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ABSTRACT 

The Permeability of Hot Mix Asphalt Concrete 
with Petroleum Contaminated Soils 

by 
Kuen-yuan Chuang  

It is estimated by the United States Environmental Protection Agency (USEPA) that 

there are 2 to 3.5 million underground storage tanks (USTs) throughout the nation and 

about 25% of these tanks are leaking. The leakage of petroleum or other organic material 

presents serious environmental problem due to the uncontrolled release of petroleum 

products to ground water. Many new techniques have developed to reuse these petroleum 

contaminated soils generated from sites containing leaking USTs. One such soil reuse 

method available since 1985 is the use of petroleum contaminated soils in the production 

of hot mix asphalt. 

The stability, durability, and hydraulic conductivity are three important engineering 

parameters that need to be considered when using petroleum contaminated soils (PCSs) in 

hot mix asphalt (HMA). In three separate theses, the stability, durability of asphalt 

concrete mixed with PCSs and the environmental impacts of the process were 

investigated. In this thesis, the variation in hydraulic conductivity due to the addition of 

PCSs in to HMA is investigated. 

The hydraulic conductivity of Hot Mix Asphalt pavement affects its performance. 

However, there are no publications that document the hydraulic conductivity of hot mix 

asphalt concrete made with or without petroleum contaminated soils. In this thesis, six 

different hot mix asphalt concrete mixes with petroleum contaminated soils and a control 

mix were designed and the hydraulic conductivity were measured. The measured 

hydraulic conductivity values are then correlated to the properties of the matrix in the 

HMA concrete. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background  

During 1950s and 1960s, the construction of many gasoline stations, chemical 

manufacturing and processing facilities led to the installation of millions of Underground 

Storage Tanks (USTs). Several million USTs in the United States contain petroleum 

products. Ten of thousands of these USTs, including their piping systems, are currently 

leaking (Fairweather, V., 1990). Many more are expected to leak in the future. Most 

states vigorously encourage the removal of all tanks after 25 years of service. It is 

estimated that on average removal of a leaking UST generates 50 to 80 cubic yards of 

contaminated soil. These figures are projected to increase over next few years. 

The leaking USTs have a detrimental effect on the environment. This problem has 

become a major environmental issue, and has being addressed by the USEPA act 40 CFR-

280 and the May 1990 Amendment that enlists the deadlines and financial responsibilities 

for owner of USTs. 

The Petroleum Contaminated Soils (PCSs) generated from leaking USTs with a total 

hydrocarbon concentration less than 3% are classified as solid waste but cannot be used as 

clean fill. However, there is a significant amount of soil being removed from contaminated 

sites and are disposed in secured landfills. Many disposal/recycling technology have been 

consider to deal with those soils with each method having several disadvantage points. 

Land filling is the most common method, but the available sites are becoming limited with 

the increasing governmental regulations. Thermal methods are too expensive and they 

cause the air pollution. Biological methods are cheaper but take longer time to process 

soil. A reuse method with more benefit and less disadvantages, which has been used since 

1985, is the addition of the petroleum contaminated soil as a partial substitute for virgin 

aggregates in the production of asphalt concrete. 1  
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This technique is now in the development stage, but is a viable solution to reuse the 

contaminated soil. The total production of Hot Mix Asphalt (HMA) in the United States 

is over 500 million tons. In 1988, there was a total of approximately 2.3 million miles of 

roads that were surfaced with asphalt or concrete. Of the surface roads approximately 

96% or 2.2 million miles had asphalt pavements. Industrial waste products have been 

added up to 10% by weight in to asphalt matrix without hurting the strength and 

performance of asphalt concrete. Base on the annual production of hot mix asphalt, if as a 

rule 5% of contaminated soil is added to HMA, then it is estimated to consume 25 million 

tons of solid waste such as PCSs in highway construction. 

When PCSs are added to HMA, the hot mix process will incinerate, dilute and 

solidify the contaminants. Part of the petroleum is used as d fuel and is burned during the 

production of asphalt concrete. Thus a majority of the contaminants are eliminated 

beneficially and are used to reduce the fuel cost. The petroleum contaminated soils are 

diluted and spreaded after they are mixed with the virgin aggregates to produce the 

asphalt concrete. Because the asphalt cement acts as a binder virgin aggregates and 

remaining diluted contaminants are solidified and stabilized in the final asphalt concrete 

matrix. 

1.2 Objectives  

Hydraulic conductivity is a measure of ease of the passage of air and water into or through 

the pavement. While the air void content may be an indication of the ability of a 

compacted paving mixture to transmit air or water through it, a more important parameter 

of the matrix is the amount of interconnected voids and their access to the surface. A 

highly permeable asphalt pavement is low in durability, as it allows water and air to go 

through it or to get absorbed on the asphalt cement. When the water in the asphalt 

pavement freezes, the increased volume of ice causes extra stresses on asphalt concrete 

causing it to crack and disintegrate. The roads in the northern United States are exposed 
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to the nature's strickest temperature change, freeze and thaw. In the winter, roads in this 

area usually freeze in the night and thaw during the day. The durability test show that the 

HMA concrete will lose majority of its stability after several cycles of Freeze-Thaw 

treatment (DuBose 1992). Furthermore, passage of water through the asphalt pavements 

could remove the fine particles in the sub-grades shortening service life. Furthermore, 

high air permeability accelerate the oxidation process by exposing asphalt cement to air. 

