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ABSTRACT 

Performance Of The Stirling Cycle Thermal Regenerator 

by 
Cesar A. Cravo 

Most of the methods developed to analyze the performance of 

regenerators make assumptions which are not valid in Stirling cycle 

regenerators. To more adequately describe the conditions of an actual 

Stirling cycle regenerator a more complex method has been investigated. 

This method takes into account the time dependence of the mass flow and 

pressure fluctuations and considers the temperature dependence of the 

thermophysical properties. 

The solution is accomplished by finite difference techniques. The 

solution determines the temperature distributions of the gas and matrix 

along the length of the regenerator and calculates the effectiveness over a 

cycle. A wide range of parameters can be varied in the analysis including 

pressure, mass flow rate, speed of operation and size. In general it was 

found that the effectiveness decreased with an increase in the mass flow rate 

but increased with an increase in the speed of operation. Variations in the 

pressure and phase angle had little influence on the effectiveness. An 

increase in the matrix size resulted in an increase in the effectiveness of the 

regenerator. 
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CHAPTER 1 

INTRODUCTION 

The regenerator is in many ways an ideal heat exchanger. It is able to effect 

relatively large rates of heat transfer at very high effectiveness values (97% 

or better are very common) using a very small package and very little 

material. It is easy to maintain due to the fact that it is highly resistant to 

fouling. In addition, because of its simple construction and optimum use of 

material it is often much more economical than a typical counterflow type 

heat exchanger. 

A regenerator is commonly referred to as a thermodynamic 'sponge' 

(Walker, 1983) because of its ability to alternately absorb and release heat. 

A simple explanation of its operation can be described as follows. Initially a 

cold fluid stream is passed through the device, releasing heat from the 

regenerator packing and reducing its temperature. After a fixed period of 

time, the cold fluid stream is stopped and is replaced by a warm fluid stream 

flowing in the opposite direction. The packing absorbs heat from the warm 

stream and thereby increases its temperature. The process then repeats itself 

so that the regenerator cyclically absorbs and releases heat. Ideally, the 

amount of heat absorbed and released by the packing will be equal. 

The key to the regenerator's high efficiency is in its construction. 

Unlike typical counterflow heat exchangers which use separate flow 
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passages to effect heat transfer across a solid surface (tube wall, etc.), 

regenerators use a common flow passage and surface (regenerator packing) 

which is responsible for all heat transfer. The energy to be transferred from 

one flow to the other must be stored and released from this surface - 

commonly referred to as the regenerator matrix. Therefore, for high transfer 

rates and thus efficient operation, a regenerator must consist of a vessel 

packed with a material of high heat capacity and large surface area. 

In the case of a regenerative cryocooler, the regenerator is typically 

constructed of a thin walled stainless steel or plastic cylinder tightly packed 

with metallic wires, spheres or mesh. Because of their high heat capacity 

(relative to the gas flow), lead, brass, phosphor bronze and stainless steel 

are the most commonly used materials. To achieve a large surface area, high 

efficiency devices have regenerators with particle sizes that are usually 

50-200 pm and wire mesh sizes of number 100-200. For example, a 

regenerator matrix of 200-mesh screen has a surface area of approximately 

7500 square feet per cubic foot of volume. 

Such high area densities, unheard of in typical counterflow heat 

exchangers, imply very small flow passages. As a result, the pressure drop 

can be significant. Therefore the amount of material in a device and particle 

size used usually represents a compromise between obtaining high rates of 

heat transfer and reasonably low pressure drops. 
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There are a number of theories and correlations developed for the 

design of regenerators. Unfortunately most of the methods that have been 

developed are for cases of steady unidirectional flow at a constant gas 

pressure throughout the cycle - which is typical of operation of regenerators 

in gas turbines, air liquefaction plants, and air preheaters for boilers. The 

regenerators in most small to intermediate size cryocoolers operate on 

cycles (Stirling, Gifford McMahon, Solvay and Vuilleumier) in which the 

flow is varying in both magnitude and the direction while the gas undergoes 

large pressure fluctuations. Consequently the methods developed for 

regenerators in steady flow and constant pressure are not applicable to 

regenerators used in such devices. Until recently there were no general 

methodologies and no accepted correlations that are fully appropriate to the 

design of Stirling regenerators. Methods and correlations from the steady 

flow, constant pressure model had to be utilized. 



CHAPTER 2 

LITERATURE SURVEY 

2.1 Ideal Regenerator 

Ideal regenerators can be thought of as a thermodynamic "black box" 

(Walker, 1983) accepting a gas at temperature Tc and leaving at a 

temperature Th. After a period of time the flow would be reversed and 

would enter at Th  and leave at Tc No fluid would remain in the regenerator 

in the transition from one flow to the other. The amount of heat rejected 

and absorbed by the regenerator would equal. The pressure drop across the 

regenerator would be zero. 

The ideal regenerator is clearly an impossible achievement. Constant 

inlet/outlet temperatures are difficult to obtain in many machines and would 

require either infinitely slow operation or the heat transfer coefficient 

and/or heat transfer area to be infinite. Alternatively, the heat capacity of 

the fluid would have to be zero or that of the matrix to be infinite. A 

pressure drop of zero would require frictionless flow. 

2.2 Classical Regenerator Theory (Hansen Model) 

A real regenerator operates in a manner far different from that of the ideal 

regenerator. A real regenerator requires that there be a temperature 

difference between the gas and the matrix in order for heat to flow from one 

to the other. As a result, the gas will leave the regenerator cold end with a 
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temperature slightly above the expansion space temperature and in the 

reverse flow direction, will leave the hot end at a temperature slightly 

below the compression space temperature. In most cases the temperature 

difference is the same at both ends, because the amount of heat stored in 

the regenerator and the amount withdrawn are very nearly the same. 

A more practical analysis of the operation of a regenerator was made 

by Hausen (1976). This model assumes that the only method of heat transfer 

between the flowing gases and the regenerator matrix is by forced 

convection. The operation of the Hausen regenerator proceeds in the 

following manner. 

A hot gas flow enters at constant temperature Th, passes through the 

matrix giving up part of its heat and leaves the regenerator at a temperature 

lower than at the inlet. The hot gas flow is stopped and all the gas is ejected 

from the matrix. A cold gas flow entering from the opposite end at a 

constant temperature Tc, absorbs heat from the matrix given up during the 

first part of the cycle and leaves at a temperature higher than at the inlet. 

The cold gas flow is stopped and all gas is ejected from the matrix. This 

cycle is repeated until a steady state condition is reached such that the 

temperature at any one point in the regenerator is the same as it was a cycle 

earlier. 
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For a regenerator, the average efficiency or heat transfer 

effectiveness a for the half cycle during which the matrix is warming up, is 

given by 

where Tout is the average bulk temperature of the gas after it has passed 

through the regenerator. Similarly for the half cycle when the matrix is 

cooling down, the effectiveness is given by 

Typically, regenerators used in cryocoolers have effectiveness values of 

95% and greater and it is not uncommon to find values approaching I. As a 

result a commonly used measure of the performance of a regenerator is the 

ineffectiveness I, given by the relation: 

As a result of the ineffectiveness of the regenerator a certain amount 

of warm fluid enters the expansion space and decreases the amount of 

refrigeration. The heat leak into the cold volume of the regenerator due to 

the regenerator ineffectiveness is given by the expression 

where C is the specific heat of the gas. For small powerful coolers which 

operate at high speeds and pressures the mass flow rates can be quite large 

and thus even a small change in the ineffectiveness, I can have a large effect 

on the heat leak. This heat leak represents a decrease in the amount of 
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available refrigeration. In a sample calculation performed by West (1986) he 

found that a 2% decrease in the effectiveness resulted in a 4% decrease in 

thermal efficiency. It is evident that good regenerator design is critical to 

the design of a high efficiency device. 

To derive the differential equations for the Hausen model, a number 

of assumptions must be made. These assumptions are necessary to reduce 

the resulting equations to form a set of first order partial differential 

equations. Although greatly simplified, no general analytical solutions for 

the equations exist, although approximate numerical solutions for particular 

cases have been calculated by several authors. The idealizations made by the 

Hausen model are as follows. 

1. Thermal conductivity of the matrix is infinite perpendicular to the flow 

and zero in the direction of the flow. 

2. The specific heats of the fluids and of the matrix material do not change 

with the temperature. 

3. Inlet temperatures are constant both over the flow section and with time. 

4. The heat-transfer coefficients and fluid velocities are constant with time 

and space. 

5. The mass flow rates of both fluids, although they may be different, are 

constant with time during the blow period. 

