
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT 

A PARALLEL PROCESSING ARCHITECTURE 

FOR DQDB PROTOCOL IMPLEMENTATION 

by 

Nilesh Vinubhai Gandhi  

The high bandwidth transmission links, which have been provided by the 

advances of Fiber Optics Technology, reduce drastically the packet transmission 

times and place new demands on the nodal protocol processing. Segmentation and 

reassembly of packets, computation of checksums, introduction of source and 

destination addresses, etc., must be performed extremely fast in order to prevent 

node processing from becoming the bottleneck of the transmission. Parallel 

processing enables the execution of the previous tasks on multiple packets 

simultaneously and therefore has the potential of addressing the issue of fast node 

processing successfully. In this thesis we focus on the Medium Access Control 

Protocol of the Distributed Queue Dual Bus (DQDB) which has been adopted by 

IEEE as the 802.6 standard for Metropolitan Area Networks (MANS). We present 

a parallel processing based architecture for the implementation of DQDB protocol 

which can satisfy its stringent processing time requirements. The architecture 

consists of a set of packet processors which have been provided with local memory 

and can be accessed according to a round robin scheduling algorithm. In this way 

the amount of contention in the local bus is drastically reduced and the processing 

performance significantly improves. Both Transmitter and Receiver design are 

presented. 
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LIST OF DEFINITIONS  

Words in italics indicate terms that are defined later in the list. 

Access Control Field (ACF).  The field which contains the protocol control 

information in a slot; that supports the access control function. 

Access Control Function.  The Queued Arbitrated (QA) Access and Pre-Arbitrated 

(PA) Access Functions in the DQDB Layer that control access to the medium. 

Access Unit (AU).  The functional unit in a node that performs the DQDB Layer 

Functions to control access to both buses. Access units attach to each bus via a 

write connection and a read tap placed upstream of the write connection. 

Address.  An identifier that tells where a Service Access Point (SAP) may be 

found. 

Address Field.  The part of a Protocol Data Unit (PDU) that contains an address 

that identifies one or more addressable entities. ( The address may be a single-

source address, single-destination address, or multiple-destination address 

(multicast ).)  

Bandwidth Balancing Mechanism.  A procedure to facilitate effective sharing of 

the bandwidth, where a node occasionally skips the use of empty Queued 

Arbitrated (QA) slots. 

Bridge.  A functional unit that interconnects two subnetworks that use a single 

Logical Link Control (LLC) procedure but may use different Medium Access 

Control (MAC) procedures. Local Area Network (LANs) and Metropolitan Area 

Network (MAN) are examples of the subnetworks that a bridge may interconnect. 

Broadcast address.  A predefined destination address that denotes the set of all 

service access points (SAPS) within a given layer. 

Bus.  The collection of the transmission links between nodes and the data paths 
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continuation of List of Definitions....  

within the nodes that provide unidirectional transport of the digital bit stream 

from the head of the bus function past the Access Unit (AU) of each node to the 

end of the bus. 

Busy slot.  A slot that already contains information and is not available for Queued 

Arbitrated (QA)  access. 

Connection.  An association established by a layer between two or more users of 

the layer service for the transfer of information. 

Convergence Function.  A function that has additional services which enable a 

layer to provide the services expected by a particular higher layer. 

Data Link Layer.  The layer that provides services to transfer data over a 

transmission link between open systems. In IEEE 802 Local Area Network 

(LAN) standards, the Data Link Layer is formed by the operation of the LLC 

Sublayer over the MAC Sublayer service offered by the DQDB Layer. 

Derived MAC Protocol Data Unit (DMPDU).  The protocol data units (PDUs) of 

a length of 48 octets which are formed by the addition of protocol control 

information to each of the 44-octet segmentation units created by the segmentation 

of an Initial MAC Protocol Data Unit (IMPDU). Each DMPDU is carried as the 

payload of a Queued Arbitrated (QA)  segment. 

Downstream.  The direction of data flow along a bus, i.e., away from the head of 

the bus. 

DQDB Layer.  The sublayer that uses the services of the Physical Layer to provide 

the following: 

• Medium Access Control (MAC) Sublayer service to the Logical 

Link Control (LLC)  Sublayer 

• isochronous service 

• connection-oriented data service. 
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continuation of List of Definitions....  

Dual bus.  A pair of buses carrying digital bit streams flowing in opposite 

directions. One bus is referred to as Bus A and the other bus as Bus B. 

Empty Queued Arbitrated (QA) slot.  A Queued Arbitrated (QA)  slot that was 

designated by the head of the bus function as being available for transfer of a QA 

segment, and which does not contain yet a QA segment. 

Gateway.  A functional unit that interconnects a local area network (LAN) with 

another network having different higher layer protocols. 

Group address.  A predefined destination address that denotes a set of selected 

service access points (SAPs) from the Medium Access Control (MAC) Sublayer 

service offered by the DQDB Layer to the Logical Link Control (LLC) Sublayer. 

Head of Bus Function. The function that generates the empty Queued Arbitrated 

(QA) slots, Pre-Arbitrated (PA) slots, and management information octets at the 

point on each bus where data flow starts. The head of bus function also inserts the 

virtual channel identifier in the PA segment header of PA slots. 

Individual address.  An address that identifies a single source or destination 

service access point. 

Initial MAC Protocol Data Unit (IMPDU).  A protocol data unit (PDU) formed in 

the DQDB Layer by the addition of protocol control information (including 

address information) to a MAC Service Data Unit received from the Logical Link 

Control (LLC) Sublayer. The IMPDU is segmented into 44-octet segmentation 

units for transfer in Derived MAC Protocol Data Units (DMPDUs). 

Isochronous.  The time characteristic of an event or signal recurring at known, 

periodic time intervals. 

Isochronous Service octet.  A single octet of data passed isochronously between 

the DQDB Layer and the Isochronous Service User (ISU). 

Isochronous Service User (ISU).  The entity that uses the isochronous service 
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continuation of List of Definitions....  

provided by the DQDB Layer to transfer isochronous service octets over an 

established isochronous connection. 

Layer.  A subdivision of the Open Systems Interconnection (OSI) architecture, 

constituted by the subsystems of the same rank. 

Layer Management.  Functions related to the administration of a given Open 

Systems Interconnection (OSI) layer. These functions are performed in the layer 

itself according to the protocol of the layer and partly performed as a subset of 

network management or systems management. 

Layer Management Entity (LME).  The entity in a layer that performs local 

management of a layer. The LME provides information about the layer, effects 

control over it, and indicates the occurrence of certain events within it. 

Layer Management Interface (LMI). The service interface provided by the Layer 

Management Entity (LME) to the Network Management Process (NMP). 

Local Area Network (LAN).  A non public data network in which serial 

transmission is used without store and forward techniques for direct data 

communication among data stations located on the users premises. 

Logical Link Control (LLC) Sublayer.  In a local area network (LAN) or a 

metropolitan area network (MAN), that part of the Data Link Layer that supports 

medium-independent data link functions, and uses the Medium Access Control 

(MAC) Sublayer service to provide service to the Network Layer. 

MAC address.  An address that identifies a particular Medium. Access Control 

(MAC) Sublayer service access point. 

MAC service Data Unit (MSDU).  The user data unit received in an MA-

UNITDATA request for transfer by the Medium Access Control (MAC) layer. 

Management information octets.  DQDB Layer Protocol Data Units (PDUs) used 

to carry DQDB Layer Management Protocol information between peer DQDB 
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continuation of List of Definitions.... 

Layer Management Entities (LMEs). 

Medium Access Control (MAC) Sublayer. In a local area network, the part of 

Data Link Layer that supports topology-dependent functions and uses the 

services of the Physical Layer to provide service to the Logical Link Control (LLC) 

Sublayer. 

Message Identifier. An identifier used to identify Derived MAC Protocol Data 

Units (DMPDUs) derived form the same Initial MAC Protocol Data Unit  

(IMPDU) . 

MID (Message Identifier) page. A set of one message identifier value. 

Multicast Address. Same as group address. 

Network Layer. In Open Systems Interconnection (OSI) architecture, the layer that 

provides service to establish a path between open systems with a predictable 

quality of service. 

Network Management Process (NMP). The entity that provides access to the 

network management functions on behalf of the user of the network management 

services. In order to perform this function, NMPs may intercommunicate in a peer-

to-peer manner and may use the services of NMPs in other nodes via a network 

management protocol. The NMP at a node is the user of the service provided at the 

Layer Management Interface (LMI). 

Node. A device that consists of an access unit and a single point of attachment of 

the access unit to each bus of a DQDB subnetwork for the purpose of transmitting 

and receiving data on that subnetwork. Adjacent nodes are connected by a 

transmission link. 

Octet. A group of eight adjacent bits. 

Offset. The octet position relative to the start of a Pre-Arbitrated (PA) segment 

used to carry an isochronous service octet for a particular Isochronous Service 

xiv  
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User (ISU). 

Physical Layer. In Open Systems Interconnection (OSI) architecture, the layer that 

provides services to transmit bits or group of bits (such as an octet)  over a 

transmission link between two open systems. 

Pre-Arbitrated (PA) Access Function. The access control function that uses 

assigned offsets in the Pre Arbitrated (PA) slots for the transfer of isochronous 

service octets. 

Pre-Arbitrated (PA) segment. A multi-user segment transferred using Pre-

Arbitrated Access (PA)  Functions. The payload of the PA segment contains 

isochronous service octets from zero or more Isochronous Service Users (ISUs). 

Pre-Arbitrated (PA) slot. A slot that is dedicated by the head of bus function for 

transfer of isochronous service octets in the payload of a PA segment. 

Protocol Data Unit (PDU). Information that is delivered as a unit between peer 

entities of a local area network or metropolitan area network and that contains 

control information, address information, and may contain user data. 

Queued Arbitrated (QA) Access Function. The access control function that uses 

the Distributed Queue to access empty Queued Arbitrated (QA) slots for the 

transfer of QA segments. 

Queued Arbitrated (QA) segment. A segment transferred using Queued 

Arbitrated (QA) Access Functions. 

Queued Arbitrated (QA) slot. A slot that is used for the transfer of a QA segment. 

Read. The process of an access unit copying bits of a data stream as they pass on 

the bus. 

