

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

A PARALLEL PROCESSING ARCHITECTURE

FOR DQDB PROTOCOL IMPLEMENTATION

by

Nilesh Vinubhai Gandhi

The high bandwidth transmission links, which have been provided by the

advances of Fiber Optics Technology, reduce drastically the packet transmission

times and place new demands on the nodal protocol processing. Segmentation and

reassembly of packets, computation of checksums, introduction of source and

destination addresses, etc., must be performed extremely fast in order to prevent

node processing from becoming the bottleneck of the transmission. Parallel

processing enables the execution of the previous tasks on multiple packets

simultaneously and therefore has the potential of addressing the issue of fast node

processing successfully. In this thesis we focus on the Medium Access Control

Protocol of the Distributed Queue Dual Bus (DQDB) which has been adopted by

IEEE as the 802.6 standard for Metropolitan Area Networks (MANS). We present

a parallel processing based architecture for the implementation of DQDB protocol

which can satisfy its stringent processing time requirements. The architecture

consists of a set of packet processors which have been provided with local memory

and can be accessed according to a round robin scheduling algorithm. In this way

the amount of contention in the local bus is drastically reduced and the processing

performance significantly improves. Both Transmitter and Receiver design are

presented.

A PARALLEL PROCESSING ARCHITECTURE

FOR DQDB PROTOCOL IMPLEMENTATION

by

Nilesh Vinubhai Gandhi.

A Thesis

Submitted to the Faculty of

New Jersey Institute of Technology

In Partial Fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

October 1993

APPROVAL PAGE

A PARALLEL PROCESSING ARCHITECTURE

FOR DQDB PROTOCOL IMPLEMENTATION

by: Nilesh Vinubhai Gandhi

Dr. Dennis Karvelas, Thesis Adviser 	 (date)

Assistant Professor, Department of Computer and Information Science, NJIT.

Dr. S. Ziavras, Committee Member 	 (date)

Assistant Professor, Department of Electrical and Computer Engineering, NJIT.

Dr. Nirwan Ansari, Committee Member 	 (date)

Associate Professor, Department of Electrical and Computer Engineering, NJIT.

BIOGRAPHICAL SKETCH

Author :Nilesh Vinubhai Gandhi.

Degree : Master of Science in Electrical Engineering.

Date:October 1993

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,

New Jersey Institute of Technology, Newark, NJ 1993

• Bachelor of Science in Electronic and Communication

Engineering, DDIT, Nadiad, INDIA 1990

Major: Electrical Engineering.

iv

This thesis is dedicated to

Manibhai M. Gandhi

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to his professor

Dennis Karvelas, for his guidance, friendship, and moral support throughout this

research.

Special thanks go to Professor S. Ziavras and Professor Nirwan Ansari for

serving as members of the committee. The author is also grateful to Dr. Misra and

Dr. Ali Akansu for their timely help.

vi

TABLE OF CONTENTS

Chapter 	 Page

1. INTRODUCTION AND MOTIVATION 	 1

2. DQDB LAYER ORGANIZATION 	 4

2.1 DQDB a Public Metropolitan Area Network 	 4

2.1.1 Dual Bus Architecture 	 5

2.1.2 Access Control to the Dual Bus Subnetwork 	 6

2.2 DQDB Layer Service Definition 	 12

2.2.1 MAC Service to LLC 	 13

2.2.2 Isochronous services 	 15

2.2.3 Connection Oriented Data Service 	 15

2.3 Provision of DQDB Layer Services 	 16

2.3.1 Provision of MAC service to LLC 	 16

2.3.2 Provision of Isochronous services 	 26

2.3.3 Provision of Connection Oriented Data Service 	 26

2.4 Functional Architecture of a Node 	 26

2.4.1 Physical Layer Functions 	 27

2.4.2 DQDB Layer Functions 	 29

2.4.3 DQDB Layer Management Entity (LME) 	 32

3. INTERFACE ARCHITECTURE 	 33

3.1 Overview of System Architecture 	 33

3.2 System Operation 	 35

3.2.1 Receiving Operation 	 38

vii

Chapter 	 Page

3.2.2 Transmitting Operations 	 40

3.3 Hardware Modules 	 41

3.3.1 Receiving Modules 	 42

Input Low Level Processor 	 42

R1_processor 	42

CRC Unit 	 43

R2_processor 	 45

Direct Memory Access -Process 	 45

3.3.2Transmitting Modules 	 46

T1_processor 	 46

T2_processor 	 47

Output Low Level Processor 	 48

Buffer Memory 	 49

Buffer List Structure 	 50

3.3.3 Operation of DQSM 	 52

3.3.4 FPGA implementation of R1_processor 	 53

4. CONCLUSIONS 	 61

5. REFERENCES 	 63

viii

LIST OF FIGURES

Figures 	 Page

2.1 Dual Bus Architecture 	 5

2.2 Access Unit of a Station 	 7

2.3 The queue Access Protocol.. 8

2.4 Request Counter Operation 	 10

2.5 Segment Transmission on Bus A 	 11

2.6 DQDB Layer Services 	 13

2.7 IMPDU segmentation 	 17

2.8 DMPDU Format 	 18

2.9 IMPDU Structure 	 21

2.10 DMPDU Structure 	 24

2.11 DQDB Node Functional Architecture 	 28

3.1 Processing Architecture Overview 	 34

3.2 System Architecture I 	 36

3.3 System Architecture II 	 37

3.4 CRC Unit 	 44

3.5 Memory Block Design 	 49

3.6 Control Block Structure 	 51

3.7 Buffer List Datastructure 	 52

3.8 State Diagram of R1_processor 	 54

3.9 Parallel Processing Vs. Time 	 60

ix

LIST OF DEFINITIONS

Words in italics indicate terms that are defined later in the list.

Access Control Field (ACF). The field which contains the protocol control

information in a slot; that supports the access control function.

Access Control Function. The Queued Arbitrated (QA) Access and Pre-Arbitrated

(PA) Access Functions in the DQDB Layer that control access to the medium.

Access Unit (AU). The functional unit in a node that performs the DQDB Layer

Functions to control access to both buses. Access units attach to each bus via a

write connection and a read tap placed upstream of the write connection.

Address. An identifier that tells where a Service Access Point (SAP) may be

found.

Address Field. The part of a Protocol Data Unit (PDU) that contains an address

that identifies one or more addressable entities. (The address may be a single-

source address, single-destination address, or multiple-destination address

(multicast).)

Bandwidth Balancing Mechanism. A procedure to facilitate effective sharing of

the bandwidth, where a node occasionally skips the use of empty Queued

Arbitrated (QA) slots.

Bridge. A functional unit that interconnects two subnetworks that use a single

Logical Link Control (LLC) procedure but may use different Medium Access

Control (MAC) procedures. Local Area Network (LANs) and Metropolitan Area

Network (MAN) are examples of the subnetworks that a bridge may interconnect.

Broadcast address. A predefined destination address that denotes the set of all

service access points (SAPS) within a given layer.

Bus. The collection of the transmission links between nodes and the data paths

x

continuation of List of Definitions....

within the nodes that provide unidirectional transport of the digital bit stream

from the head of the bus function past the Access Unit (AU) of each node to the

end of the bus.

Busy slot. A slot that already contains information and is not available for Queued

Arbitrated (QA) access.

Connection. An association established by a layer between two or more users of

the layer service for the transfer of information.

Convergence Function. A function that has additional services which enable a

layer to provide the services expected by a particular higher layer.

Data Link Layer. The layer that provides services to transfer data over a

transmission link between open systems. In IEEE 802 Local Area Network

(LAN) standards, the Data Link Layer is formed by the operation of the LLC

Sublayer over the MAC Sublayer service offered by the DQDB Layer.

Derived MAC Protocol Data Unit (DMPDU). The protocol data units (PDUs) of

a length of 48 octets which are formed by the addition of protocol control

information to each of the 44-octet segmentation units created by the segmentation

of an Initial MAC Protocol Data Unit (IMPDU). Each DMPDU is carried as the

payload of a Queued Arbitrated (QA) segment.

Downstream. The direction of data flow along a bus, i.e., away from the head of

the bus.

DQDB Layer. The sublayer that uses the services of the Physical Layer to provide

the following:

• Medium Access Control (MAC) Sublayer service to the Logical

Link Control (LLC) Sublayer

• isochronous service

• connection-oriented data service.

xi

continuation of List of Definitions....

Dual bus. A pair of buses carrying digital bit streams flowing in opposite

directions. One bus is referred to as Bus A and the other bus as Bus B.

Empty Queued Arbitrated (QA) slot. A Queued Arbitrated (QA) slot that was

designated by the head of the bus function as being available for transfer of a QA

segment, and which does not contain yet a QA segment.

Gateway. A functional unit that interconnects a local area network (LAN) with

another network having different higher layer protocols.

Group address. A predefined destination address that denotes a set of selected

service access points (SAPs) from the Medium Access Control (MAC) Sublayer

service offered by the DQDB Layer to the Logical Link Control (LLC) Sublayer.

Head of Bus Function. The function that generates the empty Queued Arbitrated

(QA) slots, Pre-Arbitrated (PA) slots, and management information octets at the

point on each bus where data flow starts. The head of bus function also inserts the

virtual channel identifier in the PA segment header of PA slots.

Individual address. An address that identifies a single source or destination

service access point.

Initial MAC Protocol Data Unit (IMPDU). A protocol data unit (PDU) formed in

the DQDB Layer by the addition of protocol control information (including

address information) to a MAC Service Data Unit received from the Logical Link

Control (LLC) Sublayer. The IMPDU is segmented into 44-octet segmentation

units for transfer in Derived MAC Protocol Data Units (DMPDUs).

Isochronous. The time characteristic of an event or signal recurring at known,

periodic time intervals.

Isochronous Service octet. A single octet of data passed isochronously between

the DQDB Layer and the Isochronous Service User (ISU).

Isochronous Service User (ISU). The entity that uses the isochronous service

xii

continuation of List of Definitions....

provided by the DQDB Layer to transfer isochronous service octets over an

established isochronous connection.

Layer. A subdivision of the Open Systems Interconnection (OSI) architecture,

constituted by the subsystems of the same rank.

Layer Management. Functions related to the administration of a given Open

Systems Interconnection (OSI) layer. These functions are performed in the layer

itself according to the protocol of the layer and partly performed as a subset of

network management or systems management.

Layer Management Entity (LME). The entity in a layer that performs local

management of a layer. The LME provides information about the layer, effects

control over it, and indicates the occurrence of certain events within it.

Layer Management Interface (LMI). The service interface provided by the Layer

Management Entity (LME) to the Network Management Process (NMP).

