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ABSTRACT 

An Improved 
Human Gait Model Incorporating 

The Effects of Muscle Activity and Joint Friction 

by 
Tae Ho Choi 

In designing an artificial leg for an amputee, it is important to find those underlying 

principles which determine the normal human gait. For this purpose we have developed a 

model of human walking, in which it is possible to predict an optimal gait at any given 

speed of walking based on the principle of minimum mechanical energy consumption. 

Our model is an extension of the model proposed by Mochon and McMahon (1980). 

Their model assumes that during the swing phase of walking mechanical energy is 

conserved. Non-conservative forces due to muscle activity are assumed to occur during 

the double support phase when both legs are in contact with the ground. We have applied 

these idealizations and have extended their model to calculate the energy required to 

maintain any periodic walking motion consistent with their model. A new constraint arises 

when the heel of the swing leg strikes the ground making the end of the swing phase. This 

constraint that after heel strike the heel of the swing leg remains on the ground produces a 

loss of energy to the system that must be resupplied by muscle activity to maintain a 

periodic motion. This allows us to uniquely determine an optimal gait for any given speed 

of walking which minimizes the mechanical energy loss per unit length of motion. 

We propose that this energy minimizing walking motion is selected during normal 

periodic walking and therefore is an underlying principle determining the normal human 

gait. This hypothesis is tested by comparing our predicted gait with that actually observed 

experimentally. 
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CHAPTER 1 

INTRODUCTION 

1.1 Literature Survey 

There are many documents which try to explain human walking. Some say that the swing 

leg acts as a free pendulum(1). Some say that there are many other forces and moments 

acting on the swing leg in addition to gravity(2,6). And some say that it seems reasonable 

to expect that the movement of the legs would be made in such a way as to minimize the 

amount of mechanical work that is done(3,4). Under some constraints, every statement is 

correct and has its own point of view. As early as 1836, the brothers Wilhelm and Eduard 

Weber studied the mechanism of walking and running and concluded that the motion 

during the swing phase of a step was pure pendulum motion(1). Fenn(5,6), in the period 

around 1930, studied the changes in kinetic and potential energies of the body during 

walking and running. Nubar and Contini(3) contend that the individual will determine his 

motion to reduce the muscular effort to a minimum consistent with imposed conditions of 

constraint. Experimentally it is found that the energy consumption per unit distance is a 

minimum at a particular chosen frequency(7). This result led Inman(4) to describe 

locomotion as the translation of the center of mass through space along a path requiring 

the least expenditure of energy. Beckett and Chang(2) include joint moment effects in the 

swing leg to produce motion that is consistent with the geometrical constraint and in such 

a way to give a minimum expenditure of energy. The analysis gives the motion of the leg 

and foot, the equivalent moments in the hip and knee to produce the motion, and the 

energy expended in the swing phase of the leg. But no theoretical work attempting to 

predict the form of swing period vs. speed relationship has yet been reported. Therefore 

Mochon and McMahon(8) have developed a mathematical model to predict the form of 

swing period vs. speed relationship. In this model the body is represented by three limbs, 

one for the stance leg and two for the thigh and shank of the swing leg, respectively. It is 
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assumed that the muscles act only to establish an initial configuration and velocity of the 

limbs at the beginning of swing phase. The swing leg and the rest of the body then moves 

through the remainder of the swing phase entirely under the action of gravity. This model 

assumes initial energy is conserved during the swing phase. In this model many aspects of 

walking at normal speed, from a prediction of the foot forces to an understanding of the 

relationship between walking cadence and body stature, are well represented by a model 

which completely disregards the action of muscles, except for setting the initial positions 

and velocities of the limbs at the beginning of the swing phase. 

As explained above, Mochon's model includes both the swing leg and the stance leg, 

and Beckett's model includes only the swing leg. In Mochon's model energy is conserved, 

and in Beckett's model energy is not conserved, during the swing phase. Beckett's idea 

that forces and moments are imposed at the joints of the leg improves the performance of 

Mochon's model. Therefore, in this thesis, we 'have modified Mochon's model with 

Beckett's idea, and extended it by an algorithm which calculates the energy loss at heel 

strike. As the algorithm produces the amount of energy loss which should be re-supplied 

during the double support, it will make it possible to develop a model which includes the 

double support phase as well as the swing phase in the future. 

1.2 Objective 

A model of human walking is applicable for improved understanding of rehabilitation 

medicine and legged robots. There are complaints about artificial legs, such as heavy 

weight even though they are made of very light materials. If we can design an artificial leg 

to fit the individual person, those complaints may be minimized. When we design legged 

robots, it will improve the efficiency if robots could move with minimum energy 

expenditure. Therefore, in designing artificial legs for amputees and formulating control 

laws for robots, it is important to find those underlying principles which determine the 

normal human gait. 
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Our purpose in this thesis is to develop a mathematical model of human walking 

which can be used for understanding the effects of parameter changes, and predicting the 

optimal human gait with minimal energy loss. There are many papers which explain human 

gait experimentally, as we showed above, but unfortunately no result can be used directly 

to predict the optimal gait. As the swing phase is regarded as the more important period 

when the majority of step length is attained, almost every paper touches only the swing 

phase, but the dominant energy loss occurs at heel strike which occurs between the swing 

phase and the double support phase. The swing phase means that one leg is on the ground, 

and the other is off the ground. The double support phase means that both legs are on the 

ground. A true model of human walking should include both phases. Until now no model 

that incorporates both phases, has been reported. Here our purpose is focused on the 

calculation of the energy loss at heel strike and preparing a method for the prediction of 

the optimal human gait based on this energy loss. 