6. The blow time is long compared to the time required for a gas particle to 

pass through the matrix. 
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7. The entire matrix participates in the heat transfer process. 

Assumption one is a very good approximation to the real regenerator 

for many reasons. For wire screen matrices stacked axially to the flow, heat 

conduction normal to the flow is fairly good due to the high conductivity of 

the metals used. Then by making the assumption that the conductivity is 

infinite normal to the flow, the equations can be made one-dimensional in 

space. The conduction in the direction of flow is negligible in most cases if 

care is taken to reduce conduction paths. If wire screen matrices are used 

the conductivity in the direction of the flow is poor due to the contact 

resistance between the stacked elements. However, longitudinal heat 

conduction can be quite significant in the wall of the regenerator and care 

must be taken to use a material of very low conductivity. In an experimental 

investigation by Gifford, Acharya and Ackerman (1968) they found a 74% 

increase in the ineffectiveness in using stainless steel walls over the low 

thermal conductivity phenolic walls. 

Assumption two has been investigated by Saunders and Smoleniec 

(1951) and they have found that the error in the effectiveness is less than 

I% for most cases in assuming average values for the specific heats of the 

matrix and fluid. Their results are geared to much higher temperatures 

where the specific heats of the matrix and fluid are fairly linear and do not 

suffer from large changes. In another theoretical study by Rios and Smith 

(1968) they found that the variable specific heat of the regenerator matrix 
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can have a significant effect on the effectiveness. This is due in large part to 

the large changes in specific heat for most metals at low (cryogenic) 

temperatures. At low temperatures a decrease in temperature results in a 

decrease in the specific heat of solids but an increase in the specific heat of 

gases. Helium, which is the only possible working fluid at low temperatures 

(helium only liquefies at 4 K), has a high specific heat compared to most 

metals and increases rapidly at low temperatures. On the other hand, many 

common matrix materials (copper, bronze, stainless steel, etc.) have a 

specific heat which decreases with temperature. As a result the heat 

capacity of the matrix may become comparable or even less than the heat 

capacity of the gas. When this occurs the matrix is said to be thermally 

'saturated. There must be a sufficient heat capacity in the matrix material so 

that most of the heat (ideally all) is absorbed during the hot gas blow 

period. If there isn't sufficient thermal mass in the regenerator, the 

regenerator will become 'saturated' and large temperature swings within the 

matrix will result. 

Assumptions three, four and five parallel those commonly made in 

conventional heat exchanger design theory. In most heat exchanger 

applications the temperature of the inlet fluid is fairly constant once steady 

state conditions have been reached. However, in many cryocoolers the inlet 

temperatures to the regenerator can vary considerably although the degree 
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of the variation and its effect on the performance of the regenerator is not 

known. 

Assumptions four and five complement each other to some extent. 

That is, for a given mass flow rate the heat transfer coefficient between the 

matrix and the fluid does not change much. This assumption is fairly 

consistent with many regenerator applications such as gas turbines where 

the flow rates are fairly constant. If there are large changes in the mass flow 

rate, as is encountered in the Stirling cycle cryocooler, the heat transfer 

coefficient can change considerably. 

In addition to the time dependence of the mass flow rate, Jones 

(1989) has shown that there are large changes in the flow along the cross 

section of the regenerator for many types of matrix material. In this 

experimental analysis the outlet flow of the regenerator was examined using 

a laminar flow profile at the inlet. The difference between the two profiles 

for common screen matrices is striking. The inlet flow profile is typical of 

fully developed flow in a pipe - i.e. a smooth parabolic shape. The outlet, 

however, shows a very large increase in the flow rate near the outer edge of 

the regenerator. The reason for this disparity is unknown, but to obtain a 

more even flow profile Jones recommends some remedial measures. No 

experiments were conducted to determine the effect of using a turbulent 

flow profile at the inlet. 
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The time dependence of the gas flow has another effect that can have 

a significant effect on the performance of the regenerator. Since the flow 

moves continually back and forth in an oscillatory motion within the 

regenerator there exists a frequency above which the time between flow 

reversals is too short to permit establishment of the boundary layer or flow 

pattern familiar from unidirectional steady flow experiments. The effect is 

similar to the well known behavior of a fluid stream entering a pipe, where 

it takes some time to establish the regular boundary layer. This entry flow 

region has different pressure drop and heat transfer characteristics than the 

well established flow further down the pipe. Fortunately, the boundary layer 

establishes itself in less time the smaller the diameter of the flow passage 

Thus for the fine wire mesh matrices where the flow passages are on the 

order of 1/1000 of an inch the effect of this entry flow can be considered 

negligible for all but the highest speed applications. 

Assumption six is made in order to neglect the effects of 'carryover' 

leakage. Carryover leakage occurs in the transition from one flow to 

another. In this transition period a certain amount of fluid known as the 

'carryover leakage' remains in the void spaces of the regenerator. If the 

blow time is much longer than the time required for a gas particle to move 

through the regenerator the assumption is that most of the fluid moves 

through the regenerator and only a small amount of the flow becomes part 

of the carryover leakage and can be considered negligible. Shah (1981) 
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presents a highly idealized theory on the losses associated with carryover 

leakage although it is not known what effect this may have on regenerators 

in cryocoolers. As will be shown later, in many cryocoolers a large part of 

the flow is responsible for carryover leakage. 

Assumption seven is needed to insure that all the matrix material is 

utilized in heat transfer. In some regenerators there may be some flow 

bypass that creates dead regions within the regenerator which are not 

involved in the heat transfer. Also at high engine speeds where changes in 

flow direction occur very quickly a limited amount of material may be 

involved in the regeneration. In such cases the flow rates are so high that 

the matrix is unable to absorb/release heat at a very quick rate and only a 

small surface layer of the matrix is involved in heat transfer. To ensure that 

this does not happen, the matrix material should be made as fine as possible 

and of a high conductivity so that the entire matrix mass is utilized in the 

heat absorption/release. 

On the basis of these idealizations made before the following set of 

partial differential equations may be expressed. Applying the first law of 

thermodynamics to a differential element of gas, we find 

where 	h = heat transfer coefficient between the gas and the matrix 

A = heat transfer surface area 

L = length of regenerator 
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T = temperature of the gas 

Tm= temperature of the matrix 

W = mass flow rate 

c1 , = specific heat of the gas 

= density of the gas 

A o  = cross-sectional area of the regenerator open to the flow 

dx = differential element of axial space coordinate x 

di = differential element of time coordinate 

The first term represents the heat transfer from the gas to the matrix over 

the length dx. The second term represents the change in enthalpy of the gas 

in the length dx. The third term represents the change in the energy stored 

in the differential element of gas. 

Applying the first law to differential element of the matrix, we find 

where M = mass of the matrix 

Cm  = specific heat of the matrix 

As before, the term on the left hand side represents the heat transfer from 

the gas to the matrix. The term on the right hand side represents the change 

in the energy stored in the differential element of matrix. 

In the Hausen theory, the above set of differential equations are 

written for the hot and cold blow periods, respectively. The above 
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equations can be simplified by introducing the following dimensionless 

variables: 

where P is the heating or cooling period for the regenerator. Hausen then 

introduced the dimensionless variables called the reduced length A, and the 

reduced period 11 defined as follows: 

This results in two equations for hot gas flow period and two for the cold 

gas flow period. The effectiveness is then defined in terms of the set of 

dimensionless variables Λh, Λc, Πh, and 11,, where the subscripts h and c 

denote the hot and cold flows respectively. 

An alternate method of regenerator analysis using the same 

assumptions above was proposed by Coppage and London (1953). It defines 

the effectiveness in terms of the dimensionless variables 

where NTU0  is defined as follows 

Cc and C,, are the flow heat capacity rates (Wcp) for the hot and cold sides, 

respectively. Cr  is the capacity rate of the matrix (MO. This method 

(NTU-a method) and the method by Hausen (A—F1 method) were shown to 

be equivalent by Shah (1981). A number of numerical solutions (finite 

difference, finite elements, method of lines, etc.) have been found and 
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tabulated results are presented for a wide range of cases (Kays and London, 

1984, Baclic and Dragutinovic, 1990). 