Oxidized asphalt is hard and brittle causing cracks during the passage of vehicles. 

Therefore, imperviousness to air and water is a necessity for durability of asphalt 

concretes. Therefore, permeability is one of the most important engineering factors in 

design of hot mix asphalt pavements. However, there is very little research on this topic. 

In this thesis, hydraulic conductivity of a control mix and a mix containing PCSs are tested 

and the test results are discussed. 



CHAPTER 2 

THEORY OF PERMEABILITY  

2.1 Introduction  

The property of water-bearing formation that relates to its pipeline or conduit function is 

called hydraulic conductivity, k, and defined as the capacity of a porous medium to 

transmit water. It is expressed in velocity units, i.e., centimeter per second (L/T). 

Hydraulic conductivity is governed by the size and shape of the voids, the interconnection 

between voids, and the physical properties of the permeating fluid. The volume of water 

passing through an asphalt concrete is restricted when there are limited amount of tubes. 

Since the physical properties of water very with temperature, the hydraulic conductivity is 

reported at a particular temperature 

For HMA concrete, the asphalt content and amount of air voids may be an indication 

of the hydraulic conductivity of the concrete. For both soil and HMA concrete, the most 

significant contributor to the hydraulic conductivity is amount of interconnected voids and 

their access to the surface. 

The hydraulic conductivity of porous medium is determined using two different 

experimental methods, constant head and falling head. In this research, falling head 

method is used to determine the hydraulic conductivity of HMA concrete. 

2.2 Equations for Falling Head Test  

For the permeability tests, Brainard-Kilman pressure and volume control system was used 

to measure the discharge, Q, and the total hydraulic head, h1  and h2  There is a schematic 

drawing of this falling head equipment shown on Figure 1. 

4  



Figure 1 Schematic drawing of falling head permeability test apparatus 

The permeant, in this case water, flows from one standpipe through the specimen 

into the other standpipe. The rate of discharge,Q, is calculated by the increase in the 

water level in the outflow standpipe. However, in B&K measuring panel readings on 

standpipe are volume readings. Therefore, to obtain the level difference standpipe reading 

should be multiplied by a factor. The inlet, outlet, and cell pressures are obtained directly 

from the digital gage. If the first reading is taken at time, t = 0 then the elevation 

difference between two standpipes is noted as H1  (cm), and the second reading is taken at 

time t = t, then the elevation difference is noted as H2 (cm) In addition, at any time 

during the test constant pressures, Pi  & Po (psi), are applied to inlet and outlet 

standpipes. Then, the total hydraulic head difference, h (cm), is defined as equation (2.1). 

5  
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Henri Darcy (1856), a French engineer, published a simple equation for the 

discharge velocity of water through saturated soils, which may be expressed as 

V Df  = kiki 	 (2.2) 

where VDf  is the Darcy flux velocity (specific discharge), i is the hydraulic 

gradient. 

The hydraulic gradient, i , is defined as the hydraulic head difference, h (cm), 

divided by the distance, L (cm), along the flow path where the above head difference 

occurred 

From pipe flow, we know that the rate of discharge, Q  (cm3/sec), is equal to the 

flow velocity times the cross-sectional area, A (cm2), or: 

Q = V Df ×  A 	 (2.4) 

Substituting the equivalent value of VDf  form equation above we have: 

However, Rate of discharge can also be obtained from the rate of change of levels in 

standpipes and express as: 

Where, a (cm2)  is the cross-sectional area of the standpipe. dh is the change in 

total hydraulic head difference during a time interval dt. 

After combining equation 2-5 and 2-6 and rearranging gives the following equation 
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Integrate the left side with limits of time from zero to t ; and the right side from h1  

to h2  , gives 

Where h1 is the total hydraulic head difference at time t1  and h2  is that at time t2 . 

We obtain 

or 

Rearrange the equation above, we get the final equation as: 

where: 

Where Pi1  (psi) is the pressure applied to the inlet side at time equal to zero and Po1  

(psi) is pressure applied to outlet side at the same time. Pi2  (psi) and Po2 (psi) each 

shows the pressure applied to inlet and outlet sides at time equal to t . If applied 

pressures are constant then Pi1 = Pi2 = Pi and Po1 = Po2 = Po. All the pressure 

measurement discussed in this chapter are in pound per square inch (psi) and the head, 

pressure head and elevation head, are in centimeters (cm) 



CHAPTER 3 

PETROLEUM CONTAMINATED SOIL 

3.1 Background 

Six contaminated soils, provided by New Jersey Department of Environmental Protection 

& Energy (NJDEPE) from sites identified as contaminated soils and having less than 1% 

TPH in each soil were selected for testing and characterizing. The soils were selected in 

such a manner to cover most of the soil types that occur in nature (gravel, sand, silt and 

clay, see ASTM D2487-85). The first three soils (PCS#1, PCS#2, and PCS#3) were 

contaminated with heating oil and the latter three (PCS#4, PCS#5, and PCS#6) were 

contaminated with gasoline. 

