of table 4 but with idle low priority stations.

We see that the delay of stations 1 and 8 in the case of GBW_DQDB only slightly

is affected. The reason is that GBW_DQDB can acquire bandwidth only through

requests and can not take advantage of the ample bandwidth which is now available.

In contrast all other schemes can use this bandwidth and reduce drastically their

delays.

Table 5 Effect of location performance. High priority are stations 1 and 8.

Low priority stations are idle.

Shp1 = 30Mbps, Shb1 = 30Mbps, INC = 25, CR max = 175, S GC = 155

Packet size

Np

 = 18,B=12

Average message

delay (µ sec)

Station Index GBW_DQDB BB M _DQDB GBBM1 GBBM2
1 2409.1 60.1 61.9 59.2

8 2301.9 61.2 61.4 60.7

In all previous cases we have considered all low priority stations to be overloaded

and we have focused on the delay performance of the high priority stations. In the

32

next two tables we investigate the delay performance of all stations both of high and

low priority.

Table 6 Effect of location performance. High priority are stations 1 and 8.

Low priority stations have rate of 10.213 Mbps

and packet size of 20 segments. Shp1 = 30Mbps,

Shp2 = 30Mbps, INC = 30, CR max = 180, SGC = 155

Packet size

 Np

 = 6, B=16

Average message

delay (µ sec)

StationIndex GBW_DQDB BBM_DQDB GBBM1 GBBM2
0 285.5 271.1 278.6 273.9
1 95.2 60.1 44.3 42.5
2 282.1 272.7 279.9 274.8
3 279.9 278.9 287.6 274.3
4 279.6 275.8 279.4 276.1
5 275.7 278.1 279.9 271.4
6 282.4 286.5 287.0 283.3
7 299.3 289.4 303.0 298.4
8 100.5 81.3 68.0 58.3
9 349.9 336.9 349.6 335.9

In Table 6 the high priority stations 1 and 8 generate, during their active period,

fixed sizes messages of 6 segments, i.e. each one of them generates 30 Mbps of traffic.

These two stations are guaranteed their bandwidth by assigning to them an income

of 30 in the case of GBW_DQDB and GBBM, and a value of B equal to 16 in the case

of BBM_DQDB. The low priority stations generate fixed size messages of 20 segments

according to a Poisson distribution. We have assumed that all of them generate the

same amount of traffic and that the total offered load by them is 86% of the channel

bandwidth not used by the two high priority stations, i.e. 155-30 x 2 = 95 Mbps. The

low priority stations use the BBM_DQDB mechanism with value of B=6. In table 6 we

show the average message delay for all stations. We see that the various mechanisms

33

provide similar delays to the low priority stations although the performance of the

high priority stations is in the case of GBBM (and especially GBBM2) better. That

is GBBM significantly improves the performance of the high priority stations without

discriminating against the lower priority stations.

In table 6 we have considered that the total offered load by the low priority

stations is 86% of the idle bandwidth when both high priority stations are active. In

table 7 we investigate whether low priority stations can utilized some of the bandwidth

which is not used by the high priority stations. Since the active and idle periods of the

traffic sources which supported by the high priority stations are equal, on the average

one of them will be active. Therefore, on the average, in addition to 95 Mbps, which

are always available to low priority stations, there are also 30 Mbps available because

only one of the active stations will be idle. We now investigate whether 50% of this

30 Mbps can be utilized by the low priority stations, i.e. we consider the system of

table 6 but we now assume that the total offered load by the low priority station

is 86% of (95+15) Mbps. Then the offered low by each low priority station will be

11.825 Mbps. Table 7 shows the corresponding delays of both high and low priority

stations.

We see that the delays of low priority stations have significantly increased,

however, they are still less than half msec. The delays of the high priority stations in

the case of BBM_DQDB have also significantly increased since BBM_DQDB can only

guarantee proportionality of bandwidth distribution among the competing stations.

GBW_DQDB does not seem to be affected by the offered load of the low priority

stations. This is expected since its bandwidth is guaranteed. Finally, the increase in

the offered load by the low priority stations has an effect, although not significant, in

the performance of the high priority stations in the case of GBBM. It mainly affects

the transmission of their free segments and results to a minor increase in the delay.

However, GBBM (and especially GBBM2) still provides the lowest delays.

Table 7 Effect of location performance.High priority are stations 1 and 8.

Low priority stations have rate of 11.825 Mbps

and packet size of 20 segments. Shp1 = 30Mbps,

Shpt = 30Mbps,INC = 30, CR max = 180, SGC = 155

Packet size Np = 6, B=16

Average message

delay (µ sec)

StationIndex GBWDQDB BBM_DQDB GBBM1 GBBM2
0 461.8 420.2 454.9 452.1
1 94.3 122.4 47.2 45.1
2 467.6 436.3 453.8 488.0
3 468.7 430.7 454.6 456.1
4 462.4 470.5 462.2 467.5
5 465.1 455.1 469.5 471.5
6 492.9 457.7 484.6 485.4
7 522.1 486.4 533.3 534.6
8 99.1 112.1 90.1 69.4
9 595.5 565.1 632.6 605.9

34

CHAPTER 5

CONCLUSIONS

In this thesis we have first discussed the advantages and disadvantages of two

access mechanisms that have been recently proposed for DQDB to address its fairness

problems. The first of them, called BBM_DQDB can provide the requested bandwidth

by lightly loaded stations and evenly for proportionally according to the values of B,

distribute the remaining bandwidth among the overloaded stations. Its main problem

is that it slowly converges to the steady state where fair bandwidth allocation is

achieved. Consequently, it is not appropriate for supporting real-time traffic since

transient overloads at low priority users may temporarily prohibit high priority users

from accessing the channel, significantly increasing their delays, thus preventing them

from meeting their stringent delay constraints. For this reason the GBW_DQDB

mechanism was recently introduced to guarantee a certain amount of bandwidth to

high priority users. However, the stations that use this mechanism can receive the

requested bandwidth only through reservations. Consequently they have to reserve

the amount of bandwidth which require during their active periods, although they

will not use during their idle periods. As a result of this lost bandwidth, the cost of

the connection will be high.

The above problems of BBM_DQDB and GBW_DQDB have motivated us to

introduce a new mechanism that combines the advantages of the above two mecha-

nisms. The proposed mechanism, called GBBM, can guarantee a certain amount of

bandwidth to high priority stations and at the same time enable them to compete

for the remaining channel bandwidth. As a result their performance can significantly

improve. We have looked at two variations of GBBM. The motivation for the second

variation, called GBBM2, was the strong effect that the location of the high priority

stations could have or its delay performance in the case of the first variation, called

35

36

GBBM1. We have found that in the case of GBBM1, high priority stations located

at the beginning of the bus can transmit a large number of free segments reducing

significantly the rate at which other high priority stations, located downstream, can

have access on to the channel and in this way drastically increasing their delay. Ac-

cording to GBBM2 a high priority station can transmit a free segment not only when

its CD_CTR is 0 but also when its RQ_CTR is 0. Since upstream stations see the

requests from all downstream stations their free segment transmission rate decreases.

Downstream high priority stations see a much greater number of idle slots and their

delay significantly decreases.

We have also compared the performance of the two variation of GBBM with

BBM_DQDB and GBW_DQDB. We have found that the effect of the location of the

high priority stations performance is minor in the case of GBW_DQDB, however,

GBBM2 provides always significantly lower delays. The delays in the case of GBBM,

are usually smaller than the corresponding delay in the case of GBW_DQDB, but

always. In the case of GBBM1, if long messages are transmitted, then the delay of high

priority stations which are located far away from the bus origin may be significantly

higher than the corresponding delay in the case of GBW_DQDB. BBM_DQDB on

the other hand, provides underloaded low priority stations, the highest delays. This

behavior clearly demonstrates its limitations in terms of satisfying the stringent delay

requirements of real-time traffic. We have finally seen that if high priority stations

using GBW_DQDB are not provided with the bandwidth required during their active

periods, their delays will drastically increase. In contrast, the effect of lower than

required guaranteed bandwidth in the case of the other mechanisms will not be that

significant. This behavior demonstrates the ability of GBBM (and especially GBBM2)

to support traffic with certain throughput or delay requirements without the need of

guaranteeing all the requested bandwidth. Since guaranteed bandwidth is expected

to be expensive, GBBM2 has the potential of supporting real-time applications as a

37

much lower cost GBW_DQDB.