Reassembly. The function in the DQDB Layer that provides for the reconstruction 

of an Initial MAC Protocol Data Unit (IMPDU). Reassembly is performed by 

concatenating the segmentation units received in Derived MAC Protocol Data 
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Units (DMPDUs). This is the inverse process to segmentation. 

Reconfiguration. The process by which the Configuration Control Function 

activates and deactivates resources of a DQDB subnetwork to take account of a 

change in the operational status of a cluster, node, or transmission link in the 

subnetwork. 

Router. A functional unit that interconnects two computer networks that uses a 

single Network Layer procedure but may use different Data Link Layer and 

Physical Layer procedures. 

Segment. The protocol data unit of 52 octets transferred between peer DQDB 

Layer entities as the information payload of a slot. It contains a segment header of 

4 octets and a segment payload of 48 octets. There are two types of segments: Pre-

Arbitrated (PA) segments and Queued Arbitrated (QA) segments. 

Segment header. The protocol control information in a segment. 

Segment Payload. The unit of data carried by a segment. 

Segmentation. The function in the DQDB Layer that fragments a variable length 

Initial MAC Protocol Data Unit (IMPDU) into fixed-length segmentation units for 

transfer in Derived MAC Protocol Data Units (DMPDUs). 

Segmentation unit. The fixed-length data units of 44 octets formed by the 

fragmentation of an Initial MAC Protocol Data Unit (IMPDU). 

Service Access Point (SAP). The point at which services are provided by one layer 

(or sublayer) immediately above it. 

Service Data Unit (SDU). Information that is delivered as a unit between peer 

service access points. 

Service Primitive. An implementation-independent interaction between a service 

provider and a service user. 

Slot. The protocol data unit of 53 octets used to transfer segments. It contains a 
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segment of 52 octets and the 1 octet Access Control Field (ACF). There are two type 

of slots: Pre-Arbitrated (PA) slots and Queued Arbitrated (QA) slots. 

Sublayer.  A subdivision of a layer in the Open System Interconnection (OSI) 

reference model. 

Subnetwork.  It is the functional unit comprised of a single dual bus pair and those 

access units attached to it. Subnetworks are physically formed by connecting 

adjacent nodes with transmission links. 

Transmission Link.  The physical unit of a DQDB subnetwork that provides the 

transmission connection between adjacent nodes. Each transmission link 

accommodates both buses of the dual bus pair between the adjacent nodes. 

Transmission Medium.  The material on which information signals may be 

carried; e.g. optical fiber, coaxial cable, and twisted-wire pair. 

Upstream.  The direction along a bus that is towards the head of bus function. This 

is opposite to the direction of data flow along a bus. 

Virtual Channel Identifier (VCI).  A label that is used to distinguish between the 

entities which enable identification, during the unidirectional transfer of segments 

between the entities. Here, the VCI label can be used to allow a transmitter to 

distinguish between different outgoing protocol data units (PDUs), and is used to 

allow a receiver to determine whether to receive an incoming segment as well as 

to distinguish between incoming PDUs. 

Write.  The process of an access unit sending data down stream on a bus by logical 

ORing its outgoing data with the data pattern (normally all zeros) arriving from 

upstream on that bus. 
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LIST OF ABBREVIATIONS  

ACF 	Access Control Field 

AU 	Access Unit 

BAsize 	Buffer Allocation size 

BEtag 	Beginning-End tag 

BOM 	Beginning Of Message 

BWBM 	BandWidth Balancing Mechanism 

BWB_CNTR  BandWidth Balancing CouNTeR 

BWB_MOD   BandWidth Balancing MODulus 

CCITT 	the International Telegraph and Telephone 

Consultative Committee 

CD 	Count Down (counter) 

CIB 	CRC32 Indicator Bit 

COCF 	Connection-Oriented Convergence Function 

COM 	Continuation Of Message 

CRC 	Cyclic Redundancy Check 

CRC32 	32-bit Cyclic Redundancy Check 

DA 	Destination Address 

DMPDU 	Derived MAC Protocol Data Unit 

DQDB 	Distributed Queue Dual Bus 

DQSM 	Distributed Queue State Machine 

EOM 	End Of Message 

ETS 	External Timing Source 

HCS 	(segment) Header Check Sequence 

HEL 	Header Extension Length 

xviii  
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HOB_A 	Head Of Bus A 

HOB_B 	Head Of Bus B 

ICF 	Isochronous Convergence Function 

IMPDU 	Initial MAC Protocol Data Unit 

ISDN 	Integrated Services Digital Network 

ISDU 	Isochronous Service Data Unit 

ISO 	International Organization for Standardization 

ISU 	Isochronous Service User 

LAN 	Local Area Network 

LLC 	Logical Link Control 

LMI 	Layer Management Interface 

LME 	Layer Management Entity 

MAC 	Medium Access Control 

MAN 	Metropolitan Area Network 

Mb/s 	Megabits per second 

MCF 	MAC Convergence Function 

MCP 	MAC convergence Protocol 

MID 	Message IDentifier 

MPA 	MID Page Allocation 

MSAP 	MAC Service Access Point 

MSDU 	MAC Service Data Unit 

NMP 	Network Management Process 

OSI 	Open Systems Interconnection 

PA 	Pre-Arbitrated 

PDU 	Protocol Data Unit 

PI 	Protocol Identification 
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PSR 	Previous Segment Received 
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QOS 	Quality Of Service 

REQ 	REQuest 

RQ 	ReQuest (counter) 
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SA 	Source Address 

SAP 	Service Access Point 

SDU 	Service Data Unit 
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Chapter 1 

Introduction and Motivation 

Performance of transport protocols on multi-megabit networks tend to be limited 

by overhead at both the transmitter and the receiver. For example, measurements 

on Ethernet have indicated that network transmission time accounts for only 20% 

of the elapsed time for transport-level communication operations, even with its 

highly optimized protocol. Although processor times and memory cycle times 

keep improving, with the communication network moving towards Gbits range, 

we expect the processing to persist as a bottleneck unless significant improvement 

in the network adapter design is achieved. We identify three major problems with 

the current designs. 

First, the host-to-network adapter impose excessive overhead, particularly 

on a host, in the form of processor cycles, system bus capacity and host interrupts. 

The processing overhead rises from calculating end-to-end checksums, 

packetizing and depacketizing, as well as of conducting encryption for 

communication. The memory intensive processing required by these functions 

reduce the average instruction execution rate, especially, for a high performance 

processor, in which memory reference operations are proportionally much slower 

than register-only operations. The processing causes the data to move at least twice 

over the system bus; once from the global memory to the processor (or its cache), 

and once when the packet is copied to the network adapter. The increased traffic 

wastes system bus bandwidth, a critical resource in microprocessor machines. In 

current host-to-network adapter interfaces, a host is interrupted for each packet 

received or transmitted. These per-packet interrupts force frequent context 

switching with the attendant overheads. This has a bad effect on Hit to Miss ratio 
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2  
in the microprocessor system with processor cache. For instance, in a workstation 

attached to a 150 Mbps network with an interface interrupting at every 2.72 

microseconds, the available time is hardly sufficient to do even minimal packet 

processing. 

Secondly, the "intelligent" network adapters that implement transport level 

functions have lower performance at the transport-level as compared to the 

alternative system where a network adapter does the programmed I/O transfer 

and a host performs transport protocol functions. The primary reason is an 

inadequate internal memory architecture. Currently, the data transfers into and 

out of buffer memory reduce the number of memory cycles available for packet 

processing. In future communication systems, the bus technology, with a high 

transfer rate and burst mode transfer, and the network, with a high data rate, will 

make this problem more acute. 

Finally, conventional transport level protocols are too complex or awkward 

for hardware implementation and are too slow without it. For a large packet, the 

processing cost incurred in checksumming and encryption, dominates the packet 

processing, since the cost increases in proportion with the size of the packet. The 

hardware implementation of such key performance-critical functions would 

substantially increase performance, but the packet format of the conventional 

transport protocols does not facilitate hardware support or implementations. 

An additional factor that motivates the design of network adapter 

architectures is the problem of a host being bombarded by packets from other 

hosts. The packet arrival rate, especially in the high speed network, can exceed the 

rate at which a host can process and discard these packets, effectively 

incapacitating the host from performing useful computation. Excessive packet 

traffic can arise from failures or malicious behavior of a remote host. A well 

designed network adapter acts as a "firewall" between the network and the host. 
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In this thesis we present a parallel processing based architecture for the 

implementation of DQDB protocol, which can satisfy its stringent packet 

processing time requirements. The multiprocecessor assembly of the receiver 

consists of the receiving packet processors, R1_processors, and that of the 

transmitter consists of the transmitting packet processors, T2_processors. The 

multiprocessor assembly performs the protocol functions in parallel, on packets 

coming in from the Input Low Level Processor (ILLP) and on packets going out to 

the Output Low Level Processor (OLLP); ILLP and OLLP are responsible for 

receiving and transmitting packets to the medium. Such a design of the assembly 

enables the interface to match the average processing time of a packet with the 

interarrival time of the packets from the line. 

The organization of this thesis is as follows. In chapter 2 an introduction to 

widely used terminology is provided. In chapter 2 the basic features of the 

Distributed Queue Dual Bus (DQDB) protocol which are important for our 

implementation are discussed. In chapter 3 the parallel processing architecture 

design for the implementation of the DQDB protocol is presented. Finally, in 

chapter 5, some concluding remarks and suggestions are provided. 



Chapter 2 

The DQDB Protocol  

This chapter mainly presents the features and functions of the DQDB protocol that 

are essential for its parallel processing based implementation provided in chapter 

3. The additional features such as security, network administration, bandwidth 

control, and charging facility make DQDB a useful public network. DQDB layer 

relies on physical layer for the actual communication of the data from each node 

to the others. The services provided by the DQDB layer are the MAC service, the 

isochronous service and the connection oriented data service. 

2.1 DQDB - A Public Metropolitan Area Network  

The major components of DQDB network are a head station, two unidirectional 

buses, and a number of Access Units (AUs) . The relative positions of the stations 

on the buses are shown in figure 2.1. The head station generates the frame 

synchronization on the forward bus and the end station generates the frame 

pattern at the same rate on the reverse bus. Access units are attached to the bus via 

read and write connections. According to the implementation that will be 

presented in chapter 3, an AU reads and writes using the Input Low Level 

Processor (ILLP) and the Output Low Level Processor (OLLP) respectively. 