3.2 Gradation and Classification 

The grain size distribution is a major factor that effects the permeability of a porous 

medium and hence the performance of HMA concrete. To obtain the relative size's 

distribution of the different PCSs, the dry sieve method (ASTM D-421) and wet sieve 

method (ASTM D-422) were performed. The sieve analysis reflects the proportioning of 

the contaminated soil samples. Hydrometer analysis was performed on the soils which 

contained clay or silt passing US sieve No.200. 

The original form of unified classification system was proposed by Casagrande in 

1942 for use in the air field construction under-taken by the Army Crop of Engineers 

during World War II. In cooperation with the United States Bureau of Reclamation, this 

system was revised in 1952. At present, the soil classification system (ASTM D-2487) is 

widely used among engineers. To classify those PCSs, sieve analysis, liquid limit (LL), 

and plastic limit (PL), tests were also performed. The Plasticity Index (PI) is the 

difference between the liquid limit and plastic limit of a soil, or 

PI= LL— PL 	 (3.1) 

8  
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The in situ moisture content of each contaminated soil was measured for reference 

and for mix design. The grain size distribution of the six petroleum contaminated soils are 

report on Table 1. The classification and moisture content for these soils is report on 

Table 2.  

Table 1 Grain size distribution of PCSs  

Percent 	Retained 

Sieve PCS #1 PCS #2 PCS #3 PCS #4 PCS #5 PCS #6 

3/4" 0.0 0.0 0.0 0.0 0.0 2.2 

3/8" 0.0 0.0 0.0 0.0 0.0 5.0 

US #4 5.0 12.0 0.0 2.0 5.0 5.9 

US #10 5.0 7.0 3.0 6.0 10.0 3.0 

US #40 52.0 9.0 22.0 42.0 20.0 12.8 

US #100 20.0 6.0 54.0 50.0 11.0 58.7 

US #200 13.0 3.0 5.0 0.0 9.0 7.3 

Finer than #200 5.0 63.0 16.0 0.0 45.0 5.1 

Table 2 Classification and moisture content of PCSs 
(Meegoda et al.,1992)  

Contaminated Soils Classification Moisture Content 

PCS #1 well graded sand 7.3 % 

PCS #2 clayey silt 14.3 % 

PCS #3 silty sand 24.7 % 

PCS #4 poorly graded sand 14.4 % 

PCS #5 silty clay 19.6 % 

PCS #6 poorly graded sand with silty sand 10.1 % 
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3.3 Contamination Level 

In New Jersey, The level of contamination equal or higher than 30,000 ppm or 3% will be 

considered as a hazardous waste. The soils with contamination level lower than this level 

are classified as the solid waste. For the proper identification of the six petroleum 

contaminated soils, the contamination level should be determined. The degree of 

contamination for oil contaminated soil was determined by the soxhlet oil and grease 

extraction method (USPHS standard method for the analysis of water and waste water). 

For the gasoline contaminated soils, a similar method, reported by Meegoda, et al.(1989)., 

was used In this method, gasoline was extracted by carbon disulfide and then injected into 

the Gas Chromatograph. Using the calibration curves, the gasoline concentrations were 

determined. 

From the test result, the contamination levels of six contaminated soils used in the 

study ranged from 25 ppm to 6,600 ppm. Contamination levels of all six soils were below 

30,000 ppm and hence they were considered as solid wastes. The contamination levels of 

first three soils, PCS#1, PCS#2, and PCS#3, were 1,100 ppm, 1,200 ppm, and 6,600 ppm 

respectively. The contamination levels of the remaining three soils, PCS#4, PCS#5, and 

PCS#6, were 25 ppm, 1500 ppm, and 330 ppm respectively. 

Table 3 Contamination analysis of PCSs 
(Meegoda et al., 1989) 

Contaminated Soils Contaminants Contamination Levels 

PCS #1 Heating Oil 1100 ppm 

PCS #2 Heating Oil 1200 ppm 

PCS #3 Heating Oil 6600 ppm 

PCS #4 Gasoline 25 ppm 

PCS #5 Gasoline 1500 ppm 

PCS #6 Gasoline 330 ppm 



CHAPTER 4 

MIXING PETROLEUM CONTAMINATED SOIL 
IN HOT MIX ASPHALT CONCRETE 

4.1 Typical Marshall Mixture Design  

The hot mix asphalt (HMA) concrete is construction material which is made of uniformly 

mixed aggregate, coated with asphalt cement, and compacted to desired density. To 

obtain sufficient fluidity of asphalt cement for proper mixing and compaction, both 

aggregates and asphalt cement are heated before mixing, hence the term hot mix asphalt 

concrete used for this material. The HMA mix design should be developed with several 

objectives, such as (1) resistance to permanent deformation, (2) fatigue resistance, (3) 

resistance to low temperature cracking, (4) high durability, (5) resistance to moisture 

induced damage, (6) high skid resistance, and (7) sufficient workability. 