Local Area Network (LAN). A non public data network in which serial

transmission is used without store and forward techniques for direct data

communication among data stations located on the users premises.

Logical Link Control (LLC) Sublayer. In a local area network (LAN) or a

metropolitan area network (MAN), that part of the Data Link Layer that supports

medium-independent data link functions, and uses the Medium Access Control

(MAC) Sublayer service to provide service to the Network Layer.

MAC address. An address that identifies a particular Medium. Access Control

(MAC) Sublayer service access point.

MAC service Data Unit (MSDU). The user data unit received in an MA-

UNITDATA request for transfer by the Medium Access Control (MAC) layer.

Management information octets. DQDB Layer Protocol Data Units (PDUs) used

to carry DQDB Layer Management Protocol information between peer DQDB

xiii

continuation of List of Definitions....

Layer Management Entities (LMEs).

Medium Access Control (MAC) Sublayer. In a local area network, the part of

Data Link Layer that supports topology-dependent functions and uses the

services of the Physical Layer to provide service to the Logical Link Control (LLC)

Sublayer.

Message Identifier. An identifier used to identify Derived MAC Protocol Data

Units (DMPDUs) derived form the same Initial MAC Protocol Data Unit

(IMPDU) .

MID (Message Identifier) page. A set of one message identifier value.

Multicast Address. Same as group address.

Network Layer. In Open Systems Interconnection (OSI) architecture, the layer that

provides service to establish a path between open systems with a predictable

quality of service.

Network Management Process (NMP). The entity that provides access to the

network management functions on behalf of the user of the network management

services. In order to perform this function, NMPs may intercommunicate in a peer-

to-peer manner and may use the services of NMPs in other nodes via a network

management protocol. The NMP at a node is the user of the service provided at the

Layer Management Interface (LMI).

Node. A device that consists of an access unit and a single point of attachment of

the access unit to each bus of a DQDB subnetwork for the purpose of transmitting

and receiving data on that subnetwork. Adjacent nodes are connected by a

transmission link.

Octet. A group of eight adjacent bits.

Offset. The octet position relative to the start of a Pre-Arbitrated (PA) segment

used to carry an isochronous service octet for a particular Isochronous Service

xiv

continuation of List of Definitions....

User (ISU).

Physical Layer. In Open Systems Interconnection (OSI) architecture, the layer that

provides services to transmit bits or group of bits (such as an octet) over a

transmission link between two open systems.

Pre-Arbitrated (PA) Access Function. The access control function that uses

assigned offsets in the Pre Arbitrated (PA) slots for the transfer of isochronous

service octets.

Pre-Arbitrated (PA) segment. A multi-user segment transferred using Pre-

Arbitrated Access (PA) Functions. The payload of the PA segment contains

isochronous service octets from zero or more Isochronous Service Users (ISUs).

Pre-Arbitrated (PA) slot. A slot that is dedicated by the head of bus function for

transfer of isochronous service octets in the payload of a PA segment.

Protocol Data Unit (PDU). Information that is delivered as a unit between peer

entities of a local area network or metropolitan area network and that contains

control information, address information, and may contain user data.

Queued Arbitrated (QA) Access Function. The access control function that uses

the Distributed Queue to access empty Queued Arbitrated (QA) slots for the

transfer of QA segments.

Queued Arbitrated (QA) segment. A segment transferred using Queued

Arbitrated (QA) Access Functions.

Queued Arbitrated (QA) slot. A slot that is used for the transfer of a QA segment.

Read. The process of an access unit copying bits of a data stream as they pass on

the bus.

Reassembly. The function in the DQDB Layer that provides for the reconstruction

of an Initial MAC Protocol Data Unit (IMPDU). Reassembly is performed by

concatenating the segmentation units received in Derived MAC Protocol Data

xv

continuation of List of Definitions....

Units (DMPDUs). This is the inverse process to segmentation.

Reconfiguration. The process by which the Configuration Control Function

activates and deactivates resources of a DQDB subnetwork to take account of a

change in the operational status of a cluster, node, or transmission link in the

subnetwork.

Router. A functional unit that interconnects two computer networks that uses a

single Network Layer procedure but may use different Data Link Layer and

Physical Layer procedures.

Segment. The protocol data unit of 52 octets transferred between peer DQDB

Layer entities as the information payload of a slot. It contains a segment header of

4 octets and a segment payload of 48 octets. There are two types of segments: Pre-

Arbitrated (PA) segments and Queued Arbitrated (QA) segments.

Segment header. The protocol control information in a segment.

Segment Payload. The unit of data carried by a segment.

Segmentation. The function in the DQDB Layer that fragments a variable length

Initial MAC Protocol Data Unit (IMPDU) into fixed-length segmentation units for

transfer in Derived MAC Protocol Data Units (DMPDUs).

Segmentation unit. The fixed-length data units of 44 octets formed by the

fragmentation of an Initial MAC Protocol Data Unit (IMPDU).

Service Access Point (SAP). The point at which services are provided by one layer

(or sublayer) immediately above it.

Service Data Unit (SDU). Information that is delivered as a unit between peer

service access points.

Service Primitive. An implementation-independent interaction between a service

provider and a service user.

Slot. The protocol data unit of 53 octets used to transfer segments. It contains a

xvi

continuation of List of Definitions....

segment of 52 octets and the 1 octet Access Control Field (ACF). There are two type

of slots: Pre-Arbitrated (PA) slots and Queued Arbitrated (QA) slots.

Sublayer. A subdivision of a layer in the Open System Interconnection (OSI)

reference model.

Subnetwork. It is the functional unit comprised of a single dual bus pair and those

access units attached to it. Subnetworks are physically formed by connecting

adjacent nodes with transmission links.

Transmission Link. The physical unit of a DQDB subnetwork that provides the

transmission connection between adjacent nodes. Each transmission link

accommodates both buses of the dual bus pair between the adjacent nodes.

Transmission Medium. The material on which information signals may be

carried; e.g. optical fiber, coaxial cable, and twisted-wire pair.

Upstream. The direction along a bus that is towards the head of bus function. This

is opposite to the direction of data flow along a bus.

Virtual Channel Identifier (VCI). A label that is used to distinguish between the

entities which enable identification, during the unidirectional transfer of segments

between the entities. Here, the VCI label can be used to allow a transmitter to

distinguish between different outgoing protocol data units (PDUs), and is used to

allow a receiver to determine whether to receive an incoming segment as well as

to distinguish between incoming PDUs.

Write. The process of an access unit sending data down stream on a bus by logical

ORing its outgoing data with the data pattern (normally all zeros) arriving from

upstream on that bus.

xvii

LIST OF ABBREVIATIONS

ACF 	Access Control Field

AU 	Access Unit

BAsize 	Buffer Allocation size

BEtag 	Beginning-End tag

BOM 	Beginning Of Message

BWBM 	BandWidth Balancing Mechanism

BWB_CNTR BandWidth Balancing CouNTeR

BWB_MOD BandWidth Balancing MODulus

CCITT 	the International Telegraph and Telephone

Consultative Committee

CD 	Count Down (counter)

CIB 	CRC32 Indicator Bit

COCF 	Connection-Oriented Convergence Function

COM 	Continuation Of Message

CRC 	Cyclic Redundancy Check

CRC32 	32-bit Cyclic Redundancy Check

DA 	Destination Address

DMPDU 	Derived MAC Protocol Data Unit

DQDB 	Distributed Queue Dual Bus

DQSM 	Distributed Queue State Machine

EOM 	End Of Message

ETS 	External Timing Source

HCS 	(segment) Header Check Sequence

HEL 	Header Extension Length

xviii

continuation of List of Abbriviation....

HOB_A 	Head Of Bus A

HOB_B 	Head Of Bus B

ICF 	Isochronous Convergence Function

IMPDU 	Initial MAC Protocol Data Unit

ISDN 	Integrated Services Digital Network

ISDU 	Isochronous Service Data Unit

ISO 	International Organization for Standardization

ISU 	Isochronous Service User

LAN 	Local Area Network

LLC 	Logical Link Control

LMI 	Layer Management Interface

LME 	Layer Management Entity

MAC 	Medium Access Control

MAN 	Metropolitan Area Network

Mb/s 	Megabits per second

MCF 	MAC Convergence Function

MCP 	MAC convergence Protocol

MID 	Message IDentifier

MPA 	MID Page Allocation

MSAP 	MAC Service Access Point

MSDU 	MAC Service Data Unit

NMP 	Network Management Process

OSI 	Open Systems Interconnection

PA 	Pre-Arbitrated

PDU 	Protocol Data Unit

PI 	Protocol Identification

xix

continuation of List of Abbriviation....

PL 	PAD Length

PSR 	Previous Segment Received

QA 	Queued Arbitrated

QOS 	Quality Of Service

REQ 	REQuest

RQ 	ReQuest (counter)

RSM 	Reassembly State Machine

SA 	Source Address

SAP 	Service Access Point

SDU 	Service Data Unit

SSM 	Single Segment Message

VCI 	Virtual Channel Identifier

xx

Chapter 1

Introduction and Motivation

Performance of transport protocols on multi-megabit networks tend to be limited

by overhead at both the transmitter and the receiver. For example, measurements

on Ethernet have indicated that network transmission time accounts for only 20%

of the elapsed time for transport-level communication operations, even with its

highly optimized protocol. Although processor times and memory cycle times

keep improving, with the communication network moving towards Gbits range,

we expect the processing to persist as a bottleneck unless significant improvement

in the network adapter design is achieved. We identify three major problems with

the current designs.

First, the host-to-network adapter impose excessive overhead, particularly

on a host, in the form of processor cycles, system bus capacity and host interrupts.

The processing overhead rises from calculating end-to-end checksums,

packetizing and depacketizing, as well as of conducting encryption for

communication. The memory intensive processing required by these functions

reduce the average instruction execution rate, especially, for a high performance

processor, in which memory reference operations are proportionally much slower

than register-only operations. The processing causes the data to move at least twice

over the system bus; once from the global memory to the processor (or its cache),

and once when the packet is copied to the network adapter. The increased traffic

wastes system bus bandwidth, a critical resource in microprocessor machines. In

current host-to-network adapter interfaces, a host is interrupted for each packet

received or transmitted. These per-packet interrupts force frequent context

switching with the attendant overheads. This has a bad effect on Hit to Miss ratio

1

2
in the microprocessor system with processor cache. For instance, in a workstation

attached to a 150 Mbps network with an interface interrupting at every 2.72

microseconds, the available time is hardly sufficient to do even minimal packet

processing.

