
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

PERFORMANCE OF DIFFERENT STRATEGIES FOR

ERROR DETECTION AND CORRECTION

IN ARITHMETIC ENCODING

by

George F. Elmasry

Lossless source encoding is occasionally used in some data compression

applications. One of these encoding schemes is the arithmetic encoding.

When data is to be transmitted via communication channel, noise and impurities

imposed by the channel cause errors. To reduce the effect of errors, channel encoder is

added prior to transmission through the channel. Channel encoder inserts some bits that

help channel decoder at the receiver end to detect and correct errors. These added error

detection and correction bits are redundancy that causes reduction in the compression ratio

and hence an increase in data rate through the channel. The higher the detection and

correction capability, the larger the added redundancy needed.

Different approach for error detection and correction is used in this work. It is

suitable for lossless data compression wherein errors are assumed to occur with low rate

but causes very high propagation. That is, an error in one data symbol causes all the

following symbols to be in error with high probability. This was shown to be the case in

arithmetic encoding and Lemple-Ziv algorithms for data compression.

With this approach, redundancy in a form of a marker, is added to the data before it

is compressed by the source encoder. The decoder examine the data for existence of errors

and correct them.

Different approaches for redundancy marker is examined and compared. As a

measure for comparison, we used misdetection by testing one or more marker location, as

well as miscortrection. These performance measures are calculated analytically and by

computer simulation. The results are also compared to those obtained with channel

encoding such as Hamming codes.

We found that our approach performs as well as channel encoder. However, while

Hamming codes results in an erroneous data when more than one error occurs, this

approach gives a clear indication for this situation.

PERFORMANCE OF DIFFERENT STRATEGIES FOR
ERROR DETECTION AND CORRECTION

IN ARITHMETIC ENCODING

by
George F. Elmasry

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

May 1993

APPROVAL PAGE

Performance of Different Strategies for
Error Detection and Correction

in Arithmetic Encoding

George F. Elmasry

Dr. Yeheskel Barness, Thesis Adviser 	 Date
Director of the Center of Communications and Signal Processing Research
Distinguished Professor of Electrical and Computer Engineering
NJIT

Dr. Zoran Siveski, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering
NJIT

Dr. Yun-Qing Shi, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering
NJIT

BIOGRAPHICAL SKETCH

Author: George F. Elmasry

Degree: Master of Science in Electrical Engineering

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,

New Jersey Institute of Technology, Newark, NJ, 1993

• Bachelor of Science in Electrical Engineering,

Alexandria University, Alexandria, Egypt, 1985

Major: Electrical Engineering

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

1.1 What is Data Compression 	 1

L2 Coding Schemes 	 2

1.3 The Communication Channel 	 3

2 DATA COMPRESSION 	 6

2.1 Information Contents and Entropy 	6

2.2 Prefix Coding 	 8

2.3 Huffman Coding 	 9

2.4 LZ Algorithm 	 11

2.5 LZW Algorithm 	 13

3 ARITHMETIC CODING 	 15

3.1 Encoding 	 16

3.2 Decoding 	 20

3.3 Example 	 21

3.3.1 Encoding 	 22

3.3.2 Decoding 	 22

	

3.4 The Rounding Algorithm 23

4 ADDING REDUNDANCY BEFORE COMPRESSION 	 25

4.1 Decoding Scheme with Detection and Correction 	 26

4.2 Probabilities of Misdetection and Miscorrection 	 30

4.2.1 Misdetection 	 30

4.2.2 Miscorrection 	 37

4.3 Compressed File Expansion 	 39

	

4.3.1 With the Particular Character Strategy 39

4.3.2 With the Previous Character Strategy 	 41

Chapter 	 Page

	

4.3.3 With the Average Marker Strategy 45

4.4 Simulation and Results 	 48

4.4.1 With the Particular Character Strategy 	 48

4.4.2 With the Previous Character Strategy 	 50

4.4.3 With the Average Marker Strategy 	 52

	

4.5 Future Prospects 53

4.5.1 Towards a More Sophisticated software 	 53

4.5.2 The Effect of RADIX 	 53

5 JOINT SOURCE AND CHANNEL CODING 	 57

5.1 The [0-1) Vector Space 	 57

5.2 Alphabet 2 	 59

5.3 Alphabet 4 	 • 	 62

5.4 Comparison 	 65

Bibliography 	 68

vi

LIST OF TABLES

Table 	 Page

2-1 An Example of Prefix Coding 	 8

2-2 The Resultant Code of a Huffman coding Example 	 10

2-3 An Encoding and Decoding Example of LZ Algorithm 	 13

2-4 An Encoding and Decoding Example of LZW Algorithm 	 14

3-1 The Cumulative Probabilities for an Arithmetic Coding Example 	 21

3-2 An Example of the Cumulative Frequencies 	 24

4-1 The Percentage of File Expansion for Different Text Files when Using the

Space Character as a Marker After a Block of 20 Characters 	 48

vu

LIST OF FIGURES

Figure 	 Page

1-1 The Communication Channel 	 4

	

1-2 The Communication Channel Problem 5

2-1 The Code Construction of a Huffman Coding Example 	 9

2-2 A Single letter Huffman Coding Example 	 10

	

2-3 An Example of Extended Huffman Coding 11

3-1 The [0-1) Interval for an Arithmetic Coding Example 	 21

4-1 Encoding Scheme 	 25

4-2 Decoding Scheme with Detection and Correction 	 26

4-3 The Flow Chart of the Proposed Scheme 	 29

4-4 Probability of Misdetection when Using a Particular Character as a Marker 	31

4-5 Probability of the Previous Character as a Marker 	 34

4-6 Probability of Misdetection when using the Previous Character as a Marker 	34

4-7 Probability of characters in Randomized Files 	 36

4-8 Probability of Average Marker in Randomized Files 	 36

4-9 P log p Versus P Curve 	 43

4-10 The Percentage of File Expansion Related to the Probability of the Marker

and the Length of the Block 	 43

4-11 Probability of Marker when using the Average Marker Strategy 	 45

4-12 The Relative Frequency of Correction at Each Position of the Correction

Section of the Register with the Space Character 	 49

4-13 The Relative Frequency of Correction at Each Position of the Correction

Section of the Register with the Previous Character 	 51

4-14 The Relative Frequency of Correction at Each Position of the Correction

Section of the Register with the Average Marker 	 52

viii

Figure 	 Page

5-1 The [0-1) Vector Space 	 57

5-2 The Communication Channel with the Suggested Scheme 	 58

5-3 The [0-1) Vector Space for Alphabet 2 	 59

5-4 The [0-1) Vector Space for Alphabet 2 with Different Probabilities 	 61

5-5 The [0-1) Vector Space for Alphabet 4 	 63

5-6 The [0-1) Vector Space for Alphabet 4 with Different Probabilities 	 64

ix

CHAPTER 1

INTRODUCTION

Communication systems are becoming more and more sophisticated. When technology

was simple, the defects and noise of the channel were simply overpowered by using a

strong enough signal or a slow enough transmission rate. Nowadays, with the

introduction of VLSI, very complex hardware became cheap, while power and bandwidth

remained resources to be conserved. Channels remain impaired by noise, interference and

other defects, and one wishes to transmit even more data through them. Hence there is a

need for more powerful coding schemes.

1.1 What is Data Compression?

Contrary to the belief of many, the idea of data compression is not new. There has always

been an interest in economical communication, whether it be oral or written,

electromagnetic; analog or digital. There is still today a widespread use of abbreviations

and acronyms in both oral and written materials. The Morse code, which made early

telegraphy possible, is an example of an early data compression technique.

We can define data compression as the process of encoding a body of data D into a

smaller body of data ∆<D> such that it is possible for ∆<D> to be decoded back to D or

some acceptable approximation to D. The data compression techniques can be broadly

classified into either reversible (or redundancy-reduction) or irreversible (or entropy-

reduction) techniques.

The irreversible technique, which also is called data compaction, achieves

compression by reducing the information and retaining only a subset of the message set.

Quantization techniques, a form of data compaction, are used to encode a continuos source

into a discreet source. Since some information is lost in the process, an exact replica of the

1

2

original message can never be reconstructed. Usually, data compaction is used only in

applications where an approximation of the original message set is sufficient.

We are interested in the reversible technique, where it is possible to recover all the

original data. If we think of data as a combination of information and redundancy, the

reversible techniques encode the source data with a view to remove (or at least to reduce)

the redundancy in such a way that it can be subsequently reinserted into the data. Hence,

these are called reversible techniques.

1.2 Coding Schemes

The implementation of such schemes were first described by Shanon[1] and Fano[2]. An

improved method was proposed by Huffman[3], who developed a procedure which yields

minimum average word-length for encoding statistically independent sources. Huffman's

solution for data compression, however, is unsatisfactory in some applications due to the

complexity and inefficiency of the encoding and decoding operations. One major problem,

which is of particular importance in the case of encoding, is the need to know the statistics

of the source alphabet, or alternatively to scan the source data to gather the statistics.

Davisson[4] showed that an optimum source code can be designed without any

knowledge of the statistical properties of the source. The theory of optimum codes for

source with unknown statistics is called universal coding . An encoder is called universal

if its performance, after being designed without prior knowledge of the source statistics,

converges, as the block length approaches infinity, to the performance of an encoder with

prior knowledge of the source statistics. The universal encoding algorithms are capable of

estimating, either directly or indirectly, the source statistics with increasing accuracy as the

source string is being encoded. Since the source statistics are being estimated on the fly ,

and requires only one pass over the data, these algorithms have important applications in

compression for information transmission.

3

Some examples of the universal coding schemes are, the Lynch-Davisson[5] code

in which the redundancy of the code converges to zero as the block length approaches

infinity. Also the incremental parsing technique described by Lempel-Ziv [6][7][8] and its

character extension suggested by Welch[9] and the arithmetic code of Langodon-

Rissanen[10][11] are examples of universal coding schemes.