The solutions found using the above theory have proven successful 

for regenerators found in air liquefaction and gas separation plants, air 

preheaters, and gas turbines. This is because the assumptions made in the 

theory are amenable to the operating conditions of the regenerator in such 

devices. In many small to intermediate size cryocoolers which work on 

regenerative cycles such as the Stirling, Vuilleumier, Solvay, etc. the flow 

and heat transfer conditions are much more complex. Attempts to analyze 

such devices using the Λ-Π  or NTU-ɛ  method requires one to choose 

average values for all properties of the flow. The results of such an analysis 

are questionable and Walker (1983) warns that "the performance determined 

in this way appears so unrealistic that attempts to develop this procedure 

have been abandoned." Clearly a more complete regenerator theory is 

required to adequately analyze the regenerator in such cryocoolers. 

The more complete analyses are performed with particular reference 

to those conditions found in a Stirling cycle cryocooler. It is helpful to 

begin with a simple review of the Stirling thermodynamic cycle. 

2.3 Stirling Cycle 

The Stirling cycle was invented in 1816 by Robert Stirling. Originally 

intended for the production of power, it was soon realized that such a 
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machine could be run in reverse for the purpose of refrigeration. While the 

Stirling engine has enjoyed little commercial success, the Stirling cycle 

cooler has been in production for a number of years. It is the preferred 

cycle for the production of cryogenic temperatures for small scale 

applications (under 1 kW cooling). 

2.3.1 Ideal Cycle 

The ideal refrigeration cycle follows a very simple thermodynamic path. The 

cycle proceeds as follows. See Figure 1. 

Process I to 2: The working fluid (typically helium) is compressed 

isothermally in the (hot) compression space and the heat is removed at 

constant temperature Th  through the use of heat exchangers to the 

surroundings. 

Process 2 to 3: The compressed gas is then transferred into the (cold) 

expansion space at temperature Tc through a regenerator and a cold heat 

exchanger in such a way that the net working volume is kept constant. 

Process 3 to 4: The gas in the expansion space at Tc is then expanded and 

the refrigeration achieved is used to extract heat at constant T. 

Process 4 to 1: The cold gas in the expansion space is transferred back into 

the compression space at constant volume through the same cold heat 

exchanger and regenerator and is warmed to Th. 
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Figure 1 P-V and T-S diagrams for Ideal Stirling Cycle 

While the coefficient of performance (COP) for the ideal Stirling 

cycle is equal to the Carnot cycle, actual COP's are usually only 17% of that 

value. This is due to the fact that in the translation from theory to actuality, 

as in most machines, the theoretical cycle looks quite different than the 

actual. 

The ideal cycle assumes that all the working fluid is concentrated in 

either the compression or expansion spaces. This would require the 

regenerator matrix and the connecting ducts and associated heat exchangers 

to have zero void volumes. Some working fluid will always be in the void 

spaces of the heat exchangers. This fluid has a significant effect on the 

performance of the cycle because any increase in the void volume results in 

a reduction of the compression ratio. This in turn reduces the amount of 

refrigeration capacity. 
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The ideal cycle also demands that the volume variations occur in a 

discontinuous motion. This would require a complex mechanical linkage to 

effect such variations, Instead a common crank-connecting-rod linkage is 

used and this results in a simple harmonic motion for the volume variations. 

The change in piston motion from discontinuous to a continuous sinusoidal 

motion has profound effects on the Stirling cycle. To better approximate the 

sinusoidal volume motion of an actual cycle a more realistic analysis of the 

Stirling cycle was developed by Schmidt in 1871. 

2.3.2 Schmidt Cycle 

Although it retains many of the assumptions of the ideal cycle, the Schmidt 

cycle gives a better idea of how various parameters affect the performance 

of a real Stirling cycle device. The theory assumes a sinusoidal motion for 

the reciprocating elements, but retains the assumption of isothermal 

compression and expansion and of perfect regeneration. The major 

assumptions of the Schmidt cycle are as follows (Walker,1983): 

1. The regenerator operates ideally, i.e. ɛ 	= 1. 

2. The instantaneous pressure is the same throughout the system. 

3. The working fluid obeys the ideal gas law, PV = RT. 

4. There is no leakage and the amount of fluid mass remains constant. 

5. The volume variations in system occur sinusoidally. 

6. The temperature in the compression and expansion spaces is constant. 
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7. There is perfect mixing of the cylinder contents. 

8. The speed of the machine is constant. 

9. Steady state conditions have been established. 

Using the Schmidt analysis, the performance of the cycle still yields 

Carnot efficiency since it neglects a number of important losses in the cycle. 

These include losses attributed to the small regenerator inefficiency, which 

can be a significant fraction of the net useful cooling power. Also neglected 

are the thermal conduction losses arising from heat transfer from the hot to 

the cold space. These losses can be significant especially in small coolers 

where regenerators tend to be small and compact and the hot and the cold 

ends are separated by relatively short distance. In systems where a piston 

reciprocates inside a cylinder, there exists a heat-pumping mechanism, 

known as shuttle heat transfer, whereby heat is exchanged between the hot 

and cold spaces, thus introducing a further loss to the cycle. 

Furthermore, the assumption of isothermality in the compression and 

expansion spaces can never be achieved in practice. It would require either 

infinite rates of heat transfer in the compression and expansion spaces or 

the engine running at very low speeds. However, in real engines running at 

realistic speeds (900-3000 RPM), conditions in the cylinders are closer to 

adiabatic (no heat transfer) than isothermal (infinite heat transfer). The 

departure from isothermal conditions in the compression and expansion 
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spaces results in a decrease of refrigerating capacity and an increase in the 

input work , thereby reducing the COP. 

Another effect not accounted for in the Schmidt cycle are pressure 

losses. There is power lost in moving the gas through the working spaces, 

the largest contribution is generally from the regenerator which, as 

explained earlier, is usually made up of fine passages that provide good heat 

transfer but also have a large resistance to the gas flow. 

Nevertheless, the Schmidt cycle analysis provides a good tool in the 

design of a Stirling cooler because it provides insight into the effect of 

various parameters on the performance of the cooler and gives an indication 

of the complex flow patterns that take place. There are a number of 

parameters defined by the Schmidt Cycle analysis which are used to 

evaluate the performance of the Stirling cycle (note: the letters c and e 

denote the compression and expansion spaces, respectively). They are: 

I. The temperature ratio, T = Tc/Te, the ratio of the temperatures in the 

compression and expansion spaces. 

2. The swept volume ratio, κ = 	Vc/Ve, the ratio of swept volume in the 

compression and expansion spaces. 

3. The dead volume ratio, X = Vd/Ve, the ratio of the total dead volume of 

heat exchangers and associated ducts to the swept volume of the expansion 

space. 
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4. The phase angle a by which volume variations in the expansion space 

lead those in the compression space. 

5. The pressure of the working fluid expressed as the maximum or mean 

pressure, 	or 

6. The speed of the engine N in cycles per second. 

The Schmidt cycle is useful to explore the effects of variation of the 

above parameters. Using the analysis it can be seen that the refrigerating 

capacity is a linear function of the engine speed N, the maximum pressure 

of the working fluid Pmax and the combined swept volume Vt= Vc + 	Ve. 

According to the Schmidt theory, to double the refrigerating capacity 

one 	simply doubles the speed N, the maximum pressure Pmax, or the 

combined swept volume Vi, In practice, the results are not as 

straightforward. Increase in the pressure and speed will certainly increase 

the refrigerating capacity but the improvement occurs at a progressively 

diminishing rate because of increasing friction losses and thermal saturation 

of the regenerative matrix. 

The effect on performance of the parameters t, κ, α , and X is less 

obvious. It is not clear which combinations should be used to achieve the 

optimum performance. This is important because these parameters are 

determined at the design stage and except for the temperature ratio τ, 

cannot be easily changed without a structural change to the engine. 
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Optimal combinations for several hundred cases were determined and 

consolidated design charts prepared for refrigerating machines (Walker, 

1983). The design chart was prepared for the optimum design in terms of 

heat lifted 0e, expressed in dimensionless units based on the maximum 

pressure and the combined swept volume. According to Walker this is the 

preferred basis for optimization because the maximum pressure is indicative 

of the weight of an engine and the combined swept volume is indicative of 

the size. Thus, optimization generates an engine design having the maximum 

refrigerating capacity for a given size and weight. To use the chart one must 

choose a temperature ratio, and an appropriate value of the dead-volume 

ratio and then read off the values of 

Using the Schmidt cycle analysis the results for a typical Stirling 

cryocooler were evaluated. See details in the Appendix. 

The Schmidt cycle assumes that the volume variations are sinusoidal 

functions separated by a phase angle a. This assumption is very good since 

the volumes are usually displaced using a crank-connecting-rod mechanism 

which operates in a sinusoidal fashion. The volume variations are 

represented by the equations below. 