We have selected Mochon's free pendulum model as our base model. It operates on 

the assumption that energy is conserved during the swing phase. As artificial legs move 

like free pendulums, this model effectively predicts an amputees gait. But it is limited in 

predicting the swing time of the normal gait during the swing phase. It predicts only high 

speed normal walking reasonably accurately. At low speed walking, the model produces 

an abnormal walking gait because the shank kicks too high. It is well known that there is 

excessive knee flexion in amputees during swing time, and thus is consistent with our 

result. As the model acts like a free compound pendulum under gravity, and neglects the 

joint resistance during walking, the shank must swing higher to stay in the air longer at 

slow walking. Another limitation is that it represents only the swing phase. Because of 

these limitations, we can not apply Mochon's model directly to calculate the mechanical 

work that is done when walking, and the energy that must be re-supplied during the 

double support phase. We have modified and extended Mochon's model as follows to 

calculate the energy loss when walking. 
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First we have tried to match theoretical data with experimental data by including 

frictional effects. At this point we consider friction at joints is a source of resistance. When 

we include frictional effects, we can manipulate the swing time with small amount of 

energy loss, and the model can match experimental data better than Mochon's model does. 

Without this frictional effect, our model becomes a free compound pendulum model, and 

the model cannot predict experimental data effectively because of the high kicking of the 

shank. We have regarded friction of joints as representative of every resistance, and devel-

oped our model. There may be many other sources of resistance which retard the move-

ment of the limbs, like fluctuation of the limbs, air resistance, muscle activity, etc. But 

even though we include only one source of resistance, it does not affect the form of the 

mathematical model. As every source of resistance acts to reduce the effect of gravity, the 

friction of joints can represent all the resistances combined. The three joints are the ankle 

joint of the swing leg, hip joint of both legs, and the knee joint of the swing leg. The 

coefficient of friction of joints is assumed the same because the lubricant material in the 

joint is the same. These frictional forces reduce the effect of gravity. Under the reduced 

gravity the shank can stay longer in the air without kicking up too high. Our model, which 

includes frictional effects, does not produce abnormal high kicking of the shank. This 

frictional effect is one source of energy loss during the swing phase. 

Even though we have modified Mochon's model by including the frictional effects, it 

is impossible to calculate energy loss during walking with this model because the model 

does not consider energy losses. We think there are three sources of energy loss. The first 

is friction as explained above. The second is the energy loss at knee lock. At the end of the 

swing phase, the knee locks just before the heel strikes. When knee lock occurs, the thigh 

and the shank of the swing leg moving at different velocities, become one unit that move 

with the same velocity. This produces an energy loss. The third energy loss occurs at heel 

strike, and after heel strike the swing leg no longer moves like a free pendulum. Both legs 

must stay on the ground, which is a new constraint. This constraint produces energy loss 
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at heel strike because the legs must suddenly change their velocities. We have developed 

an algorithm based on the new constraint, which calculates the energy loss at heel strike. 

After modifying and extending Mochon's model, we have calculated energy loss 

component of walking, compared them, and found the energy loss at heel strike is 

dominant energy loss when walking. These energy losses give us a criterion to determine 

the optimal gait of human walking, and we propose that the translation trajectories of 

body masses which produces the minimal energy loss, is the optimal gait. 



CHAPTER 2 

MATHEMATICAL MODEL 

2.1 Assumptions 

Figure 1 Schematic representation of the model during the swing phase. SL is the 
step length, and d is the foot length. Meaning of other symbols are in Appendix A. 

The model is shown schematically in Figure 1. It consists of 3 links; one representing the 

stance leg and two representing the thigh and shank of the swing leg. The foot of the 

swing leg is rigidly attached to the distal link, and does not constitute a separate link. Each 

link is assumed to have a distributed mass. The moment of inertia and location of the 

center of mass of each link is taken from Dempster's anthropometric data(10). The mass of 

the foot is lumped into the shank. The mass of the trunk, head and arms is represented by 

a point mass at the hip joint. The lengths, positions of the center of mass and angles of 

each limb are shown in Figure 1. 

During the swing phase, muscle activity is not as prominent as during the double 

support phase, but some muscle groups accelerate, decelerate and control the limbs during 

the swing phase. For example, muscle activity of quadriceps and hamstring groups during 

6 
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the swing phase are shown in Figure 2, which is quoted from Beckett's paper(2). At 

present we do not know exactly how much force is produced by each muscle group, how 

it changes, and how many muscle groups are actually active, during the swing phase. 