One of the main drawbacks of the universal coding algorithms (and this is true of

most reversible data compression schemes) is their high error propagation in the event of

occurrence of a channel error. That is an error in the compressed image is not only

reflected in that part of the reconstructed data but also tends to affect much of what follows

it. An error in a single bit can cause the loss of the self-synchronizing property of these

codes, resulting in the loss of a large block of data. The amount of damage that an error

causes to the reconstructed data, which can be used as a measure of error propagation,

depends on the compression scheme used. The reader is referred to [19] for more

information about error propagation. Since these schemes are so intolerant to errors, their

use over noisy channels is often limited.

1.3 The Communication Channel

As the demand for communication capacity continues to grow in such communication areas

as person-to-person, broadcast, intercomputer and intracomputer, engineers are pressed to

improve performance by trying to maximize the transmitted information rate through an

available communication channel. Figure (1-1) presents the communication problem where

the source of information is to be connected to a user by a channel. A device is inserted

between the source and the channel called the encoder, and another device is inserted

between the channel and the user called the decoder.

4

Fig. 1-1 The Communication Channel

In his study of the above communication problem, Shannon showed that a nearly

error-free communication is possible over a noisy channel, provided an appropriate

preprocessor called the encoder and an appropriate post processor called the decoder are

allowed at each end of the communication link. However, he did not tell how to design the

best encoders and decoders. Although considerable work has gone into an attempt to solve

these problems, complete solutions are' still unknown.

Fig(1-2) presents how the source is compressed (redundancy is removed) by the

source encoder, then certain redundancy is introduced by the channel encoder for error

correction. At the receiver the channel decoder correct errors and remove the redundancy,

then the source decoder decompresses the data to the original information.

The main objective of this work is to study the idea of adding the redundancy

needed for detection and correction before compression, and compare the results with the

solutions offered by standard channel coding.

Fig. 1-2 The Communication Channel Problem

5

CHAPTER 2

DATA COMPRESSION

A discrete-time information source produces messages by emitting a sequence of symbols

from a fixed alphabet called the source alphabet. The data can be highly redundant and

hence waste the resources of the communication system. Data compression is a coding

scheme used to represent the output of data source efficiently. The source output

symbols is represented as a stream of bits suitable for transmitting through the channel.

Data compression can considerably reduce the number of bits needed to represent the

output sequence of a data source as compared with a simple binary representation of this

source output.

2.1 Information Content and Entropy

A discrete memoryless source is a discrete random process{.., X-2, X-2, X0, X1 , X2, ..}

where the XL are independent, identically distributed random variables taking values of

source alphabet {a1, a2, 	 ad with probability distribution p= {p(a1), p(a2), 	 p(ac)}.

Any two sources with the same probability distribution on their outputs will present the

same data compression problem because one can always rename symbols within the

encoder and the decoder. Thus, for data compression, the source alphabet is unimportant;

only the size of this alphabet and its probability distribution matter, so that one can use

the symbol p as a handy name of the source it describes. Clearly, a source whose output

is not random, is completely predictable from the past history and contains no

information.

We can define the information content of a source as the number of bits per

source symbol needed on the average by the best data compression code for this source.

The information content of a memoryless source p is measured by the entropy H(p). The

6

7

entropy of a probabilistic source is equal to the average amount of information per

symbol generated by that source. In other words, the entropy of a source is the average

number of bits necessary to specify which symbol has been selected by the source.

If a source output aj occurs with a probability p(aj), then the amount of

information associated with the occurrence of output aj is defined to be:

	

I(aj) = - log p(aj) 	 (2.1)

when the logarithm is to the base 2, the information is measured in units of bits

If the probability of selecting the source symbol

aj

 is p(

aj

), then the information

generated each time a symbol aj is selected is, - log2 p(aj) bits. From the law of large

numbers, the symbol aj will be selected on the average n p(aj) times in a total of n

selections, so the average amount of information obtained from n source output is:

- n p(

a1

) log2 p(

a1

) 	 - n p(a

j

) log2 p(aj) 	 n p(

a

c) log2 p(

a

c) 	 (2.2)

To obtain the average amount of information per source output symbol, we divide by n,

Therefore the average information, or the uncertainty, which is also termed the entropy

H(p) is given by,

H(p) = - Σc 	

p(

a

j) log2 p(

a

j)

	bits/symbol 	 (2.3)
j=1

The efficiency of any compression code is defined as

Efficiency = 	
H(p)

/L x 100 	(2.4)

	 (2.4)

where L is the average length of the code word and is given by

8

L =Σcj=1

p(

a

j) log2 p(

a

j)

	 (2.5)

where L> H, and 1(a1) is the length of the code corresponding to the symbol a1.

2.2 Prefix Coding

Suppose that a source has alphabet eight, with probability distribution given by

p1 = p2 = p3 = p4 = 1/32

p5 = p6 = 1/16

p7 = 1/4 p8 = 1/2

The entropy H = 17/8 bits per symbol. The common method of representing a symbol of

alphabet 8 source in binary requires three bits. A possible variable length code is

illustrated in table (2.1)

Table 2-1 An Example of Prefix Coding

Symbol 	Probability 	code word 	length

a 	 2-5 	 00000 	 5

b 	 2-5 	 00001 	 5

c 	 2-5 	 00010 	 5

d 	 2-5 	 00011 	 5

e 	 2-4 	 0010 	 4

f 	 2-4 	 0011 	 4

g 	 2-2 	 01 	 2

h 	 2-1 	 1 	 1

9

The average length of the code word is L = 17/8 bits per symbol which is equal

to the entropy (L> H is satisfied). This code is a prefix code, i.e. there is no need to

append extra symbols for punctuation. The code words can be run together without the

possibility of ambiguity. Thus,

000110000000001000101

can be decoded only as "dabch"

2.3 Huffman Coding

Huffman coding can be considered as a class of prefix coding. Consider a source with

seven output symbol 'A, B, C, D, E, F and G' having the probabilities 3/8, 3/16, 3/16,

1/8, 1/16, 1/32 and 1/32 respectively. Figure (2.1) illustrates how the code construction

proceeds. The original source is at the left side. At each step, as the tree is constructed to

the right, the two symbols of smallest probability are combined, and the final tree is

labeled with 0 and 1 arbitrarily at each branch. The code is illustrated in Table (2-2).

Fig. 2-1 The Code Construction of a Huffman Coding Example

10

Table 2-2 The Resultant code of a Huffman Coding Example

Symbol 	Probability 	Code word 	Length

A 	 3/8 	 0 	 1

B 	 3/16 	111 	 3

C 	 3/16 	110 	 3

D 	 1/8 	 101 	 3

E 	 1/16 	1001 	 4

F 	 1/32 	10001 	 5

G 	 1/32 	10000 	 5

for this example L = 2.44 while H = 2.37. This means that a small improvement

can be obtained. Another example of Huffman coding, which leads to the next class of

compression codes will be explained. Consider a source of alphabet three 'A, B and. C'

with probabilities 3/4, 3/16, and 1/16. From Figure (2-2), the Huffman code for single

letters has code words 1, 01 and 00. The average block length is 1.25 while the entropy

is 1.012, it is clear that a meaningful improvement is possible.

Fig. 2-2 A Single Letter Huffman Coding Example

Figure (2-3) shows the construction of the Huffman code for blocks of length 2

(extended Huffman Coding). The average length of the code word which encodes two

source symbols is 2.09 bits. So, the rate of the code is 1.045 bits per source symbol. This

should be compared with 1.25 bits per symbol, which is the rate of the simpler Huffman

code, and with the 1.012 bits per symbol, which is the entropy of the source.

11

Fig. 2-3 An Example of Extended Huffman Coding

2.4 LZ Algorithm

The LZ algorithm converts variable-length strings of input symbols into fixed-length (or

predictable length) codes. The symbol strings are selected such that, in the limit, all have

almost equal probability of occurrence. Strings of frequently occurring symbols will

contain more symbols than a string having infrequent symbols. This algorithm parses the

source string into a collection of segments of gradually increasing length called the

dictionary. There is no preference given to any particular symbol or segment. Starting

with the empty segment, each new segment added to the collection is one symbol longer

than the longest match so far found. For encoding, it is sufficient to transmit an index to

the position of the longest match and the last added symbol.

12

Suppose that the source alphabet is binary with elements{ 0,1}. Initially the

dictionary is empty. A source string 010111011 is parsed as {0, 1, 01, 11, 011}. When

the parsed strings are retained in the same order in the dictionary, as they received, each

segment can be encoded as the order pair (i, y), where the index i gives the position of the

longest earlier found matching segment in the dictionary, and y gives the last added

symbol. For example, the code for the segment 011 is the order pair (3, 1). It is easily

seen that due to the nature of the incremental parsing algorithm, if any string is a member

of the dictionary, then all its prefixes should also be members of the dictionary. This

code is universal because the code length for an infinitely long source sequence

converges to the entropy without any assumptions about the source probabilities.

The decoder reconstructs the segment corresponding to this pair and adds it to its

dictionary. At any point of time the encoder and the decoder dictionaries are the same

because they both use the same strategy to add segments to their individual dictionaries.

The decoder is able to reconstruct the whole source string from the ordered pairs that are

received. Table (2-3) shows the encoder and the decoder dictionaries, data sent and the

decoded data for the example given above.

LZ algorithm is able to adapt the redundancy characteristics of the source,

requiring no prior information about the source statistics. The LZ code is a variable-to-

fixed length code (it encodes input string of variable length into codes of fixed length)

unlike the Huffman code which is a fixed-to-variable length code (input strings of fixed

length are encoded into variable length codes).

Some disadvantages of this algorithm are: A poor compression can result near the

beginning of the file, hence it should not be used on short messages. The message

should be long enough for the procedure to build enough symbol frequency experience to

achieve good compression over the full message. Rapid changes in the redundancy

characteristics of a very long file, may cause degradation in the compression achieved.

The structure of the code word, an index and a row source symbol, may be inconvenient

for a large source alphabet.