Aggregates and asphalt are combined in a mixing facility in which all the constituent 

materials are heated, proportioned, and mixed to produce the desired paving mixture. The 

aggregate in HMA consist of (a) coarse aggregates with sizes ranging from 1.5" to US 

sieve #4, (b) fine aggregates or sands with sizes passing US sieve #4 and retain on US 

sieve #200, and (c) mineral filler such as crush stone dust or lime passing US sieve #200. 

The aggregates are mixed with asphalt cement to obtain HMA concrete. A typical HMA 

composition consists of 50% coarse aggregate, 40% fine aggregate, 5% mineral filler, and 

5% asphalt cement. However, size distribution is perhaps the most important property of 

an aggregate used in HMA. This effects almost all the important aspects of a HMA, 

including stiffness, stability, durability, permeability, workability, fatigue resistance, skid 

resistance, and resistance to moisture damage. Therefore, aggregate gradation is the most 

important consideration in asphalt mix design, and the specifications used by most states 

place limits on the gradation of acceptable aggregate that can be used in HMA. The 

Mixing and compact temperature are different for each design. Hot mix asphalt paving 

11  
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mixture may produced from a wide range of aggregate combination, each having its own 

particular characteristics suited for specific design and construction use. 

Asphalt concrete is a construction material that must meet those strict requirements. 

It is a high-quality, carefully controlled hot mixture of asphalt cement and well-graded, 

high-quality aggregates thoroughly compacted into a uniform dense mass specified as 

dense-graded paving mix. 

4.2 History and Experience of Adding PCSs into HMA  

Since 1985, petroleum contaminated soils, one of industrial solid waste, have been used in 

the production of hot mix asphalt. Typically adding 5-10% of industrial waste products 

such as recycled asphalt pavements, glass, fly ash, tire rubber, and petroleum contaminated 

soils (Czarnecki, 1988) are added into hot mix asphalt concrete without sacrificing the 

strength and performance of HMA concrete. One recently proposed reuse option for 

PCSs involves the incorporation of PCSs into HMA as a partial substitute for stone 

aggregates; the mixture is then used for paving. In this process, aggregates mixed with 

PCSs are heated and dried, then they are mixed thoroughly with hot asphalt cement to 

form the final product. 

In Massachusetts, the Henley-Lundgren Company was allowed to use PCSs as part 

of their aggregate feed by the Massachusetts Department of Environmental Quality 

Engineering (Kostecki et al., 1988). PCSs less than 5% by weight of the total feed was 

incorporated. Even at this small percentage, this plant had the capacity to reuse 8000 tons 

of PCSs annually. Processing PCSs in HMA plants has several advantages: The aggregate 

dryer can act as a incinerator to burn some of the petroleum products, the capital 

investment is in place, and only minor modifications are required, The decontaminated 

soil can be incorporated into HMA, and small percentages of PCSs in HMA can be 

economically processed large quantities of PCSs. American Reclamation Corporation in 

Massachusetts developed a cold mixing process for incorporation of PCSs into asphalt 
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concrete (Neely, 1990). Their tests confirmed that the petroleum contaminant in the soil 

were combined with the asphalt cement to produce a mixture that will not separate and 

will not release the petroleum products back into the environment. 

A national survey found five states had experience with the reuse of PCSs by adding 

it in HMA. In Massachusetts, this method is now considered to be the most favored 

option for disposal of PCSs. 

4.3 Grain Size Distribution  

The grain size distribution is a major consideration in adding contaminated soils into HMA 

concrete. It effects almost all the aspects of a HMA, including permeability, stability, 

durability, workability, etc. Hence, the gradation and classification of both stone 

aggregates and PCSs are the starting point in determining the applicability of adding PCSs 

into HMA concrete. A good gradation curve for the design mix should be as smooth as 

possible, and near the middle of the upper and lower limits of the state specifications. To 

determine a good design mix, the grain size analysis test must be run for aggregates. 

Table 2 shows the sieve analysis data for the aggregates and Table 3 shows those for the 

six PCSs used in this research. 

4.4 Properties of Asphalt  

Asphalt cement is distilled from the crude petroleum. It is a strong and durable material 

with excellent adhesive and waterproofing characteristics. The largest use of asphalt 

cement is in the production of Hot Mix Asphalt (HMA), which is primarily used in the 

construction of highway or airfield pavement throughout the world. 

The process of transformation from plant life to crude oil occurs over millions of 

years under varied temperature and pressure conditions. Although all kinds of petroleum 

are basically hydrocarbons, the amount and nature of hydrocarbons vary from crude to 

crude. Since the asphalt cements are obtained by distillation of petroleum crude, their 
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chemical composition and properties also vary from source to source. The asphalt is 

classified as AC-2.5, AC-5, AC-10, AC-20, AC-30, or AC-40 base on their viscosity 

(ASTM D-3381). In this research, the AC-20 asphalt was used to prepare all the testing 

specimens. 