Secondly, the "intelligent" network adapters that implement transport level

functions have lower performance at the transport-level as compared to the

alternative system where a network adapter does the programmed I/O transfer

and a host performs transport protocol functions. The primary reason is an

inadequate internal memory architecture. Currently, the data transfers into and

out of buffer memory reduce the number of memory cycles available for packet

processing. In future communication systems, the bus technology, with a high

transfer rate and burst mode transfer, and the network, with a high data rate, will

make this problem more acute.

Finally, conventional transport level protocols are too complex or awkward

for hardware implementation and are too slow without it. For a large packet, the

processing cost incurred in checksumming and encryption, dominates the packet

processing, since the cost increases in proportion with the size of the packet. The

hardware implementation of such key performance-critical functions would

substantially increase performance, but the packet format of the conventional

transport protocols does not facilitate hardware support or implementations.

An additional factor that motivates the design of network adapter

architectures is the problem of a host being bombarded by packets from other

hosts. The packet arrival rate, especially in the high speed network, can exceed the

rate at which a host can process and discard these packets, effectively

incapacitating the host from performing useful computation. Excessive packet

traffic can arise from failures or malicious behavior of a remote host. A well

designed network adapter acts as a "firewall" between the network and the host.

3
In this thesis we present a parallel processing based architecture for the

implementation of DQDB protocol, which can satisfy its stringent packet

processing time requirements. The multiprocecessor assembly of the receiver

consists of the receiving packet processors, R1_processors, and that of the

transmitter consists of the transmitting packet processors, T2_processors. The

multiprocessor assembly performs the protocol functions in parallel, on packets

coming in from the Input Low Level Processor (ILLP) and on packets going out to

the Output Low Level Processor (OLLP); ILLP and OLLP are responsible for

receiving and transmitting packets to the medium. Such a design of the assembly

enables the interface to match the average processing time of a packet with the

interarrival time of the packets from the line.

The organization of this thesis is as follows. In chapter 2 an introduction to

widely used terminology is provided. In chapter 2 the basic features of the

Distributed Queue Dual Bus (DQDB) protocol which are important for our

implementation are discussed. In chapter 3 the parallel processing architecture

design for the implementation of the DQDB protocol is presented. Finally, in

chapter 5, some concluding remarks and suggestions are provided.

Chapter 2

The DQDB Protocol

This chapter mainly presents the features and functions of the DQDB protocol that

are essential for its parallel processing based implementation provided in chapter

3. The additional features such as security, network administration, bandwidth

control, and charging facility make DQDB a useful public network. DQDB layer

relies on physical layer for the actual communication of the data from each node

to the others. The services provided by the DQDB layer are the MAC service, the

isochronous service and the connection oriented data service.

2.1 DQDB - A Public Metropolitan Area Network

The major components of DQDB network are a head station, two unidirectional

buses, and a number of Access Units (AUs) . The relative positions of the stations

on the buses are shown in figure 2.1. The head station generates the frame

synchronization on the forward bus and the end station generates the frame

pattern at the same rate on the reverse bus. Access units are attached to the bus via

read and write connections. According to the implementation that will be

presented in chapter 3, an AU reads and writes using the Input Low Level

Processor (ILLP) and the Output Low Level Processor (OLLP) respectively.

The DQDB protocol introduces distributed queueing. Furthermore, by

using a Bandwidth Balancing mechanism the bandwidth allocation to each station

can be controlled according to the requirements. In the subsequent sections, the

dual bus architecture and the access control to the dual bus subnetwork are

discussed.

4

5

2.1.1 Dual Bus Architecture

Figure 2.1 Dual Bus Architecture

The dual bus architecture consists of two unidirectional buses and a set of nodes

along the communication buses. As figure 2.1 shows, Bus A and Bus B support

communication in opposite directions, which allows full duplex communication

between any pair of nodes on the subnetwork. The operation of the two buses are

independent of each other. Both buses operate simultaneously, hence the capacity

of the network is twice the capacity of a single bus. The head of the bus generates

the slots. These slots are used to carry data between the nodes. The nodes may

6
write into slots under the control of the access protocol. All the slots are removed

at the end of the bus.

2.1.2 Access Control to the Dual Bus Subnetwork

The DQDB provides two modes of access control to the dual bus. These are the

Queue Arbitrated (QA) and Pre-Arbitrated (PA) modes, which use QA and PA

slots for access respectively. Each slot contains an access control field (ACE) and a

segment, which forms the payload of the slot.

Queued arbitrated access is controlled by the Distributed queuing protocol

and would be used typically to provide non-isochronous services. Pre-arbitrated

access would be used typically to provide isochronous services. The Distributed

Queued and Pre-Arbitrated access protocols are described below.

The Distributed Queue Access Protocol

Distributed queuing is a media access protocol that controls the access to the

payload of QA slots on the DQDB bus. The fixed length payload of a QA slot is

called a QA segment.

The operation of the protocol is based on two control fields: the BUSY bit,

which indicates whether or not a slot is used, and the REQUEST field, which is

used to indicate when a segment has been queued for access. Each node, by

counting the number of requests it receives and unused slots that pass, can

determine the number of segments queued (i.e. in line) ahead of it. This counting

operation establishes a single queue across the subnetwork of segments queued for

access to each bus.

With such queued access, levels of priority can be established by operating

a number of queues, one for each level. Segments will gain access as soon as

capacity becomes available, but priority is always given to segments in higher level

queues.

7

Figure 2.2 Access Unit Architecture

The operation of Distributed queuing is fundamentally different from other

MAC protocols. In Distributed queuing, information that explicitly indicates

queuing state of the subnetworks, is kept in the nodes. Hence, when a node has

data to transmit, the node does not need to derive information first from the

subnetwork to tell it when it can gain access.

With Distributed queuing, a current state record that holds the number of

segments waiting access to the bus is kept in every node. When a node has a

segment for transmission, it uses this count to determine its position in the

distributed queue. If no segments are waiting, permission for access is immediate,

otherwise preference is given to segments already queued. To facilitate effective

8

Figure 2.3 The QA access protocol

sharing of the bandwidth, the Distributed Queue protocol includes a bandwidth

balancing mechanism that occasionally skips the use of empty QA slots.

The Basic Distributed Queuing Algorithm

The operation of the basic Distributed Queuing algorithm for access to Bus A is

illustrated in Figure 2.3. In this case, Bus A is forward Bus and Bus B is the reverse

9
bus. An identical but independent, arrangement applies for access to the opposite

bus, Bus B. Each slot on the buses (whether a QA or PA slot) contains an Access

Control Field that includes a BUSY bit and a REQUEST field of three Request bits

one for each priority level. The busy bit indicates whether or not the slot is used.

The REQ bits are to signal when a QA segment has been queued on the reverse bus.

When an Access Unit has a QA segment for transmission on the forward

bus it will cause a single REQ to be sent on the reverse bus. This REQ eventually

will be written into the next free REQ bit of the required priority on the reverse bus.

The bit once written will pass to all upstream AUs of Bus A. This REQ bit serves as

an indicator to the upstream AUs that an additional QA segment is now queued

for access. For each AU, the distributed queuing algorithm allows, at most, one QA

segment per priority level, to be queued for access to each bus.

Each AU keeps track of the number of QA segments queued downstream

from itself for access to the forward bus by counting the REQ bits as they pass on

the reverse bus, as shown in figure 2.4. The request (RQ) counter is incremented

for each REQ passing on the reverse bus. For a node that is not queued to send, one

REQ in the RQ counter is cancelled each time an empty slot passes on the forward

bus. This is done since the empty slot that passes the AU will be used by one of the

downstream queued QA segments. Hence with these two actions, the RQ counter

keeps a record of the number of the segments queued downstream.

In addition to the REQ for the reverse bus, an AU with a QA segment to

send, will transfer the current value of the RQ counter to another counter, the

countdown (CD) counter, as shown in figure 2.5, with the RQ counter then being

reset to zero. This action loads the CD counter with the number of the downstream

segments queued ahead of it. This effectively places the QA segment in the

distributed queue. The distributed queue at a given level of priority approximates

10

Figure 2.4 Request Counter Operation

a first-in-first-out (FIFO) queue of the QA segments at the heads of the local queues

in each node.

To ensure that the segments registered in the CD counter gain access before

the newly queued segment in the given AU, the CD counter is decremented for

every empty slot that passes on the forward bus. This portion is shown in fig 2.5.

The given AU can transmit its QA segment in an empty slot provided that the CD

count is zero. For this single priority description, this is equivalent to claiming the

first free slot after the CD count reaches to zero, which ensures that no downstream

segment that queued after the given segment can access out of order.

During the time the AU is waiting for access for its segment, any new REQs

received from the reverse bus are added to the RQ counter, as shown in figure 2.5.

11

Figure 2.5 Segment transmission on bus A

Hence, the RQ counter still tracks the number of segments newly queued

downstream and the count will be correct for the next QA segment access.

Pre-Arbitrated Access Control

Pre Arbitrated (PA) slot access will be used typically to provide for transfer of

isochronous services octets. Pre arbitrated service is not implemented in this

design. The access to PA slots and the use of PA segment payloads differ from that

for a QA access. The access differs in that PA slots are designated by the node at

the head of bus and that more than one AU may share access to the slot. A PA

segment payload consists of a number of octets, each of which can be used by a

different AU. Therefore an AU may write zero, one or more isochronous service

octets into designated positions of a PA segment payload. The AU is notified of the

offsets of these octet positions relative to the start of the PA segment payload. The

AU is notified of the offsets of these octet positions relative to the start of the PA

12
segment payload via the DQDB Layer Management procedures.

The access for the PA slots by an AU commences by examining the VCI. For

each VCI value that the AU must access, the AU will have a table that indicates

which octet offsets within the slot the AU should use for reading and writing. The

AU will write Isochronous service octets into those write positions and will read

form positions the table has marked for reading. The PA slot is ignored if the VCI

is not one in use by the AU.

2.2 DQDB Layer Service Definition

A DQDB subnetwork of a MAN is capable of supporting a broad range of services

and applications. This chapter describes the services currently defined and

provided by the DQDB Layer. (fig 2.7). The DQDB services are as follows :

(1) The MAC service provided to the LLC Sublayer, operating over the

DQDB Layer, provides the service of OSI Data Link Layer and thus

supports data communications between two open systems.

(2)

Isochronous service, provided to an Isochronous Service User (ISU).

This service supports the transfer of isochronous service octets

with a constant interarrival time over an isochronous connection.

(3)

A connection-oriented data service that supports the transfer of

data over virtual channels. This service is asynchronous because

there is no guarantee of a constant interarrival time for data units.