13

Table 2-3 An Encoding and Decoding Example of LZ Algorithm

encoder

dictionary 	 {ϕ , 0} 	{ϕ , 0.1} 	{ϕ .0,1,01} 	{ϕ ,0,1,01,011}

sent 	 (ϕ

, 0

) 	(ϕ , 1) 	(0,1) 	(1,1) 	(01,1)

decoder

dictionary 	 ϕ 	(ϕ ,0) 	{ϕ,0,1} 	{ ϕ,0,0,1,01} 	{ϕ, 0,1,01,01,011}

decoded 	 0 	 1 	 01 	 11 	 011

2.5 LZW Algorithm

This algorithm retains the adaptive properties of the LZ algorithm and improves the

compression ratio without sacrificing any of the simplicity of the data gathering process.

Instead of treating the source as having a binary alphabet, an extended alphabet with 256

symbols is used. Hence, this algorithm is refereed to in the literature as the character

extension improvement. Table (2-4) shows the dictionary, the sent string and the

received string for the same example explained in the previous section.

In the original LZ algorithm, the code that is generated was an order pair

consisting of an index and a source symbol. Thus the code contained some

uncompressed data. Instead, the code generated by the LZW algorithm consists of a

sequence of identifying numbers. This results in a significant improvement in

compression of shorter source strings. Finally, while with the L-Z algorithm, the

dictionary is initialized with the empty set, with LZW is done with all the alphabet

characters.

14

Table 2-4 An Encoding and Decoding Example of LZW Algorithm

encoder

dictionary 	{0,1} {0,1,01} {0,1,01,10} {0,1,01,10,011} {0,1,01,10,011,11}
{0,1,01,10,011,11,101}

sent 	0 1 01 1 10 11

decoder

dictionary 	{0,1} {0,1,01} {0,1,01,10} {0,1,01,10,011} {0,1,01,10,011,11} {0,1,01,10,011,11,101}

decoded 	0 1 01 1 10 11

Notice that LZW sends one code word each time, while LZ sends one code word plus

row character each time.

CHAPTER 3

ARITHMETIC CODING

Arithmetic coding is a data compression technique that encodes data string by creating a

code string which represents a fractional value on the number between 0 and 1. The

coding algorithm is recursive, i.e. it operates on and encodes (decodes) one data symbol

per iteration or recursion. On each recursion, the algorithm successively partitions the

interval of the number line between 0 and 1, and retains one of the partitions which

corresponds to the new string as a new interval. Thus, the algorithm successively

generates smaller intervals, and the code string, viewed as a magnitude, lies in each of the

nested intervals. The data string is recovered by using magnitude comparisons on the

code string to recreate how the encoder must have successively partitioned and retained

each nested subinterval.

This algorithm differs considerably from the more familiar coding techniques

such as prefix (Huffman) codes. In Huffman coding, the file should be scanned to

calculate the probability of each symbol before encoding, while arithmetic encoding is

capable of accepting successive events from different probability distributions. Moreover

the code acts directly on the probabilities, and can adapt "on the fly" to changing

statistics.

15

16

3.1 Encoding

Let A={a1 ,a2 	 ,ac} be the source alphabet, with c different symbols, of a zero-

memory information. Let this source emits symbol ai with probability pi. For each

symbol ai , we define the cumulative probability P(ai) by

i-1
P(ai) = ∑ 	p(ak) 	(3.1)

k=1

where i=1, 2, 	 , c and P(a1)=0

For the encoding operation, we need to define two parameters; one is the code point C ,

and the other is the code interval W. C is the leftmost point of the interval and W is the

width of the interval.

Code Point The new left most point of the new interval is the sum of the current code

point C, and the product of the interval width W of the current interval and the

cumulative probability P(ai) for the symbol ai, being encoded.

New C = current C + current W . P(ai) 	 (3.2)

Code Interval The width of current code interval W is the product of the probabilities

of the data symbols encoded so far. Thus the new interval width is:

New W = Current W . p(ai) 	 (3.3)

where ai is the current symbol.

When we start encoding, the initial values of code point is C0=0, and the initial value of

code interval is W0=1

For the first source character s1, to be encoded , we have

17

C

1

 = Co + W0 P(s

1

) = P(s1) 	(3.4)

and

W

1

 = W0 P(s1) = P(s1) 	(3.5)

For the second source character

s2, C2 = C1 + W1 P(s2) 	(3.6)

Substituting (3.4) , (3.5) in (3.6) we get ,

C

2

 = P(S

1

) + p(S

1

) P(s

2

) 	 (3.7)

After encoding the KTH character in the source file, we have from equation(3.2),

Ck = Ck-1 + Wk-1 P(s

2

) 	 (3.8)

and from equation(3.3),

Wk

 = Wk-1 P(Sk) 	(3.9)

But

= Ck-1 = Ck-2 P(Sk-1) 	(3.10)

and hence substituting equation (3.10) in equation (3.8), we get

Ck = Ck-2 + Wk-2 P(Sk-1) + Wk-1 P(Sk) 	 (3.11)

Also

Wk-1 = Wk-2 p(sk-1) 	(3.12)

18

Substituting equation (3.12) in equation (3.9), we get

Wk

 = Wk-2 p(sk-1) p(sk) 	 (3.13)

Continuing in the same way equation (3.11) becomes

C0 =

W0

 p(s1) + W1 P(s2) + 	+ Wk-2 P(Sk-1) + Wk-1 P(Sk) 	 (3.14)

and equation (3.13) becomes

Wk

 = W

0

 p(s1) p(s2) 	 p(sk-1) P(k) 	 (3.15)

But

W0

=1

Wk

 = p(s1) p(s2)........p(sk-1

)

 P(

s

k) 	 (3.16)

Finally combining equations (3.14) and (3.16), we end up with,

Ck = P(

s1

) + p(

s1

) P(

s2

) + p(s

1

) P(s

2

) P(

s3

) + 	+ p(

s1

)P(

s2

).....p(sk-1) P(sk) 	(3.17)

Equation (3.17) can be rewritten as,

Ck = P(

s

1)+ p(s1)[P(s2)+ p(s2)[P(

s

3)

+......... [P(sk-2)+p(sk-2

)

[P(sk-1

)

+ p(sk-1)P(sk)]]..]]

(3.18)

Given that P(sk) < 1 , the term in the innermost parenthesis, implies

P(

s

k-1)+ P(

s

k-1)P(sk) <

P(s

k-1

)

+ p(

s

k-1) 	 (3.19)

19

But,

P(sk-1)+ p(sk-1) = P(sk-1+1) 	 (3.20)

where sk-1+1 = ak+1 . if sk-1 = aj in the source alphabet.

Since P(sk-1+1) < 1, then continuing in the same manner, we will have the outermost

parenthesis is less than 1. Hence, from equation (3.18)

Ck < P(s1) + p(s1) 	 (3.21)

From equation (3.18), it is obvious that

C

k > P(s1) , therefore

P(s1) < Ck < P(s1) + p(s1) = P(s1+1) 	(3.22)

Where P(s1) is the cumulative probability of the first source character to be encoded,

and P(s1+1) is the cumulative probability of the symbol next to this character in the

alphabet. That is if s1=ai , then s1+1= a1+1 	.

We conclude that the code point falls into the interval [

ai

,

a

i+1) no matter how long

the source string is. The value of the code point, representing the source string depends

on the cumulative probabilities of the string characters used in the source string. As an

extreme case if the source string is "

ai ai

a

i ... " ,then the code point is P(

a

i). On the other

hand if the source string is "

a

i

a

i+1

a

i+1 ... " , then the code point is very close to P(ai+1),

but not equal to

P(a

i+1

)

. Source strings begin with the source symbol

a

i , are encoded to

the interval [ai, ai+1

)

as shown from equation (3.22) P(

a

i) ≤ Ck

< P(a

i+1

)

20

3.2 Decoding

The first step in decoding is comparing the code point

Ck

 with the cumulative

probabilities of the source symbols. The first decoded character is the source symbol

which has the largest cumulative probability less than or equal to Ck. Then to find the

code point for the second decoded symbol; we subtract P(s1) from

Ck : Ck

 - P(s1) = p(s1) P(s2) + p(s1) p(s2) P(s3) + + p(s1)p(s2)...p

(s

k-1

)P(S

k

)

	(3.23)

and divide

Ck

 - P(

s1

) by p(

s1

):

Ck

(2) =P(s2) + p(s2) P(s3)+p(s2) p(s3) P(s4) + p(s2)p(s3).... p(sk-1) P(sk) (3.24)

In the same manner we compare the new code point

Ck

(2) with the cumulative

probabilities of the source data symbols. The symbol with the largest cumulative

probability which is smaller than or equal to the code point is the second decoded

character.

Similarly the code point for decoding the third source character is:

Ck

(3) =P(s3) + p(s3) P(s4)+p(s3) p(s4) P(s5) + p(s3)P(s4).... p(s3)p(s4).... p(sk-1) 	(3.25)

In the same manner, reaching the last source character,

Ck

(k) =P(s

k) 	(3.26)

Which is the cumulative probability of the KTh. source symbol.

21

3.3 Example

Consider the alphabet 4 source, A={a, b, c, d}, with the relative frequencies 0.5, 0.25,

0.125 and 0.125 respectively. Table (3.1) shows the cumulative probabilities P(ai).

Ck = Ck-2 + Wk-2 P(Sk-1) + Wk-1 P(Sk)

Table 3-1 The Cumulative Probabilities for an Arithmetic Coding Example

Symbol 	 Probability p(ai) 	 Cumulative Probability P(ai)

decimal 	 binary 	 decimal 	 binary

a 	 0.5 	 0.1 	 0 	 0

b 	 0.25 	 0.01 	 0.5 	 0.1

c 	 0.125 	0.001 	 0.75 	 0.11

d 	 0.125 	0.001 	 0.875 	 0.111

Figure (3.1) shows how the four code points divide the [0-1) interval into four

subintervals. Notice that the code points are actually the sum of the probabilities of the

preceding symbols for each symbol (cumulative probability).

