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ABSTRACT 

PERFORMANCE OF DIFFERENT STRATEGIES FOR 

ERROR DETECTION AND CORRECTION 

IN ARITHMETIC ENCODING 

by 

George F. Elmasry 

Lossless source encoding is occasionally used in some data compression 

applications. One of these encoding schemes is the arithmetic encoding. 

When data is to be transmitted via communication channel, noise and impurities 

imposed by the channel cause errors. To reduce the effect of errors, channel encoder is 

added prior to transmission through the channel. Channel encoder inserts some bits that 

help channel decoder at the receiver end to detect and correct errors. These added error 

detection and correction bits are redundancy that causes reduction in the compression ratio 

and hence an increase in data rate through the channel. The higher the detection and 

correction capability, the larger the added redundancy needed. 

Different approach for error detection and correction is used in this work. It is 

suitable for lossless data compression wherein errors are assumed to occur with low rate 

but causes very high propagation. That is, an error in one data symbol causes all the 

following symbols to be in error with high probability. This was shown to be the case in 

arithmetic encoding and Lemple-Ziv algorithms for data compression. 

With this approach, redundancy in a form of a marker, is added to the data before it 

is compressed by the source encoder. The decoder examine the data for existence of errors 

and correct them. 



Different approaches for redundancy marker is examined and compared. As a 

measure for comparison, we used misdetection by testing one or more marker location, as 

well as miscortrection. These performance measures are calculated analytically and by 

computer simulation. The results are also compared to those obtained with channel 

encoding such as Hamming codes. 

We found that our approach performs as well as channel encoder. However, while 

Hamming codes results in an erroneous data when more than one error occurs, this 

approach gives a clear indication for this situation. 
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CHAPTER 1 

INTRODUCTION  

Communication systems are becoming more and more sophisticated. When technology 

was simple, the defects and noise of the channel were simply overpowered by using a 

strong enough signal or a slow enough transmission rate. Nowadays, with the 

introduction of VLSI, very complex hardware became cheap, while power and bandwidth 

remained resources to be conserved. Channels remain impaired by noise, interference and 

other defects, and one wishes to transmit even more data through them. Hence there is a 

need for more powerful coding schemes. 

1.1 What is Data Compression?  

Contrary to the belief of many, the idea of data compression is not new. There has always 

been an interest in economical communication, whether it be oral or written, 

electromagnetic; analog or digital. There is still today a widespread use of abbreviations 

and acronyms in both oral and written materials. The Morse code, which made early 

telegraphy possible, is an example of an early data compression technique. 

We can define data compression as the process of encoding a body of data D into a 

smaller body of data ∆<D> such that it is possible for ∆<D>  to be decoded back to D or 

some acceptable approximation to D. The data compression techniques can be broadly 

classified into either reversible (or redundancy-reduction) or irreversible (or entropy-

reduction) techniques. 

The irreversible technique, which also is called data compaction, achieves 

compression by reducing the information and retaining only a subset of the message set. 

Quantization techniques, a form of data compaction, are used to encode a continuos source 

into a discreet source. Since some information is lost in the process, an exact replica of the 
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original message can never be reconstructed. Usually, data compaction is used only in 

applications where an approximation of the original message set is sufficient. 

We are interested in the reversible technique, where it is possible to recover all the 

original data. If we think of data as a combination of information and redundancy, the 

reversible techniques encode the source data with a view to remove (or at least to reduce) 

the redundancy in such a way that it can be subsequently reinserted into the data. Hence, 

these are called reversible techniques. 

1.2 Coding Schemes  

The implementation of such schemes were first described by Shanon[1] and Fano[2]. An 

improved method was proposed by Huffman[3], who developed a procedure which yields 

minimum average word-length for encoding statistically independent sources. Huffman's 

solution for data compression, however, is unsatisfactory in some applications due to the 

complexity and inefficiency of the encoding and decoding operations. One major problem, 

which is of particular importance in the case of encoding, is the need to know the statistics 

of the source alphabet, or alternatively to scan the source data to gather the statistics. 

Davisson[4] showed that an optimum source code can be designed without any 

knowledge of the statistical properties of the source. The theory of optimum codes for 

source with unknown statistics is called universal coding . An encoder is called universal 

if its performance, after being designed without prior knowledge of the source statistics, 

converges, as the block length approaches infinity, to the performance of an encoder with 

prior knowledge of the source statistics. The universal encoding algorithms are capable of 

estimating, either directly or indirectly, the source statistics with increasing accuracy as the 

source string is being encoded. Since the source statistics are being estimated on the fly , 

and requires only one pass over the data, these algorithms have important applications in 

compression for information transmission. 
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Some examples of the universal coding schemes are, the Lynch-Davisson[5] code 

in which the redundancy of the code converges to zero as the block length approaches 

infinity. Also the incremental parsing technique described by Lempel-Ziv [6][7][8] and its 

character extension suggested by Welch[9] and the arithmetic code of Langodon-

Rissanen[10][11] are examples of universal coding schemes. 

One of the main drawbacks of the universal coding algorithms (and this is true of 

most reversible data compression schemes) is their high error propagation in the event of 

occurrence of a channel error. That is an error in the compressed image is not only 

reflected in that part of the reconstructed data but also tends to affect much of what follows 

it. An error in a single bit can cause the loss of the self-synchronizing property of these 

codes, resulting in the loss of a large block of data. The amount of damage that an error 

causes to the reconstructed data, which can be used as a measure of error propagation, 

depends on the compression scheme used. The reader is referred to [19] for more 

information about error propagation. Since these schemes are so intolerant to errors, their 

use over noisy channels is often limited. 

1.3 The Communication Channel  

As the demand for communication capacity continues to grow in such communication areas 

as person-to-person, broadcast, intercomputer and intracomputer, engineers are pressed to 

improve performance by trying to maximize the transmitted information rate through an 

available communication channel. Figure (1-1) presents the communication problem where 

the source of information is to be connected to a user by a channel. A device is inserted 

between the source and the channel called the encoder, and another device is inserted 

between the channel and the user called the decoder. 
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Fig. 1-1  The Communication Channel 

In his study of the above communication problem, Shannon showed that a nearly 

error-free communication is possible over a noisy channel, provided an appropriate 

preprocessor called the encoder and an appropriate post processor called the decoder are 

allowed at each end of the communication link. However, he did not tell how to design the 

best encoders and decoders. Although considerable work has gone into an attempt to solve 

these problems, complete solutions are' still unknown. 

Fig(1-2) presents how the source is compressed (redundancy is removed) by the 

source encoder, then certain redundancy is introduced by the channel encoder for error 

correction. At the receiver the channel decoder correct errors and remove the redundancy, 

then the source decoder decompresses the data to the original information. 

The main objective of this work is to study the idea of adding the redundancy 

needed for detection and correction before compression, and compare the results with the 

solutions offered by standard channel coding. 



Fig. 1-2 The Communication Channel Problem 
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CHAPTER 2 

DATA COMPRESSION 

A discrete-time information source produces messages by emitting a sequence of symbols 

from a fixed alphabet called the source alphabet. The data can be highly redundant and 

hence waste the resources of the communication system. Data compression is a coding 

scheme used to represent the output of data source efficiently. The source output 

symbols is represented as a stream of bits suitable for transmitting through the channel. 

Data compression can considerably reduce the number of bits needed to represent the 

output sequence of a data source as compared with a simple binary representation of this 

source output. 

2.1 Information Content and Entropy 

A discrete memoryless source is a discrete random process{.., X-2, X-2, X0, X1 , X2, ..} 

where the XL  are independent, identically distributed random variables taking values of 

source alphabet {a1, a2, 	 ad  with probability distribution p= {p(a1 ), p(a2), 	 p(ac)}. 

Any two sources with the same probability distribution on their outputs will present the 

same data compression problem because one can always rename symbols within the 

encoder and the decoder. Thus, for data compression, the source alphabet is unimportant; 

only the size of this alphabet and its probability distribution matter, so that one can use 

the symbol p  as a handy name of the source it describes. Clearly, a source whose output 

is not random, is completely predictable from the past history and contains no 

information. 

We can define the information content of a source as the number of bits per 

source symbol needed on the average by the best data compression code for this source. 

The information content of a memoryless source p  is measured by the entropy H(p). The 
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entropy of a probabilistic source is equal to the average amount of information per 

symbol generated by that source. In other words, the entropy of a source is the average 

number of bits necessary to specify which symbol has been selected by the source. 

If a source output aj  occurs with a probability p(aj), then the amount of 

information associated with the occurrence of output aj is defined to be: 

	

I(aj) = - log p(aj) 	 (2.1) 

when the logarithm is to the base 2, the information is measured in units of bits 

If the probability of selecting the source symbol 

aj 

 is p(

aj

), then the information 

generated each time a symbol aj is selected is, - log2 p(aj) bits. From the law of large 

numbers, the symbol aj will be selected on the average n p(aj) times in a total of n 

selections, so the average amount of information obtained from n source output is: 

- n p(

a1

) log2 p(

a1

) 	 - n p(a

j

) log2 p(aj) 	 n p(

a

c ) log2 p(

a

c ) 	 (2.2) 

To obtain the average amount of information per source output symbol, we divide by n, 

Therefore the average information, or the uncertainty, which is also termed the entropy 

H(p) is given by, 

H(p) = - Σc 	

p(

a

j ) log2 p(

a

j ) 

	bits/symbol 	 (2.3) 
j=1 

The efficiency of any compression code is defined as 

Efficiency = 	
H(p)

/L  x 100 	(2.4) 

	 (2.4) 

where L is the average length of the code word and is given by 
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L =Σcj=1 

p(

a

j ) log2 p(

a

j ) 

	 (2.5) 

where L> H, and 1(a1) is the length of the code corresponding to the symbol a1. 