We have seen that GBBM combines the advantages of BBM_DQDB and

GBW_ 	DQDB. Recently, a new Bandwidth Balancing Mechanism, called the No Slot

Waisting Bandwidth Balancing (NSW_BWB) mechanism, has been introduced in

[14,15 . The main advantage of NSW_BWB is that it can introduce a similar to

BWB_DQDB fairness into DQDB network but without waisting channel slots. This

property enables NSW_BWB to converge very fast to the steady state where the fair

bandwidth is achieved. Therefore, it will be very interesting, as a future research,

to investigate for a mechanism that combines the advantages of NSW_BWB and

GBW_DQDB, as well to compare its performance with the corresponding performance

of GBBM.

APPENDIX A

FORMULA DERIVATION

We have the following assumptions for performance analysis.

Channel capacity: C=155.5 [Mbps]

Number of nodes: N=20

The bus length is D [km] and nodes locates at every D/N km.

The signal propagation delay between nodes : t prop

The signal propagation delay : V

prop

tslot = 53 bytes tslot = tslot/

C

tslot

 =

 Vprop x D

The frame arrivals follows Poisson distribution.

A frame has a constant length L p bits.

Arrival time of a message is:

P(x > t) = exp -λt

P(x ≤ t) = Fx(t) = 1 — exp

 -λt

exp

 -

λt

=

1 —

Fx(t) 	where Fz(t) is a unit function (u)

—λt = log (1 — u) => - log (1 — u)/λ

38

APPENDIX B

ARRAY DESCRIPTION

THE FOLLOWING ARRAYS ARE USED IN THE SIMULATION:

STASTATUS(0:9,4):

stastatus(i,1):CD-CTR

stastatus(i,2):RQ-CTR

stastatus(i,3)= 0 : station isidle

stastatus(i,3)> 0 : station is active

SLOTSTATUS(200,2,3):

200: total number of slots(i) on both buses

2: two buses , bus A , bus B

3: Busy Bit , Request Bit Station Number

slotstatus(i) 1,1): Busy Bit(BB) on bus A

slotstatus(i,2,1): BB on bus B

slotstatus(i ,1,2): Request Bit(RB) on bus A

slotstatus(i,2)2): RB on bus B

slotstatus(i,1,3): which slot on bus A is over that station

slotstatus(i,2,3): which slot on bus B is over that station

DELAY(4,0:9):

0:9: is the number of stations

delay(1,i): waiting time of segments

delay(2,i): number of transmitted segments

delay(3,i): waiting time of messages

delay(4,i): number of transmitted messages

ARRIVALS(10,2):

10: number of stations (i)

arrivals(i,1): arrival time of the message

39

40

arrivals(i,2): message size

CO UNTER(0:9): Provides the size of Request Queue at each station.

BBM-CTR(0:9): Bandwidth Balancing Counter for each station.

CR-CTR:(0:9): Credit Counter for each station.

rmean(0:9): Is the number of segments in each message.

Sgmq(0:9): Provides the Transmission Queue (TQ) for each station.

Sgmw(0:9): Provides the size of QAR for each station.

kval(0:9): Is the value of B in each station.

Tflag(0:9): FSFlag for each station.

Rgflag(0:9):FSFQFIag for each station.

APPENDIX C

BBM_DQDB Simulation

Program

c**
c PROGRAM SIMULATION
c All stations use BWB mechanism
c ***

COMMON arrivals,nuofslots,coverage,DELAY,RMEAN
REAL ARRIVALS(10,3,200),DELAY(4 ,0 : 9), rrate(0: 9),

1 coverage,RMEAN(0:9),RPROPAG
integer nss,inc,ncrmx,nmean

ICSEED =135
ITSEED =479

CALL RANSET(ICSEED,ITSEED)

nss =0
inc =30
ncrmx = 180
nmean =6

do 2 i=0,9
if (i.eq.0) rmean(i)=1000
if (i.eq. I) rmean(i) =1000
if (i.eq.2) rmean(i)=1000
if (i.eq.3) rmean(i)=1000
if (i.eq.4) rmean(i)=1000
if (i.eq.5) rmean(i)=1000
if (i.eq.6) rmean(i)=1000
if (i.eq.7) rmean(i)=1000
if (i.eq.8) rmean(i)=1000
if (i.eq.9) rmean(i)=1000
if (i.eq.nss) rmean(i)=nmean

	

2 	continue

do 5 i =0,9
if(i.eq.0)rrate(i)=1000.7/(rmean(i)*424)
if(i.eq.1)rrate(i)=1000.7/(rmean(i)*424)
if(i.eq.2)rrate(i)=1000.7/(rmean(i)*424)
if(i.eq.3)rrate(i)=1000.7/(rmean(i)*424)
if(i.eq.4)rrate(i)=1000.7/(rmean(i)*424)
if(i.eq.5)rrate(i)=1000.7/(rmean(i)*424)
if(i.eq.6)rrate(i)=1000.7/(rmean(i)*424)
if(i.eq.7)rrate(i)=1000.7/(rmean(i)*424)
if(i.eq.8)rrate(i)=1000.7/(rmean(i)*424)
if(i.eq.9)rrate(i)=1000.7/(rmean(i)*424)

if (i.eq.nss) rrate(i)= 1 /1 6000.0
do 15 j=1,200

arrivals(i+1,3,j)=0
arrivals(i+1,2,j)=0
arrivals(i+1,1,j)=0

	

15 	continue

	

5 	continue

42

43

DO 10 1=0,9
If (i.eq.nss) then
Arrivals(i+1,2,1)=rmean(i)
arrivals(i +1,3,1)=189

ARRIVALS(I +1,1,2) = ARRIVALS(I +1,1, 1) +188*84 +
1 	(-1)*ALOG(1-UNI(K))/(RRATE(i))

else
arrivals(i+1,2,1)=rmean(i)

endif
c print*, ARRIVALS(I+1,1,1),ARRIVALS(I+1,2,1)

10 CONTINUE

c PRINT*,'Give the slot coverage(number of stations):'
c READ*,coverage

coverage = 6.0

C RPROPAG is the propagation from station to station exprassed
C in microseconds (propagation speed = 5 10-6 sec/km)

RPROPAG =2.726
print*,'PROPAGATION TIME: ' ,RPROPAG

C Capacity = 155.520 Mbs, rslottime is slottime in microseconds
c print*,arrivals

nuofslots=int(9*coverage)+1
print*,'NUMBER OF SLOTS : ',nuofslots
print*, 'special st =0 with BWB , rest BWB'
print*, 'nss = ',nss,' nmean= ',nmean
CALL EXECUTE(RPROPAG,RRATE,nss,inc,nermx)
do 22 i =0,9
if (i .eq. nss) then
print*,i,delay(1,i),delay(2,i),delay(1,i)/delay(2,1)
print*,i,delay(3,i),delay(4,i),delay(3,i)/delay(4,i)

else
print*,i,delay(2,i)

end if
22 continue

END

**

SUBROUTINE EXECUTE(RINCREMENT,RRATE,nss,inc,ncrmx)

common table,nuofslots,coverage,DELAY,rmean
REAL TABLE(10,3,200),RINCREMENT,DELAY(4,0:9),coverage,

1 SLOTSTATUS(200,2,3),rmean(0:9)
DOUBLE PRECISION TIME
INTEGER STASTATUS(0:9,4),STAT(160),IFLAG(160),

1 kval(0:9),credit(0:9),iter,nss,inc,ncrmx,
1 sgmq(0:9),sgmw(0:9),tflag(0:9)

NOFTRANS = 0
TIME=0
CALL INITIALIZE(SLOTSTATUS)

do 5 i =0,9
if (i.eq.0) kval(i)=6

if (i.eq.1) kval(i)=6
if (i.eq.2) kval(i)=6

if (i.eq.3) kval(i)=6
if (i.eq.4) kval(i)=6
if (i.eq.5) kval(i)=6
if (i.eq.6) kval(i)=6
if (i.eq.7) kval(i)=6
If (i.eq.8) kval(i)=6
If (i.eq.9) kval(i)=6
if (i.eq.nss) kval(i)=14