13

Figure 2.6 DQDB Layer Services

2.2.1 MAC Services Provided to the LLC Sublayer

The MAC service to the LLC sublayer is defined in ISO. It is connectionless service

that supports the transfer of variable length MAC Service Data Units (MSDUs)

between LLC Sublayer peer entities, without the need for the LLC entities to

request the establishment of a connection between them. There is no guarantee of

delivery of the MSDUs by the MAC service.

The MAC service primitives and their parameters cited in this section are

those specified in ISO. These primitives are as follows.

MA-UNITDATA request

MA-UNITDATA indication

MA-STATUS indication

14

MA-UNITDATA request

This primitive requests the transfer of a MSDU from a local LLC Sublayer

entity to a single peer LLC entity, or multiple peer LLC entities in the case of group

addressing. The format of the request is :

MA-UNITDATA request

source address,

destination_address,

priority,

data,

service_class

The source address parameter specifies the individual MAC address

associated with the service access point (SAP) of the DQDB Layer through which

this primitive was issued. The destination_address parameter specifies either an

individual, multicast, or broadcast MAC address identifying the SAP (s) to which

the data is to be transferred. The priority parameter specifies one of the eight

possible priority values desired for the data transfer. The data parameter specifies

the MSDU to be transferred. The service_class parameter specifies the requested

class of MAC service for the data transfer.

MA-UNITDATA indication

This primitive indicates the delivery of a MSDU to an LLC Sublayer entity. In the

absence of errors that were not detected by the DQDB Layer, the delivered MSDU

will be identical to the MSDU sent in the corresponding MA-UNITDATA request

primitive.

MA-STATUS indication

This primitive informs an LLC Sublayer entity of a change in status of the

operation of the MAC service. The format of the request is :

15

MA-STATUS indication (

status)

The status parameter conveys an indication of the MAC service status.

Examples are as follows.

FAILURE_SOURCE_NODE_ISOLATED (MA-UNITDATA request

primitives cannot be acted on because the sending node is isolated.)

FAILURE_DISABLED (MA-UNITDATA request and indication primitives

are disabled because of subnetwork status; for example, the subnetwork is being

initialized or is undergoing reconfiguration.)

FAILURE OTHER (Failure of MAC service is due to other cases.)

NORMAL (The MAC service is operating normally, for example, following

initialization or indicating restoration after a failure.)

2.2.2 Isochronous Service

It specifies the isochronous service provided by the DQDB Layer once an

isochronous connection is established. The primitives used to describe the service

are the following:

ISU-DATA request

ISU-DATA indication

2.2.3 Connection-Oriented Data Service

The connection-oriented data service supports a virtual channel between a pair of

connection-oriented Data Service Users. The details of the service and service

primitives are still under study.

16

2.3 Provision of DQDB Layer Services

The Queued Arbitrated and Prearbitrated functions of the DQDB layer provide

access control to the dual buses. The access control functions are used by a range

of convergence functions to implement the DQDB Layer services shown in fig 2.11.

DQDB layer specifies the convergence function for the provision of the IEEE 802

MAC sublayer services to the LLC Sublayer (ISO), isochronous service, and

connection oriented data service.

2.3.1 Provision of MAC service to LLC

The provision of MAC service to LLC consists of the segmentation of the MAC

service Data Unit (MSDU) at the source into fixed-length units and the transfer of

these fixed length units to the destination, which reassembles them into the MSDU.

The segmentation process follows the formation of an initial MAC Protocol

Data Unit (IMPDU) by the addition of an IMPDU header, an optional header

extension, an optional 32-bit CRC, a common PDU trailer and a variable length

PAD field to the MSDU. The PAD field ensures that all of the fields added to the

MSDU are 32-bit aligned. The IMPDU is fragmented into fixed length

segmentation units, as shown in figure 2.7, for transfer in QA segment payloads.

There may be padding of the IMPDU with trailing zero octets to ensure complete

filling of the last segmentation unit. The IMPDU header is formed by the addition

of two types of header information. The first four octets of 24-octet IMPDU header

are called Common PDU header. The remaining 20 octets of the IMPDU header are

called the MAC convergence Protocol (MCP) header. The MCP header is specific

to transfer of a MSDU by the DQDB layer, and is not used to support the

connection-oriented data service.

17

Figure 2.7 IMPDU segmentation

18

All segment payloads that supports the MAC services are called Derived

MAC protocol data units (DMPDUs) and consists of a header field and a trailer

field along with the segmentation unit, as shown in figure 2.8. The DMPDU

Header consists of three subfields. The first is the Segment Type Subfield. The

second is Sequence Number Subfield. The third subfield is Message Identifier

(MID). The DMPDU trailer field consists of two subfields. The first is the Payload

Length Subfield. The second field is the Payload CRC.

Figure 2.8 DMPDU format

The MID is used to provide the logical linking between the segmentation

units derived from the same IMPDU, and should be unique on a subnetwork while

the IMPDU is being transferred. Each AU will have at least one unique MID. The

allocation of the MID numbers is controlled by the MID page allocation scheme,

which is distributed method for claiming and keeping MID values that are unique

19
across the whole subnetwork.

The MID identifies all of the DMPDUs derived from a single IMPDU, and

is used in the reassembly of the segmented IMPDU at the destination. To describe

the operation of this scheme, the segmentation of the IMPDU at the source is

described first and the reassembly at the destination is considered later.

Segmentation at the Source

The train of the DMPDUs sent as a QA segment payloads by the source is shown

in figure 2.8. The complete structure of an IMPDU is presented in figure 2.9 and

that of DMPDU is in figure 2.10. The first segmentation unit of a multi-segment

unit IMPDU is carried in a Beginning of Message (BOM) DMPDU. This DMPDU

is identified by the BOM code in the Segment Type Subfield and signifies the start

of a new IMPDU transfer. The MID subfield of this carries one of the MIDs

obtained by the source and not currently being used for sending of another

IMPDU by the source. The Sequence Number Subfield of the DMPDU carries the

initial value of the sequence numbers to be associated with sequential DMPDUs.

The segmentation unit of the BOM DMPDU will include the IMPDU header and

any header extension plus the first octets of the MSDU.

All subsequent segmentation units of the IMPDU until the last are placed in

the payload field of the train of the segments following the first segment. These

DMPDUs are identified by the COM (Continuation of Message) code in the

Segment Type Subfield. The transfer of the multi-segmentation unit IMPDU is

completed by sending the last segmentation unit in a DMPDU that contains the

EOM (End of Message) code in the Segment Type Subfield. The COM and EOM

DMPDUs carry the value of Sequence Number in the BOM DMPDU incremented

by one for each successive DMPDU. All COM DMPDUs and the EOM DMPDU

derived from an IMPDU carry the same MID value as the BOM DMPDU.

For the transfer of an IMPDU that only requires a single segmentation unit,

20
the SSM (Single Segment Unit Message) code is used in the Segment Type Subfield

of the DMPDU. The MID is not used in this case, thus it is set to the reserved value

of zero.

Each DMPDU trailer is constructed by writing into the Payload Length

Subfield the number of the IMPDU octets used in the segmentation unit. For the

connectionless MAC services to LLC, this number is always 44 for BOM and COM

DMPDUs. The number written into EOM DMPDUs indicate the remaining

number of the octets in IMPDU that need to be transferred. This number can be any

multiple of 4 in the range 4 to 44, inclusive. The number written into SSM DMPDUs

indicates the length of entire IMPDU. This number can be any multiple of 4 in the

range 28 to 44, inclusive. The payload CRC Subfield is a CRC computed over all

octets of the segment payload, including the DMPDU header, segmentation unit,

and DMPDU trailer.

Reassembly at the Destination

To receive IMPDUs segmented as described above, each AU will monitor all

segments passing on the bus. Each DMPDUs contain one of a particular set of VCI

values in the segment header. (The VCI value of all bits being set to one is reserved

as a default value for MAC service to LLC. All conforming stations must recognize

this VCI value and process the DMPDUs). If VCI value is one that the AU is

programmed to receive, the AU will verify the DMPDU by means of Payload CRC

Subfield. If the CRC verification fails then the DMPDU is not correct. It should be

discarded.

For each valid DMPDU with a BOM code in the Segment Type Subfield, the

AU will inspect the MCP header, which will be within the BOM segmentation unit.

If the MCP header indicates that the IMPDU is addressed to the AU then it will

copy the BOM segmentation unit. If the IMPDU is not addressed to AU, the

segmentation unit is not copied.

21

Figure 2.9 IMPDU structure

To receive the remainder of the IMPDU associated with the BOM

segmentation unit, the AU will also record the sequence number and MID value

from the BOM DMPDU. The following DMPDUs derived from the same IMPDU

should all be received with the same VCI value in the segment header, and an

incremented sequence number for each successive DMPDU, and the same MID

value in the DMPDU header. The DMPDUs are recognized by the AU using the

Payload CRC Subfield to verify the DMPDU header of all DMPDUs received on

the same VCI, and then comparing the verified MID value with the one recorded.

22
When a match is made, the layer copies the verified segmentation unit of the

DMPDU, provided the sequence number is the expected value. The complete

IMPDU is received when a verified DMPDU with matching MID value, expected

value of the sequence number, and EOM code in the Segment Type Subfield is

received and segmentation unit copied. Since segments are guaranteed to be

delivered in order across the DQDB subnetwork, the AU can reassemble the

received segmentation units into the original IMPDU by connecting them in the

order they were received.

The collection of all received segmentation units of an IMPDU is finally

verified by using two pieces of information contained in the common PDU header

and common PDU trailer. The length of the IMPDU, minus the length of common

PDU header and common PDU trailer, is sent in both common PDU header and

common PDU trailer. The length value received in common PDU trailer is

compared against the number of octets received for the IMPDU. A mismatch

causes the receiver to discard the IMPDU. This check is used to ensure that the

correct number of DMPDUs have been received, and thus protects against the loss

or insertion of COM DMPDUs.

The second piece of information is Beginning-End tag (BE tag). The same

value of BE tag is sent in both common PDU header and common PDU trailer of a

given IMPDU. The BE tag value is incremented for the next IMPDU sent by the

node. The two BE tag values for an IMPDU are compared at the receiver, and a

mismatch causes the receiver to discard the IMPDU. The BE tag is used to ensure

that the BOM DMPDU and the EOM DMPDU of a reassembled IMPDU were both

actually derived from the same source IMPDU. This protects against the loss of

EOM DMPDU from one IMPDU, loss of BOM from subsequent IMPDU, and loss

of the appropriate number of COM IMPDUs such that the IMPDU reassembled

from the received DMPDUs is still of length specified in the common PDU trailer.