CHAPTER 5 

EXPERIMENTAL PROCEDURES TO DETERMINE 
THE HYDRAULIC CONDUCTIVITY OF HMA WITH PCS  

5.1 HMA Specimen with PCS  

In this research, the hydraulic conductivity of Hot Mix Asphalt (HMA) concrete was 

measured using the falling head method. For the preparation of specimens, well-graded 

aggregates with Petroleum Contaminated Soil (PCS) are heated to 130°C then mixed with 

asphalt cement heated to 160°C. Three control specimens based on control mix were also 

prepared and tested. The results of Marshall test showed that the average stability of 

HMA concrete with PCSs is better than control ones. Therefore, in a similar manner we 

can compare the hydraulic conductivity of HMA concrete with or without PCSs. 

After mixing and compaction, test specimens should have a diameter of 4.0 inches 

and a height of 6.25 ± 0.2cm. Four height measurements of the specimen should almost 

the same. For permeability test, three specimens made with same mix were tested at the 

same time. The procedure of preparation for this hot mix asphalt concrete is described as 

follows. 

5.2 Mixing and Compaction  

The procedure of mixing and compaction of hot mix asphalt concrete directly effect the 

performance and hence the hydraulic conductivity. Therefore, mixing and compaction 

temperature should be done according to test specifications. The aggregate and PCS are 

heated and dried in the oven at the temperature between 128°C to 130°C before mixing. 

The following is the procedure for mixing and compaction. 

1. Preparation of the aggregates: Use 1", 1/2", 1/4", 1/8", and US sieve 410 standard 

sieve to separate each size of aggregates. The grain size range needed are: (a) between 

15  
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1" and 1/2"; (b) 1/2" and 1/4"; (c) 1/4" and 1/8"; (d) 1/8" and sieve # 10., (e) dust, (f) 

sand. 

2. Weighing of aggregates: Use electronic balance to weight them. The design grain size 

distribution of aggregate and PCSs are shown on Table 4. 

3. Preparation of Petroleum Contaminated Soil (PCS): Use the U.S. standard sieve #10 to 

separate the soil particles larger than sieve #10 in contaminated soils. 

4. Drying and heating the aggregates: Place the aggregates and PCS in metal bucket and 

place in an oven for 5 to 12 hours. Place the mixing bowl, compacting mold, and 

trowel also in the oven. Keep the temperature between 128 to 130°C 

5. Mixing of aggregates and PCS with asphalt: Remove the metal bucket, with aggregates 

and PCS in it, and mixing bowl from oven and then pour the hot aggregates and PCS 

into the mixing bowl. Add the required amount of hot asphalt cement, the asphalt 

needs to be heated to about 160° C, then mixed for 1.5 minute. The optimum asphalt 

concentrations for six mixes with PCSs and the control are given in tables 

6. Compaction: Place a piece of paper cut to 4" diameter at the bottom of the mold before 

adding the mixture to the compaction mold. Spade the mixture vigorously with a hot 

trowel 15 times around the perimeter and 10 times over the interior. Remove the collar 

and smooth the surface to a slightly rounded shape. Place another piece of paper, that 

was cut to 4" diameter, on the top of the mixture. Replace the collar, place the mold 

assembly on the compacting pedestal in the mold holder. Apply 75 blows with the 

compacting hammer using a free fall of 457 mm (18 in.). Hold the axis of the 

compacting hammer as nearly perpendicular to the base of the mold assembly as 

possible during compaction. Remove the base plate and collar, and reverse and 

reassemble the mold. Apply the same number of compacting blows to the face of the 

reversed specimen. Remove the specimen from the mold after allowing it to cool down 

by means of an extrusion jack. Mark the specimen by crayons. 



Table 4 Design grain size distribution of aggregate and PCSs 
(Meegoda et al., 1992)  

Control PCS #1 PCS #2 PCS #3 PCS #4 PCS #5 PCS #6 

1">Size>1/2" 252 276 264 264 252 252 270 

1/2">Size>1/4" 288 312 264 264 288 288 300 

1/4">Size>1/8" 192 156 156 144 192 144 120 

1/8">Size>#10 108 84 96 72 108 72 72 

Dust < US #10 180  0 105 216 180 102 258 

Sand < US #10 180 0 210 0 0 240 0 

PCS < US #10 0 372 105 240 180 102 180 
unit: gram  

Table 5 Optimum asphalt concentration for the six PCSs and the control 
(Meegoda et al.,1992)  

Type of HMA Concrete Asphalt Content (%) Asphalt Weight (gram) 

Control 4.75 59.8 

Mix with PCS #1 4.50 56.5 

Mix with PCS #2 4.50 56.5 

Mix with PCS #3 5.00 63.2 

Mix with PCS #4 4.25 53.3 

Mix with PCS #5 4.50 56.5 

Mix with PCS #6 4.50 56.5 

17  
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5.3 Measurement of Properties of HMA Concrete Specimens 
and Subsequent Saturation 

After testing specimens have been compacted, the dry weight and volume should be 

measured and the specific gravity, voids in total mix(VTM), volume of voids in mineral 

aggregate(VMA), and voids filled with asphalt(VFA) should be determined. 