5 continue
DO 20 I=0,9

STASTATUS(I,1)=0
STASTATUS(I,2) =0

STASTATUS(I,3)=0
STASTATUS(I,4)= -1
sgmw(i) =0

c 	if((i .eq. nss) .or. (i .eq. 3) .or. (i .eq. 8)) then
sgmw(i) =rmean(i)
STASTATUS(i,1)=STASTATUS(i,2)

c 	end if
sgmq(i)=0
tflag(i) =0

20 CONTINUE
10 DO 30 sl=1,nuofslots,coverage

i=sl
STAT(I)=int(SLOTSTATUS(I,1,3)+0.05)

30 CONTINUE
CALL NEXTSTEP(SLOTSTATUS,STASTATUS,IFLAG,KVAL,credit,sgmw,

1 	sgmq,tflag,nss,inc,ncrmx)
CALL MODIFY(IFLAG,STAT,TIME,STASTATUS,RRATE,sgmw,sgmq,nss)

DO 40 sl =1,nuofslots,coverage
i=sl
IF (IFLAG(I).EQ.1) NOFTRANS=NOFTRANS+1

40 CONTINUE
iter =iter+ I
TIME=TIME+RINCREMENT
DO 60 I=1,nuofslots
SLOTSTATUS(I,1 ,3) = SLOTSTATUS(I,1 ,3) + (1/coverage)

SLOTSTATUS(I,2,3)=SLOTSTATUS(I,2,3)-(1/coverage)
60 CONTINUE

if (mod(noftrans,1000000).eq.0) print*,noftrans,time,
1 	 delay(1,0)/delay(2,0)

IF (NOFTRANS.LT.4000000) GOTO 10
print*,'TOTAL TIME IS EQUAL TO: ,TIME
RETURN
END

45

C **

SUBROUTINE INITIALIZE(SLOTSTATUS)

common arrivals,nuofslots,coverage,DELAY

REAL DELAY(4,0:9),coverage,SLOTSTATUS(200,2,3),
1 	arrivals(10,3,200)

DO 10 I =nuofslots,1,-1
DO 20 J=1,2
SLOTSTATUS(I,1,J)=0
SLOTSTATUS(I,2,J)=0

20 CONTINUE
SLOTSTATUS(I, 1,3) = (i-1)*(1/coverage)
SLOTSTATUS(I2,3)=9-(i-1)*(1/coverage))

10 CONTINUE
RETURN
END

***********************************.************************

SUBROUTINE GENERATESLOT(SLOTSTATUS)

common arrivals,nuofslots
REAL SLOTSTATUS(200,2,3),arrivals(10,3,200)

DO 10 I=nuofslots-1,1,-1
DO 20 J=1,3
SLOTSTATUS(I+1,1,J)=SLOTSTATUS(1,1,J)
SLOTSTATUS(1+ 1 ,2,J) = SLOTSTATUS(I,2,J)

20 CONTINUE
10 CONTINUE

SLOTSTATUS(1,1,1)=0
SLOTSTATUS(1,1,2)=0
SLOTSTATUS(1,1,3) =0
SLOTSTATUS(1,2,1)=0
SLOTSTATUS(1,2,2)=0 SLOTSTATUS(1,2,3)=9

RETURN
END

46

C**

SUBROUTINE NEXTSTEP(SLOTSTATUS,STASTATUS,ISFLAG,KVAL,credit,
1 	 sgmw,sgmq,tflag,nss,inc,ncrrnx)
save counters,bbm,nrqctr
common arrivals,nuofslots,coverage,DELAY
INTEGER STASTATUS(0:9,4),ISFLAG(160),STATIONA(160),nss,

1 	STATIONB(160), counters(0:9),kval(0 :9),bbm(0 : 9), inc,ncrmx,
1 credit(0:9),sgmw(0:9),sgmq(0:9),tflag(0:9),nrqctr(300)

REAL SLOTSTATUS(200,2,3),DELAY(4,0:9),COVERAGE,
1 	arrivals(10,3,200)

DO 10 sl =1,nuofslots,coverage
i=s1
ISFLAG(I) =0
STATIONA(I)=int(SLOTSTATUS(I,1,3)+0.05)
STATIONB(I)=int(SLOTSTATUS(nuofslots-i +1,2,3)+0.05)

10 CONTINUE

DO 20 s1=1,nuofslots,coverage
i=s1

j =nuofslots-i+ 1

if (sgmw(stationb(i)).gt.0) then

if (tflag(stationb(i)).eq.0) then
counters(stationb(i))=counters(stationb(i))+1

sgmw(stationb(i)) =sgmw(stationb(i))-1
sgmq(stationb(i))=sgmq(stationb(i))+1

stastatus(stationb(i),1)=stastatus(stationb(i),2)
stastatus(stationb(i),2) =0

tflag(stationb(i))=1
endif

endif

c change in RQ_CTR is introduced here because station knows, before it sees the
c next slot whether it should transfer the content of RQ_CTR to CDCTR

STASTATUS(STATIONB(I),2) =
1 STASTATUS(STATIONB(I),2)+SLOTSTATUS(J,2,2)

IF ((SLOTSTATUS(J,2,2).EQ.0).AND.
1 (counters(stationb(I)).ge.1)) THEN

SLOTSTATUS(J,2,2)=1
counters(stationb(I))=counters(stationb(I))-1

ENDIF
IF (sgmq(STATIONA(I)).EQ.0) THEN

IF (STASTATUS(STATIONA(I),2).GT.0) THEN
STASTATUS(STATIONA(I),2) =

1 	STASTATUS(STATIONA(I),2)+SLOTSTATUS(I,1,1)-1
end if

end if

47

IF (sgmq(STATIONA(I)).gt.0) THEN
IF ((SLOTSTATUS(1,1,1).EQ.0).AND.

1 	(STASTATUS(STATIONA(I),1).EQ.0)) then
1SFLAG(I) 1
SLOTSTATUS(I,1,1)= 1

sgmq(stationa(i))=sgmq(stationa(i))-1
bbm(stationa(i))=bbm(stationa(i))+1
tflag(stationa(i)) =0
if(bbm(stationa(i)).eq.KVAL(stationa(i))) then

STASTATUS(STATIONA(I),2)=STASTATUS(STATIONA(I),2)+ 1
bbm(stationa(i)) =0

end if

ELSE

IF (STASTATUS(STATIONA(1),1).GT.0) THEN
STAST ATU S(STATIONA(I), 1) = STASTATUS(STATIONA(1), 1) +

1 	SLOTSTATUS(1,1,1)-1
ENDIF
ENDIF

ENDIF

20 CONTINUE
RETURN
END

C **

SUBROUTINE MODIFY(FLAG,ST,CURRTIM,STASTATUS,LAMDA,sgmw,
1 	sgmq,nss)

COMMON arrivals,nuofslots,COVERAGE,DELAY,RMEAN

INTEGER FLAG(160),STASTATUS(0:9,4),ST(160)
integer sgmw(0:9),sgmq(0:9),nss
REAL ARRIVALS(10,3,200),DELAY(4,0:9),LAMDA(0:9),

1 	COVERAGE,RMEAN(0:9)
DOUBLE PRECISION CURRTIM
DO 30 s1=1,nuofslots,coverage
i =sl

IF (FLAG(I).EQ.1) THEN

DELAY(2,ST(I))=DELAY(2,ST(I))+1
if (st(i).eq.nss) then

DELAY(1,ST(I))= DELAY(1 ,ST(I)) +
1 	CURRTIM-ARRIVALS(ST(I)+1,1,1)+2.726

end if

48

IF (ARRIVALS(ST(I)+1,2,1).EQ.1) THEN

if (st(i).eq.nss) then
DELAY(3,ST(I))=DELAY(3,ST(I))+

1 	CURRTIM-ARRIVALS(ST(II)+I,l,1)+2.726
end if

DELAY(4,ST(1))=DELAY(4,ST(I))+1
if(st(i).ne.nss) then

c 	ARRIVALS(ST(I)+1,1,1)=ARRIVALS(ST(I)+1,1,1)+
c 1 	(-1)*ALOG(1-UNI(K))/(LAMDA(st(i)))
c 	arrivals(st(I)+1,2,1)=rmean(st(i))

c 	else if((st(i).eq.3) .or. (st(i).eq.8)) then
sgmw(st(i))=1000

else
if(st(i).eq.nss) then

If(arrivals(st(i)+ 1,3 , 1).eq. 1) then
arrivals(st(i)+1,2,1)=rmean(st(i))
arrivals(st(i)+1,3,1)=189
arrivals(st(i)+1,1,1)=arrivals(st(i)+1,1,2)
arrivals(st(i)+1,1,2)=arrivals(st(i)+1,1,1)+188*84.5+