2.2 Prefix Coding  

Suppose that a source has alphabet eight, with probability distribution given by 

p1 = p2 = p3 = p4 = 1/32 

p5  = p6  = 1/16 

p7  = 1/4 p8  = 1/2 

The entropy H = 17/8 bits per symbol. The common method of representing a symbol of 

alphabet 8 source in binary requires three bits. A possible variable length code is 

illustrated in table (2.1) 

Table 2-1 An Example of Prefix Coding 

Symbol 	Probability 	code word 	length 

a 	 2-5 	 00000 	 5 

b 	 2-5 	 00001 	 5 

c 	 2-5 	 00010 	 5 

d 	 2-5 	 00011 	 5 

e 	 2-4 	 0010 	 4 

f 	 2-4 	 0011 	 4 

g 	 2-2 	 01 	 2 

h 	 2-1 	 1 	 1 
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The average length of the code word is L = 17/8 bits per symbol which is equal 

to the entropy (L> H is satisfied). This code is a prefix code, i.e. there is no need to 

append extra symbols for punctuation. The code words can be run together without the 

possibility of ambiguity. Thus, 

000110000000001000101 

can be decoded only as "dabch" 

2.3 Huffman Coding  

Huffman coding can be considered as a class of prefix coding. Consider a source with 

seven output symbol 'A, B, C, D, E, F and G' having the probabilities 3/8, 3/16, 3/16, 

1/8, 1/16, 1/32 and 1/32 respectively. Figure (2.1) illustrates how the code construction 

proceeds. The original source is at the left side. At each step, as the tree is constructed to 

the right, the two symbols of smallest probability are combined, and the final tree is 

labeled with 0 and 1 arbitrarily at each branch. The code is illustrated in Table (2-2). 

Fig. 2-1  The Code Construction of a Huffman Coding Example 
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Table 2-2 The Resultant code of a Huffman Coding Example 

Symbol 	Probability 	Code word 	Length 

A 	 3/8 	 0 	 1 

B 	 3/16 	111 	 3 

C 	 3/16 	110 	 3 

D 	 1/8 	 101 	 3 

E 	 1/16 	1001 	 4 

F 	 1/32 	10001 	 5 

G 	 1/32 	10000 	 5 

for this example L  = 2.44 while H = 2.37. This means that a small improvement 

can be obtained. Another example of Huffman coding, which leads to the next class of 

compression codes will be explained. Consider a source of alphabet three 'A, B and. C' 

with probabilities 3/4, 3/16, and 1/16. From Figure (2-2), the Huffman code for single 

letters has code words 1, 01 and 00. The average block length is 1.25 while the entropy 

is 1.012, it is clear that a meaningful improvement is possible. 

Fig. 2-2 A Single Letter Huffman Coding Example 

Figure (2-3) shows the construction of the Huffman code for blocks of length 2 

(extended Huffman Coding). The average length of the code word which encodes two 

source symbols is 2.09 bits. So, the rate of the code is 1.045 bits per source symbol. This 

should be compared with 1.25 bits per symbol, which is the rate of the simpler Huffman 

code, and with the 1.012 bits per symbol, which is the entropy of the source. 
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Fig. 2-3  An Example of Extended Huffman Coding  

2.4 LZ Algorithm  

The LZ algorithm converts variable-length strings of input symbols into fixed-length (or 

predictable length) codes. The symbol strings are selected such that, in the limit, all have 

almost equal probability of occurrence. Strings of frequently occurring symbols will 

contain more symbols than a string having infrequent symbols. This algorithm parses the 

source string into a collection of segments of gradually increasing length called the 

dictionary. There is no preference given to any particular symbol or segment. Starting 

with the empty segment, each new segment added to the collection is one symbol longer 

than the longest match so far found. For encoding, it is sufficient to transmit an index to 

the position of the longest match and the last added symbol.  



12 

Suppose that the source alphabet is binary with elements{ 0,1}. Initially the 

dictionary is empty. A source string 010111011 is parsed as {0, 1, 01, 11, 011}. When 

the parsed strings are retained in the same order in the dictionary, as they received, each 

segment can be encoded as the order pair (i, y), where the index i gives the position of the 

longest earlier found matching segment in the dictionary, and y gives the last added 

symbol. For example, the code for the segment 011 is the order pair (3, 1). It is easily 

seen that due to the nature of the incremental parsing algorithm, if any string is a member 

of the dictionary, then all its prefixes should also be members of the dictionary. This 

code is universal because the code length for an infinitely long source sequence 

converges to the entropy without any assumptions about the source probabilities. 

The decoder reconstructs the segment corresponding to this pair and adds it to its 

dictionary. At any point of time the encoder and the decoder dictionaries are the same 

because they both use the same strategy to add segments to their individual dictionaries. 

The decoder is able to reconstruct the whole source string from the ordered pairs that are 

received. Table (2-3) shows the encoder and the decoder dictionaries, data sent and the 

decoded data for the example given above. 

LZ algorithm is able to adapt the redundancy characteristics of the source, 

requiring no prior information about the source statistics. The LZ code is a variable-to-

fixed length code (it encodes input string of variable length into codes of fixed length) 

unlike the Huffman code which is a fixed-to-variable length code (input strings of fixed 

length are encoded into variable length codes). 

Some disadvantages of this algorithm are: A poor compression can result near the 

beginning of the file, hence it should not be used on short messages. The message 

should be long enough for the procedure to build enough symbol frequency experience to 

achieve good compression over the full message. Rapid changes in the redundancy 

characteristics of a very long file, may cause degradation in the compression achieved. 

The structure of the code word, an index and a row source symbol, may be  inconvenient 

for a large source alphabet. 
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Table 2-3  An Encoding and Decoding Example of LZ Algorithm 

encoder 

dictionary 	 {ϕ , 0} 	{ϕ , 0.1} 	{ϕ .0,1,01} 	{ϕ ,0,1,01,011} 

sent 	 (ϕ

, 0

) 	(ϕ , 1) 	(0,1) 	(1,1) 	(01,1) 

decoder 

dictionary 	 ϕ 	(ϕ  ,0) 	{ϕ,0,1} 	{ ϕ,0,0,1,01} 	{ϕ, 0,1,01,01,011} 

decoded 	 0 	 1 	 01 	 11 	 011 

2.5 LZW Algorithm  

This algorithm retains the adaptive properties of the LZ algorithm and improves the 

compression ratio without sacrificing any of the simplicity of the data gathering process. 

Instead of treating the source as having a binary alphabet, an extended alphabet with 256 

symbols is used. Hence, this algorithm is refereed to in the literature as the character 

extension improvement. Table (2-4) shows the dictionary, the sent string and the 

received string for the same example explained in the previous section. 

In the original LZ algorithm, the code that is generated was an order pair 

consisting of an index and a source symbol. Thus the code contained some 

uncompressed data. Instead, the code generated by the LZW algorithm consists of a 

sequence of identifying numbers. This results in a significant improvement in 

compression of shorter source strings. Finally, while with the L-Z algorithm, the 

dictionary is initialized with the empty set, with LZW is done with all the alphabet 

characters. 
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Table 2-4  An Encoding and Decoding Example of LZW Algorithm 

encoder 

dictionary 	{0,1} {0,1,01} {0,1,01,10} {0,1,01,10,011} {0,1,01,10,011,11} 
{0,1,01,10,011,11,101} 

sent 	0 1 01 1 10 11 

decoder 

dictionary 	{0,1} {0,1,01} {0,1,01,10} {0,1,01,10,011} {0,1,01,10,011,11} {0,1,01,10,011,11,101} 

decoded 	0 1 01 1 10 11 

Notice that LZW  sends one code word each time, while LZ sends one code word plus 

row character each time. 



CHAPTER 3 

ARITHMETIC CODING  

Arithmetic coding is a data compression technique that encodes data string by creating a 

code string which represents a fractional value on the number between 0 and 1. The 

coding algorithm is recursive, i.e. it operates on and encodes (decodes) one data symbol 

per iteration or recursion. On each recursion, the algorithm successively partitions the 

interval of the number line between 0 and 1, and retains one of the partitions which 

corresponds to the new string as a new interval. Thus, the algorithm successively 

generates smaller intervals, and the code string, viewed as a magnitude, lies in each of the 

nested intervals. The data string is recovered by using magnitude comparisons on the 

code string to recreate how the encoder must have successively partitioned and retained 

each nested subinterval. 

This algorithm differs considerably from the more familiar coding techniques 

such as prefix (Huffman) codes. In Huffman coding, the file should be scanned to 

calculate the probability of each symbol before encoding, while arithmetic encoding is 

capable of accepting successive events from different probability distributions. Moreover 

the code acts directly on the probabilities, and can adapt "on the fly" to changing 

statistics. 