23
If the node supports checking of the IMPDU using the 32-bit CRC, and if the

CRC Field is present in the receive IMPDU, as indicated by a bit in the MCP

header, the AU will verify the IMP DU by the means of the CRC32 Field. If the CRC

verification fails, then the IMPDU is discarded. If the CRC verification passes, the

IMPDU is accepted as valid. On the receipt of all DMPDUs of IMPDU, the

recorded MID value must be cleared because the source may reuse the same MID

for a different IMPDU transfer.

Single segmentation unit SSM DMPDUs, are received in a similar manner

to the BOM DMPDUs. The AU will verify the DMPDU using the payload CRC

subfield, inspect the MCP header Field in the segmentation unit, and copy the

segmentation unit if the payload CRC passes the IMPDUs, there is no need to

record the MID value. The IMPDU is completely received in this first DMPDU, and

is then validated using the length value in the common PDU trailer, the BE tag

values in the PDU header and common PDU trailer, and the CRC32 Field.

24

Figure 2.10 DMPDU structure

25
Bandwidth Balancing

The bandwidth balancing technique is used to ensure fair sharing of

bandwidth between stations operating at a single priority. "Fair", here means that

giving an approximately equal share of bandwidth to all stations attempting to

access the medium for transmission. When the physical conditions are as stated

above and when the offered load of all stations exceeds the bandwidth available

on the medium, the use of bandwidth balancing allows all stations to receive an

equal share of the bandwidth in the steady state. In the steady state, the medium

utilization is less than 100%, being equal to BWB_MOD/BWB_MOD+1) x 100% if

there is only one active node.

The bandwidth balancing mechanism divides bus bandwidth among the

stations and allows some bandwidth to go unused. For example, for a bus with N

stations, if all the following conditions are met-

• No station has any pre arbitrated traffic; • Each station always has Queued arbitrated segments waiting to be

transmitted on the bus;

• All the segments have the same priority;

• The value of the BWB_MOD at each station is M (this means that

each station uses a fraction of M/ (M+1) of the slots not used by the

other stations);

These load condition persist for a sufficiently long time;

then the bandwidth balancing mechanism provides each station with a steady

state average throughput of 1/ (N+1/M) segments per slot time. Here the

utilization increases as the BWB_MOD increases and as the number of active

stations increases. The station throughputs approach their steady-state values

gradually. The convergence is faster if the BWB_MOD is smaller.

26
2.3.2 Provision of Isochronous Services

The Pre Arbitrated access control mechanism does not necessarily accept or deliver

isochronous service octets in the isochronous fashion. The variation from the

isochronous delivery occurs when the node at head of bus does not guarantee Pre-

Arbitrated slots in an isochronous fashion. If the user of the isochronous service

requires the DQDB layer to accept and/or deliver the octets isochronously, there

is a requirement for some buffering. The nature of this buffering depends on the

isochronous service user and is performed as part of an isochronous convergence

function.

The isochronous service described provides only the DQDB layer Functions

required to access the medium to read and write isochronous services octets. This

is managed by the Pre Arbitrated Access Functions within each AU and the

periodic generation of the PA slots at the head of the bus.

2.3.3 Provision of Connection Oriented Data Service

This convergence function is under implementation that will allow the DQDB

Layer to support a connection-oriented data service that uses Queued Arbitrated

access. This will require the functions similar to the convergence functions to

support the MAC to LLC service.

2.4 Functional Architecture of a Node

The functional architecture for a DQDB node is shown in figure 2.11. It consists of

two layers: the Physical Layer and the DQDB Layer. The DQDB layer uses the

services of the Physical Layer to provide a number of different services. One of

these services is the MAC Sublayer service to the LLC sublayer. Other services

which are under study, include connection-oriented data services and

isochronous services.

27
2.4.1 Physical Layer Functions

The physical layer contains three components, Transmission System, Physical

Layer Convergence function and the layer management functions. The physical

layer service is provided to the DQDB Layer entity at a node through two SAPS.

Each SAP is associated with one duplex transmission link connecting the node to

an adjacent node. Transmission System functions provides an transmission

interface used to access the transmission link between adjacent nodes.

Physical Layer Convergence Function

In order to allow the DQDB layer to operate independently of the nature of the

transmission system, a physical layer convergence function is used. This function

provides the Physical Layer to DQDB Layer service, irrespective of the nature of

the transmission system.

28

Figure 2. 11 DQDB Node Functional Architecture

29
2.4.2 DQDB Layer Functions

Within the DQDB Layer there are four principle types of functions: the common

functions, the access control functions (Queued Arbitrated and Pre-Arbitrated),

the convergence functions, and the layer management functions. Each of these

functions is described below.

Common Functions

The Common Functions block acts as a DQDB Layer relay for the transfer of slots

and management information octets between the two SAPS to the local Physical

Layer entity. Thus the Common Functions block allows the QA Functions block

and PA Functions block to gain read and write access to the QA, and PA slots.

These functions include the head of the bus function, the Configuration

Control Function, and the MID Page Allocation Function, and are described as

follows.

The Configuration Control and MID Page Allocation Functions manage

DQDB Layer objects necessary for nodes to communicate on the subnetwork.

Hence these functions are part of the DQDB LME.

Head of Bus Function

The head of the bus function is performed by the node at the head of each bus and

by no other nodes on the dual bus. It includes the Slotmarking Function, which is

the process of creating empty slots that are to be written onto the bus. This includes

the marking of PA slots and the writing the VCI in the PA segment header. The

node at the head of each bus must also write appropriate values into the

management information octets.

Configuration Control Function

The Configuration Control Function is responsible for ensuring that the resources

of all nodes of a subnetwork are configured into a correct dual bus topology. The

Configuration Control Function will be employed at the subnetwork start-up or to

30
correctly configure the subnetwork. The Configuration Control Function will also

reconfigure the subnetwork in the case of bus failures. An example of the operation

of the Configuration Control Function is the activation and deactivation of the

head of bus functions at appropriate nodes during the process of reconfiguration.

MID Page Allocation Function

The MID Page Allocation Function participates in a distributed protocol with all

nodes on the subnetwork to control the allocation of the MID values to nodes. The

MID values are used by the node in the transfer of multiple segmentation unit

IMPDUs, described in 2.3.1. The MID Page Allocation Function will ensure that

two nodes are not allocated the same MID value.

Queued Arbitrated (QA) Functions

The QA functional entity provides an asynchronous data transfer service for 48-

octet segment payloads. The QA functional entity accepts the segment payloads

from a convergence function, and adds the appropriate segment header, including

VCI, to the segment payload to create a QA segment. The QA segment is queued

for access to the dual bus by use of the Distributed queuing Function. QA segments

received by the QA functional entity are stripped of the segment header and the

payload is passed to the correct convergence function, based on the VCI value in

the segment header.

Pre Arbitrated (PA) Functions

The PA functional entity provides access control for the connection-oriented

transfer over a guaranteed bandwidth channel of octets. The operation of the PA

functional entity requires the previous establishment of a connection. As a result

of the connection establishment, the PA functional entity will be informed of the

VCI value for segments used in the connection and the offset of the octets to be

used for reading and writing within the multiple user PA segment payload.

The PA entity accepts the single octets from a convergence function and

31
writes them into a pre-allocated positions within the payload of PA segments with

the appropriate VCI value in the segment header. The VCI value would have been

set by the Slot Marking Function at the head of the bus.

To receive an octet stream, the PA functional entity, on receiving a PA

segment with the correct VCI value, will copy octets from the pre-allocated

positions within the segment payload. The octets are passed the correct

convergence function, based on the VCI value in the segment header and the offset

of the octet in the PA segment payload.

Convergence Functions

It is intended that the DQDB layer will provide a range of services including

connectionless data transfer, isochronous data transfer, and connection-oriented

data transfer. The services are provided by the convergence functions placed

above the QA and PA functional entities.

MAC Convergence Function (MCF)

The MCF is responsible for adapting the segment-payload-based service provided

by the QA functional entity to the MAC service required by the LLC Sublayer.

The MCF transmit process involves encapsulating the LLC Protocol Data

Unit (MAC Service Data Unit) to form an initial MAC Protocol Data Unit

(IMPDU). The IMPDU is segmented into segmentation units of 44 octets, as

described in 2.3.1. Each segmentation unit has a segment type, sequence number,

and MID value prepended, and a payload length and payload CRC appended, to

form a Derived MAC Protocol Data Unit (DMPDU). This can be transferred by the

QA functional entity.

The MAC service process involves reassembly of the original IMPDUs at

the destination, as described in 2.3.1. The LLC Protocol Data Unit is extracted from

the received IMPDU and passed to the LLC entity.

32
Isochronous Convergence Function (ICF)

The ICF is for each Isochronous Service User (ISU). An ICF is responsible for

adapting the guaranteed bandwidth octet-based service provided by the PA

functional entity to an isochronous octet-based service.

In particular, the ICF will provide buffering both for the isochronous octets

to be transmitted on behalf of the ISU by the PA functional entity and for the

isochronous octets received from the PA functional entity and to be delivered to

the ISU.

Other Convergence Functions

The provision of a connection oriented data service by the DQDB layer is under

study. The Connection-Oriented Convergence Function (COCF) will adapt the

segment-payload-based service provided by the QA functional entity to a

connection-oriented data service. Connection oriented data service uses the same

segmentation and reassembly procedures same as that of MCF.

2.4.3 DQDB Layer Management Entity (LME)

The DQDB LME performs management of the local DQDB Layer Functions. It also

communicates with DQDB LMEs at other nodes to provide distributed

management of the DQDB Layer resources. The communication uses a DQDB

Layer Management Protocol is supported by the DQDB Layer Common Functions

block. The DQDB LME also provides the DQDB Layer Management Interface to

the Network Management Process for the remote management of the local DQDB

Layer subsystem.

Chapter 3

INTERFACE ARCHITECTURE

This chapter describes the system architecture, system operation and hardware

modules that implement the Queued Arbitrated functions of the Distributed

Queue Dual Bus Metropolitan Area Network (DQDB MAN). A Field

Programmable Gate Array (FPGA) design can be implemented by using the state

diagram of the processing units. We finally mention that the state transition

diagram of the receiver packet processor is also discussed in this chapter.

3.1 Overview of System Architecture

A higher level overview of the proposed architecture for such a system appears in

figure 3.1. The DQDB protocol functions are handled by the Multi Processor Pool

(MPP). The Low Level Processors (Input Low Level Processor & Output Low Level

Processor) handle physical interfaces while the Host Interface Processor (HIP) is

used for data transfer to and from host applications. The following design choices

have been made for reasons described below :

=> 	Round-robin Scheduling of Processors

=> Local Memory in Packet Processor

Local memory in packet processors minimizes the number of "copy" operations

and in conjunction with the round robin scheduling the use of processors is

maximized. Shared memory is used primarily for context records for each

connection, reducing memory contention considerably.