Therefore we assume that during the swing phase muscle activity is continuous, that the 

magnitude of muscle forces is constant, and that these forces oppose gravity. The resultant 

effect of these forces is postulated to reduce the gravitational constant because there is 

acceleration after toe-off, and deceleration before heel-strike. To easily establish our 

mathematical model of walking, we assume that energy is supplied only at the beginning of 

the swing phase, and the rest of the body moves through the remainder of the swing phase 

under the action of gravity whose effect on the body is reduced by muscle groups. 

Figure 2 One complete cycle in level walking 

Joint friction produces a frictional moment which is proportional to the angular 

speed of the joint. There are three joints in our model - ankle, hip and knee. But, in reality, 

the hip joint consists of two separate joints instead of one. One is for the stance leg, and 

one is for the swing leg. The angular speed of the stance leg(θ') is much less than the 
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angular speed of the thigh(ϕ') and the shank(σ') of the swing leg. In normal walking, the 

angular speed of the stance leg is roughly more than five times smaller than the angular 

speed of the thigh and the shank of the swing leg. Therefore, the ankle joint and the hip 

joint of the stance leg produce less frictional moment than the knee joint and the hip joint 

of the swing leg. In this thesis we consider frictional effects in only the two joints of the 

swing leg to simplify the problem. 

2.2 Mathematical Model 

Our mathematical model is expressed with the following equations based on the assump- 

tion of free pendulums. 

where the meaning of the coefficients as well as the derivation of the equations is given in 

APPENDIX A. 

As explained above, the resultant effect of muscle activity is to reduce the effect of 

gravity, and can be expressed as -kg(where k is a coefficient between 0 and 1, and g is the 

force of gravity). Without this effect, the output of our mathematical model, which is 

derived on the assumption of free pendulums, can not match the experimental data. In 

particular the free pendulum model will produce an abnormally high kick of the shank. 

Therefore, in equation(2.1), the gravity term g must be changed to (1-k)g to incorporate 

the effect of muscle activity. In equation(2.1) the effect of gravity is included in the 

coefficients wn  (See Appendix A). 

The frictional moments of the hip joint and the knee joint of the swing leg are 

expressed in equation (2.2). The derivation process and the definition of the symbols are in 
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Appendix B. If we include frictional moments in our model, the equations of our model 

become equation(2.3). 

Equations of frictional moment: 

Equations of our model including joint frictional effect are 

2.3 Solution Method 

Our equations are non-linear equations. We formulate a two point boundary value 

problem and solve it by the shooting method(11). This method employs a 4th order 

Runge-Kutta algorithm. If we assume the initial angles of leg position at toe-off and guess 

the initial velocities of the legs at toe-off, our program solves for the final angles of leg 

position at a specific swing time, which is also given. If discrepancies occur between the 

calculated final angles and the chosen configuration at heel-strike, our program guesses 

new initial velocities and recalculates the final angles. This process continues until the 

program finds the correct initial velocities, with which it can produce the final angles of 

leg position which agree with the desired final angles which correspond to heel-strike. If 

the program finds the correct initial velocities of the legs, it can produce the trajectory of 

the legs, and know the position and velocities of the legs at any instant during the swing 

time. With these data, the program calculates energy losses, and displays the gait on the 

screen. 
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2.4 Calculation of Energy Losses 

From the output of the program, we know the position and velocities of the legs at any 

instant. Therefore we can calculate the kinetic and potential energy of the legs at any 

instant. The total mechanical energy at any instant is expressed in equation(2.4), and the 

derivation of potential and kinetic energy in Appendix A. 

Frictional energy loss during the swing time is the energy difference between the 

initial and the final energy. Initial energy means the energy at toe-off, and the final energy 

is the energy at heel-strike. Because we know the angles and velocities of the limbs at toe-

off and at heel-strike, we can calculate the energy at toe-off and at heel-strike from the 

equation(2.4), and frictional energy loss with these calculated energy. Energy loss at knee-

lock is the energy difference between the energy before knee-lock and the energy after 

knee-lock. It can also be calculated with equation(2.4) because we know the angles and 

velocities of the limbs before and after knee-lock. Energy loss at heel-strike can be 

calculated as follows. During the swing phase the swing leg clears the ground, but after 

heel strike the swing leg and the stance leg must remain on the ground. Because of this 

constraint the legs change their direction of motion, and lose energy. The derivation of 

angles and velocities of the limbs before and after heel-strike are in Appendix C. Similarly 

energy loss at heel-strike can be calculated with equation(2.4). 



CHAPTER 3 

PROGRAM 

3.1 Flowchart 

The flowchart of the program is shown below. It provides an overview of the process of 

arriving at a solution for our model. The next sections will explain each step in more 

detail. 