1 	 (-1)*ALOG(1-UNI(K))/(lamda(st(i)))
else

arrivals(st(i) + 1,2,1) =rmean(st(i))'
arrivals(st(i)+1,1,1)=arrivals(st(i)+1,1,1)+84.5
arrivals(st(i)+1,3,1)=arrivals(st(i)+1,3,1)-1

endif
end if

end if
ELSE
ARRIVALS(ST(I)+ 1,2,1) = ARRIVALS(ST(I) + 1,2,l)-1

END IF
END IF

IF (st(i).eq.nss) then
if(arrivals(st(I)+1,1,1) .1t. (CURRTIM +2.726)) then

sgmw(st(i)) = arrivals(st(I) + 1 ,2, 1)-sgmq(st(i))
else
sgmw(st(i)) =0

end if
ELSE

sgmw(st(i))=1000
END IF

30 	continue

RETURN
END

**

APPENDIX D

GBW_DQDB Simulation

Program

49

50

**
c PROGRAM SIMULATION
c Special station transmits only through income.
c The rest use BWB mechanism
**

COMMON arrivals,nuofslots,coverage,DELAY,RMEAN
REAL ARRIVALS(10,3,200),DELAY(4,0:9),rrate(0:9),

1 coverage,RMEAN(0:9),rpropag
integer nss,inc,ncrmx,nmean

ICSEED =135
ITSEED =479

CALL RANSET(ICSEED,ITSEED)

nss =0
inc=30
ncrmx=180
nmean=6

do 2 i=0,9
if (i.eq.0) rmean(i)=1000
if (i.eq.1) rmean(i) =1000
if (i.eq.2) rmean(i)=1000
if (i.eq.3) rmean(i)=1000
if (i.eq.4) rmean(i)=1000
if (i.eq.5) rmean(i)=1000
if (i.eq.6) rmean(i)=1000
if (i.eq.7) rmean(i)=1000
if (i.eq.8) rmean(i)=1000
if (i.eq.9) rmean(i)=1000
if (i.eq.nss) rmean(i)=nmean

	

2 	continue

do 5 i=0,9

if (i.eq.0) rrate(i)=1000.7/(rmean(i)*424)

if (i.eq.2) rrate(i)=1000.7/(rmean(i)*424)
if (i.eq.3) rrate(i)=1000.7/(rmean(i)*424)
if (i.eq.4) rrate(i)=1000.7/(rmean(i)*424)
if (i.eq.5) rrate(i)=1000.7/(rmean(i)*424)
if (i.eq.6) rrate(i)=1000.7/(rmean(i)*424)
if (i.eq.7) rrate(i)=1000.7/(rmean(i)*424)
if (i.eq.8) rrate(i)=1000.7/(rmean(i)*424)
if (i.eq.9) rrate(i)=1000.7/(rmean(i)*424)

if (i.eq.nss) rrate(i)=1/16000.0
do 15j=1,200

arrivals(i + 1,3 ,j) = 0
arrivals(i + 1,2 ,j) = 0
arrivals(i + 1,1,j) = 0

	

15 	continue

	

5 	continue

51

DO 10 1=0,9
If (i.eq.nss) then
Arrivals(i + 1,2,1) =rmean(i)
arrivals(i +1,3,1) =189

ARRIVALS(I + 1,1,2) = ARRIVALS(I + 1 ,1,1)+188*84 .5 +
1 	(-1)*ALOG(I -UNI(K))/(RRATE(i))

else
arrivals(i+1,2,1)=rmean(i)
endif

c 	print*, ARRIVALS(I + 1,1,1) ,ARRIVALS(I +1,2,1)
10 CONTINUE

c 	PRINT*,'Give the slot coverage(number of stations):'
c 	READ*,coverage

coverage =6.0

C RPROPAG is the propagation from station to station exprassed
C in microseconds (propagation speed = 5 10-6 sec/km)

RPROPAG = 2.726
print*,'PROPAGATION TIME:',RPROPAG

C Capacity = 155.520 Mbs, rslottime is slottime in microseconds
c 	print*,arrivals

nuofslots=int(9*coverage)+1
print*,'NUMBER OF SLOTS : ',nuofslots
print*,'special st =0 with INC , rest BWB.'
print*,'nss=',nss,' INC= ',inc,' CRmax=',ncrmx,

1 	 ' nmean = ',nmean
CALL EXECUTE(RPROPAG,RRATE,nss,inc,ncrmx)
do 22 i=0,9
if (i .eq. nss) then
print*,i,delay(1,i),delay(2,i),delay(1,i)/delay(2,i)
print*,i,delay(3,i),delay(4,i),delay(3,i)/delay(4,i)

else
print*,i,delay(2,i)

end if
22 continue

END

C **

SUBROUTINE EXECUTE(RINCREMENT,RRATE,nss,inc,ncrmx)

common table,nuofslots,coverage,DELAY,rmean
REAL TABLE(10,3,200),RINCREMENT,DELAY(4,0:9),coverage,

I SLOTSTATUS(200,2,3),rmean(0:9)
DOUBLE PRECISION TIME
INTEGER STASTATUS(0:9,4),STAT(160),IFLAG(160),

1 kval(0:9),credit(0:9),iter,nss,inc,ncrmx,
1 sgmq(0:9),sgmw(0:9),tflag(0:9)

NOFTRANS =0
TIME=D
CALL INITIALIZE(SLOTSTATUS)

do 5 i=0,9
if (i.eq.0) kval(i)=6

if (i.eq.1) kval(i)=6
if (i.eq.2) kval(i)=6
if (i.eq.3) kval(i)=6
if (i.eq.4) kval(i)=6
if (i.eq.5) kval(i)=6
if (i.eq.6) kval(i)=6
if (i.eq.7) kval(i)=6
If (i.eq.8) kval(i)=6
If (i.eq.9) kval(i)=6
if (i.eq.nss) kval(i)=14

5 continue
DO 20 1=0,9

STASTATUS(I,1)=0 STASTATUS(I,2)=0

STASTATUS(I,3)=0
STASTATUS(I,4)=-1
sgmw(i)=0

c 	if((i .eq. nss) .or. (i .eq. 3) .or. (i .eq. 8)) then
sgmw(i)=rmean(i)
STASTATUS(i,I)=STASTATUS(i,2)

c 	end if
sgmq(i)=0
tflag(i)=0

20 CONTINUE
10 DO 30 sl=1 ,nuofslots,coverage

i=sl
STAT(I) = int(SLOTSTATUS(I,1,3) +0.05)

30 CONTINUE
CALL NEXTSTEP(SLOTSTATUS,STASTATUS,IFLAG,KVAL,credit,sgmw,

1 	sgmq,tflag,nss,inc,ncrmx)
CALL MODIFY(IFLAG,STAT,TIME,STASTATUS,RRATE,sgmw,sgmq,nss)

DO 40 sl=1,nuofslots,coverage
i=sl
IF (IFLAG(I).EQ.1) NOFTRANS=NOFTRANS +1

40 CONTINUE
iter =iter +1
TIME=TIME+RINCREMENT
DO 60 I =1,nuofslots
SLOTSTATUS(I,1,3) = SLOTSTATUS(I,1,3) + (1/coverage)
SLOTSTATUS(I,2,3) = SLOTSTATUS(I,2 ,3)-(1/coverage)

60 CONTINUE
CALL GENERATESLOT(SLOTSTATUS)

if (mod(noftrans,1000000).eq.0) print*,noftrans,time,
1 	 delay(1,0)/delay(2,0)

IF (NOFTRANS.LT.4000000) GOTO 10
print*,'TOTAL TIME IS EQUAL TO:',TIME
RETURN
END

52

53

C **

SUBROUTINE INITIALIZE(SLOTSTATUS)

common arrivals,nuofslots,coverage,DELAY

REAL DELAY(4,0:9),coverage,SLOTSTATUS(200,2,3),
1 	arrivals(10,3,200)

DO 10 I =nuofslots,1,-1
DO 20 J=1,2

SLOTSTATUS(I,1,J) =0 SLOTSTATUS(I,2,J) =0
20 CONTINUE

SLOTSTATU S(I, 1 ,3) = (i- 1)*(1/coverage)
SLOTSTATUS(I,2,3) =9-((i-1)*(1 /coverage))