Figure 3.2, which shows a detailed system diagram, provides some architectural

details. The packet processors that handle the received packets are labeled

Each packet processor contains multiple packet buffers, local RAM, a CPU, and

33

34

interfaces to the ILLB (Input Low Level Bus) and the S_Bus (Shared Bus). The ILLB

is exclusively used for high speed data transfer from ILLP to Ri_processor and

from R1_processor to host. The components of the transmitter are shown in Figure

3.3.

Figure 3.1 Processing Architecture Overview

The DQDB Layer Protocol functions are performed by a set of programmable

packet processors, depicted as T1_processor and T2_processor, where the low

level functions are performed by the high speed hardware unit OLLP. All these

35
processors communicate with each other and shared memory, via the S_Bus. The

high speed Data Memory is used to buffer data received from host applications for

transmission. The OLLP transfers data out of the High Speed Data Memory via a

dedicated bus called Output Low Level Bus (OLLB). The T1_processor and the

data memory have a direct connection to the H_Bus (Host Bus) as well. We have

assumed a simple hardware arbitration mechanism to resolve simultaneous

attempts by the processors to access the shared resources. All requests are queued

and granted in the order that they were received. This manages to reduce the

contention between the processors adequately, without the cost or delays

associated with complex interconnection network. Simple I/O interfaces are

critical to maintain the required throughput. The high speed hardware units (ILLP,

OLLP) will offer a solution for this critical problem, as well as for the lower layer

protocol functions and error checking functions that cannot be handled by

programmable processors at Gbps rates.

3.2 System Operation

The system described in Figure 3.2 and Figure 3.3 shows the implementation of the

parallel processing architecture connected to one of the buses, Bus A or Bus B. This

design shows the receiving and transmitting sections separately on the same bus.

The incoming and outgoing lines from the bus are connected with the low level

processors. The Input low level processor (ILLP), is placed before Output low level

processor (OLLP) so that the data written by OLLP cannot affect the reading

operation of ILLP. First we will describe the receiving section and then the

operation of the transmitting section.

36

Figure 3.2 System Architecture - I

37

Figure 3.3 System Architecture - II

38
3.2.1 Receiving operation

As packets come in from the line, the ILLP checks the access control field of the slot.

If the busy bit is "1" and the payload type bit is "0", the slot will be busy. The

processor then reads the incoming segment. It checks whether the VCI field in the

ACF of the slot matches with one of the VCIs that the station is programmed to

receive. A station is programmed initially with an acceptable list of VCIs and

MIDs. If there is a VCI match, then ILLP will check both Header Check Sequence

(HCS) and Cyclic Redundancy Check (CRC-8). If the above fields match, then the

packet will be transferred to the next packet buffer of the R1_processor which has

been chosen in a round robin fashion. Otherwise, the segment will be discarded

and not forwarded for further processing.

The ILLP transfers the packet to a selected processor and at the same time

the bits are copied to the CRC unit. At the end of the sequence of the header,

payload and trailer, the CRC remainder is computed and transferred to the same

processor that the corresponding segment has been sent.

The R1_processor receives the DMPDUs from the input low level bus

(ILLB) and starts processing it. First it checks the correctness of the DMPDU, by

comparing the calculated remainder (sent by the CRC unit) with the CRC field

carried in the DMPDU trailer. If the CRC check is successful only then further

processing is carried out; otherwise the DMPDU is discarded. The MID/ VCI_data

pair is compared against the active reassembly process, which holds the MID/VCI

pair of the connection and has been established when the first segment arrived at

the receiver. If MID/VCI pair matches, the destination address field in the MCP

header is compared with the MAC Service Access Point (MSAP) address. If the

address does not match then the DMPDU will be discarded. After a successful

checking of DMPDU has been conducted, the Previous Segment Received (PSR)

signal (if required) is generated, and R1_processor makes a request to

39
R2_processorfor reassembly of the IMPDU. The PSR signal is generated only if the

destination address was a correct individual address. If it was a group address

then the PSR signal would not be generated. Once the PSR signal is generated, the

OLLP writes "1" in the PSR subfield of the access control field of the next slot on

the bus, irrespective of the type of the slot. The R1_processor have multi packet

buffers. The processed packet is held in one of the buffers of the R1_processor. If

the segment received by the R1_processor was a single segment message then it is

not necessary to send it for reassembly. the segment gets validated by

R1_processor.

As R2_processor gets a request for reassembly it starts a separate

reassembly process associated with that VCI and MID pair. R2_processor keeps a

copy of the beginning of the message (BOM DMPDU), which carries the IMPDU

header information. By doing this for each new message, more than one

reassembly processes can exist at the same time. However, there will be only one

reassembly process related with a single MID/VCI pair. As the 'Continuation Of

Message' segments (COMB) arrive, they will be appended to the corresponding

reassembly process associated with that MID/VCI_data pair. Upon receiving 'End

Of the Message' (EOM DMPDU), R2_processor starts validating IMPDU by the

length, Beginning-End (BE) tag and CRC-32 (optional). If the validation fails then

the IMPDU is discarded. If the IMPDU checking was successful, the extraction of

MSDU is carried out. Upon completion, the received data must be transferred to

the host. The R2_processor writes a request to the Host Interface Processor (HIP)

for the data transfer. The requests are queued up at the HIP_FIFO and are served

by HIP on a First Come First Serve (FCFS) basis. The request carries the destination

address in the host system, as well as, the total number of the bytes to be

transferred. The R1_processor holds the packet in the packet buffer until it gets

transferred to the host. The host interface processor transfers the data from the

40
packet processor into the host memory by the Direct Memory Access (DMA)

process via the Input Low Level Bus (ILLB) and the host interface bus. Thus, by

this technique, we avoid multiple write operations on the same packet.

In the proposed architecture, there are many processing units which use

shared resources. Such shared resources are the shared bus and the shared

memory. A conflict may arise while using those shared resources. To avoid

contention problems, all the requests to access the shared resources, are queued up

under a FIFO and are served in a first in first out manner.

3.2.2 Transmitting Operation

When the host station is ready to transmit, it sends a request to the T1_processor.

The request provides information about source, destination and the number of

bytes to be transferred. The information about the allocation of buffer memory is

kept in the shared memory. The T1_processor accesses the appropriate context

record and gets the memory address of the next available block in the buffer

memory. The T1_processor communicates that information to the host. The host is

now free to move data into the high speed static the buffer memory at the address

provided. After the completion of the data transfer, the host writes another tag to

the R1_processor with the destination address and number of bytes to be

transferred. The host now is not concerned any more with the actual transfer of the

data. The T1_processor then generates the headers and trailers of the initial MAC

protocol data unit (IMPDU). Upon the complete generation of IMPDU, it is

segmented in 44 octet QA payload segments. This segmentation is logical because

the data is stored physically in the data memory, thus T1_processor computes the

addresses and the length of the segments. The 'Beginning Of Message', BOM

DMPDU will be generated by the IMPDU header. Then each individual QA

payload are sent to available T2_processor according to round robin scheduling to

41
create QA segment.

The T2_processor then creates the header fields of DMPDU. It encodes the

payload length, CRC and MID values. Upon completion, it writes a control block

making a request to OLLP to transmit the segment. That request is queued up at

OLLP. The OLLP serves the request on first come first serve basis. When serving

the request, the OLLP reads the control block. As shown in figure 3.5, there are two

types of control blocks. The address field in type "1" control blocks points to next

block in the FIFO and that of type "2" points to data memory. During transmission,

the header and the trailer are transmitted from the next block on the queue, the

data from the data memory, and CRC field is appended as required. The dedicated

high speed output low level bus (OLLB) transfers the data from data memory to

OLLP. The data which is being written out to line is also copied to the dedicated

CRC unit. At the end of the bit stream the CRC unit generates CRC remainder,

which is read out and encoded in the trailer as required. When ILLP reads in a non

busy QA slot (Busy Bit "0" and Pay Load bit "0"), and the content of CD_CNTR is

zero, then OLLP can transmit QA segment in that slot.

We have succeeded in keeping the path of data, out of protocol processing.

Thus we do not perform multiple copying of data while transmission and

reception, which saves time and system resources.

3.3 Hardware Modules

The hardware modules concerned with this architecture can be divided into two

categories, receiving modules and transmitting modules. The Input Low Level

Processor (ILLP), the R1_processor, the CRC Unit, and the R2_processor constitute

transmitting modules. The T1_processor, the T2_processor, the Output Low Level

Processor (OLLP) and the buffer memory constitute the receiving modules. The

shared memory, the direct memory access process, and the distribute queue state

42
machine are also described.

3.3.1 Receiving Modules

The following modules comprise the receiver assembly. They work in parallel and

independently from each other. These modules are:

Input Low level Processor

This dedicated device is working at the front end of the network. ILLP observes

continuously the incoming slots. If a slot is busy, ILLP reads in the segment from

the slot and checks for the Virtual Channel Identifier (VCI). If VCI matches one at

this node, then the Header Check Sequence (HCS) (a Cyclic Redundancy Check

(CRC-8)) is checked. If VCI or HCS does not match the DMPDU is discarded. The

type of service required can also be determined by the VCI. By type of service we

mean MAC services or connection oriented services or isochronous services. ILLP

transfers the packet in the next packet buffer of the R1_processor which is chosen

in a round robin fashion. The PSR information, VCI, Payload Type, and the

segment priority are also copied to the buffer.

R1 processor

The R1_processor gets data from the Input Low Level Bus (ILLB). R1_processor

checks the correctness of the Derived MAC Protocol Data Unit (DMPDU) using the

CRC-10 field from the DMPDU trailer. This processor gets feedback information

about the active reassembly process from the R2_processor. The feedback

information contains the active MID/VCI pair.

While copying a packet into R1_processor's buffer, the same bits are fed into

the pipeline processing module of the CRC-10 check hardware. At the end of the

bit stream, the CRC remainder, generated by the CRC unit, is read and transferred

to the packet processor which was chosen in a round robin fashion. If the previous

segment received service is provided, the R1_processor checks the following :

43
(i) Whether QA is the Beginning Of a Message (BOM) as well as whether the

Destination Address (DA) in the MAC Convergence Protocol (MCP)

header is correct.

(ii) Whether QA is a Continuation Of Message (COM) or End Of Message

(EOM) as well as whether the Message Identifier (MID)/VCI_data pair

matches with the one of the active reassembly process.