The DQDB protocol introduces distributed queueing. Furthermore, by 

using a Bandwidth Balancing mechanism the bandwidth allocation to each station 

can be controlled according to the requirements. In the subsequent sections, the 

dual bus architecture and the access control to the dual bus subnetwork are 

discussed. 

4  
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2.1.1 Dual Bus Architecture  

Figure 2.1 Dual Bus Architecture  

The dual bus architecture consists of two unidirectional buses and a set of nodes 

along the communication buses. As figure 2.1 shows, Bus A and Bus B support 

communication in opposite directions, which allows full duplex communication 

between any pair of nodes on the subnetwork. The operation of the two buses are 

independent of each other. Both buses operate simultaneously, hence the capacity 

of the network is twice the capacity of a single bus. The head of the bus generates 

the slots. These slots are used to carry data between the nodes. The nodes may  



6  
write into slots under the control of the access protocol. All the slots are removed 

at the end of the bus. 

2.1.2 Access Control to the Dual Bus Subnetwork  

The DQDB provides two modes of access control to the dual bus. These are the 

Queue Arbitrated (QA) and Pre-Arbitrated (PA) modes, which use QA and PA 

slots for access respectively. Each slot contains an access control field (ACE) and a 

segment, which forms the payload of the slot. 

Queued arbitrated access is controlled by the Distributed queuing protocol 

and would be used typically to provide non-isochronous services. Pre-arbitrated 

access would be used typically to provide isochronous services. The Distributed 

Queued and Pre-Arbitrated access protocols are described below. 

The Distributed Queue Access Protocol  

Distributed queuing is a media access protocol that controls the access to the 

payload of QA slots on the DQDB bus. The fixed length payload of a QA slot is 

called a QA segment. 

The operation of the protocol is based on two control fields: the BUSY bit, 

which indicates whether or not a slot is used, and the REQUEST field, which is 

used to indicate when a segment has been queued for access. Each node, by 

counting the number of requests it receives and unused slots that pass, can 

determine the number of segments queued (i.e. in line) ahead of it. This counting 

operation establishes a single queue across the subnetwork of segments queued for 

access to each bus. 

With such queued access, levels of priority can be established by operating 

a number of queues, one for each level. Segments will gain access as soon as 

capacity becomes available, but priority is always given to segments in higher level 

queues. 
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Figure 2.2 Access Unit Architecture  

The operation of Distributed queuing is fundamentally different from other 

MAC protocols. In Distributed queuing, information that explicitly indicates 

queuing state of the subnetworks, is kept in the nodes. Hence, when a node has 

data to transmit, the node does not need to derive information first from the 

subnetwork to tell it when it can gain access. 

With Distributed queuing, a current state record that holds the number of 

segments waiting access to the bus is kept in every node. When a node has a 

segment for transmission, it uses this count to determine its position in the 

distributed queue. If no segments are waiting, permission for access is immediate, 

otherwise preference is given to segments already queued. To facilitate effective 
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Figure 2.3 The QA access protocol  

sharing of the bandwidth, the Distributed Queue protocol includes a bandwidth 

balancing mechanism that occasionally skips the use of empty QA slots. 

The Basic Distributed Queuing Algorithm  

The operation of the basic Distributed Queuing algorithm for access to Bus A is 

illustrated in Figure 2.3. In this case, Bus A is forward Bus and Bus B is the reverse 
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bus. An identical but independent, arrangement applies for access to the opposite 

bus, Bus B. Each slot on the buses (whether a QA or PA slot) contains an Access 

Control Field that includes a BUSY bit and a REQUEST field of three Request bits 

one for each priority level. The busy bit indicates whether or not the slot is used. 

The REQ bits are to signal when a QA segment has been queued on the reverse bus. 

When an Access Unit has a QA segment for transmission on the forward 

bus it will cause a single REQ to be sent on the reverse bus. This REQ eventually 

will be written into the next free REQ bit of the required priority on the reverse bus. 

The bit once written will pass to all upstream AUs of Bus A. This REQ bit serves as 

an indicator to the upstream AUs that an additional QA segment is now queued 

for access. For each AU, the distributed queuing algorithm allows, at most, one QA 

segment per priority level, to be queued for access to each bus. 

Each AU keeps track of the number of QA segments queued downstream 

from itself for access to the forward bus by counting the REQ bits as they pass on 

the reverse bus, as shown in figure 2.4. The request (RQ) counter is incremented 

for each REQ passing on the reverse bus. For a node that is not queued to send, one 

REQ in the RQ counter is cancelled each time an empty slot passes on the forward 

bus. This is done since the empty slot that passes the AU will be used by one of the 

downstream queued QA segments. Hence with these two actions, the RQ counter 

keeps a record of the number of the segments queued downstream. 

In addition to the REQ for the reverse bus, an AU with a QA segment to 

send, will transfer the current value of the RQ counter to another counter, the 

countdown (CD) counter, as shown in figure 2.5, with the RQ counter then being 

reset to zero. This action loads the CD counter with the number of the downstream 

segments queued ahead of it. This effectively places the QA segment in the 

distributed queue. The distributed queue at a given level of priority approximates 
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Figure 2.4 Request Counter Operation  

a first-in-first-out (FIFO) queue of the QA segments at the heads of the local queues 

in each node. 

To ensure that the segments registered in the CD counter gain access before 

the newly queued segment in the given AU, the CD counter is decremented for 

every empty slot that passes on the forward bus. This portion is shown in fig 2.5. 

The given AU can transmit its QA segment in an empty slot provided that the CD 

count is zero. For this single priority description, this is equivalent to claiming the 

first free slot after the CD count reaches to zero, which ensures that no downstream 

segment that queued after the given segment can access out of order. 

During the time the AU is waiting for access for its segment, any new REQs 

received from the reverse bus are added to the RQ counter, as shown in figure 2.5. 
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Figure 2.5 Segment transmission on bus A  

Hence, the RQ counter still tracks the number of segments newly queued 

downstream and the count will be correct for the next QA segment access. 

Pre-Arbitrated Access Control  

Pre Arbitrated (PA) slot access will be used typically to provide for transfer of 

isochronous services octets. Pre arbitrated service is not implemented in this 

design. The access to PA slots and the use of PA segment payloads differ from that 

for a QA access. The access differs in that PA slots are designated by the node at 

the head of bus and that more than one AU may share access to the slot. A PA 

segment payload consists of a number of octets, each of which can be used by a 

different AU. Therefore an AU may write zero, one or more isochronous service 

octets into designated positions of a PA segment payload. The AU is notified of the 

offsets of these octet positions relative to the start of the PA segment payload. The 

AU is notified of the offsets of these octet positions relative to the start of the PA 
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segment payload via the DQDB Layer Management procedures. 

The access for the PA slots by an AU commences by examining the VCI. For 

each VCI value that the AU must access, the AU will have a table that indicates 

which octet offsets within the slot the AU should use for reading and writing. The 

AU will write Isochronous service octets into those write positions and will read 

form positions the table has marked for reading. The PA slot is ignored if the VCI 

is not one in use by the AU.  

2.2 DQDB Layer Service Definition  

A DQDB subnetwork of a MAN is capable of supporting a broad range of services 

and applications. This chapter describes the services currently defined and 

provided by the DQDB Layer. (fig 2.7). The DQDB services are as follows : 

(1) The MAC service provided to the LLC Sublayer, operating over the 

DQDB Layer, provides the service of OSI Data Link Layer and thus 

supports data communications between two open systems. 

(2) 

Isochronous service, provided to an Isochronous Service User (ISU). 

This service supports the transfer of isochronous service octets 

with a constant interarrival time over an isochronous connection. 

(3) 

A connection-oriented data service that supports the transfer of 

data over virtual channels. This service is asynchronous because 

there is no guarantee of a constant interarrival time for data units. 



13  

Figure 2.6 DQDB Layer Services  

2.2.1 MAC Services Provided to the LLC Sublayer  

The MAC service to the LLC sublayer is defined in ISO. It is connectionless service 

that supports the transfer of variable length MAC Service Data Units (MSDUs) 

between LLC Sublayer peer entities, without the need for the LLC entities to 

request the establishment of a connection between them. There is no guarantee of 

delivery of the MSDUs by the MAC service. 

The MAC service primitives and their parameters cited in this section are 

those specified in ISO. These primitives are as follows. 

MA-UNITDATA request 

MA-UNITDATA indication 

MA-STATUS indication 
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MA-UNITDATA request  

This primitive requests the transfer of a MSDU from a local LLC Sublayer 

entity to a single peer LLC entity, or multiple peer LLC entities in the case of group 

addressing. The format of the request is : 

MA-UNITDATA request 

source address, 

destination_address, 

priority, 

data, 

service_class 

The source address parameter specifies the individual MAC address 

associated with the service access point (SAP) of the DQDB Layer through which 

this primitive was issued. The destination_address parameter specifies either an 

individual, multicast, or broadcast MAC address identifying the SAP (s) to which 

the data is to be transferred. The priority parameter specifies one of the eight 

possible priority values desired for the data transfer. The data parameter specifies 

the MSDU to be transferred. The service_class parameter specifies the requested 

class of MAC service for the data transfer. 

MA-UNITDATA indication  

This primitive indicates the delivery of a MSDU to an LLC Sublayer entity. In the 

absence of errors that were not detected by the DQDB Layer, the delivered MSDU 

will be identical to the MSDU sent in the corresponding MA-UNITDATA request 

primitive. 

MA-STATUS indication  

This primitive informs an LLC Sublayer entity of a change in status of the 

operation of the MAC service. The format of the request is : 
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MA-STATUS indication ( 

status ) 

The status parameter conveys an indication of the MAC service status. 

Examples are as follows. 

FAILURE_SOURCE_NODE_ISOLATED (MA-UNITDATA request 

primitives cannot be acted on because the sending node is isolated.) 

FAILURE_DISABLED (MA-UNITDATA request and indication primitives 

are disabled because of subnetwork status; for example, the subnetwork is being 

initialized or is undergoing reconfiguration.) 

FAILURE OTHER (Failure of MAC service is due to other cases.) 

NORMAL (The MAC service is operating normally, for example, following 

initialization or indicating restoration after a failure.) 