Again a represents the phase angle by which the expansion space volume 

leads the compression space volume, 4  represents the crank angle. The 

volume variations in the compression and expansion spaces is shown in 
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Figure 2. Using the pressure function derived by the analysis, P-V diagrams 

for the expansion and compression spaces can be generated. See Figures 3 

and 4. As can be clearly seen, the more realistic P-V diagram looks very 

little like the box-like diagram of the ideal thermodynamic cycle. 

Figure 2 Volume Variations in Compression and Expansion Spaces 

Figure 3 P-V Diagram for Expansion Space 
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Figure 4 P-V Diagram for Compression Space 

Figure 5 Mass Flow Rates of the Compression and Expansion Spaces 

An analysis of the mass flow rates for the compression and expansion 

spaces is shown in Figure 5. It should be noted that positive mass flow rates 

(lines above the datum) depicted in the diagram represent the net flow into 

the compression space or out of the expansion space. Similarly negative 
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mass flow rates (below the datum) represent flow into the expansion space 

and out of the compression space. The net flow across the regenerator is 

represented by dark solid line in which positive flow is denoted by flow out 

of the expansion space and into the compression space. 

As shown by the diagram, the time dependence of the gas flow in and out of 

the regenerator is very complicated. First, all of the gas in the engine does 

not flow right through the regenerator. As evidenced by the graph the net 

flow into the expansion space and out of the compression space (or vice 

versa) are rarely equal. This is due in large part to the large void volume of 

the regenerator. In many machines with a relatively long regenerator and 

short blow times there is gas that never leaves the regenerator altogether, 

but simply flows back and forth within it. Walker (1983) refers to this 

motion as 'tidal' flow. 

Another peculiarity of the gas flow is that although during much of 

the cycle the flow is traversing from one end to the other, there exists a 

period when the gas flow is entering from both ends of the regenerator. 

Similarly there is a period when flow is exiting from both ends of the 

regenerator. This is due to the expansion and compression of the gas in the 

regenerator. 

Clearly, the flow through the regenerator is very complex. The time 

dependence of the pressure and mass flow rates, as well as the temperature 

dependence of thermophysical properties, cannot be adequately evaluated 
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using the Hausen regenerator theory. More complex theories are needed to 

evaluate the performance of a regenerator operating under the conditions 

found in Stirling cycle machines. 

2.4 Enthalpy-Flux Method 

The enthalpy-flux method, developed by Qvale and Smith (1969), is an 

approximate closed form solution for the performance of a Stirling cycle 

regenerator. The theory assumes a sinusoidal flow rate and sinusoidal 

pressure variation with a phase angle between them. By assuming a second 

order polynomial for the temperature distribution in the regenerator a 

closed form solution is obtained for the .net change in enthalpy or enthalpy 

flux. The theory assumes the gas and matrix temperatures are constant with 

time, and neglects the effect of fluid friction. The major assumptions of the 

theory are: 

1. Regenerator is one-dimensional, there are no variations normal to the 

flow. 

2. The effect of longitudinal conduction is negligible in both the matrix and 

the gas. 

3. The gas behaves ideally, i.e. PV=RT 

4. The thermophysical properties are constant throughout the regenerator. 

5. The free flow area of the regenerator is constant. 
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6. The gas and matrix temperatures at a particular location in the 

regenerator are constant with time. 

The assumptions made above parallel many of those made in the 

Hausen theory. As was shown before, many of these idealizations can have 

a significant effect on the performance of the regenerator. But unlike the 

Hausen theory this method takes into account the cyclic variation of the 

pressure and mass flow rates, an important factor that is probably the 

greatest drawback to the Hausen theory. Additionally, to more accurately 

describe the large change in heat transfer rates with flow rate, heat transfer 

coefficients between the gas and the matrix are based upon an experimental 

correlation dependent on the mass flow rate and temperature. 

This more accurate model of the heat transfer in the regenerator 

yields fairly good results in comparison with some limited experimental 

results obtained by Rea (1967). A reasonably good correlation between this 

method and the experimental data was found, However, because the 

experimental data was obtained at relatively slow cycle speeds (84 and 158 

RPM), it is not known how this method compares with more practical 

devices operating at speeds of 900 to 3000 RPM, where the flow conditions 

are much different. 

To extend the accuracy of the enthalpy-flux method another analysis 

was performed by Harris, Rios and Smith (1970). Using the procedure 

developed above, separate equations were developed to evaluate the axial 
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conduction losses and pressure drop losses not accounted for in the 

enthalpy-flux method. A computer program was written to calculate the 

losses of a regenerator (imperfect heat transfer, conduction, pressure) for a 

particular refrigerator using a large number of different matrices. Optimum 

values for the length to diameter ratio were presented along with the losses 

associated with different types of matrices. In general the overall losses 

decreased as the particle size and wire diameter decreased. In addition, 

pressure drop losses and conduction losses were shown to be comparable to 

the losses due to imperfect heat transfer, especially at higher mesh values 

(200-400 mesh). 

2.5 Experimental Research 

Very little has been published about the experimental performance of 

regenerators operating under conditions found in Stirling cycle devices. One 

simple experimental investigation performed by Walker (1961) found that a 

reduction in wire diameter increases the regenerator effectiveness. To give 

an indication of the performance of the regenerator, the quantity of liquid 

air produced by a cryocooler (operating at constant speed and mean 

pressure) was measured. The results of this experiment are consistent with 

basic thinking since a reduction in wire diameter results in an increase in the 

surface area for heat transfer. 
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An experiment which is most representative of the conditions in a 

regenerative cryocooler was performed by Gifford, Acharya and Ackermann 

(1969). Their test apparatus was set up to accurately determine the 

effectiveness (which they term efficiency) of a regenerator to within 0.02%. 

A large number of different matrix materials were used including mesh 

screens of stainless steel and bronze (sizes 100, 150 and 200) as well as 

very small lead balls. Helium was used as the working fluid and was 

operated with the end temperatures of 300 and 78K. Flow rates were varied 

from 4 to 24 cubic feet per minute and speeds were varied from 60 to 150 

cycles per minute. A constant regenerator diameter of 0.75 inches was used 

while the length was varied from 2 to 4 inches. Wall material was either 

stainless steel or phenolic plastic. 

As with the experiments conducted by Walker (1961), they found 

that the effectiveness increased with an increase in mesh number (100-200). 

As would be expected, an increase in length resulted in an increase in 

effectiveness, although at a progressively diminishing rate. The increase in 

effectiveness in both cases is due to greater heat transfer surface area. 

Regenerators that operated with higher speeds (150 RPM) and thus 

smaller blow times, showed higher effectiveness values, especially at higher 

flow rates. An optimum flow rate was found for many matrix materials 

(typically around 13 CFM) where effectiveness is a maximum. Effectiveness 

tends to decrease at flow rates both below and above this optimum value. 
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The exception is fine mesh materials (150-200 mesh) which at high speeds 

(over 100 RPM) the effectiveness changed little with an increase in the flow 

rate. 

The increase in conduction losses at low flow rates was blamed for 

the decrease in effectiveness. When comparing stainless steel (high 

conductivity) to the low conductivity phenolic plastic, it was found that 

conduction losses are a considerable part of the overall losses, especially at 

lower flow rates. The ineffectiveness resulting from the use of stainless 

steel resulted in conduction losses that contribute almost 50% to the total 

ineffectiveness in some cases. 



CHAPTER 3 

PRESENT ANALYSIS 

The analysis presented in this paper is derived from the model of Atrey, 

Bapat and Narayankhedkar (1991). Their mathematical model provides a 

high level of simulation to the actual operating conditions of Stirling cycle 

regenerators. To accomplish this, the model makes very few idealizations 

about the flow and heat transfer. Like the Enthalpy-flux method of Smith 

(1969), this model allows for sinusoidal mass and pressure functions. Axial 

conduction of the gas and matrix are also taken into account. In addition, 

the numerical simulation also allows for temperature dependent 

thermophysical properties and flow dependent heat transfer coefficients. 

Once coded, the model is easily modified to suit a wide variety of operating 

conditions. Because of this adaptability this model may easily be applied to 

any of the regenerative cryocoolers. 

The key to the model's high level of simulation is due to the fact that 

it makes very few assumptions. They are: 

1. The gas obeys the ideal gas law, i.e. PV=RT. 

2. The pressure drop across the regenerator is negligible. 

3. The flow at any instant is one-directional. 

4. The conductivity in the direction normal to the flow is infinite. 

5. The temperature at the inlet is constant. 

31 



32 

Usually hydrogen and helium exhibit very good ideal gas properties 

for most heat transfer applications and assumption one is a very good one. 