11 
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3.2 Initialization 

The program requires the specification of initial parameters. With these parameters the 

program initializes every coefficient of our mathematical model of walking. The required 

parameters are listed below. 

* parameters of the stance leg 	 ... weight, length, center of mass 

* parameters of the shank of the swing leg ... weight, length, center of mass 

* parameters of the thigh of the swing leg 	... weight, length, center of mass 

* parameter of the foot 	 ... length 

* parameters of the body 	 ... weight 

* parameters of walking 	 ... step length, swing time, angles 

at toe-off and at heel-strike 

The weight of the shank of the swing leg includes the weight of the foot. In addition to 

parameters, arbitrarily assumed initial velocities of the stance leg, of the shank and of the 

thigh ,of the swing leg, are also to be satisfied. 

3.3 Shooting Method 

With angles at toe-off and initial velocities of each limb, the program calculates angles of 

each limb at the time of heel-strike, and compares these calculated angles with the angles 

given at initialization. If there are discrepancies between the calculated and the given, the 

program tries to guess new initial velocities based on the discrepancies. With these new 

initial velocities, the program calculates angles of each limb at heel-strike again. The 

program continues this process until every discrepancy is less than the given discrepancy 

margin. In our program the discrepancy margin is 10-5. 

The process will be explained with an example. Table 1 shows the guessed initial 

velocities and calculated final angles at heel strike of every limb during the shooting 

process of the example. The given initial angles of each limb at toe off are 

(

θi, ϕi, σi

) 

 = 

(10, -9.4, -55), and the given final angles of each limb at heel strike are 

(

θf, ϕf, σf

) 

 = 
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(-22.02, 22.02, 22.02). At first the program tries to calculate final angles with arbitrarily 

guessed initial velocities 

(θi, ϕi, σi

) 

 = (-102.04, 256.82, -317.34). The calculated final 

angles are (θ, ϕ, σ) = (-36.99, 10.32, 77.32). This result does not satisfy the given final 

angles. Therefore the program finds new guessed initial velocities 

(

θ', ϕ', σ'

) 

 = (-74.33, 

334.62, -689.72) by the shooting method based on the discrepancies between the 

calculated and the given, and tries to calculate final angles again. At the seventh trial, the 

program finally finds true initial velocities, with which it can produce the given final 

angles. The true initial velocities are 

(θ', ϕ', σ'

) 

 = (-74.43, 271.63, -523.88). 

Table 1 The guessed Initial Velocities and the Calculated Final Angles During 
the Shooting Process in the Example. (θi, ϕi, σi

) 

 = (10, -9.4, -55); (θf, ϕf, σf

) 

 = 
(-22.02, 22.02, 22.02). 

shoot 
1 	2 	3 	4 	5 	6 	7 

number 

theta dot -102.04 -74.33 -75.39 -74.59 -74.48 -74.43 -74.43 

phi_dot 256.82 334.62 254.96 277.49 271.1 271.63 271.63 

sigma_dot -317.34 -689.72 -464.12 -545.06 -521.62 -523.89 -523.88 

theta final -36.99 -22.19 -22.8 -22.04  -22.06 -22.02 -22.02 

phi_final 10.32 52.08 9.74 27.73 21.44 22.03 22.02 

sigma_final 77.32 -26.52 48.25 9.36 23.38 22.02 22.02 

The outputs of each shooting are shown in Figure 4. Sixth and seventh output look 

almost the same, and sixth output is omitted. In Figure 3, the sign of angle of the stance 

leg is reversed

(

-θ ) to make three curves end at the same point(-22.02) finally. The heel-

strike configuration is -θ(T) = ϕ(T) = σ(T). 
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Figure 4(a) The output of the first shooting. Initial angles 

(

θfi, ϕi, σi) = 
(10, -9.4, -55), initial velocities 

(

θ', ϕ', σ') = (-102.04, 256.82, -317.34), 
and calculated final angles (θf, ϕf, σf) = (-36.99, 10.32, 77.32). 

Figure 4(b) The output of the second shooting. Initial angles 

(θi, ϕi, σi

) 
= (10, -9.4, -55), initial velocities 

(

θ', ϕ', σ') = (-74.33, 334.62, -689.72), 
and calculated final angles (θf, ϕf, σf) = (-22.19, 52.08, -26.52). 
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Figure 4(c) The output of the third shooting. Initial angles (θi, ϕi, σi) = 
(10, -9.4, -55), initial velocities (θ', ϕ', σ') = (-75.39, 254.96, -464.12), 
and calculated final angles (θf, ϕf, σf) = (-22.8, 9.74, 48.25). 

Figure 4(d) The output of the fourth shooting. Initial angles 

(

θi, ϕi, σi) = 
(10, -9,4, -55), initial velocities (θ', ϕ', σ') = (-74.59, 277.49, -545.06), 
and calculated final angles (θf, ϕf, σf) = (-22.04, 27.73, 9.36). 