2.2.2 Isochronous Service  

It specifies the isochronous service provided by the DQDB Layer once an 

isochronous connection is established. The primitives used to describe the service 

are the following: 

ISU-DATA request 

ISU-DATA indication 

2.2.3 Connection-Oriented Data Service  

The connection-oriented data service supports a virtual channel between a pair of 

connection-oriented Data Service Users. The details of the service and service 

primitives are still under study. 
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2.3 Provision of DQDB Layer Services  

The Queued Arbitrated and Prearbitrated functions of the DQDB layer provide 

access control to the dual buses. The access control functions are used by a range 

of convergence functions to implement the DQDB Layer services shown in fig 2.11. 

DQDB layer specifies the convergence function for the provision of the IEEE 802 

MAC sublayer services to the LLC Sublayer (ISO), isochronous service, and 

connection oriented data service. 

2.3.1 Provision of MAC service to LLC  

The provision of MAC service to LLC consists of the segmentation of the MAC 

service Data Unit (MSDU) at the source into fixed-length units and the transfer of 

these fixed length units to the destination, which reassembles them into the MSDU. 

The segmentation process follows the formation of an initial MAC Protocol 

Data Unit (IMPDU) by the addition of an IMPDU header, an optional header 

extension, an optional 32-bit CRC, a common PDU trailer and a variable length 

PAD field to the MSDU. The PAD field ensures that all of the fields added to the 

MSDU are 32-bit aligned. The IMPDU is fragmented into fixed length 

segmentation units, as shown in figure 2.7, for transfer in QA segment payloads. 

There may be padding of the IMPDU with trailing zero octets to ensure complete 

filling of the last segmentation unit. The IMPDU header is formed by the addition 

of two types of header information. The first four octets of 24-octet IMPDU header 

are called Common PDU header. The remaining 20 octets of the IMPDU header are 

called the MAC convergence Protocol (MCP) header. The MCP header is specific 

to transfer of a MSDU by the DQDB layer, and is not used to support the 

connection-oriented data service. 
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Figure 2.7 IMPDU segmentation 
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All segment payloads that supports the MAC services are called Derived 

MAC protocol data units (DMPDUs) and consists of a header field and a trailer 

field along with the segmentation unit, as shown in figure 2.8. The DMPDU 

Header consists of three subfields. The first is the Segment Type Subfield. The 

second is Sequence Number Subfield. The third subfield is Message Identifier 

(MID). The DMPDU trailer field consists of two subfields. The first is the Payload 

Length Subfield. The second field is the Payload CRC.  

Figure 2.8 DMPDU format  

The MID is used to provide the logical linking between the segmentation 

units derived from the same IMPDU, and should be unique on a subnetwork while 

the IMPDU is being transferred. Each AU will have at least one unique MID. The 

allocation of the MID numbers is controlled by the MID page allocation scheme, 

which is distributed method for claiming and keeping MID values that are unique  
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across the whole subnetwork. 

The MID identifies all of the DMPDUs derived from a single IMPDU, and 

is used in the reassembly of the segmented IMPDU at the destination. To describe 

the operation of this scheme, the segmentation of the IMPDU at the source is 

described first and the reassembly at the destination is considered later. 

Segmentation at the Source  

The train of the DMPDUs sent as a QA segment payloads by the source is shown 

in figure 2.8. The complete structure of an IMPDU is presented in figure 2.9 and 

that of DMPDU is in figure 2.10. The first segmentation unit of a multi-segment 

unit IMPDU is carried in a Beginning of Message (BOM) DMPDU. This DMPDU 

is identified by the BOM code in the Segment Type Subfield and signifies the start 

of a new IMPDU transfer. The MID subfield of this carries one of the MIDs 

obtained by the source and not currently being used for sending of another 

IMPDU by the source. The Sequence Number Subfield of the DMPDU carries the 

initial value of the sequence numbers to be associated with sequential DMPDUs. 

The segmentation unit of the BOM DMPDU will include the IMPDU header and 

any header extension plus the first octets of the MSDU. 

All subsequent segmentation units of the IMPDU until the last are placed in 

the payload field of the train of the segments following the first segment. These 

DMPDUs are identified by the COM (Continuation of Message) code in the 

Segment Type Subfield. The transfer of the multi-segmentation unit IMPDU is 

completed by sending the last segmentation unit in a DMPDU that contains the 

EOM (End of Message) code in the Segment Type Subfield. The COM and EOM 

DMPDUs carry the value of Sequence Number in the BOM DMPDU incremented 

by one for each successive DMPDU. All COM DMPDUs and the EOM DMPDU 

derived from an IMPDU carry the same MID value as the BOM DMPDU. 

For the transfer of an IMPDU that only requires a single segmentation unit, 



20  
the SSM (Single Segment Unit Message) code is used in the Segment Type Subfield 

of the DMPDU. The MID is not used in this case, thus it is set to the reserved value 

of zero. 

Each DMPDU trailer is constructed by writing into the Payload Length 

Subfield the number of the IMPDU octets used in the segmentation unit. For the 

connectionless MAC services to LLC, this number is always 44 for BOM and COM 

DMPDUs. The number written into EOM DMPDUs indicate the remaining 

number of the octets in IMPDU that need to be transferred. This number can be any 

multiple of 4 in the range 4 to 44, inclusive. The number written into SSM DMPDUs 

indicates the length of entire IMPDU. This number can be any multiple of 4 in the 

range 28 to 44, inclusive. The payload CRC Subfield is a CRC computed over all 

octets of the segment payload, including the DMPDU header, segmentation unit, 

and DMPDU trailer. 

Reassembly at the Destination  

To receive IMPDUs segmented as described above, each AU will monitor all 

segments passing on the bus. Each DMPDUs contain one of a particular set of VCI 

values in the segment header. (The VCI value of all bits being set to one is reserved 

as a default value for MAC service to LLC. All conforming stations must recognize 

this VCI value and process the DMPDUs). If VCI value is one that the AU is 

programmed to receive, the AU will verify the DMPDU by means of Payload CRC 

Subfield. If the CRC verification fails then the DMPDU is not correct. It should be 

discarded. 

For each valid DMPDU with a BOM code in the Segment Type Subfield, the 

AU will inspect the MCP header, which will be within the BOM segmentation unit. 

If the MCP header indicates that the IMPDU is addressed to the AU then it will 

copy the BOM segmentation unit. If the IMPDU is not addressed to AU, the 

segmentation unit is not copied. 
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Figure 2.9 IMPDU structure  

To receive the remainder of the IMPDU associated with the BOM 

segmentation unit, the AU will also record the sequence number and MID value 

from the BOM DMPDU. The following DMPDUs derived from the same IMPDU 

should all be received with the same VCI value in the segment header, and an 

incremented sequence number for each successive DMPDU, and the same MID 

value in the DMPDU header. The DMPDUs are recognized by the AU using the 

Payload CRC Subfield to verify the DMPDU header of all DMPDUs received on 

the same VCI, and then comparing the verified MID value with the one recorded. 
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When a match is made, the layer copies the verified segmentation unit of the 

DMPDU, provided the sequence number is the expected value. The complete 

IMPDU is received when a verified DMPDU with matching MID value, expected 

value of the sequence number, and EOM code in the Segment Type Subfield is 

received and segmentation unit copied. Since segments are guaranteed to be 

delivered in order across the DQDB subnetwork, the AU can reassemble the 

received segmentation units into the original IMPDU by connecting them in the 

order they were received. 

The collection of all received segmentation units of an IMPDU is finally 

verified by using two pieces of information contained in the common PDU header 

and common PDU trailer. The length of the IMPDU, minus the length of common 

PDU header and common PDU trailer, is sent in both common PDU header and 

common PDU trailer. The length value received in common PDU trailer is 

compared against the number of octets received for the IMPDU. A mismatch 

causes the receiver to discard the IMPDU. This check is used to ensure that the 

correct number of DMPDUs have been received, and thus protects against the loss 

or insertion of COM DMPDUs. 

The second piece of information is Beginning-End tag (BE tag). The same 

value of BE tag is sent in both common PDU header and common PDU trailer of a 

given IMPDU. The BE tag value is incremented for the next IMPDU sent by the 

node. The two BE tag values for an IMPDU are compared at the receiver, and a 

mismatch causes the receiver to discard the IMPDU. The BE tag is used to ensure 

that the BOM DMPDU and the EOM DMPDU of a reassembled IMPDU were both 

actually derived from the same source IMPDU. This protects against the loss of 

EOM DMPDU from one IMPDU, loss of BOM from subsequent IMPDU, and loss 

of the appropriate number of COM IMPDUs such that the IMPDU reassembled 

from the received DMPDUs is still of length specified in the common PDU trailer. 
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If the node supports checking of the IMPDU using the 32-bit CRC, and if the 

CRC Field is present in the receive IMPDU, as indicated by a bit in the MCP 

header, the AU will verify the IMP DU by the means of the CRC32 Field. If the CRC 

verification fails, then the IMPDU is discarded. If the CRC verification passes, the 

IMPDU is accepted as valid. On the receipt of all DMPDUs of IMPDU, the 

recorded MID value must be cleared because the source may reuse the same MID 

for a different IMPDU transfer. 

Single segmentation unit SSM DMPDUs, are received in a similar manner 

to the BOM DMPDUs. The AU will verify the DMPDU using the payload CRC 

subfield, inspect the MCP header Field in the segmentation unit, and copy the 

segmentation unit if the payload CRC passes the IMPDUs, there is no need to 

record the MID value. The IMPDU is completely received in this first DMPDU, and 

is then validated using the length value in the common PDU trailer, the BE tag 

values in the PDU header and common PDU trailer, and the CRC32 Field. 
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Figure 2.10 DMPDU structure 
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Bandwidth Balancing  

The bandwidth balancing technique is used to ensure fair sharing of 

bandwidth between stations operating at a single priority. "Fair", here means that 

giving an approximately equal share of bandwidth to all stations attempting to 

access the medium for transmission. When the physical conditions are as stated 

above and when the offered load of all stations exceeds the bandwidth available 

on the medium, the use of bandwidth balancing allows all stations to receive an 

equal share of the bandwidth in the steady state. In the steady state, the medium 

utilization is less than 100%, being equal to BWB_MOD/BWB_MOD+1) x 100% if 

there is only one active node. 