10 CONTINUE
RETURN
END

C **

SUBROUTINE GENERATESLOT(SLOTSTATUS)

common arrivals,nuofslots
REAL SLOTSTATUS(200,2,3),arrivals(10,3,200)

DO 10 I =nuofslots-1,1,-1
DO 20 J=1,3
SLOTSTATUS(I+1,1,J)=SLOTSTATUS(I,1,J) SLOTSTATUS(I+1,2,J)=SLOTSTATUS(I,2,J)

20 CONTINUE
10 CONTINUE

SLOTSTATUS(1,1,1)=0 SLOTSTATUS(1,1,2)=0
SLOTSTATUS(1,1,3)=0 SLOTSTATUS(1,2,1)=0 SLOTSTATUS(1,2,2)=0 SLOTSTATUS(1,2,3)=9

RETURN
END

C **

SUBROUTINE NEXTSTEP(SLOTSTATUS,STASTATUS,ISFLAG,KVAL,credit,
1 	 sgmw,sgmq,tflag,nss,inc,ncrmx)

save counters,bbm,nrqctr
common arrivals ,nuofslots,coverage,DELAY
INTEGER STASTATUS(0:9,4),ISFLAG(160),STATIONA(160),nss,

I STATIONB(160),counters(0:9),kval(0:9),bbm(0:9),inc,ncrmx,
1 credit(0:9),sgmw(0:9),sgmq(0:9),tflag(0:9),nrqctr(300)

REAL SLOTSTATUS(200,2,3),DELAY(4,0:9),COVERAGE,

54

1 arrivals(10,3,200)

DO 10 sl=1,nuofslots,coverage
i=sl

ISFLAG(I)=0
STATIONA(I) = int(SLOTSTATUS(I, I ,3) +0.05)
STATIONB(I) =int(SLOTSTATUS(nuofslots-i+ 1,2 ,3)+ 0.05)

10 CONTINUE

DO 20 sl=1,nuofslots,coverage
i=sl

j =nuofslots-i + 1
c 	print*,stationa(i),stationb(i)
c 	read*,iiik

if (stationb(i).eq.nss) then
if(credit(stationb(i)) lt. ncrmx)

1 	credit(stationb(i))=credit(stationb(i))+inc
c 	credit(stationb(i))=min(credit(stationb(i))+inc,ncnnx)

endif

if (sgmw(stationb(i)).gt.0) then
 if (stationb(i).eq.nss) then

if (credit(stationb(i)).ge.155) then
credit(stationb(i))=credit(stationb(i))-155
counters(stationb(i))=counters(stationb(i))+1

sgmw(stationb(i)) =sgmw(stationb(i))-1
sgmq(stationb(i))=sgmq(stationb(i)) +1

if(sgmq(stationb(i)) .eq. 1) then
stastatus(stationb(i),1) = stastatus(stationb(i), 2)

else

nrqctr(sgmq(stationb(i)))=stastatus(stationb(i),2)
if(sgmq(stationb(i)) .gt. 300) then
print*, 'high value for segmnts in Tx queue'
stop

end if
end if
stastatus(stationb(i),2) =0

end if
else

if (tflag(stationb(i)).eq.0) then
counters(stationb(i))=counters(stationb(i))+1

sgmw(stationb(i))=sgmw(stationb(i))-1

sgmq(stationb(i))=sgmq(stationb(i))+1
stastatus(stationb(i), 1) = stastatus(stationb(i), 2)
stastatus(stationb(i),2)=0

tflag(stationb(i))=1
endif

endif
endif

c change in RQ_CTR is introduced here because station knows, before it sees the
c next slot whether it should transfer the content of RQ_CTR to CD_CTR

55

STASTATUS(STATIONB(I),2)=

1 STASTATUS(STATIONB(I),2)+SLOTSTATUS(J,2,2)

IF ((SLOTSTATUS(J,2,2).EQ.0).AND.
1 	(counters(stationb(I).ge.1)) THEN

SLOTSTATUS(J,2,2) = i
counters(stationb(I))=counters(stationb(I))-1

ENDIF

IF (sgmq(STATIONA(I)).EQ.0) THEN
IF (STASTATUS(STATIONA(I),2).GT.0) THEN

STASTATUS(STATIONA(I),2) =
1 	STASTATUS(STATIONA(I),2)+SLOTSTATUS(I,1,1)-1

end if
end if

IF (sgmq(STATIONA(I)).gt.0) THEN
IF ((SLOTSTATUS(I,1,I).EQ.0).AND.

1 	(STASTATUS(STATIONA(I), 1) . EQ .0)) then
ISFLAG(I)=1
SLOTSTATUS(I,1 ,1) =1

sgmq(stationa(i)) = sgmq(stationa(i))- I
if(stationa(i) .ne. nss) then

bbm(stationa(i))=bbm(stationa(i))+ 1
tflag(stationa(i))=0
if(bbm(stationa(i)).eq.KVAL(stationa(i))) then

STASTATUS(STATIONA(I),2)=STASTATUS(STATIONA(I),2)+ 1
bbm(stationa(i))= 0

end if
else

if(sgmq(stationa(i)) .gt. 0) then
stastatus(stationb(i),1)=nrqctr(2)
if(sgmq(stationa(i)) .gt. 1) then

do 111 j =2,sgmq(stationa(i))
nrqctr(j) = nrqctr(j +1)

111 	continue
end if

end if
end if

ELSE
IF (STASTATUS(STATIONA(I),1).GT.0) THEN
STASTATUS(STATIONA(I),1)=STASTATUS(STATIONA(I),1)+

1 	SLOTSTATUS(I, 1, 1)-1
ENDIF

ENDIF
ENDIF

20 CONTINUE
RETURN
END

56

C **

SUBROUTINE MODIFY(FLAG,ST,CURRTIM,STASTATUS,LAMDA,sgmw,
1 1 sgmq,nss)

COMMON arrivals,nuofslots,COVERAGE,DELAY,RMEAN

INTEGER FLAG(160),STASTATUS(0:9,4),ST(160)
integer sgmw(0:9),sgmq(0:9),nuofp,nss
REAL ARRIVALS(10,3,200),DELAY(4,0:9),LAMDA(0:9),

1 	COVERAGE,RMEAN(0:9)
DOUBLE PRECISION CURRTIM,time0,timel
DO 30 sl=1,nuofslots,coverage

i=sl

IF (FLAG(I).EQ.1) THEN

DELAY(2,ST(I))=DELAY(2,ST(I))+1
if (st(i).eq.nss) then
DELAY(1,ST(I)) = DELAY(1,ST(I)) +

1 	CURRTIM-ARRIVALS(ST(I)+1,1,1)+2.726
end if

IF (ARRIVALS(ST(I)+1,2,1).EQ.1) THEN
if (st(i).eq.nss) then

DELAY(3,ST(I)) =DELAY(3 ,ST(I)) +
1 	CURRTIM-ARRIVALS(ST(I)+1,1,1)+2.726

end if
DELAY(4,ST(I))=DELAY(4,ST(I))+1

if(st(i).ne.nss) then
c 	ARRIVALS(ST(I) + 1,1,1) = ARRIVALS(ST(I) + 1,1,I) +
c 1 	(-1)*ALOG(1-UNI(K))/(LAMDA(st(i)))
c 	arrivals(st(I)+1,2,1)=rmean(st(i))

c 	else if((st(i).eq.3) .or. (st(i).eq.8)) then
sgmw(st(i))=1000

else
if(st(i).eq.nss) then

If(arrivals(st(i) +1,3 ,1).eq. 1) then
arrivals(st(i) +1 ,2 ,1) =rmean(st(i))
arrivals(st(i)+1,3,1)=189
arrivals(st(i)+1,1,1)=arrivals(st(i)+1,1,2)
arrivals(st(i)+ 1,1,2) = arrivals(st(i) + 1, 1, 1)+188*84.5 +