Figure 4(e) The output of the fifth shooting. Initial angles (θi, ϕi, σi) = 
(10, -9.4, -55), initial velocities (θ', ϕ', σ') = (-74.48, 271.1, -521.62), 
and calculated final angles (θf, ϕf, σf) = (-22.06, 21.44, 23.38). 

Figure 4(f) The output of the seventh shooting. Initial angles (θi, ϕi, σi) 
=(10, -9.4, -55), initial velocities (θ', ϕ', σ') = (-74.43, 271.63, -523.88), 
and calculated final angles (θf, ϕf, σf) = (-22.02, 22.02, 22.02). 

16 
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3.4 Creeping Method 

As the program starts with arbitrary initial velocities of each limb, these velocities may not 

satisfy the initial and final angles of each limb even though we use the shooting method. 

This usually occurs when the swing time is long. In that event we first select a short swing 

time, and allows the swing time to increase(creep) until we achieve the desired final angles 

at the desired swing time. For example, at some step length, we want to know the gait 

with a swing time of 0.4 second. At first we do not know the exact initial velocities which 

satisfy the boundary conditions. Therefore one example of arbitrary initial 

velocities(-86.01, -114.5, 598,51) may produce a solution which is not feasible as shown 

in figure 5. Another example (-95.58, -540.19, 1881.41) may blow up before it produces 

the final result as shown in figure 6. 

Figure 5 The output that is not feasible. Initial angles 

(

θi, ϕi, σi ) =  (10, 
-9.4, -55), initial velocities 

(

θ', ϕ', σ' ) = (-86.01, -114.5, 598.51), and 
calculated final angles 

(θf, ϕf, σf

) 

 = (-22.02, 22.02, 22.02). 
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Figure 6 The output that blows up. Initial angles (θi, ϕi, σi

) 

= (10, -9.4, 
-55), initial velocities 

(θ', ϕ', σ'

) 
= (-95.58, -540.19, 1881.41). 

But if we creep the final swing time, we can find the exact initial velocities which give 

feasible solutions, or which do not blow up. Table 2 shows initial velocities which satisfy 

the final angles at each swing time during the creeping process. The outputs at each swing 

time are shown in Figure 7. 

Table 2 The Initial Velocities at Each Swing Time During the Creeping Pro-
cess. 

(θi, ϕi, σi

) 

 = (10, -9.4, -55); 

(

θf, ϕf, σf

) 

 = (-22.02, 22.02, 22.02). 

swing time 25 30 35 40 

theta_dot -122.36 -101.15 -85.92 -74.43 

phi_dot 261.61 257.42 261.65 271.63 

sigma_dot -159.3 -294.98 -415.43 -523.88 
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Figure 7(a) The output at swing time 25 msec. Initial angles (θi, ϕi, σi) 
= (10, -9.4, -55), initial velocities 

(

θ', ϕ', σ'
) 

 = (-122.36, 261.61, -159.3), 
and calculated final angles 

(

θf, ϕf, σf ) = (-22.02, 22.02, 22.02). 

Figure 7(b) The output at swing time 30 msec. Initial angles (θi, ϕi, σi) 
= (10, -9.4, -55), initial velocities 

(

θ', ϕ', σ'

) 

 = (-101.15, 257.42, -294.98), 

and calculated final angles 

(

θf, ϕf, σf ) = (-22.02, 22.02, 22.02). 
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Figure 7(c) The output at swing time 35 msec. Initial angles (

θi, ϕi, σi ) 
= (10, -9.4, -55), initial velocities 

(

θ', ϕ', σ' )= (-85.92, 261.65, -415.43), 
and calculated final angles 

(

θf, ϕf, σf ) = (-22.02, 22.02, 22.02). 

Figure 7(d) The output at swing time 40 msec. Initial angles (

θi, ϕi, σi

) 
= (10, -9.4, -55), initial velocities 

(

θ', ϕ', σ' ) = (-74.43, 271.63, -523.88), 
and calculated final angles 

(

θf, ϕf, σf ) = (-22.02, 22.02, 22.02). 
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3.5 Calculation of Energy Losses 

As the result of shooting and creeping, the program knows the exact initial velocities 

which satisfy the initial and final angles of each limb. If the program knows the exact initial 

velocities, it can calculate the final velocities also. With these exact initial and final 

velocities, energy losses, of friction, at knee-lock, and at heel-strike are calculated. 



CHAPTER 4 

RESULTS 

4.1 Effect of Parameter Variation 

We has introduced three new parameters to improve the gait of the model. They are 

muscle activity, friction of the hip joint, and knee joint of the swing leg. Now we do not 

know the exact amount of muscle activity and coefficient of friction of joints. The 

program is useful to understand the effect of parameter variations. With the program we 

can simulate the walking motion by changing parameters. In Figure 8, we can see the 

effect of k parameter. These figures are outputs when we apply the same value of k 

parameter to all three limbs. When k increases, the effect is to reduce the angle variation of 

all three limbs. The effect of k on the thigh and shank is much greater than the effect on 

the stance leg. 