The bandwidth balancing mechanism divides bus bandwidth among the 

stations and allows some bandwidth to go unused. For example, for a bus with N 

stations, if all the following conditions are met- 

 

• No station has any pre arbitrated traffic; • Each station always has Queued arbitrated segments waiting to be 

transmitted on the bus; 

• All the segments have the same priority; 

• The value of the BWB_MOD at each station is M (this means that 

each station uses a fraction of M/ (M+1) of the slots not used by the 

other stations); 

These load condition persist for a sufficiently long time; 

then the bandwidth balancing mechanism provides each station with a steady 

state average throughput of 1/ (N+1/M) segments per slot time. Here the 

utilization increases as the BWB_MOD increases and as the number of active 

stations increases. The station throughputs approach their steady-state values 

gradually. The convergence is faster if the BWB_MOD is smaller. 
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2.3.2 Provision of Isochronous Services  

The Pre Arbitrated access control mechanism does not necessarily accept or deliver 

isochronous service octets in the isochronous fashion. The variation from the 

isochronous delivery occurs when the node at head of bus does not guarantee Pre-

Arbitrated slots in an isochronous fashion. If the user of the isochronous service 

requires the DQDB layer to accept and/or deliver the octets isochronously, there 

is a requirement for some buffering. The nature of this buffering depends on the 

isochronous service user and is performed as part of an isochronous convergence 

function. 

The isochronous service described provides only the DQDB layer Functions 

required to access the medium to read and write isochronous services octets. This 

is managed by the Pre Arbitrated Access Functions within each AU and the 

periodic generation of the PA slots at the head of the bus. 

2.3.3 Provision of Connection Oriented Data Service  

This convergence function is under implementation that will allow the DQDB 

Layer to support a connection-oriented data service that uses Queued Arbitrated 

access. This will require the functions similar to the convergence functions to 

support the MAC to LLC service. 

2.4 Functional Architecture of a Node  

The functional architecture for a DQDB node is shown in figure 2.11. It consists of 

two layers: the Physical Layer and the DQDB Layer. The DQDB layer uses the 

services of the Physical Layer to provide a number of different services. One of 

these services is the MAC Sublayer service to the LLC sublayer. Other services 

which are under study, include connection-oriented data services and 

isochronous services. 
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2.4.1 Physical Layer Functions  

The physical layer contains three components, Transmission System, Physical 

Layer Convergence function and the layer management functions. The physical 

layer service is provided to the DQDB Layer entity at a node through two SAPS. 

Each SAP is associated with one duplex transmission link connecting the node to 

an adjacent node. Transmission System functions provides an transmission 

interface used to access the transmission link between adjacent nodes. 

Physical Layer Convergence Function  

In order to allow the DQDB layer to operate independently of the nature of the 

transmission system, a physical layer convergence function is used. This function 

provides the Physical Layer to DQDB Layer service, irrespective of the nature of 

the transmission system. 
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Figure 2. 11 DQDB Node Functional Architecture  
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2.4.2 DQDB Layer Functions  

Within the DQDB Layer there are four principle types of functions: the common 

functions, the access control functions (Queued Arbitrated and Pre-Arbitrated), 

the convergence functions, and the layer management functions. Each of these 

functions is described below. 

Common Functions  

The Common Functions block acts as a DQDB Layer relay for the transfer of slots 

and management information octets between the two SAPS to the local Physical 

Layer entity. Thus the Common Functions block allows the QA Functions block 

and PA Functions block to gain read and write access to the QA, and PA slots. 

These functions include the head of the bus function, the Configuration 

Control Function, and the MID Page Allocation Function, and are described as 

follows. 

The Configuration Control and MID Page Allocation Functions manage 

DQDB Layer objects necessary for nodes to communicate on the subnetwork. 

Hence these functions are part of the DQDB LME. 

Head of Bus Function  

The head of the bus function is performed by the node at the head of each bus and 

by no other nodes on the dual bus. It includes the Slotmarking Function, which is 

the process of creating empty slots that are to be written onto the bus. This includes 

the marking of PA slots and the writing the VCI in the PA segment header. The 

node at the head of each bus must also write appropriate values into the 

management information octets. 

Configuration Control Function  

The Configuration Control Function is responsible for ensuring that the resources 

of all nodes of a subnetwork are configured into a correct dual bus topology. The 

Configuration Control Function will be employed at the subnetwork start-up or to 
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correctly configure the subnetwork. The Configuration Control Function will also 

reconfigure the subnetwork in the case of bus failures. An example of the operation 

of the Configuration Control Function is the activation and deactivation of the 

head of bus functions at appropriate nodes during the process of reconfiguration. 

MID Page Allocation Function  

The MID Page Allocation Function participates in a distributed protocol with all 

nodes on the subnetwork to control the allocation of the MID values to nodes. The 

MID values are used by the node in the transfer of multiple segmentation unit 

IMPDUs, described in 2.3.1. The MID Page Allocation Function will ensure that 

two nodes are not allocated the same MID value. 

Queued Arbitrated (QA) Functions  

The QA functional entity provides an asynchronous data transfer service for 48-

octet segment payloads. The QA functional entity accepts the segment payloads 

from a convergence function, and adds the appropriate segment header, including 

VCI, to the segment payload to create a QA segment. The QA segment is queued 

for access to the dual bus by use of the Distributed queuing Function. QA segments 

received by the QA functional entity are stripped of the segment header and the 

payload is passed to the correct convergence function, based on the VCI value in 

the segment header. 

Pre Arbitrated (PA) Functions  

The PA functional entity provides access control for the connection-oriented 

transfer over a guaranteed bandwidth channel of octets. The operation of the PA 

functional entity requires the previous establishment of a connection. As a result 

of the connection establishment, the PA functional entity will be informed of the 

VCI value for segments used in the connection and the offset of the octets to be 

used for reading and writing within the multiple user PA segment payload. 

The PA entity accepts the single octets from a convergence function and 
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writes them into a pre-allocated positions within the payload of PA segments with 

the appropriate VCI value in the segment header. The VCI value would have been 

set by the Slot Marking Function at the head of the bus. 

To receive an octet stream, the PA functional entity, on receiving a PA 

segment with the correct VCI value, will copy octets from the pre-allocated 

positions within the segment payload. The octets are passed the correct 

convergence function, based on the VCI value in the segment header and the offset 

of the octet in the PA segment payload. 

Convergence Functions  

It is intended that the DQDB layer will provide a range of services including 

connectionless data transfer, isochronous data transfer, and connection-oriented 

data transfer. The services are provided by the convergence functions placed 

above the QA and PA functional entities. 

MAC Convergence Function (MCF)  

The MCF is responsible for adapting the segment-payload-based service provided 

by the QA functional entity to the MAC service required by the LLC Sublayer. 

The MCF transmit process involves encapsulating the LLC Protocol Data 

Unit (MAC Service Data Unit) to form an initial MAC Protocol Data Unit 

(IMPDU). The IMPDU is segmented into segmentation units of 44 octets, as 

described in 2.3.1. Each segmentation unit has a segment type, sequence number, 

and MID value prepended, and a payload length and payload CRC appended, to 

form a Derived MAC Protocol Data Unit (DMPDU). This can be transferred by the 

QA functional entity. 

The MAC service process involves reassembly of the original IMPDUs at 

the destination, as described in 2.3.1. The LLC Protocol Data Unit is extracted from 

the received IMPDU and passed to the LLC entity. 



32  
Isochronous Convergence Function (ICF)  

The ICF is for each Isochronous Service User (ISU). An ICF is responsible for 

adapting the guaranteed bandwidth octet-based service provided by the PA 

functional entity to an isochronous octet-based service. 

In particular, the ICF will provide buffering both for the isochronous octets 

to be transmitted on behalf of the ISU by the PA functional entity and for the 

isochronous octets received from the PA functional entity and to be delivered to 

the ISU. 

Other Convergence Functions  

The provision of a connection oriented data service by the DQDB layer is under 

study. The Connection-Oriented Convergence Function (COCF) will adapt the 

segment-payload-based service provided by the QA functional entity to a 

connection-oriented data service. Connection oriented data service uses the same 

segmentation and reassembly procedures same as that of MCF. 

2.4.3 DQDB Layer Management Entity (LME)  

The DQDB LME performs management of the local DQDB Layer Functions. It also 

communicates with DQDB LMEs at other nodes to provide distributed 

management of the DQDB Layer resources. The communication uses a DQDB 

Layer Management Protocol is supported by the DQDB Layer Common Functions 

block. The DQDB LME also provides the DQDB Layer Management Interface to 

the Network Management Process for the remote management of the local DQDB 

Layer subsystem. 



Chapter 3 

INTERFACE ARCHITECTURE  

This chapter describes the system architecture, system operation and hardware 

modules that implement the Queued Arbitrated functions of the Distributed 

Queue Dual Bus Metropolitan Area Network (DQDB MAN). A Field 

Programmable Gate Array (FPGA) design can be implemented by using the state 

diagram of the processing units. We finally mention that the state transition 

diagram of the receiver packet processor is also discussed in this chapter. 

3.1 Overview of System Architecture  

A higher level overview of the proposed architecture for such a system appears in 

figure 3.1. The DQDB protocol functions are handled by the Multi Processor Pool 

(MPP). The Low Level Processors (Input Low Level Processor & Output Low Level 

Processor) handle physical interfaces while the Host Interface Processor (HIP) is 

used for data transfer to and from host applications. The following design choices 

have been made for reasons described below : 

=> 	Round-robin Scheduling of Processors  

=>      Local Memory in Packet Processor 

Local memory in packet processors minimizes the number of "copy" operations 

and in conjunction with the round robin scheduling the use of processors is 

maximized. Shared memory is used primarily for context records for each 

connection, reducing memory contention considerably. 

Figure 3.2, which shows a detailed system diagram, provides some architectural 

details. The packet processors that handle the received packets are labeled 

Each packet processor contains multiple packet buffers, local RAM, a CPU, and 

33  
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interfaces to the ILLB (Input Low Level Bus) and the S_Bus (Shared Bus). The ILLB 

is exclusively used for high speed data transfer from ILLP to Ri_processor and 

from R1_processor to host. The components of the transmitter are shown in Figure 

3.3. 