15 
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3.1 Encoding  

Let A={a1  ,a2  	 ,ac} be the source alphabet, with c different symbols, of a zero- 

memory information. Let this source emits symbol ai with probability pi. For each 

symbol ai , we define the cumulative probability P(ai) by 

i-1 
P(ai) = ∑ 	p(ak) 	(3.1) 

k=1 

where i=1, 2, 	 , c and P(a1)=0 

For the encoding operation, we need to define two parameters; one is the code point C , 

and the other is the code interval W. C is the leftmost point of the interval and W is the 

width of the interval. 

Code Point  The new left most point of the new interval is the sum of the current code 

point C, and the product of the interval width W of the current interval and the 

cumulative probability P(ai) for the symbol ai, being encoded. 

New C = current C + current W . P(ai) 	 (3.2) 

Code Interval The width of current code interval W is the product of the probabilities 

of the data symbols encoded so far. Thus the new interval width is: 

New W = Current W . p(ai) 	 (3.3) 

where ai is the current symbol. 

When we start encoding, the initial values of code point is C0=0, and the initial value of 

code interval is W0=1 

For the first source character s1, to be encoded , we have 
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C

1 

 = Co + W0  P(s

1

) = P(s1) 	(3.4) 

and 

W

1 

 = W0  P(s1) = P(s1) 	(3.5) 

For the second source character 

s2, C2  = C1  + W1  P(s2) 	(3.6) 

Substituting (3.4) , (3.5) in (3.6) we get , 

C

2 

 = P(S

1

)  + p(S

1

) P(s

2

) 	 (3.7) 

After encoding the KTH  character in the source file, we have from equation(3.2), 

Ck  = Ck-1  + Wk-1  P(s

2

) 	 (3.8) 

and from equation(3.3), 

Wk 

 = Wk-1 P(Sk) 	(3.9) 

But 

= Ck-1 = Ck-2 P(Sk-1) 	(3.10) 

and hence substituting equation (3.10) in equation (3.8), we get 

Ck  = Ck-2 + Wk-2 P(Sk-1) + Wk-1  P(Sk) 	 (3.11) 

Also 

Wk-1 = Wk-2 p(sk-1) 	(3.12) 
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Substituting equation (3.12) in equation (3.9), we get      

Wk 

 = Wk-2  p(sk-1) p(sk) 	 (3.13) 

Continuing in the same way equation (3.11) becomes 

C0  = 

W0 

 p(s1) + W1  P(s2) + 	+ Wk-2   P(Sk-1) + Wk-1   P(Sk ) 	 (3.14) 

and equation (3.13) becomes 

Wk 

 = W

0 

 p(s1) p(s2) 	 p(sk-1) P(k ) 	 (3.15) 

But 

W0

=1 

Wk 

 = p(s1) p(s2)........p(sk-1

) 

 P(

s

k ) 	 (3.16) 

Finally combining equations (3.14) and (3.16), we end up with, 

Ck  = P(

s1

) + p(

s1

) P(

s2

) + p(s

1

) P(s

2

) P(

s3

) + 	+ p(

s1

)P(

s2

).....p(sk-1) P(sk) 	(3.17) 

Equation (3.17) can be rewritten as, 

Ck  = P(

s

1 )+ p(s1 )[P(s2)+ p(s2)[P(

s

3 )

+......... [P(sk-2)+p(sk-2

)

[P(sk-1

) 

+ p(sk-1)P(sk)]]..]] 

(3.18) 

 

Given that P(sk) < 1 , the term in the innermost parenthesis, implies 

P(

s

k-1)+ P(

s

k-1)P(sk) < 

P(s

k-1

)

+ p(

s

k-1 )                	 (3.19) 
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But,  

P(sk-1)+ p(sk-1) = P(sk-1+1) 	 (3.20) 

where sk-1+1 = ak+1 . if sk-1  = aj  in the source alphabet. 

Since P(sk-1+1) < 1, then continuing in the same manner, we will have the outermost 

parenthesis is less than 1. Hence, from equation (3.18) 

Ck  < P(s1) + p(s1) 	 (3.21) 

From equation (3.18), it is obvious that 

C

k > P(s1) , therefore 

P(s1) < Ck < P(s1) + p(s1) = P(s1+1) 	(3.22) 

Where P(s1) is the cumulative probability of the first source character to be encoded, 

and P(s1+1) is the cumulative probability of the symbol next to this character in the 

alphabet. That is if s1=ai  , then s1+1= a1+1 	. 

We conclude that the code point falls into the interval [

ai

,

a

i+1 ) no matter how long 

the source string is. The value of the code point, representing the source string depends 

on the cumulative probabilities of the string characters used in the source string. As an 

extreme case if the source string is "

ai ai 

 

a

i ... " ,then the code point is P(

a

i ). On the other 

hand if the source string is "

a

i  

a

i+1  

a

i+1 ... " , then the code point is very close to P(ai+1), 

but not equal to 

P(a

i+1

)

. Source strings begin with the source symbol 

a

i , are encoded to 

the interval [ai, ai+1

) 

as shown from equation (3.22) P(

a

i ) ≤  Ck 

< P(a

i+1

) 
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3.2 Decoding  

The first step in decoding is comparing the code point 

Ck 

 with the cumulative 

probabilities of the source symbols. The first decoded character is the source symbol 

which has the largest cumulative probability less than or equal to Ck. Then to find the 

code point for the second decoded symbol; we subtract P(s1) from 

Ck : Ck 

 - P(s1) = p(s1) P(s2) + p(s1 ) p(s2 ) P(s3 ) + .......... + p(s1 )p(s2 )...p

(s

k-1

)P(S

k

) 

	(3.23) 

and divide 

Ck 

 - P(

s1

) by p(

s1

): 

Ck

(2) =P(s2) + p(s2) P(s3)+p(s2) p(s3) P(s4) ....... + p(s2)p(s3).... p(sk-1) P(sk)               (3.24) 

 
In the same manner we compare the new code point 

Ck

(2)  with the cumulative 

probabilities of  the source data symbols. The symbol with the largest cumulative 

probability which is  smaller than or equal to the code point is the second decoded 

character. 

Similarly the code point for decoding the third source character is: 

Ck

(3) =P(s3) + p(s3) P(s4)+p(s3) p(s4) P(s5) ........ + p(s3 )P(s4 ).... p(s3 )p(s4 )....  p(sk-1 ) 	(3.25) 

In the same manner, reaching the last source character, 

Ck

(k) =P(s

k) 	(3.26) 

Which is the cumulative probability of the KTh.  source symbol. 
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3.3 Example 

Consider the alphabet 4 source, A={a, b, c, d}, with the relative frequencies 0.5, 0.25, 

0.125 and 0.125 respectively. Table (3.1) shows the cumulative probabilities P(ai). 

Ck  = Ck-2 + Wk-2 P(Sk-1) + Wk-1  P(Sk) 

 

Table 3-1  The Cumulative Probabilities for an Arithmetic Coding Example 

Symbol 	 Probability p(ai) 	 Cumulative Probability P(ai) 

decimal 	 binary 	 decimal 	 binary 

a 	 0.5 	 0.1 	 0 	 0 

b 	 0.25 	 0.01 	 0.5 	 0.1 

c 	 0.125 	0.001 	 0.75 	 0.11 

d 	 0.125 	0.001 	 0.875 	 0.111 

Figure (3.1)  shows how the four code points divide the [0-1) interval into four 

subintervals. Notice that the code points are actually the sum of the probabilities of the 

preceding symbols for each symbol (cumulative probability). 

Fig. 3-1  The [0-1) Interval for an Arithmetic Coding Example 

We identify each subinterval with its leftmost point and its width. For example 

the interval for the symbol "a" goes from 0 to 0.5, and for symbol "b" goes from 0.5 to 

0.75. Notice that the width of each subinterval to the right of each code point 

corresponds to the probability of the symbol. 
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3.3.1 Encoding  

Suppose we want to encode the following string " acaabbda The initial value of code 

point and code interval are ; C0=0 and W0=1 

P(sk-1)+ p(sk-1) = P(sk-1+1) 

 

Applying equations (3.4) and (3.5) we get C1  and W1  in binary as follows 

C1 = 0 and W1 = 0.1 

Applying equations (3.2), (3.3) we have C2  and W2   in binary, 

C2  = 0.011 and W2  = 0.0001 

Finally when we reach the last symbol we will have, 

C8  = 0.0110001010111 and W8  = 0.000000000000001 

3.3.2 Decoding  

We can consider the decoding procedure as the reverse of the encoding process. The 

decoder undo whatever the encoder does. For the same example given before, the 

decoder receives the encoded string 0.0110001010111. This code point is in the interval 

[0, 0.1), therefore the first decoded symbol is "a". 

Since the accumulative probability of "a" is P(a)=0, and the probability of "a" is 

p(a)=0.1 , using equation (3.23) gives the code point for the next source character to be 

decoded. 

Ck(2)  = 
	0.0110001010111 — 0

/0.1 

= 0.0110001010111 
 

 

This point is in the interval [0.11 , 0.111) , therefore the second decoded character is "c". 
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For the symbol "c" we have P(c)=0.11 and p(c)=0.001 , so the third code point is 

 

Ck(3)  = 
	0.110001010111 — 0.11/ 0.001 = 0.001010111 

 

 

This point is in the interval [0 , 0.1), therefore the third symbol to be decoded is "a" . but 

P(a)=0. and p(a)=0.1, so the fourth code point is 

Ck(4)  = 
	0.001010111 — 0.1 = 0.01010111 

 
 

 

The decoder proceeds in the same manner until the code point corresponds to the 

exact cumulative probability of the last encoded source character (see equation(3.26)). 