Figure 8(a) Effect of anti gravity k on the stance leg. The curve becomes 
more linear as k increases. The change of the curve is relatively small. 
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Figure 8(b) Effect of anti gravity k on the thigh. The curve becomes 
more linear as k increases. The change of the curve is much greater than 
the case of the stance leg. 

Figure 8(c) Effect of anti gravity k on the shank. The curve becomes 
more linear as k increases. The change of the curve is also much greater 
than the case of the stance leg. 
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In Figure 9, we can see the effect of anti gravity which is applied only to one limb at a 

time. The effect of anti gravity of the stance leg is negligible to all three limbs. The anti 

gavity of the thigh has much effect on the thigh, and small effect on the shank. But the 

effect on the shank makes the shank kick higher, which is undesired effect. It has 

negligible effect on the stance leg. The effect of anti gravity of the shank has great effect 

only on the shank, and effect on other limbs are negligible. Here we may say that only the 

anti gravity effect on the shank can make the shank not kick high. 

Figure 9(a) Effect of anti gravity k. In this figure, only the stance leg 
has the effect of anti gravity. The line is the curve when k=0, and the 
dotted line is the curve when k=0.8. The effect on the limbs is negligible. 
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Figure 9(b) Effect of anti gravity k. In this figure, only the thigh has the 
effect of anti gravity. The line is the curve when k=0, and the dotted line 
is the curve when k=0.8. The effect on the stance leg is negligible. The 
effect on the thigh is great. The effect on the shank is much, but smaller 
than the effect on the thigh. 

Figure 9(c) Effect of anti gravity k. In this figure, only the shank has 
the effect of anti gravity. The line is the curve when k=0, and the dotted 
line is the curve when k=0.8. The effect on the stance leg is negligible. 
The effect on the shank is great. The effect on the thigh is negligible. 
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Friction of joints also has much effect on the thigh and on the shank. The effect of 

knee joint friction is shown in Figure 10. The effect of hip joint friction is shown in Figure 

11. 

Figure 10(a) The effect of friction at the knee joint on the thigh. As the 
friction increases, the thigh goes higher. 

Figure 10(b) The effect of friction at the knee joint on the shank. As 
the friction increases, the height of shank's kicking decreases. 



Figure 11(a) The effect of friction at the hip joint on the thigh. 
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Figure 11(b) The effect of friction at the hip joint on the shank. 
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4.2 Comparison with Real Data 

Even though we do not know the exact value of parameters, we understand which 

parameter has what kind of effect. At present we have small amount of real data, and do 

not know the parameters of the subject which is required to run the program. Therefore 

we use Dempster's anthropometric data(10). If we manage the parameters of anti gravity 

and coefficients of friction, we can produce a simulation output which is similar to the real 

data as you see in Figure 14. Our model has three angles, but real data shows 4 angles 

because the knee of the swing leg is bended at heel strike. There are some discrepancies 

between the simulated and the real. But, at this time, we can have hope that some day in 

the future we can build a walking model which produces same data as the real. It may 

come when we know the exact amount of muscle activity and friction effect, and improves 

our model based on the knowledge of these. 

Figure 12 Experimental output 



Figure 13 Simulated output for the free pendulum model. (b=c=0.0, 
k=0.0) 

Figure 14 Simulated output of the improved model. (b=0.02, c=0.015, 
k(thigh)=0.2, k(shank)=0.7) 
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Table 3 Comparison of Energy Losses(N•m) from Each Model. 

Friction 

Loss 

Knee-lock 

Loss 

Heel-strike 

Loss 

Remained 

Energy 

Initial 

Energy 

Free Pendulum 0.0 0.02 1.17 7.93 9.12 

Improved Model 0.18 0.0 1.12 7.85 9.15 

Figure 15 Comparison of energy distribution: left pie(free pendulum) and right 
pie(improved model). 

30 



CHAPTER 5 

DISCUSSION 

* Model 

As a starting point, we selected Mochon's free pendulum model(8) as our base model 

because this model included the stance leg as well as the swing leg. When we designed a 

program to solve this model and obtained results of the program, we found that the swing 

time of the swing leg was abnormally short to produce normal movement of the shank, 

and that the shank kicked up too high if we made the swing time normal. After extensive 

searching for errors in the computer algorithms and finding none, we concluded that the 

assumption in Mochon's model that there is no energy input during the swing phase is an 

appropriate assumption for the model of an above-knee amputee. An artificial leg is a 

passive element. After toe off, it moves as a free pendulum until heel strike. There is no 

energy input to the artificial leg during the swing phase. The output of the program that 

the shank swings high when walking is consistent with the well-known observation that 

amputees kick high when walking. To solve this problem, we have introduced frictional 

forces into our model, which produce frictional moments to limbs. This idea is based on 

Beckett's model(2). There are papers which say that the swing leg is a free pendulum(1,8), 

or that muscle activity is reasonably quiescent in the swing leg during the swing phase(9). 

But the muscle activities in the swing leg are not absolutely quiescent. There is a relatively 

small amount of muscle activity in the swing leg, which is used for balancing mechanisms. 