(-1)*ALOG(1-UNI(K))/(lamda(st(i)))
else

arrivals(st(i)+1,2,1)=rmean(st(i))
arrivals(st(i)+1,1,1)=arrivals(st(i)+1,1,1)+84.5 arrivals(st(i)+1,1,1)=arrivals(st(i)+1,3,1)-1

endif
end if

end if
ELSE
ARRIVALS(ST(I) + 1,2,1)= ARRIVALS(ST(I) +1,2,1)-1

57

END IF

END IF

IF(st(i).ne.nss) then
c 	if(arrivals(st(I)+1,1,1) .lt. (CURRTIM +2.726)) then
c 	sgmw(st(i))=arrivals(st(I)+1,2,1)-sgmq(st(I))
c 	else
c 	sgmw(st(i))=0
c 	end if
c 	ELSE IF((st(i).eq.3) .or. (st(i).eq.8)) then

sgmw(st(i))=1000
ELSE

IF(arrivals(st(I) +1,1,1) .1t (CURRTIM +2.726)) then
if((arrivals(st(I)+1,1,2)+188*84.5) .1t. (CURRTIM+2.726)) then

print*, 'The computation of swgm(nss) is not correct'
stop

else
timel =arrivals(st(i)+1,1,1) +(arrivals(st(i)+1,3,1)-1)*84.5
if(timel .gt. (CURRTIM +2.726)) then

time0=currtim+2.726-arrivals(st(i)+1,1,1)
nuofp=int(time0/84.5)+1
sgmw(st(i))=(nuofp-1)*rmean(st(i))+

arrivals(st(i)+1,2,1)-sgmq(st(i))
else if(arrivals(st(i)+1,1,2) .gt. (CURRTIM +2.726)) then

sgmw(st(i)) =(arrivals(st(i) + 1,3 ,1)-1)*rmean(st(i)) +
1 	arrivals(st(i)+1,2,1)-sgmq(st(i))

else
time0=currtim+2.726-arrivals(st(i)+1,1,2)
nuofp =int(time0/84.5)+ 1
sgmw(st(i))=(arrivals(st(i)+1,3,1)-1)*rmean(st(i))+

1 	arrivals(st(i)+1,2,1)-sgmq(st(i))+nuofp*rmean(st(i))
end if

end if
ELSE
sgmw(st(i)) =0
END IF

END IF

30 	continue

RETURN
END

C ***

APPENDIX E

GBBM Simulation

Program

58

59

c ***

c 	PROGRAM SIMULATION
c Special station transmits through income and BWB mechanism. The rest, use
c BWB mechanism. Free segment can be changed to paid segment.
c ***

COMMON arrivals,nuofslots,coverage,DELAY,RMEAN
REAL ARRIVALS(10,3,200),DELAY(4,0:9),rrate(0:9),rpropag,

1 coverage,RMEAN(0:9)
integer nss,inc,ncrmx,nmean,nbsp

ICSEED =135
ITSEED =479

CALL RANSET(ICSEED,ITSEED)

nss =0
inc =30
ncrmx =180
nmean =6
nbsp =0

do 2 i=0,9
if (i.eq.0) rmean(i)=1000
if (i.eq.1) rmean(i) =1000
if (i.eq.2) rmean(i)=1000
if (i.eq.3) rmean(i)=1000 if (i.eq.4) rmean(i) =1000

if (i.eq.5) rmean(i)=1000
if (i.eq.6) rmean(i)=1000
if (i.eq.7) rmean(i)=1000
if (i.eq.8) rmean(i)=1000
if (i.eq.9) rmean(i)=1000
if (i.eq.nss) rmean(i)=nmean

2 	continue

do 5 i=0,9
if (i.eq.0) rrate(i)=1000.7/(rmean(i)*424) if (i.eq.0) rrate(i)=1000.7/(rmean(i)*424)

if (i.eq.2) rrate(i)=1000.7/(rmean(i)*424)
if (i.eq.3) rrate(i)=1000.7/(rmean(i)*424)
if (i.eq.4) rrate(i)=1000.7/(rmean(i)*424)
if (i.eq.5) rrate(i)=1000.7/(rmean(i)*424)
if (i.eq.6) rrate(i)=1000.7/(rmean(i)*424)
if (i.eq.7) rrate(i)=1000.7/(rmean(i)*424)
if (i.eq.8) rrate(i)=1000.7/(rmean(i)*424) if (i.eq.9) rrate(i)=1000.7/(rmean(i)*424)

if (i.eq.nss) rrate(i)= 1/16000.0

do 15 j=1,200
arrivals(i +1,3,j) = 0
arrivals(i +1,2,j) = 0
arrivals(i +1,1, j) = 0

15 	continue
5 	continue

60

DO 10 I=0,9
If (i.eq.nss) then
Arrivals(i+ 1,2,1)=rmean(i)
arrivals(i + 1,3,1) =189

ARRIVALS(I + 1,1 ,2) = ARRIVALS(I + 1,1,1)+188*84.5+
1 	(-1)*ALOG(1-UNI(K))/(RRATE(i))

else
arrival s(i + 1,2,1) = rmean(i)

endif
c 	print*, ARRIVALS(I+1,1,1),ARRIVALS(I+1,2,1)

10 CONTINUE

c 	PRINT*,'Give the slot coverage(number of stations):'
c 	READ*,coverage

coverage = 6.0

C RPROPAG is the propagation from station to station expressed
C in microseconds (propagation speed = 5 10-6 sec/km)

RPROPAG=2.726
print*,'PROPAGATION TIME:',RPROPAG

C Capacity = 155.520 Mbs, rslottime is slottime in microseconds
c 	print*,arrivals

nuofslots=int(9*coverage)+1

print*,'NUMBER OF SLOTS : ',nuofslots
CALL EXECUTE(RPROPAG,RRATE,nss,inc,ncrmx,nbsp)
do 22 i=0,9
if (i .eq. nss) then
print*, i ,delay(1,i),delay(2,i),delay(I ,i)/delay(2,i)
print*,i,delay(3,i),delay(4,1),delay(3,i)/delay(4,i)

else
print*,i,delay(2,i)

end if
22 continue

print*,'number of txed blnc segm from sp.st',nbsp
END

C **

SUBROUTINE EXECUTE(RINCREMENT,RRATE,nss,inc,ncrmx,nbsp)

common table,nuofslots,coverage,DELAY,rmean
REAL TABLE(10,3,200),RINCREMENT,DELAY(4,0:9),coverage,

1 SLOTSTATUS(200,2,3),rmean(0:9)
DOUBLE PRECISION TIME
INTEGER STASTATUS(0:9,4),STAT(160),IFLAG(160),

1 kval(0:9),credit(0:9),iter,nss,inc,ncrmx,
1 sgmq(0:9),sgmw(0:9),tflag(0:9),rgflag(0:9),nbsp,nqctr

NOFTRANS =0
TIME=0
nqctr =0
CALL INITIALIZE(SLOTSTATUS)

61

do 5 i=0,9
if (i.eq.0) kval(i)=6

if (i.eq.1) kval(i)=6
if (i.eq.2) kval(i)=6
if (i.eq.3) kval(i)=6
if (i.eq.4) kval(i)=6
if (i.eq.5) kval(i)=6
if (i.eq.6) kval(i)=6
if (i.eq.7) kval(i)=6
If (i.eq.8) kval(i)=6
If (i.eq.9) kval(i)=6
if (i.eq.nss) kval(i)=14

rgflag(i)=0
5 continue

DO 20 1=0,9
STASTATUS(I,I)=0
STASTATUS(I,2)=0
STASTATUS(I,3)=0
STASTATUS(I,4)=-1
sgmw(i)=0

c 	if((i .eq. nss) .or. (i .eq. 3) .or. (i .eq. 8)) then
sgmw(i)=rmean(i)
STASTATUS(i, 1) = STASTATUS(i,2)

c 	end if
sgmq(i)
tflag(i) =0

20 CONTINUE
10 DO 30 sl=1,nuofslots,coverage

i = sl
STAT(I)=int(SLOTSTATUS(I,1,3)+0.05)

30 CONTINUE
CALL NEXTSTEP(SLOTSTATUS,STASTATUS,IFLAG,KVAL,credit,sgmw,

sgmq,tflag,nss,inc,ncrmx,rgflag,nbsp,nqctr)
CALL MODIFY(IFLAG,STAT,TIME,STASTATUS,RRATE,sgmw,sgmq,nss)

DO 40 sl=1,nuofslots,coverage
i=s1
IF (IFLAG(I).EQ.1) NOFTRANS =NOFTRANS +1

40 CONTINUE
iter = iter +1
TIME=TIME+RINCREMENT
DO 60 I =1,nuofslots
SLOTSTATUS(I , 1 ,3) = SLOTSTATUS(I, 1 ,3)+(1/coverage)
SLOTSTATUS(I ,2,3) = SLOTSTATUS(I,2 ,3)-(1/coverage)