Then R1_processor generates the Previous Segment Received (PSR) signal and

makes an entry into the FIFO queue of the R2_processor.

If QA is a Single Segment Message (SSM), then the DMPDU does not need

reassembly. Hence, the R1_processor starts validation of it, which generates the

following sequence.

(i) Check of MID subfield. If does not match, discard the DMPDU.

(ii) Check the DA field of the MCP header with the MAC Service Access Point

(MSAP). If it does not match, discard the DMPDU.

(iii) If the previous checking is correct, then generate the PSR_signal.

(iv) Hold the packet in the buffer and generate an entry to the service queue of

the Host Interface Processor (HIP) to move the data to the host application.

CRC Unit

The CRC unit is responsible for generating the CRC remainder for the incoming

string of data. Cyclic Redundancy Check codes are used for error detection. Let L

be the length of the CRC coding polynomial and K be the length of the string of

data bits. Then we can write them as the polynomials shown below:

s (D) = sK-1DK-1 + sK-2DK-2 + + s0

g (D) = DL + gL-1DL-1 + gL-2DL-2 + + g1D + 1

where s (D) is the information polynomial, and g (D) is the generator polynomial

of degree L.

For a given g (D), the mapping from the information polynomial, c (D), is given by,

44
c (D) = Remainder [s (D) DL /g (D)]

The polynomial division above is just binary long division of one polynomial by

another, except that the coefficients are restricted to be binary and the arithmetic

on coefficients is performed in modulo 2. Note that the subtraction using modulo

2 arithmetic is the same as addition.

The long division can be implemented easily by the feedback shift register

circuit shown below.

Figure 3.4 CRC Unit

The figure 3.4, shows the shift register circuit for dividing polynomial and finding

remainder. Each rectangle indicates a storage cell for a single bit and the

proceeding circle denote modulo 2 adders. The large circle at the top indicates

multiplication by the value of 	Initially, the register is loaded with the first L bits

of s (D) with the sK-1 term at the right. On each clock pulse, a new bit of s (D) comes

in at the left and the register reads in the corresponding modulo 2 sum of feedback

plus the contents of the previous stage. After K shifts, the switch at the right moves

to horizontal position and the CRC can be read out.

45
R2 processor

After receiving the Beginning Of Message (BOM), the R2_processor starts the

reassembly process associated with the corresponding VCI_data and Message

Identifier (MID) pair. It matches the destination address in the MCP header with

that of the Service Access Point (SAP). On getting the EOM, validation of IMPDU

takes place. The R2_processor compares then the value of the Length subfield of

the common PDU trailer, with the actual number of octets received. If there is no

match the IMPDU is discarded. The actual number of the data octets in the IMPDU

will be {[no. of octets received for the IMPDU] - [common PDU header octets

[4]]+[number of PAD octets [0,3]1+ [common PDU trailer octets [4]]}. If there is no

match, the data is corrupted and the IMPDU is discarded. It also performs BE-tag

validation. If both, length and tag match then a MAC Service Data Unit (MSDU) is

created by using the IMPDU.

Extraction of MSDU from validated IMPDU:

The R2_processor will,

(i) Use the DA field of the MCP header to create the destination_address_

parameter.

(ii) Use the SA field of the MCP header to create the source_address_parame ter.

(iii) Use the Quality Of Service delay field to create the priority parameter.

(iv) Extract the MSDU information field to create the data parameter

Then UNIT_DATA indication is prepared. After extracting MSDU successfully,

make an entry into HIP_FIFO indicating the Destination Address, memory storage

address of segments and byte count for the data segment residing in, the packet

processor, R1_processor's local memory.

Direct Memory Access - Process

The R2_processor makes a request for Direct Memory Access in order to move

packets from the buffers of R1_processor to the host memory. The request contains

46
the number of bytes to be transferred, the memory read address (pointing to the

local memory of the R1_processor) and the memory write address (pointing to the

host application running in the host system). The R2_processor requests are

served by the Direct Memory Access controller. The DMA controller utilizes the

idle bus cycles, temporarily takes over the control of both the memory address bus

and the data bus and transfers the data to the host. This technique is called cycle

stealing technique.

3.3.2 Transmitting Modules

The description of the various transmitting modules follows below.

T1 processor

Upon the reception of a request from the host, the T1_processor gets the total

number of bytes to be transmitted by the Logical Link Control (LLC) sublayer

frames, as well as the destination address and source address. T1_processor then

accesses the appropriate record in the shared memory to find the address of the

buffer list for this request. From the buffer list data structure it obtains the pointer

to the next available block in the buffer memory, which communicates to the host.

The host eventually transfers the data block in the data memory. Meanwhile, it

creates the IMPDU header with the information carried by the MA_unit_data

request.

To create a common PDU Header the T1_processor :

(i) Encodes the reserved field.

(ii) Selects the Beginning and the End tag (BE) and encodes them.

(iii) Encodes the buffer allocation size field to a number of octets as {MCP

header octets + Header Extension Length (HEL) octets + MSDU

octets.

To create the MAC Convergence Protocol (MCP) header the T1_processor :

47
(i) Encodes the destination address.

(ii) Encodes the source address.

(iii) Encodes the Protocol Identifier (PI) (=1 for LLC frames)

(iv) Encodes the Qos_delay and Qos_loss parameters.

(v) Compares the parameters received in the MA_unit_data request with the

currently installed header extension selection values (within the MCF by

the DQDB Layer Management Entity (LME)). These values can be

modified by the Layer Management actions.

Finally, T1_processor encodes the the Bridging field by 'zero's.

The segmentation of an IMPDU then follows. The T1_processor segments the

IMPDU into a 44 octet QA payload. The only exception is the single segment

message and the end of message. Then the next available T2_processor, according

to round robin scheduling, is assigned to create a QA segment; using the QA

payload and the other related information.

T2 processor

This processor creates DMPDU headers and trailers. For a Single Segment Message

(SSM), the T2_processor :

(i) Encodes the segment type (11 for QA slots)

(ii) Encodes the MID subfield ('zero's for SSM)

(iii) Encodes the payload length in DMPDU trailer.

For more than one Segmentation units, the T2_processor :

(i) Encodes the segment type of BOM, COM or EOM as 1 0, 0 0 or 0 1

respectively.

(ii) Selects a MID value and encodes it; notice that this value is the same for

every DMPDU derived from a single IMPDU.

(iii) Encodes the payload_length in the trailer by the number of octets of the

IMPDU contained in the segmentation unit.

48
The T2_processor generates a segment by appending the payload to the header

and the trailer fields in the following way. In segment header field, the

T2_processor encodes the VCI_DATA, the Payload_type (0 0 for QA), the Segment

Priority (0 0) and the data by using the CRC-8 coding polynomial. It also calculates

the remainder and encodes it. Upon completion of these operations, an entry into

the FIFO of OLLP is generated.

Output Low Level Processor

Basically it is dedicated to the function of transferring data at high speeds out of

the data memory, and writing directly to output line using OR_writing. It also

includes the low level protocol functions. It acquires direct control when it has to

write into a Previous Segment Received (PSR) bit, or into the Request (REQ) bits of

the Access Control Field (ACF) of the next slot. OLLP reads the control blocks from

FIFO and determines the source of the next block of data to be transferred. This

control block may point to the very next block in the queue, in case of a packet

header, or to a location in the data memory. In both cases the number of bytes to be

transferred is also indicated. The OLLP includes the CRC unit working in parallel

with it. When the OLLP writes data on the outgoing line it also copies the data into

the CRC unit. At the end of the bit stream, the generated CRC remainder can be

read out from the unit and can be encoded into the corresponding field.

49
Buffer Memory

Figure 3.5 Memory Block Design

To minimize the contention, (see figure 3.5) the buffer memory uses the dual port

static RAM components, also referred to as Video RAM ICs. It provides multiple

buffers to hold packets until they get transmitted. This memory IC provides two

independently accessible ports: One providing high speed burst-mode transfer,

50
and the other providing random - access. The serially accessible port is used to

move a packet from the buffer memory to the network. The random accessible port

provides memory access for the host to copy the data which are to be transmitted.

The serial access does not need address set-up and decoding time, hence the read-

write times are faster on this port than the read-write times for a RAM array. For

instance in order to align the major host systems, using 32 bit wide memory, the

serial access time is 40 n.secs/word, and the cycle time for the random read write

access is 200 n.secs. This gives an effective transfer rate of 800 Mbps over a serial

port and 160 Mbps over a random access port. To provide an equivalent memory

bandwidth on a single ported 32 bit wide memory we would require a memory IC

with read/write cycle time of 33 n.secs. Currently such fast memory is available,

but it is costly and have less memory density than that of the Video RAMS.

A packet is transmitted to the network via a serial port from the shift

register contained in the Video RAM ICs. The shift register acts as a temporary

storage. When the block is completely transmitted, the next block is transferred

into the shift register, in a single memory cycle, from a row of the memory cell

array constituting the buffer memory. The host copies the blocks via the random

access port. The copying of a block continues without interference, while the next

packet is being transmitted, with the exception of one memory cycle which is

stolen for each transmitted block that is transferred from the memory cell array to

the shift register. We point out that Video RAM ICs provide good performance at

a fraction of the cost of the fast memory. They can also perform high speed block

transfer between the network, the buffer memory and the host.

Buffer List Data Structure in the shared memory

This data structure is defined for the purpose of managing data memory buffers in

the high speed static RAM. This structure exists for each active DQDB connection.

It is setup first, when the DQDB connection is established, and is physically

51
resident in the shared memory. Each cell, as it is shown in figure 3.7, consists of a

pointer to the next cell,

Figure 3.6 Control Block Structure.

which contains the address of the data buffer. The buffer size should be the same

as that of the block size which is likely to be used by the host application. The

structure is maintained via three variables: first_free, first_busy, and last_busy,

which are part of the record for each connection. The variable first_free points to

the next free buffer. Initially the first_free points to the first cell and the variables

first_busy through last_busy point to the buffers that contain the segments that

must be transmitted. Initially the first_busy and last_busy are set to point to the

first cell by the T1_processor. The value of the last_busy is updated by the

T1_processor every time a new buffer is allocated to the transmission packets.

Upon completion of the transmission of a packet by OLLP the value of first_busy

is updated. The T1_processor updates first_free every time it secures a new buffer

from this list. When the first free equals the first_busy, no additional data buffers

are available and the host application gets blocked.

52

Figure 3.7 Buffer List Data Structure.

3.3.3 Operation of Distributed Queue State Machine (DQSM)

The operations of the ILLP and OLLP are controlled by the DQSM which we

briefly describe below. According to this state machine each station maintains a

Request_I_Counter_X, counting requests at priority level I on bus X (A or B). If the

node is not queued for transmission then the above mentioned counter will get

incremented upon observing a request on the reverse bus or will get decremented

on observing an empty slot (Busy Bit & Type Bit as 00) on the transmission bus.