Even though it is small compared with the amount of muscle activity of the stance leg, we 

understand that this small amount of muscle activity is enough to improve the shank's 

control considerably. It is interesting to note that such a small small amount of activity 

improves the gait dynamics so much. We think that this is because the shank's speed is 

high, and high speed produces more frictional force. When we have introduced a velocity 

dependent term like friction, the effect is greatest on the shank motion, and the shank does 
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not kick too high when walking. Because a free pendulum model cannot predict 

experimental data, we can hypothesize that the swing leg does not act like a free 

pendulum, and that the stance leg is not a free reverse pendulum, either. 

* program 

With our program we can analyze the effect of every parameters on the human gait. When 

we design an artificial leg, we can predict the walking motion of the amputee, and improve 

the performance of the artificial leg by changing parameters. 

* coefficient of friction 

We have manipulated the coefficient of friction until the computer output matches the 

experimental data. But the source of the friction is not clear. It may come from muscle, 

joint, or other sources. At present, we do not 'know how much friction is contributed by 

each source. Since the resultant effect of any resistance is that of decreasing the effect of 

the gravity, we considerate all the joint frictional forces. If we know how much muscle 

activity exists during the swing phase, we can better understand the effect of each source. 

At this time we have introduced only frictional forces at joints to improve the model. In 

the future we hope to include each muscle's activity to improve the model. Even though it 

is relatively small, it may play a large role in controlling the movement of the shank during 

the swing phase. 

* parameters for theoretical data 

When we calculate the theoretical data, we must identify parameters of the legs such as 

the weight of the foot, thank, and thigh. At this time, we do not have a method of 

measuring these parameters of the subject such as the center of mass and weight of each 

limb, and do not know the values of the parameters that match the experimental data; we 

use Dempster's data which was used in the Mochon's model. To use the theoretical model 
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to predict the human gait, it is necessary to have a method to measure the subject's 

parameters-for example, the weight of the shank. 

* energy loss at heel strike 

One major contribution of this thesis is that it proposes an algorithm to calculate the 

energy loss at heel strike. As a transitional stage to design a model of walking which 

includes the double support phase as well as the swing phase, we have tried to calculate 

the energy loss that occurs at heel strike and that must be re-supplied during the double 

support. Having calculated the energy loss at heel strike, we now know that this energy 

loss is the major energy loss. 

* knee lock and 4 angles model 

Our model is the 3 component model which Mochon used. In the model the thigh and 

shank of the swing leg becomes a straight line at the end of the swing phase. In practice 

the thigh and shank do not become a straight line at the end of the swing phase. That is 

because the knee is locked before the thigh and shank become straight, and at heel strike 

the knee is slightly bent. The theoretical result shows that the thigh angular velocity is 

much more negative than the experimental data shows, near the end of the swing phase. 

To solve this problem, if we introduce knee-bend angles as boundary conditions, our 

model can produce an output of gait dynamics with a knee bend in the swing leg. 

However it is not correct result at this time. If we want to use a bent knee model of the 

swing leg, the stance leg must be also bent. This means that we must use 4 components 

and 4 angles in our model. If the knee is bent, the energy loss at heel strike may be smaller 

than the energy loss when the knee is stiff. In the future we shall improve our model by 

using a four-component, four-angle model. 

* muscle activity. 
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In our model energy is obtained only at toe-off. Energy is assumed lost due to friction, but 

no energy is added during the swing phase. Therefore our model is a passive model. To 

construct a continuous periodic walking model, the model must resupply the lost energy 

by muscle activities. In the future we shall include muscle activities in our model, and 

convert it an active model. 

* future model 

Our future model will be a 4 angles model, including muscle activities, that will predict 

the double support phase as well as the swing phase. The conclusions of this thesis may be 

incorporated in our future model, but the method of finding the optimum gait will not be 

changed. 



CHAPTER 6 

CONCLUSIONS 

We have developed a mathematical model of human walking, and a computer algorithm 

for the model. The model and algorithm offers a method for better insight into the 

mechanics of walking, and makes it possible to determine the optimum human gait and to 

analyze the effect of various parameters that affect the gait. 

We have found that the swing leg does not move like a free pendulum, that there 

exists some resistance which acts to decrease the effect of the gravity, and that this resis-

tance improves the motion of the swing leg of the model and produces energy loss during 

the swing phase. This energy loss is smaller than the energy loss at heel strike, and we can 

say that swing leg is controlled during the swing phase at the expense of a relatively small 

energy expenditure. 