Fig. 3-1 The [0-1) Interval for an Arithmetic Coding Example

We identify each subinterval with its leftmost point and its width. For example

the interval for the symbol "a" goes from 0 to 0.5, and for symbol "b" goes from 0.5 to

0.75. Notice that the width of each subinterval to the right of each code point

corresponds to the probability of the symbol.

22

3.3.1 Encoding

Suppose we want to encode the following string " acaabbda The initial value of code

point and code interval are ; C0=0 and W0=1

P(sk-1)+ p(sk-1) = P(sk-1+1)

Applying equations (3.4) and (3.5) we get C1 and W1 in binary as follows

C1 = 0 and W1 = 0.1

Applying equations (3.2), (3.3) we have C2 and W2 in binary,

C2 = 0.011 and W2 = 0.0001

Finally when we reach the last symbol we will have,

C8 = 0.0110001010111 and W8 = 0.000000000000001

3.3.2 Decoding

We can consider the decoding procedure as the reverse of the encoding process. The

decoder undo whatever the encoder does. For the same example given before, the

decoder receives the encoded string 0.0110001010111. This code point is in the interval

[0, 0.1), therefore the first decoded symbol is "a".

Since the accumulative probability of "a" is P(a)=0, and the probability of "a" is

p(a)=0.1 , using equation (3.23) gives the code point for the next source character to be

decoded.

Ck(2) =
	0.0110001010111 — 0

/0.1

= 0.0110001010111

This point is in the interval [0.11 , 0.111) , therefore the second decoded character is "c".

23

For the symbol "c" we have P(c)=0.11 and p(c)=0.001 , so the third code point is

Ck(3) =
	0.110001010111 — 0.11/ 0.001 = 0.001010111

This point is in the interval [0 , 0.1), therefore the third symbol to be decoded is "a" . but

P(a)=0. and p(a)=0.1, so the fourth code point is

Ck(4) =
	0.001010111 — 0.1 = 0.01010111

The decoder proceeds in the same manner until the code point corresponds to the

exact cumulative probability of the last encoded source character (see equation(3.26)).

For further details with examples, refer to [10].

3.4 The Rounding Algorithm

In conventional arithmetic coding, as more symbols are included in the source sequences,

the interval of decoding becomes more finely divided. The capacity of the decoder to

accept more source symbols is limited by the ability of its fixed registers to resolve the

boundaries between intervals. Any unanticipated rounding would be fatal to the

processes of encoding and decoding. To avoid any inaccuracy which might be

introduced by the use of floating point calculation, it is necessary to find an alternative

representation of the probabilities p(s) by applying a scale factor u that converts the

probability to frequency rate per u source symbols. To record these frequencies on a

cumulative basis, the cumulative frequency table F is defined as

24

Fi = [1/2 + u ∑ p j] , 0 ≤ i ≤ c 	(3.27) 1≤ j≤i

where ւ x] is the large integer less than or equal to x.

Equation (3.27) gives F0 = 0 and Fc = u . In practice the rounding effect

provided by the equation can be avoided by suitable choice of the scale factor u. Table

(3-2) shows an example of the same source alphabet used in section (3.3) with the symbol

probabilities and the derived cumulative frequencies. Note that Fi is based on the actual

frequency.

Table 3-2 An Example of the Cumulative Frequencies

Subscript 	 Source 	Symbol 	Probability 	 Cumulative

	

ai 	 pi 	 Frequency
Fi

1 	 a 	 0.5 	 500

2 	 b 	 0.25 	 750

3 	 c 	 0.125 	 875

4=c 	 d 	 0.125 	 1000=u

For more detailed information about how the boundaries of the intervals change

due to rounding, the reader is referred to [23]. The final code word length is the same as

for conventional arithmetic coding, eventhough the boundaries of the intervals deviate

slightly as a result of rounding. This algorithm leaves the RADIX of the arithmetic (the

alphabet of the encoded data) unspecified.

Although this algorithm is made for the applications of noiseless channel, in the

next chapter, we will establish an algorithm for error detection and correction of the

compressed data. The effect of RADIX will clearly be noticed in section(4.5.2). We will

show the need to adapt this algorithm for the lowest possible RADIX .

CHAPTER 4

ADDING REDUNDANCY BEFORE COMPRESSION

As mentioned in chapter 1, compressed data can suffer very high error propagation in the

event of channel error. An error in the compressed image does not affect only that part of

the reconstructed data, but also affects much of what follows. An error in a single bit can

cause the loss of self-synchronism and hence the loss of all data that follows. In this

chapter, we will use the high error propagation property to establish error detection and

correction schemes for different error rates.

By adding, as shown in Figure (4-1), a specific characters after each block of

symbols of the source data before it is compressed, almost every error can be detected at

the receiver by looking for that specific character marker at its position. To correct these

errors, we resort on toggling each bit in the block until that specific marker shows up.

We will use different types of marker strategies, and will study the expansion of the

encoded data due to the added marker, as well as its effect on the system capability of

detection and correction. Also, we will compare the results with the detection and

correction obtained by conventional channel coding for the same error rate and show the

advantages and disadvantages of the proposed scheme.

Fig. 4-1 Encoding Scheme

25

26

4.1 Decoding Procedure

With Error Detection and Correction

A register of length bx is inserted between the input encoded data and the source decoder

as shown in figure(4-2). The required length of the register will be shown later to depend

on both the error rate of the channel and the specific character marker used. We are

assuming that at least the first bx/2 characters in the file are error free. For a low error

rate, this is rather non restrictive assumption, if the length of the register is chosen

adequately.

Fig. 4-2 Decoding Scheme with Detection and Correction

First the register is filled up with bx characters from the encoded data. While this

is done, the error detection decoder decodes the character at position 0 and after each

block of symbols, looks for the specific character marker at the decoded data. If the

marker does not appear at the expected locations, this decoder sends a flag to indicate that

there is an error, either at that point or before it; Due to the assumption that the first bx/2

characters are error free, then, with probability one, the error is in the detection section of

27

the register in a location somewhere after the location where the previous marker did

appear. With low probability we may detect a marker in its location eventhough an error

has occurred before it. We term this as misdetection (or late detection) of the error.

Therefore, if a marker did not appear at a certain location, error must have occurred

between this location and the previous expected marker location, and with less

probability between the previous marker location and the one before that, etc.

Clearly at any time, if the error detection decoder did not send the flag, either the

character at position 0 is error free, or the decoder did not reach the marker position at the

decoded data to check for error. Then a one character shift through the register takes

place as follow:

1. The character at position bx-1 is decoded by the source decoder.

2. The character at position bx-2 is shifted to position bx-1, the character at

position bx-3 is shifted to position bx-2, and so on. Finally, the character at

position 0 is shifted to position 1.

3. The next character in the encoded data is moved to position 0.

If the character at position 0 corresponds to an end of block so that a marker is

expected at the decoded data, but the detection decoder does not show that, then an error

is detected, which is assumed to be between position 0 and position bx/2-1 as mentioned

above. The error is shifted to the correction section of the register, between position bx/2

and position bx-1, by applying the three steps mentioned above bx/2 times.

To correct the error, every bit in the correction section is toggled starting from

position bx/2 . After toggling each bit, the whole register starting from position bx-1 to

position 0 is decoded by an error correction decoder. This decoder does the same

function as the detection decoder, i.e. decoding and counting the decoded characters, and

looks for the specific marker. If a wrong bit is toggled, the markers should not appear in

their expected positions in the decoded data. That bit is switched back and the next bit is

28

toggled. On toggling the erroneous bit, all the markers in the reconstructed data should

appear in their positions, and hence the error is considered to be corrected. It may happen

that a wrong bit is toggled, that is error has not been corrected, but marker appears. this

we term miscorrection which can happen with certain probability. In the next section,

the probability of misdetection and the probability of miscorrection, will be discussed.

we will also show how to overcome this problems. Figure (4-3) shows the flow chart of

this scheme.

29

Fig. 4-3 The Flow Chart of the Proposed Scheme

30

4.2 Probabilities of Misdetection

and Miscorrection

The probabilities of misdetection and miscorrection as well as the size of the file

expansion depends on the marker strategy, the length of the marked block, and the

specific file used. The following marker strategies will be examined:

1. Particular character strategy. Any character of the alphabet is used as a marker.

2. Previous character strategy. That is, the marker is chosen to be the last character

of the block. For example, when we chose the block length to be eight characters

the following data string:

Today the weather is very good so we 	

will become, when adding the marker:

Today the weatheer is verry good sso we 	

3. Average marker strategy. Here we chose the marker a character which

represents the ASCII integer less than or equal to the average of the ASCII

values of all characters in the marked block, i.e.

k 	
Sk+1 = │∑ Si│ / k (4.1) i=1 	

where Si is the ASCII value of the character i in the block, k is the block length,

and

S

k+1 is the ASCII value of the marker. Lx⅃ is the largest integer which is

less than or equal to x

4.2 .1 Misdetection

Misdetection is defined as the probability not to detect an error in the expected location,

given that an error took place. Let us assume that the error propagates totally in the

decoded data, so that every character is in error with probability one. Therefore, each

decoded character can be any character according to its probability in the alphabet.

31

With the Particular character strategy , let the marker character; a , has a

probability of

P(an)

 in the alphabet. Then the probability of still having the marker a

at the specific location, P(an), is the probability of misdetection. For English text files

this is given by the curve in Figure(4-4), where the x axis is the ASCII character value

and the y axis is the probability of that character. Notice the peak at 32 which is the value

of the space character.

Fig. 4-4 Probability of Misdetection When Using a Particular Character as a Marker

32

Clearly, the smaller the probability P(a) of the marker used, the lower the

misdetection. Hence,

Pmin ≤ P1 (mis det ection) ≤ Pmax 	(4-2)

Where the probability of the most frequent character of the alphabet is on one extreme,

and the probability of the least frequent character is on the other.

For the English text files,

0 ≤

P

1 (mis det ection) ≤ 0. 295387

If all the alphabet characters are equiprobable, P(an)=1/M for all an , then,

P

1 (mis det ection) = 1/M 	(4-3)

However, as we will show later, using a low probability character as a marker will

increase the size of the compressed file more than using a high probability character.