60 CONTINUE
CALL GENERATESLOT(SLOTSTATUS)

if (mod(noftrans,1000000).eq.0) print*,noftrans,time,
1 	 delay(1,0)/delay(2,0)

IF (NOFTRANS.LT.4000000) GOTO 10
print*,'TOTAL TIME IS EQUAL TO:',TIME
RETURN
END

62

C **

SUBROUTINE INITIALIZE(SLOTSTATUS)

common arrivals,nuofslots,coverage,DELAY

REAL DELAY(4,0:9),coverage,SLOTSTATUS(200,2,3),
1 	arrivals(10,3,200)

DO 10 I=nuofslots,1,-1
DO 20 J=1,2
SLOTSTATUS(I,1,J)=0
SLOTSTATUS(I,2,J)=0

20 CONTINUE
SLOTSTATUS(I,1,3) = (i-1)*(1/coverage)

SLOTSTATUS(I,2,3)=9-((i-1)*(1/coverage))
10 CONTINUE

RETURN
END

C **

SUBROUTINE GENERATESLOT(SLOTSTATUS)

common arrivals,nuofslots
REAL SLOTSTATUS(200,2,3),arrivals(10,3,200)

DO 10 I=nuofslots-1,1,-1
DO 20 J=1,3
SLOTSTATUS(I+1,1,J)=SLOTSTATUS(I,1,J)
SLOTSTATUS(I+1,2,J)=SLOTSTATUS(I,2,J)

20 CONTINUE
10 CONTINUE

SLOTSTATUS(1,1,1)=0
SLOTSTATUS(1,1,2)=0
SLOTSTATUS(1,1,3)=0
SLOTSTATUS(1,2,1)=0
SLOTSTATUS(1,2,2)=0
SLOTSTATUS(1,2,3)=9
RETURN
END

63

C ******** ******************************* ******** ****** ************

SUBROUTINE NEXTSTEP(SLOTSTATUS,STASTATUS,ISFLAG,KVAL,credit,
1 	sgmw,sgmq,tflag,,nss,inc,ncrmx,rgflag,nbsp,nqctr)

save counters,bbm,nrqctr
common arrivals,nuofslots,coverage,DELAY
INTEGER STASTATUS(0:9,4),ISFLAG(160),STATIONA(160),nss,

1 STATIONB(160),counters(0:9),kval(0:9),bbm(0:9),inc,ncrmx,
1 credit(0:9),sgmw(0;9),sgmq(0:9),tflag(0:9),nrqctr(300),

1 rgflag(0:9),nbsp,nqctr
REAL SLOTSTATUS(200,2,3),DELAY(4,0:9),COVERAGE,

1 	arrival s(10,3,200)

DO 10 sl =1,nuofslots,coverage
i =sl
ISFLAG(I)=0
STATIONA(I) = int(SLOTSTATUS(I, 1 ,3) + 0.05)

STATIONB(I)= int(SLOTSTATUS(nuofslots-i +1,2,3)+0.05)
10 CONTINUE

DO 20 sl =1,nuofslots,coverage
i=sl

j =nuofslois-i + 1
if(stationa(i).ne.stationb(i)) then
print*, 'slots see difr stat',stationa(i),stationb(i)
stop

end if
c 	read*,iiik

if (stationb(i).eq.nss) then
if(credit(stationb(i)) 	ncrmx)

1 	credit(stationb(i))=credit(stationb(i))+inc
c 	credit(stationb(i))=min(credit(stationb(i))+inc,ncrmx)

endif c --

c We change possible Free segment to a Paid segment

if((stationb(i) .eq. nss) .and.
1 	(credit(stationb(i)).ge. 155)) then

IF(rgflag(stationb(i)) .eq. 1) then
rgflag(stationb(i)) =0
tflag(stationb(i))=0
credit(stationb(i)) =credit(stationb(i))-155
if(sgmq(stationb(i)).ne.1) then

print*, ' sgmq,sgmw' ,sgmq(stationb(i)),sgmw(stationb(i))
stop

end if
ELSE

64

if(tflag(stationb(i)) .eq. 1) then
tflag(stationb(i)) =0
credit(stationb(i))=credit(stationb(i))-155
nrqctr(sgmq(stationb(i))) =nqctr
nqctr=0

end if
END IF

end if c---

if (sgmw(stationb(i)).gt.0) then
if (stationb(i).eq.nss) then

IF (credit(stationb(i)).ge.155) then
credit(stationb(i)) =credit(stationb(i))-155
counters(stationb(i))=counters(stationb(i))+1
sgmw(stationb(i))=sgmw(stationb(i))-1
sgmq(stationb(i))=sgmq(stationb(i))+1
if(sgmq(stationb(i)) .eq. 1) then
stastatus(stationb(i), 1) stastatus(stationb(i),2)

else
nrqctr(sgmq(stationb(i)))=stastatus(stationb(i),2)
if(sgmq(stationb(i)) .gt. 300) then
print*, 'high value for segmnts in Tx queue'
stop
end if

end if
stastatus(stationb(i),2) =0

ELSE
if(tflag(stationb(i)).eq.0) then

counters(stationb(i))=counters(stationb(i))+1
sgmw(stationb(i))=sgmw(stationb(i))-1
sgmq(stationb(i))=sgmq(stationb(i))+1

nqctr=stastatus(stationb(i),2)
stastatus(stationb(i),2) =0

if(sgmq(stationb(i)) .eq. 1) then
stastatus(stationb(i), 1) =nqctr
nqctr=0
rgflag(stationb(i))=1

end if
tflag(stationb(i))=1

endif
END IF

else
if (tflag(stationb(i)).eq.0) then

counters(stationb(i))=counters(stationb(i))+1
sgmw(stationb(i))=sgmw(stationb(i))-1
sgmq(stationb(i))=sgmq(stationb(i))+1

stastatus(stationb(i), 1) = stastatus(stationb(i),2)
stastatus(stationb(i),2) =0

tflag(stationb(i)) = I
endif

endif

6E

endif

c change in RQ CTR is introduced here because station knows, before it sees the
c next slot whether it should transfer the content of RQ_CTR to CDCTR

STASTATUS(STATIONB(I),2)=
1 STASTATUS(STATIONB(I),2)+SLOTSTATUS(J,2,2)

IF ((SLOTSTATUS(J,2,2).EQ.0).AND.
1 	(counters(stationb(I)).ge. I)) THEN

SLOTSTATUS(J,2,2)=1
counters(stationb(I)) = counters(stationb(I))- 1

ENDIF

IF (sgmq(STATIONA(I)).EQ.0) THEN
IF (STASTATUS(STATIONA(I),2).GT.0) THEN

STASTATUS(STATIONA(I),2)=
1 	STASTATUS(ST.ATIONA(I),2)+ SLOTSTATU S(I, 1 , 1)- 1

end if
end if

IF (sgmq(STATIONA(I)).gt.0) THEN
IF ((SLOTSTATUS(I, 1, 1).EQ.0).AND.

1 	(STASTATUS(STATIONA(I),1).EQ,0)) then
ISFLAG(I)= 1
SLOTSTATUS(I,1,1)=1

sgmq(stationa(i))=sgmq(stationa(i))-1
if((stationa(i) .ne. nss) .or. ((stationa(i) .eq. nss)

1 	.and. (rgflag(stationa(i)) .eq. 1))) then
bbm(stationa(i))=bbm(stationa(i))+ 1
tflag(stationa(i))

if(stationa(i) .eq. nss) then
rgflag(stationa(i)) = 0
nbsp =nbsp + 1

end if
if(bbm(stationa(i)).eq.KVAL(stationa(i))) then

STASTATUS(STATIONA(I),2)=STASTATUS(STATIONA(I),2)+1
bbm(stationa(i)) =0

end if
else
if(sgmq(stationa(i)) .gt. 0) then

if(sgmq(stationa(i)) .eq. 1) then
if(tflag(stationb(i)) .eq. 1) then
stastatus(stationb(i),1)=nqctr
nqctr=0

rgflag(stationa(i))=1
stastatus(stationb(i),2)=0

else
stastatus(stationb(i),1)=nrqctr(2)

end if
else
stastatus(stationb(i),1)=nrqctr(2)
if(tflag(stationb(i)) .eq. 1) ntrsf=sgmq(stationa(i))-1
if(tflag(stationb(i)) .eq. 0) ntrsf=sgmq(stationa(i))