In our model there are three sources of energy loss. They are the energy loss of fric-

tion during the swing phase, energy loss at knee lock, and energy loss at heel strike. We 

have developed algorithms to calculate these energy losses, and have determined that the 

energy loss at heel strike is predominant. Therefore, we believe that optimum gait 

dynamics and the energy loss at heel strike are closely interrelated. 
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APPENDIX A 

Equations of the Mathematical Model 

Figure A Configuration of the leg, thigh and shank at toe-off 

Ll, Lt, Ls  Lengths of the leg, thigh and shank 

Zl, Zt, Zs  Distances of the center of mass of the leg, thigh and shank 

Ms Masses of the leg, thigh and shank 

Mu,MT Masses of the upper body and the total body 
θ, ϕ, σ  Angles that the leg, thigh and shank make with the vertical line 
θ, ϕ, σ  

 Velocities of the leg, thigh and shank 
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Potential energy is expressed as follows. 

where 

Kinetic energy is expressed as follows. 



where 

Lagrange's equations of motion for our model will be derive as follows. 

where 
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Equations of our model: 

or 
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APPENDIX B 

Frictional Effect 

Figure B Frictional moments on the thigh and the shank from the hip and knee joints. 
Coefficients of friction for the hip joint and the knee joint are a and b. 

Equations of coordinates (xt, yt) and (xs, ys) of the center of mass of the thigh and the shank 

and their derivatives: 
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Equations of force components in the x and y directions: 

where 

The generalized forces of friction can be obtained by substitution into the formula below 

The results yields: 



The total x - component of momentum: 

The y component of momentum of each mass at any instant : 

The total y component of momentum: 

_ 	. . 
Let angular variables after knee lock as  

The x - components of momemtum before and after knee lock must be the same . 

42 

APPENDIX C 

Angular Velocities after Knee-Lock 

Angular velocities of the thigh and shank of the swing leg after knee-lock are calculated 
from the conservation law of momentum. The definition of variables are in Appendix A. 
The calculation process is as follows. 

The x - component of momentum of each mass at any instant : 
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The y - components of momemtum before and after knee lock must be the same.  

We know the value of  (θ, ϕ, σ, θ, ϕ, σ) before knee lock, and θ=θ, ϕ=ϕ, σ=σ, ϕ=σ, 

and ϕ=σ. 

Let 

Then, from the equations of x and y components of momentum: 

Therefore , angular velocities after knee lock: 



APPENDIX D 

Energy Loss at Heel-Strike 

Figure C Configuration of legs during the double support phase. 

Equations of the coordinate (x, y) of the swing leg's toe and their derivatives: 

where 

t > Ts (after heel - strike) 

We assume the following three vectors. 
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Then, from the derivative equations, we can get the next equations. 

Both vectors and 2  are orthogonal to the vector V. With this condition , energy loss 

at heel - strike can be calculated as follows . 

The unit vector in V1  direction: 



The unit vector in 	direction: 

The component of V 2  in direction: 

The component of , in the direction which is orthogonal to 	: 

where 

ʃϕ is the angular velocity of thigh of the swing leg before heelstrike 

8 is the angular velocity of the swing leg before heelstrike 
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Therefore the remained vector of angular velocities is as follow 

Now that we know angles and angular velocities of each limb, we can calculate the energy loss 

at heel strike with the result of Appendix A. As potential energy does not change at heel- strike, 

we consider only kinetic energy. 



REFERENCES 

1. Weber, W., and E. Weber. 1836. Mechanik der Menschlichen Gehwerkzauge (Mechan-
ics of human locomotion). Gottinger, Gottingen. 

2. Beckett, R., and K. Chang. 1968. "An Evaluation of the Kinematics of Gait by Mini-
mum Energy." J. Biomechanics. 1: 147-159. 

3. Nubar, Y., and R. Contini. 1961. "A Minimal Principle in Biomechanics." Bull. math. 

Biophys. 23: 377-390. 

4. Inman, V. T. 1966. "Human Locomotion." Can. med. Ass. J. 94: 1047-1054. 

5. Fenn, W. 1930. "Work against Gravity and Work due to Velocity Changes in Running." 
Am. J. Physiol. 93: 433-462. 

6. Fenn, W. 1930. "Frictional and Kinetic Factors in the Work of Sprint Running." Am. J. 
Physiol. 92: 583-611. 

7. Elftman, H. 1966. "Biomechanics of Muscle." J. Bone it Surg.(A) 48: 363-377. 

8. Mochon, S., and T. A. McMahon. 1980. "Ballistic Walking." J Biomechanics. 13: 49-
57. 

9. Basmajian, J. V. 1976. The Human Bicycle. Baltimore: University Park Press. 

10. Williams, M., and H. R. Lissner. 1977. Biomechanics of Human Motion. Philadelphia: 
W. B. Saunders. 

11. Burden, R. L., J. D. Faires, and A. C. Reynolds. 1981. Numerical Analysis. Boston: 
Prindle, Weber & Schmidt. 

48 


	Copyright Page
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Mathematical Model
	Chapter 3: Program
	Chapter 4: Results
	Chapter 5: Discussion
	Chapter 6: Conclusions
	Appendix A: Equations of the Mathematical Model
	Appendix B: Frictional Effect
	Appendix C: Angular Velocities after Knee-Lock
	Appendix D: Energy Loss at Heel-Strike
	References

	List of Tables
	List of Figures