When a segment is queued for transmission, at the station transfers the contents of

REQ_I_CNTR_X to countdown counter CD_I_CNTR_X. The countdown counter

then gets incremented, by one for each coming request on bus X of higher priority

53
than the level I, or if the node itself generates a request at level higher than level I.

This counter gets decremented, if an incoming slot on the transmission bus is

empty i.e. if the Busy Bit and the Segment Type Bit in the Access Control Field

(ACF) of the slot are both "0". When the countdown counter reaches the null value

"0", the packet is transmitted in next available empty slot seen on the transmission

bus. The OLLP is informed when the countdown counter reaches "0", so that it can

activate the OR writing into the next free slot.

3.3.4 Field Programmable Gate Array (FPGA) implementation of R1_processor

Figure 3.8 shows the state diagram needed to implement the set of common

functions and QA functions that must be performed by an R1_processor. The

general functions of R1_processor, for processing of the incoming packets, are

discussed below. The state diagram shows state I, as a waiting state. When the

processor finishes the processing of the data packet, waits until the next processing

is assigned. In this state R1_processor checks continuously the status of a FlipFlop

(packet) {the FlipFlop is set when the new packet is assigned). If that FlipFlop is not

set the R1_processor will generate the 'Ready' control signal going to ILLP, and

will return to the same state. If the FlipFlop was set then the 'Busy' signal is

generated, indicating that R1_processor has already been assigned to process a

packet. The processor makes transition to state II.

54

55

In state II, R1_processor reads the 53 bytes of the incoming packet. At the

end of the bit stream, it also reads the 10 bits of the CRC remainder released by the

CRC unit. If the Previous Segment Received (PSR) bit is present then it sets the

FlipFlop (PSR) to 1. Thus this state needs a total of 14 memory reference operations

(considering 32 - bits wide data path) to read a 53 byte packet, 10 bits of the CRC,

and 1 bit from the CRC field.

In state III, the processor loads the 10 - bit CRC remainder from the CRC

unit and the 10 bits from the payload CRC field. R1_processor then compares them

in order to implement the checking of the received data. If the CRC field does not

match, then the received packet is discarded and the processor goes back to state

56
I. If the CRC field passes the comparison then the processor makes the transition

to the next state, i.e. state IV.

In state IV, the processor reads two bits from the fifth octate and decodes

them. Then R1_processor performs a comparison of the MID (10 bits) and VCI (20

bits) subfields, as well as the address field in the MCP header (8bytes) with the

values allocated to the node. When R1_processor checks the equal conditions for

the comparisons, and if they do not hold, it loops back to state I. If the conditions

are equal, it checks the decoded bits. If the decoding bits were 00 or 01 i.e., the

received segment was a Continuation of Message (COM) or an End of Message

(EOM). In this case R1_processor will make a transition to state V. If the decoding

bits were 10 i.e., the segment was a Beginning Of Message (BOM), R1_processor

will make a transition to state VI. Otherwise, i.e. the decoding bits were 11 (the

segment was a Single Segment Message), it will make a transition into state VII.

In state V, R1_processor will send the Previous Segment Received (PSR) bit,

if the FlipFlop (PSR) is set. R1_processor will write a request for reassembly of the

received DMPDU, to R2_processor along with the DMPDU information and

address.

In state VI, R1_processor writes the whole packet to R2_processor, because

the BOM DMPDU contains the header part of the IMPDU.

In state VII, R1_processor performs validation of the SSM, because the given

segment does not need reassembly. Rl_processor performs checking of the

payload length field (16 bits) and the Beginning and End tag (8 bits). It checks CRC

indicator bit (CIB) and writes the FlipFlop (CIB) accordingly. Furthermore, it

checks the header length extention field (8bits).

Table I shows the different states and number of Operations involved with

the state transition diagram described in figure 3.8. Figures in [] indicate number

of Bytes and figures in () indicate number of Bits.

57

Table 1: States and Operations

States
\Operations

Read Write Compare Total

I (1) # 1

II [53],(10),(1) # 16

III (10) # 2

IV (2)Rd&Dcod (10),(20),[8] # 9

V (1)

(1)

,[4],[4] # 4

VI [44] # 11

VII (1) (16),(8),(8)
[4]

9

Total # 20 # 14 # 18 # 52

The state transition diagram shows that there are five valid paths, the

processor may follow. FPGA technology manages to execute read, write or

compare functions within 2 - 5 n.sec. In the sequel we provide a brief discussion on

possible alternative paths.

Upon getting a packet, R1_processor makes the transition to state II. Where it reads

the packet and the CRC bits from the Input Low Level Bus (ILLB). In state III,

R1_processor compares the CRC field of the DMPDU. If the packet fails to match

the CRC field then the received DMPDU is discarded and the processor makes the

transition to state I. A total of 19 memory reference operations (approx. delay of 4

µsec.) are related with this path.

58
Path II:

If R1_processor gets the DMPDU and follows the path through state III and there

is a match of the CRC subfield, then R1_processor will make the transition to state

IV. In state IV, R1_processor reads the segment type bits (2 bits) and decodes them.

Then, R1_processor performs a comparison of the subfields MID (10 bits), VCI (20

bits), and destination address in MCP header (8 bytes). If there is a match

R1_processor goes to a subsequent state which depends on the decoding of the two

bits. If there is not match, then R1_processor discards the DMPDU and returns to

state I. A total of 28 memory reference operations and an approximate delay of 6

µsec. are related to this path.

Path III:

If the R1_processor reaches the state IV, and the DMPDU passes the comparison

successfully, then R1_processor will make a transition to states V, VI or VII

corresponding to the decoding of the segment type. If the examined segment was

a Continuation Of Message (COM) or an End Of Message (EOM), then

R1_processor will make a transition to state V. R1_processor will write a request to

R2_processor with DMPDU information and its memory address. Upon

completion R1_processor will return to state I. The number of memory reference

operations related with this path are 32 and the approximate delay is 7 µsec.

Path IV:

If R1_processor reaches the state IV and the DMPDU matches the comparison and

the segment type is a beginning of a message, then R1_processor will write a whole

59
packet to R2_processor. Upon completion of the writing operation R1_processor

will make a transition to state I. The total of 39 memory reference operations are

performed along this path. The approximate delay of this path is 8 µsec.

If R1_processor reaches the state IV and the matched DMPDU is a single segment

message, then R1_processor will make the transition to state VII. This DMPDU is

carrying the whole DMPDU in it. The validation of the IMPDU is done here by

checking both the header and trailer fields of it. When finished the R1_processor

sends a request to the Host Interface Processor (HIP) to transfer the received

IMPDU to the host. A total of 37 memory reference operations are involved with

this path. The approximate delay of this path is 8 µsec.

Figure 3.9 provide, a diagram of the parallel processing with respect to time. In the

worst case scenario, where all packets on the bus have the same destination, a new

packet may may arrive at a node every 2.72µsec. We assume that there are four

processors in the receiver assembly and they are assigned to perform the

processing of the incoming packets. The first incoming packet goes to the first

processor. The next in the second processor and so on. We see that by the time the

fifth packet arrives at the node the first processor has completed serving the first

packet and can now accept the fifth packet. Then, when the sixth packet arrives,

the second processor is free. Therefore four processors are enough to handle all the

processing needs of the DQDB protocol inside each station. We also know that on

getting the EOM DMPDU the message is validated and transferred to the host.

Since the maximum MAC protocol data unit is 9188 octets, requiring 210 DMPDUs

for its transfer, we need a minimum of 54 packet buffers (of size 44 bytes each) to

accommodate the transfer of all of them.

60

Figure 3.9 Parallel Processing Vs Time

Chapter 4

Conclusions

This thesis provides a parallel processing based architecture for the

implementation of the Distributed Queue Dual Bus protocol. Parallel processing

enables the node to operate on many packets simultaneously and in this way it can

handle the incoming flow of packets from the high speed bus as well as fully utilize

the available channel bandwidths with its own transmissions.

The proposed architecture implements the multiprocessing assembly of

both receiver and transmitter. The concept of round robbin scheduling in the

multiple processor assembly minimizes the contention among the processors.

Furthermore, the host interface for the transmitter is simplified significantly by

using the T1_processor, which can absolve the host applications from any need to

know the specifics of the implementation or about the current state of the system.

In order for the data to be transmitted, the T1_processor interacts with the host

workstation. The data is then transferred directly into the dual ported buffer

memory. In this way the architecture manages successfully to keep the data for

transmission out of actual protocol processing. Moreover using the local memory

in the packet processors, the architecture is able to avoid unnecessary copy

operations on the same data.

The receiving processor assembly consists of four packet processors. Each

processor should have a minimum of 54 packet buffers in its local memory, which

facilitates the transfer of consecutively arriving full length IMPDUs. Allowing

more packet buffers enables a better congestion control during the burst mode

transfer. Furthermore the provision of a DMA process for the transfer of the

received packets, enables data transfer without interrupting the host workstation.

61

62
It is finally pointed that the proposed implementation can be easily

extended to support the DQDB isochronous and connection oriented services.

REFERENCES

1. IEEE Distributed Queue Dual Bus (DQDB) Subnetwork of a

Metropolitan Area Network (MAN). ANSI/IEEE 802.6 - 1990

(ISO DIS 8802-6,1991)

2. N. Jain, Mischa Schwartz and Theodore R. Bashkow, A Parallel

Processing Architecture for GBPS Throughput in Transport

Protocols, Proceed. of ICC '92, Chicago, June 1992.

3. H. Kanakia, David R. Cheriton, The VMP Network Adapter Board

(NAB): High Performance Network communication for

multiprocessors. Proceed. of SIGCOMM '88.

4. C. Kessler and David A. Train Metropolitan Area Networks:

Concepts, Standards and Services, McGrow Hill, 1992.

63

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (1 of 2)
	Chapter 1: Introduction and Motivation
	Chapter 2: The DQBD Protocol
	Chapter 3: Interface Architecture
	Chapter 4: Conclusions
	References

	List of Figures
	List of Definitions (1 of 8)
	List of Definitions (2 of 8)
	List of Definitions (3 of 8)
	List of Definitions (4 of 8)
	List of Definitions (5 of 8)
	List of Definitions (6 of 8)
	List of Definitions (7 of 8)
	List of Definitions (8 of 8)

	List of Abbreviations (1 of 3)
	List of Abbreviations (2 of 3)
	List of Abbreviations (3 of 3)