This means that there is a trade-off. Low probability character marker results in low

probability of misdetection, but causes larger expansion in the compressed file and bigger

loss in the file compression ratio. On the other hand, high probability character marker

results in less expansion in the compressed file, but high probability of misdetection.

One can remedy this conflict in the choice of marker by checking more than one location

of marker and hence reduce the probability of misdetection to the order of Pi (an) where I

is the number of locations checked. This last approach of misdetection requires more

complex hardware as well as software.

With the Previous character strategy, if we assume that the error propagates

totally in the decoded data, then as mentioned before, each decoded character can be any

33

character in the alphabet according to its probability. Therefore, we have character a n at

the marker location with probability P2 (an). But since we have to check whether the

character at the marker location is the same as the previous character or not, the

probability of misdetection is

P2 (an)

. Therefore,

P(misdetection / given character a is found at marker location and at the one before it)

=P

2 (an)

and,
	

P2(misdetection) = Σ1n=1 P2 (an) . [P2 (

a

n)] (4-4)

where l is the size of the alphabet.

Figure (4-5) depicts the probability of the marker as a function of an , While figure (4-6)

depict P (mis det ection) as a function of a n. Clearly,

	
M P3

min

 ≤ P2(misdet ection) ≤ M P3max 	 (4-5)

For English text files,

0

≤ P2 (mis det ection)

≤ 0. 085562

and

P
2

(mis det ection)

= 0.026819

Where P max and P min are the probabilities of occurrence of the most and least probable

marker in the alphabet. If all the alphabet characters are equiprobable, then,

P2 (mis detection) = 1/M2 	(4-6)

M
2

34

Fig. 4-5 Probability of the Previous Character as a Marker

Fig. 4-6 Probability of Misdetection When Using the Previous Character as a Marker

35

With the Average marker strategy , under the same assumption of error propagation,

misdetection happens if the character at the marker location represented in ASCII number

equal the integer value of the average of the ASCII values of all characters in the previous

block.

	

P
3
 (misdetection / Sk+1 is the ASCI value of the marker) = P (Sk+1 = │∑k Sii=1 /k│) (4-7) P

	

	

where

S

k+1 is the ASCII value of the character appears at marker location, S is the

ASCII value of the character at location i = 1,2, 	 k of the previous block, k is the size

of the block.

To calculate P(misdetection) analytically is quite complicated particularly for

large k . Instead, based on ASCII files available to us, we calculated P (

S

k+1

= │∑k Sii=1 /k│)

in the files. That is, we calculated the frequency of each character of the alphabet in the

total markers generated in the files with this strategy. The files to be used for calculating

these frequencies should be obtained from regular text files by fully randomizing the

order of the characters in the files. If we assume that error propagate totally in the

decoded data, then the aformated frequencies can equivalently obtained from the decoded

data file after inserting an error. The probability curve of P (

S

k+1

=

│∑k

S

ii=1 /k│) 	is depicted in

figure (4-8). The curve in figure (4-7) shows the probability of each character Si in these

randomized files. From this we can calculate the probability of misdetection as follows,

36

Fig. 4-7 Probability of Characters in Randomized Files

Fig. 4-8 Probability of Markers in Randomized Files

37

P3(misdetection) = ∑SMk+1=1 P (

S

k+1 =│∑kSii=1 /k│) P(Sk+1) 	 (4-8)

Where SM is the larger integer in the ASCII values of the alphabet.

	

Due to total randomization caused by the error, P(

S

k+1) is the probability of

S
k+1 in the alphabet which is depicted in figure (4-7). From equation (4-8), the average

probability of misdetection for the English text files is 0.007427.

4.2.2 Miscorrection

As stated in section (4.1), error correction is obtained by toggling the encoded data in the

correction section of the register one bit at a time and looking for the marker in the

reconstructed data. Every time a bit is toggled, there is a probability that the marker will

appear eventhough a wrong bit is toggled. This can lead to a miscorrection.

With the Particular character strategy , with the same assumption of error

propagation, let the marker character has a probability of P(an) in the alphabet. Then

the probability of misdetection when checking I markers is Pl (an). If the number of

marker locations checked for correction is then the probability of miscorrection is a

geometric distribution given as follow,

pr{ miscorrection in toggling the 0th step }= PĪ (an)

pr{ miscorrection in toggling the 1st step} = [1—

PĪ (an

)]2

P

Ī (

an

)

pr{ miscorrection in toggling the 2nd step} = [1—

PĪ (an

)]2

P

Ī (

an

)

pr{miscorrection in toggling the kth step} = [1- P

(

an

)]kpĪ(

an

)

— ∑SMk+1=1 P (

S

k+1 =│ ∑kSii=1 /k│) P(Sk+1) 	

Hence, the probability of miscorrection is given by

P(miscorrection) = ∑Nk=0 [1—pĪ

(

an

)]kpĪ(

an

)

	 (4-9)

Where N is the average number of bits toggled before the erroneous bit is reached.

and the expected value of k is given by

E[k] = 1-pĪ

(

an

) / pĪ(

an

)

	

(4-9a)

This means that, if we are using the space character as a marker which has a

probability 0.295378, and we are checking 8 marker locations in correction, the expected

value of k will be 1.73*104. This number is the average number of toggling that leads to

a miscorrection.

To reduce P(miscorrection), we make ī>l. In Section(4-4) we will show how

N is minimized to reduce P(miscorrection) . Minimizing N and making ī > 1 stands

also for the other two marker strategies.

39

4.3 Compressed File Expansion

Regardless of the marker strategy, adding a marker increases the size of the compressed

file. Clearly the strategy which gives the smallest expansion is the better one.

4.3.1 With the Particular Character Strategy

Let us examine changing the entropy when adding a character as a marker. First notice

that before addition we have,

H(p) = ∑1i=1 p(ai) log p(ai) (4-10)
	

Where / is the size of the alphabet, and the probability of the character ai in the file is,

	

p(ai) = N(a
i)

/ 	L 	 (4-11)

Where N(ai) is the total times of occurrence of ai in the file, and L is the size of the

file.

By adding a marker after each block of size k, the new probability of occurrence of each

character in the alphabet will be,

p' (a
n) = N(ai)/ L(1+1) /k = p(a j)/1+1/k (4-12)

	

where

ai

 are characters which are not used as a marker. For the marker an,
p' (a

n) = N(an)

+ L/k / L(1+1 k) = p(an)+1/k / 1+1/k (4-13)

	

Hence the new entropy is given by,

40

		

H'

 (

p) = - ∑i≠n p(ai)/1+1/k log p(an)/1+1/k - p(an)+1/k/1+1/k log p(an)/+1/1+1/k (4-14)
	 	

H' (p) = - ∑i≠n p(ai)/1+1/k log p(ai) + ∑i≠n p(ai)/1+1/k log (1+ 1/k)

- p(an)+1/k /1+1/k log p(an) +1/ k) + p(an)+1/k / 1+1/ k log (1+ 1/k) (4-15)

From (4- 10),

H(p) = - ∑li≠n p(ai) log p(ai) - p(an) log p(an) 	(4-16) 	 (4-
	

Also, the compression ratio of the file before adding the marker is,/

R ≤

log2
l / H(p) 	(4-17)

After adding the marker, the compression ratio is,

R ≤
log2

l / H'(p) 	(4-18)

In equation (4-17) and equation (4-18), the equality can be obtained for large files and

effective compression algorithm.

Notice that

H'(p)

 is smaller than

H(p)

 which is expected due to an increase in

the redundancy as a result of adding a marker. Therefore after adding a marker, the

compression ratio increases. However, because of the expansion at the source file, the

resulted compressed file is also expanded.

41

The size of the compressed file before adding the marker is given by,

L/R = L H(p)/ Log2 l symbols (4-19)

	

	

After adding the marker,

L(1+1/k) / R' = L(1+1/k) H'(p)

/ Log2 l symbols (4-20)

	 		

Hence the extension of the file of size L is given by,

L(1+1/k) /R' - L/R =L/Log2 l
[

(1+1/k) H'(P) - H(p

)] symbols

	(4-21)

	

Normalizing to L we get as a change in bit/symbols in compressed file to bit/symbol in

uncompressed file,

		
∆

 = 1+1/k - 1/
R = 1/Log2l

[
(1+1/k)

H'(P

) -

H(p)] symbols (4-22)

From equation(4-15),

	
(1 + 1/k)H' 	(p) = - ∑i≠n 	p(ai) log p(ai) + ∑i≠n p(a,) log(1 + 1/k)

(4-23)

	 	
- (p(an) + 1/k) log(p(an) + 1/k) + (p (an) + 1/k) log(1 + 1/k)

From equations (4-16),(4-22) and (4-23) we get,

∆ =

1

/log2

l [∑i≠n

p(a

i

)

log(1 + 1/k

) -

(p

(a

n) + 1/k)

 	

+

 p(

an

)+ 1/k)

log(1+1/k

)

+ p(an)log(p (an)]

1 	1
+ (p(a

n) + /7) log(1 + 	+ p(an) log plan)]

42

∆

log
2

= 1+1/k - 1/R
= 1/

Log2l

[
(1+1/k) H'(P

) -

H(p)]

		
+ log(1

+1/k)p(

a

n

)

+1/k

log(1+

1/k)

 log(p (an))

		 	

∆

log
2

l

=

(1+1/k)

 log(1 +

1/k

) + p(a
n

) log p(a
n
) — p (a

n
)

+1/k

)log(p (an)

+1/k)

This equation gives the change in bit/symbol in the compressed file.