However, many cryocoolers operate at high pressures (above 20 atm) and at 

very low temperatures. Under these conditions the fluids do not behave 

ideally and the deviation from ideal gas behavior is significant. Fortunately, 

the error involved in assuming ideal gas behavior is not more than a few 

percent. More exact equations may be used in approximating the gas 

behavior such as the Clausius equation or the Beattie-Bridgeman equation 

of state but this would greatly add to the mathematical complexity of the 

model. 

Assumption two requires that the pressure be same throughout the 

regenerator. It neglects the change in pressure in the direction of the flow 

rate. Fortunately, in high pressure devices this pressure drop is only a small 

fraction of the time dependent pressure change and has a negligible impact 

on the effectiveness. The pressure drop losses however, can have a 

significant impact on the performance of the cooler and should be assessed 

separately. 

Together assumptions three and four are required to make the 

resulting equations one dimensional in space. This serves to reduce the 

computational effort considerably. Assumption four is a fairly good 

approximation since the conductivity normal to the flow is high for most 

materials - such as wire screen matrices. Unfortunately, assumption three 
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may not be a good representation of the actual flow. As pointed out in the 

experimental analysis by Jones (1989), the flow can be a strong function in 

the direction normal to the flow. Whether such flow profiles exist in real 

operating regenerators is questionable. Nevertheless, the remedial measures 

recommended by Jones should be used to smooth the flow profile as best as 

possible since any inhomogeneity of the fluid flow will most certainly cause 

a decrease in the effectiveness of the regenerator. 

Assumption five is commonly made in the design of conventional 

counterflow heat exchangers. It is one of the principle assumptions of the 

Schmidt cycle. However, as was shown before, the actual conditions in the 

compression and expansion spaces of the Stirling cryocooler are more 

adiabatic than isothermal. Therefore the inlet conditions to the regenerator 

will undergo fluctuations in temperature. It is difficult to predict these 

fluctuations and little is known about how they will effect the performance 

of the regenerator. 

With these assumptions the governing equations are derived by 

taking energy and mass balances for a differential element of gas and 

matrix. For a differential element of gas: 

where W = mass flow rate 

h = enthalpy 

kg  = thermal conductivity of the gas 
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T = temperatue of the gas for the differential element dx 

= temperature of the matrix for the differential element dx 

H T  = heat transfer coefficient between the matrix and gas 

AT = heat transfer surface area per unit length 

ρg= density of the gas 

u = internal energy of the gas 

Ao = cross sectional area of regenerator open to the flow 

The first term in the equation above represents the net flux of energy 

associated with the flow. The second term represents the net flux of energy 

due to conduction of the gas. The third term represents the energy 

transferred from the gas to the matrix over the differential length dx. The 

final term represents the change in internal energy of the differential gas 

element. 

Assuming the gas behaves ideally, the following approximations can be 

made: 

Substituting the expressions above into the gas energy equation and 

simplifying: 

Additionally, writing an expression for gas continuity: 

Substituting this relation into the gas energy equation we find: 
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Writing an energy balance for a differential element of matrix: 

where km = thermal conductivity of matrix in direction of flow 

cm  = specific heat of matrix 

A = cross sectional area of matrix 

Min= mass of the matrix per unit length 

As before, the first term represents the energy transferred from the 

gas to the matrix over the length dx. The second term represents the energy 

flux due to axial conduction in the matrix. The term on the right hand side 

represents the change in the internal energy of a differential matrix element. 

To simplify the two equations above, a number of non-dimensional 

parameters were derived. They are: 

3.W* = W/Wa, where Wa is the amplitude of the sinusoidal mass flow 

variation. 

where Pa  is the amplitude of the sinusoidal pressure variation. 

where w is the angular speed 
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Substituting these relations into the gas and matrix energy equations we 

get: 

and 

To more accurately simulate the conditions in a real Stirling cycle 

regenerator the following functions for the mass flow rate and pressure 

variations were used. They differ slightly from the functions used by Atrey, 

Bapat and Narayankhedkar. 

Atrey, Bapat and Narayankhedkar assumed fixed temperatures for the 

matrix at both ends of the matrix and fixed the temperature of the gas at the 

inlet. In this analysis, to give a better estimate of the effect of reversing 

flow the following boundary conditions were used: 

To arrive at a steady state solution with fewer iterations, the initial 

temperature distribution for the gas and the matrix were assumed to vary 

linearly from the hot end to the cold end or: 

Now that the model is properly defined it is only necessary to choose an 

appropriate method to arrive at a solution.  



CHAPTER 4 

COMPUTATIONAL SOLUTION 

The solution to the set of partial differential equations above was performed 

using a finite difference routine. See Appendix. The equations were made 

explicit by rearranging terms and solving for the partial time derivatives of 

Tm  and Tg. The solution then typically proceeds by solving for the 

temperature of the gas, Tg and matrix, Tm at a time t+dt using the solution 

at time t. The solution begins at the cold end of the matrix and marches 

along at space step dx to the hot end of the regenerator. 

The mass flow rate and pressure is evaluated at each time step. 

Thermophysical properties for the gas and matrix are evaluated at every 

space step and hence at the local temperature of the gas and matrix. 

Functions for the thermal conductivity, specific heat and viscosity of the 

working fluid were obtained by curve fitting data found in the TPRC Data 

Book (1970). Unfortunately, the equations obtained are functions of 

temperature only and at atmospheric pressure despite the fact that many 

thermophysical properties, notably viscosity, are strong functions of 

pressure as well. Curve fitting was done using the AMVAC v. 1.2 curve 

fitter developed by Dudley Benton and most functions were within a few 

percent of the experimental data. 
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For the matrix, functions for the thermal conductivity and specific 

heat for phosphor bronze were obtained from the model developed by Atrey 

et. al. (1991). The function obtained for the conductivity is a rough 

estimate at best since the method of regenerator construction has an 

important impact on the thermal conductivity of the matrix. In many cases 

stacks of wire mesh are compressed and sintered together to form a 

continuous piece for easy machinability. The thermal conductivity of the 

matrix in the axial (flow) direction is then dependent on the contact 

resistance between the layers of the matrix. 

Experimental heat transfer data was obtained from Walker and 

Vasishta (1971). They conducted experiments to measure the heat transfer 

and flow friction characteristics for a wide range of wire mesh materials 

using air as the working fluid. Their results are presented in a series of 

charts relating the Nusselt number, Nu and Fanning friction factor, ƒ  to the 

Reynolds number, Re. An approximate curve fit to the Nu vs. Re chart for 

the 200 mesh phosphor bronze wire screen was evaluated using the AMVAC 

program. The approximate relation is as follows: 

where the Reynolds number, Re and Nusselt number, Nu are defined as 

follows: 

where p = porosity 
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= viscosity of the gas 

Initially a forward difference in time, central difference in space finite 

difference scheme was used. It involves the calculation of the solution at 

time t+dt using the solution at time I. The space step was discretized using 

the standard central difference method except at the boundaries. At the cold 

end of the matrix a first order forward difference was used. Similarly a first 

order backward difference was used to discretize the differential equations 

at the hot end of the regenerator. 

Commonly the size of dt and dx necessary to achieve stability are 

determined by performing a stability analysis on the differential equations. 

Unfortunately, because of the nonlinearity of the equations it is very 

difficult if not impossible to perform such an analysis. Instead, the values of 

di and dx were continually adjusted until stability was obtained. To achieve 

stability using the method above, a rather severe limit on the time step di of 

1/100,000 was required. The space step on the other hand, had little effect 

on the stability of the solution and a space step as large as 1/5 was utilized. 

To reduce the stability requirement a higher order method was used 

to discretize the time step. A three time level scheme was utilized such that 

the solution for the time step 	is found using the solution at time t and 

time t-dt. The standard explicit method described above was used to start 

the solution. Additionally second order forward and backward differences 

were used to discretize the terms at the boundary conditions. This yields a 



40 

method which is order O(dt2) in time and O(dx2) in space as opposed to the 

0(dt) and O(dx2) of the previous method. Using this method stability was 

achieved with a time step as large as 1/40,000. 

The initial space step dx of 1/5 was found to be inadequate to 

properly discretize the space step. Temperatures were found to go above 

the hot end temperatures and below the cold end temperatures - in violation 

of the second law of thermodynamics. More points were needed to yield a 

more accurate solution. To do this the number of points used in the 

discretization was consecutively doubled until four digit accuracy was 

achieved. Reasonably good results were found using a space step of 1/40. 