For further details with examples, refer to [10]. 

3.4 The Rounding Algorithm  

In conventional arithmetic coding, as more symbols are included in the source sequences, 

the interval of decoding becomes more finely divided. The capacity of the decoder to 

accept more source symbols is limited by the ability of its fixed registers to resolve the 

boundaries between intervals. Any unanticipated rounding would be fatal to the 

processes of encoding and decoding. To avoid any inaccuracy which might be 

introduced by the use of floating point calculation, it is necessary to find an alternative 

representation of the probabilities p(s) by applying a scale factor u that converts the 

probability to frequency rate per u source symbols. To record these frequencies on a 

cumulative basis, the cumulative frequency table F is defined as 
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Fi  = [1/2 + u  ∑    p j]   , 0 ≤ i ≤ c 	(3.27) 1≤ j≤i  

where ւ x ] is the large integer less than or equal to x. 

Equation (3.27) gives F0  = 0 and Fc  = u . In practice the rounding effect 

provided by the equation can be avoided by suitable choice of the scale factor u. Table 

(3-2) shows an example of the same source alphabet used in section (3.3) with the symbol 

probabilities and the derived cumulative frequencies. Note that Fi  is based on the actual 

frequency. 

Table 3-2  An Example of the Cumulative Frequencies 

Subscript 	 Source 	Symbol 	Probability 	 Cumulative 

	

ai 	 pi 	 Frequency 
Fi  

1 	 a 	 0.5 	 500 

2 	 b 	 0.25 	 750 

3 	 c 	 0.125 	 875 

4=c 	 d 	 0.125 	 1000=u 

For more detailed information about how the boundaries of the intervals change 

due to rounding, the reader is referred to [23]. The final code word length is the same as 

for conventional arithmetic coding, eventhough the boundaries of the intervals deviate 

slightly as a result of rounding. This algorithm leaves the RADIX of the arithmetic (the 

alphabet of the encoded data) unspecified. 

Although this algorithm is made for the applications of noiseless channel, in the 

next chapter, we will establish an algorithm for error detection and correction of the 

compressed data. The effect of RADIX will clearly be noticed in section(4.5.2). We will 

show the need to adapt this algorithm for the lowest possible RADIX . 



CHAPTER 4 

ADDING REDUNDANCY BEFORE COMPRESSION  

As mentioned in chapter 1, compressed data can suffer very high error propagation in the 

event of channel error. An error in the compressed image does not affect only that part of 

the reconstructed data, but also affects much of what follows. An error in a single bit can 

cause the loss of self-synchronism and hence the loss of all data that follows. In this 

chapter, we will use the high error propagation property to establish error detection and 

correction schemes for different error rates. 

By adding, as shown in Figure (4-1), a specific characters after each block of 

symbols of the source data before it is compressed, almost every error can be detected at 

the receiver by looking for that specific character marker at its position. To correct these 

errors, we resort on toggling each bit in the block until that specific marker shows up. 

We will use different types of marker strategies, and will study the expansion of the 

encoded data due to the added marker, as well as its effect on the system capability of 

detection and correction. Also, we will compare the results with the detection and 

correction obtained by conventional channel coding for the same error rate and show the 

advantages and disadvantages of the proposed scheme. 

Fig. 4-1 Encoding Scheme 
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4.1 Decoding Procedure 

With Error Detection and Correction 

A register of length bx is inserted between the input encoded data and the source decoder 

as shown in figure(4-2). The required length of the register will be shown later to depend 

on both the error rate of the channel and the specific character marker used. We are 

assuming that at least the first bx/2 characters in the file are error free. For a low error 

rate, this is rather non restrictive assumption, if the length of the register is chosen 

adequately. 

Fig. 4-2  Decoding Scheme with Detection and Correction 

First the register is filled up with bx characters from the encoded data. While this 

is done, the error detection decoder decodes the character at position 0 and after each 

block of symbols, looks for the specific character marker at the decoded data. If the 

marker does not appear at the expected locations, this decoder sends a flag to indicate that 

there is an error, either at that point or before it; Due to the assumption that the first bx/2 

characters are error free, then, with probability one, the error is in the detection section of 
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the register in a location somewhere after the location where the previous marker did 

appear. With low probability we may detect a marker in its location eventhough an error 

has occurred before it. We term this as misdetection (or late detection) of the error. 

Therefore, if a marker did not appear at a certain location, error must have occurred 

between this location and the previous expected marker location, and with less 

probability between the previous marker location and the one before that, etc. 

Clearly at any time, if the error detection decoder did not send the flag, either the 

character at position 0 is error free, or the decoder did not reach the marker position at the 

decoded data to check for error. Then a one character shift through the register takes 

place as follow: 

1. The character at position bx-1 is decoded by the source decoder. 

2. The character at position bx-2 is shifted to position  bx-1, the character at 

position bx-3 is shifted to position bx-2, and so on. Finally, the character at 

position 0 is shifted to position 1. 

3. The next character in the encoded data is moved to position 0. 

If the character at position 0 corresponds to an end of block so that a marker is 

expected at the decoded data, but the detection decoder does not show that, then an error 

is detected, which is assumed to be between position 0 and position bx/2-1 as mentioned 

above. The error is shifted to the correction section of the register, between position bx/2 

and position bx-1, by applying the three steps mentioned above bx/2  times. 

To correct the error, every bit in the correction section is toggled starting from 

position bx/2 . After toggling each bit, the whole register starting from position bx-1 to 

position 0 is decoded by an error correction decoder. This decoder does the same 

function as the detection decoder, i.e. decoding and counting the decoded characters, and 

looks for the specific marker. If a wrong bit is toggled, the markers should not appear in 

their expected positions in the decoded data. That bit is switched back and the next bit is 
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toggled. On toggling the erroneous bit, all the markers in the reconstructed data should 

appear in their positions, and hence the error is considered to be corrected. It may happen 

that a wrong bit is toggled, that is error has not been corrected, but marker appears. this 

we term miscorrection which can happen with certain probability. In the next section, 

the probability of misdetection and the probability of miscorrection, will be discussed. 

we will also show how to overcome this problems. Figure (4-3) shows the flow chart of 

this scheme. 
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Fig. 4-3 The Flow Chart of the Proposed Scheme 
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4.2 Probabilities of Misdetection 

and Miscorrection  

The probabilities of misdetection and miscorrection as well as the size of the file 

expansion depends on the marker strategy, the length of the marked block, and the 

specific file used. The following marker strategies will be examined: 

1. Particular character strategy. Any character of the alphabet is used as a marker. 

2. Previous character strategy. That is, the marker is chosen to be the last character 

of the block. For example, when we chose the block length to be eight characters 

the following data string: 

Today the weather is very good so we 	 

will become, when adding the marker: 

Today the weatheer is verry good sso we 	 

3. Average marker strategy. Here we chose the marker a character which 

represents the ASCII integer less than or equal to the average of the ASCII 

values of all characters in the marked block, i.e. 

k 	 
Sk+1 = │∑ Si│ / k (4.1) i=1 	 

where Si  is the ASCII value of the character i in the block, k is the block length, 

and 

S

k+1 is the ASCII value of the marker. Lx⅃ is the largest integer which is 

less than or equal to x 

4.2 .1 Misdetection  

Misdetection is defined as the probability not to detect an error in the expected location, 

given that an error took place. Let us assume that the error propagates totally in the 

decoded data, so that every character is in error with probability one. Therefore, each 

decoded character can be any character according to its probability in the alphabet. 
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With the Particular character strategy , let the marker character; a , has a 

probability of 

P(an ) 

 in the alphabet. Then the probability of still having the marker a 

at the specific location, P(an ), is the probability of misdetection. For English text files 

this is given by the curve in Figure(4-4), where the x axis is the ASCII character value 

and the y axis is the probability of that character. Notice the peak at 32 which is the value 

of the space character. 

Fig. 4-4 Probability of Misdetection When Using a Particular Character as a Marker 
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Clearly, the smaller the probability P(a) of the marker used, the lower the 

misdetection. Hence, 

Pmin  ≤  P1 (mis det ection) ≤ Pmax 	(4-2)   

Where the probability of the most frequent character of the alphabet is on one extreme, 

and the probability of the least frequent character is on the other. 

For the English text files, 

0 ≤ 

P

1 (mis det ection) ≤ 0. 295387  

If all the alphabet characters are equiprobable, P(an)=1/M for all an , then, 
 

 

P

1 (mis det ection) = 1/M 	(4-3) 

However, as we will show later, using a low probability character as a marker will 

increase the size of the compressed file more than using a high probability character. 

This means that there is a trade-off. Low probability character marker results in low 

probability of misdetection, but causes larger expansion in the compressed file and bigger 

loss in the file compression ratio. On the other hand, high probability character marker 

results in less expansion in the compressed file, but high probability of misdetection. 

One can remedy this conflict in the choice of marker by checking more than one location 

of marker and hence reduce the probability of misdetection to the order of Pi  (an ) where I 

is the number of locations checked. This last approach of misdetection requires more 

complex hardware as well as software. 

With the Previous character strategy, if we assume that the error propagates 

totally in the decoded data, then as mentioned before, each decoded character can be any 
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character in the alphabet according to its probability. Therefore, we have character a n  at 

the marker location with probability P2  ( an). But since we have to check whether the   

character at the marker location is the same as the previous character or not, the 
 

probability of misdetection is 

P2  ( an)

. Therefore, 

P(misdetection / given character a is found at marker location and at the one before it) 

 
=P

2  ( an) 

 

and, 
	  

P2(misdetection) = Σ1n=1  P2 (an) . [P2 (

a

n)]  (4-4)  
 

where l is the size of the alphabet. 