Finally dividing by H(p), the compressed bit/symbol of the file before expansion, we get

∆ log2

l / H(p)

=

1/H(p)

[(1 + 1/k) log(1+1/k)+p(an

)log p (a
n

)

	

- p (a
n

)

+ 1/k)log
(

p
(a

n
)

+ 1/k)log(p(an

)

+ 1/k)]

(4-24)

One can show easily from the curve in figure (4-9) that p log2 p has a minimum

of -0.53 at p= 0.368, That means it is a decreasing function of p for p < 0.368. Also if,

(p (a
n

) + 1/k

)

< 0.368, then the last two terms in equation (4-24) is positive. Also,

log(1 + 1/k

)

 is positive and hence we have always expansion despite the fact that

H'(p) decreases due to the increase of the redundancy in the expanded file. This is due to

the increase in the size of the file after expansion.

If we use less probable character as a marker the sum of the two terms in

equation(4-24) is larger as we are using the lower part of the p log2 p curve. With larger

k both the first and the last term in equation (4-24) becomes more positive.

Figure (4-10) depicts the dependencies of the percentage of the file expansion, as

a function of the marker probability p(an) when the block size k is taken as a parameter.

43

Fig. 4-10 The Percentage of File Expansion Related to the Probability
of the Marker and the Length of the Block

44

4.3.2 With the Previous Character Strategy

The total number of each character changes according to its relative frequency in the file.

Clearly, this is true provided that the file is large so that the probability of having the

previous character to be a certain character of the alphabet is according to its relative

frequency. Hence, using this definition, the new number of character a is,

L 1 L
N'(ai) = N(a1) + L/k p(ai) = N (ai)(1 + 1/k) 	(4-25)

where i=1l

The new relative frequency is,

P' (ai) =

N

(ai)(1 +1/k) / L(1 +1/k)

= P

(ai)

	 (4-26)

That means the entropy does not change if the file is large enough so that the added

character will have the same distribution as the original file and the entropy remains

constant. The two curves in figure (4-4) and figure (4-5) shows that. Hence, equation (4-

22) turns to,

	

1+1/k 	1 	1 	1
A= 	

R = Log2I ()H(p)

which makes the percentage of the file expansion,

A log2 / 	1

H(p) = k

i.e. the compressed file will increase by a factor Ilk, where k is the block size.

45

4.3.3 With the Average Marker Strategy

In this strategy, we add a marker equal to the average character, that is,

Smarker = [∑Si/k]

(4-27)

where

S

i is the ASCII value of the ith character in the block.

The probability of Smarker
is different from p3(misdet ectetion) of equation (4-

7) in the fact that here the block has a certain dependency structure as in English text

file, while there, they are totally random due to the error. Again due to the rounding and

unknown text dependency structure, analytical calculation of

Smarker

 is quite

complicated. Instead we use many English text files to get p(

Smarker

) for marker as in

Figure(4-11).

Fig. 4-11 Probability of Marker When Using the Average Marker Strategy

46

Figure (4-11) shows p(

Smarker

) for marker being different character of the alphabet.

Clearly, after expansion,

	
N' (ai) = N' (ai) + L/k p

(Smarker

= s(ai)) (4-28)

	

	

where

S(ai)

 is the ASCII value for

ai p(ai)

 = N

(ai) L/k p(

Smarker

= s (ai))

/ L(1+1/k)

= p

(ai

)+1/k(Smarker

=
s

(ai
))/1+1/k

(4-29)

 	

Notice that when the marker is a particular character,

p(

Smarker

= s (an))=1

a certain n, and zero for all the others. Hence equation (4-29) reduces to that with

particular character strategy, see equations (4-12), (4-13).

When the marker equal the previous character, then in equation (4-29)

p(

Smarker

=s(ai))

= p(a

marker

 = ai) for all i and hence equation (4-29) reduces to

that obtained with previous character strategy, see equation (4-26).

The entropy after adding marker

	

H'(p) = - ∑1i=1
p(ai)

+ L/k p
(

Smarker

=S(ai))/ 1+1/k log p(ai)+1/k p(

Smarker

=S(ai)) /1+1/k (1+1/k)H'(p) = - ∑1i=1 (p(ai)+1/k pmi) log p(ai)+1/k p

m

i / 1+1/k

Where pmi = pmi = p

(

Smarker

=S(ai))

 is given in figure(4-11)

47

	(1 + 1/ k) H'(p) = -∑1 i=1 (p(ai)+1/ k pmi)log(p(ai)+1/k pmi) + log(1+1/ k)∑ Mi=1 p(ai)

	 	 	
+1/k log(1+1/k)∑Mi=1pmi

but

∑1i=1(p (ai)

=1 and ∑1i=1pmi=1, therefore,

(1+1/k)H'(p) = - ∑1i=1 (p(ai)+1/k pmi) log (p(ai)+1/k p

m

i)+(1+1/k)log(1+1/k)

From equation (4-22),

∆ = 1/Log2l [(1+1/k)H'(P)-H(p)]

∆
=

1/ Log2l[∑1i=1 [p(ai)-(p (ai)+1/k p

mi

)log(p (ai)+1/k p

m

i)] + (1+1/k)log(1+1/k)]

(4-31)

Equation (4-31) gives the change in bit/symbol in the compressed file to

bit/symbol in the uncompressed file (compare this with equation (4-24) for the previous

character). Clearly in equation(4-31) A is positive because each term is positive. But

since 1/k pmi is very small, the term in the summation will be small.

The curve in figure (4-10) depicts pmi as a function of ai and the curve in figure
A

(4-4) depicts p(ai

)

. Hence, ∆ log2l / H(p) which is the percentage of the file expansion is

calculated and it equals 18.876577 for k=10.

48

4.4 Simulation and Results

4.4.1 With the Space Character Strategy

For any text file, the space character plays a major rule since it is the most frequent

character used. The curve in figure (4-4) shows that the probability of the space character

in the average for the text files used is 0.2957. Hence, using the space character as a

marker results in small file expansion. Also making the marked block longer reduces the

redundancy added as depicted in figure (4-9). Table (4-1) shows simulation results of the

expansion ratio for different text files when using space character as a marker after a 20

characters long block.

Table 4-1 The Percentage of File Expansion for Different Text Files When Using
the Space Character as a Marker After a Block of 20 Characters

file
number

compressed file
length at no marker

compressed file
length with marker

redundancy
added %

file
(1)

8781 8940 1.8

file
(2) 14251 14526 1.9

file

(3)
8301 8438 1.6

file
(4)

16363 16679 1.9

The simulation of this strategy showed that we need 60 characters in the register

for detection. However, the probability of miscorrection calculated in equation (4-9) is

relatively high, because increasing the block length increases N , also P(an) is high. This

makes the number of marker locations needed for correction l' large. To approach a very

low probability of miscorrection, we made the register length 150 characters, so that

49

when an error was detected, we shifted it to the correction section by applying the three

steps mentioned in section (4-1) 90 times. This means shifting the error to a position

between 90 and 150 in the register. Hence, we are checking all the markers in the

decoded data corresponding to the characters between positions 0 and 90 (at least) for

error correction.

Fig. 4-12 The Relative Frequency of Correction at Each Position of the Correction
Section of the Register With the Space Character

The experimental curve in figure (4-12) shows the relative frequency of correction

at each position in the correction section of the register. The x axis shows the position at

the register where the error is corrected, while the y axis shows the percentage of

correction at this position. To reduce the average number of bits toggled before the

erroneous bit is reached, N in equation (4-9), we start toggling from position 90 going to

position 150 because errors are concentrated between positions 91 and 105.

50

	

This scheme is capable of correcting one error every 1200 bits since the register

length is 1200 bits long. Because most of errors are detected at the first marker, errors at

closer pattern can be corrected. For example, if the error being corrected is at position

100, the next error can be corrected if it is only 800 bits far apart.

To compare these results with channel coding, we consider the Hamming code

(1023, 1013,1) which is capable of detecting and correcting one error every 1023 bits and

the redundancy added is 1%. In the proposed scheme, as Table (4-1) shows, a

redundancy of about 1.8% in the average is added. Here, we are capable of correcting

one error and detecting as many errors as exist in the register. In Hamming code, if there

is more than one error in the encoded block (the code word), the decoder decodes a

different word which causes the loose of self synchronism in the reconstructed data.

4.4.2 With the Previous Character Strategy

In the simulation of this strategy, we make the register length 40 characters, and the block

length 10 characters. For different English text files the expansion ratio of the

compressed file is 10% as it was calculated in section (4.3.2). The probabilities of

miscorrection and misdetection are insignificant. When an error is detected, the three

steps mentioned in section (4.1) are applied 20 times so that the erroneous bit is moved to

a position between 20 and 39 in the correction section of the register. Then we start

toggling from position 20 going to position 39. The experimental curve in figure (4-13)

shows the percentage of correction at each position in the correction section of the

register. Note that the frequency between positions 22 and 29 is relatively high because

most of the errors are detected at the first marker. Between positions 30 and 37 the

frequency is small with gradual decay because these errors are detected at the second

marker . In positions 38 and 39 the frequency is insignificant.

51

Fig. 4-13 The Relative Frequency of Correction at Each Position in the Correction
Section of the Register When Using the Previous Character

This scheme is capable of correcting one error every 320 bits, since the size of the

register is 320 bits. However, because with high probability errors are detected at the

first marker, errors at closer patterns can be corrected. For example, if the error being

corrected is at position 24 in the register, the next error can be corrected if it is just 192

bits far apart.

To compare these results with channel coding, we consider the Hamming code

(255, 247,1) which is a perfect code capable of detecting one error every 255 bits with a

3.24% redundancy added. In our scheme we add redundancy of around 10% but we can

correct one error and detect as many errors as exist in the register.

52

4.4.3 With the Average Marker Strategy

In the simulation of this strategy, the register length is chosen to be 20 characters, and the

block length is 10 characters. For different text files, the ratio of file expansion is around

18.5% as it was calculated. The experimental curve in figure (4-14) shows the

percentage of correction at each position of the correction section. Note that errors is

detected at the first marker with a very high probability. This strategy works for high

error rates since the register length is only 160 bits long.