Figure 3.1 Processing Architecture Overview  

The DQDB Layer Protocol functions are performed by a set of programmable 

packet processors, depicted as T1_processor and T2_processor, where the low 

level functions are performed by the high speed hardware unit OLLP. All these 
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processors communicate with each other and shared memory, via the S_Bus. The 

high speed Data Memory is used to buffer data received from host applications for 

transmission. The OLLP transfers data out of the High Speed Data Memory via a 

dedicated bus called Output Low Level Bus (OLLB). The T1_processor and the 

data memory have a direct connection to the H_Bus (Host Bus) as well. We have 

assumed a simple hardware arbitration mechanism to resolve simultaneous 

attempts by the processors to access the shared resources. All requests are queued 

and granted in the order that they were received. This manages to reduce the 

contention between the processors adequately, without the cost or delays 

associated with complex interconnection network. Simple I/O interfaces are 

critical to maintain the required throughput. The high speed hardware units (ILLP, 

OLLP) will offer a solution for this critical problem, as well as for the lower layer 

protocol functions and error checking functions that cannot be handled by 

programmable processors at Gbps rates. 

3.2 System Operation  

The system described in Figure 3.2 and Figure 3.3 shows the implementation of the 

parallel processing architecture connected to one of the buses, Bus A or Bus B. This 

design shows the receiving and transmitting sections separately on the same bus. 

The incoming and outgoing lines from the bus are connected with the low level 

processors. The Input low level processor (ILLP), is placed before Output low level 

processor (OLLP) so that the data written by OLLP cannot affect the reading 

operation of ILLP. First we will describe the receiving section and then the 

operation of the transmitting section. 
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Figure 3.2 System Architecture - I  
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Figure 3.3 System Architecture - II  
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3.2.1 Receiving operation  

As packets come in from the line, the ILLP checks the access control field of the slot. 

If the busy bit is "1" and the payload type bit is "0", the slot will be busy. The 

processor then reads the incoming segment. It checks whether the VCI field in the 

ACF of the slot matches with one of the VCIs that the station is programmed to 

receive. A station is programmed initially with an acceptable list of VCIs and 

MIDs. If there is a VCI match, then ILLP will check both Header Check Sequence 

(HCS) and Cyclic Redundancy Check (CRC-8). If the above fields match, then the 

packet will be transferred to the next packet buffer of the R1_processor which has 

been chosen in a round robin fashion. Otherwise, the segment will be discarded 

and not forwarded for further processing. 

The ILLP transfers the packet to a selected processor and at the same time 

the bits are copied to the CRC unit. At the end of the sequence of the header, 

payload and trailer, the CRC remainder is computed and transferred to the same 

processor that the corresponding segment has been sent. 

The R1_processor receives the DMPDUs from the input low level bus 

(ILLB) and starts processing it. First it checks the correctness of the DMPDU, by 

comparing the calculated remainder (sent by the CRC unit) with the CRC field 

carried in the DMPDU trailer. If the CRC check is successful only then further 

processing is carried out; otherwise the DMPDU is discarded. The MID/ VCI_data 

pair is compared against the active reassembly process, which holds the MID/VCI 

pair of the connection and has been established when the first segment arrived at 

the receiver. If MID/VCI pair matches, the destination address field in the MCP 

header is compared with the MAC Service Access Point (MSAP) address. If the 

address does not match then the DMPDU will be discarded. After a successful 

checking of DMPDU has been conducted, the Previous Segment Received (PSR) 

signal (if required) is generated, and R1_processor makes a request to 
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R2_processorfor reassembly of the IMPDU. The PSR signal is generated only if the 

destination address was a correct individual address. If it was a group address 

then the PSR signal would not be generated. Once the PSR signal is generated, the 

OLLP writes "1" in the PSR subfield of the access control field of the next slot on 

the bus, irrespective of the type of the slot. The R1_processor have multi packet 

buffers. The processed packet is held in one of the buffers of the R1_processor. If 

the segment received by the R1_processor was a single segment message then it is 

not necessary to send it for reassembly. the segment gets validated by 

R1_processor. 

As R2_processor gets a request for reassembly it starts a separate 

reassembly process associated with that VCI and MID pair. R2_processor keeps a 

copy of the beginning of the message (BOM DMPDU), which carries the IMPDU 

header information. By doing this for each new message, more than one 

reassembly processes can exist at the same time. However, there will be only one 

reassembly process related with a single MID/VCI pair. As the 'Continuation Of 

Message' segments (COMB) arrive, they will be appended to the corresponding 

reassembly process associated with that MID/VCI_data pair. Upon receiving 'End 

Of the Message' (EOM DMPDU), R2_processor starts validating IMPDU by the 

length, Beginning-End (BE) tag and CRC-32 (optional). If the validation fails then 

the IMPDU is discarded. If the IMPDU checking was successful, the extraction of 

MSDU is carried out. Upon completion, the received data must be transferred to 

the host. The R2_processor writes a request to the Host Interface Processor (HIP) 

for the data transfer. The requests are queued up at the HIP_FIFO and are served 

by HIP on a First Come First Serve (FCFS) basis. The request carries the destination 

address in the host system, as well as, the total number of the bytes to be 

transferred. The R1_processor holds the packet in the packet buffer until it gets 

transferred to the host. The host interface processor transfers the data from the 
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packet processor into the host memory by the Direct Memory Access (DMA) 

process via the Input Low Level Bus (ILLB) and the host interface bus. Thus, by 

this technique, we avoid multiple write operations on the same packet. 

In the proposed architecture, there are many processing units which use 

shared resources. Such shared resources are the shared bus and the shared 

memory. A conflict may arise while using those shared resources. To avoid 

contention problems, all the requests to access the shared resources, are queued up 

under a FIFO and are served in a first in first out manner. 

3.2.2 Transmitting Operation  

When the host station is ready to transmit, it sends a request to the T1_processor. 

The request provides information about source, destination and the number of 

bytes to be transferred. The information about the allocation of buffer memory is 

kept in the shared memory. The T1_processor accesses the appropriate context 

record and gets the memory address of the next available block in the buffer 

memory. The T1_processor communicates that information to the host. The host is 

now free to move data into the high speed static the buffer memory at the address 

provided. After the completion of the data transfer, the host writes another tag to 

the R1_processor with the destination address and number of bytes to be 

transferred. The host now is not concerned any more with the actual transfer of the 

data. The T1_processor then generates the headers and trailers of the initial MAC 

protocol data unit (IMPDU). Upon the complete generation of IMPDU, it is 

segmented in 44 octet QA payload segments. This segmentation is logical because 

the data is stored physically in the data memory, thus T1_processor computes the 

addresses and the length of the segments. The 'Beginning Of Message', BOM 

DMPDU will be generated by the IMPDU header. Then each individual QA 

payload are sent to available T2_processor according to round robin scheduling to  
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create QA segment. 

The T2_processor then creates the header fields of DMPDU. It encodes the 

payload length, CRC and MID values. Upon completion, it writes a control block 

making a request to OLLP to transmit the segment. That request is queued up at 

OLLP. The OLLP serves the request on first come first serve basis. When serving 

the request, the OLLP reads the control block. As shown in figure 3.5, there are two 

types of control blocks. The address field in type "1" control blocks points to next 

block in the FIFO and that of type "2" points to data memory. During transmission, 

the header and the trailer are transmitted from the next block on the queue, the 

data from the data memory, and CRC field is appended as required. The dedicated 

high speed output low level bus (OLLB) transfers the data from data memory to 

OLLP. The data which is being written out to line is also copied to the dedicated 

CRC unit. At the end of the bit stream the CRC unit generates CRC remainder, 

which is read out and encoded in the trailer as required. When ILLP reads in a non 

busy QA slot (Busy Bit "0" and Pay Load bit "0"), and the content of CD_CNTR is 

zero, then OLLP can transmit QA segment in that slot. 

We have succeeded in keeping the path of data, out of protocol processing. 

Thus we do not perform multiple copying of data while transmission and 

reception, which saves time and system resources. 

3.3 Hardware Modules  

The hardware modules concerned with this architecture can be divided into two 

categories, receiving modules and transmitting modules. The Input Low Level 

Processor (ILLP), the R1_processor, the CRC Unit, and the R2_processor constitute 

transmitting modules. The T1_processor, the T2_processor, the Output Low Level 

Processor (OLLP) and the buffer memory constitute the receiving modules. The 

shared memory, the direct memory access process, and the distribute queue state 
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machine are also described. 

3.3.1 Receiving Modules 

The following modules comprise the receiver assembly. They work in parallel and  

independently from each other. These modules are: 

Input Low level Processor  

This dedicated device is working at the front end of the network. ILLP observes 

continuously the incoming slots. If a slot is busy, ILLP reads in the segment from 

the slot and checks for the Virtual Channel Identifier (VCI). If VCI matches one at 

this node, then the Header Check Sequence (HCS) (a Cyclic Redundancy Check 

(CRC-8)) is checked. If VCI or HCS does not match the DMPDU is discarded. The 

type of service required can also be determined by the VCI. By type of service we 

mean MAC services or connection oriented services or isochronous services. ILLP 

transfers the packet in the next packet buffer of the R1_processor which is chosen 

in a round robin fashion. The PSR information, VCI, Payload Type, and the 

segment priority are also copied to the buffer. 

R1 processor  

The R1_processor gets data from the Input Low Level Bus (ILLB). R1_processor 

checks the correctness of the Derived MAC Protocol Data Unit (DMPDU) using the 

CRC-10 field from the DMPDU trailer. This processor gets feedback information 

about the active reassembly process from the R2_processor. The feedback 

information contains the active MID/VCI pair. 

While copying a packet into R1_processor's buffer, the same bits are fed into 

the pipeline processing module of the CRC-10 check hardware. At the end of the 

bit stream, the CRC remainder, generated by the CRC unit, is read and transferred 

to the packet processor which was chosen in a round robin fashion. If the previous 

segment received service is provided, the R1_processor checks the following :  
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(i) Whether QA is the Beginning Of a Message (BOM) as well as whether the 

Destination Address (DA) in the MAC Convergence Protocol (MCP) 

header is correct. 

(ii) Whether QA is a Continuation Of Message (COM) or End Of Message 

(EOM) as well as whether the Message Identifier (MID)/VCI_data pair 

matches with the one of the active reassembly process. 

Then R1_processor generates the Previous Segment Received (PSR) signal and 

makes an entry into the FIFO queue of the R2_processor. 