CHAPTER 5 

RESULTS AND DISCUSSION 

The regenerator was analyzed for a wide range of operating conditions to 

determine what effect if any the parameters such as mass flow rate, pressure 

and length had on the effectiveness. First, baseline operating conditions 

were defined as follows: DIA-3 inches, L = 3 inches, P m  = 2500 kPa, 	= 30 

deg, Wa = .01 kg/s @ 1400 RPM. Then one parameter such as the mass 

flow rate was varied to determine its effect on the performance of the 

regenerator. For the operating conditions described the following trends 

were found: 

Variation of the mass flow rate had a significant impact on the 

effectiveness of the regenerator. Flow rates were evaluated over the region 

of .001 to .04 kg/s. See Figure 6. The graph shows that the effectiveness 

decreases with an increase in the mass flow rate. This agrees with the 

experimental results obtained by Gifford el. al. (1969). Apparently the 

increase in the heat capacity of the fluid results in a decrease in the 

effectiveness despite the fact that heat transfer coefficients are larger at the 

higher flow rates. The drop in effectiveness at low flow rates that Gifford 

C. al. found in their experiments was not predicted by the present method. 

The speed of regenerator operation was also shown to have a 

significant impact on the performance. Speeds were evaluated over the 

range of 100 to 1400 RPM. See Figure 7. 
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Figure 6 Effectiveness vs. Mass Flow Rate 

Figure 7 Effectiveness vs. Operating Speed 
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The present method shows an increase in effectiveness as the speed 

of operation is increased. Again, these results are in agreement with the 

results obtained by Gifford el. al. Apparently the drop in effectiveness is a 

result of the increase in the heat capacity of the fluid at low speeds. For a 

given flow rate the heat capacity will increase as a result of the longer blow 

times at slower speeds. A regenerator effectiveness as high as .9918 was 

predicted for a speed of 1800 RPM with a low of .9727 at 100 RPM. 

The pressure and phase angle were found to have little impact on the 

effectiveness of the regenerator. The effectiveness was a very weak function 

of the phase angle. An increase in the effectiveness of only .001 was found 

in the range of 0 to 40 degrees. The 	effect of the pressure on the 

effectiveness was found to be even smaller. A decrease in effectiveness of 

only .0003 was predicted over the range from 1 to 40 bar. This correlates 

with the results found by Atrey et. al. It should be noted that if the 

pressure dependence of the thermophysical properties and the deviation 

from ideal gas properties were taken into account a greater variation in the 

effectiveness is expected to occur. 

The effect of the matrix volume, as would be expected, showed large 

changes in the effectiveness. See Figure 8. To evaluate these volume 

variations the diameter of the regenerator was fixed at 1 inch while the 

length of the regenerator was varied from 0.5 to 4 inches. Thus varying the 

length of the regenerator had a direct impact on the amount of heat transfer 



44 

surface area and heat capacity of the matrix. As a result it was found that an 

increase in the length resulted in an increase in the effectiveness, although 

at a diminishing rate. A regenerator effectiveness as high as .993 was 

predicted using a length of 4 inches. 

Figure 8 Effectiveness vs. Length 

An additional analysis was made of the variation of the temperature 

distributions in the matrix. See Figure 9. For this particular case (c = .873) 

the temperature within the matrix undergoes large variations with time. 

Such cyclic thermal variations can have an adverse effect on the matrix 

material. To minimize this effect the regenerator should be made as efficient 

a possible. 
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Figure 9 Cyclic Temperature Variations in the Matrix 



CHAPTER 6 

CONCLUSIONS AND SUGGESTIONS 

The method presented in this paper provides one of the most complete 

descriptions of the operation of a thermal regenerator of a Stirling cycle 

device. Among the other methods, this model makes the fewest assumptions 

about the flow and heat transfer. There is an allowance for sinusoidal mass 

flow rate and pressure variations along with a phase difference between 

them. Thermophysical properties such as conductivity, viscosity and specific 

heat are all temperature dependent. Heat transfer coefficients between the 

gas and matrix are flow dependent. Also, thermal conduction of both the 

gas and matrix in the direction of flow are accounted for. Because of this 

high degree of simulation the precision of the model is mostly limited by the 

accuracy of the functions for the thermophysical properties and heat 

transfer coefficient. 

Unfortunately there is little experimental evidence available to 

corroborate the results found in this model. This is due to the fact that it is 

very difficult to measure the performance of a regenerator operating under 

normal flow conditions typical of a Stirling cooler. Thus the results 

obtained using this model are questionable. Further experimental work 

needs to be done to measure the performance of regenerators operating 

under conditions more typical of efficient Stirling coolers, i.e. high pressure 
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(20-40 atm), high speed (600-1800 RPM) with sinusoidally varying pressure 

and mass flow rates. 

The method is not without merit however. Since this method provides 

one of the highest levels of simulation to date, it can be very useful as a 

design tool. Although in this study the analysis was limited to the 

performance of a regenerator operating with a matrix consisting of 200 

mesh phosphor bronze with helium as the working fluid operating between 

the temperatures of 75 and 300K the method can easily be adapted to wide 

range of materials, fluids and temperature ranges. All that is needed is 

accurate data for heat transfer coefficients and thermophysical properties. 

Also the pressure and mass flow rate variations can easily be modified to 

evaluate the performance of regenerators operating under other 

regenerative cycles such as the Gifford McMahon and Vuilleumier cycles. 

Particularly important, this method provides a means to investigate 

the effect various parameters have on the performance of the regenerator. 

Regenerator dimensions, mean pressure, matrix materials, working fluid, 

phase angle, flow rates, etc. can all be varied. This allows various different 

combinations to be tried to determine which set of parameters will yield the 

best results. Coupled with an effective analysis of the pressure drop loss 

this method can provide a reasonably good means of performing an 

optimization study. 

In general the following results were obtained: 
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I. The effectiveness decreases with an increase in the mass flow rate. 

2. The effectiveness increases with an increase in the frequency of operation. 

3. Pressure and phase angle have little or no effect on the effectiveness. 

4. An increase in the volume of the matrix results in an increase in the effectiveness. 

Thus to design an efficient regenerator the matrix should be made as 

large as possible (optimized against pressure losses), and made to operate 

with low flow rates and high speeds. Since the model was programmed to 

only evaluate the temperature distributions of the gas and matrix, as well as 

the effectiveness, further work can be done to evaluate other properties 

important in the design of the regenerator. These include the pressure drop, 

void volume and effects of wall conduction on the performance of the 

regenerator. These factors can have a significant effect on the performance 

of the regenerator and should be assessed in the process of design. The 

analysis of these factors are beyond the scope of this paper. 



APPENDIX A 

SCHMIDT CYCLE ANALYSIS 
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Crank Angle: 

Dead Volume Ratio (assumed): 

Constants: 
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Temperature of Compression and Expansion Spaces 

Temperature Of Dead Space (average): 

Volume of Compression and Expansion Spaces 

Phase angle between Compression and Expansion Spaces 

Temperature Ratio: 	Gas constant for Helium 

Swept Volume Ratio: 

Mean Pressure: 

Instantaneous Pressure: 
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Expansion Space Volume: 

Compression Space Volume: 

Instantaneous mass of fluid in Expansion Space: 

Instantaneous mass of fluid in Compression Space 

Dead Space: 

Volume Variations in the Compression and Expansion Spaces 

P-V Diagrams for expansion and compression spaces 
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Mass Variations in the Compression, Expansion and Dead Spaces 

instantaneous Mass Flow Rates of Compression and Expansion Spaces 



APPENDIX B 

PROGRAM LISTING 
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* Solution of the partial differential equations for heat 
* transfer of a regenerator in a Stirling engine/refrigerator 

PARAMETER (PI = 3.14159265359D0, N=40, CYCLES=5 ) 

* Dimensionless variables 
DOUBLE PRECISION BETA,B,C,D,E,NTU,W,P,RE 

* Finite Difference 
DOUBLE PRECISION DX,DT 
INTEGER START,I,J,REV 

* Regenerator Thermodynamic Parameters 
DOUBLE PRECISION CM,CG,HT,KG,KM,VI,TE,TC,RU,R,MOLAR 
DOUBLE PRECISION H,MFLOW 
DOUBLE PRECISION PRESS,PPRIME,DERIVP,PM,PA,PHASE,WA 

* Regenerator Physical Parameters 
DOUBLE PRECIS1ON MASS,L,DIA,A,AT,AO,POROS,RH 

* Misc Parameters 
DOUBLE PRECIS1ON SPEED,RPM,SUM,EFFECT,TEMP 
CHARACTER TDATA*20 

* Dimension grid  
DOUBLE PRECISION TM(0:N,2),TMNEW(0:N),TG(0:N,2),TGNEW(0:N) 