The Darcy's law is based on the assumption that medium is saturated. Hence, the 

hydraulic conductivity of a porous material should be determined only under saturated 

conditions. In this experiment, a back pressure of 30 psi was applied. Under this 

pressure, we expect all the specimens to be 100% saturated. However, to accelerate the 

testing time, we saturated the specimens by moisture conditioning with distilled water at 

room temperature using vacuum chamber to a degree of saturation of 80% or higher. 

5.4 Equipment Setup 

This testing equipment includes two portions, (a) chamber cells, (b) control panel. The 

schematic sketches of these two parts are shown on Fig 1 and Fig 2. Three same chamber 

cells and HMA specimens are needed for each test. After setting up the specimen inside 

the cell and adding water, we connect cell to the control panel with special tubes. Make 

sure all the tubes are properly connected and there are no leaks. Then, the test is started. 

The procedures for setting up this equipment are shown below. 

5.4.1 Chamber Cell 

1. Place porous stone on top of the base plate. 

2. Place the specimen on top of the porous stone. 

3. Place another porous stone on top of the specimen and then place the upper cap on top 

of that. 

4. Check the membrane for leaks by placing air blown membrane inside a water bath. 



19 

5. Place the rubber membrane over the specimen, cap, and base plate. Make sure that the 

membrane completely covers both the cap and base plate. 

6. Place O-ring to the base plate and to the upper cap. 

7. Position the cylinder of the permeameter cell around the specimen. 

8. Place the top plate on the cylinder and fasten the permeameter by tie rods. 

Figure 2 Permeameter chamber cell 



Facing 20  

Figure 3 Brainard-Kilman control panel 



5.4.2 Control Panel  

1. To fill the cell with deaired water, connect the bottom plate and position 13 with a tube. 

Release the chamber pressure by means of connecting another tube to top plate. Turn 

the switch A to "Fill." 

2. After the chamber is filled with water, transfer the tube from position B to position O. 

Remove the tube from the top plate. 

3. Connect position P and R by a tube; same as position Q and S. 

5.5 Permeability Test  

In this experiment, we determine the hydraulic conductivity of HMA concrete by means of 

measuring the volume of water transmitted through them. The volume of water can be 

easily measured by the permeability test apparatus shown on figure 2 and figure 3. This 

test equipment has two major portions, control panel and chamber cells. We can control 

the chamber, inlet, and outlet pressures separately and read the water volume and hence 

the level in standpipes on the control panel. The tested specimens are placed in the 

chamber cells when testing and the pressure is supplied by an air compressor. It is 

necessary to check the supplied pressure is large enough and all the tubes are connected to 

proper positions before testing. The three major procedures of falling head hydraulic 

conductivity testings are shown as following. 

1. Pressure settings: Turn on the air compressor and check the supply pressure gauges on 

control panel of the permeability test apparatus. Use regulator 1, 2, 3 to adjust the 

pressure of each standpipe, chamber, inlet, and outlet. In this experiment, Cell pressure 

has been set to 50 psi (344 kPa), inlet pressure to 31 psi (213 kPa), and outlet pressure 

to 30 psi ( 206 kPa). The cell pressure was large enough to present leaking from sides 

and to keep the specimens 100% saturation at all times. 

2. Remove air from all the tubes and set the water level in each standpipes; highest at inlet 

and lowest at outlet. 



3. Permeability test: Turn the switch F to "pipette" and G & H to "annulus". Open valves 

L, M, N, R, S. let water flow through the specimen. Record the volume changes in 

three standpipes. Adjust the pressures on inlet and outlet standpipes based on the 

velocity of the flow through the specimen. Reset the water level in three standpipes 

regularly each time reading is taken. 

4. Take readings: Record (1) time, (2) temperature, (3) outlet, inlet, chamber pressure in 

psi, and (4) water levels in each standpipe continuously during the test three times a 

day. 

5. Stop testing: Twenty-four hours after the in-flow became equal to the out-flow, and 

when the hydraulic conductivity did not show a further reduction, the permeability test 

was stopped. 

6. Disconnect all the tubes and place another three sample for next test. In this research, 

we tested twenty-one specimens. 

5.6 Data Collection and Calculation  

During period of testing, we take three reading each day. The time, water temperature, 

and standpipe's scale readings should be recorded every time we take reading. After the 

permeability test was stopped, the equation 5-1 was used to compute the hydraulic 

conductivity values. The derivation of this equation was shown in the chapter 2. 

Where a (cm2) is the cross-sectional area of standpipes; L (cm) is the average height of 

HMA specimen; A (cm2)  is the cross-sectional area of HMA specimen; t (sec) is the 

time interval between two consecutive readings; h1  and h2  (cm) each expresses the 

hydraulic head, including pressure head and elevation head at beginning and end of the 

time period. Finally, the hydraulic conductivity, k , is calculated and express in centimeter 

per second. 
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The variation hydraulic conductivity with. time graphs were plotted to show the 

reduction in hydraulic conductivity. When the hydraulic conductivity reaches the lowest 

value with no further reduction in time, it was assumed that the sample was 100% 

saturated and the hydraulic conductivity values are reported at this point. 