Fig. 4-14 The Relative Frequency of Correction at Each Position in the Correction
Section of the Register With the Average Marker

53

4.5 Future Prospects

4.5.1 Towards a More Sophisticated Software

A good improvement could be achieved by using a more sophisticated software in the

correction algorithm. For example, for higher error rates, when error could not be

corrected because of the presence of two errors in the same block, both errors could be

corrected by toggling two bits at a time. A simulation of this was done which proved that

this scheme is able to correct two errors at the same time if they are both exist in the

correction section of the register when we toggle. If one error is in the correction section

and the other one is in the detection section, these two errors could not be corrected.

Also, in using the space character as a marker, we noticed that the misdetection

and the miscorrection happened when the error is in a block that contained only space

characters or most of the characters in the block were spaces. By counting the number of

space characters in the block and putting a different marker (e.g. the 'e' character) when

the number of space characters exceeds 10, we were able to decrease the late detection

and the miscorrection considerably and hence decrease the register length.

In the next section we are going to introduce an important factor that has an

effective impact on the process of detection and correction and can further improve the

results.

4.5.2 The Effect of RADIX

The encoding algorithm used for compression leaves the RADIX of the arithmetic (the

alphabet of the encoded data) unspecified. In the succeeded pages we will explain the

effect of RADIX on the error detection and correction algorithm proposed in this

chapter.

Suppose we have a code string Ck=0.0011011

This string has a decimal value Ckd=0.2109375

54

When an error happens in bit number five, Ck changes to Cke = 0.0011111

Cke has a decimal value Ckde = 0.2421875

The decimal value of the error ∆1= Ckde- Ckd = 0.03125

When we reach bit number four in toggling; This the bit just before the erroneous bit,

Cke will change to C'ke= 0.0010111

C'ke has a decimal value C'kde = 0.1796875

The decimal value of the new error (due to toggling) is A2= - 0.0625

The sum of the two errors is ∆ = ∆1 +∆2

=

 - 0.03125

Notice that the values of both ∆1 and ∆ are small compared with the value of the

string itself. This means that the value of the code point changes slightly even though

there is an error.

Now, consider the case when Ck is short, assume Ck = 0.101, i.e. Ckd = 0.625

the error (in the third bit) changes it to Cke = 0.100 , i.e. C

kde

 = 0.5

the decimal value of the error is ∆1 =

Ckde

- Ckd

= -0.125

toggling the second bit; which is the bit just before the erroneous bit,

C

ke

 will change to C'

ke

 = 0.110, and C

kde

= 0.75

The values of both ∆1 and ∆ (-0.125 and +0.125) are not small compared with the

value of the string. This means that the code point value is more sensitive to errors and

therefore reduces the chance of misdetection and miscorrection. We will show that ∆1 ,

the change in the value of the encoded string caused by the channel error, affects the

misdetection and causes late detection, while ∆ =∆1 +∆2 , the resulted error after

toggling, affects the miscorrection.

From equation (3.17) the transformation of data string "S1 S2 	 Sk" to the

corresponding code word is given by:

C

k

 = P(s1) + P(s1) P(s2) + p(s1) p(s2) P(s3) + 	 P(s1)P(s2)......p(sk-1) P(sk) 	(4-32)

55

When an error ∆1 is introduced to

C

k , it changes to

Cke

Cke= P(s1)+ p(s1) P(s2) p(s1) p(s2) P(s2)+ 	p(s1)+(s2)..p(sk-1)..P(sk) + ∆1

(4-33)

Assume ∆1 is small so that

C

ke falls in the interval [P(s1),P(s1 +1)) which causes the

next source character to be decoded correctly, that is, equation (3-22) becomes,

P(s1)< Cke< P(s1 +1) 	 (4-34)

Where P(s1) is the cumulative probability of the first source character to be decoded, and

P(s1 +1) is the cumulative probability of the next character.

By applying equations (3-23) and (3-24), we get the new string value (which is the new

code point) C(2)

ke

.

	

C(2) ke

= P(s2) + p(s2) P(s3) + p(s2) p(s3) P(s4) +.....+ p(s2) p(s3)... p(sk-1) P(sk) + ∆1/ p(s1)

(4-35)

From equation (4-35), to reduce the probability of misdetection, either to

maximize ∆1/

p(s1)

 or to minimize C(2)

ke

. It is clear that both the error ∆1 and p(

s

1) (which

express the code interval) is out of our control. Al is the error introduced from the

channel, and p(s1) is related to the source statistics. On the other hand, C(2)

ke

is controlled

by the encoder and the decoder. Practically we can minimize C to make the value of

the error larger relative to C(2)

ke

 by reducing the RADIX to 2, i.e. making the encoded

data in binary.

	 Now, assume that ∆1/

p(s1)

is small so that, the new code string C(2)

ke

 falls in the

interval [P(

s2

),P(

s2

+1)), then the next character is decoded correctly which leads to a late

56

detection of the error. Then equation (4-35) turns to,

C(3) ke

=P(s3)+ P(s3) P(s4)+P(s3) p(s4) P(s5) +....+ P(s3) P(s4)... p(sk-1) P(sk)+ ∆1/p (s1)p (s2) 	

(4-36)

From equations (4-36), as more characters are decoded, the value of the last term in the

equations becomes larger and hence the change in the value of the code point becomes

larger. Then, the decoder starts decoding wrong characters which means that the error is

propagating in the reconstructed data. This turns the late detection problem to be the

misdetection problem which has been discussed in section (4-2). For more details about

how the error propagate in the reconstructed data the reader is referred to [19].

Notice that equations (4-35) and (4-36) stands also for the miscorrection with the

change of ∆1 (the error-due -to the channel), to A (the e. -r due to the channel and

toggling). The late detection problem that happens in the error detection decoder,

happens with the error correction decoder when we toggle a bit very close to the erronous

bit. This increases the probability of miscorrection considerably.

CHAPTER 5

JOINT SOURCE AND CHANNEL CODING

Any error detection and correction algorithm considers the string of data (code word) as a

vector in a vector space. By keeping each two vectors a certain distance apart, (i.e., giving

each vector a certain subspace) the received vector can indicate the vector that has been

sent. Error correction can then be possible. In this chapter, we will consider the [0-1)

interval as a vector space, map every code word as a vector, and define the subspace

reserved for it.

5.1 [0-1) Vector Space

Arithmetic encoding considers the [0-1) interval as a space and maps the string of data as a

point in that interval defined by the code point and the code interval. In this scheme we will

also consider the interval [0-1) as a vector space and map the encoded string as a vector

defined by the code point C and the code interval W. We will find the subspace that should

be reserved for each vector to enable the decoder to detect and correct a one bit error every

time a decision is made.

Fig(5-1) shows how the symbol "S-1" mapped onto the interval [0-1) as a vector

defined by C1 and W1 and how the symbol "S" is mapped as a vector defined by C2 and

W2. W1 is a subinterval of [0-1) and is also considered as a vector space for the next

encoded symbol "S''. Note that C2 > C1.

57

58

W1 is the code interval for S-1
C1 is the code point for S-1
W2 is the code interval for S
C2 is the code point for S

Fig. 4-1 The [0-1) Vector Space

Assume that we have a source alphabet of m symbols (a l , a2, am). Instead of

dividing the vector space [0-1) into m subintervals as in the case of conventional arithmetic

coding, we will divide it into n subintervals. n=m * 2L where L is an integer equal to

(2,3 or4). The value of L depends on m and is chosen such that, the subspaces reserved

for each vector of the m vectors should not overlapped, i.e. when an error happens in the

vector C2 it will changes to C'2. C'2 is in the subspace reserved for C2 and indicates

where the error is. In other words

C'2

 is decoded as a'i where a'i is not one of the m

symbols and points to the symbol that should be decoded.

This simply means that we do not have a source encoder and a channel encoder, but

they are compressed into one stage. Also, at the decoder we do not have a channel decoder

and a source decoder but just a decoder as Figure (5-2) shows.

Fig. 5-2 The Communication Channel with the Suggested Scheme

59

Fig. 5-3 The [0-1) Vector Space for Alphabet 2

5.2 Alphabet 2

Let us consider the simplest example with alphabet = {a,b} where m=2. We choose L=2

such that n=8. This satisfies the condition that the space reserved for "a" never interferes

with the space reserved for "b" as will be explained in the next paragraph. We will consider

the case when the probability of (a) = the probability of (b) = 0.5, then we will generalize

the case for any probability.

Figure (5-3)a shows how the vectors "a" & ''b" are mapped onto the interval [0-1)

to be subintervals (1) & (8) respectively. Also the figure shows how the possible

sequences aa, ab ,ba and bb are mapped.

60

Figure (5-3)b explains how the space reserved for "a" does not overlap the space

reserved for "b". Subintervals (2),(3) and (5) forms with subinterval (1) the space

reserved for "a", while subintervals (4),(6) and (7) forms with subinterval (8) the space

reserved for "b". Suppose the source string starts with ab, then the encoded data will start

with 000111. When there is no error, the decoder first decodes "a" because 000111 falls

between 0 and 001, then the first three bits are discarded (because the decoder normalizes

the space for the next word to be decoded), then "b" is decoded because 111 falls in the

interval reserved for "b".

Now let us apply an error to the encoded data string 000111. If the first bit is

changed from 0 to 1, the encoded string will start with 100111. At the decoder, the

received data string 100111 falls into subinterval (5), so it will be decoded as a3 (see figure

(5-3)b). This indicates that the transmitted data started with "a" because subinterval (5) is

in the subspace reserved for "a", and hence decide that the error is in the first bit. If the

error is in the second bit, the decoder will receive 010111 and decode it as a1 which

indicates that the transmitted data starts with "a" and hence decide that the error is in the

second bit. Also if the error is in the third bit, the decoder will receive 001111 and decode

it to al which indicates that the error is in the third bit.

Now suppose that the error is in the fourth bit, the decoder will decode the string

000011 to start with "a" (which is right), then the first three bits are discarded and 011 will

be decoded as b1 which means that the next symbol to be decoded is "b" and the error is in

the first bit.