* Grid. Spacing 
DX = 1.D0/N 
DT = 1.D0/40000.D0 
M = NINT(2.D0*PI/DT) 

* Define Constants (SI Units) 
WRITE (*,*) 'Enter diameter of regenerator (in)' 
READ (*,*) TEMP 
DIA = TEMP*.0254D0 
WRITE (*,*) 'Enter length of regenerator (in)' 
READ (*,*) TEMP 
L = TEMP*.0254D0 
A = Pl*DIA**2/4.D0 
RU = 8314.D0 
MOLAR = 4.003D0 
R = RU/MOLAR 
TE = 75.D0 
TC = 300.D0 
BETA = TE/(TC-TE) 

WRITE (*,*) 'Enter mean pressure (bar)' 
READ (*,*) TEMP 
PM = TEMP*I.D5 
PA = PM/3.D0 
WRITE (*,*) 'Enter the phase angle (deg)' 
READ (*,*) TEMP 
PHASE = PI*TEMP/180.D0 
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WRITE (*,*) 'Enter the maximum mass flow rate (kg/s)' 
READ (*,*) WA 
WRITE (*,*) 'Enter the speed of operation (RPM)' 
READ (*,*) RPM 
SPEED = 2.DO*PI*RPM/60.D0 

* Matrix Geometry 
CALL MGEOM(L,A,MASS,AT,AO,POROS,RH) 
B = AO*L*PA*SPEED/(R*WA*(TC-TE)) 

* Initialize array for Initial Conditions 
DO 10 I = 0,N 

TG(I,1) = (1.D0*I)/N 
TM(I,1) = TG(I,1) 

10 CONTINUE 
SUM = 1.D0 

* Store results to the file temp.dat 
WRITE (*,*) 'Enter name of data file' 
READ (*,*) TDATA 
OPEN (1, FILE = TDATA) 

* Perform standard explicit method for first iteration 
J = 1 

 
* Evaluate Pressure and mass flow rate 

P = PRESS(J*DT,PM,PA,PHASE) 
PPRIME = DERIVP(J*DT,PHASE) 
W = MFLOW(J*DT) 

* Evaluate boundary conditions 
TG(0,2) = 0.D0 

CALL THERMO(CG,CM,KG,KM,VI,TG(0,1),TM(0,1),TC.TE) 
RE = 4.D0*RH*ABS(W)*WA/(VI*POROS*A) 
H = HT(RH,KG,RE) 
D = H*AT/(MASS*CM*SPEED) 
C = KM*A/(MASS*CM*SPEED*L**2) 
E = KG*AO/(WA*CG*L) 
NTU = H*AT*L/(WA*CG) 

TM(0,2) = TM(0,1) + DT*D*(TG(0,1)-TM(0,1)) + C*DT/(DX**2) 
C 	* (-2.D0*TM(0,1)+ 5.D0*TM(1,1)- 4.DO*TM(2,1)+ TM(3,1)) 

CALL THERMO(CG,CM,KG,KM,V1,TG(N,1),TM(N,1),TC,TE) 
RE = 4.D0*RH*ABS(W)*WA/(VI*POROS*A) 
H = HT(RH,KG,RE) 
D = H*AT/(MASS*CM*SPEED) 
C = KM*A/(MASS*CM*SPEED*L**2) 
E = KG*AO/(WA*CG*L) 
NTU = H*AT*L/(WA*CG) 

TM(N,2) = TM(N, 1) + DT*D*(TG(N, 1)-TM(N, 1)) + DT/(DX**2)*C 
C 	* (2 .D0*TM(N, 1)-5.D0*TM(N-1,1 )+4.D0*TM(N-2,1)-TM(N-3, 1)) 
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TG(N,2) = TG(N,1) W*DT/(B*P)*(TG(N,1)+BETA) 
C 	* (TG(N-2,1 ) - 4.D0*TG(N-1,1) + 3.D0*TG(N,1))/(2.D0*DX) 
C + R*DT / (CG*P) * (TG(N,1)+BETA) * PPRIME 
C + E*DT / (B*P) * (TG(N,1)+BETA) 
C 	* (2.D0*TG(N,1)-5.D0*TG(N-1,1)+4.DO*TG(N-2.I)-TG(N-3,1)) 
C / (DX**2)- NTU*DT/(B*P)* (TG(N,1)+BETA)* (TG(N,1)-TM(N.I)) 

SUM = SUM + TG(N,2) 

DO 41= 1,N-1 

CALL THERMO(CG,CM,KG,KM,VI,TG(I,1),TM(I,1),TC,TE) 
RE = 4.D0*RH*ABS(W)*WA/(VI*POROS*A) 
H = HT(RH,KG,RE) 
D = H*AT/(MASS*CM*SPEED) 
C = KM*A/(MASS*CM*SPEED*L**2) 
E = KG*AO/(WA*CG*L) 
NTU = H*AT*L/(WA*CG) 

* Finite Difference Solution - First Iteration 
* Central difference in space, forward in time 

TM(I,2) = TM(I,1) + DT*D*(TG(I,1)-TM(I,1)) + DT/(DX**2)*C 
C 	* (TM(I+I,1) - 2.D0*TM(I,1) + 

TG(I,2) = TG(I,1) 
C 	- W*DT/(B*P)*(TG(I,1)+BETA)*(TG(I+1,1)-TG(I-1,1))/(2.D0*DX) 
C + R*DT / (CG*P) * (TG(I,I)+BETA) * PPRIME 
C + E*DT / (B*P) * (TG(I,1)+BETA) 
C 	* (TG(I+I,1) - 2.D0*TG(I,1) + TG(I-1,1)) / (DX**2) 
C 	- NTU*DT / (B*P) * (TG(I,1)+BETA) * (TG(I,1)-TM(I, 1)) 

4 CONTINUE 

START = 2 
DO 100 REV = 1,CYCLES 

* Finite Difference Solution 
DO 1 J = START,M 

* Evaluate Pressure and mass flow rate 
P = PRESS(J*DT,PM,PA,PHASE) 
PPRIME = DERIVP(J*DT,PHASE) 
W = MFLOW(J*DT) 

* Determine direction of flow to establish gas boundary cond. 
IF (\V .GE. 0.D0) THEN 

TGNEW(0) = 0.D0 

CALL THERMO(CG,CM,KG,KM,VI,TG(N,2),TM(N,2),TC.TE) 
RE = 4.D0*RH*ABS(W)*WA/(V1*POROS*A) 
H = HT(RH,KG,RE) 
D = H*AT/(MASS*CM*SPEED) 



C = KM*A/(MASS*CM*SPEED*L**2) 
E = KG*AO/(WA*CG*L) 

NTU = H*AT*L/(WA*CG) 

TGNEW(N) = (-TG(N, 1) + 4.DO*TG(N,2) 
C - W*DT/(B*P*DX)*(TG(N,2)+BETA) 
C * (TG(N-2,2) - 4.DO*TG(N-1,2) + 3.DO*TG(N,2)) 
C + 2.D0*R*DT / (CG*P) * (TG(N,2)+BETA) * PPRIME 
C 	+ 2.D0*E*DT / (B*P*DX**2) * 	(TG(N,2)+BETA) 
C 	* (2.D0*TG(N,2)- 5.DO*TG(N-1,2)+ 4.DO*TG(N-2,2)- TG(N-3,2)) 
C - 2.D0*NTU*DT/ (B*P)* (TG(N,2)+BETA)* (TG(N,2)-TM(N,2))) 
C /3.D0 

SUM = SUM + TGNEW(N) 

ELSE 

TGNEW(N) = 1.D0 

CALL THERMO(CG,CM,KG,KM,VI,TG(0,2),TM(0,2),TC,TE) 
RE = 4.D0*RH*ABS(W)*WA/(VI*POROS*A) 
H = HT(RH,KG,RE) 
D = H*AT/(MASS*CM*SPEED) 
C = KM*A/(MASS*CM*SPEED*L**2) 
E = KG*AO/(WA*CG*L) 

NTU = H*AT*L/(WA*CG) 