Figure (4-5) depicts the probability of the marker as a function of an , While figure (4-6) 

depict P (mis det ection) as a function of a n. Clearly, 

	  
M P3  

min 

 ≤  P2(misdet ection) ≤   M P3max 	 (4-5) 

For English text files, 

0 

 

≤    P2 (mis det ection) 

 

≤  0. 085562 

and 

P
2 

(mis det ection ) 

= 0.026819 

Where P max  and P min  are the probabilities of occurrence of the most and least probable  

marker in the alphabet. If all the alphabet characters are equiprobable, then, 

 
P2  (mis detection) = 1/M2 	(4-6) 

M
2 
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Fig. 4-5  Probability of the Previous Character as a Marker 

Fig. 4-6 Probability of Misdetection When Using the Previous Character as a Marker 
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With the Average marker strategy , under the same assumption of error propagation, 

misdetection happens if the character at the marker location represented in ASCII number 

equal the integer value of the average of the ASCII values of all characters in the previous 

block. 

 

	  

P
3 
 (misdetection /  Sk+1  is the ASCI value of the marker) = P ( Sk+1 = │∑k Sii=1 /k│)  (4-7)  P 

	 

	 
 

where 

S

k+1 is the ASCII value of the character appears at marker location, S is the 

ASCII value of the character at location i = 1,2, 	 k of the previous block, k is the size 

of the block. 

To calculate P(misdetection) analytically is quite complicated particularly for 

 

large k . Instead, based on ASCII files available to us, we calculated P ( 

S

k+1 

= │∑k Sii=1 /k│) 

 

in the files. That is, we calculated the frequency of each character of the alphabet in the 

total markers generated in the files with this strategy. The files to be used for calculating 

these frequencies should be obtained from regular text files by fully randomizing the 

order of the characters in the files. If we assume that error propagate totally in the 

decoded data, then the aformated frequencies can equivalently obtained from the decoded 
 

 
 

data file after inserting an error. The probability curve of P ( 

S

k+1 

= 

│∑k

S

ii=1 /k│) 	is depicted in 

figure (4-8). The curve in figure (4-7) shows the probability of each character Si in these 

randomized files. From this we can calculate the probability of misdetection as follows, 
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Fig. 4-7  Probability of Characters in Randomized Files 

Fig. 4-8  Probability of Markers in Randomized Files 
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P3(misdetection) =  ∑SMk+1=1 P ( 

S

k+1 =│∑kSii=1 /k│) P(Sk+1) 	 (4-8) 
 

Where SM  is the larger integer in the ASCII values of the alphabet. 

 

	

Due to total randomization caused by the error, P(

S

k+1 )  is the probability of 

 

S
k+1 in the alphabet which is depicted in figure (4-7). From equation (4-8), the average 

probability of misdetection for the English text files is 0.007427. 

4.2.2 Miscorrection 

As stated in section (4.1), error correction is obtained by toggling the encoded data in the 

correction section of the register one bit at a time and looking for the marker in the 

reconstructed data. Every time a bit is toggled, there is a probability that the marker will 

appear eventhough a wrong bit is toggled. This can lead to a miscorrection. 

With the Particular character strategy , with the same assumption of error 

propagation, let the marker character has a probability of P(an ) in the alphabet. Then 

the probability of misdetection when checking I markers is Pl (an ). If the number of 

marker locations checked for correction is then the probability of miscorrection is a 

geometric distribution given as follow, 

pr{ miscorrection in toggling the 0th step }= PĪ  (an )  

pr{ miscorrection in toggling the 1st  step} = [1—

PĪ (an

)]2 

P

Ī (

an

)  

 
pr{ miscorrection in toggling the 2nd step} = [1—

PĪ (an

)]2 

P

Ī (

an

) 

 



pr{miscorrection in toggling the kth  step} = [1- P

(

an

)]kpĪ(

an

) 

— ∑SMk+1=1 P ( 

S

k+1 =│ ∑kSii=1 /k│ ) P(Sk+1) 	

Hence, the probability of miscorrection is given by 

P(miscorrection) = ∑Nk=0 [1—pĪ

(

an

) ]kpĪ(

an

) 

	 (4-9) 

Where N is the average number of bits toggled before the erroneous bit is reached. 

and the expected value of k is given by 

E[k] = 1-pĪ

(

an

) / pĪ(

an

) 

	

(4-9a) 

 

 

This means that, if we are using the space character as a marker which has a 

probability 0.295378, and we are checking 8 marker locations in correction, the expected 

value of k  will be 1.73*104. This number is the average number of toggling that leads to 

a miscorrection. 

To reduce P(miscorrection), we make ī>l. In Section(4-4) we will show how 

N  is minimized to reduce P(miscorrection) . Minimizing N  and making ī > 1 stands 

also for the other two marker strategies. 
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4.3 Compressed File Expansion  

Regardless of the marker strategy, adding a marker increases the size of the compressed 

file. Clearly the strategy which gives the smallest expansion is the better one. 

4.3.1 With the Particular Character Strategy  

Let us examine changing the entropy when adding a character as a marker. First notice 

that before addition we have, 

 
H(p) = ∑1i=1 p(ai) log p(ai) (4-10) 
	

Where / is the size of the alphabet, and the probability of the character ai  in the file is, 

 

	

p(ai ) = N(a
i ) 

/ 	L 	 (4-11) 

Where N(ai) is the total times of occurrence of ai  in the file, and L is the size of the 

file. 

By adding a marker after each block of size k, the new probability of occurrence of each 

character in the alphabet will be, 

p' (a
n)  =  N(ai)/ L(1+1) /k  = p(a j)/1+1/k                                   (4-12)  

	  

where 

ai 

 are characters which are not used as a marker. For the marker an, 
p' (a

n)  =  N(an) 

+ L/k / L(1+1 k)  = p(an)+1/k / 1+1/k                      (4-13) 

 

	 

Hence the new entropy is given by, 
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H' 

 (

p) = - ∑i≠n p(ai)/1+1/k  log p(an)/1+1/k - p(an)+1/k/1+1/k   log  p(an)/+1/1+1/k         (4-14)  
	 	

 

H'  (p) = - ∑i≠n p(ai)/1+1/k  log p(ai) + ∑i≠n p(ai)/1+1/k log  (1+ 1/k)   

- p(an)+1/k /1+1/k  log p(an) +1/ k) + p(an)+1/k / 1+1/ k  log (1+ 1/k)              (4-15) 
 

 

 

From (4- 10), 
 

H(p) = - ∑li≠n p(ai) log p(ai) - p(an) log p(an) 	(4-16) 	 (4- 
	 

Also, the compression ratio of the file before adding the marker is,/ 

 
R ≤  

log2
l / H(p) 	(4-17) 

After adding the marker, the compression ratio is, 

 

R ≤  
log2

l / H'(p) 	(4-18) 

In equation (4-17) and equation (4-18), the equality can be obtained for large files and 

effective compression algorithm. 

Notice that 

H'( p) 

 is smaller than 

H( p) 

 which is expected due to an increase in 

the redundancy as a result of adding a marker. Therefore after adding a marker, the 

compression ratio increases. However, because of the expansion at the source file, the 

resulted compressed file is also expanded. 
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The size of the compressed file before adding the marker is given by, 

L/R = L H(p)/ Log2 l symbols (4-19) 
 

	

	   

After adding the marker, 

L(1+1/k) / R'  = L( 	1+1/k) H'(p)

/ Log2 l symbols                                (4-20) 

 
	  		  

Hence the extension of the file of size L is given by, 

L(1+1/k )  /R'  - L/R =L/Log2 l 
[

(1+1/k ) H'(P) - H(p

)]  symbols 

	(4-21)  
 

	

Normalizing to L we get as a change in bit/symbols in compressed file to bit/symbol in 

uncompressed file, 

		  
∆ 

 = 1+1/k - 1/
R =  1/Log2l 

[
(1+1/k ) 

H'(P

) - 

H(p)]       symbols                  (4-22) 

From equation(4-15), 

	  
(1 + 1/k)H' 	(p) = - ∑i≠n 	p(ai) log p(ai)   +  ∑i≠n  p(a,) log(1 + 1/k ) 

 
(4-23) 

	 	  
- (p(an ) + 1/k) log( p(an ) + 1/k) + ( p ( an )  + 1/k) log(1 + 1/k) 

From equations (4-16),(4-22) and (4-23) we get, 

∆  = 

1

/log2

l [ ∑i≠n 

p(a

i

)

log(1 + 1/k

) - 

(p

(a

n) + 1/k ) 

 
  

 	

+ 

 p(

an

)+ 1/k ) 

log(1+1/k

) 

+ p(an )log( p ( an )] 

1 	1 
+ (p(a

n  ) + /7) log(1 + 	+ p(an  ) log plan  )] 
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∆  

log
2 

= 1+1/k - 1/R 
=  1/

Log2l 

[
(1+1/k ) H'(P

) - 

H(p)]  

 

		 
+ log(1

+1/k)p(

a

n

)

+1/k 

log(1+

1/k ) 

 log( p ( an )) 

		 	  

∆  

log
2 

l 

= 

(1+1/k ) 

 log(1 + 

1/k

) + p(a
n

) log p(a
n
) — p ( a

n
)

+1/k

)log( p ( an )

+1/k) 

  

This equation gives the change in bit/symbol in the compressed file. 