Fig(5-4) shows the vector space [0-1) as the probabilities of both "a" & "b" change

during arithmetic encoding. To keep the algorithm working regardless of the change in the

probabilities during the process of arithmetic encoding, the probabilities of a2, a3 and b3

should be equal to the probability of "a". This comes by building up the frequencies of a),

a3 and b3 every time the frequency of "a" is built up. Similarly, the probabilities of a1 , b1

and b2 should be equal to the probability of "b". Again, this comes by building up the

61

frequencies of a1, b1 and b2 every time the frequency of "b" is build up.

Fig. 5-4 The [0-1) Vector Space for Alphabet 2 with Unequal Probabilities

To simulate this, we built up an arithmetic encoder and decoder of source alphabet

equal to eight (a, a1 , a2, a3, b, b1 , b2, b3) which give the encoded data is binary. A short

file of source alphabet equal to two (a, b) were encoded such that when "a" is encoded, the

frequencies of a, a2 ,

a

3 and b3 are incremented. Similarly, when "b" is encoded the

frequencies of b, a

1

, b2 are incremented, and the same way for the decoder. When

errors are introduced to the encoded data, the decoder receives a vector which is decoded to

be any symbol but not "a" or "b". Hence the error is detected. The decoded vector tells the

symbol to be decoded. On other words, the value of the received vector points out where

the error is. This algorithm is able to detect and correct one error every time the decoder

makes a decision.

62

5.3 Alphabet 4

As we have done for m=2 we will consider the case when m=4. This means that we have

the source alphabet (a, b, c and d). We will choose L= 3 such that n = 32. Figure (5-5)

shows the vector space [0-1) when there are equal probabilities, while Figure (5-6) shows

how the vector space has been adjusted for different probabilities.

Both the encoder and the decoder do the following:

'a' is interval number 1

'b' is interval number 14

'c' is interval number 23

'd' is interval number 28

The length of intervals 5,9,13,17,21,25 and 29 is equal to the length of interval 1

The length of intervals 2,6,10,18,22,26 and 30 is equal to the length of interval 14

The length of intervals 3,7,11,15,19,27 and 31 is equal to the length of interval 23

The length of intervals 4,8,12,16,20,24 and 32 is equal to the length of interval 28

The subspace reserved for "a" is the intervals 2,3,4,5,9,17

The subspace reserved for "b" is the intervals 6,10,13,15,16,30

The subspace reserved for "c" is the intervals 7,19,21,22,24,31

The subspace reserved for "d" is the intervals 12,20,26,27,32

Fig. 5-5 The [0-1) Vector Space for Alphabet 4

63

intervals reserved for a

intervals reserved for b

intervals reserved for c

intervals reserved for d

intervals reserved for 'a'

intervals reserved for 'b'

intervals reserved for 'c'

intervals reserved for 'd'

Fig. 5-6 The [0-1) Vector Space for Alphabet 4 with Unequal Probabilities

65

To simulate this, we built up an encoder with a source alphabet equal to 32, and

encodes the data in binary. A string of an alphabet equal to 4 was encoded under the

conditions explained before. When errors are introduced to the encoded data, the decoded

vector indicates the symbol to be decoded, and the value of the received string points out

where the error is. This system was adapted for different probabilities of the source

alphabet and can correct one error every time a decision is made.

5.4 Comparison

We will compare this scheme with conventional arithmetic encoding followed by channel

coding for a source alphabet equal to 4. The same string of data, will be encoded using the

two methods.

For the string of data ""abacadb", Let the probability of all symbols are equal, i.e.

prob(a)=prob(b)=prob(c)=prob(d)=0.25.

Encoding this string by using conventional arithmetic encoding, as explained in the

example given in section 3.3, the output of the channel encoder is the following string:

00 01 00 10 00 11 01

Assume that the channel encoder uses the block code (5,2,1) for error correction, for this

string, the output of the channel encoder will be:

00000 01101 00000 10110 00000 11011 01101

Applying the proposed algorithm, the output of the encoder will be:

00000 01101 00000 10110 00000 11011 01101

which is the same string,

For both algorithms 7 errors can be corrected, one error every 5 bits. i.e. both algorithms

give the same performance.

66

For the same string of data, let us consider that the source alphabet has different

probabilities. Let prob(a)=0.5, prob(b)=0.25, prob(c)=0.125, prob(d)=0.125.

Applying conventional arithmetic encoding gives:

01 00 11 00 11 11

Applying the block code (5,2,1) we will have:

01101 00000 11011 00000 11011 11011

which is 30 bits long and can correct 6 errors, 1 error every 5 bits.

Applying the proposed algorithm we get the following string:

0000 01110 0000 101110 0000 110111 0111

which is 33 bits long and can correct 7 errors.

It is clear that we have increased the string length by 3 bits, but we can correct

errors at higher rate. This is due to the fact that one error can be corrected every time the

decoder takes a decision. The first four bits in the string are enough for the decoder to

decide an "a". Hence, the decoder can detect and correct a one bit error in the first four

bits. Because the decoder makes a decision 7 times for decoding this string, 7 errors can

be corrected, while in channel coding only 6 errors can be corrected.

For the same probabilities, let us consider a different string of data "abbacaab".

Encoding this string by using conventional arithmetic encoding gives the following string:

01 01 00 11 00 01

if we use the block code (5,2,1) for this string, the output of the channel encoder will be:

01101 01101 00000 11011 00000 01101

which is 30 bits long, and one error can be corrected every 5 bits.

Applying the proposed algorithm in the previous section the encoded string will be:

0000 01110 01110 0000 101110 0000 0000 01110

which is 36 bits long, and can correct 8 errors, one error can be corrected every 4.5 bits on

67

the average.

To calculate the average number of bits in which the decoder can correct one error

for the given probabilities (notice that the decoder uses four bits to decide "a", five bits to

decide "b" and six bits to decide both "c" and "d").

n

N = ∑ Pi Ni 	(5-1)
i=0

where N is the average number of bits, n the number of alphabet symbols, °i is the

probability of character i, and N is the number of bits used to decide character i.

N = 0.5 * 4 + 0.25 * 5 + 0.125 * 6 + 0.125 * 6 = 4.75 bits

BIBLIOGRAPHY

1. C. E. Shannon, "A Mathematical Theory of Communication," Bell System Technical

Journal, Vol. 27, 1948, pp.379-423,623-656.

2. R. M. Fano, "The Transmission of Information," Technical Report number 65, MIT

Research Lab of Electronics, 1949.

3. D. A. Huffman, "A Method of Constructing Minimum Redundancy Codes," Proceeding

of the IRE, Vol. 40, Sept. 1952, pp. 1098-1101.

4. L. D. Davisson, "Universal Noiseless Coding," IEEE Transaction on Information

Theory, IT-19, No. 6, November 1973, pp. 783-795.

5. T. J. Lynch, "Sequence Time Coding for Data Compression," Proceeding of the IEEE,

Vol. 54, No. 10 1966, pp 1490-1491.

6. J. Ziv, "Coding Theorems for Individual Sequences," IEEE Transactions of Information

Theory, IT-24 No. 3, July 1978, pp. 405-412.

7. A. Lempel and J. Ziv, "A Universal Algorithm for Sequential Data Compression," IEEE

Transactions on Information Theory, Vol. IT-23, No. 3, May 1977, pp. 337-343.

8. J. Ziv and A. Lempel,"Compression of Individual Sequences via Variable-Rate Coding,"

IEEE Transactions on Information Theory, IT-24, No. 5, Septemper 1978, pp.

530-536.

68

69

9. T. A. Welch, "A Technique for High. Performance Data Compression," IEEE Computer

Journal, June 1984, pp. 8-19.

10. Jorma Rissanen, Generalized Kraft, " Inequality and Arithmetic Coding," IBM Journal

of Reasearches and Development, Vol. 28, No. 2, March 1984.

11. Glen G. Langdon Jr., "An Introduction to Arithmetic Coding," IBM Journal of

Research and Development, Vol. 28, No. 2, March 1984.

12. N. Abramson, Information Theory and Coding. McGraw Hill Book Company, New

York, 1968.

13. Richard E. Blahut, Principles and Practice of Information Theory. Addison-Wesley

Publishing Company,1990.

14. J. C. Lawrence, "A New Universal Coding Scheme for a Binary Memoryless source,"

IEEE Transactions on Information Theory, Vol. 23, No. 4 pp. 466-472, July

1977.

15. J. P. M. Schalwijk, "An Algorithm for Source Coding," IEEE Transactions on

Information Theory, Vol. 18, No. 3, pp 395-399, 1972.

16. Peter Elias, "Predictive Coding," IRE Transactions on Information Theory, IT-1,

1955, pp. 16-44.

17. J. Rissanen, "A Universal Data Compression System," IEEE Transactions on

Information Theory, Vol. 29 No. 5, pp. 656-664, September 1983.

70

18. C. Peckham, "Word Based Data Compression Using Arithmetic Coding," Master

Thesis, Department of Electrical Engineering, New Jersey Institute of Technology,

1988.

19. P. Narasimhan Partha, "Error Propagation and Error Correction In Universal Coding

Systems," Master Thesis, Department of Electrical Engineering, New Jersey

Institute of Technology, 1988.

20. Nadir Sizgen, "Error Detection and Correction for Compressed Data," Master Thesis,

Department of Electrical Engineering, New Jersey Institute of Technology, 1988.

21. R. Pasco, "Source Coding Algorithms for Fast Data Compression," Ph.D. Thesis,

Department of Electrical Engineering, Stanford University, Colifornia, 1976.

22. F. Jelenik, Probabilistic Information Theory. McGraw-Hill Book Company, New

York

23. C. B. Jones, "An Efficient Coding System for Long Source Sequences," IEEE

Transactions on Information Theory, Vol. IT-27, No. 3, May 1981, pp. 280-291

24. Shu Lin And Daniel J. Costello, Jr. Error Control Coding. Prentice-Hall, 1985

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Approval Page
	Biographical Sketch
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Data Compression
	Chapter 3: Arithmetic Coding
	Chapter 4: Adding Redundancy Before Compression
	Chapter 5: Joint Source and Channel Coding
	Bibliography

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