CHAPTER 6 

RESULTS AND DISCUSSIONS  

The saturated hydraulic conductivity values for all twenty-one HMA concrete specimens, 

three for the control and eighteen for HMA made with each soil type, are reported in table 

6. All the hydraulic conductivity values are in the range of 6.5x10-8  and 5.0x10-6. 

However, almost all the saturated hydraulic conductivity values, except one specimen 

made with PCS #4, was less than 5.0x10-6  with the global average of 5.0x10-7, and hence 

can be considered as acceptable. 

Table 6 Hydraulic Conductivity values of HMA concrete made with PCSs and the 
control  

Soils type 

Hydraulic Conductivity 	 (cm/sec)  

Specimen #1 Specimen #2 Specimen #3 

Control 1.7 E -7 1.3 E -7 3.8 E -7 

PCS #1 5.0 E -7 2.7 E -7 2.2 E -7 

PCS #2 6.2 E -8 3.5 E -7 6.0 E -8 

PCS #3 2.9 E -6 2.6 E -7 1.6 E -6 

PCS #4 1.8 E -6 4.5 E -6 1.8 E -7 

PCS #5 5.1 E -7 3.7 E -7 1.5 E -6 

PCS #6 4.2 E -7 4.1 E -7 5.5 E -7 

In geotechnical engineering, it is an accepted fact that d10  size controls the hydraulic 

conductivity of soils. The soil with larger d10  size would have larger hydraulic 

conductivity value. However, there are so many other factors that control hydraulic 

conductivity of a porous material. The variation of hydraulic conductivity for the same 

testing material is quite large, however, one order of magnitude variation is considered as 

acceptable. 

23  
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For HMA concrete, voids in total mix (VTM), volume of voids in mineral aggregate 

(VMA), voids filled with asphalt (VFA), the asphalt content, and the amount of 

interconnected voids are considered as parameters that contribute to the hydraulic 

conductivity. From the d10  size of total aggregate and soil mixture, one should be able to 

estimate maximum possible hydraulic conductivity of HMA concrete. The HMA 

specimen with higher asphalt content or higher VFA will give them a lower hydraulic 

conductivity. On the other hand, the specimen that has higher VTM or VMA would have 

higher hydraulic conductivity. The distributions of voids in the HMA specimen also play 

an important role in the permeability of this HMA concrete. If the voids within aggregate 

and asphalt mass are not interconnect but rather are isolated, the permeability would be 

quite small. Especially, it has significant effect on that HMA concrete with smaller VFA 

values. 

From the results of this research, we found both the asphalt content and the d10  sizes 

of the design mix for PCS #4 are the smallest when compared with six mixes with PCSs 

and the control mix. This information can be used to explain fact that the average 

hydraulic conductivity of these three HMA specimens made with PCS #4 is quite smaller 

than others. 

With higher asphalt content one would expect a lower hydraulic conductivity and is 

consistent for most of the experiment results. For 4.25% asphalt content HMA specimen 

the average hydraulic conductivity was of the order 1.0x10-6, for 4.5% asphalt content, 

the average hydraulic conductivity was of the order 1.0x10 7. However, the specimen 

made with PCS #3, which an optimum asphalt concentration of 5.0%, should have a lower 

hydraulic conductivity, but unfortunately not so in this research. When the other 

properties of these three specimens were investigated it was found for these specimens, 

the void in the mineral aggregate (VMA) was found to be quite large but the average 

voids filled with asphalt (VFA) was found to be smaller. In this case the hydraulic 

conductivity of PCS #3 was effected by these two factors more than the asphalt content.  
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The voids filled with asphalt (VFA) is define as the percentage of the volume of the 

VMA that is filled with asphalt cement. The specimen with higher VFA should have a 

lower hydraulic conductivity. The relationship between VFA and saturated hydraulic 

conductivity for all the specimens were plotted and is shown in figure 4, From this figure, 

it can be observe the above argument that the saturated hydraulic conductivity is lower 

with higher VFA value. The data points located in portion II of figure 4, where the VFA 

is more than 62%, have a higher correlation coefficient than those in portion I of figure 4. 

When the hot mix is compacted to form the dense-graded HMA concrete, the VTM 

should lie among 3 to 5 percent and the permeability of both air and water should be quite 

low as the voids in this HMA concrete will be evenly distributed and filled by the asphalt 

cement. Therefore, hydraulic conductivity is linear correlated to VFA, and k will 

decrease with increase in VFA. However, if the VFA value is low then air voids in the 

mix will not be well distributed. Hence, some of the mix would have more impermeable 

layers or more isolated voids to produce low or irregular hydraulic conductivities. On the 

other hand, the specimens with larger fraction of interconnect voids or crack parallel to 

the direction of water flow will have higher hydraulic conductivities. Therefore, when the 

VFA lower then 62% the interconnection of permeable voids will influent the hydraulic 

conductivity of HMA concrete and it will be hard to examine and predict. 