Finally dividing by H(p), the compressed bit/symbol of the file before expansion, we get 

∆  log2 

l / H(p) 

= 

1/H(p)

[(1 + 1/k) log(1+1/k)+p(an

)log p ( a
n

) 

 

	

- p ( a
n

) 

+ 1/k )log
(

p
( a

n
) 

+ 1/k)log(p(an

) 

+ 1/k)] 

 

(4-24) 
 

 

One can show easily from the curve in figure (4-9) that p  log2  p  has a minimum 

of -0.53 at p= 0.368, That means it is a decreasing function of p for p < 0.368. Also if, 
 

( p (a
n

) + 1/k

) 

< 0.368, then the last two terms in equation (4-24) is positive. Also, 

 
log(1 + 1/k

) 

 is positive and hence we have always expansion despite the fact that 

H'(p) decreases due to the increase of the redundancy in the expanded file. This is due to 

the increase in the size of the file after expansion. 

If we use less probable character as a marker the sum of the two terms in 

equation(4-24) is larger as we are using the lower part of the p log2  p curve. With larger 

k both the first and the last term in equation (4-24) becomes more positive. 

Figure (4-10) depicts the dependencies of the percentage of the file expansion, as 

a function of the marker probability  p(an )  when the block size k  is taken as a parameter. 
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Fig. 4-10 The Percentage of File Expansion Related to the Probability 
of the Marker and the Length of the Block 
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4.3.2 With the Previous Character Strategy 

The total number of each character changes according to its relative frequency in the file. 

Clearly, this is true provided that the file is large so that the probability of having the 

previous character to be a certain character of the alphabet is according to its relative 

frequency. Hence, using this definition, the new number of character a is, 

L 1 L 
N'(ai ) = N(a1 ) + L/k p(ai )  = N ( ai )(1  + 1/k) 	(4-25) 

where i=1 ..........l 

The new relative frequency is, 

P' ( ai ) = 

N

( ai )(1 +1/k ) / L(1 +1/k ) 

= P

( ai ) 

	 (4-26)  

That means the entropy does not change if the file is large enough so that the added 

character will have the same distribution as the original file and the entropy remains 

constant. The two curves in figure (4-4) and figure (4-5) shows that. Hence, equation (4-

22) turns to, 

	

1+1/k 	1 	1 	1 
A= 	 

R = Log2I ()H(p) 

which makes the percentage of the file expansion, 

A log2 / 	1 

H(p) = k 

i.e. the compressed file will increase by a factor Ilk, where k is the block size. 
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4.3.3 With the Average Marker Strategy 

In this strategy, we add a marker equal to the average character, that is, 

Smarker = [ ∑Si/k] 

(4-27) 
 

where 

S

i  is the ASCII value of the ith  character in the block. 

The probability of Smarker 
is different from p3(misdet ectetion)  of equation (4- 

7) in the fact that here the block has a certain dependency structure as in English text 

file, while there, they are totally random due to the error. Again due to the rounding and 

unknown text dependency structure, analytical calculation of 

Smarker 

 is quite 

complicated. Instead we use many English text files to get p(

Smarker

) for marker as in 

Figure(4-11).  

Fig. 4-11 Probability of Marker When Using the Average Marker Strategy 
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Figure (4-11) shows p(

Smarker

) for marker being different character of the alphabet. 

Clearly, after expansion, 

	  
N' (ai )  = N' (ai )  + L/k p

(Smarker

= s(ai))                       (4-28)  

	

	
 

where 

S(ai ) 

 is the ASCII value for 

ai p(ai ) 

 = N

(ai ) L/k p(

Smarker

= s (ai )) 

/ L(1+1/k ) 

= p

(ai

)+1/k(Smarker

= 
s

(ai
))/1+1/k 

(4-29) 

 

   	

Notice that when the marker is a particular character, 

p(

Smarker

= s (an ))=1  

a certain n, and zero for all the others. Hence equation (4-29) reduces to that with 

particular  character strategy, see equations (4-12), (4-13). 

When the marker equal the previous character, then in equation (4-29) 

p(

Smarker

=s(ai ))

= p(a

marker 

 = ai )  for all i and hence equation (4-29) reduces to 

that obtained with previous character strategy, see equation (4-26). 

The entropy after adding marker  

	  

H'(p) =  - ∑1i=1 
p(ai )

+ L/k p
(

Smarker 

=S(ai ))/ 1+1/k  log p(ai)+1/k p(

Smarker 

=S(ai )) /1+1/k    (1+1/k)H'(p) = - ∑1i=1 (p(ai)+1/k pmi ) log p(ai )+1/k p

m

i / 1+1/k  
 

Where pmi = pmi  = p

(

Smarker 

=S(ai )) 

 is given in figure(4-11)   
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	(1 + 1/ k) H'(p) = -∑1 i=1 ( p(ai)+1/ k pmi )log(p(ai )+1/k pmi ) + log(1+1/ k)∑ Mi=1 p(ai ) 

	  	 	  
+1/k log(1+1/k)∑Mi=1pmi 

but 

∑1i=1(p (ai )

=1 and ∑1i=1pmi=1, therefore, 

(1+1/k)H'(p) = - ∑1i=1 (p(ai)+1/k pmi ) log ( p(ai )+1/k p

m

i )+(1+1/k)log(1+1/k) 

 
 

 

From equation (4-22), 

∆ = 1/Log2l [(1+1/k)H'(P)-H(p)] 

 

∆ 
= 

1/ Log2l[∑1i=1 [p(ai )-(p (ai )+1/k p

mi

)log(p (ai )+1/k p

m

i )] + (1+1/k )log(1+1/k)] 

 

(4-31) 

 

 

Equation (4-31) gives the change in bit/symbol in the compressed file to 

bit/symbol in the uncompressed file (compare this with equation (4-24) for the previous 

character). Clearly in equation(4-31) A is positive because each term is positive. But 

since 1/k pmi  is very small, the term in the summation will be small. 

The curve in figure (4-10) depicts pmi  as a function of ai  and the curve in figure 
A  

(4-4) depicts p(ai

) 

. Hence,  ∆ log2l / H(p) which is the percentage of the file expansion is 

calculated and it equals 18.876577 for k=10. 
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4.4 Simulation and Results 

4.4.1 With the Space Character Strategy 

For any text file, the space character plays a major rule since it is the most frequent 

character used. The curve in figure (4-4) shows that the probability of the space character 

in the average for the text files used is 0.2957. Hence, using the space character as a 

marker results in small file expansion. Also making the marked block longer reduces the 

redundancy added as depicted in figure (4-9). Table (4-1) shows simulation results of the 

expansion ratio for different text files when using space character as a marker after a 20 

characters long block. 

Table 4-1  The Percentage of File Expansion for Different Text Files When Using 
the Space Character as a Marker After a Block of 20 Characters 

file 
number 

compressed file 
length at no marker 

compressed file 
length with marker 

redundancy 
added % 

file 
(1)  

8781 8940 1.8 

file 
(2)  14251 14526 1.9 

file 

(3)  
8301 8438 1.6 

file 
(4)  

16363 16679 1.9 

The simulation of this strategy showed that we need 60 characters in the register 

for detection. However, the probability of miscorrection calculated in equation (4-9) is 

relatively high, because increasing the block length increases N , also P(an) is high. This 

makes the number of marker locations needed for correction  l'  large. To approach a very 

low probability of miscorrection, we made the register length 150 characters, so that 
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when an error was detected, we shifted it to the correction section by applying the three 

steps mentioned in section (4-1) 90 times. This means shifting the error to a position 

between 90 and 150 in the register. Hence, we are checking all the markers in the 

decoded data corresponding to the characters between positions 0 and 90 (at least) for 

error correction. 

Fig. 4-12 The Relative Frequency of Correction at Each Position of the Correction 
Section of the Register With the Space Character 

The experimental curve in figure (4-12) shows the relative frequency of correction 

at each position in the correction section of the register. The x axis shows the position at 

the register where the error is corrected, while the y axis shows the percentage of 

correction at this position. To reduce the average number of bits toggled before the 

erroneous bit is reached,  N  in equation (4-9), we start toggling from position 90 going to 

position 150 because errors are concentrated between positions 91 and 105. 



50 

	

This scheme is capable of correcting one error every 1200 bits since the register 

length is 1200 bits long. Because most of errors are detected at the first marker, errors at 

closer pattern can be corrected. For example, if the error being corrected is at position 

100, the next error can be corrected if it is only 800 bits far apart. 

To compare these results with channel coding, we consider the Hamming code 

(1023, 1013,1) which is capable of detecting and correcting one error every 1023 bits and 

the redundancy added is 1%. In  the proposed scheme, as Table (4-1) shows, a 

redundancy of about 1.8% in the average is added. Here, we are capable of correcting 

one error and detecting as many errors as exist in the register. In Hamming code, if there 

is more than one error in the encoded block (the code word), the decoder decodes a 

different word which causes the loose of self synchronism in the reconstructed data. 