If QA is a Single Segment Message (SSM), then the DMPDU does not need 

reassembly. Hence, the R1_processor starts validation of it, which generates the 

following sequence. 

(i) Check of MID subfield. If does not match, discard the DMPDU. 

(ii) Check the DA field of the MCP header with the MAC Service Access Point 

(MSAP). If it does not match, discard the DMPDU. 

(iii) If the previous checking is correct, then generate the PSR_signal. 

(iv) Hold the packet in the buffer and generate an entry to the service queue of 

the Host Interface Processor (HIP) to move the data to the host application. 

CRC Unit  

The CRC unit is responsible for generating the CRC remainder for the incoming 

string of data. Cyclic Redundancy Check codes are used for error detection. Let L 

be the length of the CRC coding polynomial and K be the length of the string of 

data bits. Then we can write them as the polynomials shown below: 

s (D) = sK-1DK-1  + sK-2DK-2 + + s0 

g (D) = DL + gL-1DL-1 + gL-2DL-2 + + g1D + 1 

where s (D) is the information polynomial, and g (D) is the generator polynomial 

of degree L. 

For a given g (D), the mapping from the information polynomial, c (D), is given by, 
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c (D) = Remainder [s (D) DL /g (D)] 

The polynomial division above is just binary long division of one polynomial by 

another, except that the coefficients are restricted to be binary and the arithmetic 

on coefficients is performed in modulo 2. Note that the subtraction using modulo 

2 arithmetic is the same as addition. 

The long division can be implemented easily by the feedback shift register 

circuit shown below. 

Figure 3.4 CRC Unit  

The figure 3.4, shows the shift register circuit for dividing polynomial and finding 

remainder. Each rectangle indicates a storage cell for a single bit and the 

proceeding circle denote modulo 2 adders. The large circle at the top indicates 

multiplication by the value of 	Initially, the register is loaded with the first L bits 

of s (D) with the sK-1  term at the right. On each clock pulse, a new bit of s (D) comes 

in at the left and the register reads in the corresponding modulo 2 sum of feedback 

plus the contents of the previous stage. After K shifts, the switch at the right moves 

to horizontal position and the CRC can be read out. 
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R2 processor  

After receiving the Beginning Of Message (BOM), the R2_processor starts the 

reassembly process associated with the corresponding VCI_data and Message 

Identifier (MID) pair. It matches the destination address in the MCP header with 

that of the Service Access Point (SAP). On getting the EOM, validation of IMPDU 

takes place. The R2_processor compares then the value of the Length subfield of 

the common PDU trailer, with the actual number of octets received. If there is no 

match the IMPDU is discarded. The actual number of the data octets in the IMPDU 

will be {[no. of octets received for the IMPDU] - [common PDU header octets 

[4]]+[number of PAD octets [0,3]1+ [common PDU trailer octets [4]]}. If there is no 

match, the data is corrupted and the IMPDU is discarded. It also performs BE-tag 

validation. If both, length and tag match then a MAC Service Data Unit (MSDU) is 

created by using the IMPDU. 

Extraction of MSDU from validated IMPDU: 

The R2_processor will, 

(i) Use the DA field of the MCP header to create the destination_address_ 

parameter. 

(ii) Use the SA field of the MCP header to create the source_address_parame ter. 

(iii) Use the Quality Of Service delay field to create the priority parameter. 

(iv) Extract the MSDU information field to create the data parameter 

Then UNIT_DATA indication is prepared. After extracting MSDU successfully, 

make an entry into HIP_FIFO indicating the Destination Address, memory storage 

address of segments and byte count for the data segment residing in, the packet 

processor, R1_processor's local memory. 

Direct Memory Access - Process  

The R2_processor makes a request for Direct Memory Access in order to move 

packets from the buffers of R1_processor to the host memory. The request contains 
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the number of bytes to be transferred, the memory read address (pointing to the 

local memory of the R1_processor) and the memory write address (pointing to the 

host application running in the host system). The R2_processor requests are 

served by the Direct Memory Access controller. The DMA controller utilizes the 

idle bus cycles, temporarily takes over the control of both the memory address bus 

and the data bus and transfers the data to the host. This technique is called cycle 

stealing technique. 

3.3.2 Transmitting Modules  

The description of the various transmitting modules follows below. 

T1 processor  

Upon the reception of a request from the host, the T1_processor gets the total 

number of bytes to be transmitted by the Logical Link Control (LLC) sublayer 

frames, as well as the destination address and source address. T1_processor then 

accesses the appropriate record in the shared memory to find the address of the 

buffer list for this request. From the buffer list data structure it obtains the pointer 

to the next available block in the buffer memory, which communicates to the host. 

The host eventually transfers the data block in the data memory. Meanwhile, it 

creates the IMPDU header with the information carried by the MA_unit_data 

request. 

To create a common PDU Header the T1_processor : 

(i) Encodes the reserved field. 

(ii) Selects the Beginning and the End tag (BE) and encodes them. 

(iii) Encodes the buffer allocation size field to a number of octets as {MCP 

header octets + Header Extension Length (HEL) octets + MSDU 

octets. 

To create the MAC Convergence Protocol (MCP) header the T1_processor : 
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(i) Encodes the destination address. 

(ii) Encodes the source address. 

(iii) Encodes the Protocol Identifier (PI) (=1 for LLC frames) 

(iv) Encodes the Qos_delay and Qos_loss parameters. 

(v) Compares the parameters received in the MA_unit_data request with the 

currently installed header extension selection values (within the MCF by 

the DQDB Layer Management Entity (LME)). These values can be 

modified by the Layer Management actions. 

Finally, T1_processor encodes the the Bridging field by 'zero's. 

The segmentation of an IMPDU then follows. The T1_processor segments the 

IMPDU into a 44 octet QA payload. The only exception is the single segment 

message and the end of message. Then the next available T2_processor, according 

to round robin scheduling, is assigned to create a QA segment; using the QA 

payload and the other related information. 

T2 processor  

This processor creates DMPDU headers and trailers. For a Single Segment Message 

(SSM), the T2_processor : 

(i) Encodes the segment type (11 for QA slots) 

(ii) Encodes the MID subfield ('zero's for SSM) 

(iii) Encodes the payload length in DMPDU trailer. 

For more than one Segmentation units, the T2_processor : 

(i) Encodes the segment type of BOM, COM or EOM as 1 0, 0 0 or 0 1 

respectively. 

(ii) Selects a MID value and encodes it; notice that this value is the same for 

every DMPDU derived from a single IMPDU. 

(iii) Encodes the payload_length in the trailer by the number of octets of the 

IMPDU contained in the segmentation unit. 
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The T2_processor generates a segment by appending the payload to the header 

and the trailer fields in the following way. In segment header field, the 

T2_processor encodes the VCI_DATA, the Payload_type (0 0 for QA), the Segment 

Priority (0 0) and the data by using the CRC-8 coding polynomial. It also calculates 

the remainder and encodes it. Upon completion of these operations, an entry into 

the FIFO of OLLP is generated. 

Output Low Level Processor 

Basically it is dedicated to the function of transferring data at high speeds out of 

the data memory, and writing directly to output line using OR_writing. It also 

includes the low level protocol functions. It acquires direct control when it has to 

write into a Previous Segment Received (PSR) bit, or into the Request (REQ) bits of 

the Access Control Field (ACF) of the next slot. OLLP reads the control blocks from 

FIFO and determines the source of the next block of data to be transferred. This 

control block may point to the very next block in the queue, in case of a packet 

header, or to a location in the data memory. In both cases the number of bytes to be 

transferred is also indicated. The OLLP includes the CRC unit working in parallel 

with it. When the OLLP writes data on the outgoing line it also copies the data into 

the CRC unit. At the end of the bit stream, the generated CRC remainder can be 

read out from the unit and can be encoded into the corresponding field. 
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Buffer Memory 

Figure 3.5 Memory Block Design  

To minimize the contention, (see figure 3.5) the buffer memory uses the dual port 

static RAM components, also referred to as Video RAM ICs. It provides multiple 

buffers to hold packets until they get transmitted. This memory IC provides two 

independently accessible ports: One providing high speed burst-mode transfer, 
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and the other providing random - access. The serially accessible port is used to 

move a packet from the buffer memory to the network. The random accessible port 

provides memory access for the host to copy the data which are to be transmitted. 

The serial access does not need address set-up and decoding time, hence the read-

write times are faster on this port than the read-write times for a RAM array. For 

instance in order to align the major host systems, using 32 bit wide memory, the 

serial access time is 40 n.secs/word, and the cycle time for the random read write 

access is 200 n.secs. This gives an effective transfer rate of 800 Mbps over a serial 

port and 160 Mbps over a random access port. To provide an equivalent memory 

bandwidth on a single ported 32 bit wide memory we would require a memory IC 

with read/write cycle time of 33 n.secs. Currently such fast memory is available, 

but it is costly and have less memory density than that of the Video RAMS. 

A packet is transmitted to the network via a serial port from the shift 

register contained in the Video RAM ICs. The shift register acts as a temporary 

storage. When the block is completely transmitted, the next block is transferred 

into the shift register, in a single memory cycle, from a row of the memory cell 

array constituting the buffer memory. The host copies the blocks via the random 

access port. The copying of a block continues without interference, while the next 

packet is being transmitted, with the exception of one memory cycle which is 

stolen for each transmitted block that is transferred from the memory cell array to 

the shift register. We point out that Video RAM ICs provide good performance at 

a fraction of the cost of the fast memory. They can also perform high speed block 

transfer between the network, the buffer memory and the host. 

Buffer List Data Structure in the shared memory  

This data structure is defined for the purpose of managing data memory buffers in 

the high speed static RAM. This structure exists for each active DQDB connection. 

It is setup first, when the DQDB connection is established, and is physically 
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resident in the shared memory. Each cell, as it is shown in figure 3.7, consists of a 

pointer to the next cell, 

Figure 3.6 Control Block Structure.  

which contains the address of the data buffer. The buffer size should be the same 

as that of the block size which is likely to be used by the host application. The 

structure is maintained via three variables: first_free, first_busy, and last_busy, 

which are part of the record for each connection. The variable first_free points to 

the next free buffer. Initially the first_free points to the first cell and the variables 

first_busy through last_busy point to the buffers that contain the segments that 

must be transmitted. Initially the first_busy and last_busy are set to point to the 

first cell by the T1_processor. The value of the last_busy is updated by the 

T1_processor every time a new buffer is allocated to the transmission packets. 