TGNEW(0) = (-TG(0,1) + 4.D0*TG(0,2) 
C - W*DT/(B*P*DX)*(TG(0,2)+BETA) 
C 	* (-TG(2,2) + 4.DO*TG(1,2) - 3.D0*TG(0,2)) 
C + 2.D0*R*DT / (CG*P) * (TG(0,2)+BETA) * PPRIME 
C + 2.D0*E*DT / (B*P*DX**2) * (TG(0,2)+BETA) 
C 	* (-2.D0*TG(0,2)+ 5.DO*TG(1,2)- 4.D0*TG(2,2)+ TG(3,2)) 
C - 2.DO*NTU*DT/ (B*P)* (TG(0,2)+BETA)* (TG(0,2)-TM(0,2))) 
C /3.D0 

SUM = SUM + 1.D0 - TGNEW(0) ENDIF 

CALL THERMO(CG,CM,KG,KM,VI,TG(0,2),TM(0,2),TC,TE) 
RE = 4.DO*RH*ABS(W)*WA/(VI*POROS*A) 
H = HT(RH,KG,RE) 
D = H*AT/(MASS*CM*SPEED) 
C = KM*A/(MASS*CM*SPEED*L**2) 
E = KG*AO/(WA*CG*L) 

NTU = H*AT*L/(WA*CG) 

TMNEW(0) = (-TM(0,1) + 4.DO*TM(0,2) 
C + 2.DO*DT*D*(TG(0,2)-TM(0,2)) + 2,DO*C*DT/(DX**2) 
C * (-2.D0*TM(0,2)+ 5.D0*TM(1,2)- 4.DO*TM(2,2)+ TM(3,2)) 
C )/3.D0 

CALL THERMO(CG,CM,KG,KM,VI,TG(N,2),TM(N,2),TC,TE) 
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RE = 4.D0*RH*ABS(W)*WA/(VI*POROS*A) 
H = HT(RH,KG,RE) 
D = H*AT/(MASS*CM*SPEED) 
C = KM*A/(MASS*CM*SPEED*L**2) 
E = KG*AO/(WA*CG*L) 
NTU = H*AT*L/(WA*CG) 

TMNEW(N) (-TM(N,1) + 4.DO*TM(N.2) 
C + 2.D0*DT*D*(TG(N,2)-TM(N,2)) + 2.D0*C*DT/(DX**2) 
C * (2.D0*TM(N,2)- 5.D0*TM(N-1,2)+ 4.D0*TM(N-2,2)- TM(N-3,2)) 
C )/3.D0 

DO 2 I = 1,N-1 

CALL THERMO(CG,CM,KG,KM,VI,TG(1,2),TM(1,2),TC,TE) 
RE = 4.D0*RH*ABS(W)*WA/(VI*POROS*A) 
H = HT(RH,KG,RE) 
D = H*AT/(MASS*CM*SPEED) 
C = KM*A/(MASS*CM*SPEED*L**2) 
E = KG*AO/(WA*CG*L) 
NTU = H*AT*L/(WA*CG) 

*

	Finite Difference Solution - Central difference in space 

TMNEW(1) = (-TM(I,1) + 4.D0*TM(1,2) 
C + 2.D0*D*DT*(TG(I,2)-TM(I,2)) + 2.D0*C*DT/(DX**2) 
C 	* (TM(I+1,2) - 2.D0*TM(I,2) + TM(I-1,2)))/3.D0 

TGNEW(I) = (-TG(I,1) + 4.D0*TG(L2) 
C - W*DT/(B*P*DX)*(TG(I,2)+BETA)* (TG(I+1,2) - TG(I-1,2)) 
C + 2.D0*R*DT / (CG*P) * (TG(I,2)+BETA) * PPRIME 
C 	+ 2.D0*E*DT / (B*P*DX**2) * 	(TG(I,2)+BETA) 
C 	* (TG(1+1,2) - 2.D0*TG(I,2) + TG(I-I,2)) 
C - 2.D0*NTU*DT / (B*P) * (TG(I,2)+BETA) 
C 	* (TG(I,2) - TM(I,2)))/3.D0 

2 	CONTINUE 

* 	Reset variables for next time step 
DO 5 I = 0,N 

TG(I,1) = TG(I,2) 
TM(I,1) = TM(I,2) 

TG(I,2) = TGNEW(I) 
TM(I,2) = TMNEW(I) 

5 CONTINUE 

I CONTINUE 

* 	End of cycle - print out temp, calculate effectiveness 
DO 8 1 = 0,N 

WR1TE (1,30) TGNEW(I),TMNEW(I) 
8 CONTINUE 

WRITE(1,*)'TIME = (J+(REV-1)*M)*DT/SPEED 
WRITE(1,*) 
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EFFECT = (SUM*(TC-TE)+TE)/(M*(TC-TE)) 
WRITE(1,*) 'Avg effectiveness for cycle 	is ',EFFECT 

WRITE(I,*) 

* 	Reset variables for next cycle 
START = 1 
SUM = TGNEW(N) 

100 CONTINUE 

30 FORMAT (2F10.6) 
40 FORMAT (4F15.12) 

CLOSE (I) 
END 

SUBROUTINE MGEOM(L,A,MASS,AT,AO,POROS,RH) 
PARAMETER (PI = 3.14159265359D0, CONV = 39.3700787402) 
DOUBLE PRECISION L,A,MASS,AT,AO,N,MESH,THICK,VOL,POROS,RH,DENS 
MESH = 200.D0 
THICK = .0021D0/CONV 
DENS = 8874.23 
N = 1.D0/(2.D0*THICK) 
AT = N * (PI*THICK*CONV*MESH*2. DO*A) 

AO = A*(1 - THICK*CONV*MESH*2.D0 + MESH**2*(THICK*CONV)**2) 
VOL = N*L * P1*(THICK*CONV)**2/2.DO*MESH*A/CONV 
MASS = (VOL * DENS)/L 
POROS = I - VOL/(A*L) 
RH = A*L*POROS/(AT*L) 
END 

SUBROUTINE THERMO(CG,CM,KG,KM,VI,TG,TM,TC,TE) 
DOUBLE PRECISION CG,CM,KG,KM,VI,TG,TM,TC,TE 
DOUBLE PRECISION SHG,SHM,TCG,TCM,VISC 

CG = SHG(TG*(TC-TE)+TE) 
CM = SHM(TM*(TC-TE)+TE) 
KG = TCG(TG*(TC-TE)+TE) 
KM = TCM(TM*(TC-TE)+TE) 
VI = VISC(TG*(TC-TE)+TE) 

END 

DOUBLE PRECISION FUNCTION HT(RH,KG,RE) 
DOUBLE PRECISION RH,KG,RE,NU,K1 

K1 = 3.72097D-1 
NU = Kl*RE**(3./4.) 
HT = NU*KG/(4.D0*RH) 
END 

DOUBLE PRECISION FUNCTION VISC(TG) 
DOUBLE PRECISION TG,K1,K2 
K1 = 4.7744D0 
K2 = 0.65671D0 
VISC = KI*TG**K2 * 1D-7 
END 
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DOUBLE PRECISION FUNCTION SHG(TG) 
DOUBLE PRECISION TG 
SHG = (5.1967DO+TG*O.D0)*1000.D0 
END 

DOUBLE PRECISION FUNCTION TCG(TG) 
DOUBLE PRECISION TG,K1,K2,K3,K4 
K1 = 2.03174D-3 
K2 = 2.69044D-19 
K3 = 1.10309D-1 
K4 = -1.96402D1 
TCG = K1*TG**(3./4.)+K2*TG**5+K3*TG**(-2./3.)+K4*TG**(-3) 
END 

DOUBLE PRECISION FUNCTION SHM(TM) 
DOUBLE PRECISION TM,K1,K2,K3,K4,K5 
KI = 0.6356D-8 
K2 = -0.4708D-5 
K3 = 0.1231D-2 
K4 = -0.02438D0 
K5 = 4188.0D0 
SHM = (KI*TM**3 + K2*TM**2 + K3*TM + K4)*K5 
END 

DOUBLE PRECISION FUNCTION TCM(TM) 
DOUBLE PRECISION TM,K1,K2,K3 
K1 = -0.2245D-3 
K2 = 0.2776D0 
K3 = 0.0208D0 
TCM = K l*TM**2 + K2*TM + K3 
END 

DOUBLE PRECISION FUNCTION PRESS(WT,PM,PA,PHASE) 
DOUBLE PRECISION PM,PA,WT,PHASE 
PRESS = PM/PA - COS(WT-PHASE) 
END 

DOUBLE PRECISION FUNCTION DERIVP(WT,PHASE) 
DOUBLE PRECISION WT,PHASE 
DERIVP = SIN(WT - PHASE) 
END 

DOUBLE PRECISION FUNCTION MFLOW(WT) 
DOUBLE PRECISION WT 
MFLOW = SIN(WT) 
END 
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