A good hot mix asphalt pavement will have a lower hydraulic conductivity to 

provide a better service life. The results of this experiment indicate that there is an 

additional design consideration to be considered in the design of HMA mixtures and that 

asphalt cement content when express as a fraction of mineral voids (VFA) should be 

higher than 62% after compaction to have a lower consistent hydraulic conductivity value. 
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Figure 4 The Hydraulic Conductivity values vs. Voids Filled with Asphalt (VFA)% 
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Figure 5 Flow chart of the experiment procedure 



Table 7 Mix properties for Marshall mix design  

Hot Mix Specimens Weight- Grams Spec. Gravity Vol Voids-Percent 

Specimen 
No: 

% 
AC 

Dry 
sample 

water+ 
 container 

Sample 
in water Bulk theor AGG Total VMA Filled 

Control -1 4.75 1257.4 2986.5 3495.5 2.470 2.588 84.035 4.561 15,965 71.430 
Control -2 4.75 1247.9 1933.0 2438.6  2.468 2.588 83.961 4.645 16.039 71.037 
Control -3 4.75 1246.8 2973.7 3480.3 2.461 2.588 83.722 4.917 16.278 69.792 

PCS #1-1 4.50 1224.1 2433.8 2933.5 2.450 2.599 83.551 5.736 16.449 65.129 

PCS #1-2 4.50 1236.8 2426.2 2932.6 2.442 2.599 83.301 6.018 16.699 63.961 

PCS #1-3 4.50 1245.1 1953.3 2458.6 2.464 2.599 84.043 5.181 15.957 67.530 

PCS #2-1 4.50 1230,9 2605.2 3116.0 2.410 2.599  82.190 7.272  17.810 59.169 

PCS #2-2 4.50 1222.6 2597.7 3102.0 2.424 2.599 82.688 6.710 17.312 61.240 

PCS #2-3 4.50 1228.9 2592.9 3100.2 2.422 2.599 82.622 6.784 17.378 60.961 

PCS #3-1 5.00 1225.7 3332.3 3847.7 2.378 2.578 80.687 7,757 19.313 59.835 

PCS #3-2  5.00 1246.4 3325.9 3847.9 2.388 2.578 81.013 7.385 18.987 61.105 

PCS #3-3 5.00 1234.0 3320.2 3837.0 2.388 2.578 81.014 7.384 18.986 61.109 

PCS #4-1 4.25 1231.4 1943.9 2444.3 2.461 2.609 84.152 5.685 15.848 64.131 

PCS #4-2 4.25 1226.7 1938.0 2444.5 2.422 2.609 82.821 7.176 17.179 58.228 

PCS #4-3 4.25 1218.6 2925,6 3432.0 2.406 2.609 82.290 7.771 17.710 56.121 

PCS #5-1 4.50 1225,8 2977.0 3485.3 2.412 2.599 82.252 7.202 17.748 59.421 

PCS #5-2 4.50 1250.7 2970.0 3491.8 2.397 2.599 81.751 7.767 18.249 57.440 

PCS #5-3 4.50 1247,6 2964.0 3485.5 2.392 2.599 81.596 7.942 18.404 56.845 

PCS #6-1 4,50 1244,5 3222.3 3736.3 2.421 2.599 82.580 6.831 17.420 60.784 

PCS #6-2 4,50 1217.0 3229.1 3724.6 2.456 2.599 83.771 5.488 16.229 66.183 

PCS #6-3 4.50 1252.6 3231.2 3747.6 2.426 2.599  82.732 6.661 17.268 61.429 

Gac:    1.029 Geff:      2.800 
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Figure 6 Design grain size distribution of HMA mixture (Control) 
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Figure 7 Design grain size distribution of HMA mixture with PCS #1 
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Figure 8 Design grain size distribution of HMA mixture with PCS #2 
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Figure 9 Design grain size distribution of HMA mixture with PCS #3 
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Figure 10 Design grain size distribution of HMA mixture with PCS #4 
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Figure 11 Design grain size distribution of HMA mixture with PCS #5 
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Figure 12 Design grain size distribution of HMA mixture with PCS #6 



Figure 13 The Hydraulic Conductivity vs. Time of HMA Concrete (Control) 
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Figure 14 The Hydraulic Conductivity vs. Time of HMA Concrete with PCS #1 
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Figure 15 The Hydraulic Conductivity vs. Time of HMA Concrete with PCS #2 
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Figure 16 The Hydraulic Conductivity vs. Time of HMA Concrete with PCS #3 
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Figure 17 The Hydraulic Conductivity vs. Time of HMA Concrete with PCS #4 
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Figure 18 The Hydraulic Conductivity vs. Time of HMA Concrete with PCS #5 
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Figure 19 The Hydraulic Conductivity vs. Time of HMA Concrete with PCS #6 
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