4.4.2 With the Previous Character Strategy 

In the simulation of this strategy, we make the register length 40 characters, and the block 

length 10 characters. For different English text files the expansion ratio of the 

compressed file is 10% as it was calculated in section (4.3.2). The probabilities of 

miscorrection and misdetection are insignificant. When an error is detected, the three 

steps mentioned in section (4.1) are applied 20 times so that the erroneous bit is moved to 

a position between 20 and 39 in the correction section of the register. Then we start 

toggling from position 20 going to position 39. The experimental curve in figure (4-13) 

shows the percentage of correction at each position in the correction section of the 

register. Note that the frequency between positions 22 and 29 is relatively high because 

most of the errors are detected at the first marker. Between positions 30 and 37 the 

frequency is small with gradual decay because these errors are detected at the second 

marker . In positions 38 and 39 the frequency is insignificant. 
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Fig. 4-13  The Relative Frequency of Correction at Each Position in the Correction 
Section of the Register When Using the Previous Character 

This scheme is capable of correcting one error every 320 bits, since the size of the 

register is 320 bits. However, because with high probability errors are detected at the 

first marker, errors at closer patterns can be corrected. For example, if the error being 

corrected is at position 24 in the register, the next error can be corrected if it is just 192 

bits far apart. 

To compare these results with channel coding, we consider the Hamming code 

(255, 247,1) which is a perfect code capable of detecting one error every 255 bits with a 

3.24% redundancy added. In our scheme we add redundancy of around 10% but we can 

correct one error and detect as many errors as exist in the register. 
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4.4.3 With the Average Marker Strategy 

In the simulation of this strategy, the register length is chosen to be 20 characters, and the 

block length is 10 characters. For different text files, the ratio of file expansion is around 

18.5% as it was calculated. The experimental curve in figure (4-14) shows the 

percentage of correction at each position of the correction section. Note that errors is 

detected at the first marker with a very high probability. This strategy works for high 

error rates since the register length is only 160 bits long. 

Fig. 4-14 The Relative Frequency of Correction at Each Position in the Correction 
Section of the Register With the Average Marker 
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4.5 Future Prospects  

4.5.1 Towards a More Sophisticated Software 

A good improvement could be achieved by using a more sophisticated software in the 

correction algorithm. For example, for higher error rates, when error could not be 

corrected because of the presence of two errors in the same block, both errors could be 

corrected by toggling two bits at a time. A simulation of this was done which proved that 

this scheme is able to correct two errors at the same time if they are both exist in the 

correction section of the register when we toggle. If one error is in the correction section 

and the other one is in the detection section, these two errors could not be corrected. 

Also, in using the space character as a marker, we noticed that the misdetection 

and the miscorrection happened when the error is in a block that contained only space 

characters or most of the characters in the block were spaces. By counting the number of 

space characters in the block and putting a different marker (e.g. the 'e' character) when 

the number of space characters exceeds 10, we were able to decrease the late detection 

and the miscorrection considerably and hence decrease the register length. 

In the next section we are going to introduce an important factor that has an 

effective impact on the process of detection and correction and can further improve the 

results. 

4.5.2 The Effect of RADIX 

The encoding algorithm used for compression leaves the RADIX of the arithmetic (the 

alphabet of the encoded data) unspecified. In the succeeded pages we will explain the 

effect of RADIX on the error detection and correction algorithm proposed in this 

chapter. 

Suppose we have a code string Ck=0.0011011 

This string has a decimal value Ckd=0.2109375 
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When an error happens in bit number five, Ck  changes to Cke  = 0.0011111 

Cke has a decimal value Ckde = 0.2421875 

The decimal value of the error ∆1= Ckde- Ckd  = 0.03125 

When we reach bit number four in toggling; This the bit just before the erroneous bit, 

Cke will change to C'ke= 0.0010111 

C'ke  has a decimal value C'kde  = 0.1796875 

The decimal value of the new error (due to toggling) is A2= - 0.0625 

The sum of the two errors is ∆  = ∆1 +∆2  

= 

 - 0.03125 

Notice that the values of both ∆1  and ∆  are small compared with the value of the 

string itself. This means that the value of the code point changes slightly even though 

there is an error. 

Now, consider the case when Ck  is short, assume Ck  = 0.101, i.e. Ckd  = 0.625 

the error (in the third bit) changes it to Cke  = 0.100 , i.e. C

kde 

 = 0.5 

the decimal value of the error is ∆1 = 

Ckde  

- Ckd 

 

= -0.125 

toggling the second bit; which is the bit just before the erroneous bit, 

C

ke 

 will change to C'

ke 

 = 0.110, and C

kde 

= 0.75 

The values of both ∆1  and ∆  (-0.125 and +0.125) are not small compared with the 

value of the string. This means that the code point value is more sensitive to errors  and 

therefore reduces the chance of misdetection and miscorrection. We will show that  ∆1 , 

the change in the value of the encoded string caused by the channel error, affects  the 

misdetection and causes late detection, while ∆  =∆1 +∆2 , the resulted error  after 

toggling, affects the miscorrection. 

From equation (3.17) the transformation of data string "S1  S2 	 Sk" to the 

corresponding code word is given by: 

C

k 

 = P(s1) + P(s1 ) P(s2 ) + p(s1 ) p(s2 ) P(s3 ) + 	 P(s1 )P(s2 )......p(sk-1 ) P(sk ) 	(4-32) 
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When an error ∆1  is introduced to 

C

k , it changes to 

Cke 
 

Cke= P(s1)+ p(s1) P(s2) p(s1) p(s2) P(s2)+ 	p(s1)+(s2)..p(sk-1)..P(sk) + ∆1  

(4-33) 

Assume ∆1  is small so that 

C

ke  falls in the interval [P(s1),P(s1 +1)) which causes the 

next source character to be decoded correctly, that is, equation (3-22) becomes, 

P(s1)< Cke< P(s1  +1) 	 (4-34) 

Where P(s1) is the cumulative probability of the first source character to be decoded, and 

P(s1  +1) is the cumulative probability of the next character. 

By applying equations (3-23) and (3-24), we get the new string value (which is the new 

code point) C(2)

ke

. 

	 

C(2) ke 

= P(s2) + p(s2) P(s3) + p(s2) p(s3) P(s4) +.....+ p(s2 ) p(s3 )... p(sk-1 ) P(sk ) + ∆1/ p(s1 )  

(4-35) 

From equation (4-35), to reduce the probability of misdetection, either to 

maximize ∆1/

p(s1 ) 

 or to minimize C(2)

ke

. It is clear that both the error ∆1 and p(

s

1 ) (which 
 

express the code interval) is out of our control. Al  is the error introduced from the 

channel, and p(s1) is related to the source statistics. On the other hand, C(2)

ke 

is controlled 

by the encoder and the decoder. Practically we can minimize C  to make the value of 

the error larger relative to C(2)

ke 

 by reducing the RADIX to 2, i.e. making the encoded 

data in binary. 

 
	  Now, assume that ∆1/

p(s1 ) 

is small so that, the new code string C(2)

ke 

 falls in the 
  

interval [P(

s2

),P(

s2

+1)), then the next character is decoded correctly which leads to a late 
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detection of the error. Then equation (4-35) turns to, 

C(3) ke 

 

=P(s3)+ P(s3) P(s4)+P(s3) p(s4) P(s5) +....+ P(s3) P(s4)... p(sk-1) P(sk)+ ∆1/p (s1)p (s2) 	

(4-36) 

From equations (4-36), as more characters are decoded, the value of the last term in the 

equations becomes larger and hence the change in the value of the code point becomes 

larger. Then, the decoder starts decoding wrong characters which means that the error is 

propagating in the reconstructed data. This turns the late detection problem to be the 

misdetection problem which has been discussed in section (4-2). For more details about 

how the error propagate in the reconstructed data the reader is referred to [19]. 

Notice that equations (4-35) and (4-36) stands also for the miscorrection with the 

change of ∆1  (the error-due -to the channel), to A (the e. -r due to the channel and 

toggling). The late detection problem that happens in the error detection decoder, 

happens with the error correction decoder when we toggle a bit very close to the erronous 

bit. This increases the probability of miscorrection considerably. 



CHAPTER 5 

JOINT SOURCE AND CHANNEL CODING  

Any error detection and correction algorithm considers the string of data (code word) as a 

vector in a vector space. By keeping each two vectors a certain distance apart, (i.e., giving 

each vector a certain subspace) the received vector can indicate the vector that has been 

sent. Error correction can then be possible. In this chapter, we will consider the [0-1) 

interval as a vector space, map every code word as a vector, and define the subspace 

reserved for it. 

5.1 [0-1) Vector Space  

Arithmetic encoding considers the [0-1) interval as a space and maps the string of data as a 

point in that interval defined by the code point and the code interval. In this scheme we will 

also consider the interval [0-1) as a vector space and map the encoded string as a vector 

defined by the code point C and the code interval W. We will find the subspace that should 

be reserved for each vector to enable the decoder to detect and correct a one bit error every 

time a decision is made. 

Fig(5-1) shows how the symbol "S-1" mapped onto the interval [0-1) as a vector 

defined by C1  and W1  and how the symbol "S" is mapped as a vector defined by C2  and 

W2. W1  is a subinterval of [0-1) and is also considered as a vector space for the next 

encoded symbol "S''. Note that C2  > C1. 