66

c 	•
c 	else if((st(i).eq.3) .or. (st(i).eq.8)) then

sgmw(st(i))=1000
else

if(st(i).eq.nss) then
If(arrivals(st(i) + 1,3, 1).eq.1) then

arrivals(st(i)+1,2,1)=rmean(st(i))
arrivals(st(i)+ 1,3,1)=189
arrivals(st(i)+1,1,1)=arrivals(st(i)+1,1,2)
arrivals(st(i)+1,1,2)=arrivals(st(i)+1,1,1)+188*84.5+

1 	 (-1)*ALOG(1 -UNI(K))/(lamda(st(i)))
else

arrivals(st(i)+1,2,1)=rmean(st(i))
arrivals(st(i)+1,1,1)=arrivals(st(i)+1,1,1)+84.5 arrivals(st(i)+1,1,1)=arrivals(st(i) + 1,3, 1)-1

endif
end if

end if
ELSE
ARRIVALS(ST(I) + 1,2,1) = ARRIVALS(ST(I) + 1,2, 1)-l

END IF
END IF

IF(st(i).ne.nss) then
c 	if(arrivals(st(I)+1,1,1) .1t. (CURRTIM +2.726)) then
c 	sgmw(st(i))=arrivals(st(I)+1,2,1)-sgmq(st(i))
c 	else
c 	sgmw(st(i))=0
c 	end if
c 	ELSE IF((st(i).eq.3) .or. (st(i).eq.8)) then

sgmw(st(i))=1000
ELSE

IF(arrivals(st(I) + 1,1,1) .It. (CURRTIM +2.726)) then
if((arrivals(st(I)+1,1,2)+188*84.5) .lt. (CURRTIM +2.726)) then

print*, 'The computation of swgm(nss) is not correct'
stop

else
timel = arrivals(st(i)+ 1, 1,1) + (arrivals(st(i) + 1,3, 1)-1)*84.5

if(time1 .gt. (CURRTIM+2.726)) then
time0 =currtim + 2. 726-arrivals(st(i) +1,1,1)
nuofp=int(time0/84.5)+1
sgmw(st(i))=(nuofp-1)*rmean(st(i))+

1 	arrivals(st(i)+1,2,1)-sgmq(st(i))
else if(arrivals(st(i)+1,1,2) .gt. (CURRTIM +2.726)) then

sgmw(st(i)) =(arrivals(st(i) +1 ,3,1)-1)*rmean(st(i)) +
1 	arrivals(st(i)+1,2,1)-sgmq(st(i))

else
time0 =cumim + 2 .726-arrivals(st(i) + 1,1,2)
nuofp = int(time0/84 .5) +1
sgmw(st(i))=(arrivals(st(i)+1,3,1)-1)*rmean(st(i))+

1 	arrivals(st(i)+1,2,1)-sgmq(st(i))+nuofp*rmean(st(i))
end if

end if
ELSE

67

' 	if(ntrsf .gt. 1) then
do 111 j =2,ntrsf

nrqctr(j) = nrqct r(j +1)

	

111 	 continue
end if

end if
end if

end if
ELSE
IF (STASTATUS(STATIONA(I),1).GT.0) THEN
STASTATUS(STATIONA(1),1)=STASTATUS(STATIONA(1),1)±

	

1 	SLOTSTATUS(I, 1, 1)-1
ENDIF

ENDIF
ENDIF

20 CONTINUE
RETURN
END

C **

SUBROUTINE MODIFY(FLAG,ST,CURRTIM,STASTATUS,LAMDA,sgmw,
1 sgmq,nss)

COMMON arrivals,nuofslots,COVERAGE,DELAY,RMEAN

INTEGER FLAG(160), STASTATUS(0 : 9,4), ST(160)
integer sgmw(0:9),sgmq(0:9),nuofp,nss
REAL ARRIVALS(10,3,200),DELAY(4,0:9),LAMDA(0:9),

1 	COVERAGE,RMEAN(0:9)
DOUBLE PRECISION CURRTIM,time0,time1
DO 30 sl =1,nuofslots,coverage

sl

IF (FLAG(I).EQ.1) THEN

DELAY(2,ST(I))=DELAY(2,ST(I))+1
if (st(i).eq.nss) then

DELAY(1 ,ST(I)) = DELAY(1,ST(I))+
1 	CURRTIM-ARRIVALS(ST(I) +1,1,1)+2.726

end if

IF (ARRIVALS(ST(I) + 1,2,1). EQ. 1) THEN
if (st(i).eq.nss) then

DELAY(3,ST(I))=DELAY(3,ST(I))+
1 	CURRTIM-ARRIVALS(ST(I) + 1,1,1)+2.726

end if
DELAY(4,ST(I))=DELAY(4,ST(I))+1

if(st(i).ne.nss) then
c 	ARRIVALS(ST(I) + 1 , 1 ,I) = ARRIVALS(ST(I) +1,1,I) +
c 1 (-1)*ALOG(1-UNI(K))/(LAMDA(st(i)))
c 	arrivals(st(I) +1,2,1) =rmean(st(i))

68

'sgmw(st(i)) =0
END IF

END IF

30 	continue

RETURN
END

C ***

BIBLIOGRAPHY

[1] F. Tobagi et.al., "EXPRESSNET: A High Performance Integrated
Local Area Network", Journal Select. Areas Commun.,
Vol. SAC-1, no.5, 1983.

[2] J. 0. Limb and L. E. Flamm, "A Distributed LAN Packet Protocol for
Combined Voice and Data Transmission", Journal Select. Areas Commun.,
Vol. SAC-1,no.5, Nov. 1983.

[3] F. E. Ross, "FDDI-A Tutorial", IEEE Communication Magazine,
May 1986.

[4] F. E. Ross, "An Overview of FDDI: The Fiber Distributed Data
Interface", Journal Select. Areas Commun., Vol. SAC-7, no.7, Sept. 1989.

[5] G. G. Kessler and D. L. Train, "Metropolitan Area Networks:
concepts standard and services", Mc Craw Hill, 1991.

[6] R. M. Newman, et.al., "The QPSX MAN", IEEE Communications
Magazine, June 1987

[7] IEEE DQDB Subnetwork of a Metropolitan Area Network,
ANSI/IEEE 802.6-1990 (ISO DIS 8802-6, 1991).

[8] M. Conti, et.al., "A Methodological Aproach to an Extensive Analysis
of DQDB Performance Fairness", IEEE JSAC, Vol. SAC-9, no.1,
January 1991.

[9] M. Conti, et.al., "DQDB under heavy load: Performance Evaluation
and Unfairness Analysis", Proceed. INFOCOM'90, San Fransisco,
CA, June 1990.

[10] D. Karvelas and M. Papamichail, "A simulation model for DQDB",
Proceed. of 22nd Annual Pittsburgh Conference on Modeling and
Simulation, Pittsburgh, May 1991.

[11] E. L. Halne, et.al., "Improving the Fairness of DQDB",
Proceed. INFOCOM'90, San Fransisco, CA, June 1990.

69

70

Bibliography continued

[12] I. Martini, et.al., "Real Time Communication in DQDB A
Comparison of Different Strategies", Proceed. of IFth Conference
on Local Computer Networks, Minneapolis, Minnesota,
September 1992.

[13] Shin-Fu Chang, et.al., "Adaptable-Bit-Rate Video Services on DQDB
Access Networks" Proceed. of ICC'91, June 1991.

[14] D. Karvelas, M. Papamichail, "DQDB: A Fast Converging Bandwidth
Balancing Mechanism that Requires No Bandwidth Loss",
Proceed. ICC '92, Chicago, pp. 142-146, June 14-18, 1992.

[15] D. Karvelas, M. Papamichail, 'Performance staudy of a New Bandwidth
Balancing Mechanism under a Single and Multible Priority
Classes of Traffic", Proceed. of First International
Conference on Computer Communications and Networks ,
San Diego, California, pp. 102-107, June 8-10, 1992.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Acknowledgment
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Current Access Mechanism of High Speed MAN
	Chapter 3: Guaranteed Bandwidth and Balancing Mechanism
	Chapter 4: Performance Analysis
	Chapter 5: Conclusions
	Appendix A: Formula Derivation
	Appendix B: Array Description
	Appendix C: BBM_DQDB Simulation Program
	Appendix D: GBW_DQDB Simulation Program
	Appendix E: GBBM Simulation Program
	Bibliography

	List of Tables
	List of Figures