Upon completion of the transmission of a packet by OLLP the value of first_busy 

is updated. The T1_processor updates first_free every time it secures a new buffer 

from this list. When the first free equals the first_busy, no additional data buffers 

are available and the host application gets blocked. 
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Figure 3.7 Buffer List Data Structure.  

3.3.3 Operation of Distributed Queue State Machine (DQSM)  

The operations of the ILLP and OLLP are controlled by the DQSM which we 

briefly describe below. According to this state machine each station maintains a 

Request_I_Counter_X, counting requests at priority level I on bus X (A or B). If the 

node is not queued for transmission then the above mentioned counter will get 

incremented upon observing a request on the reverse bus or will get decremented 

on observing an empty slot (Busy Bit & Type Bit as 00) on the transmission bus. 

When a segment is queued for transmission, at the station transfers the contents of 

REQ_I_CNTR_X to countdown counter CD_I_CNTR_X. The countdown counter 

then gets incremented, by one for each coming request on bus X of higher priority 
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than the level I, or if the node itself generates a request at level higher than level I. 

This counter gets decremented, if an incoming slot on the transmission bus is 

empty i.e. if the Busy Bit and the Segment Type Bit in the Access Control Field 

(ACF) of the slot are both "0". When the countdown counter reaches the null value 

"0", the packet is transmitted in next available empty slot seen on the transmission 

bus. The OLLP is informed when the countdown counter reaches "0", so that it can 

activate the OR writing into the next free slot. 

3.3.4 Field Programmable Gate Array (FPGA) implementation of R1_processor 

Figure 3.8 shows the state diagram needed to implement the set of common 

functions and QA functions that must be performed by an R1_processor. The 

general functions of R1_processor, for processing of the incoming packets, are 

discussed below. The state diagram shows state I, as a waiting state. When the 

processor finishes the processing of the data packet, waits until the next processing 

is assigned. In this state R1_processor checks continuously the status of a FlipFlop 

(packet) {the FlipFlop is set when the new packet is assigned). If that FlipFlop is not 

set the R1_processor will generate the 'Ready' control signal going to ILLP, and 

will return to the same state. If the FlipFlop was set then the 'Busy' signal is 

generated, indicating that R1_processor has already been assigned to process a 

packet. The processor makes transition to state II. 
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In state II, R1_processor reads the 53 bytes of the incoming packet. At the 

end of the bit stream, it also reads the 10 bits of the CRC remainder released by the 

CRC unit. If the Previous Segment Received (PSR) bit is present then it sets the 

FlipFlop (PSR) to 1. Thus this state needs a total of 14 memory reference operations 

(considering 32 - bits wide data path) to read a 53 byte packet, 10 bits of the CRC, 

and 1 bit from the CRC field. 

In state III, the processor loads the 10 - bit CRC remainder from the CRC 

unit and the 10 bits from the payload CRC field. R1_processor then compares them 

in order to implement the checking of the received data. If the CRC field does not 

match, then the received packet is discarded and the processor goes back to state 
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I. If the CRC field passes the comparison then the processor makes the transition 

to the next state, i.e. state IV. 

In state IV, the processor reads two bits from the fifth octate and decodes 

them. Then R1_processor performs a comparison of the MID (10 bits) and VCI (20 

bits) subfields, as well as the address field in the MCP header (8bytes) with the 

values allocated to the node. When R1_processor checks the equal conditions for 

the comparisons, and if they do not hold, it loops back to state I. If the conditions 

are equal, it checks the decoded bits. If the decoding bits were 00 or 01 i.e., the 

received segment was a Continuation of Message (COM) or an End of Message 

(EOM). In this case R1_processor will make a transition to state V. If the decoding 

bits were 10 i.e., the segment was a Beginning Of Message (BOM), R1_processor 

will make a transition to state VI. Otherwise, i.e. the decoding bits were 11 (the 

segment was a Single Segment Message), it will make a transition into state VII. 

In state V, R1_processor will send the Previous Segment Received (PSR) bit, 

if the FlipFlop (PSR) is set. R1_processor will write a request for reassembly of the 

received DMPDU, to R2_processor along with the DMPDU information and 

address. 

In state VI, R1_processor writes the whole packet to R2_processor, because 

the BOM DMPDU contains the header part of the IMPDU. 

In state VII, R1_processor performs validation of the SSM, because the given 

segment does not need reassembly. Rl_processor performs checking of the 

payload length field (16 bits) and the Beginning and End tag (8 bits). It checks CRC 

indicator bit (CIB) and writes the FlipFlop (CIB) accordingly. Furthermore, it 

checks the header length extention field (8bits). 

Table I shows the different states and number of Operations involved with 

the state transition diagram described in figure 3.8. Figures in [ ] indicate number 

of Bytes and figures in ( ) indicate number of Bits. 
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Table 1: States and Operations  

States 
\Operations 

Read Write Compare Total 

I (1) # 1 

II [53],(10),(1) # 16 

III (10) # 2 

IV (2)Rd&Dcod (10),(20),[8] # 9 

V (1) 

(1)

,[4],[4] # 4 

VI [44] # 11 

VII (1) (16),(8),(8) 
[4] 

# 9 

Total # 20 # 14 # 18 # 52 

The state transition diagram shows that there are five valid paths, the 

processor may follow. FPGA technology manages to execute read, write or 

compare functions within 2 - 5 n.sec. In the sequel we provide a brief discussion on 

possible alternative paths. 

Upon getting a packet, R1_processor makes the transition to state II. Where it reads 

the packet and the CRC bits from the Input Low Level Bus (ILLB). In state III, 

R1_processor compares the CRC field of the DMPDU. If the packet fails to match 

the CRC field then the received DMPDU is discarded and the processor makes the 

transition to state I. A total of 19 memory reference operations (approx. delay of 4 

µsec.) are related with this path. 
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Path II:  

If R1_processor gets the DMPDU and follows the path through state III and there 

is a match of the CRC subfield, then R1_processor will make the transition to state 

IV. In state IV, R1_processor reads the segment type bits (2 bits) and decodes them. 

Then, R1_processor performs a comparison of the subfields MID (10 bits), VCI (20 

bits), and destination address in MCP header (8 bytes). If there is a match 

R1_processor goes to a subsequent state which depends on the decoding of the two 

bits. If there is not match, then R1_processor discards the DMPDU and returns to 

state I. A total of 28 memory reference operations and an approximate delay of 6 

µsec. are related to this path. 

Path III:  

If the R1_processor reaches the state IV, and the DMPDU passes the comparison 

successfully, then R1_processor will make a transition to states V, VI or VII 

corresponding to the decoding of the segment type. If the examined segment was 

a Continuation Of Message (COM) or an End Of Message (EOM), then 

R1_processor will make a transition to state V. R1_processor will write a request to 

R2_processor with DMPDU information and its memory address. Upon 

completion R1_processor will return to state I. The number of memory reference 

operations related with this path are 32 and the approximate delay is 7 µsec. 

Path IV:  

If R1_processor reaches the state IV and the DMPDU matches the comparison and 

the segment type is a beginning of a message, then R1_processor will write a whole 
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packet to R2_processor. Upon completion of the writing operation R1_processor 

will make a transition to state I. The total of 39 memory reference operations are 

performed along this path. The approximate delay of this path is 8 µsec. 

If R1_processor reaches the state IV and the matched DMPDU is a single segment 

message, then R1_processor will make the transition to state VII. This DMPDU is 

carrying the whole DMPDU in it. The validation of the IMPDU is done here by 

checking both the header and trailer fields of it. When finished the R1_processor 

sends a request to the Host Interface Processor (HIP) to transfer the received 

IMPDU to the host. A total of 37 memory reference operations are involved with 

this path. The approximate delay of this path is 8 µsec. 

Figure 3.9 provide, a diagram of the parallel processing with respect to time. In the 

worst case scenario, where all packets on the bus have the same destination, a new 

packet may may arrive at a node every 2.72µsec. We assume that there are four 

processors in the receiver assembly and they are assigned to perform the 

processing of the incoming packets. The first incoming packet goes to the first 

processor. The next in the second processor and so on. We see that by the time the 

fifth packet arrives at the node the first processor has completed serving the first 

packet and can now accept the fifth packet. Then, when the sixth packet arrives, 

the second processor is free. Therefore four processors are enough to handle all the 

processing needs of the DQDB protocol inside each station. We also know that on 

getting the EOM DMPDU the message is validated and transferred to the host. 

Since the maximum MAC protocol data unit is 9188 octets, requiring 210 DMPDUs 

for its transfer, we need a minimum of 54 packet buffers (of size 44 bytes each) to 

accommodate the transfer of all of them. 
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Figure 3.9 Parallel Processing Vs Time  



Chapter 4 

Conclusions  

This thesis provides a parallel processing based architecture for the 

implementation of the Distributed Queue Dual Bus protocol. Parallel processing 

enables the node to operate on many packets simultaneously and in this way it can 

handle the incoming flow of packets from the high speed bus as well as fully utilize 

the available channel bandwidths with its own transmissions. 

The proposed architecture implements the multiprocessing assembly of 

both receiver and transmitter. The concept of round robbin scheduling in the 

multiple processor assembly minimizes the contention among the processors. 

Furthermore, the host interface for the transmitter is simplified significantly by 

using the T1_processor, which can absolve the host applications from any need to 

know the specifics of the implementation or about the current state of the system. 

In order for the data to be transmitted, the T1_processor interacts with the host 

workstation. The data is then transferred directly into the dual ported buffer 

memory. In this way the architecture manages successfully to keep the data for 

transmission out of actual protocol processing. Moreover using the local memory 

in the packet processors, the architecture is able to avoid unnecessary copy 

operations on the same data. 

The receiving processor assembly consists of four packet processors. Each 

processor should have a minimum of 54 packet buffers in its local memory, which 

facilitates the transfer of consecutively arriving full length IMPDUs. Allowing 

more packet buffers enables a better congestion control during the burst mode 

transfer. Furthermore the provision of a DMA process for the transfer of the 

received packets, enables data transfer without interrupting the host workstation. 
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It is finally pointed that the proposed implementation can be easily 

extended to support the DQDB isochronous and connection oriented services. 
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