57 
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W1  is the code interval for S-1 
C1  is the code point for S-1 
W2  is the code interval for S 
C2  is the code point for  S   

Fig. 4-1  The [0-1) Vector Space 

Assume that we have a source alphabet of m symbols (a l , a2, .... am). Instead of 

dividing the vector space [0-1) into m subintervals as in the case of conventional arithmetic 

coding, we will divide it into n subintervals. n=m * 2L  where L is an integer equal to 

(2,3 or4). The value of L depends on m and is chosen such that, the subspaces reserved 

for each vector of the m vectors should not overlapped, i.e. when an error happens in the 

vector C2  it will changes to C'2. C'2 is in the subspace reserved for C2  and indicates 

where the error is. In other words 

C'2 

 is decoded as a'i where a'i is not one of the m 

symbols and points to the symbol that should be decoded. 

This simply means that we do not have a source encoder and a channel encoder, but 

they are compressed into one stage. Also, at the decoder we do not have a channel decoder 

and a source decoder but just a decoder as Figure (5-2) shows. 

Fig. 5-2  The Communication Channel with the Suggested Scheme 
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Fig. 5-3 The [0-1) Vector Space for Alphabet 2 

5.2 Alphabet 2  

Let us consider the simplest example with alphabet = {a,b} where m=2. We choose L=2 

such that n=8. This satisfies the condition that the space reserved for "a" never interferes 

with the space reserved for "b" as will be explained in the next paragraph. We will consider 

the case when the probability of (a) = the probability of (b) = 0.5, then we will generalize 

the case for any probability. 

Figure (5-3)a shows how the vectors "a" & ''b" are mapped onto the interval [0-1) 

to be subintervals (1) & (8) respectively. Also the figure shows how the possible 

sequences aa, ab ,ba and bb are mapped. 
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Figure (5-3)b explains how the space reserved for "a" does not overlap the space 

reserved for "b". Subintervals (2),(3) and (5) forms with subinterval (1) the space 

reserved for "a", while subintervals (4),(6) and (7) forms with subinterval (8) the space 

reserved for "b". Suppose the source string starts with ab, then the encoded data will start 

with 000111. When there is no error, the decoder first decodes "a" because 000111 falls 

between 0 and 001, then the first three bits are discarded (because the decoder normalizes 

the space for the next word to be decoded), then "b" is decoded because 111 falls in the 

interval reserved for "b". 

Now let us apply an error to the encoded data string 000111. If the first bit is 

changed from 0 to 1, the encoded string will start with 100111. At the decoder, the 

received data string 100111 falls into subinterval (5), so it will be decoded as a3 (see figure 

(5-3)b). This indicates that the transmitted data started with "a" because subinterval (5) is 

in the subspace reserved for "a", and hence decide that the error is in the first bit. If the 

error is in the second bit, the decoder will receive 010111 and decode it as a1  which 

indicates that the transmitted data starts with "a" and hence decide that the error is in the 

second bit. Also if the error is in the third bit, the decoder will receive 001111 and decode 

it to al  which indicates that the error is in the third bit. 

Now suppose that the error is in the fourth bit, the decoder will decode the string 

000011 to start with "a" (which is right ), then the first three bits are discarded and 011 will 

be decoded as b1  which means that the next symbol to be decoded is "b" and the error is in 

the first bit. 

Fig(5-4) shows the vector space [0-1) as the probabilities of both "a" & "b" change 

during arithmetic encoding. To keep the algorithm working regardless of the change in the 

probabilities during the process of arithmetic encoding, the probabilities of a2, a3  and b3  

should be equal to the probability of "a". This comes by building up the frequencies of a), 

a3  and b3  every time the frequency of "a" is built up. Similarly, the probabilities of a1 , b1  

and b2  should be equal to the probability of "b". Again, this comes by building up the 



61 

frequencies of a1, b1  and b2  every time the frequency of "b" is build up. 

Fig. 5-4  The [0-1) Vector Space for Alphabet 2 with Unequal Probabilities 

To simulate this, we built up an arithmetic encoder and decoder of source alphabet 

equal to eight (a, a1 , a2, a3, b, b1 , b2, b3) which give the encoded data is binary. A short 

file of source alphabet equal to two (a, b) were encoded such that when "a" is encoded, the 

frequencies of a, a2 , 

a

3  and b3  are incremented. Similarly, when "b" is encoded the 

frequencies of b, a

1

, b2  are incremented, and the same way for the decoder. When 

errors are introduced to the encoded data, the decoder receives a vector which is decoded to 

be any symbol but not "a" or "b". Hence the error is detected. The decoded vector tells the 

symbol to be decoded. On other words, the value of the received vector points out where 

the error is. This algorithm is able to detect and correct one error every time the decoder 

makes a decision. 
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5.3 Alphabet 4 

As we have done for m=2 we will consider the case when m=4. This means that we have 

the source alphabet (a, b, c and d). We will choose L= 3 such that n = 32. Figure (5-5) 

shows the vector space [0-1) when there are equal probabilities, while Figure (5-6) shows 

how the vector space has been adjusted for different probabilities. 

Both the encoder and the decoder do the following: 

'a' is interval number 1 

'b' is interval number 14 

'c' is interval number 23 

'd' is interval number 28 

The length of intervals 5,9,13,17,21,25 and 29 is equal to the length of interval 1 

The length of intervals 2,6,10,18,22,26 and 30 is equal to the length of interval 14 

The length of intervals 3,7,11,15,19,27 and 31 is equal to the length of interval 23 

The length of intervals 4,8,12,16,20,24 and 32 is equal to the length of interval 28 

The subspace reserved for "a" is the intervals 2,3,4,5,9,17 

The subspace reserved for "b" is the intervals 6,10,13,15,16,30 

The subspace reserved for "c" is the intervals 7,19,21,22,24,31 

The subspace reserved for "d" is the intervals 12,20,26,27,32 



Fig. 5-5  The [0-1) Vector Space for Alphabet 4 
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intervals reserved for a 

intervals reserved for b 

intervals reserved for c 

intervals reserved for d 



intervals reserved for 'a' 

intervals reserved for 'b' 

intervals reserved for 'c' 

intervals reserved for 'd' 

Fig. 5-6  The [0-1) Vector Space for Alphabet 4 with Unequal Probabilities 
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To simulate this, we built up an encoder with a source alphabet equal to 32, and 

encodes the data in binary. A string of an alphabet equal to 4 was encoded under the 

conditions explained before. When errors are introduced to the encoded data, the decoded 

vector indicates the symbol to be decoded, and the value of the received string points out 

where the error is. This system was adapted for different probabilities of the source 

alphabet and can correct one error every time a decision is made. 

5.4 Comparison 

We will compare this scheme with conventional arithmetic encoding followed by              channel 

coding for a source alphabet equal to 4. The same string of data, will be encoded using the 

two methods. 

For the string of data ""abacadb", Let the probability of all symbols are equal, i.e.

prob(a)=prob(b)=prob(c)=prob(d)=0.25. 

Encoding this string by using conventional arithmetic encoding, as explained in the 

example given in section 3.3, the output of the channel encoder is the following string: 

00 01 00 10 00 11 01 

Assume that the channel encoder uses the block code (5,2,1) for error correction, for  this 

string, the output of the channel encoder will be: 

00000 01101 00000 10110 00000 11011 01101 

Applying the proposed algorithm, the output of the encoder will be: 

00000 01101 00000 10110 00000 11011 01101 

which is the same string, 

For both algorithms 7 errors can be corrected, one error every 5 bits. i.e. both  algorithms 

give the same performance. 
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For the same string of data, let us consider that the source alphabet has different 

probabilities. Let prob(a)=0.5, prob(b)=0.25, prob(c)=0.125, prob(d)=0.125. 

Applying conventional arithmetic encoding gives: 

01 00 11 00 11 11 

Applying the block code (5,2,1) we will have: 

01101 00000 11011 00000 11011 11011 

which is 30 bits long and can correct 6 errors, 1 error every 5 bits. 

Applying the proposed algorithm we get the following string: 

0000 01110 0000 101110 0000 110111 0111 

which is 33 bits long and can correct 7 errors. 

It is clear that we have increased the string length by 3 bits, but we can correct 

errors at higher rate. This is due to the fact that one error can be corrected every time the 

decoder takes a decision. The first four bits in the string are enough for the decoder to 

decide an "a". Hence, the decoder can detect and correct a one bit error in the first four 

bits. Because the decoder makes a decision 7 times for decoding this string, 7 errors can 

be corrected, while in channel coding only 6 errors can be corrected. 

For the same probabilities, let us consider a different string of data "abbacaab". 

Encoding this string by using conventional arithmetic encoding gives the following string: 

01 01 00 11 00 01 

if we use the block code (5,2,1) for this string, the output of the channel encoder will be: 

01101 01101 00000 11011 00000 01101 

which is 30 bits long, and one error can be corrected every 5 bits. 

Applying the proposed algorithm in the previous section the encoded string will be: 

0000 01110 01110 0000 101110 0000 0000 01110 

which is 36 bits long, and can correct 8 errors, one error can be corrected every 4.5 bits on 
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the average. 

To calculate the average number of bits in which the decoder can correct one error 

for the given probabilities (notice that the decoder uses four bits to decide "a", five bits to 

decide "b" and six bits to decide both "c" and "d"). 

n 

 

N  =  ∑  Pi Ni 	(5-1) 
i=0 

where N is the average number of bits, n the number of alphabet symbols, °i is the 

probability of character i, and N is the number of bits used to decide character i. 

N = 0.5 * 4 + 0.25 * 5 + 0.125 * 6 + 0.125 * 6 = 4.75 bits 
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